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ABSTRACT

TRUE RANDOM NUMBER GENERATION VIA

SAMPLING FROM BAND-LIMITED GAUSSIAN

PROCESSES

A true random number generator topology based on regular sampling of an

“irregular” process is considered, which is obtained via thresholding a continuous-

time Gaussian (normal) process, of which spectrum is assumed to be flat between

two known frequencies and zero everywhere else. Per-sample joint entropy of the

resulting bit sequence is introduced as the main figure of merit. Employing an

approach based on statistical signal processing and information theory, novel an-

alytical results on the optimum choice of the sampling period is presented that

ensure maximal randomness of the resulting bit sequence together with asymptotic

analysis and numerical experiments. In addition, new results that fully character-

ize the autocorrelation behavior (equivalently spectral properties) of the resulting

bit sequence is presented and a related metric, termed “spectral correlation” is

introduced to quantify the “uncorrelatedness” of the binary bit sequence output.
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ÖZET

SINIRLI BANT GENİŞLİĞİNDEKİ GAUSS RASTGELE

SÜREÇLERDEN ÖRNEKLEYEREK GERÇEK

RASTGELE SAYI ÜRETİMİ

Düzensiz bir rastgele süreçten düzenli örnekleyerek rastgele sayı üreten

bir sistem topolojisi incelenmektedir. Bu sistem geniş anlamda durağan Gauss

dağılımlı ve iki bilinen frekans arasında düz haricinde sıfır değerli spektrumu olan

bir rastgele süreci kaynak olarak kullanır. Örnek başına bileşik entropi asli başarım

göstergesi olarak kullanılmaktadır. Örnekleme periyodunun en uygun seçimiyle

ilgili azami rastgelelik sağlayan, istatistiksel işaret işleme ve bilgi kuramına dayalı

yeni analitik sonuçlar asimptotik ve numerik deneylerle beraber sunulmaktadır.

Ek olarak, elde edilen bit dizisinin özilinti davranışı (eşdeğer olarak spektral güç

dağılımına bağlı özellikleri) üzerine yeni sonuçlar sunulmakta ve yeni ilgili bir

metrik olan “spektrumsal ilinti” ikili bit dizisi çıktısının “ilintisizliğini” ölçmek

amacıyla kullanılmaktadır.
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1. Introduction

Nowadays, because of the increasing demand on electronic official & financial

transactions and digital signature applications, the need for information secrecy

has increased. In this manner, random number generators (RNGs), which have

been used primarily for military cryptographic applications in the past, got ex-

panding usage for a typical digital communication equipment.

Almost all cryptographic systems require unpredictable values, therefore

RNG is a fundamental component for cryptographic mechanisms. Generation of

public/private key-pairs for asymmetric algorithms and keys for symmetric and

hybrid crypto systems require random numbers. The one-time pad, challenges,

nonces, padding bytes and blinding values are created using “true random number

generator”s (TRNGs) [1]. “Pseudo-random number generator”s (PRNGs) gener-

ate bits using a deterministic algorithm of which state is determined by a seed.

In order to appear to be generated by a TRNG, the pseudo-random sequences

must be seeded from a shorter truly random sequence [2]. Random numbers are

also used during the authentication procedure between two crypto equipments

and initial value randomization of a crypto module that realizes an algorithm.

In the ideal case, a TRNG design should be carried out in such a way that,

even if the design itself is publicly known, the output bit sequence should possess

certain unpredictability properties. Ideally, for “perfect secrecy”, a bit sequence

should be “truly random”, i.e., the output bits should be independent identically

distributed Bernoulli-1/2 random variables. In practice, certain figures of merit

that measure secrecy or true-randomness are utilized.

In most practical applications, to fulfill the requirements for secrecy of one-

time pad, key generation and any other cryptographic applications, the TRNG

must satisfy the following properties: The output bit stream of the TRNG must
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pass all the statistical tests of randomness; the next random bit must be unpre-

dictable; the same output bit stream of the TRNG should be irreproducible [3].

The best way to generate truly-random numbers is to exploit the natural ran-

domness of the real world by finding a random event that happens regularly [3].

Examples of such a usable event include elapsed time during radioactive decay,

thermal and shot noise, oscillator jitter and the amount of charge of a semicon-

ductor capacitor [2].

There are a number integrated circuit (IC) RNG designs reported in the

literature. In general, the techniques that exploit natural randomness to gen-

erate random numbers can be classified into (at least) four different categories:

amplification of a noise source followed by thresholding [4, 5], jittered oscillator

sampling [1, 6, 7], discrete-time chaotic maps [8–10] and continuous-time chaotic

oscillators [11,12].

Among all the RNGs, the most widely-used type utilizes the method of

amplification of a noise source followed by thresholding, which effectively can be

viewed as regular sampling of random processes followed by 1-bit quantization.

A theoretical analysis of this approach under some certain assumptions consti-

tutes the main topic of this thesis. Publications on this topic (RNGs via regular

sampling of random processes) in the literature mostly involve practical device

implementations and experimental results; while, notable exceptions that involve

analytical investigation of the underlying setup include [13–16, 18], which are re-

viewed next.

In [13], Murry considers an underlying Gaussian noise source, of which spec-

trum is flat between two frequencies and zero everywhere else. Then, he analyzes a

circuit topology, where random bits are produced from the noise via one-bit quan-

tization. He introduces a rule of thumb for the quantification of the maximum

sampling rate using the average number of zero-axis crossings of the underlying

noise waveform. In particular, he provides an estimate of the maximum sampling
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rate as 1.155 times the noise-band lowpass cutoff frequency.

In [14], Sokal uses the same model for the underlying noise waveform and

the same circuit topology as Murry, but concentrates on the correlation function

of the clipped waveform (output of the quantizer). Hence, Sokal analyzes the

resulting continuous-time binary-valued stochastic process and presents results

that show how to choose the optimum passband cutoff frequencies for a specified

sampling rate and a maximum allowed bit-to-bit correlation.

