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ABSTRACT

FAILURE CRITERIA FOR FUNCTIONALLY GRADED
MATERIALS AND APPLICATION OF GTN MODEL
USING FINITE ELEMENT'S

Functionally Graded Materials (FGMs) are special composites with a point to
point continuous property variation. In this thesis, failure of laboratory scale FGMs is

modeled using Gurson - Tvergaard - Needleman (GTN) model.

Stress, energy, strain based (e.g. MTS, G, S criteria) and cohesive zone models
that are used for failure modeling of FGMs are reviewed. GTN model originally used for
failure of homogeneous materials is studied in detail. Because it is extremely difficult,
if not possible, to obtain a closed form GTN yield function for a non homogeneous
material, numerical implementation of GTN model is considered, and Abaqus is used
for computational analyses. The validity of results are first checked by resolving a

problem from literature using Abaqus.

GTN model is numerically implemented to two different FGM specimens to study
and predict failure. One of the FGM specimens is titanium monoboride / titanium (TiB
/ Ti) single edge notched bending (SENB) specimen, and the other one is a gradually
ultraviolet irradiated polyethylene carbon monoxide (ECO) co-polymer single edge
notched tension (SENT) specimen. It is concluded that GTN model is promising for

failure simulations of FGMs with a proper selection of model parameters.



OZET

OZELLIKLERI FONKSIYONEL OLARAK DEGISEN

MALZEMELER ICIN HASAR KRITERLERI VE GTN

MODELININ SONLU ELEMANLAR KULLANILARAK
UYGULANMASI

Ozellikleri fonksiyonel olarak degisen malzemeler (FGMs) bir noktadan diger
bir noktaya ozellikleri siirekli degisim gosteren 6zel amacl kompozitlerdir. Bu tezde,
laboratuvar dlgekli FGM’lerin hasar1 Gurson - Tvergaard - Needleman (GTN) modeli
kullanilarak modellenmistir.

Ozellikleri fonksiyonel olarak degisen malzemelerin hasar modellemesinde kul-
lanilan gerilim, enerji, gerinim esash modeller (6rnegin, MTS, G, S kriterleri) ve kohezif
bolge modeli gbzden gecirilmistir. Orjinal olarak homojen malzemelerin hasari igin kul-
lamilan GTN modeli detayli bir sekilde calisilmistir. Homojen olmayan malzemeler igin
kapah form GTN akma fonksiyonu elde edilmesi ¢ok giic oldugundan, GTN mode-
linin niimerik olarak hesaplanmasina karar verilmis ve sayisal analizlerde Abaqus kul-
lamilmustir. Abaqus ile elde edilen sonuclarin dogrulugu literatirdeki bir problemin

sonuclan ile karsilastirilarak sinanmstir.

GTN modelinin niimerik olarak uygulanmasi ile iki farkh tip FGM numunesinin
hasar1 ¢ahigilmigtir. Bu numunelerden bir tanesi titanyum monoborit/titanyum (TiB
/ Ti) tek kenar gentikli egilme numunesi, digeri ise asamali olarak mordtesi 1ginimma
maruz kalmig polietilen karbonmonoksit (ECO) kopolimer tek kenar gentikli gekme
numunesidir. GTN modelinin uygun model parametrelerinin secilmesi ile FGMlerin

hasar simiilasyonlarinda basarili oldugu sonucuna varilmstir.
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1. INTRODUCTION

Metal-ceramic composites usually in the form of ceramic coatings on metals are
designed to benefit from heat, oxidation, wear and corrosion resistance of ceramics,
and to benefit from the toughness and strength of metals. But, due to a distinct inter-
face between metal and ceramic components, such composites are vulnerable to failure
because of high residual stresses and poor interfacial bonding caused by the interfacial
mismatch. This problem is tried to be overcome by varying material properties gradu-
ally from metal to ceramic. This continuous change in properties improves the thermal
and mechanical behaviors of the system. Materials that have a continuous change of
properties from one point to another with a specific gradient are called functionally
graded materials (FGMs). FGMs are therefore special composites, and they may be
used in applications involving severe thermal gradients, high wear such as aerospace
engine components, cutting tools and electronic circuit boards. The behavior of FGMs
under different loading conditions should be well understood. In the following litera-
ture review, studies on failure of FGMs which will be the main scope of the dissertation

1s summarized.

1.1. Literature Review

Researchers studied fracture of functionally graded materials for different geome-
tries and loading conditions analytically, numerically and experimentally. Early studies
on fracture of FGMs were mainly focused on obtaining crack-tip stress and displace-
ment fields and stress intensity factors analytically and/or numerically [1-6]. Crack
propagation directions of pre-cracked specimens which is a mode of failure were widely
investigated. There are many criteria that were proposed for homogeneous materials
to predict propagation direction of an existing crack. They are implemented to func-
tionally graded materials in [7-11]. Those criteria can be grouped under three main
groups: i) energy-based criteria, ii) stress-based criteria and #ii) strain-based criteria.
For all criteria the critical condition refers to one of the extremum of the stated pa-

rameter, i.e., stress, energy, or strain. The toughness of the material are also varying



within FGMs as a result of nonhomogeneity. This is not taken into account by any
of these criteria. For example, the toughness can be maximum where the maximum
tangential stress occurs around the crack-tip. Therefore, failure may be mispredicted

by directly using failure models cited above.

A different technique to simulate failure is the use of so-called cohesive zone
modeling implemented to finite element method. The basis of cohesive zone models
was founded on the works of Barenblatt [12, 13] and Dugdale [14]. Barenblatt assumed
that there are atomic cohesive traction and the magnitude of the traction depends
on the new free surface opening displacement due to failure. Dugdale used a similar
cohesive zone model but he considered the traction to be constant and invariant with
crack opening. The traction produces a closure and they can occur in normal and
shear directions. Cohesive zone elements do not represent any physical material, but
describe cohesive forces that occur when material elements are being pulled. Cohesive
zone elements are placed between continuum (bulk) elements, as shown in Figure 1.1.
When the body is loaded, these cohesive zone elements open in order to simulate
failure in the body. Since the failure path can only follow these elements, failure
strongly depends on the presence of cohesive zone elements. Therefore, failure is mesh

dependent, but refining the mesh reduces this problem.

Figure 1.1. Cohesive zone elements in bulk elements

Cohesive zones simulate damage mechanisms in a specimen, leading to a cohesive

zone law between the traction and opening displacement. These laws are; 7) polynomial



cohesive zone laws, ii) piece-wise linear cohesive zone laws, i) exponential cohesive
zone laws,; and iv) rigid-linear cohesive zone laws as shown in Figure 1.2 [15]. The
maximum traction is the cohesive strength (separation stress), and the area under the
traction and opening displacement curve is the cohesive energy. As the cohesive surfaces
separate, the traction first increases until a maximum is reached, and subsequently the
traction decreases to zero, that results in local separation. This holds for both normal
and tangential directions. The initial stiffness of the cohesive zone model has a large
influence on the overall elastic deformation and should be very high in order to obtain

realistic results.
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Figure 1.2. (a) Polynomial, (b) piece-wise linear, (c) exponential, (d) rigid-linear

T,

cohesive zone laws. Cohesive zone laws for normal and tangential directions in upper

and lower rows, respectively [15]

Cohesive zone models are also used for functionally graded materials to study
failure in FGMs. Tvergaard [16], studied the crack growth in a functionally graded ma-
terial with linearly varying material properties between two dissimilar elastic—plastic
homogeneous solids. His analysis is based on the assumption that crack growth re-
mains on the initial crack plane, which is parallel to functionally graded interface
layer. Crack growth resistance curves and the dependence of the steady—state frac-
ture toughness on mode-mixity are obtained for different material variations and crack
locations. Jin et al. [17, 18] developed a new volume-fraction-based cohesive zone
model for FGMs. They studied quasi-static Mode-I crack growth for compact-tension
and single edge-bending specimens using finite elements. They calibrated cohesive

parameters using experimentally measured load vs. crack extension response. Wang



and Nakamura [19] proposed a power law relationship between separation energy and
separation stress. The feasibility of the model was examined in a dynamic fracture
analysis of an FGM double cantilever beam (DCB) specimen. Then, the proposed
criterion was implemented to a more complex model: A functionally graded protective
layer on a substrate subjected to a high velocity rod impact was considered causing
multiple crack initiations and propagations. They investigated the influence of mate-
rial gradation on energy absorption. Zhang and Paulino [20] studied dynamic fracture
behavior of homogeneous and functionally graded materials. They obtained fracture
path and crack propagation speeds using finite elements for an edge-cracked FGM
beam and for an FGM plate with two edge notches under impact loading. The for-
mer was under Mode-I loading and the latter was under mixed-mode loading. A good
agreement was observed between numerical and experimental results. Kandula et al.
[21, 22] examined dynamic and quasi-static fracture of functionally graded materials
under Mode-I loading. Numerical model is validated with experimental results for an
edge cracked specimen by comparing the time evolution of crack tip location under dy-
namic loading. Then, a parametric study of dynamic failure of a titanium monoboride
/ titanium (TiB / Ti) FGM was performed by Kandula et al. [21] using cohesive
zone model. A great sensitivity of the crack motion to the gradient of the cohesive
failure parameters between the metallic and the ceramic components was observed in
[21]. Kandula et al. [22] obtained reaction force and crack extension as a function of
applied displacement using cohesive zone model for a gradually ultraviolet irradiated
polyethylene carbon monoxide co-polymer (laboratory scale FGM) single edge tension
specimen under quasi-static loading. Computational results for different cohesive zone
parameters were compared to the experimental results given by Abanto-Bueno [23],

and a reasonable agreement was obtained.

The main drawbacks of using cohesive zone elements in modeling failure can be

listed as follows:

e Direction of failure propagation strongly depends on where the cohesive zone
elements exist.

e Mesh dependency.



Artificial compliance along element boundary is introduced [19, 20)].

Cohesive zone law fails to provide predictions when peak separation stress is too

high when compared with yield stress [19].

Crack-tip stress singularity weakens due to cohesive surface separation [20].

Cohesive zone law needs improvement in order to describe a mixed-mode deco-

hesion process [20].

So called the Gurson - Tvergaard - Needleman (GTN) failure model used for
homogeneous materials originally developed by Gurson [24, 25], then by Tvergaard and
Needleman [26-28]. GTN model that predicts failure as a result of void nucleation,
growth and coalescence, is a more physically based model. Pressure sensitive yield

functions developed by Gurson [24, 25| for cylindrical and spherical voids are as follows:

2 32
Deytindricat = —o- + 2f cosh (\/_ 11) — 1 — f* = 0 (for axisymmetry), (1.1a)
Eg v 3 Eh
(I)sphem'caﬂ = Jg -+ 2f cosh (— 55) —1- f2 =0 (11b)

respectively, where f is void volume fraction, oy is tensile flow stress in matrix material,

Y11 18 macroscopic radial stress in symmetry plane,

3 1/2
Eeqv = (EE;_?E;_?) ) (123’)
Sy = _Eﬂ+2322+233, (1.2b)
Lk

Lequs L, E;j are macroscopic equivalent von Mises, hydrostatic and deviatoric stresses,
respectively. Detailed derivations of these yield functions are given in chapter 2. Stress
carrying capacity vanishes (X.,, = X, = 313 = 0) when f = 1, and yield functions
simplify to von Mises yield function when f = 0. Stress responses for different void
volume fractions are plotted in Figures 1.3 (a)-(b) for cylindrical and spherical voids.

Stress carrying capacity decreases with increasing void volume fraction. Modifications



to the yield functions in Equations 1.1a-b and void volume fraction evolution laws are

proposed by Tvergaard and Needleman [26-28] and are explained in detail section 2.3.

In literature, there are numerous studies on predicting failure using GTN model.
Therefore, some of the milestones in the use of GTN model are summarized here in
chronological order. The first attempt that uses GTN model is a numerical analysis
of failure in a round tensile test specimen [28] where failure initiates at the center of
the specimen, and grows in a zig-zaged path. Stress-strain response, deformed shape
and void volume fraction variation are evaluated. The first numerical implementation
of GTN model to a fracture mechanics problem is introduced by Aoki et al. [29].
In their study, effects of microvoids on crack blunting and extent of the HRR field
(elastic-plastic stress field in power hardening materials developed by Hutchinson-Rice-
Rosengren) are investigated. Aravas and McMeeking [30] attracted attention on the
choice of GTN model parameters, and estimated crack-tip opening displacement at
fracture initiation for a blunting crack with a cylindrical void ahead. Aravas [31]
presented an unconditionally stable Euler backward scheme for numerical integration
of GTN model equations. Sun et al. [32] predicted load-displacement responses of
notched round tensile specimens. Then, J-resistance curves were obtained for a compact
tension fracture specimen using the GTN model parameters obtained from tensile tests.
It was noted that using GTN model for simulation of larger crack growth was difficult
due to great distortion of the elements at the crack-tip. First implementation of GTN
model using 3D finite elements was done for simulation of failure of crack growth in
a three point bending steel specimen by Narasimhan et al. [33]. Crack tunneling
was well predicted in numerical analysis when the void volume fraction variation was
examined through specimen thickness. Xia and Shih [34, 35| suggested the use GTN
model together with finite elements in front of the crack by a layer of similarly-sized
elements to simulate crack growth which are called computational cells. The size of
these elements were chosen to be in the order of the crack-tip opening displacement.
Effects of initial void volume fraction, power hardening exponent and initial yield
strain on opening stresses and fracture resistance curves were studied. Kuna and Sun
[36] compared the numerical results obtained by three dimensional primitive cubic,

body centered cubic and hexagonal unit cell models under constant triaxial stresses
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Figure 1.3. Gurson yield functions (a) for a cylindrical void, and (b) for a spherical

void, plotted using Equations 1.1a and 1.1b



(hydrostatic stress/equivalent von Mises stress) with the results obtained by GTN
model. Then, GTN model parameters were calibrated accordingly for these different
unit cell models. First sensitivity analysis for GTN model parameters were carried out
by Zhang [37] where selection of GTN model parameters and non-uniqueness problem
of GTN model parameters are emphasized. Up to mid-'90s, GTN model was generally
used for modeling failure of ferrous alloys. Pardeon et al. [38] studied the failure of
tensile bars numerically and experimentally with different notch radii made of copper
rather than ferrous alloys to figure out the effect of stress triaxiality. Many researchers
still study GTN model for improving the model capabilities and for simulating failure

of different type of materials under various loading conditions.

1.2. Scope of the Dissertation

The objective of this study is to model failure of functionally graded materials
(FGMs) using the damage model originally proposed by Gurson [24, 25|, and then
developed by Tvergaard and Needleman [26-28]. An attempt to develop a pressure
sensitive yield function for a non-homogeneous medium in closed form analytically
similar to the one developed by Gurson [24, 25] for homogeneous materials is presented
and discussed in chapter 2. As a result of difficulties encountered in such a closed

form formulation, computational implementation of Gurson - Tvergaard - Needleman

(GTN) model is considered and used.

Abaqus has a built-in GTN failure simulation module. In chapter 3, GTN model
parameters that are required for use of Abaqus are summarized, and effects of these
parameters on stress - strain response of a uniaxial tensile specimen are discussed. In
the same chapter, a three point bending of a steel specimen problem from literature
is revisited for verification of the results obtained using finite elements. Mesh size

dependency of this module is discussed in the same chapter.

In chapter 4, failure of two different types of FGM specimens are studied. One
of these specimens is titanium monoboride / titanium (TiB / Ti) FGM single edge

notched bending specimen which was investigated by Jin et al. [17, 18] using cohesive



zone model. The other one is gradually ultraviolet irradiated polyethylene carbon
monoxide co-polymer (laboratory scale FGM) single edge notched tension specimen
which was studied experimentally by Abanto-Bueno [23] and numerically (cohesive
zone model) by Kandula et al. [22]. The failure of these specimens are studied in
detail computationally using GTN model, and the results are compared to numerical
and experimental ones that are available. In the last chapter, the outcomes of this

study are summarized and discussed.



10

2. GURSON YIELD FUNCTIONS

In the following sections, Gurson yield functions are derived in detail for cylin-
drical and spherical voids [24, 25]. Modifications for the yield function and evolution
laws for void volume fraction that are proposed by Tvergaard and Needleman [26-28]
are discussed. A derivation of pressure sensitive yield function for FGMs similar to the
one obtained by Gurson [24, 25| for a cylindrical void is presented and the difficulties

in obtaining a closed form solution are explained.

Voids are formed either by grain boundary misfits caused by straining or by acci-
dent through faulty processing. Gurson [24, 25] developed yield functions for cylindrical
and spherical voids in a ductile medium. The yield functions are derived in detail for
a long circular cylindrical void, and for a spherical void separately in a homogeneous
plastic material in this section. Derivations are handled using a continuum approach
even in the presence of a void within the body. Yield functions are obtained in terms of
stresses and void volume fraction, but resulting yield surfaces are not functions of only
equivalent von Mises stress, but also of hydrostatic stress although the common belief
in classical plasticity is that plastic yielding is independent of hydrostatic stress. The
yield function for spherical voids is extensively used for homogeneous ductile metallic

materials literature [28-33].

The yield and flow relations of the matrix material are:

5023,,0;3' = o7, (2.1)

'(€6) = \/;JYéij Prandtl-Re lation-See A dix A 2.2

0;;(€) = W (Prandtl-Reuss relation-See Appendix A), (2.2)
. 1(0v; Ovy

o= L ? 2.3

‘ J 2 (8:53 + 6:5%) ( )

e = O, (2.4)

where oy is the tensile flow stress in the matrix material, crgj is the microscopic devi-
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Tlals
atoric stress field that is o}; = 045 — (5@'%, €i; is the microscopic strain rate field and

v; is the velocity field.
2.1. Long Circular Cylindrical Voids

The geometry of a cylindrical void is similar to a long hollow cylinder as shown

in Figure 2.1.

A
y

-
1
\
1
]
1
1
]
i
———
#

Matrix material is between a and b.

Figure 2.1. Long circular cylindrical void geometry

The velocity and the resulting strain rate fields are seperated into three separate

parts for purpose of analysis; they are:

(i) Plane strain,
(i) Uniform axial deformation,

(iii) General dilatation.

Velocity and strain rate fields for each part are derived separately in the following

sections:
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2.1.1. Plane Strain

The plane strain problem with no volumetric change (éxx = 0) is presented in
this section. An angular dependence is assumed for stresses and velocities, and they

can be written as

Opp = Tpp c0s(26), (2.5a)
To9 = Tgg cos(26), (2.5b)
Org = Gpg sin(26), (2.5¢)
v, = U, cos(20), (2.5d)
vg = Ug sin(26) (2.5¢)

where barred quantities depend only on r. Field equations will be obtained in terms

of barred quantities. Equilibrium equations along r and 8 are

d5rr Orr — Ogg 25’7’9
+ +—T=

0 2.6
dr r r ’ (2.62)
do,e  2(Gro — Gop)
=0. 2.6b
dr + r ( )
Incompressibility relation is (cos(26) terms drop)
N
e = _ 0, 9.7
€rr - Co dr + r (27)
and two constitutive relations are
L 2+, da,
Tog — Opp :26'( 9?" T ), (2.8a)

g = G(dﬁg _ 2t f"") (2.8b)

dr r
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where G is shear modulus. Constitutive relations, Equations 2.8a and 2.8b are substi-
tuted into equilibrium equations along r and # axes (Equations 2.6a and 2.6b) using
incompressibility relation, Equation 2.7, and the following ordinary differential equa-

tion in terms of 7, is obtained.

