
BAYESIAN METHODS FOR REAL-TIME PITCH TRACKING

by

Umut Şimşekli

B.S., Computer Science and Engineering, Sabancı University, 2008

Submitted to the Institute for Graduate Studies in

Science and Engineering in partial fulfillment of

the requirements for the degree of

Master of Science

Graduate Program in Computer Engineering

Boğaziçi University

2010

ii

BAYESIAN METHODS FOR REAL-TIME PITCH TRACKING

APPROVED BY:

Assist. Prof. A. Taylan Cemgil

(Thesis Supervisor)

Prof. Ethem Alpaydın

Assoc. Prof. Muhittin Mungan

DATE OF APPROVAL: 13.08.2010

iii

To my family ...

iv

ACKNOWLEDGEMENTS

I would like to thank to my supervisor Assist. Prof. Ali Taylan Cemgil for all

his support throughout the course of this research. It has been a great pleasure for me

to have an academic advisor, a music instructor, and a friend at the same time. I also

want to thank to my examiners, Prof. Ethem Alpaydın and Assoc. Prof. Muhittin

Mungan for the valuable feedback they have provided for this thesis.

I also want to thank to the members of the Perceptual Intelligence Laboratory

for their help, support and friendship. Particularly, many thanks go to Dr. Mehmet

Gönen for his practical solutions for any kind of problems. It is not possible to mention

everyone here, but I would like to thank Prof. Lale Akarun, Prof. Fikret Gürgen, my

music instructors Sabri Tuluğ Tırpan, Volkan Hürsever, and finally Şanver Narin and

the members of Defne Bilgi İşlem.

I would like to thank to my parents and my sister for everything I have and I

succeeded. I tried so hard but I could not find any words to tell your meaning to me.

This thesis has been supported by the M.Sc. scholarship (2228) from the Scientific

and Technological Research Council of Turkey (TÜBİTAK).

v

ABSTRACT

BAYESIAN METHODS FOR REAL-TIME PITCH

TRACKING

In this thesis, we deal with probabilistic methods to track the pitch of a musical

instrument in real-time. Here, we take the pitch as a physical attribute of a musical

sound which is closely related to the frequency structure of the sound.

Pitch tracking is the task where we try to detect the pitch of a note in an online

fashion. Our motivation was to develop an accurate and low-latency monophonic

pitch tracking method which would be quite useful for the musicians who play low-

pitched instruments. However, since accuracy and latency are conflicting quantities,

simultaneously maximizing the accuracy and minimizing the latency is a hard task.

In this study, we propose and compare two probabilistic models for online pitch

tracking: Hidden Markov Model (HMM) and Change Point Model (CPM). As opposed

to the past research which has mainly focused on developing generic, instrument-

independent pitch tracking methods, our models are instrument-specific and can be

optimized to fit a certain musical instrument.

In our models, it is presumed that each note has a certain characteristic spectral

shape which we call the spectral template. The generative models are constructed in

such a way that each time slice of the audio spectra is generated from one of these

spectral templates multiplied by a volume factor. From this point of view, we treat

the pitch tracking problem as a template matching problem where the aim is to infer

the active template and its volume as we observe the audio data.

vi

In the HMM, we assume that the pitch labels have a certain temporal structure

in such a way that the current pitch label depends on the previous pitch label. The

volume variables are independent in time, which is not the natural case in terms of

musical audio. In this model, the inference scheme is standard, straightforward, and

fast.

In the CPM, we also introduce a temporal structure for the volume variables. In

this way, the CPM enables explicit modeling of the damping structure of an instrument.

As a trade off, the inference scheme of the CPM is much more complex than the HMM.

After some degree, exact inference becomes impractical. For this reason, we developed

an approximate inference scheme for this model.

The main goal of this work is to investigate the trade off in between latency

and accuracy of the pitch tracking system. We conducted several experiments on an

implementation which was developed in C++. We evaluated the performance of our

models by computing the most-likely paths that were obtained via filtering or fixed-lag

smoothing distributions. The evaluation was held on monophonic bass guitar and tuba

recordings with respect to four evaluation metrics. We also compared the results with

a standard monophonic pitch tracking algorithm (YIN). Both HMM and the CPM

performed better than the YIN algorithm. The highest accuracy was obtained from

the CPM, whereas the HMM was the fastest in terms of running time.

vii

ÖZET

GERÇEK ZAMANLI NOTA TAKİBİ İÇİN BAYESÇİ

YÖNTEMLER

Bu tezde notaların gerçek zamanlı perde takibi için Bayesçi yöntemler ele alınmıştır.

Burada ses perdesini, sesin frekans yapısıyla yakından ilgili, fiziksel bir öznitelik olarak

ele alıyoruz.

Nota takibi, bir notanın perdesinin çevrimiçi bir şekilde belirlenmesi görevidir.

Motivasyonumuz, kalın sesli müzik aleti çalan müzisyenler için faydalı olabilecek, hassas

ve düşük gecikmeli bir nota takip sistemi geliştirmekti. Ancak hassaslık ve gecikme

çelişen iki nicelik olduğu için aynı anda hassiyeti enbüyütmek ve gecikmeyi enküçültmek

zor bir görevdir.

Bu çalışmada, çevrimiçi nota takibi için iki olaslıksal model öneriyoruz: Saklı

Markov Modeli (SMM) ve Değişim Noktası Modeli (DNM). Bu alanda yapılan önceki

çalışmalarda genel, müzik aletine bağlı olmayan nota takip yöntemlerine odaklanılmıştı.

Bunun aksine, bizim modellerimiz herhangi bir müzik aletine göre özelleştirilebilir ve

belirli bir enstrumana göre eniyilenebilir.

Modellerimizde, her notanın spektral şablon adını verdiğimiz bir spektral yapıya

sahip olduğunu varsayıyoruz. Üretici modellerimizi, ses spektrumunun bir zaman dili-

minin bu şablonlardan birinin bir gürlük katsayısıyla çarpılarak oluştuğu varsayımıyla

kurduk. Bu açıdan, nota takibi problemini bir çeşit şablon eşleştirme problemi olarak

ele alıyoruz. Amacımız, ses verisini gözlemledikçe hangi şablonun etkin olduğu ve

şablona ait gürlük katsayısının ne olduğu çıkarımını yapabilmek.

viii

SMM’de, notaların bir önceki notaya bağımlı olduğu bir zamansal yapıya sahip

olduğunu varsayıyoruz. Gürlük değişkenini zamandan bağımsız ele alıyoruz. Ancak,

müzik seslerini göz önünde bulundurunca bu varsayım doğal olmuyor. Diğer bir yan-

dan, bu modellerde çıkarım yapmak için standart ve hızlı yöntemleri kullanabiliyoruz.

DNM’de, gürlük değişkenleri için de bir zamansal yapı öneriyoruz. Bu şekilde,

DNM ile bir müzik aletinin sönümlenme yapısını açık şekilde modelleyebiliyoruz. An-

cak ödünleşim sonucu, bu modelde çıkarım yapmak için çok daha karmaşık çıkarım

yöntemleri kullanmamız gerekiyor. Ayrıca, bir noktadan sonra gerçek çıkarım uygu-

lanamaz oluyor. Bu yüzden bu model için yaklaşık bir çıkarım şeması geliştirdik.

Bu çalışmanın temel hedefi, nota takip sisteminindeki gecikme ve hassasiyet

arasındaki ödünleşimi incelemektir. Deneylerimizi C++ dilinde geliştirdiğimiz bir

uygulama üzerinden yaptık. Modellerin başarılarını, süzgeçleme ve sabit gecikmeli

düzleştirme dağılımlarından elde ettiğimiz en muhtemel yolları kullanarak hesapladık.

Değerlendirmeyi tek sesli bas gitar ve tuba kayıtları üzerinde ve dört farklı ölçüt kul-

lanarak yaptık. Ayrıca sonuçlarımızı standart bir perde takip algoritması olan YIN ile

karşılaştırdık. İki modelimizle de YIN’den daha başarılı sonuçlar elde ettik. En yüksek

hassasiyeti DNM, en yüksek hesaplama hızını ise SMM ile elde ettik.

ix

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iv

ABSTRACT . v

ÖZET . vii

LIST OF FIGURES . xi

LIST OF TABLES . xiii

LIST OF SYMBOLS/ABBREVIATIONS . xiv

1. INTRODUCTION . 1

1.1. Levels of Music Representation . 1

1.2. Pitch Tracking . 4

2. TIME-SERIES MODELS . 8

2.1. Hidden Markov Model . 10

2.1.1. Example . 11

2.2. Change Point Model . 12

2.2.1. Example . 13

3. MONOPHONIC PITCH TRACKING . 16

3.1. Models . 17

3.1.1. Hidden Markov Model . 18

3.1.2. Change Point Model . 19

4. INFERENCE . 23

4.1. Inference on the Hidden Markov Model 23

4.2. Inference on the Change Point Model 25

4.2.1. Forward Pass . 27

4.2.2. Backward Pass . 31

4.2.3. Smoothing . 35

4.2.4. Marginal Viterbi Path . 35

4.2.5. Approximations . 36

5. TRAINING AND PARAMETER LEARNING 38

6. EVALUATION AND RESULTS . 41

6.1. Performance of the HMM . 43

x

6.2. Performance of the CPM . 45

6.3. Comparison with the YIN algorithm 46

7. DISCUSSION, CONCLUSIONS, AND FUTURE WORK 47

APPENDIX A: OPERATIONS ON GAMMA POTENTIALS 50

A.1. Derivation of the Compound Poisson Observation Model 50

A.2. Products of two Gamma potentials . 51

A.3. Update Step of a Single Gamma Potential 52

A.4. Update Step of An Improper Gamma Potential 53

REFERENCES . 55

xi

LIST OF FIGURES

Figure 1.1. Illustration of an interactive computer music system. The audio

signal is processed and converted to MIDI in real-time. 2

Figure 1.2. Different levels of the music representation 3

Figure 1.3. Spectral templates and audio spectra which were obtained from a

bass guitar . 6

Figure 2.1. Graphical models with different conditional independence assump-

tions . 9

Figure 2.2. Graphical model of a Hidden Markov Model. xτ represent the

latent variables and yτ represent the observations 10

Figure 2.3. Synthetic data which are generated from the HMM. The upper plot

can be viewed as a piano-roll representation of a musical piece. The

lower plot corresponds to a noisy observation of the true states . . 12

Figure 2.4. Graphical model of a Change Point Model. cτ represent the binary

switch variables. xτ are the continuous latent variables. yτ are the

observations . 13

Figure 2.5. Synthetic volume data and real volume data. Note that the syn-

thetic data is very similar to the real data 15

Figure 3.1. The block diagram of the probabilistic models 17

Figure 3.2. Graphical model of the HMM. The index ν takes values between 1

and F . 19

xii

Figure 3.3. The structure of a note . 20

Figure 3.4. The state transition diagram of the indicator variable rτ 20

Figure 3.5. Graphical model of the CPM. The index ν takes values between 1

and F . 21

Figure 3.6. Spectral templates of a tuba and synthetic data generated from the

CPM . 22

Figure 4.1. Visualization of the forward and the Viterbi algorithm for the CPM 29

