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ABSTRACT

OPTIMAL PLACEMENT, SCHEDULING AND ROUTING
TO MAXIMIZE LIFETIME IN WIRELESS SENSOR
NETWORKS UNDER CONNECTIVITY RESTRICTIONS

A wireless sensor network consists of distributed autonomous electronic devices
called sensors. They are capable of sensing the changes in their vicinity, process the
information as data packets and transmit the data to other sensors or a base station
namely sink. In order to have an effective sensor network that can keep track of
the changes in the interested region, sensors have to work cooperatively since they
have limited battery energy. Working in accordance is also important to transmit the
collected information eventually to a sink, since sensors can communicate only with the
others that fall in a certain range. In most of the real life applications, for a wireless
sensor network the number of periods that the network can operate as desired is a

significant performance indicator.

In this thesis, we propose mixed-integer linear programming models to maximize
the network lifetime by optimally determining the locations of sensors, activity sched-
ules of the deployed sensors, sink assignments of the active sensors and their data flow
routes to the corresponding sink over a finite planning horizon subject to coverage,
flow conservation, energy consumption and budget constraints. Then, we introduce
valid inequalities to solve the problem easily. Due to the characteristics of the prob-
lem, even the small instances cannot be solved exactly in considerable amount of time
and the linear programming relaxations give poor upper bounds. Hence, we develop
heuristics using techniques such as Lagrangean relaxation and greedy selection crite-
rion. Computational experiments indicate that the heuristic methods are accurate and

efficient.
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OZET

KABLOSUZ DUYGAC AGLARININ OMRUNU EN
BUYUKLEMEK ICIN YERLESTIRME, CIZELGELEME
VE ROTALAMA PROBLEMLERININ BAGLILIK
KISITLARI ALTINDA COZULMESI

Bir kablosuz duygag¢ agi, duygac¢ adi verilen, dagitik ve bagimsiz caligabilen
elektronik aygitlardan olusur. Duygaclar yakinlarinda meydana gelen degisiklikleri
duyumsayabilir, bu bilgiyi veri paketi olarak isleyebilir ve verileri diger duygaclara ya
da ana alicilara iletebilir. Tlgilenilen bélge ile ilgili degisiklikleri takip edebilen etkin
bir duyga¢ ag1 olusturabilmek i¢in kisitli pil enerjisine sahip duygaglarin birbirleriyle
uyumlu caligmas1 gerekmektedir. Uyumlu caligma, duygaclar sadece belli bir aralikta
yer alan duygaclarla iletisim kurabildiginden, toplanan bilgilerin sonunda bir aliciya
iletilebilmesi i¢in de onemlidir. Uygulamalarin ¢cogunda, bir kablosuz duygag ag1 i¢in

agin istenildigi gibi caligabildigi donem sayisi1 anlamli bir bagar1 gostergesidir.

Bu tezde, ilkin duygaclarin en iyi yerlerini, en iyi etkinlik ¢izelgelerini, caligan
duygaglarin alici atamalarini ve duygaclardan alicilarina olan en iyi bilgi akig rota-
larin1 bularak agin émriinii enbiiyiikleyen karigik tamsayili programlama gosterimleri
gelistirilmektedir. Gosterimler sonlu bir planlama cevreni iginde kaplama, akig ko-
runumu, enerji titketimi ve biitce kisitlarin1 dikkate almaktadirlar. Daha sonra, prob-
lemi kolayca ¢ozebilmeyi saglayan gegerli egitsizlikler onerilmektedir. Problemin yapisi
sebebiyle, dikkate deger bir siire icinde kii¢lik ornekler igin dahi en iyi ¢oziimler hesa-
planamamakta ve dogrusal programlama gevsetmeleri zayif {ist sinirlar vermektedir.
Bu sebeple, Lagrange gevsetmesi ve acgozlii se¢im olclitii gibi teknikleri kullanan
sezgisel yontemler gelistirilmektedir. Yapilan bilgisayisal deneyler bu sezgisel yontem-

lerin dogru ve etkin oldugunu gostermektedir.
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1. INTRODUCTION

