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ABSTRACT 

 

 

MOBILITY TRACKING ALGORITHMS FOR CELLULAR 

NETWORKS BASED ON KALMAN FILTERING  

 

 

This thesis is an in depth theoretical and practical survey of dynamic mobility 

tracking systems specifically for cellular networks. A user mobility state model that is 

originally proposed for tracking targets in tactical weapons systems is discussed. This 

mobility model captures a large range of mobility by modeling acceleration(manuever) as 

driven by a discrete semi-Markovian command process and a Gaussian time-correlated 

random process. Linear and nonlinear observation models are presented. For nonlinear 

model, received signal strength indicator model of a cellular communication network is 

considered. Based on these models, tracking algorithms are presented and simulated in 

Matlab. Algorithms differ in the type of observation model they use(linear or nonlinear) 

and in the way they treat semi-Markovian manuever component and they employ variants 

of the Kalman filter namely: traditional Kalman filter, extended Kalman filter, uscented 

Kalman filter or adaptive Kalman filter. Linear observation command mode algorithm, 

nonlinear observation command mode algorithm and unscented Kalman filter based 

version of nonlinear observation command noise algorithm are introduced in this thesis. 

Matlab simulations and root mean square error statistics of simulations represented by 

sample mean and standard deviation of a number of root mean square error values show 

that treating command process as an additional state noise is a more accurate  approach 

than treating it as a model variable within a mutliple model adaptive estimator. Extended 

and unscented Kalman filters are used to calculate predicted states and covariances when  

nonlinear observation model is used. Simulations and root mean square error statistics of 

simulations show that nonlinear structure of received signal strength indicator model 

causes large Gaussian approximation errors for posterior state probability and state and 

covariance prediction errors in extended and unscented Kalman filters, but smaller in 

uscented Kalman filter. Moreover, nonlinearity pronounces non-Gausianity of likelihood 

function used in the adaptive estimator as much as to terminate the estimator prematurely.  
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ÖZET 

 

 

HÜCRESEL AĞLAR ĐÇĐN KALMAN FĐLTRE ÇIKARIMI TABANLI 

HAREKET TAKĐBĐ ALGORĐTMALARI 

 

 

Bu tez çalısmasında özellikle hücresel ağlar için geçerli olan dinamik hareket takip 

sistemleri teorik ve pratik olarak derinlemesine incelenmiştir. Orjinal olarak taktiksel silah 

sistemlerinde hedefleri takip etmek için öne sürülen hareket durum modeli tartışılmaktadır. 

Bu modelde ivme(manevra), yarı Markov emir süreci ve zaman iniltili rastgele Gauss 

süreci ile modellenerek geniş bir hareket yelpazesi göz önünde tutulmaktadır. Doğrusal ve 

doğrusal olmayan gözlem modelleri sunulmaktadır. Doğrusal olmayan  model için, 

hücresel haberleşme ağlarında kullanılan alınan sinyal şiddeti göstergesi modeli 

kullanılmaktadır. Bu modellere bağlı olarak takip algoritmaları sunulmakta ve Matlab’da 

simule edilmektedir. Algoritmalar, kullandıkları gözlem modelinin tipine ve yarı Markov 

manevra birimine bakış açılarına göre farklılık göstermekte ve uygun Kalman filtre türleri 

kullanmaktadır: geleneksel Kalman filtre, genişletilmiş Kalman filtre, sezisiz Kalman filtre 

veya uyarlanabilir Kalman filtre. Doğrusal ve doğrusal olmayan gözlem komut model 

algoritmaları ile doğrusal olmayan gözlem komut gürültü  algoritmasının sezisiz Kalman 

filtre versiyonu bu tezde ortaya atılmıştır. Matlab simulasyonları ve simulasyonların 

karekök ortalama kare hata istatistikleri(ortalama değer ve standart sapma), emir sürecini 

ilave durum gürültüsü olarak değerlendirmenin emir sürecini çoklu model uyarlanabilir 

filtrenin model değişkeni olarak değerlendirmeye göre daha doğru ve verimli olduğunu 

göstermektedir. Doğrusal olmayan gözlem modelinin kullanıldığı durumlarda genişletilmiş 

ve sezisiz Kalman filtreler tahmini durum ve kovaryansların hesaplanmasında 

kullanılmaktadır. Sonuçlar göstermektedir ki alınan sinyal şiddeti göstergesi modelinin 

doğrusal olmayan yapısı, durum olasılığının Gauss olarak yakınsanmasında ve 

genişletilmiş ve sezisiz Kalman filtrelerin tahmini değerleri kestirmesinde ciddi sorunlar 

oluşturmaktadır(sezisiz Kalman filtre daha iyi sonuç vermektedir.). Hatta uyarlanabilir 

filtrenin olasılık fonksiyonunu Gauss olmaktan o derece uzaklaştırmaktadır ki filtre 

erkenden sonlanmak zorunda kalmaktadır. 
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1.  INTRODUCTION 

 

  

Target tracking is an element of a wider system that performs surveilance, guidance, 

obstacle avoidance or a similar function. In cellular communication networks, target(user) 

tracking is specifically used to provide seamless access to the network, quality-of-service 

(QoS) guarantees for mobile users and reliable location based services. Provision of  these 

services require efficient mobility management systems that are based on robust mobility 

tracking algorithms. Mobility tracking is distinguished from geolocationing, which only 

requires instant position estimation. In mobility tracking, not only current location of the 

mobile station but also its current velocity and acceleration, that together constitute 

mobility state characteristics of the mobile, are estimated in real time. Estimation of 

velocity and acceleration parameters enables prediction of future mobility state of the 

mobile in advance. Mobility state prediction plays a vital role for many applications that 

require fast handoff since time and location of handoff can be predicted ahead of time [1]. 

 

Special importance of mobility tracking for cellular communication networks like 

GSM, CDMA, ATM etc., makes mobility tracking for cellular networks a popular topic. In 

any tracking system like those proposed for cellular networks, creating realistic target 

mobility models to represent dynamic motion of targets and establishing efficient tracking 

algorithms based on these models are key challenges. For mobility models, special 

importance is given to the concept of manuevering, deviation from the straight line 

constant velocity movement [3]. As far as studied, cornerstone works in this area starts 

with Singer [3] who proposed a time-correlated Gaussian manuever model for 

manuevering targets that manuever in a time-correlated manner. Then, Moose [4] proposed 

a two-dimensional semi-Markovian manuever model to represent sudden, large-scale 

manuevers resulting from pilot(deterministic user) or missile-guidance program 

commands. Gholson and Moose [5] further developed semi-Markovian concept to be used 

in three-dimensional spherical coordinates. Moose, Vanlandingham and Mccabe [6] 

combined time-correlated manuever model of Singer [3] with the semi-Markovian 

manuever model of Moose [4] for spherical target motion. Spherical target motion model 

includes range, bearing, and elevation coordinates and mainly used for target tracking in 

tactical weapon systems. Finally, Liu, Bahl and Chlamtac [7] customized the combined 
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model presented in [6] to model two-dimensional mobility patterns of mobile users in a 

cellular network. As discussed in [7] and [1], this model can capture a wide range of 

dynamic and realistic user patterns for cellular networks. Cellular tracking system 

proposed in [7] uses the nonlinear received signal strength indicator(RSSI) model of a 

typical cellular network as the observation model.  

 

Based on the cellular mobility models proposed in [7], Kalman filtering based 

tracking algorithms are proposed in [7] and [1]. Basically, algorithm proposed in [7] uses a 

simplified multiple model approach regarding the commanding manuever component , 

called command process, as the model control variable. In this approach, meanuever 

commands correspond to models. Based on this approach, algorithm proposed in [7] uses 

an extended Kalman filter(EKF) to estimate user mobility states. MT1 algorithm proposed 

in [1] uses the same approach as the algorithm proposed in [7] moreover uses an additional 

prefilter to reduce effect of shadowing noise in RSSI observations and a linear Kalman 

filter to estimate commands of command process using prefiltered RSSI observations. 

MT1 applies an EKF that uses prefiltered RSSI observations and command estimates to 

estimate user mobility states. MT2 algorithm proposed in [1] assumes a single model 

approach and regards the command process as an additional state noise instead of a model 

variable and applies an EKF accordingly. 

 

In this thesis,  theoretical foundation of general mobility tracking and cellular 

mobility tracking models and algorithms proposed in [7] and [1] are presented as an in 

depth survey. Besides, a linear observation model and a linear tracking algorithm based on 

this model are introduced to create a general cellular tracking framework. Simplified 

multiple model algorithm proposed in [7] is regarded as invalid and an extended multiple 

model algorithm that has parallelly operating EKFs is proposed for the nonlinear RSSI 

observation model. A popular, robust sampling based nonlinear Kalman filter called 

unscented Kalman filter(UKF) proposed by Julier, Uhlman and Hugh [2]  is included to the 

MT2 algorithm proposed in [1] to improve performance of MT2 algorithm. These 

algorithms together with their original versions proposed in [7] and [1] are implemented 

and simulated in Matlab and their performances are compared. Potential problems related 

with the models and algorithms are presented. A detailed scope of this thesis is given 

below. 
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In general, estimation can be considered as filtering noise from the observation of the 

true signal whose value is to be estimated. Regarding this, Section 2 presents linear 

minumum mean square error(LMMSE) filtering. Basically, in LMMSE filtering, mean 

square error(MSE) between the signal and its estimate is to be minimized using linear 

filters. The most attractive feature of linear filters is that their simple linear and finite 

dimensional structure is easy to realize and implement computationally. Famous linear 

state estimator, Kalman filter, presented in Section 3, is LMMSE filter for dynamic 

systems of some special type.  

 

Mobility tracking systems are nothing but dynamic systems that evolve with respect 

to time. In this view, Section 3 discusses general framework for  analyzing dynamic 

systems. Discrete time state-space representation of dynamic systems and optimal(in the 

sense of MSE) Bayesian dynamic state estimation scheme are discussed. Special 

importance is given to the Kalman filter, the linear  minumum MSE(MMSE) state 

estimator for dynamic systems that have linear model(state model and observation model) 

equations and white and independent model disturbances. If model disturbances are also 

Gaussian, Kalman filter becomes the optimal Bayesian MSE state estimator for dynamic 

systems.  

 

A large number of dynamic systems in practice are nonlinear having at least one 

nonlinear model equation. Unfortunately, as given in Section 3, optimal MSE state 

estimator for nonlinear systems is impractical since it requires storage of an infinite 

dimensional probability density function(pdf) and numerical calculation of integration. 

Section 3 further discusses suboptimal MSE filtering for nonlinear systems. Two popular 

approaches, EKF and UKF are presented. Basically, these filters try to linearize the 

nonlinear model either analitically or probabilistically and utilize linear structure of 

traditioanl Kalman filter. At the end of Section 3, common adaptive estimation techniques 

for multiple model systems that have multiple models that switch in time according to a 

Markovian probalistic model are presented.  

 

Each dynamic system has 2 models represented by 2 equations: state (process or 

signal) model and observation (measurement) model, which are elaborated in Section 3. 