Figure 4.2. Illustration of the pruning schema of the CPM 37

Figure 6.1. Excerpts of the test files. 42

Figure 6.2. Logarithm of the transition matrix of the HMM 43

Figure 6.3. The overall performance of the HMM on low-pitched audio 44

Figure 6.4. Logarithm of the transition matrices of the CPM 45

Figure 6.5. The overall performance of the CPM on low-pitched audio 46

xiii

LIST OF TABLES

Table 6.1. Definition of the evaluation metrics 43

Table 6.2. The indexing structure in the state transition matrix 44

Table 6.3. The comparison of our models with the YIN algorithm. The CPM

performs better than the others. Moreover, the HMM would also

be advantageous due to its cheaper computational needs. 46

xiv

LIST OF SYMBOLS/ABBREVIATIONS

〈·〉 Expectation

[·] Returns 1 if the argument is true, returns 0 otherwise

aij State transition probability in the HMM

a
({0,1})
ij State transition probability in the CPM

B[·] Lower-bound of the likelihood

BE(·) Bernoulli Distribution

cτ Change point indicator variable at time τ

Dr Domain of variable r

Dv Domain of variable v

f0 Fundamental frequency

F Number of frequency components

G(·, ·) Gamma Distribution

H[·] Entropy

I Number of spectral templates

N Number of Gamma potential that will be kept during pruning

pa(·) Parent nodes of the parameter in a given graphical model

PO(·) Poisson Distribution

Q Objective in the EM derivations for the CPM

rτ Pitch indicator variable at time τ

tν,i Spectral template with pitch index i and frequency index ν

T Number of time slices

vτ Volume variable at time τ

xτ Hidden variable at time τ

xν,τ Audio spectrum with time index τ and frequency index ν

yτ Observed variable at time τ

α Forward message

β Backward message

γ Gamma potential

Γ(·) Gamma function

xv

δ(·) Kronecker delta function

θ(·) Damping function in the CPM

κ(·) Returns the normalization constant of a Gamma potential

Λ Objective in the generic EM derivations

ν Frequency index

τ Time index

CPM Change Point Model

HMM Hidden Markov Model

MAP Maximum a-posteriori

MIDI Musical Instrument Digital Interface

NMF Non-negative Matrix Factorization

1

1. INTRODUCTION

Computer music is the term that defines a multidisciplinary research field which

aims to understand, analyze and synthesize music by incorporating the artistic and

scientific information which is gained from computer science, electrical engineering,

psychoacoustics, musicology, and music composition.

Among many subfields of computer music (such as music information retrieval,

musical sound generation, algorithmic composing, etc.), interactive computer music

systems became popular along with the rapid increase in the computational power. A

computer music system is called to be interactive if it has the capacity to interact with

musicians like a real musician. This requires efficient methods in order to response in

real-time and comprehensive analysis and interpretation of music such as pitch, tempo,

and rhythm analysis. An illustration of a pitch tracking based interactive computer

music system is shown in Figure 1.1.

1.1. Levels of Music Representation

Music is represented in several ways. This representations have a certain hier-

archy. On the highest level, there is the printed music (also known as sheet music).

This representation contains all kinds of high level musical information, such as pitch,

velocity, tempo, rhythm, vibrato, glissando, legato, accelerando, ritardando, and etc.

This representation also allows the musicians to have their own interpretation of the

music. Hence the music that is played by different musicians from the same sheet will

not be the same. While going down at the hierarchy, there is the acoustic waveform

representation on the lowest level. In this representation, we lose all the high level

information which we had in the sheet representation. On the other hand, we always

have the same output as opposed to the sheet representation.

Computers allow and require formal representations of music, where each detail

of the representation is precisely specified (Dannenberg, 1993). Hence, in order to make

2

!

!

Audio

MIDI Processor

MIDI

Figure 1.1. Illustration of an interactive computer music system. The audio signal is

processed and converted to MIDI in real-time. The converted MIDI signals can be

used for several purposes.

the high level music information available to computers, mid-level music representa-

tions, so called the symbolic representations, were developed.

MIDI (Musical Instrument Digital Interface) is the most common representation

among the symbolic representations of music. The MIDI format was first developed in

1982 and it is the industry-standard symbolic music representation which enables to

synchronize computers, synthesizers, keyboards, and MIDI controllers. MIDI signals

do not convey any acoustic audio signal. Instead, they convey event messages which

basically contain the information about pitch, start and end times of notes, and volume.

This representation is similar to the sheet representation, while at the same time it

is formal enough to satisfy computers’ requirements. Figure 1.2 shows the different

types of music representations. For further information about music representations,

the reader is referred to (Dannenberg, 1993).

MIDI instruments are quite appropriate for interactive computer music applica-

tions since they do not need any acoustic processing. Real-time pitch tracking problem

3

h

: 441

= = = = = = = =
(a) Sheet representation of the C major scale

50 100 150 200 250 300

30

35

40

45

(b) The MIDI representation that corresponds to the sheet representation. Here we have the pitch

information (on the y axis) and the note onset - offset information (on the x axis).

1 2 3 4 5 6 7

x 10
5

−0.2

−0.1

0

0.1

0.2

(c) The waveform representation of acoustic audio signal which was obtained from a piano.

50 100 150 200 250 300

20

40

60

(d) The log-spectra of the piano recording.

Figure 1.2. Different levels of the music representation.

4

appears when we want to use an acoustic instrument as a MIDI source. The goal of a

real-time pitch tracking system can be seen as transforming the low-level audio signal

to mid-level MIDI messages in real time. This requires real-time processing of the

acoustic audio stream which is obtained as the musician plays the instrument.

1.2. Pitch Tracking

The term pitch is a psycho-acoustics term which is closely related to the frequency

structure of a sound. It is one of the major properties of a musical sounds such as timbre

and loudness. The pitch of a note determines the label of the note and how “high” or

“low” the note is. For instance, in Figure 1.2(a), the first and last notes are both C

(do). However the last one is one octave higher than the first one. Hence, their pitch

labels are C4 and C5 respectively. Here C4 means the note C at the fourth octave.

Pitch is often referred as a subjective attribute of sound, not an objective physical

quantity. However, in some contexts, it is used synonymously with the fundamental

frequency (f0) which is a physical quantity in fact. In this thesis we will not go into

details of the properties of pitch and fundamental frequency. For more information

about pitch and fundamental frequency, the reader is referred to (Christensen and

Jakobsson, 2009).

Pitch tracking is the task where we want to track the pitch labels while observing

audio data. It is very similar to object tracking with many respects. In object tracking,

the aim is to track an object’s position and velocity while acquiring some time-series

observations. Similar to this, in pitch tracking, what is tracked is also a temporal

parameter. However, in this case, the parameter (or the quantity) is an attribute of

musical sounds which is the pitch.

Pitch tracking is one of the most studied topics in the computer music field

since it lies at the center of many applications. It is widely used in phonetics, speech

coding, music information retrieval, music transcription, digital audio effects, and also

5

interactive musical performance systems. It is also used as a pre-processing step in

more comprehensive music analysis applications such as chord recognition systems.

Many pitch tracking methods have been presented in the literature. Klapuri

proposed an algorithmic approach for multipitch tracking in (Klapuri, 2008). Kashino

et al. presented applied graphical models for polyphonic pitch tracking (Kashino et al.,

1998). Cemgil presented generative models for both monophonic and polyphonic pitch

tracking (Cemgil, 2004). Orio et al. and Raphael proposed Hidden Markov Model based

pitch tracking methods in (Orio and Sette, 2003) and (Raphael, 2002) respectively.

On the other hand, using nonnegative matrix factorization (NMF) methods become

popular at various audio processing applications. Different types of NMF models were

proposed and tested on polyphonic music analysis, (Vincent et al., 2008; Bertin et al.,

2009; Cont, 2006). There also exists practical commercial hardware devices such as

Roland GI-20, Axon AX100 MKII, Axon AX50 USB, Yamaha G50, Sonuus G2M,

Sonuus B2M, and etc. Most of these devices are designed to work with electric guitar

and/or bass guitar, and they are also expensive as compared with the software products

of pitch tracking even if they do not work perfectly.

In this study, we propose and compare two probabilistic models for online pitch

tracking. Our aim is to convert the audio stream to a MIDI stream via a software

program in such a way that the program would be as practical as the hardware devices

which were mentioned above. As opposed to the past research which has mainly focused

on developing generic, instrument-independent pitch tracking methods, our models are

instrument-specific and can be optimized to fit a certain musical instrument. In our

models, we represent the notes with spectral templates where a spectral template is

a vector that captures the shape of a note’s spectrum. Once we obtain the spectral

templates of an instrument (via a training step), our system’s goal becomes finding the

note whose spectral template is more similar to the given audio spectra (see Figure 1.3).

Thus, in that way, we can treat the pitch detection problem as a template matching

problem.

6

Streaming Audio Spectra

Time

F
re

qu
en

cy

(a) Spectral templates of a bass guitar.

Spectral Templates

Notes

F
re

qu
en

cy

(b) Audio spectra of a bass guitar recording.

Figure 1.3. Spectral templates and audio spectra which were obtained from a bass

guitar. In (a), each column is a spectral template of a certain note and it captures

the shape of the note’s spectrum. After we obtain the spectral templates, the goal of

our system becomes to determine which note’s spectral template is most likely given

this audio spectra in (b). It can also be observed that the spectral templates

implicitly capture the harmonic structure of the signals.

7

Human auditory system has a complex structure and it can be obvious for a

human to recognize the pitch of a sound quite accurately. However this not an easy task

for a pitch tracking system. Possible difficulties for a pitch tracker mostly arise when

polyphony, vibrato, and low pitches are introduced in a musical piece (Roads, 1996).

Here, we mainly focus on monophonic pitch tracking of low pitched instruments even if

our probabilistic models are extensible to polyphonic pitch tracking by using factorial

models (Cemgil, 2006). The main concern of the work is reducing the pitch detection

latency without compromising the detection quality. Here the term, latency is defined

as the time difference between the true note onset and the time that the pitch tracker

has computed its estimate. In our point of view, a pitch tracking method might have

latency due to two reasons. The first reason is that the method cannot estimate the

note accurately because it has not accumulated enough data yet. The second reason is

the computational burden. With the increase of the computational power, the latter

can be eliminated by using more powerful computers. Hence, in our work we will focus

on decreasing the latency by increasing the accuracy at note onsets rather than trying

to reduce the computational complexity. We tested our models on recordings of two

low pitched instruments: tuba and bass guitar. This is challenging since estimating

low pitches in shortest time is a difficult problem.

Apart from pitch tracking, template matching framework can also be used in

various types of applications since we do not make any application-specific assumptions

while constructing the models.

The rest of the thesis is organized as follows: in Chapter 2, we provide the neces-

sary background information about the time series models. In Chapter 3, we present

our pitch tracking models in detail. In Chapter 4 and 5, we describe the inference

schemes and the training procedure. In Chapter 6, we present our experimental re-

sults. Finally, Chapter 7 concludes this thesis.

8

2. TIME-SERIES MODELS

A time-series is a sequence of observations which are measured at a increasing set

of time points (usually uniformly spaced). Since many problems can be defined in terms

of time-series, time-series analysis has become very popular in various research areas

including machine learning, acoustics, signal processing, image processing, mathemat-

ical finance, and econometrics (Excell et al., 2007; West and Harrison, 1997; Godsill

et al., 2007; Harvey et al., 2004; West and Harrison, 1997). Among many types of

methods, Bayesian probabilistic models are quite natural for time-series analysis since

they enable the use of many heuristics within a rigorous framework. Besides, they have

shown convincing success in the field of computer music (Cemgil et al., 2006; Virtanen

et al., 2008; Whiteley et al., 2006; Whiteley et al., 2007; Klapuri and Davy, 2006).