In [15], Boyes also uses the bandlimited flat-spectrum Gaussian noise model,

like [13] and [14]. Boyes’ circuit topology, however, can be viewed as an extended

“digitized” version of the one considered in [13,14]: the underlying noise source is

first passed through a one-bit quantizer, thereby producing the clipped waveform,

subsequently followed by the application of a modulo-2 divider (such as a flip-flop)

so as to remove the errors in the mean value. Similar to [14], Boyes treats the

modulo-2 divider output as a continuous-time binary-valued stochastic process

and analyzes its autocorrelation function in order to quantify the performance

while assuming the transition times between the binary states are independent.

In [16], Morgan considers a similar, but more general setup than the above.

He assumes that the underlying noise source is Gaussian, of which spectrum can

be arbitrary; a bit sequence is generated via sampling the noise at regular time

intervals, subsequently followed by applying the sign (·) function. Morgan focuses

on the computational aspects of the per sample joint-entropy of the resulting

bit sequence; he presents closed-form expressions for sequences of length-2 and

length-3; for longer sequences, he obtains second-order results, which are used to

obtain numerical results for various covariance matrices of interest.

More recently, in [18], Bucci et. al. assume that the underlying noise source

is Gaussian white and they present results that quantify the autocorrelation func-

tion of the resulting bit sequence. They incorporate the frequency response of the



4

noise amplifier and the high pass filter due to the utilized offset zeroing system

in the analysis. They obtain their analytical results via relating the autocorrela-

tion functions of discrete-time wide sense stationary sequences before and after

thresholding.

In this thesis, similar to [13–15], it is assumed that the underlying noise

waveform is a continuous-time wide sense stationary Gaussian (normal) pro-

cess, of which spectrum is flat between two known frequencies; the terminology

“Bandlimited Flat-Spectrum Gaussian (normal) (BFSG) noise” is used to indi-

cate such a process 1 . In a nutshell, new results are presented for true random

number generators, that are based on sampling of BFSG noise sources using prob-

abilistic and information theoretic measures together with analytical results that

act as guidelines on the optimum choice of the sampling period that will yield the

highest possible entropy of the generated bit sequence. Hence, analogous to the

aforementioned prior art, a circuit topology is considered, which produces a binary

bit sequence via sampling (at regular time intervals) the output of a comparator,

of which input is an amplified version of an underlying naturally-occurring BFSG

noise. Per-sample entropy is utilized as the main figure of merit and accordingly

is used to investigate the randomness properties of the resulting binary sequence;

furthermore it shall be argued that the approach in [13–15, 17] and [18] which

uses the correlation between successive generated bits as the criteria for random-

ness (the lower the magnitude of the correlation the higher the randomness of the

generated output sequence) is not a strong indicator of randomness because, it

does not necessarily imply the independence of the bit sequence when it is zero

whereas per sample joint entropy does when it achieves the independence bound

on it. As long as the generated bits are dependent their conditional entropy is

less than their marginal entropy which makes them predictable to some extent as

stated in Fano’s Inequality [19]. The reader is referred to texts such as [19] for

fundamental information theoretic results. Main contributions of this thesis can

1In general, although the BFSG model may not perfectly fit a naturally-occurring noise
process, it is possible to apply analog filters so as to flatten or pre-whiten the original noise
spectrum, thereby justifying the utilized model.
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be outlined as follows:

• It is shown that the aforementioned original circuit topology is equivalent to

regular sampling of the input noise source, subsequently followed by thresh-

olding (cf. Sec. 2.2) and a novel figure of merit the “spectral correlation”

that yields a numerical output for quantifying how well the power spectral

densities of two discrete time random processes are related (cf. Sec. 2.3) is

introduced.

• Assuming the BFSG model on the input noise source, analytical conditions

on the sampling period are quantified, which guarantee that the produced

binary bit sequence achieve maximal randomness; numerical and asymptot-

ical results on the loss in entropy when the sampling period is suboptimal is

also presented (cf. Sec. 3); a similar procedure is carried out in case of low

pass flat-spectrum Gaussian noise sources (cf. Sec. 4).

• Based on the BFSG model on the input noise source, the autocovariance se-

quence of the resulting binary bit sequence is quantified as well as numerical

results for the spectral correlation between the power spectral density of an

arbitrary zero mean, wide sense stationary, white Gaussian process and the

power spectral density of the regularly sampled input noise source which is

obtained by using the equivalent setup that is introduced in Sec. 2.2 (cf.

Sec. 5).

In Sec. 2, the original problem is stated, an equivalent framework for anal-

ysis is developed, the utilized performance criteria to quantify randomness and

mention the low pass approximation on the BFSG model is introduced. The fun-

damental analytical results (including asymptotical approximation) for the BFSG

case (resp. low pass approximation case), together with supporting numerical

results, are presented in Sec. 3 (resp. Sec. 4). Next, analytical and numerical re-

sults to quantify the autocovariance sequence and spectral behavior are provided

in Sec. 5, followed by conclusions and future work in Sec. 6.
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2. Problem Statement

In this section, an overview of the problems that are going to be investi-

gated is provided and the fundamental assumptions and figures of merit that will

be used in the rest of the thesis are presented. Sec. 2.1 entails the overall block

diagram and the governing equations of the conventional circuitry that is used in

the literature such as [4,5] which is depicted along with the explicit statement of

the functional form of the “BFSG noise” power spectrum and the corresponding

autocorrelation function. The following Sec. 2.2, introduces a novel mathemati-

cally equivalent approach to the conventional setup in order to make the analysis

of the problem more tractable. In order to quantify the performance of the RNG,

the per sample joint entropy and achievable bounds on it are defined along with

the necessary and sufficient conditions in Sec. 2.3; furthermore, a metric namely

the “spectral correlation” is introduced that provides a quanta of the relation

between the power spectral densities of two arbitrary real wide sense stationary

processes {Xn}, {Yn}. The significance of this metric will be justified in Section

5. The assumption that the entire noise spectrum is white up to the high cut-

off frequency B is made in Sec. 2.4 and thus the lowpass approximation to the

general case is presented, where its use is justified.