Section 4 presents mobility models of the general cellular tracking system that are used to 
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represent dynamic motion of users of cellular networks. Cellular tracking system contains 

a linear state model, a linear observation model and a nonlinear RSSI observation model. 

 

Section 5 presents Kalman filtering-based two-dimensional cellular tracking 

algorithms based on the mobility models discussed in Section 4. Basically, one group of 

algorithms use linear observation model and other group of algorithms use nonlinear RSSI 

observation model. EKF and UKF are used to cope with the nonlinearity of the RSSI 

model. Besides, one group of algorithms treats semi-Markovian manuever variable as an 

additional state noise and other group of algorithms treats it as the mode variable of a 

multiple model system and uses adaptive estimation schemes presented in Section 3. 

 

Section 6 presents simulation results obtained from independent Monte-Carlo 

simulations of tracking algorithms discussed in Section 5. Simulation results contain plots 

of actual versus estimated trajectories and root mean square error(RMSE) values. 

Simulation results are discussed in Section 7 that concludes the thesis. Potential future 

works are also presented in Section 7. 
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2.  LINEAR MINUMUM MEAN SQUARE ERROR ESTIMATION 

 

 

2.1.  Introduction 

     

In estimation theory, in general, a noisy version of a signal is observed and its true 

value is to be estimated [8]. As convention, the quantity to be estimated is called the 

“signal”, noisy version of the signal is called the “observation” and estimated value of the 

signal or output of the filter is called the “estimate”. In this view, estimation may be 

regarded as the filtering out noise from the observation to get the true value of the signal. 

That is why terms “filter” and “estimator” or “filtering” and “estimation” are used 

interchangebly throughout the text. Additionally, the signal, the observation and the noise 

are assumed to be random. The signal to be estimated may either be constant or a time-

varying quantity like the state of a dynamic system that will be elaborated in Section 3. 

     

In stochastic estimation systems, noise signals have some degree of uncertainity 

represented by their probability density functions. Because of the random disturbances 

generated by the noise signals, probabilistic methods are needed. In MMSE filtering 

schemes, expected value of the square of the error between the signal and its estimate is to 

be minimized. In this view, the optimal filter(estimator) is the one that minimizes MSE 

between the signal and its estimate. Such a filter is called MMSE filter. Besides, if the 

filter, being a function of the observations, linearly combines the observations to calculate 

the estimate, it is called linear MMSE or shortly LMMSE filter. As proven in [8], optimal 

MSE filter(not necessarily linear) is the conditional mean of the signal given the 

observations. Difficulty in realizing infinite dimensional conditional pdf makes LMMSE 

filtering very attractive because LMMSE filter is easy to realize and implement with 

simple, finite dimensional algebra and statistics as described in Section 2.2. Besides, 

Kalman filter is the LMMSE state estimator for dynamic systems as proven in [8] and in 

Section 3.3.  

 

Basically, as given in [8], LMMSE estimation relies on the principle of 

orthogonality. The LMMSE estimate of a random variable in terms of observations is such 

that 
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(i)  The estimate is unbiased – the estimation error has zero mean, and 

(ii) The estimation error is uncorrelated from the observation(s); 

that is, they are orthogonal since zero mean uncorrelated random variables are orthogonal. 

This is the principle of orthogonality: In order for the error to have minimum norm, it has 

to be orthogonal to the observations. This is equivalent to stating that the estimate  has to 

be orthogonal projection of the signal into the space spanned by the observations. 

 

2.2.  Linear Minumum Mean Square Error Estimation for Vector Random Variables 

 

Consider the vector valued random variables " and # , which are not necessarily 

Gaussian and zero-mean. The “best linear” estimate of " in terms # is obtained as follows. 

The criterion for “best” is the MMSE; that is, find the estimator 

 "4 H I# J K                                                   (2.1) 

 

that minimizes the scalar MSE criterion, which in the multidimensional case is the 

expected value of the squared norm of the estimation error, 

 L H ���" 6 "4�M�" 6 "4��                                       (2.2) 

 

According to the previous discussion, the linear MMSE estimator is such that the 

estimation error 

 "5 H " 6 "4                                                  (2.3) 

 

is zero-mean (the estimate is unbiased) and orthogonal to the observation # . In other 

words, the estimate "4 is the orthogonal projection of the vector " into the space spanned by 

the (random components of the) observation vector #. The unbiasedness requirement is  

 ��"5� H "= 6 �I#N J K� H 0                                     (2.4) 

 

where "= and #N are mean of " and #, respectively. This requirement yields 
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K H "= 6 I#N                                                 (2.5)  

 

The estimation error is then 

 "5 H " 6 "= 6 I�# 6 #N�                                         (2.6) 

 

The orthogonality requirement is, in the multidimensional case, that each component 

of "5 be orthogonal to each component of #. The orthogonality requirement can thus be 

written as 

 ��"5#M� H �PQ" 6 "= 6 I�# 6 #N�R#MS                                   (2.7) 

                                                H  �PQ" 6 "= 6 I�# 6 #N�R�# 6 #N�MS 
                                          H � ! 6 I�!! H 0                                                (2.8) 

 

where � ! is cross covariance of " and # and �!! is covariance of #. The subtraction of #N 

from # in the transition from (2.7) to (2.8) could be done in view of the property (2.4) that "5 is zero mean. The solution for the weighting matrix I is thus 

 

I H � !�!!A%                                                   (2.9) 

 

The existence of the above requires the invertibility of �!! , i.e., no linear dependence 

between the observations (or, equivalently, no redundant observations). Combining (2.5) 

and (2.9) yields the expression of the linear MMSE estimator for the multidimensional case 

as 

 

"4 H  "= J � !�!! A%�# 6 #N�                                      (2.10) 

 

The matrix MSE is given after simple manipulations, 

 ��"5"5M� H �  6 � !�!!A%�!                                   (2.11) 

 

Equations (2.10) and (2.11) are the fundamental equations of vectoral LMMSE estimation. 
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2.3.  Mean Square Error Estimation of Gaussian Random Vectors 

 

As stated before, in any case the optimal MSE estimate of " given # is conditional 

mean of "  

 "4 H ��"|#�                                                        (2.12) 

 

Given any number and type of observations, conditional mean gives the optimal MSE 

estimator, linear or nonlinear. Most of the time, conditional pdf is infinite dimensional and 

evaluation of it is prohibitively complicated. For these practical reasons, a LMMSE 

estimator mentioned above is preferred, although it is not optimal most of the time. 

However, if " and # are jointly Gaussian, (2.12) becomes linear: 

 "4 H ��"|#� H "= J � !�!!A%�# 6 #N�                               (2.13) 

 

and the corresponding conditional covariance matrix is  

 �  |! H �  6 � !�!!A%�!                                     (2.14) 

 

This follows from the fact that conditional pdf of " given # is Gaussian with mean 

(2.13) and covariance (2.14). Since above equations have the same form as (2.10) and 

(2.11), it can be said that the best MSE estimator for Gaussian random variables is 

identical to the best linear MSE estimator for arbitrarily distributed random variables with 

the same first  and second-order moments. In other words, the linear estimator (2.10)  is the 

overall best if the random variables are jointly Gaussian; otherwise it is only the best 

within the class of linear estimators. 
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3.  STATE ESTIMATION FOR DYNAMIC SYSTEMS WITH 

RANDOM INPUTS 

 

 

3.1.  Introduction 

 

 Mobility tracking systems are nothing but dynamic systems with random state and 

observation models. In this section, general methodology for estimating the state of 

dynamic systems driven by random noise signals is given. It is assumed that related models 

exist(Formulation of mobility models will be given in Section 4). Chapter 4,5,6,10 and 11 

of [9] and chapter 1 and 2 of [10] are extentesively used in the derivations below. State-

space approach is adopted for modeling dynamic systems and discrete-time formulation of 

the problem is considered. Thus, difference equations are used to model the evolution of 

the system over time, and observations are assumed to be available at discrete times. For 

dynamic state estimation, the discrete-time approach is both widespread and convenient 

[10]. 

 

The state-space approach focuses attention on the state vector of a system. The state 

vector contains all relevant information required to describe the system under 

investigation. For example, in tracking problems this information could be related to the 

kinematic characteristics of the target. Alternatively, in an econometrics problem, it could 

be related to monetary flow, interest rates, inflation, and so forth [10].  

 

The observation vector represents (noisy) observations that are related to the state 

vector. The observation vector is generally (but not necessarily) of lower dimension than 

the state vector. The state-space approach is convenient for handling multivariate data and 

nonlinear/non-Gaussian processes and it provides a significant advantage over traditional 

time-series techniques for these problems [10]. 

 

In order to analyze and make infrences about a dynamic system, at least two models 

are required. First, a model describing the evolution of the state with time (the system or 

dynamic model): 
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"�$% H  ��Q"�,1� , D�R                                           (3.1) 

 

where  �� is a known, possibly nonlinear function of the state vector "�, known control 

input 1�  and  process noise sequence D� . Process noise caters for any mismodelling 

effects or unforseen disturbances in the target motion model. State vector  "�  has 

dimension  � , so "� T  2�3; 2 is a set of real numbers. 
 is the time index and 
 T U; U is 

the set of natural numbers. Here index 
 is assigned to a continous-time instant ?� , and the 

“sampling interval” @�A% H ?� 6 ?�A%  may be time-dependent (i.e., a function of 
 ) 

Second, a model relating the noisy observation to the state(the observation model): 

 #�$% H ��$%�"�$%, V�$%�                                         (3.2)   

 

where  ��$%  is a known , possibly nonlinear function and V�$%  is a observation noise 

sequence.  

 

In dynamic state estimation, as a general solution, we seek filtered estimate of "�$% 

based on the sequence of all available information from initial time up to time 
 J 1: 

 ��$% H -��$%, ��.                                              (3.3) 

 

where ��$% H -#X, … , #�$%. is the cumulative set of observations from initial time up to 

time 
 J 1 and �� H -1X, … , 1�. is the set of known inputs from initial time up to time 
. 

 

3.2.  The Optimal Bayesian Mean Square Error Estimator 

 

In the Bayesian state estimation, it is assumed that above models are available in a 

probabilistic form and the noise sequences D� and V�$% will be assumed to be white, with 

known probability density functions and mutally independent. The initial target state is 

assumed to have a known pdf +�"X|�X� and also to be independent of noise sequences. 

Given these assumptions, in the Bayesian approach to optimal dynamic state estimation 

one attempts to construct the posterior probability density function of the state, based on all 

available information ��$%, +�"�$%|��$%�. Since this pdf embodies all available statistical 

information, it may be regarded to be the complete solution to the estimation problem. In 
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principle, an optimal (with respect to any criterion in general, but we use MMSE criterion 

in this text for optimality condition, so conditional mean of the state is calculated) estimate 

of the state may be obtained from the posterior pdf. A measure of the accuracy of the 

estimate may also be obtained . 

 

For many problems an estimate is required every time an observation is received. In 

this case a recursive filter is a convenient solution. Recursive filtering approach means that 

received data can be processed sequentially rather than as a batch, so that it is not 

necessary to store the complete data set nor to reprocess existing data if a new observation 

becomes available.  