In a probabilistic model of a time-series x1:T , the joint distribution of the obser-

vations, p(x1:T) are specified 1 (Barber and Cemgil, 2010). In order the probabilistic

model to be consistent with the causality of the time-series, we can utilize the chain

rule and obtain the following recursion:

p(x1:T) = p(xT |x1:T−1)p(x1:T−1)

= p(xT |x1:T−1)p(x1:T−1|x1:T−2)p(x1:T−2)

= p(xT |x1:T−1)p(x1:T−1|x1:T−2)p(x1:T−2|x1:T−3)p(x1:T−3)

...

=
T
∏

τ=1

p(xτ |x1:τ−1), (2.1)

where p(x1|x1:0) = p(x1). This is a causal representation of the model where each

variable depends on all past variables. However, in order the inference on a probabilistic

model to be computationally tractable, different types of (in)dependence structures are

assumed in different types of probabilistic models.

1Note that we use MATLAB’s colon operator syntax in which (1 : T) is equivalent to [1, 2, 3, ..., T]
and x1:T = {x1, x2, ..., xT } .

9

x1 x2 x3 x4

(a) p(x1, x2, x3, x4) = p(x4|x1, x2, x3)p(x3|x1, x2)p(x2|x1)p(x1)

x1 x2 x3 x4

(b) p(x1, x2, x3, x4) = p(x4|x3)p(x3|x2)p(x2|x1)p(x1)

x1 x2 x3 x4

(c) p(x1, x2, x3, x4) = p(x4|x2, x3)p(x3|x1, x2)p(x2|x1)p(x1)

x1 x2 x3 x4

(d) p(x1, x2, x3, x4) = p(x4|x2)p(x3|x1, x2)p(x2)p(x1)

x1 x2 x3 x4

(e) p(x1, x2, x3, x4) = p(x4)p(x3)p(x2)p(x1)

Figure 2.1. Graphical models with different conditional independence assumptions.

Graphical models provide an intuitive way to represent the conditional indepen-

dence structure of a probabilistic model. We can rewrite the joint distribution by

making use of a directed acyclic graph:

p(x1:T) =
T
∏

τ=1

p(xτ |pa(xτ)), (2.2)

10

x1 x2 x3 x4

y1 y2 y3 y4

Figure 2.2. Graphical model of a Hidden Markov Model. xτ represent the latent

variables and yτ represent the observations.

where pa(xτ) denotes the parent nodes of xτ . Figure 2.1 visualizes possible indepen-

dence structures of a time-series. For further information on graphical models, the

reader is referred to (Wainwright and Jordan, 2008; Parsons, 1998; Jordan, 2004).

2.1. Hidden Markov Model

A Hidden Markov Model (HMM) is a statistical model which is basically a Markov

chain observed in noise. Here the underlying Markov chain is not observable, therefore

hidden. What is observable in an HMM is also a stochastic process which is assumed

to be generated from the hidden Markov chain (Cappé et al., 2005). In this section

we will represent the hidden variables with xτ and the observed variables with yτ .

Conventionally, the underlying Markov chain, x1:T is called a state and in this study

we will be dealing with discrete xτ . Figure 2.2 shows the graphical model of a standard

HMM.

As can be seen from the graphical model, the hidden state variable at time τ

depends only on the state variable at time τ − 1. This is called the Markov property:

p(xτ |x1:τ−1) = p(xτ |xτ−1). (2.3)

Similarly, the observation at time τ depends only on the state variable at time τ ,

p(yτ |y1:τ−1, x1:τ) = p(yτ |xτ). (2.4)

11

In an HMM, the probability distribution in Equation (2.3) is called the state transition

model and the distribution in Equation (2.4) is called the observation model. The

HMM is called homogeneous if the state transition and the observation models do not

depend on time index τ (Cappé et al., 2005), which is our case in this study.

2.1.1. Example

As an example, we will consider a possible model for pitch labels in music. Let xτ

be pitch labels and yτ be the discrete noisy observations of xτ , where xτ and yτ have

the same discrete domain D, where D = {C,D,E,F,G,A,B}. We can define the state

transition model as follows:

p(xτ |xτ−1) =

p0, xτ = xτ−1,

p1, xτ 6= xτ−1.
(2.5)

Similarly, we can define the observation model:

p(yτ |xτ) =

q0, yτ = xτ ,

q1, yτ 6= xτ .
(2.6)

Here p0 + p1 = q0 + q1 = 1. The assumption in the model is, at time τ , the pitch label

will stay the same with p0 probability or jump to another pitch with p1 probability.

We observe the true state with q0 probability or a erroneous state with q1 probability.

Figure 2.3 shows synthetic data which are generated from this model.

Inference on the unobserved variables xτ given the noisy observations yτ , which is

the main topic of interest, is computationally straight-forward for this model (Alpaydin,

2004). The conditional independence structure of the model allows us to derive generic

recursions which will be covered in Chapter 4.

12

0 50 100 150 200 250 300 350 400 450 500

C

D

E

F

G

A

B

xτ

τ

0 50 100 150 200 250 300 350 400 450 500

C

D

E

F

G

A

B

yτ

τ

Figure 2.3. Synthetic data which are generated from the HMM. The upper plot can

be viewed as a piano-roll representation of a musical piece. The lower plot

corresponds to a noisy observation of the true states.

2.2. Change Point Model

In the classic time-series models, the underlying latent process is assumed to be

either discrete (i.e. Hidden Markov Model) or continuous (i.e. Kalman Filter). These

kinds of models have been shown to be successful in many problems from various

research fields. However, in some cases selecting the underlying process either discrete

or continuous would not be sufficient. Thanks to the increase in the computational

power and the development in the state-of-the-art inference methods, we are able to

construct more complex statistical models such as the change point models (Barber

and Cemgil, 2010).

A change point model (CPM) is a switching state space model where the variables

have a special structure. In a CPM, we have two latent variables: the discrete switch

13

variable cτ and the continuous variable xτ . While the switch variable is off (cτ = 0),

xτ follows the pre-defined structure that depends on xτ−1. On the other hand, at the

time when the switch variable is on (cτ = 1), xτ is reset to a new value independent

from the previous values. A generic change point model can be defined as follows:

cτ |cτ−1 ∼ p(cτ |cτ−1)

xτ |cτ , xτ−1 ∼

p0(xτ |xτ−1), cτ = 0

p1(xτ), cτ = 1

yτ |xτ ∼ p(yτ |xτ). (2.7)

In this model, the switch variables cτ form a Markov chain. Besides, conditioned on cτ ,

xτ also form a Markov chain. The graphical model representation of a CPM is shown

in Figure 2.4.

c1 c2 c3 c4

x1 x2 x3 x4

y1 y2 y3 y4

Figure 2.4. Graphical model of a Change Point Model. cτ represent the binary switch

variables. xτ are the continuous latent variables. yτ are the observations.

2.2.1. Example

The CPM is powerful at modeling the step changes in a continuous dynamical

process. For instance, we can model note onsets and volume of a musical piece by

14

utilizing the CPM. Consider the following model:

cτ ∼ BE(cτ ;w)

xτ |cτ , xτ−1 ∼

δ(xτ − θxτ−1), cτ = 0

G(xτ ; a, b), cτ = 1

yτ |xτ ∼ PO(yτ ; xτ). (2.8)

Here 0 < θ < 1 and the symbols BE , G and PO represent the Bernoulli, Gamma and

the Poisson distributions respectively, where

BE(c;w) = exp(c logw + (1− c)(log(1− w))

G(x; a, b) = exp((a− 1) log x− bx− log Γ(a) + a log(b))

PO(y;λ) = exp(y log λ− λ− log Γ(y + 1)). (2.9)

In this model, the switch variables cτ determine the occurrence of note onsets and

the continuous variable xτ determine the instant volume of the given note without

considering its label.

Compared to the Hidden Markov Model, making inference on the CPM is not

straight-forward. The memory requirements of the inference scheme grow linearly with

time and exact inference become intractable after some point. For this reason the

inference scheme needs approximations which will be covered in Chapter 4.

15

0 50 100 150 200 250 300 350 400 450 500

0

0.5

1

cτ

τ

0 50 100 150 200 250 300 350 400 450 500
0

20

40

60

xτ

τ

0 50 100 150 200 250 300 350 400 450 500
0

20

40

60

80

yτ

τ

(a) Synthetic data which are generated from the CPM.

400 500 600 700 800 900 1000 1100
0

0.5

1

1.5

2

2.5

3
x 10

4

(b) Spectral energy plot of a real bass guitar recording

Figure 2.5. Synthetic volume data and real volume data. Note that the synthetic

data is very similar to the real data.

16

3. MONOPHONIC PITCH TRACKING

In this study, we would like to infer a predefined set of pitch labels from streaming

audio data. Our approach to this problem is model based. We will construct two

probabilistic generative models that relate a latent event label to the actual audio

recording, in this case audio is represented by the magnitude spectrum. We define xν,τ

as the magnitude spectrum of the audio data with frequency index ν and time index

τ , where τ ∈ {1, 2, ..., T} and ν ∈ {1, 2, ..., F}.

For each time frame τ , we define an indicator variable rτ on a discrete state space

Dr, which determines the label we are interested in. In our case Dr consists of note

labels such as {C4, C#4, D4, D#4, ..., C6}. The indicator variables rτ are hidden

since we do not observe them directly. For online processing, we are interested in the

computation of the following posterior quantity, also known as the filtering density:

p(rτ |x1:F,1:τ). (3.1)

Similarly, we can also compute the most likely label trajectory given all the observations

r∗1:T = argmax
r1:T

p(r1:T |x1:F,1:T). (3.2)

This latter quantity requires that we accumulate all data and process in a batch fashion.

There are also other quantities, called “fixed lag smoothers” that between those two

extremes. For example, at time τ we can compute

p(rτ |x1:F,1:τ+L) (3.3)

and

r∗τ =argmax
rτ

p(r1:τ+L|x1:F,1:τ+L), (3.4)

17

rτ = i

vτ
i

ν

tν,i

τ

ν
xν,τ

Figure 3.1. The block diagram of the probabilistic models. The indicator variables, rτ

choose which template to be used. The chosen template is multiplied by the volume

parameter vτ in order to obtain the magnitude spectrum, xν,τ .

where L is a specified lag and it determines the trade off between the accuracy and

the latency. By accumulating a few observations from the future, the detection at a

specific frame can be eventually improved by introducing a slight latency. Hence we

have to fine-tune this parameter in order to have the optimum results.

3.1. Models

In our models, the main idea is that each event has a certain characteristic spectral

shape which is rendered by a specific volume. The spectral shapes that we denote as

spectral templates are denoted by tν,i. The ν index is again the frequency index and

the index i indicates the pitch labels. Here, i takes values between 1 and I, where I is

the number of different spectral templates. The volume variables vτ define the overall

amplitude factor, by which the whole template is multiplied. An overall sketch of the

model is given in Figure 3.1.