447, N d3s, B d?w, B grdﬁr

9v, = 0. 2.9
4 dr dr3 dr? dr o (2.9)

The general solution for Equation 2.9 is
’E_Jr = Ol?"3 + CQ?" + Cg?"_l -+ 04?"_3 (210)

where C} are constants. ¥, is obtained as shown below substituting Equation 2.10 into

Equation 2.7:
?._)'9 = —201?"3 - CQ?" + 04?"_3. (211)

Combining Equations 2.10, 2.11 with Equations 2.5d and 2.5e, approximate velocities

v, and vy under plane stress conditions are obtained.

v, = (Cyr® 4 Cor + Cyr™ + Cyr™3) cos(26), (2.12a)

vg = (=207 — Cyr + Cyr ™) sin(26). (2.12b)
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The resulting strain rate field is

érr == ETrr 008(29) = C;Ur = C:Jr 008(29)
r r
= (3C1r* + Cy — C3r™2 — 3C,774) cos(26), (2.13a)

_ 10w . 27, Uy .
€gp = €gg cOS(20) = ;a—; + % = (? + U?) cos(20) = —é,,

= (=3Cyr?* — Cy + Cyr™2 + 3C %) cos(26), (2.13b)

érg = grg Slﬂ(gg) =

1 1 61;,, 8v9 Vg . Qt_ﬂr d’l_»‘g ’I_»‘Q .
5(;89 +§—?) = (— ; +§—?)Sm(29)

= —(3Cyr?*+ Cy + Csr™2 4+ 3C,r~*) sin(26). (2.13¢)

In this section approximate velocity field along r and € directions are obtained
for plane strain with no dilatation. This field is compatible and incompressible and

therefore is admissible.
2.1.2. Uniform Axial Deformation

It is useful to introduce a new quantity, macroscopic strain rate field, Eﬁj which is

the volumetric average of microscopic strain rate field as given in the following equation:

By = % A éidV. (2.14)

Microscopic (¢,,) and macroscopic (Es3) strain rates along the axial direction are
equal for uniform axial deformation. Shearing rates along axial direction is related to
macroscopic strain rates Elg and Egg. A rotation of the r — # plane around the axial
direction, z, that results in E15=0 will simplify equations without a loss in generality.

After this rotation, new polar angle ~ is measured from the new 2* axis. The velocity
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field for this problem can be written in this new coordinate system as follows:

vy = Uy 2 cos(y), (2.15a)
vy = —7T, 2 sin(y), (2.15b)
(2.15¢)

v, = T, cos(7).

Field equations in the new coordinate system are equilibrium equation along axial

directio:

do,, 100, 00,, o0,
- — =0 2.16
or r Oy + 0z + r ’ (2.16)

three constitutive relations:

Tpz = QGérz, (2.17&)
0y, = 2GE,,, (2.17b)
Tzz = 0, (2.170)
and two strain rate-velocity relations:
. 1/0v, Ov,
€ry = 5( o T8, ), (2.18a)
1/0v, 10v,
= | =—+— . 2.18b
“ 2 ( 0z 1Oy ) ( )

When v,, Equation 2.15a and v,, Equation 2.15c are substituted into Equation 2.18a,

and combined with Equation 2.17a, o,, can be rewritten in terms of ,, and 7, as follows

_ | do,
or: = G cos(y) (’Ur + . ) (2.19)
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Similarly, o, can be rewritten in terms of ¥, and ¥, as shown below

0., = —C sin(y) (@r 4 ”?) (2.20)

Using Equations 2.19 and 2.20, equilibrium equation along axial direction, Equa-

tion 2.16 becomes

d?z, 1do, o,  do,
dr2 r dr r2 dr

=0 (2.21)

In the equation above, #, and o, are independent quantities, therefore they go to zero

separately. Then, the general solution for Equation 2.21 is

Uy = constant = V35, (2.22a)

’l_.’z = 05?" + Cs?"_l (222b)

where C5, Cg and V35, are constants and V55, is shearing velocity per unit axial length.
Combining Equations 2.15 and 2.22, velocity field as a result of uniform axial defor-

mation can be obtained as follows:

v, = V3 2 cos(y), (2.23a)
vy = —V3, z sin(y), (2.23b)
v, = (Csr + Cgr™") cos(y). (2.23¢)
Resulting strain rate field is
) 1/0v, Ov\ 1 s .
bry = §( o + 5, ) =3 (05 — Cer™“ + V32) cos(7), (2.24a)

.1 v, 10w, 1 _9 £\ .
€z =5 (E + oy ) =3 (05 + Cer " + V32) sin(7), (2.24b)
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(dﬂ _ U l%) _0. (2.24c)

2.1.3. General Dilatation

The velocity field considering general dilatation is derived from three-dimensional
incompressibility with no angular dependence and considering uniform axial deforma-

tion. Strain rate field is,

D D
dv, , U,

érr = W; €op = ?: ézz — E33 (225)

where the superscript D denotes dilatation. Equation 2.25 results in

duvP D .
U U B —o. (2.26)

dr r

Ekk =

The velocity field solution without angular dependence is

’U,P = OT?"_I - gEgg, (227&)
vy =0, (2.27h)
vP = Eys2. (2.27¢)

where C'; is constant. Resulting strain rate field is

d’u;? _ 1.
Eg. = dr = —CT?" §E33’ (228&)
D
1.
égg = U—r = OT?"_Q - §E33. (228b)
r



2.1.4. General Velocity and Strain Rate Fields
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One gets the general form of the velocity and strain rate fields superposing velocity

and strain rate fields obtained from ) plane strain, iz) uniform axial deformation and

i11) general dilatation analyses. Velocity field is

v, = (Cyr*+ Cyr + Cyr™ + Cyr™3) cos(26)

1.
+Crr! — §E33?" + Vi 2 cos(y),
vy = (—2Cyr* — Cyr + Cyr~3) sin(26) — V3 2 sin(7y),

v, = (Csr+ C's’r_l) cos(7y) + Eazz.

Similarly, strain rate field is

) v,
E?”?" -
or

= (301?"2 -+ Og — 03?"_2 — 304?"_4) 008(29) — C’{?"_2 — %Egg,

: 10ve vy
% = o0 T

1.
— (—301?"2 — OQ -+ 03?"_2 -+ 304?"_4) 008(29) + CT?"_2 — §E33,

€zz = ; = E331

0z

(2.29a)

(2.29b)

(2.29¢)

(2.30a)

(2.30b)

(2.30c)
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., = L(L9%  Ou v
o = 2\ r 08 or T

= —(3Cyr* + Cy + Cyr™2 + 3Cyr™*) sin(20), (2.30d)
B 1 Ov, n ov,
= = 9\or " 02
1
= 5(05 — Cer™2 4+ V34) cos(y), (2.30e)

: — 1 %4_16@3
= = 5\ 5z T o0

1
= —5(05 + Cer 2 4 Vi) sin(y). (2.30f)

Boundary conditions on the outer surface for velocities v; in terms of macroscopic
strain rates must be obtained to determine constants C; through C7 in Equations 2.29

- 2.30. In general, boundary conditions are in the following form:

vi|, = Egar] - (2.31)
Therefore,
Ur}s — E.b+ Erzz, (2.32a)
’Ug}s = Egrb + Egzz, (232b)
v, {S —E, b+ E,.>. (2.32¢)

Before obtaining boundary conditions, a transformation is required between cartesian
and polar coordinate systems to obtain microscopic strain rate field (in polar coordi-
nates) in terms of macroscopic strain rate field (in cartesian coordinates). The trans-
formation is not ordinary because # is measured from the 2 - axis instead of the 1 -

axis (See Figure 2.2).



Y
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Figure 2.2. Polar coordinates where 6 is measured from 2 - axis

Transformation matrix for the coordinate systems in Figure 2.2 is

T — cos(3+6)  cos() | —sin(f)  cos(f)
cos(m +6) cos(5 +0) —cos(f) —sin(P)

Transformations for the 1%t-order velocity tensor, ,and for the 2™

strain rate tensor, E are given as follows:

Ypolar — Tvcart.;

Epoﬂar — TEcart.TT-
Using the transformations above, one gets

v, = —vy sin(f) + vy cos(h),

vg = —wvy cos(f) — vz sin(h),

E,. = Eysin’ @)+ Eys cos® (0) — 2F1, sin(6) cos(h),
Egp = FEy1cos*(0) 4 Eysin?(0) + 2E:5sin(0) cos(h),
E,y = (Ey — FEy)sin()cos(d) + Eia(sin(0) — cos?(h)).
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(2.33)

-order macroscopic

(2.34)
(2.35)

(2.36a)
(2.36b)

(2.37a)
(2.37b)
(2.37¢)



Similarly, E,. and Ej, are obtained using a similar transformation.

Erz = - 3*1 sin('y) + V3*2 COS('}’)
Ep. = —Vjicos(y) — Vissin(y)
Ezz — E33
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(2.38a)
(2.38D)
(2.38¢)

Axial strain rates are obtained considering uniform axial deformation in section 2.1.2

and the derivations are handled in a different coordinate system denoted by * where

E3=0. E,, and E,, are expressed in terms of shearing velocities per unit axial length

V3 and V35.

Boundary conditions can be obtained by substituting Equations 2.37-2.38 into

Equations 2.32a-2.32¢ and taking into account that E,, and V3 (remember that E3=0

in * superscripted coordinate system) are 0, as follows:

v, = E'bcos(20) + %(Egg + En)b+ Vi zcos(7),
vg = —E'bsin(20) — Vyhzsin(y),

v, = Vjbcos(y)+ Fssz
where

1. i
E’ — §(E22 - Ell)

and V5 is shear velocity parallel to the 3 - axis and it is similar to V3.

boundary condition is zero shear strain rate on the void surface.

ére | r=a — 0?

érz|_, = O.

(2.39)
(2.39b)
(2.39¢)

(2.40)

Another

(2.41a)
(2.41b)

General velocity field equations, Equations 2.29 and velocity boundary condition, Equa-
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tions 2.39 give

C1b?+ Co+ Csb 2+ Ot = E, (2.42a)
OTb_l - %Eggb - %(Ell + Egg)b’ (242b)
C5 -+ Ogb_Q = 1/2*3 (2420)

From Equation 2.42b, C; can be solved
C; = Eb? (2.43)

where FE = §(E11 + Eoy + F33). Substituting é,4 and é€,,, Equations 2.30d-2.30e into
Equations 2.41a and 2.41b yields the following two equations:

3Ca* + Cy 4 C3a™2 4 3Ca™* = 0, (2.44a)
C5 - CﬁG_Q = —V3*2’ (244b)

Cs and Cg are uniquely determined from Equations 2.42c¢ and 2.44b:

_ Vs — fV

o= 2%, (2.45)
Co— “2(‘;237?@2) (2.46)

where
f= (;—j (void volume fraction for a cylindrical void). (2.47)

Notice that there are four unknowns, C; through C; and two equations, namely
Equations 2.42a and 2.44a are left. Therefore the system is indeterminate. In Gurson'’s
study the velocity field is taken to be linear in r for such a type of problem. Hence the
C,r3 term violates this intuition. Therefore it is proposed that C; goes to zero. Wen and

Hwang [39] denied this intuition and presented a correction. Their work also includes
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the missed relation between C; and macroscopic quantities: 2C,b* + Cy — Cyb™* = E'.
Here, Gurson yield criterion will be explained disregarding these corrections. Letting
C] be equal to zero, C3 and Cj are expressed in terms of Cy and known macroscopic
quantities. Then C, is determined numerically letting C, = C4(f)E’ and using the

minimization of dissipation energy W;

. 1 . 1 2 —
W = 1—/ /; Jgjfij dV = 1—//; §O’Y v €ij€ig dV. (248)

Solving Equations 2.42a and 2.44a for C3 and Cy in terms of Cj letting C; = 0 gives

b2 nl 2

Cs = o f(3E — (3= f2)Cy), (2.49)
aZb? .,

C, = 3_f(02(1—f)—E). (2.50)

Rewrite microscopic strain rates Equations 2.30a, 2.30b, 2.30d in a compact form.

€rp = EwcmCW)—EH_L—%E% (2.51a)
oo = —%ﬁcod?@—%EAﬂ=—%E% (2.51b)
€rg = €Epgsin(20) (2.51c¢)
r? ) o
where A = - Applying the form Cy = C}(f)E' it can be shown that
_ ! ! .
ér = F (02(1 + A) 2E=7) f)) (2.52a)
_ ! o S
g = —F (02(1 A)+ (= f)) (2.52b)

where

A2(3 - f)

Empirical forms of C} is obtained fitting finite number of data points for 0 <
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f < 0.5 and for very small f (< 0.01) while minimizing W. It is cumbersome to
deal with the velocity and strain rate fields in this form. Therefore a simpler form is
considered that results when strain rate boundary conditions Equation 2.41a and 2.41b

are omitted and dependence of é,,, €4, €., and €, on A is eliminated. This results

€ = E, (2.54a)
éo = —F (2.54b)
c, = 1, (2.54c¢)
G = Vit Vi) = B, (2544)
€. = —%(1/2*3+V3"‘2):—E§3. (2.54e)

Strain rate field 2.30 takes the following form using above equations:

By

€ = FE'cos(20) — Eb?r2 — 5 (2.55a)
g = —E’cos(?@)—i—EbQ?"_Q—% (2.55b)
€. = Ess (2.55¢)
éo = —FE'sin(26) (2.55d)
€, = K cos(7) (2.55¢€)
€. = —Elsin(y) (2.55f)

Axisymmetric deformation is studied for the rest of the analysis which is the
simplest case. Macroscopic stress field X;; is the areal average of the microscopic stress
field ;. X;; is work conjugate of Eij and these can be formulated as follows:

1
AJa
W = SyEy;. (2.57)
The yield locus of X;; has the properties of convexity and normality. Therefore
02ij E;j = 0. This results the following relation between W and Ji; using the above
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Equation 2.57.

oW
OE;;

(ﬂ/V = Eij (5Eg_? = Ee;j = (258)

Tensile yield stress oy is assumed constant in the matrix and the following nor-

malization is used.

Y
T, ==2 2.59
=2 (259
The stress and strain rate systems are
Ty = T22, Teqv = |T33 - T11|, (2.60&)

E12 — E21 — E13 — E31 — E23 — E32 — 01

Ell - EQQ = E; - 0, (260b)
therefore
: 3E2
éijéi; = 2B A2 + 73‘3 (2.60c)

due to axisymmetry. Combining Equations 2.48, 2.58, 2.59, 2.60a and 2.60c results

LW 1L o o 30\
Ty, = oy 3B = AV fv E) (EA + /__lEgg) dv, (2.61a)
1 0W 11 : 3. : 3.\ 2
Ty = —— — _— — EX24+ZFE. | EX2+ 2E2 dV.(2.61b
33 oy 9B \/§V/; ( + 2 33)( + 1 33) ( )
31 [ . (- 3.\ 2
Teqv = T33 — Tll = %VLEgg (E}\_Q -+ EE:%) dV (2610)

The following changes of variables are used

r=EX', g=ZFs, (2.62a)

3
4
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1
?fvdv = waL/ / /drd@dz

= / d\ = / —d)\ (for axial symmetry). (2.62b)
By

Using the above variables, T¢,, Equation 2.61c and T}, Equation 2.61a can be rewritten

as follows

. rE/f E24+qg—1/E24 gf2
Toq = gl’QE[_g (a4 ¢%) Ve = \/ g\/;/ 9/ (2.63a)

E/f VE2+gf2+E
T, — %/’ ($2+g)—1zzd:€:%1ﬂ ’ 97 ' (2.63b)
3.Ji 3 \f(WE>+g+E)

Eliminating E and g from Equations 2.63a and 2.63b gives an equation in g, 711 and

f that is the Gurson’s yield function for cylindrical void. The resulting yield function

for axisymmetry is

2

e;” + 2f cosh (

0y

(I)cylindrical =

\/5211) —1—f2=0 (2.64)
Oy

where f is void volume fraction, oy is tensile flow stress in matrix material, X is

radial stress in symmetry plane,

1f2
e = Tequoy = ( E;JE:J) , (2.65a)

Yequ, i; are macroscopic equivalent von Mises and deviatoric stresses, respectively.

2.2. Spherical Voids

The spherical void geometry is shown in Figure 2.3. The approximate velocity

field is split into two parts; shape change at constant volume (vf), and volume change
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at constant shape (v}). The total velocity field is

v = v + ;. (2.66)
3
A
. |
@ |
|
:
- - I
r /,a ~\ |
e il Il Al |
-7 VT T~
P ! = —— Al | T
P =———+— > 2
= e S |
B /

Figure 2.3. Spherical void geometry

The microscopic strain rate field €;; calculated from v; must be incompressible and
v; must meet external boundary conditions in terms of Eij. The boundary conditions

are separated as follows since velocity field Equation 2.66 is constructed separately.

vile = Ejjail (2.67)
Enn
v |ls = —x; (2.68)
3
)
where
Ej;=Ej+ %a}j. (2.69)

Microscopic strain rate field can be separated as v;, then one gets

€ij = €+ € (2.70)

ij



Equation 2.67 gives
€ = E;fj

that satisfies incompressibility due to the nature of deviatory.
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(2.71)

By symmetry, v} should consist of radial component only. Therefore, incompress-

ibility is written as follows

Above equation results

vl =Cr?

where C' is a constant. Applying the boundary condition Equation 2.68

E Epn

vl _ =Cb %= %b = C= Tb3
The velocity field corresponding to pure dilatation is
v E"J’m b3 v v
UP—TTQ, v =v5 =0
€;; in spherical coordinates are
v 2(b\°.
ey = ~ == - Enn
Crr or 3 (’r)
1 (0vy 1/b)°.
) - —\ 5 === E'rm
w= 3@ ) =56)
. 1 ovy v . ; 1
€pp = ren(d) ( 699 + v, sin (@) + vy cos(q&)) =3

W
€rg = €r¢ = €gy =10

(2.72)

(2.73)

(2.74)

(2.75)

(2.76)
(2.77)

(2.78)
(2.79)
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Notice that incompressibility is satisfied.