2.1. Original Problem Setup

The original circuit topology being considered in this paper is depicted in

Fig. 2.1. The underlying naturally-occurring process is denoted by S (t), which

is then amplified, thereby forming N (t). It is assumed that the amplifier is ideal

and acts as “multiplication with a scaling factor K” (where K > 1) uniformly at

all range of frequencies of interest; i.e., it is assumed that N (t) = KS (t) for all

t. The amplified signal N (t) is passed through a comparator, which acts based

on a threshold τ , forming C (t).
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Figure 2.1. The original circuit topology investigated in this thesis.

C (t) =

V volts, if N(t) > τ

0 volts, if else

(2.1)

where V and 0 volts represent the values of digital 1 and 0, respectively.

Then, the signal C (t) is applied as input to a D-type flip flop, of which clock

operates with period Ts, producing the digital binary output sequence {Zn}, where

for all n, Zn ∈ {0, 1}. Hence,

Zn =


1, if C (t)

∣∣∣
t=nTs

= V volts,

0, if else

(2.2)

It is assumed that the waveform S (t) is a continuous-time zero-mean Gaus-

sian (normal) noise process, such that

SS (f) = Fc {RS (u)}

= Fc {E [S (t)S (t− u)]}
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Figure 2.2. The power spectral density SN (f) of N (t).

=


N0

2K2 if A < |f | < B,

0 if else

(2.3)

thereby justifying the usage of the term “BFSG noise” to characterize the

behavior of S (t). Now, since N (t) = KS (t) for all t per assumption, this implies

SN (f) =


N0

2
, if A < |f | < B,

0, if else

(2.4)

meaning that N (t) is BFSG noise as well; the power spectral density SN (f)

is depicted in Fig. 2.2. Also, note that the corresponding autocovariance function

is given by

RN (u) =

∫ ∞
−∞

SN (f) ej2πfu df

=

∫ −A
−B

N0

2
ej2πfu df +

∫ B

A

N0

2
ej2πfu df

= N0Bsinc (2Bu)−N0Asinc (2Au) . (2.5)
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Figure 2.3. The scheme that is equivalent to the original problem setup.

Lastly, two new variables η
4
= 2BTs and κ

4
= A/B are defined that will be

used in the rest of the thesis.

2.2. Equivalent Problem Setup

Next, it is shown that the original problem setup introduced in Sec. 2.1 and

shown in Fig. 2.1 is equivalent to the scheme shown in Fig. 2.3, based on which

analysis and results presented throughout the rest of the thesis are developed.

In order to see the equivalence of Fig. 2.1 and Fig. 2.3, note that, using (2.1)

in (2.2),

Zn =


1, if N (t)

∣∣∣
t=nTs

> τ ,

0, if else

(2.6)

which means that it can rewritten

Zn = 1{N(nTs)>τ} for all n, (2.7)
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based on the schematic depicted in Fig. 2.1. Now, examining Fig. 2.3,

(
Wn

4
=N (nTs) for all n

)
and

(
Zn = 1{Wn>τ}

)
which amounts to (2.7), thereby confirming the equivalence of the two schematics.

2.3. Performance Criteria

Throughout the analysis, an information theoretic criterion is mainly used

to quantify the randomness captured in the output sequence {Zn}. Given the

sequence
{
ZN

1

}
, its per-sample joint entropy is defined HN

4
= 1

N
H
({
ZN

1

})
where

N is the length of the sequence. Next note that the following series of inequalities

hold

HN =
1

N
H
({
ZN

1

})
≤ 1

N

N∑
n=1

H (Zn) ≤ 1

N

N∑
n=1

log
∣∣ {0, 1} ∣∣ = 1,

where the first inequality is satisfied with equality if and only if {Zn} are inde-

pendent, the second inequality is satisfied with equality if and only if all {Zn} are

Bernoulli-1/2. Thus, the sequence {Zn} reach the upper bound of 1 in the sense

of per-sample entropy if and only if they are i.i.d. Bernoulli-1/2, which is pre-

cisely what is desired for a truly random sequence. Hence, the goal in designing

a true random number generator topology would be to achieve this upper bound;

since the gap between the upper bound of 1 and per-sample entropy represents

the deficiency of the system, particular concentration is put on this quantity and

the analysis is based on that.

In addition, in Sec. 5, spectral properties of the resulting sequence is also

concentrated on. In particular, a novel figure of merit is introduced, which is

termed as “spectral correlation”. For two given real, zero mean and wide sense

stationary discrete time random processes {Xn, Yn} spectral correlation is the

normalized inner product of the power spectral densities SX(ω), SY (ω) defined as
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θ{Xn},{Yn}
4
=

∫ π
−π SX(ω)SY (ω)dω√∫ π

−π(SX(ω))2dω
∫ π
−π(SY (ω))2dω

(2.8)

and it indicates how much the two power spectral densities SX(ω), SY (ω)

are related.

Remark 1. From the Cauchy-Schwarz Inequality and non-negativity of SX(ω), SY (ω),

0 ≤ θ{Xn},{Yn} ≤ 1.

2.4. Low Pass Approximation

In [23] Van der Ziel points to the fact that flicker noise (alternatively “1/f

noise”) in semiconductors is prevalent in extremely low frequencies and has a non-

flat power spectral density. Thus, the noise source that is processed to generate

the output sequence may be viewed as one with two statistically independent

components, the flicker noise that spans the lowermost frequencies and the white

noise that spans the entire frequency range up to the high cutoff frequency.

The dominant one however is the white noise which makes up for the most

of the noise power found by integrating the power spectral density of the noise

source in its support set. Consequently, the lowpass approximation is presented

where it is regarded that the noise process has a flat power spectral density that

is flat up to the high cutoff frequency B :

SN(f) =


N0

2
, if |f | < B

0, if else

(2.9)



12

and is shown in Fig. 2.4.