18

3.1.1. Hidden Markov Model

Hidden Markov Models have been widely studied in various types of applica-

tions such as audio processing, natural language processing, and bioinformatics. Like

in many computer music applications, HMMs have also been used in pitch tracking

applications (Orio and Sette, 2003; Raphael, 2002).

We define the probabilistic model as follows:

r0 ∼ p(r0)

rτ |rτ−1 ∼ p(rτ |rτ−1)

vτ ∼ G(vτ ; av, bv)

xν,τ |vτ , rτ ∼

I
∏

i=1

PO(xν,τ ; tν,ivτ)
[rτ=i]. (3.5)

Here [x] = 1 if x is true, [x] = 0 otherwise.

In some recent work on polyphonic pitch tracking, Poisson observation model was

used in the Bayesian non-negative matrix factorization models (NMF) (Cemgil, 2009).

Since our probabilistic models are similar to NMF models, we choose the Poisson

distribution as the observation model. We also choose Gamma prior on vτ to preserve

conjugacy and make use of the scaling property of Gamma distribution.

Moreover, we choose Markovian prior on the indicator variables, rτ which means

rτ depends only on rτ−1. We use three states to represent a note: one state for the

attack part, one for the sustain part, and one for the release part. We also use a single

state in order to represent silence. Figure 3.2 shows the graphical model of the HMM,

Figure 3.3 visualizes the different parts of a note, and Figure 3.4 shows the Markovian

structure in more detail.

In this probabilistic model we can integrate out analytically the volume vari-

ables, vτ . It is easy to check that once we do this, provided the templates tν,i are

19

F F

rτ−1 rτ

vτ−1 vτ

xν,τ−1 xν,τ

Figure 3.2. Graphical model of the HMM. The index ν takes values between 1 and F .

already known, the model reduces to a standard Hidden Markov Model (HMM) with

a Compound Poisson observation model.

3.1.2. Change Point Model

In addition to the HMM, in the change point model (CPM), the volume parameter

vτ has a specific structure which depends on vτ−1 (i.e. staying constant, monotonically

increasing or decreasing and etc.). But at certain unknown times, it jumps to a new

value independently from vτ−1. We call these times as “change points” and the occur-

rence of a change point is determined by the switch variable cτ . If cτ is on, in other

words if cτ is equal to 1, then a change point has occurred at time τ .

20

attack sustain release

amplitude

time

Figure 3.3. The structure of a note. The attack part of a note is usually a noise-like,

non-stationary signal. In the sustain part, the signal attains its harmonic structure

and the volume is pretty much constant. In the release part, the signal damps rapidly.

note0 atk note1sus rel

Figure 3.4. The state transition diagram of the indicator variable rτ . Here atk, sus,

and rel refers to the attack, sustain, and release parts of a note respectively. The first

black square can be either the silence or a note release state. Similarly the second

black square can be either a silence or a note attack state.

The formal definition of the generative model is given below:

v0 ∼ G(v0; a0, b0)

r0 ∼ p(r0)

cτ ∼ BE(cτ ;w)

rτ |cτ , rτ−1 ∼

p0(rτ |rτ−1), cτ = 0

p1(rτ |rτ−1), cτ = 1

vτ |cτ , rτ , vτ−1 ∼

δ(vτ − θ(rτ)vτ−1), cτ = 0

G(vτ ; av, bv), cτ = 1

xν,τ |vτ , rτ ∼
I
∏

i=1

PO(xν,τ ; tν,ivτ)
[rτ=i]. (3.6)

21

Here, δ(x) is the Kronecker delta function which is defined by δ(x) = 1 when x = 0,

and δ(x) = 0 elsewhere. The graphical representation of the probabilistic model is

given in Figure 3.5.

F F

cτ−1 cτ

rτ−1 rτ

vτ−1 vτ

xν,τ−1 xν,τ

Figure 3.5. Graphical model of the CPM. The index ν takes values between 1 and F .

The θ(rτ) parameter determines the specific structure of the volume variables.

Our selection of θ(rτ) is as follows:

θ(rτ) =

θ1, if rτ is attack,

θ2, if rτ is sustain,

θ3, if rτ is release.

(3.7)

θ(rτ) gives flexibility to the CPM since we can adjust it with respect to the instrument

whose sound would be processed (i.e. we can select θ(rτ) = 1 for woodwind instruments

by assuming the volume of a single note would stay approximately constant). Figure 3.6

visualizes example templates and synthetic data which are generated from the CPM.

22

log t
ν,i

10

20

30

40

50

60

0

10

20

r
τ

attack
sustain
release

0

5

10

v
τ

log x
ν,τ

10

20

30

40

50

60

Figure 3.6. Spectral templates of a tuba and synthetic data generated from the CPM.

The topmost right figure shows a realization of the indicator variables rτ and the

second topmost figure shows a realization of the volume variables vτ . Here we set

θ1:3 = {1.10, 0.99, 0.90}. With this parametrization, we force the volume variables to

increase during the attack parts, slowly damp at the sustain parts and rapidly damp

during the release parts of the notes. The θ parameters should be determined by

taking the audio structure into account (i.e. θ(rτ) should be different for higher

sustained sounds, percussive sounds, woodwinds, etc.).

23

4. INFERENCE

Inference is a fundamental issue in probabilistic modeling where we ask the

question “what can be the hidden variables as we have some observations?” (Cappé

et al., 2005). This chapter deals with the inference schemes of our two probabilistic

models. We present the methods by which we can compute the filtering, smoothing,

fixed-lag smoothing distributions; the Viterbi, and the fixed-lag Viterbi paths (see

Equations (3.1), (3.2), and (3.3)) in detail.

4.1. Inference on the Hidden Markov Model

As we mentioned in Subsection 3.1.1, we can integrate out analytically the volume

variables, vτ . Hence, given that the tν,i are already known, the model reduces to a

standard Hidden Markov Model (HMM) with a Compound Poisson observation model

as shown below (see Appendix A.1 for details):

p(x1:F,1:τ |rτ = i) =

∫

dvτ exp(

F
∑

ν=1

logPO(xν,τ ; vτ tν,i) + logG(vτ ; av, bv))

=

Γ(
F
∑

ν=1

xν,τ + a)

Γ(a)
F
∏

ν=1

Γ(xν,τ + 1)

ba
F
∏

ν=1

t
xν,τ

ν,i

(
F
∑

ν=1

tν,i + b)

F∑

ν=1
xν,τ+a

. (4.1)

Since we have a standard HMM from now on, the inference of the latent indi-

cator variables rτ given the noisy observations xν,τ becomes straight-forward. We can

compute the filtering distribution p(rτ |x1:F,τ) by first obtaining the joint distribution

p(rτ , x1:F,1:τ). Considering the conditional independence assumptions of the HMM, we

24

can obtain the following recursion:

p(rτ |x1:F,1:τ) ∝ p(rτ , x1:F,1:τ)

=
∑

rτ−1

p(rτ , rτ−1, x1:F,1:τ−1, x1:F,τ)

=
∑

rτ−1

p(x1:F,τ |rτ ,((((((((rτ−1, x1:F,1:τ−1)p(rτ |rτ−1,(((((x1:F,1:τ−1)p(rτ−1, x1:F,1:τ−1)

= p(x1:F,τ |rτ)
∑

rτ−1

p(rτ |rτ−1)p(rτ−1, x1:F,1:τ−1). (4.2)

This recursion yields to the well-known forward algorithm. We can define the forward

messages as follows:

ατ |τ−1(rτ) = p(rτ , x1:F,1:τ−1) (4.3)

ατ |τ (rτ) = p(rτ , x1:F,1:τ). (4.4)

By making use of these variables, we obtain the following recursions:

ατ |τ−1(rτ) =
∑

rτ−1

p(rτ |rτ−1)ατ−1|τ−1(rτ−1) (4.5)

ατ |τ(rτ) = p(x1:F,τ)ατ |τ−1(rτ). (4.6)

Here Equation (4.5) and Equation (4.6) are also known as the prediction step and the

update step respectively. Similar to the forward messages, the backward messages are

defined as follows:

βτ |τ+1(rτ) = p(x1:F,τ+1:T |rτ) (4.7)

βτ |τ (rτ) = p(x1:F,τ :T |rτ). (4.8)

25

We also define the backward recursions:

βτ |τ+1(rτ) =
∑

rτ+1

p(rτ+1|rτ)βτ+1|τ+1(rτ+1) (4.9)

βτ |τ (rτ) = p(x1:F,τ |rτ)βτ |τ+1(rτ). (4.10)

By making use of the contributions from the past and future, we obtain the smoothing

distribution p(rτ |x1:F,1:T):

p(rτ |x1:F,1:T) = ατ |τ−1(rτ)βτ |τ (rτ)

= ατ |τ (rτ)βτ |τ+1(rτ). (4.11)

The Viterbi path is also obtained by replacing the summations over rτ by max-

imization in the forward recursion. Hence, the most probable state sequence is com-

puted as:

r∗1:T = argmax
r1:T

p(r1:T |x1:F,1:T)

= argmax
rT

(x1:F,T |rT) argmax
rT−1

p(rT |rT−1) . . . argmax
r2

p(r3|r2)p(x1:F,2|r2)

argmax
r1

p(r2|r1)p(x1:F,1|r1)p(r1) (4.12)

which is equivalent to dynamic programming.

4.2. Inference on the Change Point Model

While making inference on the CPM, our task is finding the posterior probability

of the indicator variables, rτ and volume variables vτ . If the state space of vτ , Dv

was discrete, then the CPM would reduce to an ordinary HMM on Dr × Dv. How-

ever when Dv is continuous, which is our case, an exact forward backward algorithm

cannot be implemented in general. This is due to the fact that the prediction density

p(rτ , vτ |x1:F,τ) needs to be computed by integrating over vτ−1 and summing over rτ−1.

26

The summation over rτ−1 renders the prediction density a mixture model where the

number of mixture component grow exponentially with τ . In this section we will de-

scribe the implementation of exact forward backward algorithm for the CPM and the

pruning technique that we use for real-time applications.