€i; can be written using the new variable h;;

- Enn
é; = Ei; + —3 s (2.80)

In spherical coordinates:

By = —2 (%)3 (2.81)

b\ 2
h¢¢, = hgp = (;) (282)
hij =0 when i#j. (2.83)

In cartesian coordinates:

3z;7; b\? b\?

where

r? =22 + 22 + 23 (2.85)
T

i = — 2.86

m=" (280

n; are the cartesian components of the normal to a sphere of radius . An approximate
€;; field is constructed and now using the Equations 2.48 and 2.58 macroscopic stress

2;; can be written as a function of EZJ

1 ey,
Sy = 37 [, a,gga ; dv (2.87)

Equation 2.80 can be rewritten as follows

. : E?m
€pl — Ekl —|— 3 (h’kf — 5@;) (288)
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S0,

Oéxy
OE,;

Si;
= Opillj + -~ (hkx — Okt) (2.89)

Using the fact that o};0k = o}, = 0, Equation 2.87 becomes

Sij = /( "J“h"“) dv =¥, E;’”éw (2.90)

Matching coefficients of d;; gives

s, = / ol dV (2.01)

Ekk = _/Jklhkf dV (292)

Using o}, = 0 again and Equations 2.81-2.83, it can be written

S = _f( 099+J¢¢>h,,r av

. 30'1,,?. Jrr‘i‘o'gg‘i‘o':ﬁqf,
- V/( 2 2 fory AV

/
_ % fv 3;”“;7,” dv (2.93)

Macroscopic stresses in terms of oy and €;; can be obtained using Prandtl-Reuss stress

strain relation, Equation 2.2.

2 Jyé i
.o = — — Y_dV 2.94
Y / 3 \/€ri€ri (2.94)

D /\[JYE”“ 9.05
Kk Vet (2.95)

The integrands must first be expressed in terms of EZJ Using the fact that E:m =
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and Equations 2.80-2.83 yield

éijéij = E‘Ir E‘Ir + _EnnEgjhij + _Egnhijhij

ijig 3 9
9. 3B, 1., ., 2., (0)°
= E;jE;j + gEnnhrr (T - §(E;’r + EéQ + E&’(ﬁ)) + §E72m (;)
3 6
= E;JE;J - QERRE:‘T’ (é) + gEfm (é) (296)
T 3 T

The following changes of variable will be useful for tracking the Equations 2.94 and
2.95. New variables are
E
D = "™ (2.97)
3\ 3ELEL

E
SR — (2.98)

tij = ——
\ 5EuEL

nl
E‘l”?"

S
EEkIEkI

= (%)3 (2.100)

Q = 1—4Dp ™' +4D*\72 (2.101)

(2.99)

The volume integral over the sphere is treated in the following manner.

1 1 b 1 !
V/v dV = g?ﬂﬁ/gz/a rldrdQ) = EL/f d\dQ (2.102)

where

" / " sin(e)dedo (2.103)
0

/dQ:
Q

f =

S~

%] R

(void volume fraction for a spherical void) (2.104)
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Using the Equations 2.80, 2.84 and 2.96-2.102, macroscopic stresses Equations
2.94 and 2.95 become

1
;oY o (6 — 3nn ) DA
E“:j - GTTL/_; \/@[tﬁj—i_(é%j 3?’3%?’13)9)\ ]dAdQ (2105)
ay 1 1 _1 1
w = oo )] —g2DAT A dnan (2.106)

Above equations show that macroscopic stresses depend only the ratios of the EZ_,,., and

not on their magnitudes. Integration of Equations 2.105 and 2.106 with respect to A

yield
o A=f
B = 6" / [t%JH(A 1) + D G\, ) (6 3ninj+2#tij)] dQ (2.107)
m A=1
A=f
S = X lD A G\ ] dQ 2.108
kk / D] FA\p)+p G, p) . ( )
where
F\p) = 111(\/@~F2|D|)\_1—%,u> (2.109)
G\ p) = In(v/QA\+ X —2Dy) (2.110)
H\p) = /OX (2.111)

Next step is to obtain an approximate analytical solution to Equations 2.107 and 2.108.
Taylor expansion of the functions F, G and H in p around p = 0 is used for approximate

solution. The expansions are of the form
FO il = FO 4 uF® 4 #QF(” +. (2.112)

where

A=f

F™ = (w) 0 (2.113)

oun

A=1

The approximate stress integrals where F, G and H are expanded to second order in p
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become
Yo g" [tw (H(D + pHY + ,LEH@) + 2Dt (uG® + p2GW)
T
+(0i; — 3nmj)((;‘(°) + puGW + 5#20(2))] df (2.114)
Yk

0"/ [£| (F(°)+,uF(1 Q#QF@))JF(#G(O)JF;PG(U)] dQ (2.115)

Using the Equations B.4-B.6 derived in Appendix B and dropping the smaller terms
one gets

g 2 1 4
[ N W = () (2) (1) .
Ty = tz;,( H® + —H® + =DG ) (2.116)
Ekk D 2
Ter = 90 F(2) ralty 9117
kk o |D| ( + + 5 ( )

Again dropping the smaller terms, macroscopic equivalent tensile stress can be calcu-

lated as shown below

T2 T" T~ 1 (0))2 g0 g2

1
HOY? 4 _HO[F®
(HP)"+ ¢

(2.118)
o2, L0 @ V2
Teqv ~ (H( )) +5H( )H()
0 S — V2
|H()| l—i—gH()H()
1
|HO| + EH(” sgn(H©) (2.119)

Following statements can be obtained from Equations 2.109-2.111 and using Equation
2.113.
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PO _ 111( VI +4D" + 2D ) (2.120)
f(v/1+4D?+2|D))
1 4D?)\~? =
F® = —( + )
14+4D?A72 © (14 4D2A-2)%/2(\/1+4D2X"2 + 2|D|A-1) / |,
(2.121)
1 A=f
v _ __ 2D\ (2.122)
1+4D222|,_,
HO = \/f24+4D2? —/1+4D? (2.123)
4D\
@ — _
H (1+ 4D2)\2)3/2 2129
For D >0, these give
Tu _ 1 ( V2 +4D? +2|D| ) ~ D@+4DA?) M (2.125)
2 F(WT+4D%+2|D])) BA(1+4D2A2)%2|, '
2D? A=t
~ 2 _ 2 2 .
Ty ~ V1+4D?—/f2+4D>+ N+ AT, (2.126)

the last terms in the above equations are of second order terms. They can be dropped
for a fairly good first order result since they are small with respect to the first order
terms. This results

g v 3 Eh

] +2fcosh(—§—> —1-f2=0 (2.127)

(I)spherical

that is the first order yield function for a spherical void configuration where f is void

volume fraction, oy is tensile flow stress in matrix material,

1/2
Eeqv = Tequ"Y:( E:JE:J) s (2128&)
Y, = Dk _ _Xn +222+E33’ (2.128b)
3 3
2
T = Ty —5%3%. (2.128c¢)

Lequs L, E;j are macroscopic equivalent von Mises, hydrostatic and deviatoric stresses.
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2.3. Modifications to Gurson Yield Function for Spherical Void

Gurson yield function for a spherical void Equation 2.127 was modified intro-
ducing new coefficients namely yield function coefficients ¢;s (i=1,2,3) by Tvergaard
[26, 27| as shown in below equation, since in its original form the complete loss of
material stress carrying capacity was not predicted at a realistic value of void volume
fraction.

p 3%

EE v
(Dmodifiedl = 0_2q + 2(1‘1f COSh ( — QQ§J—) —1- Q3f2 =0 (2129)
Y Y

In this case stress carrying capacity vanishes (2.,,=0, 3;,=0), when void volume frac-

n+VE - as
q3

studies is improved considerably for g1=1.5, g2=1 and g3 = ¢?.

tion f equals to . Tvergaard [26, 27] showed that agreement in numerical

The yield function Equation 2.129 was subsequently remodified by Tvergaard and
Needleman [28] as follows:
: 3%

EE v
Prnodificds = —a + 2q1f" cosh ( —q §—) —1—gf**=0  (2.130)
O'Y ay

where f* represents the modified damage parameter which accounts for acceleration of
loss of stress carrying capacity due to void coalescence. f* is defined in terms of void

volume fraction f by

[ (f) = ! s (2.131)
RS e A '
fF fc

a2 —
where fy = NtV is the ultimate value of void volume fraction at which
qs
the stress carrying capacity vanishes (3.4,=0, £,=0), f. is the critical void volume
fraction at which an accelerated void growth starts (it is also called initiation of void

coalescence), and fr is the failure void volume fraction.
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The evolution of void volume fraction during an increment of deformation was
expressed both in terms of growth of existing voids, and nucleation of new voids by

Tvergaard and Needleman [28] as follows:

-)é = (.)é)growth + (f)nucteation (2.132)

"

where superimposed “ implies time derivative. Growth and nucleation parts were

described by

(Fgrowtn = (1= f)ém (2.133)
(Fnucteation = AEL, + By Gegy + By i /3 (2.134)

where €5, &y are the trace of plastic strain rate and the trace of stress rate, respec-

P
equ?

tively, and €., 0.q are the equivalent plastic strain rate and equivalent stress rate,
respectively. The growth term in Equation 2.133 enforces incompressibility of the ma-
trix material. Void nucleation occurs due to interfacial separation of inclusions, and
these inclusions could be secondary phase particles that are added intentionally to im-
prove specific properties of the material or impurities which do not serve improvement
in material properties [33]. Nucleation of voids have strain and stress controlled parts
that are denoted by coefficients A, B; and B,. A is suggested that nucleation follows

a normal distribution by Chu and Needleman [40] as follows:

fn 1 Eg;v_eﬂ :
A= exp |[—= | ——— (2.135)

where s, is the standard deviation and €, is the mean of the distribution, f, is the
void volume fraction of the void nucleating particles. B; and B, are also suggested

that nucleation follows a normal distribution by Chu and Needleman [40] as follows:

n 1 equ i 3 —Un 2
Bi=By= —I" _ep |-t (" w ¥ owe/3 = 0 ) (2.136)
Sp00V 2T 2 8100

where s, is the standard deviation and o, is the mean of the distribution, f, is the
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void volume fraction of the void nucleating particles, and oy is the initial tensile flow

stress of the matrix material.

2.4. Gurson Yield Function for FGMs

In this section, an attempt on obtaining a yield function in closed form analyti-
cally similar to the one proposed by Gurson [24, 25| for a cylindrical void is presented
where the medium is non-homogeneous and shear modulus G varies radially. The ve-
locity and resulting strain rate fields are again separated into three parts as was done

in section 2.1:

(i) Plane strain,
(i) Uniform axial deformation,

(iii) General dilatation.

Velocity, strain rate fields for each part are derived separately in the following sections

for radially varying G.

2.4.1. Plane Strain

The plane strain problem with no volumetric change is solved assuming an angular
dependence for stresses and velocities same as in Equations 2.5a - 2.5e given in section
2.1.1. Equilibrium equations along r and @ axes, and incompressibility relation which
are given in section 2.1.1, in Equations 2.6 and 2.7 are also same in the following

derivations, but two constitutive relations are:

2 +7, do,
Gog — Gy = 2G (”“"fﬂ - dT; ) (2.137a)
_ dvg 29,4+ vy
=G0 2T 2.137b
ore ( dr r ) ( )

are different than Equations 2.8a and 2.8b where G is shear modulus and it is assumed

to be of the Gor™ form. Equilibrium equations namely Equations 2.6 are rewritten
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substituting constitutive relations, Equations 2.137a and 2.137b, and using incom-
pressibility relation, Equation 2.7. After these substitutions, the following ordinary
differential equation in terms of 7, is obtained.

4_ 3_ 2 _

4 Uy Uy do,
T (n+3)r? d3—|—(n +6n—3)r? d2+(n —8n—9)r .

(3n249)5, = 0 (2.138)

The general solution for Equation 2.138 is

( n+4/ n2420+4v/16—3n2 ) (—n+ n2420—4v/16—3n2 )
v = Dir 2 + Dyr P
( —n—4/n2420—44/16—3n2 ) ( —n—/ n2420444/16—3n2 )
+D3?" 2 + D4?" 2 (2139)

where D; are constants. ¥4 is obtained substituting Equation 2.139 into incompress-

ibility relation, Equation 2.7.

To = —1D 1+ —n + \/n + 20 + 4v/16 — 3n? ﬂ2+20+4\/16 3n2)
9 — B 1 2
1 —n+ \/n2+20 4m —n+ 2+2cr 4/16-3n )
—-Da| 1+
2 2
' il Vn2 +20 — 416 — 3n2\ (=n- - 4¢m)
27 2
1 —n — vV/n2+ 20+ 4v/16 — 3n2 E= n2+m+4 T
_594(1 n—vn2+4 2+ \/7?1,) Yo.140)

Combining the equations above with assumed velocities in Equations 2.5d and 2.5e,

approximate velocities v, and vg under plane stress conditions are obtained.

Pl )+D2r( 2

v, =

[ (—n+ n2+20+41/16—3n2 —nt n2+20—4\/16—3n’-’)
Dl?"

(—n— n%M—%/W) ( —n— n2+20+4\/m)
+Dsr 2 + Dyr 2 cos(20)(2.141a)
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1 [ ( —n+ \/n2 + 20 + 4\/@) (—ﬂ+ ﬂ2+2‘3+4\/16—3n2)
V9 = —3 Dl 1+ r 7
2 2
—n+ \/n? + 20 — 4m ‘-’+20 4/16= 3n2)
+Dy( 1+ 5
oy — 2 _ — 2 2 -
+D3(1+ n—/n +23 4\/W) +20- /72 +20-ay/16-327 )
—-n — 2+ 204 4v/16 — 3n? —n— ﬂ2+20+4\/16 3n2
+D4(1 +— Vet 2 . ﬁ) ) sin(20).
(2.141b)

The differences between the velocity field obtained for non-homogeneous medium
with a radially varying shear modulus here in Equations 2.141a-2.141b and the one
obtained for homogeneous medium in Equations 2.12a-2.12b in section 2.1.1, are the
exponents and coefficients of rs that includes n which is varying exponent of shear
modulus. When n is taken to be zero in Equations 2.141a-2.141b that introduces

homogeneity, the velocity field derived here yields the one obtained in section 2.1.1.

2.4.2. Uniform Axial Deformation

The macroscopic strain rate field, EZJ which is the volumetric average of micro-
scopic strain rate field is defined same as to the one that is done in section 2.1.2 and
given in Equation 2.14. The same assumptions are accepted as stated in section 2.1.2.
They are repeated here to be able to provide continuity. Microscopic and macroscopic
strain rates along the axial direction are equal for uniform axial deformation. Shearing
rates along axial direction is related to the macroscopic strain rates Elg and Egg. A
rotation of the » — @ plane around the axial direction, z, that results in E13:0 can be
determined. This is considered to simplify equations without loosing generality. New
polar angle 7 is measured from the new 2* axis. The assumed velocity field for this
new coordinate system here is same as Equations 2.15a-2.15¢ given in section 2.1.2.

Equilibrium equation along axial direction, two strain rate-velocity relations are also



40

same as Equations 2.16 and 2.18 given in section 2.1.2, but two constitutive relations:

Tpy — QGE’PZ’ O"yz - QGE“)(Z’ (2.142)

are different than Equation 2.17, where G is shear modulus and it is assumed to be of

the Gor™ form.

When combined with Equations 2.15a-2.15¢ and 2.18, Equation 2.142 becomes

o, = G cos(7) (ﬁ,, + %) (2.143a)
dr

%z:—cam@(@+fﬁ) (2.143b)
T

Using above equations, G = Gor™, and the fact that o, is not function of z, equilibrium
equation along axial direction, Equation 2.16 becomes
do

— 0, + f(r)+ ?"Qd—: +rnt, — f(r) =0 (2.144)

2 _
,d“v,

r
dr?

dz,

dr

+r(n+1)

f(r) is an arbitrary function of r. o, and @, are independent quantities, therefore they
go to zero separately. Then, the general solution which yields zero é,,, é,, and €, (this

is required to satisfy the boundary conditions) for Equation 2.144 is

¥, = constant = V3, (2.145a)
—_n n2 —n—1/n2
3, = Dyt | D™ vy (2.145h)

where Dj, Dg are constants and V3, is the shearing velocity per unit axial length.

Combining Equations 2.15 and 2.145, velocity field due to uniform axial defor-

mation is given

v, = V3 2 cos(y), (2.146a)
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vy = —V3, z sin(y), (2.146b)
v, = (Dyﬁ‘-@ + Ds’rﬁﬂnﬂ — Vi5r) cos(y). (2.146¢)

The difference between the velocity field obtained here and the one obtained in
section 2.1.2 is at axial velocity, v,. Exponents of r in v, for non-homogeneous medium
includes n, and one more extra term that is V35r is included. When n is taken to be

zero, both velocity fields obtained here and in section 2.1.2 are equal.

2.4.3. General Dilatation

Same procedure in section 2.1.3 is followed while obtaining velocity field con-
sidering general dilatation. No angular dependence and uniform axial deformation is
considered. Strain rate field is same as given in Equation 2.25 in section 2.1.3. Equa-
tion 2.25 results the same incompressibility relation as it is given in Equation 2.26.
The general solution for €, = 0, is same both for homogeneous and non-homogeneous

mediums, and it is

wP = Dot — %Egg, (2.147a)
vy =0, (2.147b)
vP = Eys2. (2.147¢)

where D7 is constant. This is because no constitutive equation is used while obtaining

velocity field considering general dilatation.

2.4.4. General Velocity and Strain Rate Fields

One gets the general form of the velocity and strain rate fields superposing derived

velocity and strain rate fields from separated parts that are i) plane strain, ) uniform
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axial deformation and #ii) general dilatation. Velocity field is

vy = (Dl?"M + DorN + Dar ™V + D4T_M) r2 cos(26)

+Drt — gEgg + V35 2 cos(7), (2.148a)
w = D (1= M) D (1= N 4Dy (1= 2 - N )N
2 2 2 2
+D, (1 - g - M) r—M ] =% sin(26) — V3, 2 sin(y), (2.148b)
v, = (_195?"%‘“2%1 + Jl)g?"_ﬂ_fﬂmr4 — Viir) cos(y) + Essz. (2.148¢)
V/n? 420 + 416 — 3n2 Vn2 420 — 4/16 — 3n2
where M = 5 ,and N = 5 .
Strain rate field is
. . Ovy
= o
_ [Dl( - ; + M)TM—I n DQ( - g + N)TN—I + Dg( - g - N)T—N—l
+D4( - g - f'vf) ?"_M_I] r~% cos(20) — D% — %, (2.149a)
fp = 1OV O
%7 ree Ty
= [Dl(g —ﬂ{)?"ﬂf_l‘i‘Dg(g —N)?"N_l‘i‘Dg(g‘i‘N)T_N_l
n r\,.—M-1| -2 -2 _ %
+Dy 5 + M |r r~ 2 cos(260) + Drr 5 (2.149b)
€ = %T;z — B, (2.149¢)
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ty = l(ldvr+%_%)
B 3 [—n+2M\*\ 4, 3 [—n+2N\*\ n_,
- (=5 () (-3 (7))
3 [—n—2N\?\ _u 3 [—n-—2M\* _,
D _ v _ —N-1 D _ v —M-1
(-3 () )5 () )

772 sin(26), (2.149d)

.1 ov, n ov,
rz = 2\ Or 0z

1 D —n+vn?+4 Tﬁgﬂ@_l

- 2| 2

—71 — 2 —n—y/'n
+D6( n \2/?’1 +4)T7 w—ll cos(7), (2.149)

: — 1 %4_16@2
= 35\ 8. "7 o0

_ _% lerﬁ@_l_i_DsrﬁgﬂE_l] sin(y). (2.149f)

Velocity and strain rate fields that are obtained from general dilatation part are same
both for homogeneous material and FGM where shear modulus is Gor™. Differences
between homogeneous material and FGM in terms of these fields obtained here are the
exponents of r as can be seen when the Equations 2.29, 2.148, and Equations 2.30,

2.149 are compared.

