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ABSTRACT

WAVELET TRANSFORM BASED FALL DETECTION

USING WEARABLE ACCELEROMETERS

Falls are identified as a major health risk, especially for the elderly people and are

considered a major obstacle to independent living. Quick medical response is desired in

case of a fall event. However, the fall may leave the elderly person in such a state that

the elderly may be unable to call for help on his/her own. Automatic and fast detection

of falls would decrease the health risks associated with the falls and would make inde-

pendent living safer for the elderly people. In this thesis, we propose an automatic fall

detection system that uses a wearable accelerometer and incorporates wavelet trans-

form as a feature extraction method. We conducted experiments to investigate the

performance of the system under the effect of several factors including fall properties,

selection of wavelet transform parameters and sensor platform types. Results indicate

that our proposed approach is robust with high fall detection performance.

The fall detection mechanism was realized using the wearable sensors that were

part of an indoor monitoring environment, namely WeCare. WeCare not only provided

the necessary sensing capabilities for the fall detection but it also made available several

communication and notification methods. Using these methods, we were able to notify

caregivers in case of fall detection. In this thesis, we also describe the WeCare system

and the integration of our fall detection study into it.
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ÖZET

GİYİLEBİLİR İVMEÖLÇER KULLANILARAK

DALGACIK DÖNÜŞÜMÜ TABANLI DÜŞME SEZME

Düşme, özellikle yaşlılar için, önemli bir risk ve yaşlıların bağımsız yaşamı önünde

bir engel olarak belirlenmiştir. Bir düşme durumunda hızlı müdahale gerekmektedir,

fakat düşmeden kaynaklanan sebeplerle düşen kişi kendi başına yardım çağıramayacak

durumda olabilir. Düşme durumlarının hızlı ve otomatik bir şekilde algılanması, düşme

kaynaklı sağlık risklerini azaltacağı gibi yaşlılar için bağımsız yaşantıyı daha güvenli

hale getirecek ve bağımsız yaşam önündeki bu engeli kaldıracaktır. Bu tezde otomatik

düşme sezme amacı ile giyilebilir ivmeölçer kullanan dalgacık dönüşümü tabanlı bir

yöntem önermekteyiz. Ayrıca çeşitli etmenlerin düşme sezme yönteminin başarımına

olan etkisini incelemek amacı ile çok sayıda deney yapılmış olup, bunların sonuçları

da bu tezde verilmektedir. Sonuçlar önerilen yöntemin pek çok farklı etmenin etkisi

altında yüksek başarım gösterdiğine işaret etmektedir.

Bahsedilen düşme sezme yöntemi, WeCare adı verilen bir sağlık gözetimi or-

tamının parçası olan giyilebilir ivmeölçerler kullanılarak gerçeklenmiştir. WeCare düşme

sezme için gereken algılama yeteneklerini sunmakla kalmayıp, çeşitli iletişim ve uyarı

yöntemlerini de kullanıma açmaktadır. Bu yöntemleri kullanarak düşme sezilmesi du-

rumunda bakıcılara ve ilgili kişilere uyarı gönderilerek bu kişilerin hızla durumdan hab-

erdar edilmesi sağlanmaktadır. Bu tezin bir parçası olarak WeCare ortamının yapısı

ve düşme sezme yönteminin bu ortama eklenmesi de anlatılacaktır.
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1. INTRODUCTION

Accidental falls are risky events, especially for the elderly people living indepen-

dently. Studies show that, more than one third of the adult population over the age

of 65 falls at least once a year in the USA [2]. Up to 30 percent of these falls result

in medium to severe injuries that can lead to the death of the older adults [3]. Quick

medical response is desired in such situations [4], but the injuries may cause the older

adults to be immobile to the extent that they can not even be able to reach a phone

to call for help. One proposed solution to this problem is to use emergency buttons

installed throughout the house or on the elderly people themselves so that they can

press them in case of a fall related injury. However, if the elderly person becomes

unconscious, he/she may not be able to press the button to call for help. Hence, it

is important to develop an automatic fall detection system that requires no human

intervention.

World Health Organization (WHO) defines a fall as an event which results in a

person coming to rest inadvertently on the ground or floor or other lower level [5]. Since

these events involve motion and change of pose, observing certain characteristics may

provide us with necessary information to detect falls. Many types of sensors can be used

to observe motion and pose of the older adult and determine if a fall has occurred or

not. Current work on automatic fall detection methods can be classified into three main

classes in terms of the sensors they use: video based methods, acoustics based methods

and wearable sensor based methods [6]. Video based methods use images provided by

cameras installed in the environment and they analyze changes in designated features

to detect falls (e.g. orientation and aspect ratio of a bounding ellipse [7]). Acoustics

based methods try to detect falls by detecting vibrations caused by the impact to the

ground. For instance, Zigel, et al. proposes a method that uses a vibration sensor and

a microphone to detect vibrations and noise generated by the impact [8].
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For automatic fall detection, methods based on wearable sensors are more attrac-

tive since video based methods raise privacy concerns and acoustics based methods are

very susceptible to ambient noise. Moreover, video based and acoustic based methods

can only operate in environments that are wired with them, while wearable sensor

based methods will be able to operate as long as the person wears the sensors.

The most common wearable sensor used for fall detection is the accelerometer

which can be used to detect acceleration characteristics of movement of the person as

well as estimating the pose of the person in order to detect falls. However, there are

challenges in automatic fall detection using wearable accelerometers. First of all, the

person may forget to wear the sensor or charge its battery. However, this challenge

may be addressed by a specially designed user interface that is capable of reminding

the person to wear or charge the sensor. Secondly, the acceleration signal is continuous

in time and value, which makes the task of locating a fall in time more challenging.

The third challenge is that the acceleration signal provided by the accelerometer is

noisy, due to possible hardware imperfections and possible independent movements of

the sensor.

Besides the challenges due to the nature of accelerometers, there are also chal-

lenges in terms of analyzing the signal since there is a significant ambiguity in the

acceleration signal. Many non-fall actions, such as jumping and quickly sitting down,

can cause amplitudes similar to that of falls. Therefore, computations solely based

on the raw acceleration signal directly do not provide significant information in terms

of detecting falls. On the other hand, falls are relatively quick events, in which a

free-fall period due to gravity, and an impact afterwards are observed, resulting in an

acceleration signal that has significant local variations that can be utilized to detect

falls.

In order to extract local variations, a preprocessing of the accelerometer signal

is required. Discrete Wavelet Transform (DWT) provides us a flexible method for

time-frequency analysis of signals, which can be used to extract the local variations in

the acceleration signal as well as dealing with the challenges mentioned earlier. The
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behavior of DWT is governed by the selection of the mother wavelet, ψ, which is

the central parameter of the transform. Since, mother wavelet defines the time and

frequency resolutions of the transform, selecting a proper wavelet is crucial to achieve

the desired task.

In this thesis, we are going to employ DWT as a feature extraction method for

the fall detection task and investigate the fall detection performance with a variety

of mother wavelets. Since it is not practical, if at all possible, to take an analytical

approach to mother wavelet selection for fall detection, we are going to use an empirical

approach and evaluate the performance of the feature extraction method and mother

wavelet selection via experiments.

The rest of the thesis is organized as follows: In Chapter 2, we give an overview

of related work; in Chapter 3, we describe Wireless Enhanced Healthcare (WeCare)

system and the integration of fall detection module into this environment; in Chapter

4, we summarize our earlier studies on fall detection, describe the discrete wavelet

transformation and its use as a feature extraction method; in Chapter 5, we describe

the experimental setup and give the results of the experiments. Finally, our concluding

remarks will be presented in Chapter 6. The notation used throughout this thesis is

presented in Appendix A.
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2. FALL DETECTION METHODS

Research on automatic fall detection show that many different types of sensors

can be employed for fall detection purposes. As stated earlier, automatic fall detection

methods can be categorized into three classes according to the sensors being used

in the process: Video based, Acoustic based, Wearable sensor based [6]. Since the

information provided by each sensor differs for different sensor types, fall detection

algorithms employed for each sensor differ as well.

2.1. Video Based Fall Detection Methods

Video based fall detection methods utilize video streams provided by one or more

cameras that are installed in the environment monitored for fall events. These methods

generally employ a background subtraction step in order to detect the presence of a

human in the field of view (FoV) of the camera. This step is generally followed by a

noise removal step, in which undesired noise is removed from the image. After these

steps a feature extraction method is applied to the video stream. During the feature

extraction process, a single frame or multiple frames from the video stream may be

used to evaluate certain features, such as vertical and horizontal speeds of the human

image which can be used in fall detection [9]. These features are then used in the final

evaluation step to detect falls.

In [10], Cucchiara, et al. propose an automatic fall detection system that may be

configured to utilize multiple cameras for fall detection. Their main rationale behind

using multiple cameras is that; a single camera cannot cover the whole living space

of a home environment due to occlusions and existence of multiple rooms. Therefore,

they utilize multiple cameras and employ a tracking and hand-over mechanism that

enables the system to track people over multiple cameras. On each camera stream,

background subtraction is applied to detect the human in the FoV and then projection

histograms of the human blob in the image is calculated on each axis. Finally these

histograms are used as the observations for a Hidden Markov Model (HMM) classifier.
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A similar approach was employed in [11], in which a Layered HMM was employed for

classification and the feature used for classification was the orientation of the bounding

rectangle with respect to the vertical axis.