The forward backward algorithm is a well known algorithm for computing the

marginals of form p(rτ , vτ |x1:F,τ). We define the following forward messages:

α0|0(r0, v0) = p(r0, v0) (4.13)

ατ |τ−1(cτ , rτ , vτ) = p(cτ , rτ , vτ , x1:F,1:τ−1) (4.14)

ατ |τ(cτ , rτ , vτ) = p(cτ , rτ , vτ , x1:F,1:τ) (4.15)

where τ ∈ {1, 2, ..., T}. These messages can be computed by the following recursion:

ατ |τ−1(cτ , rτ , vτ) =
∑

cτ−1

∑

rτ−1

∫

dvτ−1 p(cτ , rτ , vτ |rτ−1, vτ−1)

ατ−1|τ−1(cτ−1, rτ−1, vτ−1) (4.16)

ατ |τ (cτ , rτ , vτ) = p(x1:F,τ |cτ , rτ , vτ)ατ |τ−1(cτ , rτ , vτ)

= p(x1:F,τ |rτ , vτ)ατ |τ−1(cτ , rτ , vτ). (4.17)

We also define the backward messages and recursions similarly:

βT |T (cT , rT , vT) = p(x1:F,T |cT , rT , vT) (4.18)

βτ |τ+1(cτ , rτ , vτ) = p(x1:F,τ+1:T |cτ , rτ , vτ)

=
∑

cτ+1

∑

rτ+1

∫

dvτ+1 p(cτ+1, rτ+1, vτ+1|rτ , vτ)

βτ+1|τ+1(cτ+1, rτ+1, vτ+1) (4.19)

βτ |τ (cτ , rτ , vτ) = p(x1:F,τ :T |rτ , vτ)

= p(x1:F,τ |cτ , rτ , vτ)βτ |τ+1(cτ , rτ , vτ)

= p(x1:F,τ |rτ , vτ)βτ |τ+1(cτ , rτ , vτ) (4.20)

27

where τ ∈ {1, 2, ..., T − 1}. Moreover, the posterior marginals can simply be obtained

by multiplying the forward and backward messages:

p(cτ , rτ , vτ |x1:F,1:T) ∝ p(x1:F,1:T , cτ , rτ , vτ)

= p(x1:F,1:τ−1, cτ , rτ , vτ)p(x1:F,τ :T |cτ , rτ , vτ ,(((((x1:F,1:τ−1)

= ατ |τ−1(cτ , rτ , vτ)βτ |τ (cτ , rτ , vτ). (4.21)

Due to the fact that r is discrete and v is continuous random variables, in the

CPM, we have to store α and β messages as mixtures of Gamma distributions. In

order to achieve ease of implementation, we can represent the Gamma mixture

p(vτ |rτ = i, ·) =

M
∑

m=1

exp(wm)G(vτ ; am, bm), (4.22)

as {(a1, b1, w1, i), (a2, b2, w2, i), ..., (aM , bM , wM , i)}. This will be simply M × 4 array of

parameters.

4.2.1. Forward Pass

To start the forward recursion, we define

α0|0(r0, v0) = p(r0, v0)

= p(r0)p(v0)

=

I
∑

i

exp(li)G(v0; a0, b0) (4.23)

where, li = log p(r0 = i). As we mentioned earlier, we represent this message with the

array representation of the Gamma mixtures:

(ak0|0, b
k
0|0, c

k
0|0, d

k
0|0) = (a0, b0, lk, k) (4.24)

28

where k = 1, 2, 3, ..., I denotes the index of the components in the Gamma mixture.

In the forward procedure, we have I Gamma potentials at time τ = 0. Since we

are dealing with the CPM, at each time frame, we would have two possibilities: there

would be a change point or not. Hence, at τ = 1, we would have I newly initialized

Gamma potentials for the possibility of a change point and I Gamma potentials which

we copy from the previous time frame, τ = 0, in order to handle the case when a change

point does not occur. Similarly, at τ = 2, again we would have I newly initialized

Gamma potentials to handle a change point and 2I Gamma potentials which we copy

from τ = 1. Note that we would have (τ + 1)I Gamma potentials at time frame τ .

Figure 4.1 visualizes the procedure. Derivation of the prediction step at time τ is as

follows:

ατ |τ−1(cτ , rτ , vτ) =
∑

cτ−1

∑

rτ−1

∫

dvτ−1 p(cτ , rτ , vτ |rτ−1, vτ−1)ατ−1|τ−1(cτ−1, rτ−1, vτ−1)

=
∑

cτ−1

∑

rτ−1

∫

dvτ−1 p(vτ |cτ , rτ , vτ−1)p(rτ |cτ , rτ−1)p(cτ)

ατ−1|τ−1(cτ−1, rτ−1, vτ−1)

=

(

p(cτ = 1)
∑

cτ−1

∑

rτ−1

∫

dvτ−1

(

G(vτ ; av, bv)p1(rτ |rτ−1)
)

+p(cτ = 0)
∑

cτ−1

∑

rτ−1

∫

dvτ−1

(

δ(vτ − θ(rτ)vτ−1)p0(rτ |rτ−1)
)

)

ατ−1|τ−1(cτ−1, rτ−1, vτ−1). (4.25)

The first I potentials that handle the change point case become

(akτ |τ−1, b
k
τ |τ−1, c

k
τ |τ−1, d

k
τ |τ−1) = (av, bv, c

′, k) (4.26)

for k = 1, 2,..., I, where

c′ = log

(

I
∑

i=1

I
∑

j=1

[dkτ |τ−1 = i]a
(1)
ij

τI
∑

m=1

[dmτ−1|τ−1 = j] exp(cmτ−1|τ−1)

)

+ logw. (4.27)

29

τ = 0 τ = 1 τ = 2

e

e

e

e

e

e

e

e

e

e

Figure 4.1. Visualization of the forward and the Viterbi algorithm for the CPM. Here,

the number of templates, I is chosen to be 2. The small dots represent the Gamma

potentials. For the forward procedure, the big circles represent the sum operator that

sums the mixture coefficient of the Gamma potentials. For the Viterbi procedure, we

replace the sum operator with the max operator which selects the Gamma potential

that has the maximum mixture coefficient. The solid red arrows represent the case of

the change point, and the dashed blue arrows represent the opposite case.

30

Here a
(c)
ij = pc(rτ = i|rτ−1 = j).

We also have τI Gamma potentials which are inherited from the time frame τ−1:

(akτ |τ−1, b
k
τ |τ−1, c

k
τ |τ−1, d

k
τ |τ−1) = (ak−I

τ−1|τ−1,
bk−I
τ−1|τ−1

θ(dk−I
τ−1|τ−1)

, c′, dk−I
τ−1|τ−1) (4.28)

for k = I+1, I+2,..., (τ + 1)I, where

c′ = log

(

I
∑

i=1

I
∑

j=1

[dkτ |τ−1 = i]a
(0)
ij

τI
∑

m=1

[dmτ−1|τ−1 = j] exp(cmτ−1|τ−1)

)

+ log(1− w). (4.29)

Once we compute the predictive distributions, we have to update the Gamma

potentials as we acquire the observations:

ατ |τ (cτ , rτ = i, vτ) = p(x1:F,1:τ , rτ = i, vτ)

= ατ |τ−1(cτ , rτ = i, vτ)p(x1:F,τ |cτ , rτ = i, vτ)

=

(τ+1)I
∑

m=1

[dmτ |τ−1 = i] exp (cmτ |τ−1)G(vτ ; a
m
τ |τ−1, b

m
τ |τ−1)

F
∏

ν=1

I
∏

j=1

PO(xν,τ ; tν,jvτ)
[rτ=i]. (4.30)

Hence the update equation requires multiplication of Gamma and Poisson potentials.

A nice property is that the product is also a Gamma potential, as derived in the

Appendix A.3. The updated Gamma potentials are as follows:

(akτ |τ , b
k
τ |τ , c

k
τ |τ , d

k
τ |τ) = (a′, b′, c′, d′) (4.31)

31

for k = 1, 2,..., (τ + 1)I. Here

a′ = akτ |τ−1 +

F
∑

ν=1

xν,τ

b′ = bkτ |τ−1 +
I
∑

i=1

[dkτ |τ−1 = i]
F
∑

ν=1

tν,i

c′ = ckτ |τ−1 +

I
∑

i=1

[dkτ |τ−1 = i]g(akτ |τ−1, b
k
τ |τ−1, x, t)

d′ = dkτ |τ−1. (4.32)

4.2.2. Backward Pass

The backward pass is initialized as follows:

βT |T+1(cT , rT , vT) = 1 (4.33)

(âkT |T+1, b̂
k
T |T+1, ĉ

k
T |T+1, d̂

k
T |T+1) = (1, 0, 0, k), (4.34)

for k = 1, 2,..., I. Here the Gamma potential, (1, 0, 0, k) is the improper Gamma

distribution where

(a, b, c, k)× (1, 0, 0, k) = (a, b, c, k), (4.35)

for any a, b, and c.

32

Similar to the forward pass, we derive the backward recursion as follows:

βτ |τ+1(cτ , rτ , vτ) =
∑

cτ+1

∑

rτ+1

∫

dvτ+1 p(cτ+1, rτ+1, vτ+1|vτ , rτ)βτ+1|τ+1(cτ+1, rτ+1, vτ+1)

=
∑

cτ+1

∑

rτ+1

∫

dvτ+1 p(vτ+1|rτ+1, cτ+1, vτ)p(rτ+1|cτ+1, rτ)p(cτ+1)

βτ+1|τ+1(cτ+1, rτ+1, vτ+1)

=

(

p(cτ = 1)
∑

cτ+1

∑

rτ+1

∫

dvτ+1 (G(vτ+1; av, bv)p1(rτ+1|rτ))

+p(cτ = 0)
∑

cτ+1

∑

rτ+1

∫

dvτ+1

(

δ(vτ+1 − θ(rτ+1)vτ)p0(rτ+1|rτ)
)

)

βτ+1|τ+1(cτ+1, rτ+1, vτ+1). (4.36)

The first I potentials handle the change point case and the rest of them handle

the opposite case:

for k = 1, 2,..., I

(âkτ |τ+1, b̂
k
τ |τ+1, ĉ

k
τ |τ+1, d̂

k
τ |τ+1) =(1, 0, c′, k) (4.37)

for k = I+1, I+2,..., (T − τ + 1)I

(âkτ |τ+1, b̂
k
τ |τ+1, ĉ

k
τ |τ+1, d̂

k
τ |τ+1) =(âk−I

τ+1|τ+1, θ(rτ+1)b̂
k−I
τ+1|τ+1, c

′′, d̂k−I
τ+1|τ+1) (4.38)

where

c′ = log

(

I
∑

i=1

[d̂kτ |τ+1 = i]

I
∑

j=1

a
(1)
ji exp κ

(

G(vτ ; ν, B)× βτ+1|τ+1(cτ+1, rτ+1 = j, vτ+1)
)

)

+ logw (4.39)

c′′ = log

I
∑

i=1

[d̂kτ |τ+1 = i]

I
∑

j=1

a
(0)
ji [d̂mτ+1|τ+1 = j]

(T−τ)I
∑

m=1

exp ĉmτ+1|τ+1

)

+ log(1− w).

(4.40)

33

The κ(.) function returns the mixture coefficient of a Gamma potential:

κ(ecG(v; a, b)) = c, (4.41)

and the × operator implies the product of two Gamma potentials which is presented

in Appendix A.2 in more detail.

The backward recursions works very similar to the forward recursions, where we

have I potentials at time T . At time T −1, we would have 2I Gamma potentials where

the first I potentials handle the case of a change point and the remaning I potentials

handle the opposite case which is the same case in the forward pass. Note that, in the

backward pass we would have (T − τ +1)I Gamma potentials at time τ as opposed to

the forward pass.