When these velocity and strain rate fields are compared to the ones obtained for

homogeneous materials.

Boundary conditions on the outer surface for velocities v; in terms of macroscopic
strain rates must be obtained in order to determine the constants D, through D; in

Equations 2.148-2.149. In general, boundary conditions are

vi|, = Egar] - (2.150)
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Therefore,
or|, = Emb+ B2, (2.151a)
ve|, = Eorb+ Ep.z, (2.151b)
v |, = Eub+ B,z (2.151c)

Before obtaining boundary conditions, a transformation is required between carte-
sian and polar coordinate systems. The transformation is not ordinary since # is mea-

sured from the (2) axis instead of the (1) axis (See Figure 2.2).

Transformation matrix for the coordinate systems in Figure 2.2 is

T— cos(3 +6)  cos(f) _ |- sin(f)  cos(f) (2.15)
cos(m+6) cos(5 +0) —cos(f) —sin(f)

Qnd

Transformations for a 1¥*-order tensor, ¥ which is velocity and for a 2"*-order tensor,

.

FE which is macroscopic strain rate are given as follows

Ypolar — Tvcart. (2153)
Epoar = TE 0T (2.154)

Using the above transformations, one gets

v, = —vy sin(f) + vy cos(h), (2.155a)
vg = —wvy cos(f) — vy sin(h), (2.155b)
E,. = FEysin®(0) 4 Ey cos?(f) — 2E,,sin(0) cos(h), (2.156a)
Ew = FEi1cos’(8) + Ensin?(8) + 2E1;sin(8) cos(8), (2.156b)

E,o = (Eiy — Ey)sin(d) cos(d) + Eyo(sin®() — cos®(0)). (2.156¢)
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Similarly, E,. and Ej, are obtained using an alike transformation matrix T'.

E., = —Visin(y)+ V3 cos(v) (2.157a)
E,, = —Vi cos(y) — Viysin(y) (2.157b)
E.. = Ey (2.157¢)

The axial strain rates are obtained considering uniform axial deformation in the section
2.4.2 and these derivations are handled in a different coordinate system denoted by *
where E,3=0. Therefore E,, and Ej, are expressed in terms of shearing velocities per

unit axial length V3§ and V5.

Substituting Equations 2.156-2.157 into Equations 2.151a-2.151c and taking into
account that E,5 and V3! (remember that E;;=0in* superscripted coordinate system)

are 0, boundary conditions are given

1. . . 1 . .

’Ur{,,:b = §(E22 — Eyy)bcos(20) + §(E22 + E1)b+ Vi zcos(y), (2.158a)
1 . :

ve|,_, = —5 (B — En)bsin(26) — Vgyzsin(y), (2.158b)

|,y = Visbeos(y) + Eszz (2.158¢)

where V3 is a shear velocity parallel to the (3) axis and it is similar to V3. Another

boundary condition is zero shear strain rate on the void surface.

érgl,.. = O (2.159a)
€, = 0 (2.159b)

General velocity field Equations 2.148 and velocity boundary condition Equations 2.158

give
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D:bM + Dob" + Dob™N 4+ DM = % (Ez — Ev)b™ (2.160a)

91(1 —;+M)5M+D2(1— ;—"+N).5N

+D; (1 - g - N) b 4+ D4(1 - ; - M) bM = (B — B)b"5, (2.160b)

1. 1, . :

Db ™y DT = (V4 Vb, (2.160d)
It is obtained that
DT ) §(E11 + E22 + E33)b2 (2161)

from Equation 2.160c. Using shear rate boundary conditions Equations 2.159a and
2.159b, €4 and €,. in Equations 2.149d-2.149e give

3 [—n+2M\?\ 3 [—n+2N\?%\

(2.162a)
— v 2 —n+y'n — — 2 —n—y'n
Ds( nt 2n +4>a +22+4_1+D6( n 2n +4)a 22+4_1 = 0.
(2.162b)
D5 and Dg are uniquely determined from Equations 2.160d and 2.162b.
2a="2 +4b%(V2"‘3 + Vi)
D= 216
2(5)77 4+ (977 (R2+2-nVn2+4)
2a""2 +4b%(V2"‘3 + Vi)
Ds = o Nz (2.164)
2(3) "% + (8) T 2 + 24y T D)
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Notice that there are four unknowns, D; through D, and three Equations 2.160a,
2.160b and 2.162a left. Therefore the system is indeterminate. The minimization of

dissipation energy W must be considered as well.

. 1 . 1 2 —
W = 1—/ /; Jgjfij dV = 1—//; §O’Y v €ij€ig dV. (2165)

If four constants, D through D, are solved using Equations 2.160a, 2.160b and 2.162a,
minimizing Equation 2.165; a yield function can be obtained with a specifically varying
shear modulus where G = Gyr™. This could not be achieved. Therefore, computational
implementation of Gurson - Tvergaard - Needleman model is preferred which would

allow the application to a more general FGM.
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3. COMPUTATIONAL IMPLEMENTATION OF GURSON
- TVERGAARD - NEEDLEMAN MODEL

Gurson - Tvergaard - Needleman (GTN) model is implemented using finite el-
ements for simulation of failure. Some of commercial finite element packages have
built-in module for GTN model, and one of these softwares is Abaqus. Abaqus is used
in following studies for this purpose. First, required GTN model parameters for simu-
lations are introduced in section 3.1. Failure of a three point bending steel specimen
problem that is investigated by Narasimhan et al. [33] is revisited for verification of the
built-in GTN model module in Abaqus. After verification of the results, GTN model
parameter effects on stress-strain response of a uniaxially loaded specimen and mesh

sensitivity of the GTN model are investigated in sections 3.3 and 3.4.

3.1. Required Parameters for GTN Model

The name for the built-in module in Abaqus for GTN model is “porous metal
plasticity”. Material parameters that are required while using GTN model in Abaqus
are listed below, and effects of these parameters on failure are discussed. In Abaqus,
one can use 3-D solid, 2-D plane strain and 2-D axisymmetric elements for modeling
using GTN model. 2-D plane stress elements are not available for GTN model in

Abaqus.

e Elastic properties: Young’s modulus and Poisson’s ratio are inputs.

e Plastic properties: Plastic behavior of the material is identified by tabulating
data of yield stress versus plastic strain.

e Density (Explicit): Mass density is required for the explicit solver.

e Yield function coeflicients: These coefficients, ¢;, ¢; and g3 characterize the yield
function given in Equation 2.129. For typical metals, the ranges of these coeffi-
cients are g1= 1.0 to 1.5, go= 1.0, and gs= = 1.0 to 2.25. The original Gurson
yield function given in Equation 2.127 is obtained with ¢;= ¢2= ¢3= 1.0.

e Relative density: The initial relative density of the matrix material, rq, is defined
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as the ratio of the volume of solid material to the total volume of the material
where is 79 equal to 1-fy (fo is the initial void volume fraction). If there is no
void initially, then ro = 1.

e Critical and failure void volume fractioons (Explicit): GTN model in Abaqus /
Explicit allows for progressive failure of elements. In that case, the yield condition
is expressed as given in Equation 2.130 where f* introduces accelerated loss of
stress carrying capacity accompanied with void coalescence. f* is defined in terms
of the void volume fraction in Equation 2.131 where f. is the critical value of
void volume fraction. After that value of void volume fraction, f* increases more
rapidly. fr is the value of void volume fraction at which there is a complete loss
of stress carrying capacity in the material. This accelerated void increasing model
is only available for the explicit solver. f. and fp are user-specified parameters.

e Void nucleation parameters: A plastic strain controlled void nucleation law is
assumed as given in Equation 2.134 where A is a function of equivalent plastic
strain and B; = By = 0. The function A is chosen as in Equation 2.135 as
suggested by Chu and Needleman [40] so that void nucleation follows a normal
distribution about a mean nucleation strain €, with a standard deviation s,. f,
denotes the volume fraction of void nucleating particles. The values f,, s, and

€, are user-defined parameters.

To summarize GTN model parameters are tabulated in Table 3.1.

3.2. Failure of A Three Point Bending Steel Specimen

Failure of a three point bending steel specimen is studied by Narasimhan et
al. [33] using two and three dimensional finite element models. Gurson - Tvergaard
- Needleman (GTN) failure criterion is used to simulate a continuum elastic-plastic
model that accounts for void nucleation and growth to introduce damage accumulation.
The problem studied by Narasimhan et al. is revisited for the verification of the finite
element model to be used. In Section 3.2.1, details of the problem geometry and FE
model are represented. A good agreement is observed between the results of the present

model and Narasimhan et al.’s work in Abaqus is achieved in Section 3.2.2. In Section
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Table 3.1. GTN model parameters required by Abaqus

Elastic modulus E
Elastic properties

Poisson’s ratio v

Yield stress oy
Plastic properties

Plastic strain e?
Density ' p
Yield function coeflicients q1, g2, q3

Initial relative density (ro) 1- fo
Void volume fraction parameters Critical void volume fraction # fe

Failure void volume fraction ¥ fr

Mean nucleation strain €n
Void nucleation parameters Standard deviation Sn

Volume fraction of void nucleating particles f,

¥ Required only for Abaqus/Explicit.
t Available only for Abaqus/Explicit.

3.4, mesh refinement is applied and mesh size dependency is observed on failure.
3.2.1. Geometry of the Problem and FE Model

Specimen geometry and in-plane mesh are shown in Figure 3.1 (a-b) respectively.
Due to symmetry, quarter and half of the specimen are simulated with symmetry
boundary conditions for 3-D and 2-D models, respectively. 3-D model consists of 6
layers in thickness direction. Each layer consists of 320 elements. The layer interfaces
are located at z3/h = 0, 0.113, 0.226, 0.339, 0.415 and 0.5 where x3/h = 0.5 indicates
the free surface of the specimen. A detailed in-plane mesh near the notch tip is shown

in Figure 3.1 (c). The initial notch diameter by is chosen as h/50, that is 0.2 mm.

Uniaxial tension response of the material is characterized by a piece-wise power

hardening law of the form:

Em _ oy /oo oy < 0o (3.1)

o (oy /o0) 1/n Om > 0g
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Figure 3.1. (a) Test specimen geometry. (b) In-plane mesh used in finite element

analysis. (c) Details of in-plane mesh near notch tip [33]
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where hardening exponent n = 1/22 and initial yield stress oy = 1030 MPa. Young’s
modulus, Poisson’s ratio and density of the material are not given in the paper. The
type of the steel is AISI 4340. In literature, it is indicated that Young’s modulus
is between 190 and 210 GPa, Poisson’s ratio is between 0.27 and 0.3, and density is
between 7700 and 8030 kg/m? for AISI 4340 steel. 200 GPa, 0.3, and 7860 kg/m? are

chosen as Young’s modulus, Poisson’s ratio, and density, respectively.

The governing equilibrium equations are derived from small-strain approach and
stress computations are performed using an explicit algorithm in Abaqus similar to
the Narasimhan et al.’s study. The matrix yield strength oy and void volume fraction
f are held constant after f is reached a value of 0.95 fr by Narasimhan et al. be-
cause of numerical difficulties, but Abaqus can overcome with this numerical difficulty.

Therefore f reaches fp at the current study.

3.2.2. Results

Present studies and Narasimhan et al.’s results are plotted for 2-D and 3-D sim-

ulations in the following sections for comparison.

3.2.2.1. Plane Strain Simulation. The contours of macroscopic equivalent stress g,

around the notch tip are shown in Figures 3.2 and 3.3 for plane strain. Stress contours
are plotted in Figures 3.2 and 3.3 are after incipient material failure, and after the
failure of three elements ahead of the notch tip, respectively. From Figures 3.2 and 3.3,
it can be noted that the shape of the contours are in good agreement except for their
magnitudes. The difference between the values is due to difference between the failure
algorithm used by Narasimhan et al. and by Abaqus (present study). Narasimhan et
al. hold yield strength oy and void volume fraction f constant after f reaches 0.95fr to
overcome numerical difficulties when equivalent stress approaches 0. Therefore, lowest
value of X4, in Narasimhan’s results is not 0 and highest value of X4, is lower than

obtained the one in current study.
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Figure 3.2. Contours of macroscopic equivalent stress X, for plane strain after

failure of first element for (a) current results, (b) Narasimhan et al.’s [33] results
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(a) (b)
Figure 3.3. Contours of macroscopic equivalent stress X, for plane strain after

failure of three elements for (a) current results, (b) Narasimhan et al.’s [33] results
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The contours of void volume fraction around the notch tip are presented in Figures
3.4 and 3.5. Void volume fractions in Figures 3.4 (a) and (b) are calculated following
failure of the first element. Figures 3.5 (a) and (b) are after the failure of three elements
ahead of the notch tip.

Contour Levels
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\ |.28E -0l
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TN +2.08e-01 i .64 E-0I
D)) 1155e0) bo * F 200€-0
! ) +1.252-01 , -
i / +B.33e-02 + | al
+4.176.02 . J
+0.00e+00 :

(a) (b)
Figure 3.4. Contours of void volume fraction f for plane strain after failure of first

element for (a) current results, b) Narasimhan et al.’s [33] results

Contour Levels
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D ) Tr35e01 F 200E-0I
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it +4.17¢-02

+0.00e+00

(a) (b)
Figure 3.5. Contours of void volume fraction f for plane strain after failure of three

elements for (a) current results, (b) Narasimhan et al.’s [33] results

In Figures 3.4 and 3.5, shapes of contours are similar, but the values of void
volume fraction differ as was the case for contours of equivalent stress. Note that void
volume fraction calculated using Abaqus reaches the chosen value of 0.25 for fr at

failure, but this is not the case for the ones obtained by Narasimhan et al..
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3.2.2.2. Three Dimensional Simulation. In Figures 3.6-3.8, contours of equivalent stress

near the notch tip are plotted in different planes through the thickness where z3/h =
0.057, 0.282, and 0.485, respectively. It must be recalled that free surface of the speci-

men is located at z3/h = 0.5.

Contour Levels
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343e:02
et 9 34E+ 02
+).00e+00 E | OPE+03

(a) (b)
Figure 3.6. Contours of equivalent stress at z3/h = 0.057 (near center-plane) for (a)
current results, (b) Narasimhan et al.’s [33] results
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(a) (b)
Figure 3.7. Contours of equivalent stress at x3/h = 0.282 for (a) current results, (b)
Narasimhan et al.’s [33] results
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Figure 3.8. Contours of equivalent stress at z3/h = 0.485 (near free surface) for (a)

current results, (b) Narasimhan et al.’s [33] results

In Figures 3.9-3.11, contours of void fraction near the notch tip are displayed in

different planes through the thickness where z3/h = 0.057, 0.282, and 0.485, respec-
tively.
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(a) (b)
Figure 3.9. Contours of void volume fraction at z3/h = 0.057 (near center-plane) for

(a) current results, (b) Narasimhan et al.’s [33] results
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Figure 3.10. Contours of void volume fraction at z3/h = 0.282 for (a) current results,

(b) Narasimhan et al.’s [33] results
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Figure 3.11. Contours of void volume fraction at z3/h = 0.485 (near free surface) for

(a) current results, (b) Narasimhan et al.’s [33] results

(b)
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In the present study, the element that is to fail first is located at the tip of the
notch for both 2-D and 3-D simulations as can be seen in Figures 3.4(a) and 3.9(a).
However, Narasimhan et al.’s results in Figure 3.9(b) show that in 3-D simulation the
element adjacent to the symmetry-plane of the specimen exhibits first failure. This
indicates an inadmissible bifurcating crack. Otherwise, the magnitudes of void volume
fraction show a similar decreasing behavior from center-plane to free surface along

thickness direction in both cases. This behavior is an indication of tunneling effect.

3.2.2.3. Variations in Thickness and Radial Directions. Figure 3.12 illustrates the vari-

ation of void volume fraction through the thickness of the specimen (z3/h). Each of
the curves corresponds to different radial distances (r/by) ahead of the notch tip. Note
that center-plane is located at xz3/h = 0, and free surface is located at xz3/h = 0.5.
Higher values of void volume fraction differ, however variation patterns are similar.
The difference is due to the difference of first elements that fail and failure algorithms

used. Damage accumulation vanishes at r/by = 1.3 in both cases.
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(a) (b)
Figure 3.12. Variation of void volume fraction through the thickness for (a) current

results, (b) Narasimhan et al.’s [33] results

In Figures 3.13 and 3.14, normalized hydrostatic and normalized opening stresses
(normalization is done using o= 1030 MPa) are plotted versus normalized radial dis-
tance (r/by) ahead of the tip of notch. Results of 3-D simulations corresponding to

three different planes are near the center plane, quarter plane and free surface.
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Figure 3.13. Radial variation of normalized hydrostatic stress for (a) current results,
(b) Narasimhan et al.’s [33] results
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Figure 3.14. Radial variation of normalized opening stress for (a) current results, (b)

Narasimhan et al.’s [33] results

Highest hydrostatic and opening stresses are near the center-plane, and a close
comparison between 3-D center and plane strain results should be noted in both current
results and Narasimhan et al.’s results in Figures 3.13 and 3.14. It can be concluded
that when Narasimhan et al.’s work [33] is remodeled using finite elements and built-
in Gurson - Tvergaard - Needleman model, reasonable results within an acceptable

agreement are obtained.

3.3. A Parametric Study on GTN Model Parameters

The effects of yield function coefficient, ¢; and void nucleation parameters, €,,

8n, fn on nominal stress - strain response of a circumferentially waisted round tensile
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bar specimen are investigated, in this section. The geometry of the problem is shown
in Figure 3.15. The specimen geometry is the one that is examined experimentally by

Paulino et al. [41] to determine the stress - strain response of pure titanium.

. 101.6 mm .
|- 25.4 mm (gage length)
0 )i — )
14.27 mm radius cut T
9.2 mm
8.0 mm

Figure 3.15. Circumferentially waisted round tensile bar specimen geometry

Gage length section of the specimen is discretized using 2-D axisymmetric finite
elements. Displacement controlled loading and boundary conditions are applied for
the analyses as illustrated in Figure 3.16 (a) and corresponding finite element mesh
is shown in Figure 3.16 (b). 1280 linear quadrilateral elements of type CAX4R are
used in FE mesh. In these simulations, Abaqus/Standard solver and power hardening
plasticity are used. Young’s modulus £ is 107 GPa, Poisson’s ratio is 0.34, initial yield

stress o is 450 MPa, and power hardening exponent n is 1/10.