Figure 2.4. The Power Spectral Density of SN(f) of N(t) for the Lowpass

Approximation
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3. Main Results for the General Bandlimited

Flat-Spectrum Gaussian Case

Following the equivalent setup proposed in Sec. 2.2 {Wn} are obtained from

the zero mean wide sense stationary continuous time Gaussian process N(t) via

regular sampling. Thus, the random vector W
4
= [W1, . . . ,WN ]T has a multi-

variate Gaussian distribution with mean vector µ = 0, covariance matrix Σ such

that Σij
4
= N0Bsinc((i − j)2BTs) − N0Asinc((i − j)2ATS) and every {Wn} are

identically distributed Gaussian random variables with distribution

fWn(wn)
4
=

1√
2π(N0(B − A))

exp

(
− w2

n

2(N0(B − A))

)

The output sequence is formed via thresholding {Wn} that is given in (2.1)

and (2.2). In this sense, {Zn} are a function of {Wn} and identically distributed

as a result. Marginal probability masses of {Zn} are calculated by the following

Pr[Zn = 1] = Pr[Wn > τ ]

=

∫ ∞
τ

1√
2π(N0(B − A))

× exp

(
− w2

n

2(N0(B − A))

)
dwn

4
= q(τ) (3.1)

Taking this fact into account the following proposition is made
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Proposition 1. The output sequence comprises of i.i.d. Bernoulli random vari-

ables if and only if {Wn} are pairwise uncorrelated which is equivalent to their

independence.

Proof. See Appendix I.

Corollary 1. Under Proposition 1, the per sample joint entropy of {Zn} becomes

HN =
1

N
H({ZN

1 })

=
1

N

N∑
n=1

H(Zn)

=
1

N

N∑
n=1

−q(τ) log q(τ)− (1− q(τ)) log(1− q(τ))

= Hb (q (τ)) (3.2)

(3.2) follows from the independence bound on per sample joint entropy as

discussed in Sec. 2.3.

Remark 2. From the concavity of Hb (q (τ)) it follows that if {Zn} are indepen-

dent, having q(τ) = 1
2

maximizes per sample joint entropy as discussed in Sec.

2.3.

Proposition 2. The sequence {Wn} are i.i.d. Gaussian if and only if either one

of the two following conditions hold

Ts is such that 2BTs, 2ATs ∈ Z (3.3)
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Ts is such that (B − A)Ts ∈ Z (3.4)

Proof. See Appendix II.

Remark 3. (3.3) amounts to having (2BTs, 2ATs) = (η, κη) ∈ {Z+ × Z+} and

(3.4) amounts to having for k ∈ Z+, η = 2k
1−κ .

3.1. Asymptotic Analysis for the General Case

Having provided the necessary and sufficient conditions for generating i.i.d.

Bernoulli-1/2 random variables in Propositions 1 and 2, a proposition is presented

regarding the asymptotic behavior of the per sample joint entropy as η tends to

infinity.

Proposition 3. As η tends to infinity

lim
η→∞

HN = Hb(q(τ)) (3.5)

Proof. See Appendix III.

3.2. Numerical Experiments for the General Case

In order to demonstrate the results of the Propositions 1 and 2, numerical

results are shown for the per sample joint entropy of the output sequence versus

η for the general case where the power spectral density of N(t) is as defined in

Sec. 2.1 and q(τ) = 1
2
. Two values are used for κ, these are κ = 0.1 in Fig. 3.1

and κ = 0.5 in Fig. 3.2 respectively. Also included in the figures are the “Murry’s

Barrier”, a vertical dashed line that corresponds to η = 2B
1.155B

= 1.7316 which is



16

Figure 3.1. Per Sample Joint Entropy of the Output Sequence versus η for

κ = 0.1

Figure 3.2. Per Sample Joint Entropy of the Output Sequence versus η for

κ = 0.5

discussed in [13] that choosing the sampling period less than 1
1.155B

will make a

zero to one or vice versa transition in the output sequence an unlikely event.

Per Remark 3 it needs to be the case that when κ = 0.1, η ∈ {10, 20, 30, . . .}∪

{20
9
, 40

9
, 60

9
, . . .} and κ = 0.5, η ∈ {2, 4, 6, . . .} ∪ {4, 8, 12, . . .} in order for Propo-

sition 2 to hold. In Figs. 3.1 and 3.2 it can be observed that these values of η

make per sample joint entropy equal to unity with a certain magnitude of error

introduced by numeric computation. Also observe in Figs. 3.1 and 3.2 that for a

smaller κ value, the loss in per sample joint entropy is less and as η increases per

sample joint entropy converges towards unity, supporting Proposition 3.
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4. Main Results for the Low Pass Approximation Case

Following the results of the Secs. 3.1 and 3.2 the results for the lowpass

approximation as a special case are provided. As A tends to zero, (3.3) becomes

Ts is such that 2BTs ∈ Z+ (4.1)

which implies η ∈ Z+ on the other hand (3.4) becomes

Ts is such that BTs ∈ Z+ (4.2)

so that η
2
∈ Z+ thus, η = 2k, k ∈ Z+. Consequently, for η ∈ {Z+∪{2k, k ∈

Z+}} = Z+ hence {Wn} are i.i.d. that follows from (4.1) and (4.2).

4.1. Asymptotic Analysis for the Low Pass Case

The specialization of the results of Sec. 3.1 to the lowpass approximation

case are trivial. Please see Appendix III for the proof.

4.2. Numerical Experiments for the Low Pass Case

Shown in Fig. 4.1 is the plot of the per sample joint entropy for the lowpass

approximation where q(τ) = 1
2
. As discussed in Sec. 4 for η ∈ Z+, HN is equal

to unity which is in agreement with results of Sec. 4 and as η becomes larger HN
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Figure 4.1. Per Sample Joint Entropy of the Output Sequence versus η for

Lowpass Approximation

converges towards unity which is in agreement with the asymptotic results of Sec.

4.1.

An experiment was carried out to investigate the asymptotic behavior of

per sample joint entropy. This involves fitting the third order function as a lower

bound function flower(η) shown as the bounding line from below in Figs. 3.1, 3.2

and 4.1 as follows

flower(η)
4
=

3∑
i=0

αiη
−i (4.3)

and the following table of regression coefficients is obtained.