 

As shown in [9], above assumptions  (white and mutually independent noise 

sequences) enable construction of +�"�$%|��$%� from +�"�|��� recursively. There is no 

need to store growing information set �� , which grows with k. The nongrowing 

information state +�"�|��� is a complete substitute for the past data in the pdf of any 

present and future quantity related to the system (Markovian property). The related 

recursive filter has the following form: 

 

+�"�$%|��$%� H %Z +�#�$%|"�$%�+�"�$%|���                        (3.4) 

 +�"�$%|��� is called prediction density (also referred to as the prior pdf) of the state 

at time 
 J 1 and given by the Chapman-Kolmogorov equation [9]: 

 +�"�$%|�� � H [ +�"�$%|"� , 1�� +�"�|����"�                      (3.5) 

 

and \ is the normalization constant as given in [10] 

 \ H +�#�$%|��� H [ +�#�$%|"�$%� +�"�$%|����"�$%               (3.6) 

 

The optimal filter given in (3.4) consists of essentially two stages: prediction and 

update. The prediction stage uses the system model to predict the state pdf forward from 

one observation time to the next. Since the state is usually subject to unknown disturbances 
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(modeled as random noise), prediction generally translates, deforms, and broadens the state 

pdf. The update operation uses the latest observation to modify (typically to tighten) the 

prediction pdf.  

 

  The recursive propagation of the posterior density, given by (3.4) , is only a 

conceptual solution in the sense that in general it cannot be determined analytically. The 

implementation of the conceptual solution requires the storage of the entire  pdf which is, 

in general terms, equivalent to an infinite dimensional vector. Only in a restrictive set of 

cases, one of which the Kalman filter that will be described in Section 3.3, the posterior 

density can be exactly and completely characterized by a sufficient statistics of fixed and 

finite dimension. Since in most practical situtaions the analytic solution of (3.4) and (3.5) 

is intractible, one has to use approximations or suboptimal Bayesian algorithms like those 

mentioned in sections 3.4 and and 3.5. 

 

3.3.  The Kalman Filter 

                      

In addition to previously mentioned Bayesian assumptions, if noise sequences have 

Gaussian densities of known parameters and model functions are linear, the Kalman filter 

becomes the optimal finite-dimensional algorithm for recursive Bayesian state estimation. 

This is a highly desired case for state estimation because linear structure of  Kalman filter, 

requiring only up to second order moments of state and observation vectors, make it very 

easy to implement computationally. In linear-Gaussian case, posterior density at every time 

step becomes Gaussian and hence is exactly and completely characterized by two 

parameters, its mean and covariance where mean is the optimal estimate. In this case, as 

will be elaborated, Kalman filter linearly propagates mean and covariance as new 

observations arrive. If noise signals are not Gaussian but models are still linear, Kalman 

filter is still valid and becomes the best linear MSE (LMMSE) filter for dynamic systems 

although not optimal overall. The derivation of the Kalman filter using chapter (5) of [9] is 

given as follows.  

     

Suppose (3.1) and (3.2) can be rewritten as: 

 

                                                       "�$% H ��"� J ]�1� J D�                                       (3.7) 
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     #�$% H �̂$%"�$% J V�$%                                       (3.8)                            

 

where  �� (of dimension �  x  � ), ]� (of dimension �  x  �_)  and �̂$% (of dimension �! 

x  �!) are known matrices defining the linear functions. Random sequences D�  and V�$% 

are mutually independent zero-mean white Gaussian, with covariances `�  and a�$% , 

respectively. Note that the system and observation matrices ��, ]� and �̂$% , as well as 

noise covariances `� and a�$% , are allowed to be time-variant, which means that signal 

and observation process are allowed to be non-stationary. For stationary processes, these 

matrices will be constant. 

 

The recursive linear Kalman filter algorithm that yields the state estimate at     
 J 1,  "4 H "4�$%|�$% and its covariance, �  |! H ��$%|�$% can be directly obtained from the static 

LMMSE estimation equations (2.10) and (2.11) 

 "4 H  "= J � !�!!A%�# 6 #N� b ��"|#�                                  (3.9) 

 ��"5"5M� H �  |! H �  6 � !�!!A%�!                               (3.10) 

 

by substituting  means "= and #N, covariances �  , �!!  and cross covariances � !and �!  of 

state vector "  and observation vector #  with the predicted state "4�$%|� , predicted 

observation #c�$%|� , predicted state covariance ��$%|� , predicted observation covariance 

d�$% and predicted cross covariances that are given below. Note that if noise sequences are 

Gaussian, as explained in 2.5., the approximation in (3.9) becomes exact and filter gives 

the overall optimal MSE solution, conditional mean. Also note that MSE related with the 

error "5 H " 6 "4 in (3.10) is equivalent to the covariance of " given # because the estimate 

is equivalent to the conditional mean. Derivation of the predicted mean and covariances 

and explicit update equations are given below: 

 

The predicted state "4�$%|�  substituting "= follows by applying the operator of 

expectation conditioned on �� on the state equation (3.7). Since the process noise D� is 

white and zero mean, this results in 

 



 
14 

 

��"�$%|��� H "4�$%|� H ��"4�|� J ]�1�                            (3.11) 

 

Subtracting above from (3.7) yields the predicted state error 

 "5�$%|� H "�$% 6 "4�$%|� H ��"5�|� J D�                            (3.12) 

 

Note the cancellation of input 1�  in (3.12), since it is known, it has no effect on the 

estimation error. 

 

The predicted state covariance  ��$%|� substituting �   becomes 

 

�P"5�$%|�"5�$%|�e|��S H ��$%|� H ����|��� e J `�                   (3.13) 

 

The cross-terms in (3.13) are canceled due to the fact that D� is zero mean and white and, 

thus orthogonal to "5�|�. 

 

The predicted observation #c�$%|�  substituting #N follows similarly by taking expected 

value of (3.8) conditioned on �� . Since observation noise is zero mean and white this 

becomes 

 ��#�$%|��� H #c�$%|� H �̂$%"4�$%|�                                (3.14) 

 

Subtracting the above from (3.8) yields the predicted observation error, also called 

innovation or observation residual, f�$% 

 #g�$%|� H #�$% 6 #c�$%|� H f�$% H �̂$%"5�$%|� J V�$%                (3.15) 

 

The predicted observation covariance d�$%substituting �!! , also called innovation 

covariance becomes 

 ��f�$%f�$%e|��� H d�$% H �̂$%��$%|� �̂$%       e J a�$%                (3.16) 
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The predicted cross covariance between the state and observation becomes 

 

�P"5�$%|�#g�$%|�e|��S H � ! H ��$%|� �̂$%       e                         (3.17) 

 

Then the filter gain  � !�!!A% H  h�$% becomes 

 

h�$% H ��$%|� �̂$%       ed�$%A%                                   (3.18) 

 

Finally updated state "4 H "4�$%|�$%  in (3.9) and  updated state covariance �ii|! H
��$%|�$% in (3.10) becomes  

 "4�$%|�$% H "4�$%|� J h�$%f�$%                                 (3.19) 

 ��$%|�$% H ��$%|� 6 h�$%d�$%h�$%       e                          (3.20) 

 

3.4.  The Extended Kalman Filter 

 

 Reality manifests itself as being very complex: nonlinear, non-Gaussian, non-

stationary, and with continuous-valued target states. Therefore, in most practical situations, 

the optimal filters, like linear-Gaussian Kalman filter mentioned above cannot be applied. 

Instead, one is forced to use approximate or suboptimal solutions [10]. 

 

 In one group of mobility models discussed in this text, observation equation is 

nonlinear. Hence, linear predicted mean and covariance calculations in the traditional 

Kalman filter discussed above can not be applied for these models to obtain optimal 

estimate. The EKF is one of the commonly used approximate solutions that can be applied 

when  any of the model equations is nonlinear. The main future of the EKF is that it 

linearizes the nonlinear functions in the model equations so that linear equations of the 

Kalman filter can be used. EKF is derived for nonlinear systems with additive noise; that 

is, for spacial case of  (3.1) and (3.2) given here: 

 "�$% H ���"�� J D�                                             (3.21) 
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                                        #�$% H ��$%�"�$%� J V�$%                                       (3.22)                                                                  

 

where, for simplicity, it is assumed that there is no control input. Random sequences D�   
and V�$% are mutually independent, zero-mean and white with covariances `�  and a�$% , 

respectively.  

 

3.4.1.  Linearization 

 

The EKF is based on the assumption that local linearization of the (3.21) and (3.22) 

by the first term of their Taylor Series expansion may be a sufficient description of the 

nonlinearity. Local linearizations �j�  of �� and k̂�$% of ��$%  are defined as Jacobians 

evaluated at "4�|� and "4�$%|� , respectively; that is: 

 

                                                       �j� H  �l7m�� e�78�� e|7mn"4o|o                                   (3.23) 

 k̂�$% H  �l7mpq��$%     e �78$%�� e|7mpqn"4opq|o                        (3.24)     

 

where  

                                                

            l7m H r ss7m�%� … ss7m�tu�v T
                                      (3.25) 

  

with  78�i�, i H 1, … , ny , being the ith component of 78 . An element of say, k̂�$% is given 

by: 

 

k̂�$%�	, � H z{mpq�|�z7mpq�}� |7mpqn"4opq|o                              (3.26) 

 

where h8$%�i� denotes the ith component of vector h8�78�.  
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3.4.2.  Filter Equations 

 

As shown below, except calculations of �j� and k̂�$% as given above, linear filter 

equations for the EKF is nearly the same as traditional Kalman filter derived above. The 

only difference is usage of �j� and k̂�$%. Derivation of these equations are given in detail 

in [9]:  

               

                                           "4�$%|� H ���"4�|��                                              (3.27)           

                           

                                             ��$%|� H `� J �j���|��j� e                                         (3.28) 

  d�$% H k̂�$%��$%|� k̂�$%       e J a�$%                                 (3.29) 

                              

                                                        h�$% H ,�$%|� k̂�$%       ed�$%      A%                                    (3.30) 

 

                                "4�$%|�$% H "4�$%|� J h�$% �#�$% 6 ��Q"4�$%|� R�                   (3.31) 

         

                                             ��$%|�$% H ��$%|� 6 h�$%d�$%h�$%      e                            (3.32)                                         

                                                             

3.5.  The Unscented Kalman Filter 

 

If the nonlinearity in models (3.21) and (3.22) is very severe, approximation error 

due to linearization will be more pronounced and performance of the EKF will be degraded 

significantly. In this case, prediction errors resulting from linearization errors will make the 

EKF perform poorly. Even worser, if  the nonlinear functions are discontinous, EKF 

cannot be applied at all. Additionally, most of the time calculation of Jacobians in each 

time step may become cumbersome and time-consuming. 