In [12], another fall detection method is proposed which utilizes two perpendic-

ular cameras. Similarly background subtraction is applied to each frame and human

presence is detected in the FoV. When a human is detected in the image, Principal

Component Analysis (PCA) is applied to the image of the person in order to determine

the orientation of the human body and the variation along the axis or orientation. The

outcome of the PCA in both cameras are then used by a probabilistic classifier which

takes advantage of the axis information gathered from multiple frames to calculate the

probability of a fall event occurring in those frames.

In [13], a single camera fall detection system is proposed which again starts

with a background subtraction. After the background subtraction step the image is

transformed into a black and white image to obtain the silhouette of the human in FoV

of the camera. A bounding box is then fitted to the silhouette of the human. In the

feature extraction step, the aspect ratio, that is the ratio of width of the bounding box

to the height of the bounding box, is calculated. The aspect ratio is used to determine

the posture of the human in the image using a k-Nearest Neighbor (kNN) classifier.

The posture information is then used to detect unexpected transitions from standing

posture to a lying posture which are assumed to correspond to a fall.

In [14], Zhang, et al. propose two similar methods in which they also find the

human object via background subtraction. Using the human object in the image they

calculate the row centroid, row coordinate of the vertical middle point, of the human

for each frame. The first method they propose applies a threshold to the row centroid.

If the row centroid is lower than the predefined threshold a fall is detected. The second

method they propose utilizes multiple frames and calculates additional features such

as the speed of decrease of the row centroid, the total decrease in the row centroid.

Multiple thresholds are then applied to these features and a fall is detected in case

each of these features exceed the corresponding thresholds.
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In one of our earlier studies, we have proposed a video based fall detection system

which also started with a background subtraction step [7]. After this step, a silhouette

of the person in the image is extracted to which an ellipse was fitted. Figure 2.1

shows a sample frame from one of the experimental videos, the outcome of background

subtraction and the ellipse fitting, respectively. Using the ellipse, we calculated several

features including the aspect ratio of the ellipse, the orientation of the ellipse and the

change of rate of these two. These features are then used by a probabilistic classifier

which was trained earlier using the same features.

Figure 2.1. Background Subtraction and Ellipse Fitting

Although most of the studies on video based fall detection approaches report

high fall detection performance, there is a major criticism against these methods based

on privacy of the elderly. Producing a live video stream of the living environment

of the elderly person creates the risk that the stream may be accessed externally to

violate the privacy of the elderly. Moreover, daily living involves actions and places

for which privacy is of top priority, such as bedrooms and bathrooms. Although there

are studies which employ indirect image features such as silhouettes [13], or use other

imaging modalities such as thermal imaging [15], privacy is still a major concern for

video based fall detection methods.

2.2. Acoustics Based Fall Detection Methods

Acoustics based methods detect fall based on vibrations that are caused by the

fall event, such as the noise or the floor vibrations caused by the impact to the floor.
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The main advantage of these methods is that they do not require the user to wear

anything and they do not pose a significant threat to the privacy of the user.

In [8], Zigel et al. propose a method that uses a vibration sensor and a microphone

to detect vibrations and noise generated by the impact. Their method consists of two

phases: Training and Testing. In the training phase, the fall detection system is

supplied with audio and vibration signals recorded during multiple fall and non-fall

events. The system extract several features for each event, such as the length of the

event, the amount energy contained in the event and the amount of energy contained

in certain frequencies for the signals. These features are then used to train a Bayesian

classifier which separated events into fall or non-fall classes. In the test phase, the

system uses the Bayesian classifier trained in the training phase for fall detection.

Another approach to acoustics based fall detection is to use active acoustics sys-

tems. In [16], such a system based on ultrasonic transmitters and receivers is described

for use in nursing homes. The system uses an ultrasonic transmitter attached to the

wheelchair of the elderly, together with the fixed receivers in known locations this is

used to localize the elderly. Nurses are notified when an elderly approaches a risky

zone, such as the entrance of the toilet. Furthermore, these risky zones are equipped

with roof mounted ultrasonic radars which can be used to assess the posture of the el-

derly and detect fall events. In this aspect, the system resembles a video based method,

while maintaining privacy.

A quick review of the literature indicates that acoustics based methods receive less

attention than video or wearable sensor based methods owing to the fact that acoustics

based methods are more susceptible to external noise. Instead of using only acoustics

for fall detection, there are studies on hybrid methods that combine acoustics based

methods with video based methods [17,18] or with wearable sensor based methods [19].
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2.3. Wearable Sensor Based Methods

Another approach to fall detection is using wearable sensors to monitor the sub-

jects in order to detect falls. Mainly, kinematic sensors such as tilt sensors, gyroscopes

and accelerometers are used in these methods as they can be used to estimate the

posture or the motion of the human body. Although there are also studies that utilize

other types of sensors, such as [20] which monitors autonomous nervous system re-

sponses or [21] which uses an air-pressure sensor as well as an accelerometer, the main

focus is on the use of kinematic sensors.

An accelerometer based method was proposed in [22] which used an acceleration

sensor board with radio communication capabilities. They used the accelerometers to

estimate the pose of the human body for regular intervals. Using these pose estimates,

they distinguished transitions to and from the lying posture and calculated the speed

of these transitions. The falls are detected when the transitions to the standing posture

exceed a certain value. However, if the posture quickly changes from lying posture to

standing posture again, then the detected event is assumed to be a recovery from a

fall.

In [23], an accelerometer sensor board is used to detect impacts to the ground

by applying a threshold to the magnitude of the acceleration. When the acceleration

magnitude exceeds the mentioned threshold a possible fall is detected. This technique

is also employed in [24]. However, they state that using only this threshold based

technique fails to distinguish falls from all normal activities as some normal activities

may result in acceleration magnitudes greater then the threshold value. Therefore they

employ pose estimation in the fall detection as well. They detect a fall if they observe

an impact during a transition from a standing posture to a lying posture. The same

algorithm is used in [25] as well in a secure fall detection device prototype. A similar

algorithm was proposed in [26], which utilized a sensor that detected impacts and any

pose change before and after the impact. If the sensor detected an impact another

device worn by the user applies a frequency analysis method to the acceleration signal

sent by the sensor in order to confirm the impact.
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In [27], a smart home system is proposed for tele-monitoring of the elderly. A

fall detection module was included in this smart home system which uses a waist-worn

accelerometer which estimates the pose of the elderly person with regular intervals as

well as monitoring the activity level of the elderly. A fall is detected when the person

is in a lying posture after a period of inactivity. Their assumption is that the falling

person will end up in a lying posture and will not be able to move.

A threshold based method was used in [28] to detect falls. They determined

three thresholds for three different features calculated from the acceleration signal.

The features and the corresponding threshold values were determined empirically by

analyzing simulated falls of a young volunteer. The first feature they used was the

acceleration of the body in the horizontal plane. The second feature was the velocity

of the body at the impact time which is calculated using the integral of the acceleration

signal. And the third feature was the acceleration magnitude in the three dimensional

(3D) space. A fall is detected if the first and second features exceed their thresholds

simultaneously or if the third feature exceeds its threshold.

In [29], Chao, et al. propose a fall detection method based on the acceleration

cross product (AC) feature. AC is the cross product of the current acceleration vector

with a reference acceleration vector that was recorded when the person was standing

still. Due to the nature of the cross product operation, when a person is standing

still, AC would assume a zero value whereas this value would be one in case of a lying

posture. Moreover, AC showed great fluctuations during the impact to the ground. The

fall is detected when AC exceeds a predefined threshold. As a further improvement,

they also necessitate a lying pose to be detected after the threshold is exceeded.

Using only a single wearable sensor limits the pose detection capabilities of the

fall detection system. In [30], a health monitoring system is described that utilizes

multiple sensors worn on the body at different locations. Using these multiple sensors

the authors can calculate the angles and orientations of joints and multiple parts of

the body. Although the basic motivation behind their work is to monitor patients after

hip operations, the system can detect falls as a side effect. A very similar system is
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defined in [31] in which multiple sensors are used to estimate the pose of the human

body. However, fall detection is carried out by applying thresholds to two of the

accelerometers. While both of these systems have their merits and may improve the

fall detection performance with respect to single sensor systems, they suffer from added

obstructions to the user.

In [32], a three-axis accelerometer is used to detect near falls instead of falls. Au-

thors recorded signals while subjects performed several actions on a controlled environ-

ment and these actions were divided into five second gait segments. Then, acceleration

vector magnitudes and acceleration vector areas are calculated which in turn are used

to determine if the gait was a near-fall or not. Detection of near-falls enable fall risks

being detected beforehand and may be used for pre-impact fall detection. Detecting

the falls before the impact occurs may enable injury preventive measures to be taken,

such as inflating an airbag to mitigate impact forces [33].