κ a0 a1 a2 a3

0 1.004 −0.0036 −0.0207 −0.0092

0.1 1.0054 −0.0558 0.0150 −0.1247

0.5 0.9864 0.2750 −1.7177 0.9770

Table 4.1. Regression coefficients for the lower bound fitted using Eq. 4.3.
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Hence it has been shown experimentally that roughly the per sample joint

entropy converges towards unity in the form HN ≈ 1−K/η3.
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5. Analysis of Autocorrelation Function and Spectral

Behavior

The autocovariance sequence of the generated bits is expressed as

CZ(k)
4
= E[(Zn − E[Zn])(Zn−k − E[Zn−k])]

=
∑

i,j∈{0,1}

ij Pr(Zn = i, Zn−k = j)

− Pr(Zn = 1) Pr(Zn−k = 1)

= Pr(Wn > τ,Wn−k > τ)− q(τ)2 (5.1)

In order to have uncorrelated generated bits i.e., CZ(k) = 0, ∀k 6= 0 it

must hold that Pr(Wn > τ,Wn−k > τ) = q(τ)2. This requires the integration

of the bivariate normal distribution in the rectangular region D ⊂ R2, defined

as wn, wn−k : ∀wn, wn−k ∈ D; τ < Wn < ∞, τ < Wn−k < ∞} which is not

analytically possible. As a result numerical results are presented for CZ(k) versus

ρk, the correlation coefficient of Wn,Wn−k defined as |ρk
4
= RW (k)/RW (0)| ≤ 1,

calculated for various |τ | values in Fig. 5.1.

Pictorially when referred to Fig. 5.1 it is seen that for large values of |τ |

the bits are pairwise uncorrelated. If CZ(k) had been adopted as our figure of

merit of randomness, this would imply that |τ | would have to be chosen as large

as possible for generating uncorelated bits and this way q(τ) would be bounded

away from 1
2
, implying HN be bounded away from 1. This follows from the bound

on per sample joint entropy as introduced in Sec. 2.3 and the concavity of the

binary entropy function as discussed in [19]. As a consequence, relying on CZ(k)

for generating truly random numbers in general is misleading in the sense that
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Figure 5.1. Autocovariance Sequence of Zn versus ρk

having its magnitude zero is not necessarily equivalent to having HN = 1 thus,

attention must be confined to the case where q(τ) = 1
2

throughout the rest of this

section so that the upper bound on per sample joint entropy is achievable with

equality. In that case a closed form expression for (5.1) exists in [20, pp. 307]

−π
2
< CZ(k) =

1

2π
sin−1

(
RW (k)

RW (0)

)
≤ π

2
(5.2)

Also presented in Fig. 5.2 are plots of the covariance of successive bits

for various κ values as given by (5.2). In the figure, for certain values of κ, the

covariance of successive bits is zero while in general it exploits oscillatory behavior

in κ and for increasing values of η, covariance almost vanishes.

The change in the covariance of the successive bits resulting from the change

in η is a lot more dramatic than the change in κ and the output sequence is asymp-

totically uncorrelated ∀k 6= 0 as η tends to infinity which is derived analytically
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lim
η→∞

CZ(k) = lim
η→∞

1

2π
sin−1

(
RW (k)

RW (0)

)
= lim

η→∞

N0B

2π(N0B −N0A)
sin−1 (sinc(ηk)− κsinc (κηk))

= 0 (5.3)

(5.3) is in agreement with the previous asymptotic results that have been

stated in Sec. 3.1 where it has been claimed that as η →∞ the generated bits are

independent which implies their uncorrelatedness however, of course the converse

need not be true in general.

For the result given in (5.2) the following remarks are made :

Remark 4. For η < ∞ and q(τ) = 1
2
, CZ(k) = 0, ∀k 6= 0 whose necessary and

sufficient conditions are stated in Proposition 2.

Remark 5. For q(τ) = 1
2

the condition CZ(k) = 0,∀k 6= 0 is equivalent to having
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RW (k) = 0, ∀k 6= 0 in which case, the random variables {WN
1 } are uncorrelated

thus {ZN
1 } are i.i.d. Bernoulli-1/2 random variables as stated in Proposition 1.

By Remarks 4 and 5 it is seen that in order to have independently generated

bits, the condition RW (k) = 0, ∀k 6= 0 needs to hold. In order to assert how close

RW (k) is to satisfying the independence of {WN
1 } spectral correlation between

{Wn} and {W̃n} is used where, {W̃n} is a zero mean, wide sense stationary, white

Gaussian process such that SW̃ (ω)
4
= RW (0). Firstly the two cases : η → 0,

η →∞ are evaluated and for intermediate values numerical results are presented.

Note that the power spectrum of Wn as η tends to zero is

lim
η→0

SW (ω) = lim
η→0
F{RW (k)}

= F{RW (0)}

= RW (0)δC(ω) (5.4)

where δC(ω) is the continuous Dirac Delta Function [22, pp. 34] which is

defined for ∆ > 0 as the limit δC(x)
4
= lim∆→0 δ∆(x) where :

δ∆(x) =


1
∆
, if x < ∆,

0, if else

(5.5)

Furthermore, δC(x) has the following properties
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∫ ∞
−∞

δC(x)dx = lim
∆→0

∫ ∞
−∞

δ∆(x)dx

= lim
∆→0

∆

∆
(5.6)

= 1 (5.7)

and

∫ ∞
−∞

δC(x)2dx = lim
∆→0

∫ ∞
−∞

δ∆(x)2dx

= lim
∆→0

∆

∆2

=∞ (5.8)

Thus, the spectral correlation between {W̃n} and {Wn} as η tends to zero

becomes

lim
η→0

θ{W̃n},{Wn} = lim
η→0

∫ π
−π RW (0)SW (ω)dω√∫ π

−π RW (0)2dω
∫ π
−π SW (ω)2dω

=

∫ π
−π RW (0)2δC(ω)dω√∫ π

−π RW (0)2dω
∫ π
−π RW (0)2δC(ω)2dω

=
RW (0)2

RW (0)2
√

2π
∫ π
−π δC(ω)2dω

= 0 (5.9)
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Next, as η tends to infinity, SW (ω) is

lim
η→∞

SW (ω) = lim
η→∞
F{RW (k)}

= F{RW (0)δ(k)}

= RW (0) (5.10)

so the spectral correlation as η tends to infinity becomes

lim
η→∞

θ{W̃n},{Wn} = lim
η→∞

∫ π
−π RW (0)SW (ω)dω√∫ π

−π RW (0)2dω
∫ π
−π SW (ω)2dω

=

∫ π
−π RW (0)2dω√∫ π

−π RW (0)2dω
∫ π
−π RW (0)2dω

= 1 (5.11)

Numerical results for θ{W̃n},{Wn} are presented in Fig. 5.3 for showing the

behavior of θ{W̃n},{Wn} when 0 < η <∞.