 

The UKF proposed in [2] is one of the solutions  proposed to overcome the described 

problems with the EKF. UKF is a sampling based approach that approximates the posterior 

density by a set of small number of deterministically chosen samples. Instead of 

linearization, it uses the unscented transform(UT) in Kalman filter framework to calculate 
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predicted mean and covariances. UKF is applicable even when there is a discontinuity in 

nonlinear fucnstions � and �, because no explicit calculation of Jacobians is necessary. 

 

As proved in [2], the sample points completely capture the true mean and covariance 

of the posterior density and when propagated through a nonlinear transform, their sample 

mean and covariance capture the true mean and covariance up to the third order of 

nonlinearity (with errors introduced in the fourth and higher orders). Strong approximation 

features of  UT make UKF perform better than EKF most of the time [2]. 

 

3.5.1.  The Unscented Transform 

 

The UT is a method for calculating the statistics of a random variable that undergoes 

a nonlinear transformation. Consider propagating a random vector �, with mean �N  and 

covariance ,�  , through an arbitrary nonlinear function � �  2�� � 2��  , to produce a 

random vector  � H ����. The first two moments of � are computed using UT as follows. 

First, 2�� J 1 weighted sample points (��, ��) are deterministically chosen so that they 

completely describe (capture) the true mean �N and covariance ��� of � . A scheme that 

satisfies this requirement is: 

 

�X H �N                                                        �X H ����$��                           	 H 0 

�� H �N J Q���� J ����R�                         �� H %*���$��                          	 H 1, … , �� 

�� H �N 6 Q���� J ����R�                         �� H %*���$��                          	 H �% J 1, … ,2�� 

 

where � is a scaling parameter (such that � J �� � 0 ) and Q���� J �����R�  is the 	th 

row of the matrix square root�  of ��� J ����� , such that ��� J ����� H � e� . The 

weights are normalized; that is, satisfy ∑ ��  *���nX H 1 .  

 

Now each sample point is propagated through the nonlinear function �: 

 

   �� H �����  �	 H 0,1, … ,2���                                      �3.33�          
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and the first two moments of  � are computed as follows: 

 

                                                              �N H ∑ ����*���nX                                                  �3.34�               

 

                                             ��� H ∑ ����� 6 �N���� 6  �N� e���nX                                �3.35�                                  

 

3.5.2.  Filter Equations 

 

After calculating sample points ���  and their weigths ���  , 	 H 0, … , � 6 1 using UT, 

UT is further used to calculate predicted estimates and covariances from the sample points 

and their weights. Then, predicted statistics are  used in the linear Kalman filter framework 

to calculate updated state estimate and covariance. Resulting equations that are derived in 

[10] are presented below. It is assumed that  sigma points are calculated. 

 ��$%|�� H �8���� �                                                  (3.36) 

 "4�$%|� H ∑ ���  .�A%�nX ��$%|��                                          (3.37) 

 

��$%|� H `� J ∑ ��� P��$%|�� 6 "4�$%|�SP��$%|�� 6 "4�$%|�S e�A%�nX               (3.38) 

 #c�$%|� H ∑ ���  .�A%�nX ��$%���$%|�� �                                  (3.39) 

 

� ! H ∑ ��� P��$%|�� 6 "4�$%|�SP��$%Q��$%|�� R 6 #c�$%|�S e�A%�nX                (3.40) 

 

�!! H ∑ ��� P��$%Q��$%|�� R 6 #c�$%|�SP��$%Q��$%|�� R 6 #c�$%|�S e�A%�nX       (3.41) 

 d�$% H �!! J a�$%                                              (3.42) 

 h�$% H � !d�$%     A%                                             (3.43) 

 "4�$%|�$% H "4�$%|� J h�$%�#�$% 6 #c�$%|��                         (3.44) 
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��$%|�$% H ��$%|� 6 h�$%d�$%h�$%      e                          (3.45) 

                                                                                                                                                                                            

3.6.  Adaptive Estimation For Multiple Model Systems 

 

In the models considered above, the only uncertainities consisted of additive white 

noise signals with known statistical properties. In other words, the system model, 

consisting of the state transition matrix, the input gain and input(if any), the observation 

matrix and noise covariances were all assumed to be known. However, in some systems 

like multiple model systems, it is assumed that the system obeys one of a finite number of 

models. Such systems are called hybrid: They have both continuous noise uncertainities 

and discrete uncertainities - model or mode or operating regime uncertainities [9]. As 

stated in Section 5, multiple model systems are common in tracking systems that have 

Markovian manuevering target dynamics. 

 

The purpose of this section is to present adaptive state estimation technique for 

multiple model systems that can adapt itself to model changes. A Bayesian framework is 

used: Starting with prior probabilities of each model being correct(i.e., the system is in a 

particular mode), the corresponding posterior probabilities are obtained [9]. The dynamic 

situation of switching models or mode jumping is considered, so the system undergoes 

transitions from one mode to another. 

 

The dynamic multiple model system is modeled by the equations   

 "� H �����"�A% J D�A%����                                            (3.46) 

 

   #� H ^����"� J V�����                                               (3.47)                                                                  

 

where ��  denotes the mode or model at time k – in effect during the sampling period 

ending at k, ����� and ^���� denote the transition and observation matrices of the system 

at mode �� and D�A%���� and V����� denote noise components of the system at mode ��. 

That is, the structure of the system and/or the statistics of the noise signals might be 

different from model to model. 
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The mode at time k is assumed to be among the possible 0 modes 

 

�� T �����n%�
                                                (3.48) 

 

The �th mode history – or sequence of models – through time 
 is denoted as 

 ��,� H ���q,�, … , ��o,� �   � H 1, … , 0�                             (3.49) 

 

where 	�,� H 1, … 0 is the model index at time 
 from history �. Note that the number of 

histories increases exponentially with time. For example, with 0 H 2 one has at time 
 H 2  0� H 4 possible sequences(histories). 

 

It is assumed that the mode(model) switching – that is, the mode jump process – is a 

Markov process(Markov chain) with known transition probabilities 

 +�� H ,��� H ��|��A% H �� �                             (3.50)  

 

These mode transition probabilities will be assumed time-invariant and independent of the 

base state. In other words, this is a homogeneous Markov chain. 

 

The event that model  is in effect at time 
 is denoted as 

 

��� H ��� H ���                                         (3.51) 

 

The conditional probability of the �th history is given by 

 /�,� H ,���,�|���                                        (3.52) 

 

The �th sequence of model through time 
 can be written as  

 

��,� H ���A%,  , ����                                         (3.53) 
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where sequence ¡ through 
 6 1 is its parent sequence and �� is its last element. Then, in 

view of the Markov property, 

 

,����|��A%, � H ,����|��A%� � H +��                           (3.54) 

 

where 	 H ¡�A%, the index of the last model in the parent sequence ¡ through 
 6 1.  

 

The conditional pdf of the state at 
 is obtained using the total probability theorem 

with an exponentially increasing number of terms  

 

+�"�|��� H ∑ +Q"�|��,� , ��R/�,��o�n%                                (3.55) 

 

where, as derived in [9],  

 

/�,� H %Z  +Q#�|��,� , ��A%R+��/�A%,                               (3.56) 

 

where 	 H ¡�A% is the last model of the parent sequences. (3.56) shows that conditioning on 

the entire past history is needed even if the random parameters are Markov. Besides, 

according to (3.55), to each mode sequence a filter is to be matched. Hence, an 

exponentially increasing number of filters are needed to estimate the sate, which makes the 

optimal approach impractical.  

 

3.6.1.  The First Order Generalized Pseudo-Bayesian Multiple Model Estimator 

 

The only way to avoid the exponentially increasing number of histories is to use 

suboptimal techniques. The generalized pseudo-Bayesian(GPB) approaches combine 

histories of models that differ in “older” models to decrease number of histories used in 

summation. For example, the first order GPB, denoted as GPB1, considers only the 

possible models in the last sampling period. This algorithm requires only 0  filters to 

operate in parallel. 
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In GPB1, at time 
 the state estimate is computed under each possible current model, 

so a total of 0 possibilities(hypotheses) are considered. All histories that differ in “older” 

models are combined together. The total probability theorem is thus used as follows: 

 

+�"�|��� H ¢ +Q"�|��� , #� , ��A%R/��
�

�n%  

H ∑ +Q"�|���, #� , "4�A%|�A%, ��A%|�A%R/����n%                             (3.57) 

 

where /��  is the probability of mode ��  being active at time 
. Thus at time 
 6 1 

there is a single lumped estimate "4�A%|�A%  and the associated covariance that 

approximately summarizes the past ��A%. From this, one carries out the prediction to time 
 and the update at time 
 under 0 possibilities: 

 

"4�|�� H "4P
|
; ��� , "4�A%|�A%, ��A%|�A%S           H 1, … , 0                  (3.58) 

 

��|�� H �P
|
; ��� , ��A%|�A%S          H 1, … , 0                         (3.59) 

 

After the update, the estimates are combined with the weightings /�� , resulting in the 

new combined estimate "4�|� . In other words, in each cycle, each of 0  model-matched 

filters runs to produce mode-conditioned state "4�|��
, the associated covariance ��|��

 and 

mode likelihood function F�� . Likelihood function is used to calculate mode probability/�� 

as presented below. Finally, at the end of each cycle, 0 hypotheses are merged into a single 

hypothesis as follows: 

  

"4�|� H ∑ "4�|����n% /��                                            (3.60) 

 

��|� H ∑ /�� ¤��|�� J r"4�|�� 6 "4�|�vr"4�|�� 6 "4�|�vM¥��n%               (3.61) 

   

/��  is derived in [9] and is given by  
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/�� H %Z F�� ∑ +����n% /�A%�                                        (3.62) 

 

where +��  is the known mode transition probability and likehood function F��  and 

normalization constant \ is given as follows: 

 

F�� H +Q#�|��� , ¦c�A%|�A%, ��A%|�A%R                          (3.63) 

 

\ H ∑ F�� ∑ +����n% /�A%���n%                                    (3.64) 
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4.  CELLULAR TRACKING SYSTEM 

 

     

4.1.  Introduction 

 

In tracking systems, target state typically consists of kinematic components (position, 

velocity, acceleration, and so forth) and measurements are noise-corrupted observations 

related to the target state. The kinematic observations are collected by various type of 

sensors and include target range, azimuth(bearing), elevation and range rate(extracted from 

Doppler frequency). State model represents dynamic motion of the target(evolution of the 

state vector) with respect to time and observation(measurement) model relates the 

observation(measurement) vector to the state vector. In this section, a special type of 

tracking system for cellular communication networks called “cellular tracking system” is 

presented. In general, this system consists of a state model and two observation models that 

form the basis for the cellular tracking algorithms discussed in Section 5. These models are 

presented in Sections 4.2 and 4.3. 

 

4.2.  State Model 

 

The state model of the cellular tracking system  is discussed in [1] and [7] and is a 

special combination of the time-correlated model given in [3] and the semi-Markovian 

model given in [4]. According to this combined model, movement of mobile users is 

similar to dynamic motion of manuevering targets in tactical weapon systems. This model 

can capture a wide range of mobility scenarios, including sudden stops and changes in 

acceleration. The state model is developed below. 