In [34], four characteristics were identified for falls: Weightlessness (Free-fall),

Impact, Motionlessness and Posture Change. Free-fall is the time just before the impact

to the ground during which the movement of the body is governed mainly by the gravity.

Since the accelerometers measure the gravity of the Earth while they are held still,

we expect a zero or low acceleration reading during the free-fall followed by the high

acceleration impulse caused by the impact to the ground. Motionlessness is the interval

during which the falling person does not move due to injuries or unconsciousness caused

by the impact. The author propose to analyze the acceleration signal in order to detect

these characteristics as well as the posture changes. Similarly, in [35], free-fall and

impact characteristics of the falls are utilized, they apply two threshold and determine

whether a free-fall is followed immediately by an impact. Yet another similar approach

was taken in [36], which extended the idea of impact to include multiple impact as in

the case of rolling downstairs.

Three algorithms that use some of these characteristics were compared in a study

of Kangas, et al. They used total sum vector and dynamic sum vector together with

vertical acceleration and velocity in order to detect fall characteristics [37,38]. In their
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first fall detection algorithm only impact and posture change is detected, for the second

algorithm they included detection of free-fall and for the last algorithm they included a

threshold condition on the velocity. Their results indicated that the simplest algorithm,

that only monitored impacts and posture changes performed the best.

Another approach to the fall detection is calculating the energy expenditure in the

muscles of the person as they give direct indications about the action being carried out.

However, since this cannot be observed directly, it has to be estimated by other means.

Accelerometers are good candidates for this estimation. In [39], Zhang propose an

accelerometer based fall detection method based on this energy expenditure estimation.

He first observes if the acceleration magnitude exceeds a predefined threshold, if the

threshold is exceeded, the energy expenditure is calculated for a fixed time window.

If the signal results in a high energy expenditure value, the pose of the body is also

checked to see if a change from standing posture to a lying posture has occurred. If all

the conditions are satisfied, a fall is detected.

2.3.1. Mobile Phone Based Fall Detection Methods

Wireless sensor network (WSN) nodes have been a natural choice for the wearable

sensor based fall detection studies with their small structure, wireless communication

capabilities and relatively long battery lives. However, the use of WSN nodes required

an infrastructure, i.e. another WSN node connected to a gateway computer, in order to

detect falls and relay emergency notifications. There was a need for better communica-

tion capabilities in order to achieve pervasive fall detection and cellphones became an

option for such a duty with the introduction of Bluetooth. In one of the initial studies

on cellphone assisted fall detection, a wearable accelerometer device with Global Posi-

tioning System (GPS) and bluetooth capabilities was used to detect falls and localize

the person [40]. The fall notification together with the location of the user was then

relayed to the cellphone, which in turn notified emergency personnel. A similar use of

cellphones was studied in [41], in which the authors used a two layered decision making

method based on Support Vector Machines (SVM) and kNN, however in this study,

the cellphone is not only used to relay fall notifications to the external parties but also
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to receive feedback about the fall detection decisions.

With the integration of accelerometers on smartphones, it has become possible to

develop accelerometer based fall detector applications that can run on the smartphones

such as [42,43]. Smartphones possess high computational powers that can be compared

to the personal computers of the recent past. Together with their communication capa-

bilities and GPS support they form a promising platform for pervasive fall detection.

Utilizing smartphones for fall detection has the added advantage that the person is

not required to carry any extra devices for fall detection. For example, iFall [44] is a

fall detection application designed for the Android platform [45] produced by Google.

Since the application has to share smartphone resources with other applications, the

authors used a thresholding method that requires minimal computation power. They

defined two threshold values based on other studies and they detected suspected falls

when the acceleration value falls below the first threshold and rises above the second

threshold in a predefined duration. The application detects a fall if the suspected fall

is followed by a motionless state.
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3. WeCare: HEALTHCARE MONITORING SYSTEM

WeCare, is a wireless sensor technology based application which is designed to

provide a multi modal sensing environment for the homes of the elderly people [46].

Due to the modularity of the WeCare application, it is possible to develop application

modules for WeCare that utilizes the sensory capabilities of WeCare and implement

particular functionalities. The fall detection study in this thesis aims to implement such

a fall detection module for WeCare. Therefore, before moving onto the fall detection

method discussion, a brief description of the WeCare application, its components and

its capabilities will be given in this chapter. The basic functionalities of the system

can be summarized as follows:

• Providing a multi modal sensing environment, e.g. temperature sensors, humidity

sensors, video cameras

• Identifying the presence and the location of the residents in home

• Identifying predefined emergency situations

• Identifying user-defined emergency situations

• Providing a simple graphical user interface (GUI) through which systems config-

urations can be made

• Providing a web based interface for remote access and monitoring.

• Providing warning mechanisms for the emergency situations such as SMS, e-mail

3.1. WeCare System Architecture

In order to provide these functionalities and to extend them to include support

for application modules and plug-and-play sensors the WeCare architecture proposed

in [46] was modified. Figure 3.1 shows the modified architecture.
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Figure 3.1. WeCare System Architecture

3.1.1. Home Subsystem

The main purpose of this subsystem is to implement ambient intelligence in the

target home in which the elderly person lives. This subsystem is responsible from data

gathering using sensors and cameras, inference from the gathered data and delivering

the data to the Central subsystem. This subsystem consists of:

• Sensor Module: The sensors that are installed in the home and the related data

gathering software for these sensors.

• Localization Module: The sensors and software that provides the localization

functionality.

• Camera Module: The video cameras that are installed in home and the related

software to acquire images from these cameras.

• Configuration Interface: The interface that enables users to modify the home

subsystem, for instance add a new sensor to the Sensor Module.

• Inference Module: The collection of software that uses data provided by Sensor

and Camera Modules to make inferences.

• Communication Module: The client software that communicates with the Central

Subsystem. This module relays the data gathered from the house as well as the



15

inferences made from the data to the Central Subsystem.

3.1.2. Central Subsystem

This subsystem is mainly responsible for data representation, i.e. it provides an

interface through which the data gathered from the house and the inferences made

about the data can be accessed. Past data can also be accessed as it is stored in a

database. Furthermore, this subsystem has the ability to notify people about emer-

gency situations described as alarms. This subsystem consists of the following modules:

• Communication Module: This is the server software that communicates with

the Home Subsystem and makes the data received from the Home Subsystem

available to the other modules.

• Database: This module stores the information about the Home Subsystem con-

figuration that is necessary for data representation as well as the data gathered

from the sensor module in the Home Subsystem and related inferences.

• Web Interface: This module provides the web based remote access interface to

the WeCare system.

• Notifier: This module relays the emergency notifications to the related people.

For instance, this module may send messages through Short Messagin Service

(SMS) or via e-mail in case of emergency.

• Inference Module: This is the collection of software that uses data provided by

one or more Home Subsystems in order to make inferences.

3.2. Testbed and WeCare Prototype

In order to test the proposed architecture, a testbed was setup in a 55m2 labora-

tory. The testbed was designed to be similar to a home with a living room, a bedroom

and a kitchen. The testbed home is decorated using furniture that can be found in an

ordinary home; coaches, carpets, dining table, chairs and a bed (Figure 3.2). There-

fore, we can realize almost any scenario that can occur at the home of the elderly

person. The prototype of the WeCare was developed on this testbed. Several sensors
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Figure 3.2. WeCare testbed home

were deployed in the testbed environment as well as multiple cameras. A desktop com-

puter hosted the software for the home subsystem while another hosted software for

the central subsystem.

The prototype software was mainly developed using .NET technologies, with the

exception of the configuration software which was developed using Java. The commu-

nication between modules were realized using TCP/IP communications protocol. The

web interface of the system was built using Silverlight technology due to its support

for animated graphics. Figure 3.3 shows the home screen of the WeCare prototype.

As seen on the figure the system has four types of entities: House(Rooms), people,

alarms and cameras. In the home screen recent alarm events are displayed as well as

the people that are in the house and the people that are defined in the system but not

present in the house. Entities such as rooms, people and cameras are defined using

the configuration interface on the Home Subsystem. Sensor assignments for each of

these entities are also carried out using the configuration interface. Once the rooms are

defined, sensor and camera assignments are carried out, these become available in the

web interface as well. Figure 3.4 shows the Living Room page in the WeCare prototype.