Proposition 4. θ{W̃n},{Wn} = 1 if and only if {WN
1 } are uncorrelated.

Proof. See Appendix IV.

Thus, spectral correlation achieves its lower bound as η tends to zero and

the upper bound as η tends to infinity while for intermediate values, it behaves

as given in Fig. 5.3. As a figure of merit θ{W̃n},{Wn} cannot be used in lieu of per

sample joint entropy since it does not provide a measure of uncertainty present
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in the output sequence. However, it may be used as an objective function in the

sense that maximizing it is equivalent to achieving the uncorrelatedness of {Wn}

per Proposition 4 which in turn implies the independence of {Zn} per Proposition

1.
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Figure 5.3. Per Sample Joint Entropy plotted together with Spectral Correlation

between {W̃n} and {Wn} versus η for κ = 0.1

The distance between two power spectral densities may also be measured by

the Itakura-Saito distance [24, pp. 51]

DIS(SX(ω), SY (ω))
4
=

1

2π

∫ π

−π

[
SX(ω)

SY (ω)
− log

SX(ω)

SY (ω)
− 1

]
dω (5.12)

and the KL distance [19, pp. 19]

DKL(SX(ω), SY (ω))
4
=

∫ π

−π
SX(ω) log

SX(ω)

SY (ω)
dω (5.13)
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Figure 5.4. Per Sample Joint Entropy plotted together with Spectral Correlation

between {W̃n} and {Wn} versus η for κ = 0.5

Neither of the distances given in (5.12) and (5.13) accept interchangable pa-

rameters. However, this is not a problem with spectral correlation since spectral

correlation is a legal metric and as such it satisfies the triangle inequality, symmet-

ric with respect to a change in its parameters and also satisfies Cauchy-Schwarz

inequality while on the other hand it does not use an interchange of parameters

and the sole purpose of using it is to measure the whiteness of the given power

spectral density. Next consider the bounds on (5.12) and (5.13) for vanishing and

asymptotic η while letting SX(ω) = SW (ω) and SY (ω) = RW (0)

lim
η→0

DIS(SW (ω), RW (0)) = lim
η→0

1

2π

∫ π

−π
log

e
1+

SW (ω)

RW (0)

SW (ω)
RW (0)

dω

=
1

2π

∫ π

−π
log

e1+δC(ω)

δC(ω)
dω

= lim
∆→0

1

2π

∫ ∆

0

log
e1+ 1

∆

1
∆

dω

= lim
∆→0

∆

2π
log

e1+ 1
∆

1
∆
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= ∞ (5.14)

lim
η→∞

DIS(SW (ω), RW (0)) = lim
η→∞

1

2π

∫ π

−π

[
SW (ω)

RW (0)
− log

SW (ω)

RW (0)
− 1

]
=

1

2π

∫ π

−π

[
RW (0)

RW (0)
− log

RW (0)

RW (0)
− 1

]
= 0 (5.15)

lim
η→0

DKL(SW (ω), RW (0)) = lim
η→0

∫ π

−π
SX(ω) log

SX(ω)

SY (ω)
dω

=

∫ π

−π
RW (0)δC(ω) log

RW (0)δC(ω)

RW (0)
dω

= lim
∆→0

∫ ∆

0

RW (0)
1

∆
log

1

∆
dω

= ∞ (5.16)

lim
η→∞

DKL(SW (ω), RW (0)) = lim
η→0

∫ π

−π
SX(ω) log

SX(ω)

SY (ω)
dω

=

∫ π

−π
RW (0) log

RW (0)

RW (0)
dω

= 0 (5.17)

The motivation for using a distance which is non-negative is to measure the

difference between two power spectral densities and a zero distance implies the

equivalence of the two densities. For non-zero values, the greater the magnitude,

the farther separated the two power spectral densities are. A desirable property
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for any distance used is that it is bounded from below and above yet neither the

Itakura-Saito Distance nor the KL Distance is bounded from above in the worst

case of no sampling which corresponds to the vanishing behavior of η and diverge

indefinitely. This situation will cause problems when used for actual computa-

tion furthermore, spectral correlation may be computed using the equivalent form

that follows from Parseval’s Relation by summing over a large number of auto-

correlation sequence samples however, the same method cannot be used for either

the Itakura-Saito or the KL distance. Nevertheless, DFT may be used to perform

this task which windows the signal before computation with a rectangular window

causing the power spectral density to be smoothed by a sinc frequency kernel. For

such computations, the DFT length needs to be set as large as possible to cope

with the shortcomings of the algorithm.
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Figure 5.5. Spectral Correlation between {Wn} and {W̃n} versus η for

κ = 0, 0.1, 0.5

As distances, Itakura-Saito and KL exhibit a reciprocal behavior as com-

pared to spectral correlation since the distances yield larger output for misaligned

power spectral densities. As shown in Figs. 5.6 and 5.7 the Itakura-Saito Distance

emphasizes the difference more than the KL distance i.e., for the worse case of

κ = 0.5 the Itakura-Saito Distance is more than ten times grater in amplitude

than the KL Distance.
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Figure 5.6. Itakura-Saito Distance between {Wn} and {W̃n} versus η for

κ = 0, 0.1, 0.5
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6. Conclusions and Future Work

Given a continuous time BFSG, the necessary and sufficient conditions for

generating i.i.d. Bernoulli-1/2 random variables via uniformly sampling from this

process have been investigated while analytical and numerical results for the per

sample joint entropy have also been provided. Generating independent random

variables is essential for security applications because the conditional entropy of

i.i.d. random variables is equal to their marginal entropies i.e., there is no decrease

in uncertainty given the realization of any of the random variables. Throughout

the analysis, an equivalent setup in place of the original one was used in order

to make the derivations simpler. Spectral correlation was introduced as a novel

figure of merit along with the analytical and numerical results for various noise

bandwidth-sampling period product values and was shown to be equivalent to

generating i.i.d. Bernoulli-1/2 random variables when it achieves its upper bound.