In the parametric studies, following original values are taken ¢ = 1.5, ¢o = 1, g3
= q? =225 ¢, =03, s, = 0.1, and f, = 0.04 which are generally used for a steel.
Values of g, €,, s,, and f, are varied within -6 % and 6 % of their original values.
Failure stain and maximum stress values are tabulated for different ¢, €,, s,, and f,
values in Tables 3.2-3.5. Stress versus strain for different ¢, €,, s,, and f,, values are
plotted in Figures 3.17 - 3.20 (a). A in Equation 2.135 is also plotted in Figures 3.17
- 3.20 (b) to figure out the behavior of fnmemm for different values of qi, €,, s,, and
fn- Note that in Figure 3.17 (b), there is only one curve because A is not a function
of ¢, and €,, s,, and f, are all constant for varying ¢;. In these figures, increasing

directions of the changing parameter values are denoted with an arrow.
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Figure 3.16. Tensile bar specimen’s (a) gage length section used for finite element

model, (b) finite element mesh for parametric study

The failure strain of the material decreases as seen in Figure 3.17 (a) when the
value of q; increases. The failure void volume fraction is equal to 1/q; when g3 =
q2. The void volume fraction at failure is inversely proportional to the value of g;.
Therefore, stress carrying capacity decreases earlier with the increasing ¢;. In the case
of void nucleation parameters, a similar trend of ¢; is observed for volume fraction
of void nucleating particles f,. When volume fraction of void nucleating particles
increases failure strain of the material decreases as shown in Figure 3.20 (a). This is
reasonable when increasing value of void nucleation coefficient A in Equation 2.135
with increasing value of f, is considered. Nucleation of new voids occurs faster for

higher values of f,. An opposite behavior is observed for mean nucleation strain e,

and standard deviation s,,. When €, and s,, increase, failure strain also increases. This
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Table 3.2. Failure strain and maximum stress values for different values of ¢,

q1 % q1 change € fail % €fait change | Omaz % Omas change
1.41 -6 % 0.47861 18.24 % 757.92 1.42 %
1.44 -4 % 0.45240 11.76 % 753.99 0.90 %
1.47 2% 0.42772 5.66 % 750.49 0.43 %

1.5 0% 0.40479 0% 747.30 0%

1.53 2% 0.38106 -5.86 % 744.38 -0.39 %
1.56 4% 0.35914 -11.28 % 741.82 -0.73 %
1.59 6 % 0.34099 -15.76 % 739.43 -1.05 %

Table 3.3. Failure strain and maximum stress values for different values of €,

€n % en change € fail % €fait change | Omaz % Omax change
0.282 -6 % 0.39990 -1.21 % 745.25 -0.27 %
0.288 -4 % 0.40111 -0.91 % 745.89 -0.19 %
0.294 2% 0.40285 -0.48 % 750.49 -0.10 %

0.3 0% 0.40479 0% 747.30 0%
0.306 2% 0.40600 0.30 % 748.00 0.09 %
0.312 4% 0.40750 0.67 % 748.70 0.19 %
0.318 6 % 0.40937 1.13 % 749.40 0.28 %

increase is not very significant for s,, as shown in Figure 3.19 (a). The maximum value
of void nucleation coefficient A is higher for smaller values of s,,. Therefore, nucleation
of new voids occurs faster for smaller values of s,. Increase in the value of €, yields
a retarded nucleation of voids and failure strain increases with increasing €,. These
parametric studies show that the most sensitive parameter is ¢; and least sensitive

parameter is S,,.



Table 3.4. Failure strain and maximum stress values for different values of s,

Sn % sp change € fail % €fait change | Omaz % Omaa change
0.094 -6 % 0.40500 0.05 % 747.27 -0.004 %
0.096 -4 % 0.40488 0.02 % 747.28 -0.003 %
0.008 2% 0.40485 0.01 % 747.29 -0.001 %

0.1 0% 0.40479 0% 747.30 0%
0.102 2% 0.40448 -0.08 % 747.31 0.001 %
0.104 4% 0.40417 -0.15 % 747.32 0.003 %
0.106 6 % 0.40416 -0.16 % 747.36 0.008 %

Table 3.5. Failure strain and maximum stress values for different values of f,

fn % fn change €fail % € fail change | omax % 0maz change
0.0376 -6 % 0.42278 4.44 % 752.22 0.66 %
0.0384 -4 % 0.41615 2.81 % 750.51 0.43 %
0.0392 2% 0.41050 1.41 % 748.91 0.22 %

0.04 0% 0.40479 0% 747.30 0%
0.0408 2% 0.39883 -1.47 % 745.71 -0.21 %
0.0416 4% 0.39241 -3.06 % 744.21 -0.41 %
0.0424 6 % 0.38689 -4.42 % 742.70 -0.62 %
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3.4. Dependence on Mesh Size

Contour plots for void volume fraction are drawn for three different 2D mesh
configurations in Figure 3.21. 320, 1280 and 5120 elements are used for these different
configurations, and minimum element dimensions for the meshes with 320, 1280 and
5120 elements are 25 x 26 pm?, 12.5 x 13 um? and 6.25 x 6.5 ym?, respectively. The
one with 320 elements which exhibits an expected crack growth direction is the mesh
configuration used by Narasimhan et al. [33]. This is the case for the one with 1280
elements, but not for the one with 5120 elements. In the case with 5120 elements,
model predicts a bifurcating crack. One of the common problems encountered while
implementing continuum damage mechanics (CDM) models such as Gurson - Tver-
gaard - Needleman model to finite element simulations is mesh size dependence due to
softening and strain localization. In the case of cracked structures (or structures in that
a crack has been initiated), refining the mesh leads to continuously decreasing fracture
energies, and misprediction of failure direction due to strain localization. The different
techniques to overcome the problem of mesh dependency attempted in literature can

be classified as follows [42].

(i) Placing of a limit on the size of the FEs using a concept of characteristic volume
associated with defect statistics (i.e., use the mesh sizes which are of the order of
mean distance between relevant inclusions in the material). This is the method
used in simulations involving local damage models where the restriction on the
use of mesh size near the crack tip is equivalent to indirect introduction of length
scale in the constitutive equation [34, 35].

(ii) Introduction of higher-order strain gradients in the material constitutive equation
or the yield function [43].

(iii) Use of a nonlocal definition of material damage parameter while preserving a local

definition for strain [44].

The mesh sensitivity of ductile damage algorithms can be reduced by applying
averaging techniques as mentioned in second and third items above. In such approaches

an additional material parameter is introduced in the form of a characteristic length 2L.
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Physically this internal length scale of the material may be interpreted as the size of a
process zone or as a function of the distance between individual voids or the distance

between dimples in the fracture surfaces, but is not fully understood at present [45].

The GTN model to only a single row of elements where failure is expected that is
a common technique sometimes called the “computational cells” method as proposed
by Xia and Shih [34, 35]. In this dissertation, mesh size is considered as a material

parameter and “computational cells” method is used.
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Figure 3.21. Contour plots of void volume fraction for different mesh sizes; (a) 320

elements, (b) 1280 elements, and (c) 5120 elements
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4. FAILURE ANALYSIS OF FGM SPECIMENS USING
GURSON - TVERGAARD - NEEDLEMAN MODEL

In this chapter two example problems taken from literature are studied. One of
them is on failure of a pure titanium (Ti) and a titanium monoboride / titanium (TiB /
Ti) functionally graded material (FGM) single edge notched bending specimen studied
by Paulino et al. [41] and Jin et al. [17, 18], respectively. The other example problem
is on failure of homogeneously and gradually ultraviolet irradiated polyethylene carbon
monoxide co-polymer (a polymer based laboratory scale FGM) uniaxial and single edge
notched tension specimen studied by Abanto-Beuno [23]|, Abanto-Bueno and Lambros
[47] and Kandula et al. [22].

GTN model is applied to these two problems to study failure. First homogeneous
material’s GTN model parameters are determined; then, failure of FGM specimens is

simulated using finite elements with GTN model.

4.1. Failure of Pure Ti and TiB / Ti FGM Specimens

Paulino et al. [41] used tensile test results to determine plasticity data for pure
titanium (Ti), and conducted crack growth experiments using single edge notched
bending specimens to determine crack initiation conditions; load versus load line dis-

placement and load versus crack mouth opening displacement (CMOD).

For the present work, GTN model parameters are predicted using tensile test
data given by Paulino et al. [41] and crack initiation of single edge notched bending

specimen is simulated using finite elements.

Crack growth in ceramic / metal functionally graded material (FGM) namely
titanium monoboride / titanium (TiB / Ti) FGM is investigated by Jin et al. con-
sidering elastic behavior [17], and considering elasto-plastic behavior [18]. Plasticity is

required while using GTN model in finite element analyses. A volume fraction based,
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elastic-plastic model (extension of the original Tamura-Tomota-Ozawa model [48]) that
is explained in section 4.1.2.1 describes the elastic-plastic response of the bulk material.
Jin et al. use cohesive zone model and a computational scheme to analyze crack growth
in a single edge notched bending specimen made of a TiB / Ti FGM and to obtain
crack initiation condition; load versus crack mouth opening displacement (CMOD) nu-
merically. In section 4.1.2.2, failure of the same specimen is studied using GTN model

and it’s application is discussed.

4.1.1. Failure of Pure Ti Specimens

Failure of pure Ti uniaxial tension specimen is simulated using GTN model, and
corresponding GTN model parameter are determined using experimental data given by
Paulino et al. [41]. Load versus crack mouth opening displacement (CMOD) and load
versus load line displacement of single edge notched bending specimen are calculated
using GTN model parameters that are obtained from uniaxial tension specimen. The

results are compared with the experimental data given by Paulino et al. [41].

4.1.1.1. Failure of Pure Ti Uniaxial Tension Specimen. GTN model parameters are

obtained from uniaxial tensile specimen for which the geometry is given in Figure
3.15, and the model in Figure 3.16. Abaqus / Standard is used for FE analyses. Ma-
terial properties for pure Ti are: £ = 107 GPa, v = 0.34 and initial yield stress oy =

450 MPa. Power hardening is assumed as follows:

¢ o 1/n
€ _ (_) . o200 (4.1)

do

where n is the hardening exponent. Failure parameters are predicted in a way that
results in an acceptable fit to experimental stress - strain response by trial and error
using different power hardening exponents that are 1/10, 1/11 and 1/12. A reasonable
agreement with experimental data is achieved when ¢, = 2.5, ¢; = 1, ¢3 = ¢? = 6.25,
s, = 0.1 and f, = 0.04 are used. €, is 0.2 when power hardening exponent is 1/10,

it is 0.23 when power hardening exponent is 1/11 and finally €, is 0.25 when power
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hardening exponent is 1/12. Resulting stress - strain plots are given with experimental
ones in Figure 4.1. The curve with 1/n = 10 looks like the best fit to experimental
results. Therefore, material and failure properties are used for 1/n = 10 fit that yields
E =107 GPa, v = 0.34, 0p = 450 MPa, ¢ = 2.5, ¢; = 1, g3 = ¢? = 6.25, ¢, = 0.2, s,,
= 0.1 and f, = 0.04.
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Figure 4.1. Experimental [41] and GTN model stress - strain responses of pure Ti

uniaxial tension specimen

4.1.1.2. Failure of Pure Ti Single Edge Notched Bending Specimen. Figure 4.2 shows

the geometry of single edge notched bending (SENB) specimen modeled in this section.
A quarter of entire pure Ti SENB specimen is discretized using 7 different 3-D mesh
configurations for which the properties and results are tabulated in Table 4.1. Meshes
for Model #1, #3, #5 and #7 are shown in Figures 4.3 (a-d), respectively. The dif-
ference between these models is the mesh size ahead of the crack-tip. Mesh refinement
is conducted in length - width plane, there is no refinement along the thickness. The
most refined model is Model #7.

Load vs CMOD and load vs load line displacement are plotted in Figures 4.4 and
4.5, respectively. In these plots, squares represent experimental data given by Paulino

et al. [41], solid line and dashed line with circles are results of Model #3 and #7,
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respectively. A good agreement between results of experimental load vs CMOD, and
load vs load line displacement and the results of Model #3 is obtained. Note that,
GTN model results are calculated using Abaqus / Standard solver, and progressive
failure cannot be simulated using Abaqus / Standard. Therefore, the present results
are obtained up to failure of the first element near the crack-tip. Experimentally
calculated failure load is 11.5 kN, and numerically predicted failure load from Model
#3 is 12.3 kN. Mesh sensitivity that is discussed in section 3.4, is observed in results.
Failure load and maximum load line displacement decreases when the element size near

the crack-tip decreases.
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- <% -
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| - ) B =13.3 mm
| W R=64mm
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A is the displacement of the applied load line

Figure 4.2. Pure Ti SENB specimen dimensions for three-point bend testing (Note
that the figure is not scaled)

4.1.2. Failure of TiB / Ti FGM Specimen

In the following subsections, an elastic-plastic model to be used for FGMs pro-
posed by Jin et al. [18] is discussed in detail. Then, the model’s numerical implemen-
tation in Abaqus is explained. The results of the GTN model for TiB / Ti FGM single
edge notched bending specimen are compared to cohesive zone model results obtained

by Jin et al. [18].



75

Figure 4.3. Pure Ti SENB specimen finite element meshes used for (a) Model #1, (b)

Model #3, (c) Model #5 and (d) Model #7
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Table 4.1. FE model properties and results for pure Ti SENB specimen

FE Number Size of Min. Max. Load Line Initial Failure
Model # of Elements Element (mm) Displacement (mm) Load (kN)
1 24722 0.1328 x 0.1328 x 0.665 0.960 16.3
2 40082 0.0664 x 0.0664 x 0.665 0.637 14.9
3 70802 0.0332 x 0.0340 x 0.665 0.437 12.3
4 86240 0.0166 x 0.0166 x 0.665 0.310 9.4
5 114480 0.0083 x 0.0083 x 0.665 0.218 6.8
6 119680 0.00415 x 0.00415 x 0.665 0.150 4.8
7 124880 0.002075 x 0.002075 x 0.665 0.106 34

4.1.2.1. Elastic-Plastic Model for FGMs. One of the issues in modeling of FGMs is to

decide how to implement plasticity required for GTN model. Jin et al. [18] proposed
a volume fraction based, elastic-plastic model for FGMs which is an extended form of
the original Tamura - Tomota - Ozawa model obtained by Tamura et al. [48]. This
model without the failure is implemented to Abaqus, and the results of FE and the
theory are compared. Plastic part of the new proposed model is not linear. The set of

parametric equations to determine the stress - strain curve for the FGM are as follows:

€  VeeBrom Omet | (@+ VinetBeer) Eram 00, ( Omet ) et (4.2)
€operr 4+ Eecer Topons (@+ Eeer)Emet  Topayr \ T0mer T

o _ Vinetqd + Ecer Omet Veer@Bcer  O0mer ( O met ) Hrmet (4.3)
O0ram g+ Eeer  Oopery (@ + Ecer) Emet Oopay \ T0me .

where Vinet, Veer, Emet and Eee, are volume fraction and Young’s moduli of metal and

ceramic constituent phases, respectively. €p..,, = Oopey / Erau where

q+ Ecer q+ Ecer
E ] == Vme E-me - = + I/CS?”ECE?" Vme D + -I/(‘.E?” 3 4'4
PGM ( thmet ) / ( 4+ Bt ) (4.4)

and

q + Eme ECG?"
O-DFGM N JomEt (Vmet + Eq + Ece:))EJ,met 1/68?‘) ‘ (4.5)
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O0mers €0mee denote the initial yield stress and strain of the metal, respectively. ¢ is the

Ocer — Tmet

ratio of stress to strain transfer which is formulated as ¢ = Numet 18 the

|Ecer - Emet| .
hardening exponent of the metal. Poisson’s ratio is calculated using rule of mixtures v

= Vet Vmet + 1/(!8?‘ Veep-

Material properties of ingredients of TiB / Ti FGM are tabulated in Table 4.2.
Using them, stress - strain curves using the extended TTO model (Equations 4.2 - 4.3)
for different volume fractions of Ti are plotted in Figure 4.6 where ¢ = 4.5 GPa.

Table 4.2. Material properties of pure TiB and Ti [18]

Material Young’s Poisson’s  Imitial Yield Hardening
Name  Modulus (GPa) Ratio Stress (MPa) Exponent

TiB 375 0.14 N/A N/A
Ti 107 0.34 450 1/10

25} =

decreasing ¥ et
0-5_11_.:"';' —TTO model where V= 1.00
i ---TTO model where Viyg= 0.75
[H, ——TTO model where V= 0.50
L TTO model where Vg = 0.25
0 . . | | | | -—-TTO model where Vipe= 0.00
0 1 2 3 4 5 6 7 8 9 10

Figure 4.6. Normalized stress - strain curves for different volume fractions of

constituent phases, extended TTO model is used

A TiB / Ti FGM plate that is shown in Figure 4.7 is studied using Abaqus

to examine whether stress - strain responses calculated by extended TTO model and
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obtained numerically from Abaqus agree or not. Material variation along z direction

is considered. Uniform displacement is applied where A4, is 60 mm.

A (load line displacement)

Y

75 mm

200 mm

increasing E

A!}

Figure 4.7. Geometry and boundary conditions of the TiB / Ti FGM plate

Volume fraction variation of Tiis Vi,e:(z) = 1-0.01 z, and corresponding Young’s
modulus £ variation calculated from Equation 4.4 is plotted in Figure 4.8. At the left
edge where z = 0 mm, material is pure Ti. On the other hand, at the right edge where
x = 75 mm, volume fraction of the metal is 0.25 which means that right edge is not
pure TiB. Stress - strain curves obtained from Abaqus for different V,,.; are plotted in
Figure 4.9 with results calculated from extended TTO model and a good agreement is

achieved between them.

4.1.2.2. Failure of TiB / Ti FGM Single Edge Notched Bending Specimen. Elastic -

plastic model introduced in section 4.1.2.1 is used to define the plastic responses of
different volume fraction mixtures of TiB and Ti because they are not available exper-
imentally. The geometry of single edge notched bending (SENB) specimen tested by
Jin et al. [17, 18] is shown in Figure 4.10. Volume fraction variation of TiB and Ti
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Figure 4.8. Young’s modulus variation along width of the TiB / Ti FGM plate

25

—TTO mode]l where V= 0.75

--TTCO model where V.= 0.975

' TTO model where V=
--TTO model where V= 0.275
o Abaqus result where T’;:m= 0.975
o Abaqus result where V.= 0.75
+ Abaqus result where Vi = 0.5
¢ Abaqus result where Ve = 0.275

0.5

WSt Sasns - 2o at

-t
+*44,_+_+-+-++‘“

oo o-00gooooed

M“‘"sk

++
TR oo ot

S oo.00goe8o0s0oo0oenes a0 es e et an s oeeea g
o .o

2
o8®
#““”w‘—&
o0

ot
P *
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along the width of the specimen is tabulated in Table 4.3 and is plotted in Figure 4.11.