At the top of the page, values for related sensors are displayed, below that any recent

alarms are displayed as well as the people in the room, in this case there are neither
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Table 3.1. Hardware Used in WeCare Prototype

Testbed Room Hardware Function

Living Room 1 Imote2.NET with ITS400 [47] Ambient Sensing

1 SenseNode [48] Acoustics sensing

1 AXIS 207W Network Camera [49] Video stream

1 AXIS 1031W Network Camera [50] Video stream

1 UDEA RWID-R12 RFID Antenna [51] Localization

Bedroom 1 Imote2.NET with ITS400 Ambient Sensing

1 SenseNode Acoustics sensing

1 AXIS 1031W Network Camera Video stream

1 UDEA RWID-R12 RFID Antenna Localization

Kitchen 1 Imote2.NET with ITS400 Ambient Sensing

1 SenseNode Acoustics sensing

Elderly Person 1 Imote2.NET with ITS400 Acceleration

1 Active RFID Tag Localization

Home Computer 1 Imote2.NET with ITS400 Data Sink

alarms nor people in the Living Room. At the bottom of the page the live stream

from the associated camera can be seen. Figure 3.5 shows the page for the Kitchen, in

which an alarm can be seen as well as the sensor values. The alarm is triggered with

the fall of the GrandPa, it displays the time of the event, its duration and the person

related to the event. Alarms are defined using the web interface unlike the rooms,

people and cameras which were defined using the configuration interface. Through the

web interface, one can define the conditions that will trigger the alarm as well as the

actions that should be taken in case the alarm is triggered. There are two ways to

define the alarm conditions: Custom and Predefined. In the custom alarm definition,

trigger conditions can be determined for each sensor separately and multiple condi-

tions can be combined using logic notation. In the predefined alarm definition method

rooms and people defined in the system are listed for the user to choose, when the

user chooses one of these applicable predefined alarm conditions are listed. Figure 3.6

shows the predefined alarm definition page with only Bedroom selected. There is only

one predefined condition that can be selected; “Fire in the room”. Applicable actions
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Figure 3.3. Home Screen of the Web Interface

are also listed in the bottom part of the page, in this instance, we want the system to

send a text message via SMS. When an alarm is triggered, in addition to the actions

specified in the alarm description, the alarm is displayed in the web interface until the

user gives feedback about the alarm. Figure 3.7 shows the feedback mechanism for

the alarms. In this page, the last 10 alarms are listed as well as any alarms that have

not been checked. The user has the ability to give positive feedback stating that the

alarm was correct and the necessary actions were taken, or negative feedback stating

that the alarm was false. The false alarm feedback may then be used to improve the

performance of the module that generated the false alarm.

In this thesis, a fall detection mechanism using a wearable accelerometer is de-

signed for use with the WeCare system. The mechanism is going to be added to the

WeCare prototype as an optional predefined alarm for the accelerometers associated

with people. Using the regular alarm definition mechanism detailed earlier, users of

the system will be able to activate the fall detection alarm mechanism and choose the

actions to be taken in case of a fall detection. Since the fall detection mechanism will

be embedded into the WeCare system, it will be able to benefit from all of its features

such as providing a location-aware video stream when a fall is detected.
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Figure 3.4. Living Room in the WeCare Prototype Interface

Figure 3.5. Alarm in Kitchen as displayed on the WeCare Prototype Interface
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Figure 3.6. Alarm Definition via WeCare Prototype Interface

Figure 3.7. Alarm Feedback via WeCare Web Interface
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4. FALL DETECTION METHODS AND DISCRETE

WAVELET TRANSFORM

Before our discussion on DWT and its use as a feature extraction method, it may

be beneficial to give the structure of fall detection process we used in our initial studies

and the findings of these studies, as they will give better intuition on the subject and

clarify the need for better detection algorithms.

4.1. Fall Detection Process

In our studies we used WSN nodes with integrated accelerometers as our wearable

sensors. The users were able to wear these sensors on their chests using improvised

vests or on their waists or ankles using adjustable belts. The sensors provided a three

dimensional discrete signal for acceleration on three perpendicular axes which were

then transferred via wireless link to another WSN node which acted as a data sink and

was connected to a Personal Computer (PC). Although, in our studies this PC was

mainly used to record the data for later processing, it was considered to be running the

fall detection algorithm in an actual implementation. In that case, this PC will also be

able to provide notification services for the caregivers, as in the WeCare environment.

It should be noted that, running the fall detection algorithm on the sensor platforms

may be possible or even desirable due to battery and communication constraints. The

decision about which system component should run the fall detection algorithm should

be made after considering these constraints as well as the soft real time requirements

and other factors that may effect the wireless communication link, such as existence of

components that use the same wireless link.

4.2. Earlier Fall Detection Methods

In our initial studies, we implemented several fall detection algorithms and con-

ducted experiments in order to compare the performances of these algorithms. In this
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section, we briefly describe each of these algorithms and then present then results of

these preliminary experiments.

4.2.1. Euclidian Distance Based Fall Detection Method

Euclidian distance based fall detection method uses a training dataset which

consists of three dimensional discrete accelaration signals recorded during falls and non-

fall actions. From this training set, a three dimensional template vector is calculated,

by taking the average of the acceleration samples associated with the falls. Let v be

the template vector calculated in this manner and
→
a t be the acceleration vector for

time t. Then we calculate the euclidian distance between v and
→
a t as:

d =

√

(vx − Acc xt)
2 + (vy − Acc yt)

2 + (vz − Acc zt)
2 (4.1)

A fall is detected if d is below a predefined value, which was 0.7 in our initial studies.

4.2.2. Naive Bayes Based Fall Detection Method

Naive Bayes based fall detection method utilized a Naive Bayes classifier that

was trained for two classes, normal and fall, from a training dataset similar to that of

euclidian distance based fall detection method. Let C1 be the class of normal actions

and C2 be the class of falls. Naive Bayes classifier makes the assumption that each

class produces acceleration samples that are normally distributed with mean µi and

variance σi for Ci. Using the training set, these parameters are calculated for both

classes, which enable us to calculate the probability of observing a specific acceleration

vector,
→
a , during a specific action, i.e. P (

→
a |Ci). From the training set, the probability

of observing a specific class, i.e. P (Ci), is calculated as the ratio of the number of

samples in that class to the number of all samples. Using these values, probability of

each class given an acceleration sample, i.e. P (Ci|
→
a), can be calculated as:

P (Ci|
→
a) =

P (
→
a |Ci) · P (Ci)

P (
→
a)

(4.2)
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P (
→
a) =

∑

k

P (
→
a |Ck) · P (Ck) (4.3)

A fall is detected if probability of fall for an acceleration sample is greater than the

probability of normal action, i.e. P (C2|
→
a) > P (C1|

→
a).

4.2.3. Fall Detection by Infrequent Pattern Discovery

This method is based on infrequent pattern discovery technique which is a data

mining tool that is described in [52]. Basically, this method analyzes a training dataset

in order to learn frequent patterns and then, uses this knowledge to detect infrequent

patterns in the test dataset or the actual signal. For this purpose a training dataset

consisting of three dimensional acceleration signals recorded during only non-fall ac-

tions is used. The algorithm calculates the euclidian distances between all subsequent

acceleration samples. These distances are recorded as well as the number of occu-

rances for each observed distance. The same process of calculating distances between

subsequent samples is repeated for the test dataset, or the actual signal, and when we

observe a distance that has not been recorded during training we detect a fall.

Since acceleration signals are noisy, using exact matches for distances observed

in training and test sets may have a deteriorating effect on the performance of fall

detection, as it would not consider two values, with only a neglicable difference, the

same. To counter this problem, we also introduced an error margin to the distance

comparison step. In the modified algorithm, each distance observed in the test set is

compared to the distances observed in the training set. If a distance that is not close to

any of the distances in the training set, with the predefined error margin, is observed,

a fall is detected. In our experiments, we determined the error margin to be 0.005.

4.2.4. Fall Detection by Thresholding

The final method we investigated was a thresholding based fall detection method.

In this method a threshold value is determined and a fall is detected when the observed

value exceeds this threshold. We first used the acceleration magnitude as the observed
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value and determined the threshold as the value that detected all fall event while

keeping false alarms at the minimum. Since the acceleration signal is ambiguous,

it was possible to observe similar acceleration magnitudes from non-fall actions. To

counter this, we applied the threshold only to a single axis which was determined to

be the major axis.

4.3. Initial Results

In order to evaluate and compare performances of these methods, we conducted

experiments in the Ambient Assisted Living Laboratory. Three male and two female

subjects were asked to repeat a predefined motion scenario while wearing two sensors,

one on their chests and one on their waists. Acceleration signals from these sensors

were transmitted to a PC over the wireless link and recorded in the computer for later

processing. Scenarios were repeated 10 to 20 times by each subject summing up to a

total of 81 repetitions. Figure 4.1 displays the acceleration signal gathered from the

sensor worn on the chest during one of these repetitions. Twenty per cent of these

repetitions were separated as the training set and the rest was used as the test set.

Figure 4.1. Acceleration Signal of the Chest Sensor During a Scenario
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When the algorithms were run on the datasets, we acquired better performance

on the dataset of chest-worn sensor, therefore we only focused on the preformance

of chest-worn sensors. Recall and precision was used as the performance metrics.

Euclidian distance based fall detection method provided 77 per cent recall and 29 per

cent precision. Naive Bayes classifier based fall detection method yielded 98 per cent

recall and 20 per cent precision. Using the infrequent pattern discovery technique we

acquired 92 per cent recall and 16 per cent precision, while the modified version of

this technique yielded 100 per cent recall and 18 per cent precision. In fall detection

using thresholding we acquired 100 per cent recall and 21 per cent precision. The best

performance was avhieved by the modified version of the thresholding algorithm, in

which the threshold was applied to the major axis, with 100 per cent recall and 34 per

cent precision [7].