A sensor is an inexpensive, low-power electronic device that can sense its neigh-
borhood, process the information as data packets and communicate with the other
sensors that are close enough. Depending on its type, a sensor may sense and process
temperature, humidity, light, vibration, sound, radiation and many other factors (Karl
and Willig, 2003). A Wireless Sensor Network (WSN) is a network in which sensors
are deployed over the interested region, i.e. the sensor field, possibly remote or inac-
cessible to humans. WSNs are used currently for battlefield surveillance in military,
forest fire detection in environmental sciences, monitoring of human physiological data
in health (Akyildiz et al., 2002). A sensor collects information within its sensing range,
after processing the data transmits to a base station namely a sink either directly
or through other sensors that are within its communication range. The specifications
related with the sensing and communication ranges, cost and the initial battery energy

of the sensor can change depending on the type of the sensor.

The sensors in a WSN may be identical, in this case we have a homogeneous
network. On the other hand, we can have different types of sensors in a heterogeneous
network, which means their technical specifications and costs can be distinct. A sensor
can be in either active or standby mode. In the active mode, sensor can perform
sensing, processing and communicating activities. A standby sensor does not perform
any of these activities but operates at the minimum energy level. A sensor consumes
energy for sensing, information processing, data receiving and transmitting according

to the technical characteristics of its type.

Each sensor in the network has limited battery energy and become obsolete when
it is out of energy. Since budget is limited and a sensor consumes energy for collecting
information, processing and transmitting the data, the network has a finite lifetime.
In this thesis, we aim to maximize the lifetime of a WSN by determining the optimal
locations of sensors and sinks, periods to be active for each sensor in order to use its

energy economically, i.e. their activity schedules, assignments of sinks for each active



sensor and sensor-to-sink data flow routes.

The structure of the sensor field may be different from application to application.
It can consists of discrete points, a two or three dimensional region as for the cameras
in an art galery (Cardei and Wu, 2006). In this study, we assume that the sensor field is
consisting of discrete points. Each point has to be covered by at least a certain number
of sensors according to their importance level. For a critical point, it may be preferable
to cover this point with numerous sensors to be secure in a sensor failure case. We
have uniform coverage if coverage quality requirements are the same for all points in

the sensor field and differentiated coverage if the coverage quality requirements vary.

One of the design issues of a WSN is to determine the locations of the active
sensors in a period in order to satisfy the coverage quality requirements of each point
in the sensor field. This is also known as Sensor Placement Problem (SPP) (Sahni and
Xu, 2005). In our work, it is assumed that the coverage requirements of the points
in the network can be different which gives arise to a differentiated CP, otherwise
we would have a uniform CP. Depending on the characteristics of the sensor field,
the locations of the sensors can be random, i.e. we cannot know the locations of the
sensors a priori, or deterministic which means we can place a sensor exactly where we
have decided. Our focus will be on deterministic sensor placement case. An effective

sensor placement should use less budget as possible.

The limited battery energy of the sensors forces to consume energy economically
for the sensor network to operate for a long time. Therefore, the deployed sensors have
to remain in standby mode to save energy when they are not necessary in providing
coverage of the points and keeping connectivity among the sensors. For each time
period, the determination of the active and standby sensors among the deployed sensors
to maximize the network lifetime while satisfying the coverage requirements of all points
and staying communicated is the problem of activity scheduling of sensors (Wang et al.,
2009). The schedule of the active and standby sensors in a period affects the network

lifetime since scheduling is a way to use the limited energy efficiently.



Transmission of the collected information in the form of data packets from sensors
to their assigned sinks also uses energy. The energy requirement for the transmission of
a data packet generated by a sensor that is far from its assigned sink will be larger than
the amount for a data packet generated by a sensor that is close to its sink. Hence,
when we are given the locations of sinks and sensors with their assignments, we can
determine the least energy consuming sensor-to-sink data flow routes. This problem is

addressed as the Routing Problem (RP) (Schurgers and Srivastava, 2001).