The update step at time τ is also similar to the forward pass:

βτ |τ (cτ , rτ , vτ) = p(cτ , rτ , vτ , x1:F,τ :T)

= p(x1:F,τ |rτ , vτ)βτ |τ+1(cτ , rτ , vτ) (4.42)

βτ |τ (cτ , rτ = i, vτ) = βτ |τ+1(cτ , rτ = i, vτ)p(x1:F,τ |vτ , rτ = i)

=

(T−τ+1)I
∑

m=1

[d̂mτ |τ+1 = i] exp(ĉmτ |τ+1)G(vτ ; â
m
τ |τ+1, b̂

m
τ |τ+1)

F
∏

ν=1

I
∏

j=1

PO(xν,τ ; tν,jvτ)
[rτ=i]

=

(T−τ+1)I
∑

m=1

[d̂mτ |τ+1 = i] exp(ĉmτ |τ+1)G(vτ ; â
m
τ |τ+1, b̂

m
τ |τ+1)

F
∏

ν=1

PO(xν,τ ; tν,ivτ) (4.43)

Since we are dealing with improper Gamma potential in the backward pass, the

update step needs more attention in this case. The updated Gamma potentials are

computed as follows:

34

for k = 1, 2,..., I

(âkτ |τ , b̂
k
τ |τ , ĉ

k
τ |τ , d̂

k
τ |τ) = (a′, b′, c′, d′) (4.44)

for k = I+1, I+2,..., (T − τ + 1)I

(âkτ |τ , b̂
k
τ |τ , ĉ

k
τ |τ , d̂

k
τ |τ) = (a′′, b′′, c′′, d′′) (4.45)

where

a′ =

F
∑

ν=1

xν,τ

b′ =

I
∑

i=1

[dkτ |τ+1 = i]

F
∑

ν=1

tν,i

c′ = ĉkτ |τ+1 +

I
∑

i=1

[dkτ |τ+1 = i]ĝ(x1:F,τ , t1:F,i)

d′ = d̂kτ |τ+1. (4.46)

and

a′′ = âkτ |τ+1 +
F
∑

ν=1

xν,τ

b′′ = b̂kτ |τ+1 +

I
∑

i=1

[d̂kτ |τ+1 = i]

F
∑

ν=1

tν,i

c′′ = ĉkτ |τ+1 +
I
∑

i=1

[d̂kτ |τ+1 = i]g(âkτ |τ+1, b̂
k
τ |τ+1, x1:F,τ , t1:F,i)

d′′ = d̂kτ |τ+1. (4.47)

The details of the derivations are presented in Appendix A.3 and A.4.

35

4.2.3. Smoothing

Once we compute the forward and backward potentials, the smoothed posterior

can be obtained by computing the product of the potentials as follows:

p(cτ , rτ , vτ |x1:F,1:T) ∝ p(x1:F,1:T , cτ , rτ , vτ)

= p(x1:F,1:τ−1, cτ , rτ , vτ)p(x1:F,τ :T |��cτ , rτ , vτ ,(((((x1:F,1:τ−1)

= p(x1:F,1:τ , vτ , rτ)p(x1:F,τ+1:T |��cτ , rτ , vτ ,����x1:F,1:τ)

= ατ |τ−1(cτ , rτ , vτ)βτ |τ(cτ , rτ , vτ)

= ατ |τ (cτ , rτ , vτ)βτ |τ+1(cτ , rτ , vτ), (4.48)

p(cτ , rτ = i, vτ |x1:F,1:T) ∝ ατ |τ−1(cτ , rτ = i, vτ)βτ |τ (cτ , rτ = i, vτ)

= ατ |τ (cτ , rτ = i, vτ)βτ |τ+1(cτ , rτ = i, vτ). (4.49)

4.2.4. Marginal Viterbi Path

The marginal Viterbi path is defined as:

(c∗1:T , r
∗
1:T) = argmax

c1:T ,r1:T

∫

v1:T

p(x1:F,1:T , c1:T , r1:T , v1:T)

= argmax
c1:T ,r1:T

∫

v1:T

γ(c1:T , r1:T , v1:T), (4.50)

where γ(cτ , rτ , vτ) corresponds to the smoothed Gamma potentials at time τ . However,

as opposed to Equation (4.12), replacing the summations over rτ and cτ by maximiza-

tion can be problematic since maximization and integration do not commute. We sum

and integrate over the hidden variables vτ first. In other words we compute the mixture

coefficients of the Gamma potentials, and then select the maximum of them. We call

this path as “marginal”, since in order to achieve the exact Viterbi path, we should

have also replaced the integration over vτ by maximization in Equation (4.50). For-

tunately, for this model, we are able to compute the exact marginal distribution of rτ

36

and cτ , p(c1:T , r1:T |x1:F,1:T), and the exact marginal Viterbi path. This is not the case

for many probabilistic models (Cemgil et al., 2006).

For example, suppose we have six Gamma potentials:

γ(c, r, v) = {γ1
0 , γ

2
0 , γ

3
0 , γ

1
1 , γ

2
1 , γ

3
1} (4.51)

where γj
i = γ(c = i, r = j, v). Then we can compute the MAP (maximum a-posteriori)

configuration:

(c∗, r∗) = argmax
c,r

∫

v

γ(c, r, v)

= argmax
c,r

{k1
0, k

2
0, . . . , k

3
1}. (4.52)

Here kj
i are the normalization constants of the Gamma potentials, where kj

i = κ(γj
i)

(see Equation (4.41)). Figure 4.1 visualizes the procedure.

4.2.5. Approximations

One disadvantage of this model is that the need for the computational power

increases as τ increases and exact inference becomes impractical after a couple of steps.

In order to eliminate this problem we developed a pruning technique for the CPM as

an approximate inference scheme. In the standard pruning algorithms, at time τ , we

would sort the Gamma potentials with respect to their mixture coefficients ckτ |τ , keep

the N best potentials, and discard the rest of them. However, with this scheme, we

may unwillingly discard the first, immature potentials in the mixture since they have

been recently inserted to the mixture.

In this study we propose a different pruning scheme for the CPM. As opposed

to the standard pruning methods, we always keep the first Nkeep Gamma potentials

without taking into account their mixture coefficients, where 0 ≤ Nkeep ≪ N . Then we

apply the standard pruning algorithm to the rest of the potentials, i.e. we select the

37

Prediction

Keep

Prune

τ τ + 1

Update

Figure 4.2. Illustration of the pruning schema of the CPM. The circles represent the

Gamma potentials where the radius of a circle is proportional to the mixture

coefficient of the potential. In this example N = 6 and Nkeep = 4.

(N−Nkeep) best Gamma potentials. An illustration of the pruning schema is presented

in Figure 4.2.

38

5. TRAINING AND PARAMETER LEARNING

Since we have constructed our inference algorithms with the assumption of the

templates tν,i to be known, we have to learn the spectral templates at the beginning.

In this study we utilized the EM algorithm for this purpose. This algorithm iteratively

maximizes the log-likelihood.

Consider we have the likelihood p(y|θ) and we want to find the θ which maximizes

the likelihood. More formally, we can write this statement as:

argmax
θ

p(y|θ) = argmax
θ

log p(y|θ) = argmax
θ

L(θ), (5.1)

where L(θ) is the log-likelihood and can be written as:

L(θ) = log
∑

x

p(y, x|θ)
q(x)

q(x)

= log

〈

p(y, x|θ)

q(x)

〉

q(x)

, (5.2)

where q(x) is an instrumental distribution and 〈f(x)〉p(x) is the expectation of the

function f(x) with respect to p(x):

〈f(x)〉p(x) =

∫

p(x)f(x)dx. (5.3)

By using Jensen’s inequality we get

log

〈

p(y, x|θ)

q(x)

〉

q(x)

≥

〈

log
p(y, x|θ)

q(x)

〉

q(x)

= B[q]. (5.4)

Here B[q] is a lower bound on the log-likelihood and we want to find the q(x) which

maximizes this lower bound. By utilizing the constraint,
∑

x q(x) = 1 via Lagrange

39

multipliers, we obtain the following objective:

Λ =
∑

x

q(x) log p(x, y|θ)−
∑

x

q(x)q(x) + λ(1−
∑

x

q(x)). (5.5)

By maximizing the objective with respect to q(x) we get

∂Λ

∂q
= log p(y, x|θ)− (log q(x) + 1)− λ = 0 (5.6)

log q(x) = log p(y, x|θ)− 1− λ (5.7)

q(x) = p(y, x|θ) exp(−1 − λ) (5.8)

1 = p(y|θ) exp(−1− λ). (5.9)

By combining Equations (5.8) and (5.9), we can derive the optimum q(x):

q∗(x) =
p(x, y|θ)

p(y|θ)

= p(x|y, θ) (5.10)

which is the posterior distribution. We can rewrite the lower bound in Equation (5.4)

by using the result that is obtained from Equation (5.10):

B∗[q] = 〈log p(x, y|θ)〉p(x|y,θ) −
〈

log p(x|y, θold)
〉

p(x|y,θold)

= 〈log p(x, y|θ)〉p(x|y,θ) +H[q], (5.11)

where H[q] is the entropy term which can be ignored during maximization. Hence, for

our probabilistic models, the log-likelihood can be maximized iteratively as follows:

E-step :

q(c1:T , r1:T , v1:T)
(n) = p(c1:T , r1:T , v1:T |x1:F,1:T , t

(n−1)
1:F,1:I) (5.12)

M-step :

t
(n)
1:F,1:I = argmax

t1:F,1:I

〈

p(c1:T , r1:T , v1:T , x1:F,1:T |t
(n)
1:F,1:I)

〉

q(c1:T ,r1:T ,v1:T)(n)
. (5.13)

40

In the E-step, we compute the posterior distributions of cτ , rτ and vτ . These

quantities can be computed via the methods which we described in Section 3.1 and

3.2 for the HMM and the CPM respectively. In the M-step, which is a fixed point

equation, we want to find the tν,i that maximize the likelihood. The M-step for both

models is computed as follows: We first write the posterior

p(c1:T , r1:T , v1:T , x1:F,1:T |t
(n−1)
1:F,1:I) = p(x1:F,1:T |���c1:T , r1:T , v1:T , t

(n−1)
1:F,1:I)p(v1:T , r1:T |��

��t
(n−1)
1:F,1:I)

=

(

F
∏

ν=1

T
∏

τ=1

I
∏

i=1

PO(xν,τ ; tν,ivτ)
[rτ=i]

)

p(c1:T , r1:T , v1:T).

(5.14)

Then we define our objective by eliminating the terms that are not dependent on tν,i:

Q =
F
∑

ν=1

T
∑

τ=1

I
∑

i=1

[rτ = i](xν,τ log tν,ivτ − tν,ivτ) +(((((((((((
log p(c1:T , r1:T , v1:T)

=

F
∑

ν=1

T
∑

τ=1

I
∑

i=1

[rτ = i]xν,τ log tν,i +(((((((((
[rτ = i]xν,τ log vτ − tν,i[rτ = i]vτ

=
F
∑

ν=1

T
∑

τ=1

I
∑

i=1

[rτ = i]xν,τ log tν,i − tν,i[rτ = i]vτ . (5.15)

By maximizing the objective Q and substituting 〈[rτ = i]〉(n) and 〈[rτ = i]vτ 〉
(n), we

obtain the following equations:

∂Q

∂tν,i
=

T
∑

τ=1

〈[rτ = i]〉(n) xν,τ

tν,i
−

T
∑

τ=1

〈[rτ = i]vτ 〉
(n) (5.16)

t
(n)
ν,i =

T
∑

τ=1

〈[rτ = i]〉(n) xν,τ

T
∑

τ=1

〈[rτ = i]vτ 〉
(n)

. (5.17)

Intuitively, we can interpret this result as the weighted average of the normalized audio

spectra with respect to vτ .

41

6. EVALUATION AND RESULTS

In order to evaluate the performance of the probabilistic models on pitch tracking,

we have conducted several experiments. As mentioned earlier, in this study we focus

on the monophonic pitch tracking of low-pitched instruments.