 

 

The status of the mobile station at time t is defined by a state  vector 

 "�?� H �§�?�, §̈�?�, §© �?�, ª�?�, ª̈�?�, ª© �?�� e                              (4.1)                   
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where §�?� and ª�?� specify the position, §̈�?� and ª̈�?� specify the velocity, and §© �?� and ª©�?� specify the acceleration in the x and y directions in a two-dimensional grid. The state 

vector can be written more compatctly as  

 

                                                           "�?� H �¦�?�, «�?�� e                                             (4.2)                  

 

where  ¦�?� H �§�?�, §̈�?�, §© �?�� e and  «�?� H �ª�?�, ª̈�?�, ª©�?�� e . 

 

4.2.1.  Manuever Modeling 

 

In tracking environments, deviation of targets from straight line constant velocity 

movement is regarded as manuevering. Road turns, traffic lights, evasive manuevers, 

accelerations due to atmospheric turbulence, sudden stops and accelerations may be 

viewed as manuevers. Since acceleration accounts for the target deviations from constant 

velocity movement, it is termed as the target manuever variable [3].  

 

The acceleration vector, target manuever variable, ��?� H �§© �?�, ª© �?�� e  , is modeled 

as follows: 

 

                                    ��?� H  1�?� J f�?� ,                                                  (4.3) 

 

where 1�?� H P¬i�?�, ¬�?�S e
 is a discrete-valued Markovian process and f�?� H

P0i�?�, 0�?�S e
is a zero-mean Gaussian process chosen to cover the gaps between adjacent 

levels(states) of the process 1�?�.  

 

The processes ¬i�?� and ¬�?�  are modeled as semi-Markov processes that take 

values from a finite set of acceleration levels(states) ® H -�% , … , �¯.. Thus, the process 1�?� takes values in the set � H ® � ®. A semi-Markov process differs from a Markov 

process in that the duration of time in one state prior to switching to another state is itself a 

random variable. 
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 1�?�  is used to model sudden and unexpected target-controlled changes in the 

acceleration. It helps the target mobility model to view the target as if it is responding to 

deterministic acceleration commands given by the pilot or mobile user, that is why it is 

also termed as command process. Hence, commands correspond to discrete “states” of a 

semi-Markov process which are selected according to the transition probabilities of the 

Markov process and remain active according to a seperate random variable.  

        

  f�?� acts as time-correlated noisy acceleration component and covers gaps between 

the discrete acceleration states. Generally, it accounts for non-target-controlled 

environmental manuevers. This type of manuever capability can be satisfactorily specified 

by two quantities: the variance, or magnitude of the target manuever and the time constant, 

or duration of the target manuever.  

 

 f�?� is correlated in time; namely, if a target is accelerating at time t, it is likely to 

be accelerating at time ? J ° for sufficiently small τ. For example, a lazy turn will often 

give rise to correlated acceleration inputs for up to one minute, evasive manuevers will 

provide correlated acceleration inputs for periods between ten and thirty seconds, and 

atmospheric turbulence may provide correlated acceleration inputs for one or two seconds. 

A typical representative model of the correlation function for one dimensional  0�?�  is 

given by: 

 

                  a��°� H ��0�?�0�? J °�� H (%*±A²|³|  ,  α ´ 0                            (4.4) 

 

where  (%*  is the variance of the target acceleration and α is the reciprocal of the 

acceleration time constant. For example, α H 1/60  for a lazy turn, α H 1/20  for an 

evasive manuever, and α H 1 for atmospheric turbulence.     

 

The variance (%*  of  target acceleration is calculated as follows: The target can 

accelerate at a maximum rate �¯�i�6�¯�i� and will do each with a probability ,̄ �i  . 

The target undergoes no acceleration with a probability ,X, and will accelerate between the 

limits  6�¯�i   and  �¯�i according to the appropriate uniform distribution. The variance  (%* of the resulting acceleration probability density model is  
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                             (%* H ¸¹�º»
¼ �1 J 4,̄ �i 6 ,X� .                                       (4.5) 

 

This model has been utilized in tracking simulations and has been shown to provide a 

satisfactory representation of the target’s instantaneous manuever characteristics. 

 

Utilizing the correlation function a��°� , the acceleration 0�?� may be expressed in 

terms of zero-mean white noise by the Wiener-Kolmogorov procedure(by passing a zero-

mean white Gaussian random process through a single pole filter). The Laplace transform 

of a��°� is given by :  

 

                      a�½� H ®-a��°�. H A*²¾q»
� A²�� $²� H ^�½�^�6½�h�½�                       (4.6) 

 

where 

 

^�½� H % $²                                                      (4.7)                      

h�½� H 2¿(%*                                                 (4.8) 

 

The quantity ^�½� is the transform of the single pole filter for 0�?� and h�½� is the 

transform of the white noise À�?� that drives 0�?�. Therefore the resulting equations in 

time domain are: 

 

                                          0̈�?� H 6¿0�?� J À�?�                                           (4.9)                           

 

where (Á* �°� , the correlation function of the white noise input, satisfies 

                                                                  

    (Á* �°� H 2¿(%*E�°�                                           (4.10) 

 

As a result, two dimensional f�?� has the form of  

 

                               f̈�?� H 6¿f�?� J D�?�                                       (4.11)                                      

 

with the autocorrelation function 
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                                      af�°� H ��f�?�f�? J °� e� H (%*±A²|³|�*  ,  α ´ 0                (4.12) 

     

where �* is 2 x 2 identity matrix.  

 

To sum up, target manuever variable ��?� H 1�?� J f�?�   is represented by a 

correlated gaussian noise with randomly switching mean. Random means correspond to 

states of command process 1�?�  and  time-correlated behaviour of the ��?�  between 

random means comes from f�?�.  

 

4.2.2.  State Model Equations 

    

From (4.3) and (4.11) we know that  

                                            

 C̈i�?� H 0̈i�?� H 6¿0i�?� J Ài�?�                                        (4.13) 

 

Above equation can be extended as follows to include command process ¬i�?� 

 

  C̈i�?� H 6¿0i�?� 6 ¿¬i�?� J ¿¬i�?� J Ài�?� H 6¿Ci�?� J ¿¬i�?� J Ài�?�       (4.14)      

 

Putting  §© �?� H Ci�?�  in  (4.14) we get following linear system equation describing the 

state evolution in the x-direction: 

 

                                             ¦̈�?� H �Â%¦�?� J ]Ã%¬i�?� J ÄÂ%Ài�?�                               (4.15)               

 

where 

 

                                  �Â% H Å0 1 00 0 10 0 6¿Æ  ,  ]Ã% H Å00¿Æ  ,  ÄÂ% H Å001Æ                           (4.16)   

 

Similarly, the state equation for the y-direction is given by 

 

                                          «̈�?� H �Â%«�?� J ]Ã%¬�?� J ÄÂ%À�?�                                 (4.17)          
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Combining (4.15) and (4.17) yields the overall state equation 

 

                                                "̈�?� H �Â"�?� J ]Ã1�?� J ÄÂD�?�                                    (4.18) 

 

where 

   

                                    �Â H �* Ç �Â% ,  ]Ã H �* Ç ]Ã%  ,  ÄÂ H �* Ç ÄÂ%                           (4.19)                 

 

and Ç denotes Kronecker matrix product. 

 

By sampling the state once every T time units, the system can be characterized in 

terms of the discrete-time state vector "� H "��@� . The corresponding discrete-time state 

equation is given by 

                                                 

    "�$% H �"� J ]1� J D�                                         (4.20) 

 

where  

 

                                               � H ± Ã̧e   ,  ] H [ ± Ã̧�È$eA³�]Ã�°È$eÈ                                 (4.21)   

      

                                              D� H [ ± Ã̧�È$eA³�ÄÂD�°��°��$%�e�e  .                                (4.22)           

          

The vector D�  is a 6 x 1 column vector. The process D�  is a discrete –time zero 

mean, stationary Gaussian process with autocorrelation function aD�
� H E�`  , where EX H 1 and E� H 0  when 
 � 0 which means that D�  is a white process. The matrix ` , 

the covariance matrix of D� , is given as follows: 

 ` H 2¿(%*�* Ç `%�@�                                          (4.23) 

 

where  `%�@� H P/��S is a symetric 3 x 3 matrix with upper triangular entries given as 

follows: 
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/%% H �1 6 ±A*²e J 2¿@ J 2¿¼@¼ 3⁄ 6 2¿*@* 6 4¿@±A²e�/�2¿Ê� , /%* H �±A*²e J 1 6 2±A²e J 2¿@±A²e 6 2¿@ J ¿*@*�/�2¿Ë� , /%¼ H �1 6 ±A*²e 6 2¿@±A²e�/�2¿¼� , /** H �4±A²e 6 3 6 ±A*²e J 2¿@�/�2¿¼� , /*¼ H �±A*²e J 1 6 2±A²e�/�2¿*� , /¼¼ H �1 6 ±A*²e�/�2¿� . 

 

The matrices � and ] in (4.21) are given by: 

 � H �* Ç �%�@�  ,  ] H �* Ç ]%�@�                         (4.24) 

 

where   

 

�%�@� H Å1 @ C0 1 K0 0 ±A²eÆ  ,  ]%�@� H Ì \¿C¿KÍ   with 

 C H �61 J ¿@ J ±A²e�/¿* ,  K H �1 6 ±A²e�/¿  , \ H �1 6 ¿@ J ¿*@*/2 6 ±A²e�/¿* . 

 

4.3.  Observation Models 

 

As observation models, linear model given in [3] and nonlinear RSSI model given in 

[1] and [7] are considered. In general, in linear model, observation vector contains x and y 

coordinates and in RSSI model observation vector contains three largest RSSI values 

related with three different neighboring base stations. An RSSI value is an index of 

distance between the mobile station and base station. Observation models are presented in 

sections 4.3.1 and 4.3.2 below. 

 

4.3.1.  Linear Observation Model 

 

According to linear model, tracking sensor is assumed to measure target position 

along the dimensions being analyzed. For cellular tracking system, x and y coordinates are 

assumed to be measured and following observation model equation is provided: 
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#� H ^"� J V�                                              (4.25) 

 

where  

 ^ H �1 0 0 0 0 0; 0 0 0 1 0 0�                                (4.26) 

 

and V�is additive white noise with covariance matrix a H (Î*�* .  

 

4.3.2.  Nonlinear Observation Model 

 

In  a cellular network, the distance between the mobile unit and a reachable base 

station can be inferred from the RSSI of the pilot signal of the base station. The RSSI, 

measured in dB, is typically modeled as the sum of three terms: path loss, shadow fading, 

and fast fading. Fast fading is assumed to be sufficiently attenuated using a low pass filter. 