These results, also summarized in Table 4.1, show that we could achieve high

detection rates for each method, up to 100 per cent for thresholding and infrequent

pattern discovery based methods. However, all of the implemented fall detection meth-

ods suffered from many false alarms they generated. The best performing method was

the modified thresholding algorithm and only 34 per cent of the alarms generated

by that algorithm corresponded to actual fall events. These poor performance values

indicated that we needed better methods for fall detection. We, then, focused on dis-

crete wavelet transform as it addressed shortcomings of these initial methods, such as

discarding temporal relations, and not suffer from the ambiguities in the acceleration

signal.

Table 4.1. Recall and Precision for Different Fall Detection Methods

Method Recall (%) Precision (%)

Euclidian Distance Based 77 29

Naive Bayes Based 98 20

Infrequent Pattern Based 92 16

Infrequent Pattern Based (Modified) 100 18

Thresholding 100 21

Thresholding (Modified) 100 34
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4.4. Discrete Wavelet Transform

4.4.1. Issues Related to Continuous Wavelet Transform

Discrete wavelet transform is a tool that has been developed to address some

issues related to continuous wavelet transform (CWT). Therefore, it is crucial to give

an overview of CWT and its shortcomings that resulted in the development of discrete

wavelet transform before explaining discrete wavelet transform and our use of DWT

as a feature extraction method.

Wavelet transform of a signal is a scale-time analysis of the given signal, where

each scale corresponds to a frequency band in the Fourier domain [1, 53, 54]. CWT

takes a function, f(t), that is defined in time domain and decomposes it into a two

dimensional function γ(s, τ), which is defined over scaling parameter s and translation

parameter τ , using dilations and translations of a function called mother wavelet, ψ.

Let ψs,τ be the dilation of the mother wavelet ψ by s and translation of it by τ such

that:

ψs,τ (t) =
1√
s
ψ

(

t− τ

s

)

(4.4)

Then the CWT of a function, f(t), f : ℜ → ℜ is defined as:

γ(s, τ) =

∫

f(t)ψs,τ (t)dt (4.5)

In order to illustrate the transformation process, we give an example mother

wavelet in Figure 4.2 with two of its dilations and translations. Using this mother

wavelet, CWT takes the function given in Figure 4.3(a), which was chosen arbitrarily,

and transforms it into a two dimensional function of scale s, and translation τ . In

Figure 4.3(b), scales one to 640 of the wavelet transformation are displayed. The

bright parts indicate scales where the energy is concentrated at a given time.
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Figure 4.2. Translations And Dilations of a Mother Wavelet

Any arbitrary function with zero average (Equation 4.6) can be chosen as the

mother wavelet, ψ, however it is generally desired that the mother wavelet satisfies the

admissibility condition given in Equation 4.7. If the mother wavelet satisfies the admis-

sibility condition, the original signal can be reconstructed from the wavelet transform

of that signal.

∫ ∞

−∞

ψ(t)dt = 0 (4.6)

∫ |ψ̂(w)|2
|w| dw < +∞ (4.7)

The admissibility condition implies that |ψ̂(0)|2 = 0, which means the mother wavelet

should have a spectrum that resembles a band-pass filter spectrum in the Fourier

domain, i.e. the frequency spectrum of the mother wavelet should be a finite interval

excluding zero in the Fourier domain [53].

As mentioned earlier, there are three issues that make CWT impractical, if not

impossible, in real life applications. These can be stated as:
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Figure 4.3. An Arbitrary Function and its CWT

• Redundancy: Using continuous scalings and translations of the mother wavelet

in decomposition causes redundancy in the transformation, as it cannot be guar-

anteed that the frequency components of each scale will be distinct.

• Infinity: CWT requires infinite translations and scalings of the given mother

wavelet.

• Lack of Analytical Solution: It may be impossible to take the integral given in

Equation 4.5 because of one of the two reasons. First, the integral may not have

an analytical solution for some functions. Second, we may not have the function

itself, but instead only a discrete set of samples of it.

In order to reduce redundancy, we may use discrete wavelets instead of continuous

wavelets. This will reduce the redundancy in the resulting transform as the function

will no longer be transformed into a two dimensional continuous function but instead

it will be transformed into a discrete two dimensional function. The new wavelet

generating function in this case would be:

ψj,k(t) =
1
√

s
j
0

ψ

(

t− kτ0s
j
0

s
j
0

)

(4.8)
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where j, k ∈ Z and s0 > 1 is a fixed dilation step. τ0 is the translation factor related

to s0. Now that we have discrete wavelets, we have eliminated some redundancy in

the transform. However, we still cannot guarantee that there is no redundancy in the

transform. This can only be achieved if the discrete wavelets we use in the transform

are orthonormal, meaning:

∫

ψj,k(t)ψ
∗
m,n(t)dt =







1, if(j, k) = (m,n)

0, otherwise
(4.9)

This property can be satisfied with a proper selection of the mother wavelet, ψ, and

eliminates the redundancies that exist in the wavelet transform. However, we still

have infinite number of wavelets that we need to generate from the mother wavelet.

Although the number of translations that we can use is limited by the length of the

signal we are analyzing, there is an unlimited number of scales.

Recall that Equation 4.7 implied that the wavelets acted like bandpass filters.

It is known that compressing a signal in time domain is equivalent to stretching and

shifting up the signal in the frequency domain. As a result, dilating the wavelet by a

factor of two would squeeze the frequency spectrum of the wavelet by a factor of two

and shift all frequency components down by a factor of two. This property enables

us to cover the finite frequency spectrum of the original signal with the spectra of

dilated wavelets. The wavelets can be arranged to “touch” each other in order to get a

good coverage, as seen in Figure 4.4, and can be considered as a band-pass filter bank.

Covering the entire spectrum of the original signal using only the dilations of wavelet

Figure 4.4. Wavelet filterbank in Fourier Domain [1]

function still requires infinite number of dilations. Instead of using only wavelets, we

can use another function, spectrum of which covers the low frequency components of
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the signal so that we can use only a finite number of wavelets. Since we want that

function to cover the spectrum that is covered by the infinite number of dilations of

the mother wavelet, it can be defined via its desired spectrum as:

|φ̂(w)|2 =
∫ ∞

1

|ψ(sw)|2ds
s

(4.10)

φ is called the scaling function and its dilations can be used to cover the low frequency

spectrum of the signal, while covering the high frequency spectrum of the signal by the

spectra of dilations of the mother wavelet. Utilizing φ we can limit the wavelets we

have to use to a finite number. Figure 4.5 shows the spectrum of the scaling function

covering the spectra of infinitely many wavelet functions. Using φ and ψ we can

Figure 4.5. Wavelet filterbank in Fourier Domain with Scaling Spectrum [1]

calculate the low frequency and high frequency components of the signal at scale j as

Aj =< f(t), φj,k(t) > and Dj =< f(t), ψj,k(t) >. Aj and Dj are called approximation

coefficients and detail coefficients for scale j, respectively.

Since the spectrum of φ is designed to cover spectra of infinitely many wavelets,

we can add a wavelet spectrum to the spectrum of φ or remove a wavelet spectrum

from it. Removing a wavelet spectrum from the spectrum of the scaling function is

equivalent to dilating the scaling function by a factor of two. One important result of

this fact is that, scaling function at a scale has all the information to construct the

scaling function for the next scale. This is called the twin scale relationship and can
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be expressed as:

φ(2j+1t) =
∑

k

hj(k)φ(2
jt− k) (4.11)

Similarly:

ψ(2j+1t) =
∑

k

gj(k)φ(2
jt− k) (4.12)

When we use 4.11 and 4.12 and insert suitably scaled and translated versions of φ and

ψ into the inner products that calculate the coefficients, the inner products become:

Aj+1(p) =
∑

k

h(k − 2p)Aj(k) (4.13)

Dj+1(p) =
∑

k

g(k − 2p)Aj(k) (4.14)

These equations indicate that the coefficients for a scale can be computed by a weighted

sum of the approximation coefficients of the previous scale. Since approximation co-

efficients are the lower frequency components, h can be seen as a low-pass filter and

similarly g can be seen as a high-pass filter. The indices of g and h have a coefficient

of two in terms of p, resulting in the fact that only half of the points in Aj are used

in the given computation. It should be noted here that, proper selection of ψ, there-

fore φ, may yield finite sequences as h and g. In the light of these, we can rewrite

Equations 4.13 and 4.14 as:

Aj+1 = (Aj ∗ h) ↓ 2 (4.15)

Dj+1 = (Aj ∗ g) ↓ 2 (4.16)

where (x ∗ y) is the convolution of x and y and x ↓ 2 is the downsampling of x by a

factor of two, i.e. discarding every other sample. These two equations form the basis

of the algorithm known as the fast wavelet transform which is also employed in this

study.
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4.4.2. Discrete Wavelet Transform as a Feature Extraction Method

Discrete wavelet transform begins with the choice of the mother wavelet, ψ, and

the generation of the corresponding scaling function, φ, using Relation 4.9. Using ψ

and φ, we then generate the filters h and g via Relations 4.11 and 4.12. Recall from the

previous subsection that any function that satisfies the admissibility condition can be

chosen as a mother wavelet. However, as there are many well-studied and well-known

proper wavelet families, we are going to limit ourselves to the investigation of these

existing mother wavelets. Assuming that we have a mother wavelet and the related

filters h and g, our feature extraction method can be formally expressed as:

A0 =MP (X) (4.17)

Ai = (Ai−1 ∗ h) ↓ 2

Di = (Ai−1 ∗ g) ↓ 2

∣

∣

∣

∣

∣

∣

1≤i≤J

(4.18)

If we define F (Y ) to be our set of coefficients resulting from the DWT of Y such that:

F (Y ) = {AJ , Di |1 ≤ i ≤ J} (4.19)

then F (MP (X)) is the set of extracted features.