In our experiments we used the electric bass guitar and tuba recordings of the

RWC Musical Instrument Sound Database. We first trained the templates offline in

MATLAB environment, and then we tested our models by utilizing the previously

learned templates in C++ environment.

At the training step, we ran the EM algorithm for each note where we used short

isolated recordings. On the whole, we use 28 recordings for bass guitar (from E2 to

G4) and 27 recordings for tuba (from F2 to G4). The HMM’s training phase lasts

approximately 30 seconds and the CPM’s lasts approximately 2 minutes.

At the testing step, we rendered monophonic MIDI files to audio by using the

samples from RWC recordings. The total duration of the test files are approximately

5 minutes. At the evaluation step, we compared our estimates with the ground truth

which is obtained from the MIDI file. In both our models we used 46 ms. long frames

at 44.1 kHz sampling rate. Figure 6.1 shows excerpts from the test files.

In our point of view, the main trade-off of these pitch tracking models is between

the latency and the accuracy. We can increase the accuracy by accumulating the data,

in other words increasing the latency. However after some point the pitch tracking

system would be useless due to the high latency. Hence we tried to find the optimum

latency and accuracy by adjusting the “lag” parameter of the fixed-lag viterbi path

which is defined in Equation (3.4).

As evaluation metrics, we used the recall rate, the precision rate, the speed factor

and the note onset latency. The recall rate, the precision rate and the speed factor is

42

Figure 6.1. Excerpts of the test files.

43

defined in Table 6.1 and we define the note onset latency as the time difference between

the pitch tracker’s estimate and the ground truth, without considering the label of the

estimate.

Table 6.1. Definition of the evaluation metrics. Note that the speed factor is a

cpu-dependent metric which would be lower in faster computers.

recall
num. of correct notes

num. of true notes

precision
num. of correct notes

num. of transcribed notes

speed factor
running time of the method

duration of the test file

6.1. Performance of the HMM

As we mentioned in Subsection 3.1.1, we used one single state for silence and

three states for each note. Figure 6.2 presents the transition matrix of rτ for 22 states

(silence and 7 notes). The indexing structure of the matrix is given in Table 6.2. The

overall performance of the HMM is shown in Figure 6.3.

Transition Matrix of the HMM

5 10 15 20

2

4

6

8

10

12

14

16

18

20

22

−6

−5

−4

−3

−2

−1

Figure 6.2. Logarithm of the transition matrix of the HMM.

44

Table 6.2. The indexing structure in the state transition matrix.

State index Equivalent

1 Silence

2 Note 1 - attack part

3 Note 1 - sustain part

4 Note 1 - release part

5 Note 2 - attack part

6 Note 2 - sustain part

7 Note 2 - release part

8 Note 3 - attack part
...

...

22 Note 7 - release part
...

...

0 50 100 150 200 250 300 350 400
0

50

100

Lag (ms)

P
re

ci
si

on
 (

%
)

0 50 100 150 200 250 300 350 400
0

50

100

Lag (ms)

R
ec

al
l (

%
)

0 50 100 150 200 250 300 350 400
40

50

60

Lag (ms)

La
te

nc
y

(m
s)

Figure 6.3. The overall performance of the HMM on low-pitched audio. The dashed

lines represent the offline processing results. The total latency of the system is the

sum of the lag and the latency at the note onsets.

45

6.2. Performance of the CPM

In the CPM, we have two different state transition matrices of rτ . The first

matrix becomes active in the case of a change point, and the second matrix becomes

active in the opposite case. Figure 6.4 visualizes the transition matrices that we used

in our tests. The indexing structure is given in Table 6.2. The overall performance of

the CPM is shown in Figure 6.5.

Transition Matrix in the change point case

5 10 15 20

2

4

6

8

10

12

14

16

18

20

22
−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

(a) Logarithm of the transition matrix of the CPM for the

change point case

Transition Matrix in the non−change point case

5 10 15 20

2

4

6

8

10

12

14

16

18

20

22
−9

−8

−7

−6

−5

−4

−3

−2

−1

0

(b) Logarithm of the transition matrix of the CPM for the non-

change point case

Figure 6.4. Logarithm of the transition matrices of the CPM.

46

0 50 100 150 200 250 300 350 400
90

95

100

Lag (ms)
P

re
ci

si
on

 (
%

)

0 50 100 150 200 250 300 350 400
0

50

100

Lag (ms)

R
ec

al
l (

%
)

0 50 100 150 200 250 300 350 400
0

50

100

Lag (ms)

La
te

nc
y

(m
s)

Figure 6.5. The overall performance of the CPM on low-pitched audio. The dashed

lines represent the offline processing results. The total latency of the system is the

sum of the lag and the latency at the note onsets.

6.3. Comparison with the YIN algorithm

We also compared the performance of our models with the well-known YIN al-

gorithm (de Cheveigné and Kawahara, 2002). Despite the fact that YIN is a general

purpose method, we compared our results with the YIN’s, since YIN is accepted as a

standard method for pitch tracking. We used the aubio implementation and tuned the

onset threshold parameter. The results are shown in Table 6.3.

Table 6.3. The comparison of our models with the YIN algorithm. The CPM

performs better than the others. Moreover, the HMM would also be advantageous

due to its cheaper computational needs.

Recall (%) Precision (%) Onset Latency (ms) Speed Factor

YIN 43.43 9.40 58.74 1.33

HMM 91.72 85.02 54.89 0.02

CPM 98.06 99.50 74.74 0.05

47

7. DISCUSSION, CONCLUSIONS, AND FUTURE WORK

In this study we presented and compared two probabilistic models for online

pitch tracking. The motivation was to develop an accurate monophonic pitch tracking

method which would be quite useful for the musicians who play low-pitched instru-

ments (like the bass guitar or the tuba) since the melodies that are played with these

instruments are mostly monophonic due to the nature of these instruments. Hence,

our main focus was on monophonic pitch tracking of low-pitched instruments and the

trade off between latency and accuracy of the proposed pitch tracking models.

Apart from the previous works that aimed to develop instrument-independent

pitch tracking systems, our approach is based on modeling of a specific musical instru-

ment’s spectral structure. Our models can be fine-tuned for any instrument with a

quick training procedure.

In our models, it is presumed that each note has a certain characteristic spectral

shape which we call the spectral template. The generative models were constructed in

such a way that each time slice of the audio spectra is generated from one of these

spectral templates multiplied by a volume factor. From this point of view, we treated

the pitch tracking problem as a template matching problem where the aim is to infer

which template is active and what is the volume as we observe the audio data.

In the HMM, we assumed that the pitch labels have a certain temporal structure

in such a way that the current pitch label depended on the previous pitch label. In

order to preserve the structure of the HMM, we had to let the volume variables to be

independent in time, which is not the natural case in terms of musical audio. However,

in this case, the inference scheme turned out to be quite simple, straightforward, and

hereby fast.

In addition to the temporal structure of the pitch labels that we introduced at the

HMM, in the CPM, we introduced a temporal structure also for the volume variables.

48

In this way, the CPM was able to model of the damping structure of an instrument. As

a trade off, the inference scheme of the CPM was much more complex than the HMM.

Besides, after some degree, exact inference became impractical. Hence, an approximate

inference scheme was developed for this model.

The main focus on this work was the trade off between latency and accuracy of

the pitch tracking system. We conducted several experiments on an implementation

which was developed in C++, in order to find the optimum accuracy and latency. We

evaluated the performance of our models by computing the most-likely paths that were

obtained via filtering or fixed-lag smoothing distributions. The evaluation was held on

monophonic bass guitar and tuba recordings with respect to four evaluation metrics.

We also compared the results with the YIN algorithm and obtained better results.

One limitation of the CPM is that it has the same damping coefficient (θ) for

all frequency components in the spectrum. This assumption is limiting since each

frequency component of a note evolves differently over time. As a natural next step of

our work is to construct probabilistic models that have frequency dependent damping

coefficients.

One advantage of probabilistic modeling is that it is possible to combine the

proposed models with different kinds of probabilistic models. This enables deeper music

analysis schemes. For instance, these models can be combined with tempo tracking

models for joint pitch-tempo tracking, to name a few: (Whiteley et al., 2006; Whiteley

et al., 2007). In such joint models, the melody information would also be used while

tracking the tempo and vice versa. This idea is not yet studied in the literature

extensively and may end up with interesting results.

Despite testing our models on monophonic data, the models are also extensible

to more complicated scenarios such as polyphony. This can be done by using factorial

models (Cemgil, 2006) or using hierarchical NMF models where in this case rτ and

vτ would be vectors instead of scalars. This kind of extensions require more com-

49

plex inference schemes, but fortunately there exists powerful state-of-the-art inference

methods.

On the other hand, this template matching framework can also be used for various

types of applications since we do not make any application specific assumptions. One

other next step of this work will be testing this framework on real-time detection of

acoustic events based on the work (Jylhä and Erkut, 2008). Thanks to the flexibility of

the models, for acoustic event detection, we only need to replace the spectral templates

of the notes with the spectral templates of acoustic events.

50

APPENDIX A: OPERATIONS ON GAMMA

POTENTIALS

A.1. Derivation of the Compound Poisson Observation Model

In the HMM, we can analytically integrate out the volume variables. This lets us

to have the Compound Poisson observation model which only depends on the indicator

variables, rτ . The derivation is as follows:

p(x1:F,1:τ |rτ) =

∫

dvτ p(x1:F,1:τ , vτ |rτ)

=

∫

dvτ p(x1:F,1:τ |vτ , rτ)p(vτ |��rτ)

=

∫

dvτ

F
∏

ν=1

I
∏

i=1

PO(xν,τ ; vτ tν,i)
[rτ=i]G(vτ ; a, b)

=

∫

dvτ exp

(

F
∑

ν=1

I
∑

i=1

[rτ = i] logPO(xν,τ ; vτ tν,i) + logG(vτ ; a, b)

)

(A.1)

p(x1:F,1:τ |rτ = i) =

∫

dvτ exp

(

F
∑

ν=1

logPO(xν,τ ; vτ tν,i) + logG(vτ ; a, b)

)

=

∫

dvτ exp

(

(F
∑

ν=1

xν,τ log vτ tν,i − vτ tν,i − log Γ(xν,τ + 1)

)

+

(

(a− 1) log vτ − bvτ − log Γ(a) + a log(b)

)

)

=

∫

dvτ exp

(

(

F
∑

ν=1

xν,τ + a− 1) log vτ − (

F
∑

ν=1

tν,i + b)vτ

− log Γ(
F
∑

ν=1

xν,τ + a) + (
F
∑

ν=1

xν,τ + a) log(
F
∑

ν=1

tν,i + b)

+ log Γ(
F
∑

ν=1

xν,τ + a)− (
F
∑

ν=1

xν,τ + a) log(
F
∑

ν=1

tν,i + b)

−

F
∑

ν=1

log Γ(xν,τ + 1) +

F
∑

ν=1

xν,τ log tν,i − log Γ(a) + a log(b)

)

51

= exp

(

log Γ(
F
∑

ν=1

xν,τ + a)− (
F
∑

ν=1

xν,τ + a) log(
F
∑

ν=1

tν,i + b)

−

F
∑

ν=1

log Γ(xν,τ + 1) +

F
∑

ν=1

xν,τ log tν,i − log Γ(a) + a log(b)