Rate of convergence of per sample joint entropy was characterized by using

a third order inverse polynomial and roughly it has been demonstrated that for

values of η ≈ 10 such that Ts ≈ 5/B the generated bit sequence achieves the

upper bound on per sample joint entropy and as such this choice of sampling

period may be used as a rule of thumb with such systems. Itakura-Saito Distance

and KL Distances were used to measure the difference between the power spectral

densities of {Wn} and {W̃n} which is the white wide sense stationary process

closest to {Wn} in mean square sense. These distances yield insight into the

behavior of power spectral density of {Wn} in the sense that a zero distance

implies the alignment of the two densities which on the other hand implies the

independence of {Wn} and hence {Zn}. However, spectral correlation can be used

to measure the correlation between the two power spectral densities and yields a

more intuitive result in the sense that shapewise it is similar to per sample joint

entropy and is bounded between zero and unity where those values are attained

at the same η values for both per sample joint entropy and spectral correlation.
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Additionally, it is much simpler to compute the spectral correlation which follows

from Parseval’s Relation and for all these reasons it should be the merit of choice

for assessing the randomness of the bits generated from wide sense stationary

Gaussian processes.

For future work, the analysis will be extended to arbitrary finite vectors

with a given or possibly unknown covariance structure and to processes possess-

ing non-flat spectral structures or ones with flat power spectral densities and

smooth transition regions. Furthermore, bounds on per sample joint entropy will

be developed to be able to further characterize the system complexity and the

achievable performance margins.
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APPENDIX A: Proofs of Propositions

I. Proof of Proposition 1

For the zero mean jointly Gaussian random vector W = [W1, . . . ,WN ]T with

covariance matrix Σ and marginal variances σ2
1, . . . , σ

2
N pairwise uncorrelatedness

of elements implies Σ = diag[σ2
1, . . . , σ

2
N ]. In this case, the multivariate Gaussian

distribution may be expressed as in the following form :

fW(w) =
1√

(2π)N
∏N

n=1 σ
2
n

exp

(
−

N∑
n=1

w2
n

2σ2
n

)

=
N∏
n=1

1√
2πσ2

n

exp

(
− w2

n

2σ2
n

)

=
N∏
n=1

fWn(wn) (I.1)

From (I.1) it follows that W1, . . . ,WN are independent [20, pp. 184]. As

a consequence, pairwise uncorrelatedness of jointly Gaussian random variables is

equivalent to their independence. Since every Zn is a function of every Wn in the

form Zn = 1Wn>τ they are also independent [20, pp. 184].

II. Proof of Proposition 2

First, note that, for all n, E [Wn] = 0 since E [N (t)] = 0 for all t. Also,

E [W 2
n ] are invariant with respect to n since {Wn} is a discrete time wide sense

stationary process because N (t) is a continuous time wide sense stationary pro-

cess. So, it is seen that {Wn} are i.i.d. if and only if RW (k) = 0 for all k 6= 0.

Next,
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RW (k) = E [WnWn−k]

= E [N (nTs)N ((n− k)Ts)]

= RN (u)
∣∣
u=kTs

= N0Bsinc (2BkTs)−N0Asinc (2AkTs) (II.2)

where (II.2) follows from (2.5). Observe that, for k 6= 0,

RW (k) =
N0B

π2BkTs
sin (2BkπTs)−

N0A

π2AkTs
sin (2AkπTs)

=
N0

2kπTs
[sin (2BkπTs)− sin (2AkπTs)]

Hence, it is seen that RW (k) = 0 for all k 6= 0 if and only if h (k) = 0 for

all k, where

h (k)
4
= sin (2BkπTs)− sin (2AkπTs) .

Next, define

pB
4
= b2BTsc,rB

4
= 2BTs − pB,

pA
4
= b2ATsc,rA

4
= 2ATs − pA.
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Note that, this implies, pA, pB ∈ Z and rA, rB ∈ [0, 1). Then,

hk = sin (πkpB + πkrB)− sin (πkpA + πkrA)

= cos (πkpB) sin (πkrB)− cos (πkpA) sin (πkrA)

= (−1)kpB sin (πkrB)− (−1)kpA sin (πkrA) (II.3)

In order to investigate the condition of hk = 0 for all k, the three following

cases are analyzed step by step:

Case 1: Either (rA = 0) or (rB = 0) :

If (rA = 0), using (II.3),

[∀k, k = 0] ⇔
[
∀k, (−1)kpB sin (πkrB) = 0

]
⇔ [∀k, sin (πkrB) = 0]

⇔ [rB = 0] (II.4)

Similarly, if (rB = 0),

[∀k, k = 0] ⇔
[
∀k, (−1)kpA sin (πkrA) = 0

]
⇔ [∀k, sin (πkrA) = 0]

⇔ [rA = 0] (II.5)
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So, merging (II.4) and (II.5), if rA = rB = 0, then for all k, hK = 0; this is

equivalent to (3.3).

Case 2: (0 < rA, rB < 1) and (pA − pB is even) :

First, note that pA − pB is even if and only if pA, pB are both odd or both

even. Then, (−1)kpB = (−1)kpA for all k. Hence, in this case,

[∀k, hk = 0] ⇔ [∀k, qk = 0]

⇔ [∀w ∈ [−π, π] , Q (w) = 0]

where qk
4
= sin (πkrB)− sin (πkrA), Q (w)

4
= F {q}. Now, observe that

Q (w) =
π

j

∞∑
l=−∞

[δ (w − πrB − 2πl)− δ (w + πrB − 2πl)

− δ (w − πrA − 2πl) + δ (w + πrA − 2πl)]

Then, for all w ∈ [−π, π],

Q (w) =
π

j
[δ (w − πrB)− δ (w − πrA)]

− π

j
[δ (w + πrB)− δ (w + πrA)]
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since 0 < rA, rB < 1. Thus, Q (w) = 0 for all w ∈ [−π, π] if and only

if rA = rB. Now, the conditions of (pA − pB even) and (rA = rB) jointly to-

gether are equivalent to (2BTs − 2ATs is even). In turn, this is equivalent to

(∃n ∈ Z, s.t. 2 (B − A)Ts = 2n), which is equivalent to (3.4).