A third order polynomial is fitted to the volume fraction variation of Ti as it varies

between % 15 and % 100 from bottom to top edge. Crack grows from more brittle

region to more ductile region.
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A is the displacement of the applied load line

L =794 mm
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ag/W =0.3

Figure 4.10. TiB / Ti FGM single edge-notched bending specimen dimensions for

three-point bend testing (Note that the figure is not scaled)

Table 4.3. Volume fraction and thickness distribution in the layered TiB / Ti FGM
SENB specimen [18]

Layer

#  Thickness (mm)

TiB vol. fraction

T1i vol. fraction

B T - S| S U - R =

2.515
1.676
1.778
1.448
1.753
2.134
3.429

0.85
0.79
0.62
0.47
0.32
0.15
0.00

0.15
0.21
0.38
0.53
0.68
0.85
1.00

Plastic part is defined by using the extended TTO model using material properties

given in Table 4.2. A reasonable failure strain variation is obtained by varying ¢, values
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Figure 4.11. Volume fractions of Ti in the TiB / Ti SENB specimen [49] (Fitted
curve is a third order polynomial)

(with g2 = 1, g3 = ¢7) for different volume fractions of Ti as shown in Figure 4.12.
When the volume fraction of Ti decreases, an increase in the value of ¢; which would
yield a lesser failure strain is proposed. This behavior is suitable for a more brittle
material. Void nucleation parameters, €,, s,, f. are kept constant at values 0.2, 0.1,
0.04, respectively. These set of parameters yield an assumed reasonable stress - strain
responses that is plotted in Figure 4.13. They are obtained from homogeneous tensile

specimens finite element analyses for different volume fractions of Ti.

A quarter of entire TiB / Ti FGM SENB specimen is discretized using 7 different
3-D mesh configurations and model properties are tabulated in Table 4.4 which is also
done for pure Ti SENB specimen’s finite element modeling. Meshes for Model #1, #2,
#4 and #7 are plotted in Figures 4.14 (a-d), respectively. Reduction in failure load is
observed with a refinement in mesh. Failure initiation load for Model # 4 in this study is
0.994 kN that approximately matches 0.925 kN measured experimentally by Carpenter
et al. [49]. Load versus crack mouth opening displacement (CMOD) response of this
specimen is obtained using cohesive zone model by Jin et al. [18]. Load versus CMOD

plots obtained using GTN model are given together with cohesive zone model results
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[18] in Figure 4.15. Failure loads match, but corresponding CMODs are quite different.
This result can be improved by changing the used failure parameters, but it is hard
to predict the parameters without tensile stress-strain response of the regions where
volume fraction of Ti is less than 100%. Unfortunately, these results are not published
in literature, therefore further study of Ti-TiB FGMs is omitted.

Table 4.4. FE model properties and results for TiB / Ti FGM SENB specimen

FE Number Size of Min. Initial Failure
Model #  of Elements Element (mm) Load (kN)
1 26402 0.1019 x 0.1021 x 0.37 2.976
2 37922 0.0510 x 0.0510 x 0.37 2.062
3 60960 0.0255 x 0.0255 x 0.37 1.468
4 65520 0.01276 x 0.01276 x 0.37 0.994
5 73280 0.00638 x 0.00638 x 0.37 0.714
6 77840 0.00319 x 0.00319 x 0.37 0.502
7 80480 0.00159 x 0.00159 x 0.37 0.361

4.2. Failure of Homogeneously and Gradually Ultraviolet Irradiated
Polyethylene Carbon Monoxide Co-polymer Specimens

In this section, the Gurson - Tvergaard - Needleman (GTN) model that is com-
monly used for metallic materials is applied to the failure of a polymeric material
specifically a polyethylene carbon monoxide (ECO) co-polymer which is an enhanced
photodegradable material. A novel technique is developed for the fabrication of labo-
ratory scaled functionally graded materials (FGMs) by Lambros et al. [46]. Abanto-
Beuno [23] and Abanto-Bueno and Lambros [47] produced laboratory scaled ECO
FGM single edge notched tension (SENT) specimens. First, GTN model parameters
for homogeneously ultraviolet irradiated ECO are determined. Then, load and crack
extension versus load line displacement behaviors of FGM specimens are calculated
using GTN model. In the following finite element analyses, to simulate progressive

failure of multiple elements; Abaqus/Explicit is used.
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and GTN model load versus crack mouth opening displacement results for TiB / Ti

FGM SENB specimen

4.2.1. Failure of Homogeneously Ultraviolet Irradiated Polyethylene Car-

bon Monoxide Co-polymer Specimens

Numerical implementation of the GTN model to polymers is limited compared to
that for metals primarily because the void nucleation growth and coalescence process
is not present in most polymers in the same way it is in metals. However, the GTN
model is a continuum softening and failure model, so appropriate selection of param-
eters could make the model applicable to other situations that may not involve at the
microscale void growth mechanisms similar to those exhibited in metals. For example,
Jeong [50] modified the Gurson yield function by combining it with Coulomb’s yield
function, and calculated cavitation and plastic zone sizes for a rubber-modified epoxy
specimen under symmetric double-edge double-notched four-point bending. Fracture
toughness of steel compact tension (CT) specimens bonded with rubber-modified epoxy
and bulk rubber-modified epoxy single edge notched bending (SENB) specimens were
investigated numerically using GTN model by Imanaka et al. [51]. Numerical and
experimental relations between J-integral values and crack extension were compared

there for both the CT and SENB specimens. Using the GTN model for damage accu-
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mulation, Zairi et al. [52, 53] studied both experimentally and numerically the uniaxial
tensile and volumetric strain response of a rubber toughened polymethylmethacrylate
and high impact polystyrene for different strain rates at room temperature. Zairi et
al. [54] also studied equal channel angular extrusion and uniaxial tensile tests for
polypropylene specimens, again using GTN model. In Challier et al. [55] and La-
iarinandrasana et al. [56], the effects of strain rate and temperature on mechanical
properties (elastic, plastic, viscous and GTN model parameters) were investigated for
polyvinylidene fluoride (PVDF') by comparing experimental and numerical stress-strain
responses for smooth, circumferentially notched round specimens and load-crack open-
ing displacement responses for single edge notched bending (SENB) specimens. The
mechanical behavior of porous polymers with different volume fraction of voids un-
der different macroscopic stress triaxiality was investigated numerically by Riku et al.
[67] using a unit cell computation, and theoretical results based on a modified Gurson

model. Their results showed little dependence on the arrangement of voids.

Although generally a good agreement has been obtained between numerical and
experimental results in the above-mentioned studies of polymers, there is no specific
framework on how GTN model parameters can be consistently determined from experi-
ments on polymeric materials, or how a link between uniaxial and fracture response can
be made. Typically either tensile or fracture response was investigated independently,
and no attempts have been made to connect the two in a common minimization frame-
work. Making such a connection in the context of a robust optimization framework is

one of the goals of this effort.

Several studies in the past have used optimization methods for determination of
GTN model parameters from experiments, either tensile or fracture, but this has been
done exclusively for metals. The studies discussed above for polymers either do not
involve any experiments or do not provide details of the determination process of GTN
model parameters. Aoki et al. [58] used Kalman filtering to obtain two nucleation
parameters from two numerical tensile test experiments with a centered circular hole
and side semi-circular notches for an elastic-plastic material. Kalman filtering was

also used by Corigliano et al. [59] to obtain the GTN yield function coefficients from
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three point bending experiments of steel single edge notched specimens. Mahnken [60]
used a Newton-like algorithm given by Bertsekas combined with the Broyden-Fletcher-
Goldfarb-Shanno (BFGS) method to obtain GTN parameters for an axisymmetric
tensile test specimen made of steel. A gradient based method using a Levenberg-
Marquardt algorithm (LMA) was employed to obtain initial, coalescence and failure
void volume fractions, nucleation parameters, power hardening coefficient and initial
yield values for a structural steel by Springmann and Kuna [61, 62]. Broggiato et al.
[63] used the Nelder-Mead simplex method to obtain initial, coalescence and failure
void volume fractions, nucleation parameters using multi-section optical data acquired

from round-notched steel tensile specimens.

The goal of the present work is to explore the applicability of the GTN model
to a photodegradable polyethylene carbon monoxide (ECO) co-polymer and to obtain
corresponding parameters for the GTN model through a robust optimization process
that will couple experimental results from two different configurations: uniaxial tension

and edge notched fracture.

4.2.1.1. Problem Geometry and FE Model. In the finite element analyses, g3 is taken

to be equal to ¢? (which results in fiy = l) The initial value of void volume fraction
fo 18 0 because cavities do not preexist inglassy polymers unlike in metals as discussed
by Schirrer [64]. A is taken to be constant to decrease the number of parameters to be
optimized. Finally the yield function and the evolution of void volume fraction can be

written in the following form:

o = (@) + 2 f*q, cosh ( — ¢y %> — (14 (q: £ =0, (4.6)

ay 2C"Y
fr= (- fémt+ A, (4.7)

Failure occurs when f reaches fr (f* = fu).

The experimental results used in this part are taken from the work done by
Abanto-Beuno [23] and Abanto-Bueno and Lambros [47]. In the interest of brevity
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only a summary of the experimental details is not given here. The reader is referred to
the above references for more details. Polyethylene carbon monoxide (ECO) becomes
stiffer and more brittle when exposed to ultraviolet (UV) irradiation. Thin sheets
of ECO (thickness 0.406 mm) 170 mm x 150 mm were artificially UV irradiated for
different periods of time: 0.25, 0.5, 1, 1.5, 2, 3, 5, 42, 100, and 130 hour(s), and are cut
into the tensile and fracture specimen geometries shown on the right in Figure 4.16.
In this work only the 5, 42 and 130 hours UV irradiated ECO specimens, labeled ECO
5, ECO 42 and ECO 130, respectively, are studied. The bulk material properties used
for ECO in this work are tabulated in Table 4.5. Note that Poisson’s ratio and density
don’t exhibit a significant change with UV radiation. The specimen dimensions used
in the experiments, which are the ones modeled here, are shown in Figure 4.16. The

crosshead speed used in the experiments was 0.5 mm/min (approximately 0.01 mm/s).

Table 4.5. Calculated and measured mechanical properties of ECO

Material property virgin ECO ECO 5 ECO 42 ECO 130
Elastic modulus, E (MPa) 178 223 277 332
Poisson’s ratio, v ¥ 0.45 0.45 0.45 0.45
Initial yield stress, oo (MPa) f 1.18 1.28 1.37 1.45
Density, p (kg/m?3) § 960 960 960 960

 Calculated using experimental tension test results given by [23].
 Measured by [65].
§ Measured by [23].

The GTN model is implemented using finite elements (Abaqus/Explicit) and an
inverse procedure to determine model parameters is used. The in-plane mesh used to
model the uniaxial tension specimen is shown in Figure 4.17. The mesh has 1625 linear
hexahedral elements of type C3D8R with 3528 nodes. Using symmetry, 1/8" of the
entire specimen is modeled. The element size is 0.385 x 0.4 x 0.203 mm? and a uniform
mesh is used. To simulate progressive failure of multiple elements, Abaqus/Explicit
is used. A displacement loading rate of 0.1 mm/s, as used in the experiments, would
produce simulations of excessively long duration. The GTN model rate sensitivity is
studied numerically, and rate-dependency is not observed in numerical simulations of
up to a loading of 10 mm/s. Therefore, to reduce computational time a 10 mm/s

rate is used as the applied displacement rate at location ¥ = 50 mm - the top of the



90

Uniaxial Tensile Test

Specimens
Homogenously UV irradiated
ECO sheet
for tensile for fracture for tensile E E
test test test 10 mm
P T ik
T | : | : | Friction grips
I I
| | N 5
I I
. . (b)
g | -
I I
2 I I Single Edge Notched Tension (SENT)
: : Fracture Test Specimen
I I _
| |
I I
R I

I——lD mm 10 rnrn—-l h—

170 mm

b

Thickness iz 0.406 mm and uniform.

(a)

Figure 4.16. Geometry of (a) UV irradiated ECO sheet; (b) tensile and (c) fracture
specimens obtained from this sheet [23, 47]

tension specimen. Note that this parametric rate sensitivity study only investigates
rate dependence in the GTN model and is independent from material rate sensitivity.
Since no rate sensitivity is seen in the GTN model, material rate sensitivity could
be studied by extracting properties from different rate experiments, although in this
study only one set of experiments at a single loading rate is used. Bulk elastic and
plastic material properties are taken from experimental results up to ultimate tensile
strength, oyrs, where necking initiates. After opyrg, the bulk behavior stress value
is kept constant at the ultimate value, as observed in the experiments until failure.

Isotropic hardening is assumed for the bulk plastic flow.

Softening behavior is introduced numerically by applying the GTN model, but
only to the bottom row elements in the mesh of Figure 4.17, thus forcing failure to
occur at the line of symmetry of the sample. Thus, only the bottom row of elements is

capable of softening in this configuration. This introduces a softening length scale in the
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problem (the height of the elements). It is known that such a length scale dependence
is present in the GTN model, and one question that arises is how to specify this length
scale. As discussed in more detail later, in the present work selection of this length
scale is made from the experimentally observed failure region which is around 300-400
microns in half-height [66]. Note that applying the GTN model to only a single row of
elements where failure is expected, as is done here, is a common technique sometimes
called the “computational cells” method as proposed by Xia and Shih [34, 35], and
used and discussed in [36, 67-72].

Figure 4.17. Finite element mesh for homogeneous ECO uniaxial tensile test specimen

For the single edge notched Tensile (SENT) fracture specimen, 1/4*® of the entire
specimen is discretized, the dimensions of the model being 150 x 50 x 0.203 mm?>.
The GTN model parameters will depend on mesh size, as stated above. Although the
tensile testing experiments described above may not provide an inherent length scale
for failure, in the fracture experiments failure is produced by a single craze originating
from the crack-tip [23]. Thus, unlike the case of ductile metals where the failure region
size may not be known, here the craze has been experimentally measured to be around
300-400 microns in half-height, although this would depend to some extent on the level
of irradiation. Therefore in these simulations softening GTN elements are again placed
only directly ahead of the crack-tip and given a height of 400 microns (which is also
kept the same for the tensile experiments described above). Thus, by combining both
the fracture and tensile loading experiments in this work it is able to specify the length

scale over which softening will occur. Consequently the graded in-plane mesh shown
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in Figure 4.18 is used to model the fracture experiments with the smallest element size
chosen to be 0.4 x 0.4 x 0.203 mm? which is close to the half size of a craze. The
mesh has 2909 linear hexahedral elements of type C3D8R with 6288 nodes. The crack
surface (0 mm < z < 30 mm & y = 0 mm) is kept traction free, and as before a 10
mm /s displacement rate is applied at ¥y = 50 mm. Material properties are the same
as the tensile test’s specimen. Note that in this particular case in order to check the
validity of results, a simulation in which the GTN model is applied to all elements of

the mesh is also conducted.

Initial crack—tip

Figure 4.18. Finite element mesh for homogeneous ECO SENT fracture test specimen

The bulk elastic-plastic properties of the surrounding elements are taken directly
from experiments as entire stress-strain curves which are tabulated for the purposes of
the numerical simulations. As mentioned above, the only modifications made to the
experimental stress - strain curves is that, if needed in the simulations, they would
not soften but rather would remain at a maximum value of oprg if the strain evolved
beyond that measured experimentally. Therefore only the GTN parameters of the sin-
gle row of “cells” are unknown and need to be determined by minimizing a particular
objective function (see below). Minimization is done using the Nelder - Mead sim-
plex method which is a direct search method that does not use numerical or analytic
gradients, and can overcome discontinuities near the optimal solution. In the case
studied here, discontinuities may arise as a result of failure of the specimen. To obtain
optimum GTN model parameters numerical results are correlated with experimental
nominal stress—strain values (tension specimen) or load—displacement values (fracture

specimen). Three different optimization calculations are performed as shown below
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for; ) the tensile specimen, #i) the fracture specimen, and #ii) the tensile and fracture
specimens together, for each different UV irradiation time, corresponding to varying
amounts of ductility. Two different types of objective functions are used that are sum
of difference between squares of experimental and numerical results indicated with ®;,

and the other one is in least squares sense indicated with ¢; and are given as follows:

N

d,(p) = Z |52 — 0,(p)?| for the tensile test, (4.8a)
n=0
M
Dy(p) = | L2, — L,,(p)?| for the fracture test, (4.8b)
m=0

N M
®3(p) = ’wcbz | 0_'72; - O'n@)2| + Z | E?R — Lm@))2| for the tensile
n=0 m=0

and fracture tests together, (4.8¢)
N
o1(p) = Z[ 0, — 0n(p)]* for the tensile test, (4.9a)
n=0
M
da2(p) = Z[f}m — L,(p)]? for the fracture test, (4.9b)
m=0
M
= w¢Z —o,(p)]? Z[Em — L (p)]? for the tensile
m=0
and fracture tests together, (4.9¢)

where p is the parameter set (defined below), 7, and o, (p) are experimentally and
numerically evaluated normal stresses, L,, are L,,(p) experimental and numerical loads,
wg in Equation 4.8c is a weight factor with a value of 1 x 10* and w, in Equation 4.9¢

is a weight factor with a value of 1 x 106.
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Five parameters are used in the optimization analyses:

p=(q1,q, fe, fr, A) (4.10)

where g1, g2, g3 are GTN yield function coefficients and g3 = ¢%; f., fr are critical and
failure void volume fractions; void nucleation coefficient A is taken constant for the

strain controlled void nucleation rate term.

From the numerical simulations of the tensile specimen output quantities are
collected at every 1.25 x 1073 strain intervals up to a total of 0.125 strain for each of
the different irradiation time experiments ECO 5, ECO 42, and ECO 130. This yields
a total number for N (the total number of points in Equations 4.8a, 4.9a, 4.8¢ and
4.9¢) of 100. For the fracture specimen simulation data are collected at every 0.01 mm
applied displacement intervals up to 5.9 mm, 4.9 mm, and 4.1 mm for ECO 5, ECO
42, and ECO 130, respectively. As a result M is 590, 490, and 410 in Equations 4.8b,
4.9b, 4.8c and 4.9c for ECO 5, ECO 42, and ECO 130.

4.2.1.2. Results and Discussion. In this section, optimal GTN model parameters which

yield from optimization analyses using the objective functions ®; and ¢; given in Equa-
tions 4.8 - 4.9 for ECO 5, ECO 42 and ECO 130 are presented. Numerical results are

plotted with experimental results both for tensile and fracture test specimens.