)

(((((((((((((((((((∫

dvτ G(vτ ;

F
∑

ν=1

xν,τ + a,

F
∑

ν=1

tν,i + b)

=

Γ(
F
∑

ν=1

xν,τ + a)

Γ(a)
F
∏

ν=1

Γ(xν,τ + 1)

ba
F
∏

ν=1

t
xν,τ

ν,i

(
F
∑

ν=1

tν,i + b)

F∑

ν=1
xν,τ+a

(A.2)

A.2. Products of two Gamma potentials

While making inference on the CPM, we need to compute the product of Gamma

potentials in the backward procedure. A nice property is that the product is also a

Gamma potential which is derived as follows:

f1(x) =ec1G(x; a1, b1)

f2(x) =ec2G(x; a2, b2) (A.3)

log f1(x)f2(x) =c1 + (a1 − 1) log x− b1x− log Γ(a1) + a1 log(b1) + c2

+ (a2 − 1) log x− b2x− log Γ(a2) + a2 log(b2)

=(a1 + a2 − 1− 1) log x− (b1 + b2)x+ c1 + c2 − log Γ(a1)

− log Γ(a2)

= + a1 log(b1) + a2 log(b2) logG(x; a1 + a2 − 1, b1 + b2) + c1 + c2

+ log Γ(a1 + a2 − 1)− (a1 + a2 − 1) log(b1 + b2)− log Γ(a1)

− log Γ(a2) + a1 log(b1) + a2 log(b2)

52

= logG(x; a1 + a2 − 1, b1 + b2) + c1 + c2 + log Γ(a1 + a2 − 1)

− log Γ(a1)− log Γ(a2) + log(b1 + b2) + a1 log(b1/(b1 + b2))

+ a2 log(b2/(b1 + b2))

= log
(

ec
′

G(x; a′, b′)
)

(A.4)

where

a′ =a1 + a2 − 1

b′ =b1 + b2

c′ =c1 + c2 + log Γ(a1 + a2 − 1)− log Γ(a1)− log Γ(a2) + log(b1 + b2)

+ a1 log(b1/(b1 + b2)) + a2 log(b2/(b1 + b2)). (A.5)

A.3. Update Step of a Single Gamma Potential

While making inference on the CPM, we need to update the Gamma potentials

in the forward and backward procedures as we observe the audio data. The update

step of a single Gamma potential is derived as follows:

= log

(

exp(c)G(vτ ; a, b)

F
∏

ν=1

PO(xν,τ ; tν,ivτ)

)

=c+ logG(vτ ; a, b) +
F
∑

ν=1

logPO(xν,τ ; tν,ivτ)

=c+ (a− 1) log vτ − bvτ − log Γ(a) + a log(b)

+

F
∑

ν=1

(xν,τ log tν,ivτ − tν,ivτ − log Γ(xν,τ + 1))

=(a+Xτ − 1) log vτ − (b+ Ti)vτ + c− log Γ(a) + a log(b) +
F
∑

ν=1

xν,τ log tν,i

−

F
∑

ν=1

log Γ(xν,τ + 1)

53

=(a +Xτ − 1) log vτ − (b+ Ti)vτ − log Γ(a+Xτ) + (a+Xτ) log(b+ Ti)

+ c+ g(a, b, x, t)

=c′ + log G(vτ ; a
′, b′), (A.6)

where

Xτ =
F
∑

ν=1

xν,τ

Ti =

F
∑

ν=1

tν,i

a′ =a+Xτ

b′ =b+ Ti

c′ =c+ g(a, b, x, t) (A.7)

and

g(.) = log Γ(a+Xτ)− (a +Xτ) log(b+ Ti)− log Γ(a) + a log(b)

+
F
∑

ν=1

xν,τ log tν,i −
F
∑

ν=1

log Γ(xν,τ + 1). (A.8)

A.4. Update Step of An Improper Gamma Potential

While making inference on the CPM, we need to update improper Gamma po-

tentials in the backward procedure as we observe the audio data. The update step of

a single improper Gamma potential is derived as follows:

= log

(

exp(c)������
G(vτ ; 1, 0)

F
∏

ν=1

PO(xν,τ ; tν,ivτ)

)

=c+
F
∑

ν=1

logPO(xν,τ ; tν,ivτ)

54

=c+
F
∑

ν=1

xν,τ log tν,ivτ − tν,ivτ − log Γ(xν,τ + 1)

=c+

F
∑

ν=1

xν,τ log tν,i + xν,τ log vτ − tν,ivτ − log Γ(xν,τ + 1)

=(
F
∑

ν=1

xν,τ − 1) log vτ − (
F
∑

ν=1

tν,i)vτ + c+
F
∑

ν=1

xν,τ log tν,i − log Γ(xν,τ + 1)

=

(

(

F
∑

ν=1

xν,τ − 1) log vτ − (

F
∑

ν=1

tν,i)vτ − log Γ(

F
∑

ν=1

xν,τ) + (

F
∑

ν=1

xν,τ) log(

F
∑

ν=1

tν,i)

)

+

(

c+ log Γ(

F
∑

ν=1

xν,τ)− (

F
∑

ν=1

xν,τ) log(

F
∑

ν=1

tν,i) +

F
∑

ν=1

xν,τ log tν,i − log Γ(xν,τ + 1)

)

=c+ ĝ(x1:F,τ , t1:F,i) + logG(vτ ; (
F
∑

ν=1

xν,τ), (
F
∑

ν=1

tν,i))

=c′ + logG(vτ ; a
′, b′) (A.9)

where

a′ =

F
∑

ν=1

xν,τ

b′ =
F
∑

ν=1

tν,i

c′ =c + ĝ(x1:F,τ , t1:F,i) (A.10)

and

ĝ(.) = log Γ(
F
∑

ν=1

xν,τ)− (
F
∑

ν=1

xν,τ) log(
F
∑

ν=1

tν,i) +
F
∑

ν=1

xν,τ log tν,i − log Γ(xν,τ + 1).

55

REFERENCES

Alpaydin, E., 2004, Introduction to Machine Learning (Adaptive Computation and

Machine Learning), The MIT Press.

Barber, D. and A. T. Cemgil, 2010, “Graphical models for time-series”, IEEE Signal

Processing Magazine Special Issue on Graphical Models in Signal Processing (to be

published).

Bertin, N., C. Févotte, and R. Badeau, 2009, “A tempering approach for Itakura-

Saito non-negative matrix factorization. With application to music transcription”,

ICASSP’09.

Cappé, O., E. Moulines, and T. Ryden, 2005, Inference in Hidden Markov Models

(Springer Series in Statistics), Springer-Verlag New York, Inc., Secaucus, NJ, USA.

Cemgil, A. T., 2004, Bayesian Music Transcription, Ph.D. thesis, Radboud University

of Nijmegen.

Cemgil, A. T., 2006, “Sequential inference for Factorial Changepoint Models”, Nonlin-

ear Statistical Signal Processing Workshop, IEEE, Cambridge, UK.

Cemgil, A. T., 2009, “Bayesian Inference in Non-negative Matrix Factorisation Mod-

els”, Computational Intelligence and Neuroscience, , No. Article ID 785152.

Cemgil, A. T., H. J. Kappen, and D. Barber, 2006, “A generative model for music

transcription”, IEEE Transactions on Audio, Speech, and Language Processing,

Vol. 14, No. 2, pp. 679–694.

Christensen, M. G. and A. Jakobsson, 2009, Multi-Pitch Estimation, Morgan & Clay-

pool Publishers.

Cont, A., 2006, “Realtime multiple pitch observation using sparse non-negative con-

56

straints”, in International Conference on Music Information Retrieval.

Dannenberg, R. B., 1993, “A brief survey of music representation issues, techniques,

and systems”, Computer Music Journal, Vol. 17, pp. 20 – 30.

de Cheveigné, A. and H. Kawahara, 2002, “YIN, a fundamental frequency estimator

for speech and music”, J. Acoust. Soc. Am., Vol. 111, pp. 1917–1930.

Excell, D., A. T. Cemgil, and W. J. Fitzgerald, 2007, “Generative Model for Human

Motion Recognition”, Proc. 5th International Symposium on Image and Signal

Processing and Analysis ISPA 2007, pp. 423–428.

Godsill, S., A. Cemgil, C. Fevotte, and P. Wolfe, 2007, “Bayesian computational meth-

ods for sparse audio and music processing”, 15th European Signal Processing Con-

ference.

Harvey, A. C., S. J. Koopman, and N. Shephard (eds.), 2004, State Space and Unob-

served Component Models: Theory and Applications. Proceedings of a Conference

in Honour of James Durbin, Cambridge University Press, Cambridge.

Jordan, M. I., 2004, “Graphical models”, Statist. Sci., Vol. 19, p. 140155.

Jylhä, A. and C. Erkut, 2008, “Inferring the hand configuration from hand clapping

sounds”, 11th Intl. Conf. Digital Audio Effects (DAFx-08).

Kashino, K., K. Nakadai, T. Kinoshita, and H. Tanaka, 1998, “Application of Bayesian

Probability Network to Music Scene Analysis”, .

Klapuri, A., 2008, “Multipitch Analysis of Polyphonic Music and Speech Signals Using

an Auditory Model”, IEEE Transactions on Audio, Speech & Language Processing,

Vol. 16, No. 2, pp. 255–266.

Klapuri, A. and M. Davy (eds.), 2006, Signal Processing Methods for Music Transcrip-

tion, Springer, New York.

57

Orio, N. and M. S. Sette, 2003, “An HMM-based pitch tracker for audio queries”,

ISMIR.

Parsons, S., 1998, “An introduction to Bayesian networks by Finn V. Jensen, UCL

Press, 1996, 29.95, pp 178, ISBN 1-85728-332-5.”, Knowl. Eng. Rev., Vol. 13,

No. 2, pp. 201–208.

Raphael, C., 2002, “Automatic Transcription of Piano Music”, ISMIR.

Roads, C., 1996, The Computer Music Tutorial, MIT Press, Cambridge, MA, USA.

Vincent, E., N. Bertin, and R. Badeau, 2008, “Harmonic and inharmonic Nonnegative

Matrix Factorization for Polyphonic Pitch transcription”, ICASSP.

Virtanen, T., A. T. Cemgil, and S. Godsill, 2008, “Bayesian extensions to non-negative

matrix factorisation for audio signal modelling”, Proc. IEEE International Con-

ference on Acoustics, Speech and Signal Processing ICASSP 2008, pp. 1825–1828.

Wainwright, M. J. and M. I. Jordan, 2008, Graphical Models, Exponential Families,

and Variational Inference, Now Publishers Inc., Hanover, MA, USA.

West, M. and J. Harrison, 1997, Bayesian forecasting and dynamic models (2nd ed.),

Springer-Verlag New York, Inc., New York, NY, USA.

Whiteley, N., A. T. Cemgil, and S. Godsill, 2007, “Sequential Inference of Rhythmic

Structure in Musical Audio”, Proc. IEEE International Conference on Acoustics,

Speech and Signal Processing ICASSP 2007, Vol. 4, pp. IV–1321–IV–1324.

Whiteley, N., A. T. Cemgil, and S. J. Godsill, 2006, “Bayesian Modelling of Temporal

Structure in Musical Audio”, Proceedings of International Conference on Music

Information Retrieval.