Wavelet families may contain multiple related mother wavelets, that are dis-

tinguished from each other by a parameter. For instance, the family of Daubechies

wavelets contain 20 mother wavelets and each wavelet is distinguished by the num-

ber of vanishing moments, which also effects the length of the resulting filters. Some

wavelet families on the other hand have only a single mother wavelet, which can be

sampled in different intervals and lengths to obtain different filters from the family,

e.g. Meyer family [53]. Different wavelets have different concentrations in time the

axis and the frequency axis, therefore their resolutions in the frequency axis vary as

well as their capability of localization in the time axis.
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4.4.3. Computational Complexity of DWT Based Fall Detection

First, assume that we want to calculate the DWT of a discrete signal of length N .

Also assume that we are using analysis filters, h and g, of length l in the transformation.

Then, the convolutions in Equation 4.18 can be computed with approximately N · l
2

multiplications each, so the first level of the transform requires approximately N · l
multiplications. Since we downsample the approximation coefficients at each level,

every level requires half the number of multiplications as their previous level. Therefore

the total number of multiplications required to compute the discrete wavelet transform

for infinite number of levels becomes:

N · l + N · l
2

+
N · l
4

+
N · l
8

+ · · · = N · l ·
(

1 +
1

2
+

1

4
+

1

8
+ · · ·

)

= 2 ·N · l (4.20)

which shows that the computational complexity of DWT is linear in the length of the

signal. However, the signal may quickly become very long in a fall detection system, as

the fall detection task requires constant monitoring, One approach that can be taken

to address this issue is to use a windowing scheme. By using a window of length w, we

discard all the acceleration samples except the most recent w samples. This effectively

limits the signal length to w and the required number of multiplications becomes 2·w ·l.

Since fall detection is a real-time problem, we need to carry out DWT calculations

frequently. The frequency of DWT calculations need not be higher than the sampling

frequency as acceleration signal does not change between samplings. Therefore, with

a sampling interval of α, we need to carry out DWT calculations 1

α
times a second,

resulting in 2 · 1

α
· w · l multiplications a second.

It was mentioned earlier that the decision about which system component should

run the algorithm may depend on the complexity of the algorithm. To exemplify, we

may consider a fall detection system with a window size of 20, a filter size of 15 and

a sampling rate of 10 Hz. For such a system, we would require 2 · 20 · 15 · 10 or 6000

multiplications per second, which is a relatively small number even for the wireless

sensor nodes. Considering the heavy burden of radio communication on the battery
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life of the wireless sensors, carrying out the processing on the wireless sensor seems

to be more viable. Although, the extra load caused by the constant processing could

be considered an energy issue, we do not consider it to be of great importance, as the

elderly may be asked to charge the sensor daily.

4.4.4. Fall Detection System Architecture

Before moving on to the experiments, we are going to describe a fall detection

system based on DWT in order to form a complete picture. Figure 4.6 displays a

schematic representation of a fall detection system together with the intended users

of the system. The elderly wears a battery operated wireless sensor platform that

Figure 4.6. Fall Detection System Architecture

is either integrated to his/her clothes or is designed to be worn as an accesory. The

sensor platform has an integrated three-axial accelerometer which is sampled at regular

intervals. Then the dimensions of the acceleration sample is reduced from three to

one, either by discarding two axes or by calculating a mapping, and the resulting

sample is inserted into a buffer with a fixed length. The buffer holds the most recent

acceleration samples in chronological order. After each sample insertion to the buffer,

DWT is applied to the signal in the buffer on the sensor platform. The DWT coefficient

are then passed onto the classifier which detects fall based on these coefficients. An
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example classifier may be the basic thresholding method, as will be the case in the

Experimental Results chapter, which checks if the detail coefficients at the first level

exceed a pre-defined threshold. If the classifier detects a fall, sensor platform transmits

a message to a sink node via wireless link. The sink node is a WSN node that is

connected to PC. It notifies the PC via the wired connection between them. Finally,

the PC notifies the caregivers by sending e-mails and short messages via SMS and takes

any other necessary actions.

Figure 4.7 shows an example of the acceleration signal, the curve at the top, and

detail coefficient of the first six levels of its DWT. First thing to note on this graph is

that, the Time axis is the sample index. Since detail coefficients at each level are of

different sizes, they were scaled in this graph to match the time indices of the original

signal. In the figure, a fall occurs around 500 and it can be noticed on the original

signal with a sudden acceleration impulse. It can seen that, the amplitudes in the

first and second level coefficients can be used to effectively distinguish the fall from

other non-fall actions. This observation led to our decision of using thresholding in our

experiments. However, different classifiers may be used instead of thresholding, as a

future direction we are going to include new classifiers in our studies.

Figure 4.7. An Acceleration Signal and Detail Coefficients of its DWT
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5. EXPERIMENTAL RESULTS

As discussed earlier, the selection of the mother wavelet governs the frequency

components that reside in each scale as well as the resolution of localization in the

time domain. Therefore, the appropriate selection of a mother wavelet may have a

significant impact on the performance of the wavelet transform based fall detectors.

Since it is hard, if not impossible, to come up with a mathematical model for falls,

taking an analytical approach to wavelet selection does not seem plausible. Hence, we

are going to use an experimental approach to the problem of finding a suitable mother

wavelet for the task of fall detection.

Our experiments consist of four sections: data collection, feature extraction, fall

detection and performance evaluation. In the data collection part, voluntary subjects

are asked to repeat a predefined motion scenario which includes normal daily actions,

such as walking and sitting down, normal actions that can be confused with falls, such

as jumping and lying down as well as falls. An automated data collection program was

developed for this study, which instructs the users which action he/she needs to perform

according to the scenario given in Table 5.1. During each repetition, acceleration data is

collected from an accelerometer that the subject is wearing and recorded on a remote

computer together with the label of action the subject is performing. The reason

that we use an offline processing scheme is its flexibility and practicality. Moreover,

this scheme allows us to observe the effect of the parameters on the same physical

phenomenon.

In the feature extraction part, we apply DWT to the data we have recorded during

the data collection part. Then, the extracted features are passed to a classifier which

detects falls using the feature set. Although our goal was to evaluate the performance

of DWT as a feature extraction method, we need a classifier, because evaluating the

performance of a feature extraction method requires us to investigate the separation

of features related with falls from that of non-fall actions. The classifier used in our

experiments was a thresholding method, which makes the fall decision for time t, FD(t)
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Table 5.1. The Motion Scenario Used in Experiments

Order Action

1 Walking

2 Jumping

3 Sitting Down

4 Getting Up

5 Walking

6 Lying Down

7 Getting Up

8 Walking

9 Quickly Sitting Down

10 Getting Up

11 Walking

12 Falling Down

13 Lying Still

as:

FD(t) =







1, if D1 ⌊ t
2
⌋ > θ

0, otherwise
(5.1)

where θ is a predefined threshold and ⌊ ⌋ is the floor function.

The decisions made by the classifier are then used to compute performance met-

rics, Recall, Precision and F − value that are defined in A.

5.1. Two-Phase Experiment Design

We designed our experiments according to a two-phase experiment design scheme

[55]. In a two-phase experiment, the factors that may affect the outcome of the process,

which is to be investigated, are identified. Then, in the first phase of the experiment, all

the factors that can be investigated are included. Some factors may not be investigated

due to several reasons, for example in the fall detection case, we cannot risk demanding
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a person over 70 to fall, therefore we cannot investigate the effect of old age. In the

first phase, only a small number of possible values are investigated for each factor and

these values are generally selected to be one high value and one low value. Then in

the second phase of the experiment, the factors that affected the outcome the most are

investigated further with more levels.

After our initial studies, we identified several factors that may affect the perfor-

mance of a fall detector system that we can investigate:

• Sensor Hardware is the device that is used to collect data. It may have an effect

on the performance as different sensors may have different accuracy and noise

characteristics.

• Sensor Location is the part of body on which the sensor will be worn. It may

affect the acceleration the sensor will be subjected to. For instance, a sensor worn

on the chest may have a different acceleration signal than a sensor worn on the

ankle during a fall.

• Sampling Rate is the rate with which data is gathered. It affects the ability of

the accelerometer to capture the necessary information for fall detection.

• Wavelet Family together with Wavelet Parameter determines the time-frequency

resolution of DWT, hence it affects the features extracted from the acceleration

signal.