Therefore, the RSSI received at the mobile unit from the base station in cell 	  with 

coordinates �C� , K��  at time 
 is given by 

                                                  

  G�,� H �� 6 10Ï logQ��,�R J Ó�,�                                 (4.27)            

  

where ��  is a constant determined by the transmitted power, wavelength, antenna height, 

and gain of cell 	 , Ï is a slop index (typically Ï H 2 for highways and Ï H 4 for microcells 

in a city) , Ó�,� is a zero mean , Gaussian process with standard deviation (Î typically from 

4-8 dB, and ��,� is the distance between the mobile unit and the base station, given by 

                                          

  ��,� H ��§� 6 C��* J �ª� 6 K� �*                               (4.28) 

 

To locate the mobile station in the two-dimensional plane, three distance 

observations to neighboring base stations are sufficient. Thus, the observation vector 

consists of the three largest RSSIs denoted G�,% , G�,* , G�,¼ , given as follows: 

 

         #� H QG�,%, G�,* , G�,¼R e H ��"�� J V�                                 (4.29) 
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where V� H QÓ�,%, Ó�,*, Ó�,¼R e
 and 

 

                                                  ��"�� H Ô 6 10Ï log����                                          (4.30)                     

 

where  Ô H ��%, �*, �¼� e   and  �� H Q��,%, ��,*, ��,¼R e
. The covariance matrix of V�  is 

given by a H (Î*�¼ . 
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5.  MOBILITY TRACKING ALGORITHMS FOR CELLULAR 

TRACKING SYSTEM 

 

 

5.1.  Introduction 

 

In this section mobility tracking algorithms based on the mobility models discussed 

in Section 4 are presented. Basically, there are five algorithms, two using the linear 

observation model given in (4.25) and three using the nonlinear RSSI observation model 

given in (4.29). All algorithms use the same state model given in (4.20). In all algorithms, 

semi-Markovian command process input 1�  is assumed to be unknown. Two algorithms 

treat command process as additional state noise and others treat it as the mode-variable of a 

multiple model system with modes determined only by the discrete states(commands) of 

the command process.  

 

The Table 5.1 lists the algorithms according to the mesurement model they use, the 

way they treat command process and the type of the Kalman filter they use. Algorithms are 

named according to the type of the observation model and the way command process 

treated. According to this convention, names of the algorithms are as follows respectively: 

linear observation command noise(LOCN) algorithm, linear observation command 

mode(LOCM) algorithm, nonlinear observation command noise(NOCN) algorithm [1] , 

nonlinear observation command mode(NOCM) algorithm and prefiltered nonlinear 

observation command mode(PNOCM) algorithm [1]. The term “prefiltered” in the name of 

the last algorithm refers to the prefilter used in the algorithm.  

 

In general, LOCN algorithm uses a linear Kalman filter. LOCM algorithm uses a 

Bayesian estimator to estimate command process and a linear Kalman filter to estimate 

mobility states. NOCN algorithm uses an EKF and an UKF. NOCM algorithm uses 

parallelly operating EKFs and takes the average of outputs of parallel filters. PNOCM 

algorithm uses a prefilter to filter out RSSI observations, a modified Kalman filter to 

estimate command process and an EKF to estimate mobility states. These algorithms are 

presented in detail in the following sections. 
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Table 5.1.  Mobility tracking algorithms 
 

Name of the 

Algorithm 

Type of the 

Observation Model 

Way Commad 

Process treated 

Type of the 

Kalman Filter 

LOCN Algorithm Linear State Noise Linear 

LOCM  Algorithm Linear Mode Variable Linear 

NOCN Algorithm Nonlinear State Noise 
Extended and 

Unscented 

NOCM Algorithm 
Nonlinear 

 
Mode Variable Extended 

PNOCM Algorithm Nonlinear Mode Variable Extended 

 

 

5.2.  Linear Observation Command Noise Algorithm 

 

In the LOCN algorithm, command process 1� is treated as additional state noise and 

a linear Kalman filter based on the state model given in (4.20) and linear observation 

model given in (4.25) is applied. New state noise becomes ]1� J D� and covariance of 

the new state noise which is denoted by Ã̀  is calculated as follows as defined in [1]. 

 Ã̀ H ` J ]���1� 6 ��1����1� 6 ��1��� e�] e                            (5.1) 

 

where the matrix  ` is the covariance matrix of D�  , Gaussian state noise. The discrete 

command process 1� consists of two zero-mean independent semi-Markov processes, so 

the covariance matrix of 1�  is given below as defined in [1].  

 

   ���1� 6 ��1����1� 6 ��1��� e� H (_*�*                                (5.2)        
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where (_* is the variance of ¬i and ¬. Although the new state noise process, ]1� J D�, is 

not white, the correlation between 1�  and D� is ignored. LOCN algorithm is depicted by 

the Figure 5.1.  
 

 

 

 

 

 

 

 

   
 

 
 

Figure 5.1.  LOCN algorithm 

 

The linear Kalman filter used in the LOCN algorithm is described by the Figure 5.2 

below. Note that in the calculation of predicted covariance new state noise covariance Ã̀ is 

used. Linear observation model given in (4.25) and state model given in (4.20) is used in 

the filter steps. 

 

5.3.  Linear Observation Command Mode Algorithm 

 

In the LOCM algorithm, command process 1�  is regarded as the mode variable of a 

multiple model system and a GPB1 adaptive multiple model state estimator based on the 

state model given in (4.20) and linear observation model given in (4.25) is applied. Since 

the only component that changes among the models is the realization of command process 1� , 1�  is regarded as the mode variable. Hence, each of the discrete states(commands) of 1� corresponds to a mode(model) and mode probability corresponds to command 

probability. Number of commands 0 determine number of modes and hence the number of 

mode-conditioned filters. As discussed in the modified Kalman filter part of [1], since all 

filter components other than command value are the same for all mode-conditioned filters 

of GPB1, GPB1 estimator of the LOCM algorithm can be reduced to a single linear 

Kalman filter augmented with a Bayesian estimator for command process as depicted in 

the Figure 5.3. 

Linear Kalman Filter 

"4�A%|�A%, ��A%|�A%, #� 

"4�|�, ��|� 
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Figure 5.2.  Linear Kalman filter of LOCN algorithm 

 

 

 

 

 

 

 

 
   
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3.  LOCM algorithm 

 

As proposed [1], the Bayesian estimator generates command estimates from the 

previous command probabilites in three steps as depicted by the Figure 5.4. The 

normaliation constant \  in step 2 is chosen such that ∑ ,-1� H �|��.�ÕÖ H 1 . +��  is 

homogenous command(mode) transition probability from command  to command � and 

Predicted Estimate "4�|�A% H �"4�A%|�A% 

Previous Estimate  "4�A%|�A% 
Previous Covariance  ��A%|�A% 

Predicted Covariance ��|�A% H ���A%|�A%� e J Ã̀ 

Gain 

  h� H ��|�A%^edA% 

d H ^��|�A%^e J a 

Covariance of Innovation #c�|�A% H ^"4�|�A% 

Predicted Observation 

f� H #� 6 #c�|�A% 
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approximated by a value + near unity for  H � and by �1 6 +�/�0 6 1� for  � � as defined 

in [7]. For the likelihood function ��#�|1� H �, ��A%� in step 2, two Gaussian propositions 

given below which are defined in [1] and [7] respectively are used: 

 ��#�|1� H �, ��A%� H &Q^Q�"4�A%|�A% J ]�R , ^��|�A%^eR                (5.3) 

 ��#�|1� H �, ��A%� H &Q^Q�"4�A%|�A% J ]�R , ^P���A%|�A%�e J `S^e J aR    (5.4) 

 

 

 

 

 

 

 

 

 

 

 

   

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 5.4.  Bayesian estimator of LOCM algorithm 

 

The linear Kalman filter of the LOCM algorithm given by the Figure 5.5 differs from 

the one of the LOCN algorithm by using command estimate 1c� in the predicted estimate 

calculation and using the state noise covariance matrix ` instead of  Ã̀  of LOCN algorithm 

in the predicted covariance calculation.  
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Figure 5.5.  Linear Kalman filter of LOCM algorithm 

 

5.4.  Nonlinear Observation Command Noise Algorithm 

 

Like LOCN algorithm, NOCN algorithm [1] treats command process 1�  as 

additional state noise and covariance matrix of state noise is updated using (5.1) and (5.2). 

In this algorithm nonlinear RSSI model given in (4.29) is used as the observation model. 

To cope with the nonlinearity, either EKF or UKF is used. EKF version of NOCN 

algorithm is proposed in [1] and UKF version is introduced in this work. Figure 5.6 depicts 

the NOCN algorithm.  

 

For UKF, samples are calculated and used in the Kalman filter framework exactly as 

described in Section 3.5. To use EKF, nonlinear RSSI observation model is linearized as 

follows as given in [1]: 
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where  "�×  is the nominal or reference vector and ∆"� H "� 6 "�×  is the difference between 

the true and nominal state vectors. As mentioned in Section 3.4, the nominal vector is 

obtained from the predicted state trajectory "4�|�A%  , i.e., "�× H "4�|�A%  . Hence, the 

linearized observation matrix �̂  is given by 

 

                                      �̂ H zÙz" |"n"4o|oÚq H 65Ï Û��,%��,*��,¼
Ü                                 (5.6)                    

                                    

where  ��,� H *Ýo,Þ» �§� 6 C�  0 0 ª� 6 K�  0 0� for 	 H 1,2,3 . 

 

Using Ã̀  given in (5.1), �̂ given in (5.6), state model given in (4.20) and nonlinear 

observation model given in (4.29), EFK of NOCN algorithm is described by the Figure 5.7. 

 

 

 

 

 

 

 

 

 

   
 
 

Figure 5.6.  NOCN algorithm 

 

5.5.  Nonlinear Observation Command Mode Algorithm 

     

Like LOCM algorithm, NOCM algorithm regards command process 1�  as the mode 

variable of a multiple model system. In this algorithm, nonlinear RSSI model given in 

(4.29) is used as the observation model. Hence, a GPB1 adaptive multiple model state 

estimator having 0 mode-conditioned EKFs are applied. Note that linearized observation 

matrix, covariance of innovation and gain of the filters are different among the filters 
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because they depend on the command process through the predicted estimate which 

directly depends on the command process as shown in the Figure 5.9. Hence, filters have 

more than one different component, thus they can not be reduced to a single Kalman filter 

augmented with a Bayesian estimator for command process like in LOCM algorithm. In 

[7], aforomentioned filter components are assumed to be the same for all the filters and a 

reduced form of GPB1 estimator that has an EKF with a Bayesian estimator for command 

process is proposed. However, such a reduction is valid only if the only filter component 

different among the filters is the command process value which is not the case for this 

nonlinear observation model. Hence, NOCM algorithm proposed here, as depicted in the 

Figure 5.8, applies a GPB1 filter having 0  mode-conditioned EKFs with the modes 

corresponding to the commands of the command process. Note that mode probability /��  

corresponds to the command probability ,-1� H �|�� .. Note also that  filters also generate 

likelihood function values F��  that are later used with the previous mode probabilities /�A%�  

to generate updated mode probabilities /�� .The mode-conditioned updated estimates and 

covariances generated by the filters are then averaged using these updated mode 

probabilities to calculate updated state estimate and covariance . 