(i) 5 Hours UV Irradiated ECO: The results of the minimization process, experimental
and numerical stress - strain response of tensile test specimen and load - applied dis-
placement response of fracture test specimen for ECO 5 are shown in Figures 4.19, and
4.20, respectively where ®; is used as objective functions in Equation 4.8. Similarly
response of tensile and fracture test specimens are plotted in Figures 4.21, and 4.22,
respectively where ¢; is used as objective functions in Equation 4.9. Optimized GTN
model parameters are tabulated in Tables 4.6 and 4.7 using ®; and ¢; as objective

functions, respectively.
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Table 4.6. Optimized Gurson model parameters and objective function values for

ECO 5 simulations (®; (i=1,2,3) are given in Equations 4.8a-c)

Optimized Gurson Model Parameters Objective Function Values

n q2 fe fF A 1 i3 3
¢1 minimization 3.041 1.073 0.148 0.247 0.1274 21.0 N/A N/A
¢2 minimization (row GTN) 2.674 0.895 0.221 0.288 0.1069 320 4311380 7511380
¢2 minimization (full GTN) 3.365 0.657 0.194 0.295 0.1542 244 3769809 6209809
¢3 minimization (row GTN) 3.135 0.656 0.176 0.209 0.1646 24.0 5238898 5479098
¢3 minimization (full GTN) 3.365 0.655 0.189 0.293 0.1542 26.8 3790205 4058305

Case

Table 4.7. Optimized GTN model parameters and objective function values for ECO

5 simulations (¢; (i=1,2,3) are given in Equations 4.9a-c)

o Optimized GTN Model Parameters Objective Function Values
‘ase

q1 q2 fe Ir A &1 @2 @3
¢1 minimization 3.044 1.073 0.152 0.246 0.1273 0.0539 N/A N/A

¢2 minimization (row GTN) 3.050 0.539 0.224 0.325 0.1586 348 678167 348678167
¢2 minimization (full GTN) 3.047 0.547 0.218 0.328 0.1640 254 592887 254592887
¢3 minimization (row GTN) 3.136 0.660 0.176 0.307 0.1649 0.0836 2229964 2313564
¢3 minimization (full GTN) 3.136 0.660 0.178 0.318 0.1649 0.0853 1603151 1688451

Figures 4.19 and 4.21 show the nominal stress - strain relation measured during
the uniaxial tension experiment along with the numerically predicted response using the
optimized GTN properties with Equations 4.8a and 4.9a as a minimization function, i.e.
minimizing solely based on this experimental stress - strain curve (square symbols). In
addition to this, it is possible to make a combined minimization using both the tensile
and the fracture results (Figures 4.19 - 4.22) through Equations 4.8c and 4.9¢. In this
case somewhat different GTN parameters are obtained, as is seen in Tables 4.6 and
4.7. In the combined function minimization case (Equations 4.8c and 4.9¢) two cases
have been considered, one where the softening elements are placed everywhere (crosses
in Figures 4.19 and 4.21) and one where only one single row of softening elements is
placed ahead of the crack-tip, i.e. the computational cells method, (circles in Figures
4.19 and 4.21). It is clear from Figures 4.19 and 4.21 that all three cases produce
excellent agreement with the experimental results and are virtually indistinguishable
from each other. This implies that attempting to use solely a single uniaxial tension

test experimental results to uniquely identify the GTN failure parameters is difficult.
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Figures 4.20 and 4.22 show results for the applied load vs. load line displacement
for the ECO 5 case. If the tension test results are fitted on their own, Equations
4.8a and 4.9a, and the resulting properties are used to predict the fracture response,
then the predicted results (square symbol) deviate considerably from the experimental
results, so from now on ®; and ¢; minimization results will not be shown for SENT
fracture specimen responses. If the fracture load - displacement curve is used on it
own, i.e. Equations 4.8b and 4.9b are minimized, then the curves in Figures 4.20 and
4.22 are obtained shown as triangles (full GTN model for entire mesh) and pluses
(single row GTN elements). As is seen, this predicted response is an improvement
over the results obtained by solely optimizing stress - strain, but it over predicts the
failure load considerably. Note however, that there is little difference between the full
GTN model and the computational cells model. However when comparing the model
prediction for a uniaxial response based on the ®; and ¢, minimizations only, the
results, shown as plus symbols (single row GTN elements) and triangle symbols (full
GTN model for entire mesh) in Figures 4.19 and 4.21, respectively, are poor compared
to the previous ones, and from now on ®, and ¢, minimization results will not be
shown for uniaxial specimen responses. Therefore one cannot obtain a consistent set
of optimized properties by minimizing separately either the uniaxial response or the

SENT fracture experimental data.

In an attempt to improve the fit quality, functions in Equations 4.8c and 4.9c
are next minimized which performs a simultaneous minimization of the uniaxial and
fracture test data. The results for the computational cells model (circle symbols) and
the full model (cross symbols) are also plotted in Figures 4.20 and 4.22. The results
agree quite well with the previous minimization up to about peak load, which is now
better estimated, although maximum displacement is considerably underestimated with
the combined peak properties. Comparing Figures 4.19 - 4.22 clearly shows that the
fracture experiment is much more sensitive to the model parameters, particularly after
peak load, than the uniaxial response, and it is especially difficult to accurately predict
both peak load and peak displacement. However, the combined minimization does
produce excellent agreement for the uniaxial response and reasonable agreement for

the fracture response, and is therefore considered representative of the material.
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Figure 4.19. Stress - strain response for ECO 5 tension specimen where ®; (Equation
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Figure 4.20. Load - displacement response for ECO 5 fracture specimen where ®;
(Equation 4.8) is used
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Figure 4.22. Load - displacement response for ECO 5 fracture specimen where ¢;

(Equation 4.9) is used
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(i1) 42 Hours UV Irradiated ECO: Experimental and numerical stress - strain response
of tensile test specimen and load - applied displacement response of fracture test spec-
imen for 42 hours UV irradiated ECO (ECO 42) are plotted in Figures 4.23, and 4.24,
respectively where ®; is used as objective function Equation 4.8. Similarly response
of tensile and fracture test specimens are plotted in Figures 4.25, and 4.26, respec-
tively where ¢; is used as objective function Equation 4.9. Optimized Gurson model
parameters are tabulated in Tables 4.8 and 4.9 using ®; and ¢; as objective functions,

respectively.
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Figure 4.23. Stress - strain response for ECO 42 tension specimen where ®;

(Equation 4.8) is used

Table 4.8. Optimized Gurson model parameters and objective function values for

ECO 42 simulations (®; (:=1,2,3) are given in Equations 4.8a-c)

Optimized Gurson Model Parameters Objective Function Values

Case

q1 a2 fe fF A $; &2 &3
¢1 minimization 2918  1.199 0.131 0.179 0.1312 204 N/A N/A
¢2 minimization (row GTN) 2,514 1.015 0.173 0.200 0.1151 N/A 4534136 N/A
¢2 minimization (full GTN) 3.168 0.746 0.152 0.267 0.1579 N/A 4315588 N/A
¢3 minimization (row GTN) 3.173  0.871 0.144 0.239 0.1558 30.9 6602284 6911684
¢3 minimization (full GTN) 3.170 0.866 0.148 0.245 0.1562 30.9 5980034 6298634
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Figure 4.24. Load - displacement response for ECO 42 fracture specimen where ®;

(Equation 4.8) is used
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Figure 4.25. Stress - strain response for ECO 42 tension specimen where ¢; (Equation

4.9) is used
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Figure 4.26. Load - displacement response for ECO 42 fracture specimen where ¢;

(Equation 4.9) is used

Table 4.9. Optimized GTN model parameters and objective function values for ECO

42 simulations (¢; (i=1,2,3) are given in Equations 4.9a-c)

Optimized Gurson Model Parameters

Objective Function Values

Case

a1 q2 fe Ir A &1 @2 @3
¢1 minimization 3.122 1.104 0.153 0.163 0.1302 0.0592 N/A NfA
¢2 minimization (row GTN) 2.971 0.709 0.169 0302 0.1533 NfA 779077 NfA
¢o minimization (full GTN) 2.919 0.755 0.171 0.308  0.1587 NfA 631883 NfA
¢3 minimization (row GTN) 3.175 0.748 0.154 0.270 0.1650 0.0784 1945640 2024040
¢3 minimization (full GTN) 3.128 0.735 0.158 0.278 0.1684 0.0817 1103666 1185366
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(iii) 130 Hours UV Irradiated ECO: Experimental and numerical stress - strain re-
sponse of tensile test specimen and load - applied displacement response of fracture
test specimen for 130 hours UV irradiated ECO (ECO 130) are plotted in Figures 4.27,
and 4.28, respectively where ®; is used as objective function Equation 4.8. Similarly
response of tensile and fracture test specimens are plotted in Figures 4.29, and 4.30,
respectively where ¢; is used as objective function Equation 4.9. Optimized Gurson
model parameters are tabulated in Tables 4.10 and 4.11 using ®; and ¢; as objective
functions, respectively.
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Figure 4.27. Stress - strain response for ECO 130 tension specimen where ®;

(Equation 4.8) is used

Table 4.10. Optimized Gurson model parameters and objective function values for

ECO 130 simulations (®; (i=1,2,3) are given in Equations 4.8a-c)

Optimized Gurson Model Parameters Objective Function Values

[} a2 fe Ir A L3 L) @3
¢1 minimization 2.801 1.230 0.155 0.176 0.1272 31.9 N/A N/A
¢2 minimization (row GTN) 3.428 0999 0.160 0.219 0.1198 N/A 3773723 N/A
¢2 minimization (full GTN) 3.149 1.023 0.170 0.184 0.1338 N/A 3732422 N/A
¢3 minimization (row GTN) 3.188 1.000 0.166 0.196 0.1338 33.1 3851951 4182751

Case

¢3 minimization (full GTN) 3.139 1.012 0.171 0.181 0.1344 32.8 3757219 4084919
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Figure 4.28. Load - displacement response for ECO 130 fracture
(Equation 4.8) is used
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Figure 4.29. Stress - strain response for ECO 130 tension specimen where ¢;

(Equation 4.9) is used
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Figure 4.30. Load - displacement response for ECO 130 fracture specimen where ¢;

(Equation 4.9) is used

Table 4.11. Optimized GTN model parameters and objective function values for ECO

130 simulations (¢; (i=1,2,3) are given in Equations 4.9a-c)

Optimized Gurson Model Parameters

Objective Function Values

Case

a1 q2 fe Ir A &1 @2 @3
¢1 minimization 3.130 1.109 0.155 0.166 0.1229 0.0916 N/A N/A
¢2 minimization (row GTN) 3.160 0917 0.186 0.216 0.1344 NfA 804134 N/A
¢o minimization (full GTN) 3.248 0.873 0.186 0.227 0.1478 NfA 742139 N/A
¢3 minimization (row GTN) 3.278 0936 0.200 0.215 0.1359 0.1054 838478 043878
¢3 minimization (full GTN) 3.280 0937 0200 0.219 0.1358 0.1060 769694 875694

The experiments corresponding to ECO 42 and ECO 130 essentially represent

different materials, since nominally higher UV irradiation hours would further embrit-

tle the polymer. So the minimization process is repeated separately for each one. Here

results are shown for the case of either the individual or the combined minimizations.

Similar results are seen, with the combined minimization generally able to better pre-

dict peak load, but less so peak displacement. Generally, as irradiation time increases

parameters f, and fr decrease indicating an embrittlement of the material, as expected.

However in the most brittle case, 130 hours of irradiation, the fit is also the worst, which

perhaps is also expected since an increasingly brittle material is attempted to model

with what is inherently a ductile failure model. Although the goal of this part is not to
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obtain a specific variation of the GTN parameters with irradiation time, there appears

to be a reasonable trend in the results.

Equivalent stress contour plots for the ECO 42 SENT fracture specimen near
the initial crack-tip are shown in Figures 4.31(a)-(d) for different loading values using
GTN model parameters obtained by minimizing ¢3. Similarly, equivalent plastic strain
contour plots are shown in Figures 4.32(a)-(d). Both sets of contour plots begin from
a fully elastic deformation loading state (at 0.05 mm applied displacement), and end
at total failure of the first element ahead the initial crack-tip (at 2.67 mm applied
displacement). Contour levels are the same for each stress plot, but not for plastic
strain plots. Note that, the elements where failure initiates deform significantly because
they soften and loose their stress carrying capacity eventually. Therefore, the second
contour level for the plastic strain plots is kept constant at 0.05 to clearly visualize
the extent of plasticity developing above the failure zone directly ahead of the crack
in Figures 4.32(c)-(d). Stress is clearly concentrated on around the “apparent” crack-
tip. In Figures 4.31(a)-(b) for early loads, while deformation is still mainly elastic the
apparent crack-tip is located at the original crack-tip position. As the elements at the
interface accumulate plastic strain (see Figure 4.32(c)), they soften considerably thus
causing the apparent crack-tip to move forward since that is where the stress carrying
capacity of the material now resides, and consequently, where stress is concentrated.
This is reminiscent of the formation and growth of a craze ahead of a crack-tip in a
polymeric material. This happens before total failure of the first element which has
not reached fr yet. It is the severe softening that essentially causes the formation of
this craze. A process such as this can also be modeled by the concept of a cohesive
zone model (CZM), which clearly should be relatable to the GTN model used in this
study. In fact, cohesive strength and energy have been predicted using the GTN model
to simulate failure and relating the results to a cohesive zone model by Siegmund and
Brocks [73], and Anvari [74]. It is the beyond the scope of this study to make such
a relation. Figures 4.31-4.32(d) show the equivalent stress and plastic strain contour
plots at the instant of total failure of the first element ahead the initial crack-tip.
Softening is much more severe in this case, so the apparent crack-tip moves forward

excessively and plastic strain spreads to a large region of the entire sample.
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Figure 4.31. Evolution of equivalent stress near the crack-tip for ECO 42 SENT
fracture specimen at load line displacements of (a) 0.05 mm, (b) 0.9 mm, (c) 1.8 mm,
and (d) 2.67 mm using GTN model parameters obtained by minimizing ¢3

To compare the three different UV irradiation times, equivalent stress and equiv-
alent plastic strain contour plots are shown in Figure 4.33 for ECO 5, ECO 42 and
ECO 130 SENT fracture specimens at a constant applied load line displacement of 2
mm at which level in all three cases significant damage has accumulated ahead of the
crack-tip. GTN model parameters obtained by minimizing the combined ¢; have been
used. The apparent crack-tip moves further and the magnitude of stresses increases as
irradiation time increases, which is a consequence of the material getting more brittle
(failure stain decreasing) but also stiffer (stress increases). Perhaps counter intuitively
the extent of plasticity is larger for increasing irradiation time, which is due to the

decreasing initial yield strain.
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Figure 4.32. Evolution of equivalent plastic strain near the crack-tip for ECO 42

SENT fracture specimen at load line displacements of (a) 0.05 mm, (b) 0.9 mm, (c)

1.8 mm, and (d) 2.67 mm using GTN model parameters obtained by minimizing ¢3
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Figure 4.33. Equivalent stress and equivalent plastic strain contour plots for ECO 5,
ECO 42, ECO 130 SENT fracture specimens before the total failure of first element
ahead the initial crack-tip where load line displacement is 2 mm
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4.2.2. Failure of Ultraviolet Irradiated Polyethylene Carbon Monoxide Co-

polymer FGM Specimens

The FGM samples are manufactured using selective ultraviolet (UV) light irradia-
tion on a photodegradable polyethylene carbon monoxide copolymer (ECO). Typically,
a thin sheet (thickness of 0.406 mm) of in-plane dimensions 300 x 150 mm? which was
irradiated for times varying from 5 h to 300 h. After irradiation, the sheet is cut in half

2 are obtained.

parallel to the irradiation direction, and two samples of 150 x 150 mm
One of these is then cut perpendicularly to the irradiation direction into 19 strips of
roughly 8 mm width, which are used in uniaxial tension tests to measure elastic and
failure property variation as a function of position on the sample. The remaining 150
x 150 mm? sample from the original sheet is then used for a single edge notch tension
(SENT) fracture experiment. Therefore, the variation of local material properties such
as elastic modulus, failure stress, and failure strain is measured independently of the
fracture experiments, but originating from exactly the same manufacturing process.
Mode I fracture of ECO - based FGM SENT specimens are studied experimentally by
Abanto-Bueno [23] and numerically by Kandula et al. [22]. Failure is modeled using

cohesive zone model in numerical studies of Kandula et al. [22]. The details of the

experimental specimens are shown in Figure 4.34.

Uniaxial tensile tests provide the Young’s modulus E, failure stress o, and failure
strain €; as a function of length along the ECO sheet. Figure 4.35 shows the spatial
variation of these three quantities obtained for two particular FGMs (named FGM
I and II) that are simulated in Kandula et al.’s work. Maximum values of material

properties A, are tabulated in Table 4.12. Poisson’s ratio for ECO is 0.45 [65].

Failure is simulated using GTN model for FGM II where plasticity is defined by
power law hardening in section 4.2.2.1. In section 4.2.2.2, plastic material property
variation of the material is taken from experimental uniaxial tension tests data up to
ultimate tensile strength, oyrs, where necking initiates. After oyrg, the bulk behavior

stress value is kept constant at the ultimate value in numerical calculations.
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Figure 4.34. Geometry of (a) gradually UV irradiated FGM ECO sheet; (b) tensile
and (c) fracture specimens obtained from this sheet [22, 23]

4.2.2.1. Power Hardening Plasticity. In this section, power hardening is assumed for

the bulk plastic behavior of the material. GTN model parameters and power hardening
exponent variations which results a good agreement between numerical and experimen-
tal stress-strain responses of uniaxial tension specimens, are obtained by trial and error.
For less UV irradiated region (more ductile) of the material, numerical and experimen-
tal stress-strain responses deviate from each other since the material at this region does
not exhibit a power hardening behavior. For this region, experimental failure strains
are preferred to be captured numerically, and an agreement between strain energy (area

under stress-strain curve) of numerical and experimental responses is watched out.