Locations of the sinks are substantial for the lifetime of the network since they
affect the sensor-to-sink data flow routes directly. A sink should be close to the sensors
that are assigned to itself in order to minimize the amount of energy spent during the
data transmission. This problem is referred to as the Sink Location Problem (SLP)

(Liu and Xu, 2010).

In this thesis, we first concentrate on the Sensor Placement, Scheduling and Rout-
ing Problem under Connectivity Restrictions (PSRPC) which assumes that sink loca-
tions are given but determines the deployments and activity schedules of the sensors
and establishes the sensor-to-sink data flow routes using the sink assignments decided
for each sensor in order to maximize the network lifetime. We introduce a mixed-integer
linear programming (MILP) model for the PSRPC. We provide a Lagrangean relax-
ation based heuristic solution procedure in order to solve large PSRPC instances. The
heuristic gives a feasible solution which will be a lower bound and a relaxed solution
which will be an upper bound on the optimal lifetime value of the PSRPC instance.
Then, we add the deterrmination of optimal sink locations to the problem to obtain
the Sink Location, Sensor Placement, Scheduling and Routing Problem under Connec-
tiwity Restrictions (LPSRPC) and propose a solution procedure based on a search on

possible sink locations using a solution of PSRPC.

In the remainder of the thesis, we first briefly review the studies in the literature
related with sensor placement, sensor activity scheduling, data routing and sink loca-
tion in the next chapter. We provide MILP formulations for PSRPC and propose some
valid inequalities for the main MILP formulation in the third chapter. In the fourth



chapter, we give the details of two different heuristic solution methods making use of
the Lagrangean relaxation approach and subgradient algorithm for the PSRPC. In the
fifth chapter, we extend our mathematical model to include the sink location problem,
namely LPSRPC, and establish two different heuristic solution procedures to solve the
LPSRPC instances. The sixth chapter reports the experimental results for proposed
MILP models obtained with the introduced solution procedures. Finally the seventh

chapter concludes the thesis.



2. LITERATURE SURVEY

2.1. Introduction

In this chapter, we present the previous studies on the design issues of wireless
sensor networks. The works on locating sensors to cover each point in the sensor field by
at least its required coverage quality are listed in Section 2.2, determining the activity
schedules of each sensor during the lifetime of the network are summarized in Section
2.3, assigning at least one sink for each active sensor and finding the sensor-to-sink
data flow routes are included in Section 2.4, locating the sinks in the sensor field are
given in Section 2.5 and the studies that are combining at least two of these design

issues are presented in Section 2.6.

2.2. Sensor Placement

In Chakrabarty et al. (2002) an integer linear program (ILP) is proposed to
determine the optimum locations of sensors. The model minimizes the total deployment
cost of sensors of two types on a grid network in order to cover all grid points that have
uniform coverage quality requirement. They develop a divide and conquer approach for
the solution procedure. The model does not include energy consumption constraints
of sensors and routing of the data packets. Besides, the exact solution of the proposed

ILP becomes computationally difficult for large instances.

In Dhillon and Chakrabarty (2003) heuristic procedures are developed to locate
the sensors on a grid sensor network assuming sensors can imprecisely detect changes.
They consider different objectives such as the minimization of total sensors in the
network, maximizing average coverage of points and maximizing the coverage of points
that are covered with the least number of sensors. However, the study does not present

any method for the energy consumption and data routing issues.

In Lin and Chiu (2005) the determination of the sensor locations for the uniform



coverage problem under budget constraints is addressed. They aim to locate the sensors
accurately even the Fuclidean distance between two grid points becomes very small.
In order to minimize of maximum distance error, they develop a simulated annealing
based solution strategy which can find optimum solution for small sensor fields and
can give a feasible placement of the sensors for large sensor fields. Again the energy

limitation of the sensors is not considered.