 

The mode-conditioned EKF of NOCM algorithm is described in detail by the Figure 

5.9. The nonlinear function is linearized exactly in the same way as in the NOCN 

algorithm. Likelihood function F�� H ��#�|1� H �, ��A%�   is calculated using Gaussian 

proposition given in (5.4). Besides, normalization constant \  and mode transition 

probability +�� that are used in the calculation of updated mode probabilities are calculated 

as in the LOCM algorithm.  

 

5.6.  Prefiltered Nonlinear Observation Command Mode Algorithm 

 

PNOCM algorithm is developed in [1]. As NOCM algorithm, it regards the 

command process as the mode variable of a mulitple model system and uses nonlinear 

RSSI measurement model given in (4.29). Basically, as depicted in the Figure 5.10, it uses 

a prefilter to reduce shadowing noise in RSSI observations and then calculate coarse 

positions from filtered observations. Coarse positions are then given as input to a GPB1 

estimator(called modified Kalman filter in [1]) which is dedicated to estimate command 
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process. Finally command estimates and filtered RSSI observations are  used in an EKF to 

calculate state estimates and covariances. More detailed description of these modules of 

PNOCM algorithm are given below.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                     
  

 

Figure 5.7.  Extended Kalman filter of NOCN algorithm             

 

 

 

 

 

 

 

 

 

 

   

Figure 5.8.  NOCM algorithm 
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Figure 5.9.  Mode-conditioned extended Kalman filter of NOCM algorithm  conditioned 

on mode �      
 

5.6.1.  Prefilter 

 

As depicted in the Figure 5.11, the prefilter consists of an averaging filter and a 

coarse position estimator and outputs averaged RSSI observation #g�  and a vector of 

position estimates denoted by #c� H �§4� , ª4�� e , which are used as the observation data for 

the EKF and modified Kalman filter, respectively. The averaging filter reduces the 

shadowing noise considerably, without significantly modifying the path loss. The averaged 

RSSI observations are then used to generate coarse position estimates of the position 

coordinates. 
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Figure 5.10.  PNOCM algorithm 

 

 

 

 

 

Figure 5.11.  Prefilter of PNOCM algorithm 

 

The observation vector #� consists of the path loss and the shadowing component. 

The averaging filter reduces the shadowing component in the observations. Different filters 

can be used for this purpose. Applying a rectangular window, the output #g�  of the 

averaging filter is given as 

 

  #g� H  %ß ∑ #���n�Aß$%                                                 (5.7) 

 

where  ® is the length of the window. For small ® , the residual shadowing component is 

quite large and yields erroneous position estimates; however, for large ® , the path loss is 

modified and induces errors in the position estimates. The suggested solution to this 

problem is to use a bank of averaging filters in series, each with small length ®, instead of a 

single filter of larger length. In the filter bank arrangement, each filtger performs an 
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averaging operation according to (5.7) and provides its output as input to the next filter in 

series. This averaging scheme preserves path loss and reduces shadowing noise to a 

satisfactory level.  The averaged observations #g�  are used by the position estimator to 

generate coarse position coordinates #c� H �§4� , ª4�� e , which are obtained as follows: 

 

áC% 6 C* K% 6 K*C% 6 C¼ K% 6 K*â á§4�ª4�â H 0.5
ãä
äå6±æqÚ#go�q�çè J ±æ»Ú#go�»�çè J C%* 6 C** J K%* 6 K**6±æqÚ#go�q�çè J ±æ»Ú#go�é�çè J C%* 6 C¼* J K%* 6 K¼*êë

ëì      (5.8) 

 

where �C� , K�� , 	 H 1,2,3 are the base station coordinates for cell  	 . 
 

5.6.2.  Modified Kalman Filter 

 

As depicted in the Figure 5.12, the modified Kalman filter has exactly the same 

structure as the reduced GPB1 estimator of LOCM algorithm. It has a Bayesian estimator 

for command process which is integrated to a linear Kalman filter. Only the command 

estimate generated by the Bayesian estimator is used by the EKF module of the PNOCM 

algorithm. State estimate and covariance generated by the linear Kalman filter are used by 

the modified Kalman filter internally to calculate the next command estimate. It is 

important to note that the input to the linear Kalman filter is the two dimensional 

prefiltered observation #c�, rather than the three dimensional raw observation #� and the 

observation matrix is the linear observation matrix given in (4.25) . Besides, the likelihood 

function defined in (5.3) which is assumed to be closer to the Gaussianity than the function 

defined (5.4) is used in the Bayesian estimator. 

 

 

 

 

 

 

 

  
 

Figure 5.12.  Modified Kalman filter of PNOCM algorithm 
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5.6.3.  Extended Kalman Filter 

 

The modified Kalman filter described above provides the mobility state estimates 

and discrete command estimates. However, the accuracy of the mobility state estimates is 

largely dependent on the performance of the prefilter. Since the coarse position estimates 

are used as the observations for the modified Kalman filter, the best the filter can do is to 

track the coarse position coordinates. As discussed in [1], any inaccuracy and error in the 

prefilter can cause the estimator to diverge. To avoid this problem, the command estimate 

of the modified Kalman filter is used by an EKF, depicted in the Figure 5.13, to produce 

the mobility state estimate and covariance. Note that the EKF takes the averaged RSSI  #g� 

as observation. Besides, the matrix a�î  is used in the calculation of the covariance of the 

innovation as the covariance of the residual noise in the averaged RSSI. A suitable matrix 

for a�î  is ï�¼ , where ï ð 0.01 .  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                      

Figure 5.13.  Extended Kalman filter of PNOCM algorithm 
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6.  SIMULATION RESULTS 

 

 

In this section, plots and RMSE statistics are presented for tracking algorithms 

presented in Section 5. Algorithms are implemented and simulated in Matlab. For each 

simulation, an independent Monte Carlo trajectory is generated using the state model given 

in (4.20) and estimated using any of the tracking algorithms discussed in Section 5. 

Estimation is performed in real-time for each sampling instant of a trajectory. In other 

words, at each sampling instant, current state is generated from the previous state using the 

state model, an observation is realized from the current state using the observation model 

and the state is estimated by any algorithm discussed in Section 5 using the observation, 

previous state estimate, previous state covariance and other parameters depending on the 

algorithm. The sample size of each trajectory is assumed to be 600 and sampling interval T 

is assumed to be 0.1 seconds as suggested in [1]. Initial values are determined as suggested 

in [9]: initial estimate and covariance are assumed to be zero vector and identity matrix 

respectively and initial state  is chosen from a Gaussian distribution with mean equal to 

initial estimate and covariance equal to initial covariance.  

 

For the discrete command processes ¬¦�?�  and ¬«�?�  two sets of acceleration 

levels(commands) each taking on five possible levels of acceleration in units of ñ/½* as 

defined in [1] are used in simulations. The set ® H -65, 62.5,0,2.5,5.  is capable of 

generating a wide range of dynamic motion and referred to the high mobility scenario. The 

other set ® H -60.5, 60.25,0,0.25,0.5. is referred to the low mobility scenario and more 

suitable for urban areas where smaller cells are used. As suggested in [1], the initial 

probability vector for commands is initialized to the uniform distribution and the dwell 

times in each state are uniformly distributed with a comman mean value of 20 sample 

points. As suggested in [7], transition probability between the same command states is 

assumed to be 0.95 and between different states 0.05/24 = 0.0021. Initial command value 

and its estimate are assumed to be zero vectors.  

 

Other parameters are set for a typical cellular network as defined in [1]: The 

parameters determining the autocorrelation function of the Gaussian acceleration process f�?� are set ¿ H 1000½A% and (% H 1�], the covariance matrix a of Ó�  is determined by 
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setting the parameter (Î H 6�] and the parameter �� is assumed to be zero for all cells 	. 
Window size of an averaging filter and the number of filters used in series  are assumed to 

be 5 and 8 respectively to obtain a sufficient noise filtering without losing too much path 

loss information.  

 

Plots and RMSE values of LOCN, LOCM and NOCN algorithms are given below. 

The position, velocity and acceleration  coordinates are specified in units of meters, 

meter/second, meter/½±\ò��*, respectively. Table 6.1 shows sample mean and standard 

deviation of 500 RMSE values computed using 500 independent Monte Carlo simulations. 

An RMSE for a simulation is calculated as:  

 

ó%� ∑ ��§4� 6 §��* J �ª4� 6 ª��*���n%                                     (6.1) 

 

where N is sample size of the trajectory(600 for all simulations), §� and ª� are the true 

value of the state component(position, velocity or acceleration) at instant � in § and ª are 

coordinates, respectively and  §4�  and ª4�  are their estimates in §  and ª  are coordinates, 

respectively. NOCM and PNOCM algorithms could not be executed because of the 

problems mentioned in Section 7. Plots and RMSE values are discussed in Section 7. 
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Figure 6.1.  Actual positions(solid line) and LOCN-estimated positions(dotted line) 

of a sample trajectory for low mobility model 

 

 

 
 

Figure 6.2.  Actual positions(solid line) and LOCM-estimated positions(dotted line) 

of a sample trajectory for low mobility model 
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Figure 6.3.  Actual positions(solid line) and NOCN-estimated positions(dotted line 

for EKF estimation, dashed line for UKF estimation) of a sample trajectory for low 

mobility model 

 

 

 

Figure 6.4.  Actual positions(solid line) and LOCN-estimated positions(dotted line) 

of a sample trajectory for high mobility model 
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Figure 6.5.  Actual positions(solid line) and LOCM-estimated positions(dotted line) 

of a sample trajectory for high mobility model 

 

 

 

Figure 6.6.  Actual positions(solid line) and NOCN-estimated positions(dotted line 

for EKF estimation, dashed line for UKF estimation) of a sample trajectory for high 

mobility model 
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Figure 6.7.  Actual velocities(solid line) and LOCN-estimated velocities(dotted 

line) of a sample trajectory for low mobility model 

 

 

                         

Figure 6.8.  Actual velocities(solid line) and LOCM-estimated velocities(dotted 

line) of a sample trajectory for low mobility model 
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Figure 6.9.  Actual velocities(solid line) and NOCN-estimated velocities(dotted line for 

EKF estimation, dashed line for UKF estimation) of a sample trajectory for low mobility 

model 

 

 

 

Figure 6.10.  Actual velocities(solid line) and LOCN-estimated velocities(dotted 

line) of a sample trajectory for high mobility model 
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Figure 6.11.  Actual velocities(solid line) and LOCM-estimated velocities(dotted 

line) of a sample trajectory for high mobility model 

 

 

 

Figure 6.12.  Actual velocities(solid line) and NOCN-estimated velocities(dotted line for 

EKF estimation, dashed line for UKF estimation) of a sample trajectory for high mobility 

model 
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Table 6.1.  RMSE statisctics for tracking algorithms 
 

 
Tracking Algorithm 

 
Low Mobility Scenario 

 
     mean                     st.dev. 

 
High Mobility Scenario 

 
     mean                      st.dev. 