• Fall Direction is the direction towards which a person falls. It changes the char-

acteristics of the signal produced by the accelerometer and may have an effect on

the performance of a fall detection system.

• State Before Fall is the motion state of the person before the fall. The person

may be moving or standing still before falling and this may have an effect on the

acceleration signal.

5.1.1. Phase One of the Experiments

Up to now, we have determined the factors that may affect the outcome of a

fall detector that uses DWT as a feature extraction method. The investigated values
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related with these factors are listed in Table 5.2 and Table 5.3.

Table 5.2. The Factors and Their Values for the First Phase of the Experiments

Factor Value

Sensor Hardware Imote2.NET, SunSPOT

Sampling Rate 100Hz,10Hz

Sensor Location Chest,Waist, Ankle

Fall Direction Frontal, to the Right

State Before Fall Walking, Standing

Wavelet Family Shown in Table 5.3

Wavelet Parameter Shown in Table 5.3

Table 5.3. The Wavelet Families and Related Parameters For The First Phase

Family Parameter

Daubechies 4,8,12

Morlet 12,24,36,48

Symlet 12,24,36

Meyer 4,5,6

Coiflet 1,3,5

Gaussian 12,24,36,48

Mexican Hat 12,24,36,48

Biorthogonal (2.)2,4,6,8,(3.)1,3,5,7

Reverse Biorthogonal (2.)2,4,6,8,(3.)1,3,5,7

We used an Imote2.NET sensor node with an ITS400 sensor board attached to

it [47] and a SunSPOT sensor node [56] in the first phase of our experiments. Figure 5.1

shows the two sensors and the selected axis conventions associated with each. These

sensors were worn by the subject at the same time and data was collected from both

of them simultaneously. Our subject was a 25 year-old healthy male. The data was

collected at the rate of 100 Hz for all repetitions and then a copy of the data was

downsampled by a factor of 10 in order to get the 10 Hz copy of the same signal. As

for the sensor location, fall direction and state before fall 10 repetitions were recorded

for each of the combinations of these factors, these 10 repetitions are called a set.
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Hence, we have 6 sets for each sensor and a total of 24 sets including the downsampled

copies of each set.

Figure 5.1. Sensors Used in Experiments and Selected Axis Conventions

Before presenting our results, it should be noted that using a classifier also may

introduce one or more factors that affect the performance of fall detection. In our case,

this factor is the selection of the predefined threshold. In order to eliminate the effect

of this selection, we first determine a threshold interval for each set. This interval is

defined such that the minimum value in the interval is the maximum threshold value

that detects all falls in the set and the maximum value in the interval is the minimum

threshold that produces no false alarms. Then this interval is discretized into 10 points.

The value that gives the best performance when used as a threshold among these 10

points is chosen as the actual threshold. The results are presented using performance

metrics related to this threshold in the remainder of the section.

5.1.1.1. Effect of Sensor Hardware. In order to observe the effect of the sensor hard-

ware on fall detection performance, average values of performance metrics were cal-

culated over all datasets for each sensor hardware was needed. For this purpose, fall

detection performance metrics were calculated using all wavelet family and wavelet

parameter couples over all data sets. Then the average of these performance metrics

was calculated in order to get the average performance for each sensor hardware.
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Average values of performance metrics calculated over all sets for each sensor

hardware suggest that sensor hardware has a significant effect on the performance

of a fall detection system. It can be seen on Table 5.4 that the use of Imote2.NET

yields similar Recall performance to that of SunSPOT, but it has significantly better

Precision and it increases the performance metric F−V alue by 17 per cent. Moreover,

Table 5.4. Average Values of Performance Metrics per Sensor Type

Sensor Type Recall(%) Precision(%) F-Value(%)

Imote2 75 49.5 59.6

SunSPOT 75.5 30 43

as seen in Figure 5.2, the average performance of each wavelet family is higher when we

use the Imote2.NET sensor, except for the Biorthogonal(2) family. As evidenced here,

the sensor hardware may have a significant effect on the performance of a fall detector

system. The most likely reason for this effect is the difference in the noise levels of

the sensors. In fact, our observations have pointed out that the data received from the

SunSPOT sensor is very noisy and therefore we have calibrated the sensor and used

a mean-filter in order to eliminate the noise to some degree. The results shown here

were acquired using this de-noised signal.
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Figure 5.2. Best Average Performance of Each Wavelet Family
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5.1.1.2. Effect of Sampling Rate. Our intuition on the effect of sampling rate on the

performance of fall detection suggest that we would observe better performance using

the 100 Hz signal than using the downsampled copy of the same signal. This was

supported by the results of the experiment on the average case with using 100 Hz signal

yielding an F − V alue of 64 per cent and using 10 Hz signal yielding an F − V alue of

51 per cent. However, when we investigated the best performance per wavelet family,

we saw that for some wavelet families, the performance of using signals with different

sampling rates were very similar. Even in one case, the Gaussian wavelet family, using

the 10 Hz signal outperformed the one using 100 Hz signal as if the low frequency signal

is a filtered version of the high frequency one that had less noise. These results, which

are displayed in Figure 5.3, suggest that the sampling rate has a significant effect on

the performance of a fall detection system.

Table 5.5. Average F-Value(%) per Sampling Rate

Sampling Rate F-Value(%)

10Hz 51

100Hz 64
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Figure 5.3. Best Average Performance of Each Wavelet Family
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Figure 5.4. F-Value vs. Sensor Location

5.1.1.3. Effect of Sensor Location. Results displayed in Figure 5.4(a) show that wear-

ing the sensor on the waist or the chest performs significantly better than wearing the

sensor on the ankle on the average case. It can also be seen from Figure 5.4(a) that,

while the sensor worn on the chest performs better than the sensor worn on the waist,

there is only a slight difference. However, when we investigated the best performance

provided by each sensor location, the difference became more apparent. Figure 5.4(b)

shows the best results acquired for each sensor location, and it can be seen from the

figure that using a chest-worn sensor outperforms using an ankle-worn or waist-worn

sensor.
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5.1.1.4. Effect of Fall Direction. Our experimental results suggest that the direction

of the fall affect the information content of the signals provided by separate axes of the

accelerometer worn by the subject. This implies that the axis that provides the most

valuable information in detecting a fall may change according to the direction of the

fall. Hence, a fall detection system that utilizes only a single axis in decision making

may perform poorly for certain types of fall. This can be overcome by incorporating

signals from multiple axes into the decision making process. The most basic method for

including multiple acceleration axes is to calculate the magnitude of the acceleration as

the Root Sum Square (RSS) of signals from each axis. As seen in Table 5.6, when the

Table 5.6. Average F-Value(%) for Different Fall Directions

Acceleration Axis Used Frontal To The Right

Y 60.93% 92.4%

Z 92.4% 66.7%

RSS 86.8% 84.2%

fall direction changes, the axis that contain the most significant information changes

as well. Moreover, it can also be seen that using the RSS yields fall direction invariant

performance, although its peak performance is lower than that of individual axes.

5.1.1.5. Effect of State Before Fall. Experimental results presented in Table 5.7 show

that the motion state of the person just before the fall has an effect on the fall detection

performance, such that if the subject is walking before falling, e.g. falling due to

tripping, the fall is more likely to be detected.

Table 5.7. F-Value(%) for Different States Before Fall

Walking Standing

Average Case 67% 58%

Best Case 85% 67%
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5.1.2. Phase Two of the Experiments

In the previous section, we have given the first phase of our experiments and

their results. For the second phase of our experiments, we decided to investigate

the relatively more significant subset of the factors we investigated in the first phase,

namely the sampling rate as well as the wavelet families and parameters, Table 5.8

shows the values related to these factors. It can be seen from Table 5.9 that some

families have the same parameter values for the second phase of the experiments as

for the first phase of the experiments, because wavelet parameters can only assume a

limited number of values for those families. We excluded the other factors from the

second phase of the experiments due to the following reasons:

• Sensor Hardware: We have seen that using a specific hardware, Imote2.NET,

provided significantly better results than using SunSPOT hardware. Since the

hardware to be used is a system parameter that can be decided upon by the

system designer, we chose to use the Imote2.NET hardware for the remaining

experiments.

• Sensor Location: It was evidenced by the experiments that a chest-worn sensor

provided the signal that was most suitable for fall detection rather than waist-

worn or ankle-worn sensors. Similar to the sensor hardware decision, we chose to

use only chest-worn sensors for the second phase.

• Fall Direction: The first phase experiments indicate that although the fall direc-

tion has an affect on the axis that contain the most significant information, this

can be mitigated by using a data fusion scheme or RSS.

• State Before Fall: Our results indicate that we have a better performance in

detecting falls of people that were moving before falling. Therefore using only

falls from a standing still state constitutes a lower-bound for the performance of

a fall detection system.

For the second phase experiments, five new sets were recorded with the participation of

five new subjects. Three of the subjects were female while the rest of them were males.