The resulting yield function coefficients and volume fraction of void nucleating

particles are g = 6, g = 1, g3 = g7 = 36 and f,, = 0.06. They are kept constant along



111

S ] s
. B ,
0.8 i s Iy *——g ry A Y Y 4 - St
: . g
' ) ,9' o
g 0.6 i e . ) 4 -
{ i - BB B g - - wy
B !
~ 04} : . ]
1 -~ o
: o
0.2 i 6" T
T e -7 o _:_gf
0 I | | | < ef
0 30 60 90 120 150
z (mm)
(a)
1 I T T T [
a o
I N
0.8F i 4 — A = o
[ A ’_u
| a i
o 0.6 ; _ F
E : - -',o
< ! LIRS N, . R —— ._..;,-’..._.... .
3 | o
~ 04f ! ]
a : ,
| P Qe e..8
I e o
02F : > o 0 i
1 -
| .6 .y
.0.._._a._._._O.._.-.o._:_._c,._._.o..-' —-‘-—Jf
0 I | | | © ef
0 30 60 90 120 150
z (mm)

(b)

Figure 4.35. Spatial variation of normalized material properties along the material
gradient direction of ECO (a) FGM I, (b) and FGM II SENT specimens. The dashed
vertical lines mark the initial crack-tip location. The symbols represent the
experimental data, and the curves correspond to their fit using piecewise exponential

or linear functions [22, 23]
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Table 4.12. Maximum values of material properties, Apmqe in Figures 4.35 (a-b) for
FGM I and 11

FGMI FGMII

Max Young’s modulus, Enqe (MPa) 413 414
Max failure stress, oy,,.. (MPa) 10.64  10.32
Max failure strain, €, 0.91 0.98

the entire specimen. Mean nucleation strain €, and standard deviation s, are varied
along the width (gradation) of the specimen, and value of s,, is chosen to be quarter of
the value of €,. The power hardening exponent and mean nucleation strain variations
are plotted in Figure 4.36. The trends of mean nucleation strain, and power hardening
exponent variations resemble to the failure strain, and failure stress variations of FGM

I1, respectively.
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Figure 4.36. Spatial variation of mean nucleation strain and power hardening

exponent for FGM II
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The resulting stress - strain response using GTN model with the above mentioned
failure parameters (dashed lines) are plotted in Figure 4.37 with the experimental data
(solid lines). Failure stresses are overestimated since the GTN model parameters and

power hardening exponents are enforced to capture experimental failure strains.
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Figure 4.37. Stress - strain response of uniaxial tensile tests along FGM II ECO

sheet. Solid lines are experimental data, dashed lines are GTN model results using

GTN model parameter plotted in Figure 4.36, cross signs are fitted failure values

In - plane finite element mesh used for failure simulation of FGM II SENT spec-

imen is shown in Figure 4.38. The mesh has 1625 linear hexahedral elements of type

C3D8R with 3528 nodes, and it is same mesh used for homogeneously UV irradiated

ECO SENT specimens. It is quarter of the entire specimen for 3-D finite element

model. GTN model is imposed for a single layer of elements ahead the crack-tip sim-
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ilar to the computational cell method proposed by Xia and Shih [34, 35]. The length
scale of application of the GTN model is taken to correspond to the craze half-size of
the polymer, producing an in-plane mesh size of minimum element size 0.4 x 0.4 mm?.
This size is assumed to be the characteristic length scale for ECO which is also done for
finite element analysis of homogeneous ECO specimens. Load vs load line displacement

responses obtained numerically and experimentally for FGM II are plotted in Figure
4.39.

Initial crack—tip

Figure 4.38. Finite element mesh for FGM ECO SENT fracture test specimen

Experimental and numerical responses exhibit similarity in shape, but the nu-
merical load and displacement values are smaller than the ones for experiment as
shown in Figure 4.39. Sensitivity analyses showed that load values increase as a result
of increasing mean nucleation strain €, and increasing standard deviation s, in fail-
ure simulations of SENT fracture specimens. Therefore, increasing mean nucleation
strain €, and corresponding standard deviation s,, values is considered. FGM II SENT
fracture specimen is re-simulated with increased nucleation parameters, and these pa-
rameters are plotted in Figure 4.40. One should note that standard deviation s,, is
kept one fourth of mean nucleation strain values along the specimen. Power hardening
exponent n variation is almost same as shown in Figure 4.36. Load and crack extension
vs load line displacement responses of the FGM II ECO SENT specimen are plotted
in Figure 4.41 using these parameters. A set of failure parameter variation along the

specimen is obtained that shows a reasonable agreement with the experimental load
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and crack extension vs load line displacement. Stress-strain responses calculated using
GTN model with this set of parameters are plotted in Figure 4.42, but experimen-
tal tensile stress-strain responses could not be captured numerically with those failure

parameter variation using power hardening plasticity.
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Figure 4.41. Experimental and numerical, load and crack extension vs load line
displacement responses of FGM II ECO SENT fracture test specimen using GTN

model parameter plotted in Figure 4.40

4.2.2.2. Experimental Plastic Data. Instead of power hardening law for the plastic

response of the material, using the experimental tensile test data is considered as it is
done for homogeneously UV irradiated ECOs. Bulk elastic and plastic material prop-
erties are taken from experimental results up to ultimate tensile strength, oyrg, where
necking initiates. After oyrs, the bulk behavior stress value is kept constant at the
ultimate value, as observed in the experiments until failure. Yield function coefficients
and volume fraction of void nucleating particles are chosen to be ¢y = 6, ¢ = 1, g3 = ¢?
= 36 and f,, = 0.06 along the specimen as it was done in previous section. Mean nucle-
ation strain €, and corresponding standard deviation s, are varied along the width of

the specimen, and value of s,, is one quarter of the value of €,,. Figure 4.43 shows mean
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Figure 4.42. Stress - strain response of uniaxial tensile tests along FGM II ECO
sheet. Solid lines are experimental data, dashed lines are GTN model results using

GTN model parameter plotted in Figure 4.40, cross signs are fitted failure values

nucleation strain variation along the specimen. This is obtained by trial and error to
capture stress-strain response of experimental uniaxial tensile tests data, and resulting
numerical stress-strain responses are plotted in Figure 4.44. Experimental stress-strain
response of the tensile tests is captured very well numerically using experimental data

for plastic behavior of the constituents of the FGM in simulations.

Load and crack extension vs load line displacement response of FGM II SENT
fracture specimen is simulated using the failure parameters and material properties

obtained from experimental uniaxial tension tests data, and it is plotted in Figure
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Figure 4.43. Spatial variation of mean nucleation strain for FGM II using

experimental uniaxial tension tests data for elastic-plastic response

4.45. Trends of numerical and experimental results are similar, but the values are not

agree as it was the case while using power hardening law.

Mean nucleation strain variation (also standard deviation s,) is increased as
shown in Figure 4.46, and the other GTN model parameters and elasto-plastic proper-
ties are kept same as which were obtained from experimental tension tests. Figure 4.47
shows that a better agreement can be achieved between experimental and numerical
load and crack extension vs load line displacement responses of FGM II ECO SENT
fracture specimen. Resulting uniaxial tensile test responses are plotted in Figure 4.48
using above mentioned GTN model parameters and material properties. Numerical
failure stresses for uniaxial tensile test responses are well agree with the experimental
ones. Predicted numerical failure strains are also in a reasonable agreement with ex-
perimental failure strains in ranges of z = [0 59] mm and = = [131 150] mm, but the
numerical failure strains are overestimated with respect to the experimental ones in

the range of z = [59 131] mm.
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Figure 4.44. Stress - strain response of uniaxial tensile tests along FGM II ECO
sheet. Solid lines are experimental data, dashed lines are GTN model results using e,
plotted in Figure 4.43 and experimental uniaxial tension tests data for elastic-plastic

response, cross signs are fitted failure values
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Figure 4.46. Spatial variation of increased mean nucleation strain for FGM II using

experimental uniaxial tension tests data for elastic-plastic response
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5. SUMMARY AND CONCLUSIONS

Functionally graded materials which possess continuous variation of material
properties from one material point to another are a new kind of composite materi-
als. They attracted attention of researchers because of their superiorities on other
types of composites. Researches on failure of FGMs are limited. There are a few at-
tempts to predict failure of FGMs using cohesive zone models. In this dissertation, one
of the continuum damage models that is GTN model proposed by Gurson, Tvergaard
and Needleman is investigated in detail and its implementation to failure of FGMs is

studied.

GTN model consists of a pressure sensitive yield function and evolution laws for
void volume function. This model was used for homogeneous materials. GTN model
and its numerical implementation are investigated. For this purpose, the pressure
sensitive yield functions for cylindrical and spherical voids are derived. Then, it is
attempted to derive a closed form analytical yield function for a cylindrical void with
a radially varying (power law variation) shear modulus, but it could not be achieved.
Even it has been achieved, this yield function will be valid only for a specific material’s
property variation, and it will not be applicable to other FGMs. Therefore, numerical
implementation of GTN model is considered. Abaqus that has a built-in GTN model
module is chosen for simulating failure. Abaqus GTN model module is verified by
comparing the Abaqus’ results to the results of a failure of three point bending specimen
from literature. GTN model parameters consists of (i) yield function coefficients (g;),
(ii) void volume fraction parameters (fo, fe, fr), and (iii) nucleation parameters (e,
8n, fn). The effects of these parameters are investigated on stress-strain response of
a uniaxial tension specimen. It is observed that the most sensitive parameter is yield
function coefficients (g;). When g, = 1 and ¢z = ¢? is chosen which was done in
most of the studies in literature, the effect of ¢; on ultimate stress and failure strain is
significant. The complete loss of stress carrying capacity occurs when f=1/g, for above
mentioned ¢, g3 assignment. Ultimate stress and failure strain decrease while the value

of ¢; increases. This makes sense when inverse proportionality between ¢, and total
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failure void volume fraction is considered. Pressure sensitive yield function is plotted
for different ¢, values for a constant void volume fraction f in Figure 5.1. In this figure,
constant triaxial stress (ratio of hydrostatic stress and equivalent stress) curves are also
included to observe the effect of triaxial stress on failure. It can be concluded that a
material with a higher value of ¢; is more sensitive to failure for increasing triaxial
stress, because the yield surface shrinks more rapidly with increasing g, value while
triaxial stress is greater than 1. Void nucleation parameters €,, s, and f, also effect
ultimate stress and failure strain. Increasing €,, s, and decreasing f,, values result

increasing failure strain, but results for s,, are not eye catching.
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Figure 5.1. GTN yield function for different ¢; values where f=0.3

The most common problem encountered was mesh size dependency while using
continuum damage mechanics (CDM) models such as GTN model. This problem is
noticed in sections 3.4 and 4.1. In section 3.4, failure simulation obtained by mesh
refinement resulted a bifurcating crack growth which is not realistic. In section 4.1,

decreasing failure initiation loads are predicted as mesh size near the crack-tip decreases
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for pure titanium (Ti) and titanium monoboride / titanium (TiB / Ti) FGM single

edge bending specimens. Mesh size is accepted as a material characteristic length scale.

Two numerical and experimental studies in literature are revisited for simulating
failure for FGMs using GTN model. One of these studies is failure of a pure titanium
(Ti) and a titanium monoboride / titanium (TiB / Ti) functionally graded material
(FGM) single edge notched bending specimens investigated by Paulino et al. [41]
and Jin et al. [17, 18], respectively. The other one is fracture of homogeneously and
gradually ultraviolet irradiated polyethylene carbon monoxide co-polymer (a polymer
based laboratory scaled FGM) uniaxial and single edge notched tension specimens
investigated by Abanto-Beuno [23]|, Abanto-Bueno and Lambros [47] and Kandula et
al. [22].

For the failure study of pure Ti and TiB / Ti FGM specimens, first GTN model
parameters for pure Ti are determined from experimental stress-strain response of
uniaxial tension specimen by trial and error. Non-uniqueness of the GTN model pa-
rameters which was first emphasized by Zhang [37] is observed while obtaining these
parameters for pure Ti. Different set of parameters yield almost indistinguishable
stress-strain responses. Therefore, it is required more experimental data obtained from
specimens under different stress triaxialities to determine GTN model parameters more
accurately for a material. One of these parameters set is used for failure simulation of
pure Ti single edge notched bending specimen. Predicted failure initiation loads are
sensitive to mesh size as mentioned before, but a good agreement is achieved between
numerical and experimental results with a proper choice of GTN model parameters of
set and mesh size. Elastic-plastic response of the constituents in TiB / Ti FGM are not
available experimentally, so an extended form of original Tamura - Totmota - Ozawa
(TTO) model which is based on rule of mixtures is used to describe the elastic-plastic
response of the constituents. An excellent agreement is achieved between analytical
response and numerical response which is obtained using Abaqus for the extended
TTO elastic-plastic model. Yield function coefficient ¢; is varied in a manner that is
higher for more brittle region to result a lower failure strain, and the void nucleation

parameters €,, s, and f, obtained for pure Ti are kept constant for failure simulation
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of TiB / Ti FGM single edge bending specimen. Predicted failure initiation loads are
also sensitive to mesh size. GTN model results compared to the ones obtained by using
cohesive zone model in literature, and results are quite off from each other. On the
other hand, results obtained using cohesive zone model in literature starts to deviate
from the results of stationary crack without cohesive zone model which is given in
the same research paper while the loads are very small. It is believed that this is not
physically admissible. Detailed experimental results for this fracture problem are not
published in literature, therefore studying with TiB / Ti FGM specimens is ceased.

Another FGM specimen which was manufactured using a novel technique by Lam-
bros et al. [46] is preferred for the investigation of failure using GTN model because of
the accessibility of experimental results given by Abanto-Bueno [23]. The experiments
showed a ductile-to-brittle transition occurring with increasing amounts of ultravio-
let (UV) light irradiation of a photodegradable 1% wt carbon monoxide polyethylene
co-polymer (ECO). For low amounts of irradiation (less than 10 hours) shear yielding
was the dominant failure mode, as is typical of ductile polymers. For higher amounts
of irradiation times brittle like failure mechanism was observed locally, although glob-
ally significant ductility was still maintained. Before studying failure of FGM ECO
specimens, the applicability of GTN model for failure of homogeneously UV irradiated
ECO polymers is investigated. The characteristic length scale of application of the
GTN model is taken to correspond to the craze half-size of the polymer, producing an
in-plane mesh size of minimum element size 0.4 x 0.4 mm?. Six different optimization
calculations are performed; i) the tensile specimen, i) the fracture specimen, and i)
the tensile and fracture specimens together using two different objective functions to
determine GTN model parameters, for each different UV irradiation time (5, 42 and
130 h.), corresponding to varying amounts of ductility. Numerical results of tensile
test specimens are in good agreement with experimental ones. Results obtained using
different objective functions overlap and do not exhibit a significant difference except
at perhaps near the failure point. However, this is not the case for the fracture ex-
periments, although the results of different minimizations agree well up to a certain
load point. A scheme where both the uniaxial tension and the SENT fracture data

are simultaneously used in the GTN parameter determination is proposed. In the



127

combined cases numerical results of ultimate load overshoot the experimental ones by
approximately 10%, and the corresponding displacements are predicted well, although
with less accuracy. In general the shapes of the response curves are also similar to
the experimental ones for fracture specimens. Regarding the specific GTN parameters
obtained, as the UV irradiation time is increased, f, and fp values generally decrease.
This is reasonable since the increase in brittleness of ECO is consistent with increasing
UV irradiation time. In the literature, the GTN model has been widely used to study
failure of metals, e.g., steel, aluminum, copper [26, 28, 32, 33, 36, 38, 67, 69-72, 75, 76].
From such a wide variety of studies, the GTN model parameters for metals can be seen

to lay in the ranges:

11<¢; <19, 08< g <1,

0.002 < f, <0.17, 0.15 < fr < 0.25. (5.1)

In this study these parameters are obtained as:

2.919 < ¢, < 3.280, 0.539 < ¢, < 1.109,

0.152 < f. <0.224, 0.163 < fr < 0.328. (5.2)

The difference in ¢;’s between the polymer and metals is striking, although for the
remaining values this is less so. A higher value for ¢; has been calculated than metals.
This indicates that ECO is more sensitive to stress triaxiality. A comparable ¢; value
of 2.6, was obtained from true stress-strain and volume variation data for a rubber
toughened PMMA tensile specimen by [52] who used a viscoplastic-damage constitu-
tive model. In conclusion it is shown that the GTN model is promising for damage

simulations of polymeric materials.

The outcomes of homogeneously UV irradiated ECO specimens’ simulations were
encouraging to use the GTN model for failure simulations of gradually UV irradiated
ECO FGM specimens. Parameter determination technique that is proposed for homo-

geneous ECO is not carried out for ECO FGM specimens since the current available
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computational power is not sufficient to solve such a problem in a reasonable time.
GTN models parameters are determined by trial and error. First, the GTN model
parameters are predicted comparing the experimental uniaxial tension test data with
the numerical results. Some of the GTN model parameters are kept constant while
void nucleation parameters €, and s, are varied through the graded material. It is
observed that plastic behavior of the ECO does not obey power hardening law, espe-
cially for the more ductile (less UV irradiated) zone. The failure of ECO FGM SENT
specimen is simulated using these parameters obtained from tension tests. Load and
crack extension vs load line displacement responses of these simulations are compared
to the experimental ones. Similarity between the trends of these results are promising.
Sensitivity analyses showed that increasing mean nucleation strain yields increasing
load values for SENT fracture specimen. A reasonable agreement between numerical
and experimental responses of uniaxial tension and SENT fracture tests is achieved
with a selection of proper GTN model parameters. It is believed that this agreement
between numerical and experimental results can be improved using the parameters de-
termination technique that is proposed for for homogeneous ECO. Therefore, further
studies are necessary to improve the agreement between numerical and experimental

results.

In conclusion, GTN model capabilities are well understood, and it is shown that
GTN model is promising for failure simulations of FGMs with selection of proper GTN

model parameters.
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APPENDIX A: PRANDTL-REUSS STRESS STRAIN
RELATION

The Lévy-Mises equations, as they are known, may be expressed in the form

dege _ dey'y _ de.. _ d'}(yz _ d'}(:.cz _ d'}(:.cy (A 1)
Ore Jg;y o, Tyz Tz Oy

or, more compactly, as

.

i; 1s deviatoric stress tensor and dA\ is a scalar factor of proportionality

where where o
which varies throughout the deformation history. Since Lévy and von Mises used the
total strain increment, and not the plastic strain increment, the equations are strictly
applicable only to a fictitious material in which the elastic strain are zero. Accordingly
Young’s modulus must be regarded as infinitely large, the material remaining rigid
when unloaded. The extension of the Lévy-Mises equations to allow for the elastic

component of the strain was carried out by Prandtl for the plane problem, and in

complete generality by Reuss. Reuss assumed that

de?

ij

= o/,d\ (A:3)

where efj is plastic strain. Hill [77] showed that increment of plastic work per unit

volume for the von Mises yield criterion is

dW? = o;;de}; = oydel,, (A.4)



where

3
oy = \/E (equivalent stress)

2
de?,, = gdefjde‘% (equivalent plastic strain increment)

Substituting Equation A.3 into Equation A.4, gives

P
oydet,,

dA =

! !
o-ijo-ij
yy
3 dety

2 0 Y
Using Equations A.5b and A.6, Prandtl-Reuss relation Equation A.3 results

2 ay
oy = 3z d¢
3d€eqv

\/E Jyf‘?j
I EICEANE

where superimposed dot indicates the time derivative and € is strain rate.
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(A.6)
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APPENDIX B: INTEGRATION WITH RESPECT TO Q

By definition
E'

S
V3EuE

After coordinate transformation, E;',r = C,,iC,,jE;j. On the unit sphere, C,; = n; = x;.

Therefore,

(B.1)

nl}
E N7

p=— (B2)

V 3ELEL

The Gauss theorem states that

f niFydQ = f 9 (F)dv (B.3)
Q v Oz

v is the volume of the unit sphere, z; are components of cartesian coordinates and

F; are the cartesian components of any vector. The following calculations are self

explanatory.
2w T
/ i = / / sin(¢)dgdd = dr (B.4)
Q 0 0
k! £ 9.
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