 
LOCN position(m) 

 

 
     2.61                     0.25 
 

 
     4.41                      0.38 

 
LOCN velocity(m/s) 

 

 
     1.59  0.28 

 
     8.41 1.83 

 
LOCN acceleration(m/½*) 

 

 
     1.49                     0.03 

 
     5.83   0.69 

 
LOCM position(m) 

 

 
     6.11                     1.44 

 
    45.19                     8.78 

 
LOCM velocity(m/s) 

 

 
     1.74                     0.31 

 
    14.85                     2.34 

 
LOCM acceleration(m/½*) 

 

  
     1.49                     0.03 

  
     5.25                      0.29 

 
NOCN EKF position(m) 

 
NOCN UKF position(m) 

 

 
    60.31                   74.41 
 
    49.47                   73.30 

 
   492.70                  675.33 
 
   443.77                  635.34 

 
NOCN EKF velocity(m/s) 

 
NOCN UKF velocity(m/s) 

 

 
     3.65                     2.31 
 
     3.35                     2.21 

 
   31.55                     20.99 
 
   33.15   23.86 

 
NOCN EKF acc. (m/½*) 

 
NOCN UKF acc. (m/½*) 

 

 
     1.50                     0.03 
 
     1.49 0.03 

 
     5.91                      1.50 
 
     5.63                      1.00 
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7.  CONCLUSIONS 

 

 

In this thesis,  after presenting basics of linear MMSE filtering and dynamic state 

estimation based on Kalman filtering, a special type of tracking system for cellular 

communication networks called cellular tracking system presented in [7] is discussed in 

depth. This system is originally proposed in [6] for tracking targets in tactical weapons 

systems in three dimensional space(range,azimuth and elevation coordinates) and captures 

a large range of mobility by modeling acceleration(manuever) as driven by a discrete semi-

Markovian command process proposed in [4] and a Gaussian time-correlated random 

process proposed in [3]. Then, in [7], this combined system is customized for two 

dimensional(x and y coordinates) mobility modeling and tracking in cellular 

communication networks having a nonlinear RSSI observation model given in (4.29). A 

linear observation model given in (4.25) that provides x and y position coordinates is 

introduced in this thesis and included to the cellular tracking system.  

 

Based on this cellular tracking system, five mobility tracking algorithms are 

presented in Section 5. These algorithms use the same linear state model represented by the 

equation (4.20). In principal, they differ in the observation model they use and in the way 

they treat semi-Markovian manuever component and they employ variants of the Kalman 

filter(linear, extended or unscented) accordingly. For observation model, LOCN and 

LOCM algorithms use linear model and NOCN, NOCM and PNOCM algorithms use 

nonlinear RSSI model. LOCN and NOCN algorithms treat Markovian manuever 

component as an additional state noise and only update covariance matrix of the state 

noise. Calculation of the covariance of the new state noise occurs according to the 

equations (5.1) and (5.2) that are proposed in [1]. LOCM, NOCM and PNOCM algorithms 

treat the tracking system as a multiple model system with the Markovian manuever as the 

model variable and employ GPB1 adaptive estimator which is presented in Section 3.6.1. 

In this approach, manuever commands represent models and command transition 

probabilities correspond to mode transition probabilities. PNOCM algorithm applies an 

additional prefilter to reduce effect of shadowing noise in the RSSI model considerably 

wihout significantly modifying the path loss. LOCM and PNOCM algorithms and EKF 
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version of NOCN algorithm are proposed in [1]. LOCN and NOCM algorithms and UKF 

version of NOCM algorithm are introduced in this thesis. 

 

Algorithms are implemented and simulated in MATLAB and RMSE statistics for 

LOCN, LOCM and NOCN algorithms are presented in Table 6.1. Note that high mobility 

error statistics are larger than those of low mobility for all algorithms. This is due to larger 

actual states and estimates that cause larger absolute estimation errors in high mobility 

scenario in which target moves faster and further. Error statistics are further discussed 

below. 

 

According to the statistics, LOCN algorithm which uses a single linear Kalman filter 

performs quite well as expected. This is due to lack of any approximation that could cause 

serious filter errors. The only approximation is that although the new state noise, ]1� JD�, is not white, the correlation between the noise components is ignored and new state 

noise is approximated as a white noise. From RMSE values of LOCN algorithm, it seems 

that this approximation does not introduce serious errors. In fact, when Morkavian 

manuever is removed from the state model which makes state noise exactly white, an error 

mean of 1.3 and error variance of 0.3 are obtained which are very close to the original 

LOCN statistics in the sense of RMSE. 

  

LOCM algorithm differs from LOCN algorithm by including a Bayesian estimator 

for command process and using command estimate in the state prediction stage of a linear 

Kalman filter. In other words, LOCM algorithm does not regard command process as an 

additional state noise, instead, it applies a simplified multiple model approach. Models are 

driven by command process because the only thing that differs among the models is the 

discrete command process values. That is why a simplified GPB1 estimator that consists of 

linear Kalman filter augmented with a Bayesian command estimator could be used instead 

of a bank of filters as in an ordinary GPB1 estimator like in NOCM algorithm.  

 

Recall that in a GPB1 estimator, like one used in LOCM, only the possible models in 

the last sampling period are considered. It is assumed that at time 
 6 1 there is a single 

lumped estimate "4�A%|�A%  and the associated covariance that approximately summarizes 



 
58 

 

the past ��A% . In other words, histories of models that differ in “older” models are 

combined to decrease number of models used in average state calculation.  

 

Another approximation in LOCM algorithm is Gaussian assumption of the likelihood 

function ��#�|1� H �, ��A%�. Two propositions for this pdf given in (5.3) and (5.4) are 

applied in simulations. Given RMSE statistics are obtained using second model which is 

proposed in [7] since first model proposed in [1] causes resulting filter to completely 

diverge from actual trajectories in simulations. According to RMSE statistics, Gaussian 

assumption of likelihood function together with the multiple model assumption of GPB1 

estimator cause LOCM to introduce larger approximation errors than LOCN, especially in 

high mobility model. Hence, according to the RMSE statistics, for linear state model given 

in (4.20) and linear observation model given in (4.25), treating command process as an 

additional state noise is a better approximation than treating it as a model variable in a 

GPB1 adaptive estimator. 

 

NOCN algorithm applies a similar approach to the LOCN algorithm by considering 

the command process as an additional state noise and calculates the covariance matrix of 

the new state noise in the same way as the LOCN algorithm. However, different from 

LOCN algorithm, NOCN uses nonlinear RSSI observation model. To handle nonlinear 

observation model, NOCN uses either EKF or UKF. EKF approximates nonlinear equation 

with its first order Taylor Series expansion which is linear with respect to current state so 

that linear Kalman filter equations could be utilized. UKF, instead of functional 

linearization, uses probabilistic approximation. UKF uses UT to represent previous 

posterior state pdf by a deterministically chosen sample points and to calculate predicted 

state and observation mean and covariances using chosen sample points and their weights. 

Predicted means and covariances are then used in the traditional Kalman filter framework 

to calculate current state estimate(mean) and covariance. RMSE statistics show that UKF 

works better than EKF in the framework of NOCN algorithm. 

 

However, according to RMSE statistics, both functional linearization of EKF and 

probabilistic approximation of UKF do not work well. This is because nonlinear structure 

of RSSI observation function considerably pronounces non-Gausianity of posterior state 

pdf and causes EKF and UKF to introduce large approximation errors in prediction steps. 
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These approximation errors together cause large filter biases, wrong covariances, wrong 

gains and so large estimation errors, even worser, leaad to complete filter divergence 

sometimes. In fact, when a different nonlinear observation equation that precludes 

logarithm and square root in the RSSI function is applied, much smaller RMSE values are 

obtained. 

 

NOCM algorithm applies adaptive GPB1 multiple model estimator to the nonlinear 

RSSI observation model by considering the command process as the mode variable like 

LOCM algorithm. However, different from LOCM, NOCM algorithm does not use a 

reduced form of GPB1 with a single Kalman filter augmented with a Bayesian command 

estimator due to more than one different filter components(not only commands) in the 

mode-conditioned filters. Hence, NOCM applies an ordinary GPB1 estimator with 0 mode-

conditioned EKFs. Likelihood function outputs of parallel EKFs are used in the mode 

probabability calculation. Then, mode-conditioned estimates and covariances are averaged 

using mode probabilities to calculate updated state estimates and covariances. For the 

likelihood function, Gaussian proposition given in (5.4) which is proposed in [7] is used. In 

all simulations, however, this function always behaves as non-Gaussian causing 

normalization constant used in the mode probability calculation to go to infinity for any 

observation and command. Hence, NOCM simulations terminate prematurely just after 

starting simulations. That is why implementation of NOCM in Matlab could not be run and 

plots and RMSE statistics of NOCM are not given.  

 

PNOCM Algorithm applies a prefilter to reduce shadowing noise in RSSI 

observations and calculates coarse positions from filtered observations. Coarse positions 

are given as input to a reduced GPB1 filter(called modified Kalman filter) which has the 

same structure as of LOCM algorithm. Modified Kalman filter is dedicated to estimate 

command values. Command estimates are then used in an EKF to find updated state 

estimates and covariances. PNOCM algorithm claims that the modified Kalman filter 

structure uses the likelihood function given in (5.3) which is proposed in [1] because it is 

closer to Gaussianity than the likelihood function given in (5.4) which is proposed in [7]. 

However as in NOCM algorithm, in all simulations, likelihood function of PNOCM 

behaves as non-Gaussian and simulations terminate prematurely just after the start. Hence, 

PNOCM  algorithm lacks the Matlab plots and RMSE statistics. 
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7.1.  Future Works 

 

Recall that in LOCN and NOCN algorithms, new state noise is assumed to be ]1� J D�  and correlation between noise components 1�  and D�  is ignored during the 

calculation of the covariance of the new state noise according to the equations (5.1) and 

(5.2) that are proposed in [1]. A more realistic approach that considers the correlation 

between these noise components may be developed for calculating covariance of the new 

state noise ]1� J D� to obtain better performance. 

 

In LOCM, NOCM and PNOCM algorithms, in principal, tracking system is assumed 

to be a multiple model system that dynamically switches between models or modes and 

command process 1�  is assumed to be the mode variable. In this approach, likelihood 

functions are used to calculate mode probabilities. Two Gaussian propositions given in 

(5.3) and (5.4) proposed in [1] and [7] respectively are used for the likelihood function of 

LOCM algorithm. A new likelihood function that performs better than these Gaussian 

propositions for linear models of LOCN algorithm may be developed. For NOCM and 

PNOCM algorithms the same Gaussian likelihood function propositions are used and they 

do not work at all in simulations. For these algorithms, a new likelihood function that more 

realistically considers the nonlinear structure of the RSSI observation model  may be 

developed.   

 

In algorithms that use nonlinear RSSI observation model, EKF is mainly used to 

handle nonlinearity. Only in NOCN algirithm UKF is used in addition to EKF. However, 

although UKF performs better than EKF in simulations of NOCN algorithm, both EKF and 

UKF result in very large RMSE statistics in NOCN simulations and EKF do not work at all 

in NOCM and PNOCM simulations. Other suboptimal, nonlinear solutions such as higher 

order EKF, iterated EKF or particle filters may be used for these algorithms to obtain better 

performances. 
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