In Altinel et al. (2008) differentiated point coverage problem is formulated as a
binary integer programming (BIP) model. In the formulation, they consider a hetero-
geneous sensor network and differentiated coverage requirements for grid points in the
sensor field. The objective is to minimize the total cost of sensor deployment. More-
over, the model is applicable for perfect, imperfect and uncertain sensing cases. For
the solution procedure, they develop Lagrangean relaxation based heuristic and ap-
proximation algorithms that can give good solutions even for large instances in three
hours. In Wang and Zhong (2006) a similar ILP is analyzed and an approximation
algorithm that converts the optimal solution for the linear relaxation of ILP to an
integer solution for the original ILP problem is developed. On the other hand, both of

the studies ignore the energy consumption and data flow problems.

In Yuan et al. (2008) the direction of the research is the coverage problem for
target detection. In these sonar like systems, targets emit signals and sensors detect
target by measuring the energy of signals which decays with the distance. A group
of sensor report the signal emissions in their sensing range to a central sensor called
cluster head. In the case there is a target in the sensing range of the sensors in a cluster,
cluster head decides whether there is really a target or it is only a false alarm by fusing
the incoming information from the sensors in its cluster. The problem is a probabilistic
coverage case, since a target may not be detected after the fusion of the information.
Their aim is to determine the locations of sensors to minimize the false alarm rate in
the network. They generate cluster based divide and conquer approach for the solution

procedure which can give results for large instances in acceptable durations.



2.3. Sensor Activity Scheduling

In Nakamura et al. (2005) the problem of extending network lifetime by mini-
mizing the energy consumption of the sensors is discussed. They present a dynamic
mixed integer linear programming (MILP) model to assure the coverage of the target
area and connectivity for each period to minimize the energy consumption in flat net-
works. Their test results for the model show that their model is succesful to prolong
the network lifetime. There are two major drawbacks of the work: it assumes that
the locations of the sensors that can cover the target region are given and it does not

consider the energy consumption in data flows.

In Pazand and Datta (2006) extending the lifetime of sensor networks through
efficient activity scheduling of sensors is addressed. The sensors of k types are randomly
and uniformly spread over the sensor field. They prefer to develop a sensor scheduling
method independent from the location information, since it is costly to obtain, using a
graph theoretical approach. They introduce minimum dominating sets of sensors each
of which ensures the coverage of the network. The minimum dominating sets are built
via a heuristic. A target node, that should be covered by the sensors, sends a “Hello”
message to its neighborhood and detect the sensors that can cover itself through the
reply messages from sensors. At each period of the network, only one dominating set
is active to cover the sensor field and the other sensors are in sleep mode. Simulations
are conducted for the experimental results of their method upto 300 sensors distributed
over a 2500 m? region. The drawback of the study is that it assumes the located sensors
satisfy the coverage requirements of the points in the sensor field. Moreover, although
the sensors in a dominating set are connected from the construction of the sets, the

routing of the data to the sink nodes is not discussed in the paper.

In Yang and Cardei (2010) energy efficient sensor scheduling problem to maximize
network lifetime is studied. The solution method makes use of the property that
covering all of the sensor field is not necessary in all periods within the network lifetime.
Instead the active sensors receive directions from the sink node about which part of the

sensor field should they collect information. According to this information, which is



updated at each period, the decision of activating new sensors or turning off the active
sensors is done. For the system to be operable, we want the network to be globally
connected and the coverage of the network is provided. They define dominating set as
a subset of sensors such that every sensor is either in the subset or can communicate
with a sensor in the subset. Then, they introduce connected dominating sets (CDS),
which can satisfy the current coverage requirements, as the backbone of the network.
The message from the sink is propagated by the sensors in a CDS to all active and
standby sensors in the network. As the message spread over the sensor field, sensors in
the required region turn to active mode to satisfy coverage requirements of the points
and provide global connectivity. They make simulations which reveal that the average
number of active sensors in the sensor field drops and the network lifetime is improved
compared with the method in which the meassages are directly sended from sinks to
sensors. Despite the study decreases the energy consumption by efficiently scheduling
the activities of the sensors, it neglects the transmission of the data and the respective
energy consumption. Besides, the determation of the sensor locations is not a design

issue of the paper.