Case 3: (0 < rA, rB < 1) and (pA − pB is odd) :

First, note that pA − pB is odd if either (pA even, pB odd) or (pA odd, pB even).

Then, for all k ∈ Z, (−1)kpB = (−1)k(pA+1). Hence, in this case,

[∀k, hk = 0] ⇔ [∀k, sk = 0]

⇔ [∀w ∈ [−π, π] , S (w) = 0]

where sk
4
= (−1)k sin (πkrB) − sin (πkrA) and S (w)

4
= F {s}. Now, for all

k,

sk = (−1)k sin (πkrB)− sin (πkrA)

= sin (πkrB + πk)− sin (πkrA)

= sin (π (rB + 1) k)− sin (πrAk)

which implies

S (w) =
π

j

∞∑
l=−∞

[δ (w − π (rB + 1)− 2πl)
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− δ (w + π (rB + 1)− 2πl)

− δ (w − πrA − 2πl)

+ δ (w + πrA − 2πl)]

Then, for all w ∈ [−π, π],

S (w) =
π

j
[δ (w + π (1− rB))− δ (w − π (1− rB))

− δ (w − πrA) + δ (w + πrA)] (II.6)

which follows from noting 0 < πrA < π and π < π (rB + 1) < 2π Since

π (1− rB) and πrA are both in the range of [0, 2π], (II.6) implies that in this case

S (w) = 0 can never hold for any w.

Consequently, because Cases 1, 2, and 3 cover all the possibilities, the claim

follows.

III. Proof of Proposition 3

As η tends to infinity the entries of the covariance matrix Σ introduced in

Sec. 3 has the following covariance matrix :

For i 6= j :

lim
η→∞

Σij = lim
η→∞

N0B(sinc((i− j)2BTs)− κsinc((i− j)2ATs))

= lim
η→∞

N0B(sinc((i− j)η)− κsinc((i− j)κη))
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= lim
η→∞

N0B

(
sin(π(i− j)η)

π(i− j)η
− κsin(π(i− j)κη)

π(i− j)κη

)
= 0 (III.7)

For i = j :

lim
η→∞

Σij = lim
η→∞

N0Bsinc((i− i′)2BTs)|i′=i

− N0A sinc((i− i′)2ATs)|i′=i

= N0B −N0A, ∀i = j (III.8)

From (III.7) and (III.8) it follows that :

lim
η→∞

Σ = diag[N0B −N0A, . . . , N0B −N0A] (III.9)

As η tends to infinity, the distribution of the zero mean, jointly Gaussian

random vector W
4
= [W1, . . . ,WN ] with covariance matrix Σ given by (III.9) is :

lim
η→∞

fW(w) = lim
η→∞

1√
2π|Σ|

exp

(
−wTΣ−1w

2

)

=
N∏
n=1

1√
2π(N0B −N0A)

× exp

(
− w2

n

2(N0B −N0A)

)
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=
N∏
n=1

fWn(wn) (III.10)

where Wn ∼ N (0, N0B −N0A). Also note that for the case A→ 0, (III.10)

still holds, this time only the marginal distributions become Wn ∼ N (0, N0B).

As a consequence the results that have been derived for the general case apply to

the lowpass approximation as a special case.

Since (III.10) is a legitimate multivariate probability distribution, it has no

singularities or discontinuities and it is non-negative in its domain furthermore, its

integral is bounded by unity that follows from the definition of total probability.

As a consequence, Pr[W ∈ I] where {∀W ∈ I : W1 ∈ I1, . . . ,WN ∈ IN ; Ii ∩ Ij =

∅, i 6= j; I = I1 × . . . × IN} and I is a compact region in RN , may equivalently

calculated as η tends to infinity by a Riemann Sum that always converges [21, pp.

389] :

lim
η→∞

Pr[W ∈ I] = lim
η→∞

∫
I

fW(w)dw

= lim
k→∞

lim
η→∞

∑
k

fW(wk)νk

= lim
k→∞

∑
k

lim
η→∞

fW(wk)νk

=

∫
I

lim
η→∞

fW(w)dw

=
N∏
n=1

∫
In

fWn(wn)dwn

=
N∏
n=1

Pr[Wn ∈ In] (III.11)

where νk is the volume of a region ζk such that {∀wk ∈ ζk : ζk ⊂ RN ; ζi ∩
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ζj = ∅, i 6= j; I =
⋃
k ζk}. From (III.11) it is seen that as η tends to infinity,

W1, . . . ,WN are i.i.d. [20, pp. 184] in which case, the per sample joint entropy is

given by Corollary 1.

IV. Proof of Proposition 4

Using Parseval’s Theorem [22, pp. 380] spectral correlation may equivalently

expressed as :

θ{Xn},{Yn} =

∑∞
k=−∞RX(k)RY (k)√∑∞

k=−∞RX(k)2
∑∞

k=−∞RY (k)2
(IV.12)

Now let SY (ω) = RX(0) so that RY (k) = RX(0)δD(k) where, δD(k) is the

discrete Dirac Delta Function defined in [22, pp. 30] such that,

δD(k)
4
=

1, if k = 0

0, if else

(IV.13)

implying Yn is a white process with variance RX(0). Equating (IV.12) to

unity yields,

θ{Xn},{Yn} =

∑∞
k=−∞RX(k)RX(0)δD(k)√∑∞

k=−∞RX(k)2
∑∞

k=−∞(RX(0)δD(k))2
= 1 (IV.14)
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By taking the square of both sides of (IV.14),

RX(0)4 = RX(0)2

∞∑
k=−∞

RX(k)2

RX(0)2 =
∞∑

k=−∞

RX(k)2

0 =
∑
k 6=0

RX(k)2 (IV.15)

(IV.15) holds if and and only if RX(k) = 0, ∀k 6= 0 which is equivalent to

having {Xn} uncorrelated.
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