The average age of the subjects were 26.6 and all the subjects were healthy volunteers.
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Table 5.8. The Factors and Their Values for the Second Phase

Factor Value

Sampling Rate 10Hz,20Hz,25Hz,33Hz,50Hz,100Hz

Wavelet Family Shown on 5.9

Wavelet Parameter Shown on 5.9

Table 5.9. The Wavelet Families and Related Parameters For The Second Phase

Family Parameter

Daubechies 1:12

Morlet {2 · i|i = 1 : 240}
Symlet 12,24

Meyer 4,5,6

Coiflet 1,3,5

Gaussian {2 · i|i = 1 : 240}
Mexican Hat {2 · i|i = 1 : 240}
Biorthogonal (2.)2,4,6,8,(3.)1,3,5,7

Reverse Biorthogonal (2.)2,4,6,8,(3.)1,3,5,7

Motion scenario described in Table 5.1 was used again as well as the performance

metrics described in the previous section.

5.1.2.1. Sampling Rate. In the previous section, we have investigated the effect of

the sampling rate on the performance of a fall detection system. We have seen that,

although it had an effect on the outcome, the effect varied for different wavelet families.

In order to make sure that the selection of wavelet parameters related with each wavelet

family was not favoring a specific sampling rate, we repeated the same experiments

with an extended set of wavelet parameters that are given in Table 5.9. We also

generated 20Hz, 25Hz, 33Hz and 50Hz copies of the 100Hz signal and calculated the

best F −V alue we achieve for each wavelet family and parameter selection. Figure 5.5

shows the F − V alue vs. WaveletParameter plot for the Gaussian wavelet family. It

can be seen from the figure that certain parameter values favor certain sampling rates.
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Figure 5.5. F-Value for Gaussian Wavelet Family Parameters

We are also interested in the best performance we can achieve for each sampling

rate. In Figure 5.6, we see that there is an improvement in performance as we go from

10 Hz to 33 Hz then a decrease again until 100 Hz. The increase in performance until

33 Hz can be explained by the Nyquist criteria. In [57], Purwar, et al. state that

most of the energy related to a fall was contained within 0 − 15 Hz frequency band.

Therefore, we need a minimum sampling rate of 30 Hz in order to fulfill the Nyquist

criteria. Below this rate, we may not fully represent the fall event therefore we may

lose information that is useful in the detection of falls. The decrease in the performance

from 33 Hz to 100 Hz is counter-intuitive and unexpected. This decrease may be caused

by the selection of wavelet parameters, i.e. we may have selected parameters that favor

smaller sampling rates, or it may be caused because of the noise in the 100 Hz signal.
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On the other hand, the results indicate that we obtain a similar performance using

10 Hz signal 100 Hz signals. In wireless sensor applications where the battery life is

considered to be a constraint and storage capabilities of the sensor are limited, the

natural choice for the sampling rate becomes 10 Hz considering that the F − V alue of

78 per cent is acceptable.
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Figure 5.6. Best Performance Among All Wavelet Families for Each Sampling Rate

5.1.2.2. Wavelet Family and Parameter Selection. Until now, we have investigated

and discussed the effects of the factors listed in Table 5.3 except for the wavelet family

and the wavelet parameter. Since the choice of mother wavelet governs the behavior

of the DWT, we expect this selection to have a significant effect on the performance

of the fall detection system. Indeed, we have seen earlier in Figure 5.2 and Figure 5.3

that the selection of wavelet family can have a significant effect on the performance of

the system. Furthermore, we have also seen in Figure 5.5 that the wavelet parameter

selection which defines the mother wavelet that will be used together with the wavelet

family, can have an effect on the performance as well. Then, we would like to distin-

guish the mother wavelet that is best suited for the fall detection task. Therefore, we

would like to distinguish the wavelet family that gives the best performance on average.
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Table 5.10 shows the average performance for each family and according to these

results Gaussian family is the best suited family for the fall detection task. The wavelet

parameter that yielded this performance metric was 14 for the Gaussian wavelet family.

In order to understand why Gaussian wavelet family performed better than the other

wavelet families, we investigated the wavelets and the acceleration signals in the Fourier

domain. We saw that the fall actions had more energy in high frequencies compared

to other actions and Gaussian wavelet family, particularly the mother wavelet defined

by wavelet parameter of 14, was able to distinguish that frequency band better than

other wavelets.

Table 5.10. Average Performace of each Wavelet Family

Wavelet Family Recall(%) Precision(%) F-Value(%)

Daubhecies 73 34 47

Morlet 60 77 68

Symlet 70 36 47

Meyer 38 100 55

Coiflet 73 40 52

Gaussian 70 98 81

Mexican Hat 75 38 40

Biorthogonal(2) 70 34 46

Biorthogonal(3) 80 26 40

R.Biorthogonal(2) 58 61 59

R.Biorthogonal(3) 68 41 51
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6. CONCLUSION

Falls constitute a major health risk in the lives of the elderly people, and therefore

fall events are considered a major obstacle to independent living of the elderly people.

With the aging population, the need for remote monitoring systems and fall detection

methods rises. In this thesis, we surveyed the research on automatic fall detection using

several types of sensors, namely video sensors, acoustics sensors and wearable sensors.

Results of our survey suggest that wearable sensor based methods, especially wearable

accelerometer based methods in particular, received much more attention since they

offer more robust fall detection capabilities while maintaining the privacy of the users.

We described WeCare testbed which was built in a 55 m2 laboratory. WeCare

system is a remote health monitoring system with multi-modal sensing capabilities

such as video, RFID and ambient sensing. The system has the ability to detect events

based on user defined alarms and notify the caregivers about the detected events. Since

the WeCare environment has the ability to localize the elderly person in the home, it

can deliver accurate video streams of the elderly person or the event location via its

web interface. Moreover, the SMS capabilities of the system makes rapid notification

of caregivers possible, which may prove to be vital in some situations such as a fall.

We also described how a fall detection mechanism was implemented and integrated to

the WeCare prototype.

We described a wavelet transform based fall detection method using wearable

accelerometers. The fall detection method employed DWT as a feature extraction

method. Coefficients of DWT of the acceleration signal are used to detect rapid local

variations that can be used to detect falls. We conducted multiple experiments in

order to determine the wavelet family that is most suitable for fall detection. In our

experiments, we investigated the effects of several factors including: Sampling Rate,

Fall Direction, Sensor Location, Sensor Hardware and State Before Fall. Our results

indicate that the proposed fall detection algorithm exhibits robust performance and

the wavelet family that is most suitable for fall detection is Gaussian Wavelet.
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As for the future work, we plan to investigate the characteristics of falls in more

detail in order to gain a better insight on fall detection. Besides that we also plan to

investigate the possibility of constructing a custom mother wavelet that is specialized

in detecting falls. Moreover, we plan to extend our research by incorporating several

classifiers in the experimental architecture, such as probabilistic models. Finally, we

plan to experiment with more fall types and actions similar to falls, such as falling to

a sitting position or recovering from a trip.
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APPENDIX A: NOTATION USED IN THE THESIS

The accelerometer senses the acceleration the device is being subjected to. The

readings of the accelerometer can be expressed as:

→
a t= (Acc xt, Acc yt, Acc zt) (A.1)

where Acc x,Acc y,Acc z are the components of acceleration vector along x, y, z axes,

respectively. A sequence of uniformly sampled acceleration vectors is then:

X = {→a t |t ∈ t1 : tn} (A.2)

where ti − ti−1 = α and 1

α
is the sampling rate. Since DWT is a single dimensional

transformation we need a mapping from ℜ3 to ℜ so that MP (X) ∈ ℜ. An example to

such a function is given in Equation A.3, in which e1 = (1, 0, 0).

MP1(X) = e1 ·X (A.3)

Consider a function f(x) : ℜ → ℜ, and let:

fτ (x) = f(x− τ) (A.4)

fs(x) = f(
x

s
) (A.5)

Then fτ (x) is the translation of f(x) by τ and fs(x) is the scaling or dilation of f(x)

by s. Fourier transform of a function f(x) is defined as:

f̂(w) =

∫ ∞

−∞

f(x)e−i2πxwdx (A.6)
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where i =
√
−1. The Fourier transform is a frequency analysis of the given function.

If f(x) is a function of time, then f̂(w) is a function of frequency with hertz as its unit.

The parameter of the Fourier transform is named w in this text to signify that it is

defined in the frequency domain. Convolution, (f ∗ g) of two discrete signals, f and g

is defined as:

(f ∗ g)[n] =
∑

m

f [m]g[n−m] (A.7)

Similarly, the inner product, < f, g > of two discrete signals, f and g is defined as:

< f, g >=
∑

k

f [k]g∗[k] (A.8)

where g∗ is the complex conjugation of g such that (a− ib)∗ = (a+ ib).

Finally, three performance metrics are used in this thesis to evaluate fall detection

performances, namely Recall, Precision and F − value. These metrics are defined as:

Recall =
TP

GT
∗ 100 (A.9)

Precision =
TP

TP + FP
∗ 100 (A.10)

F − value =
2 · Recall · Precision
Recall + Precision

(A.11)

where TP is the number of falls that are correctly identified by the fall detector, i.e.

true positives, GT is the actual number of falls in the processed data, i.e. ground truth,

FP is the number of false alarms generated by the system, i.e. false positives.
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