In Yardibi and Karasan (2008) similar to the work by Yang and Cardei, 100%
coverage of the sensor field is not required. Therefore, minimization of energy used
in partial coverage through scheduling the sensor activities can improve the network
lifetime. For this purpose, they develop distributed adaptive sleep scheduling algorithm
(DASSA) which does not require the location information of the sensors. The sink node
solves a simple ILP problem to determine the activity schedules of the sensors that are
closer to itself since all network flows have to pass through these sensors. The selected
active sensors search for the neighbor sensors which have sufficient remaining energy to
be activated. The algorithm provides the coverage of the target region by satisfying the
connectivity of the operating sensors. The computational experiments indicate that
the performance of DASSA is superior than the centralized sleep scheduling algorithm

(CSSA) which uses the location information of the sensors.

In Fei et al. (2010) densely deployed sensor networks are studied. They inves-

tigate the coverage aware sensor scheduling problem using genetic algorithms. Under



uniform coverage requirements, they aim to optimally schedule the already located
sensors in different time slots to maximize the overall coverage. They evaluate the
performance of their algorithms under various planning horizons through simulations
and observe that the algorithm can maximize the overall coverage of the sensor field.

The energy consumption for data transmission is disregarded.

In Lin et al. (2010) the sensors are scheduled for prolonging the network lifetime
with an ant colony system based method. The algorithm first finds the maximum
number of disjoint sets of sensors each of which can fulfill the sensing coverage and
network connectivity requirements at the same time for a heterogeneous sensor network.
Then the incremental solution meachanism builds disjoint connected cover sets on the
basis of well designed construction graph. For further efficiency of the method a local
search process is also developed. Experimental results show that the proposed method

can find high quality solutions at a fast speed for WSNs with different characteristics.

2.4. Data Routing

In Ergen and Varaiya (2006) given the locations of the sensors that satisfies the
coverage constraints the problem of locating the relay sensors to decrease the energy
consumption during communication. Their objective is to minimize the total energy
consumption so that the network is operable during the desired lifetime. They first
formulate the problem as a nonlinear programming problem. For the solution of the
problem, they develop an approximation algorithm based on restricting the locations
where the relay nodes are allowed to a square lattice. Their algorithm approximates the
original problem with performance ratio of two by trading complexity. The drawback

of this study is that they assume only one information collection point.

In Byun et al. (2006) the lifetime of the sensor network is maximized through
energy efficient coverage maintenance strategy. Their solution method makes use of the
probabilistic approaches for power conservation. Each sensor calculates a probability
with the information of geographical density of the sensors at each period. Depending

on this probability, a sensor decides to which sensors should the data packets be trans-
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mitted. The simulations indicate the method is efficient, however this study does not
try to locate the sensors to provide coverage but to operate sensor network that covers

the sensor field energy efficiently as long as possible.

In Cheng et al. (2008) given a covered sensor field with the located sensors the
problem of locating least number of relay sensors that are not sensing but communi-
cating to provide the global connectivity of the network. They model the problem by a
network optimization problem namely Steiner Minimum Tree with Minimum number
of Steiner Points and bounded edge length (SMT-MSP). They develop two approxi-
mation algorithms, whose performance ratios are 3 and 2.5 respectively, to solve the
problem. The aim of the study is only to obtain a globally connected network without
dealing with the problems of coverage of the sensor field or routing the data flows to

an accumulation sensor.

In Hua and Yum (2008) an optimal routing and data aggregation scheme for wire-
less sensor networks is proposed. The objective is to maximize the network lifetime by
jointly optimizing data aggregation and routing. They adopt a model to integrate data
agregation with the underlying routing scheme and present a smoothing approxima-
tion function for the optimization problem. The necessary and sufficient conditions for
achieving the optimality are derived and a distributed gradient algorithm is designed
accordingly. They show that the proposed scheme can significantly reduce the data
traffic and improve the network lifetime. The distributed algorithm can converge to the
optimal value efficiently under all network configurations. The work is not extended

for multiple sink nodes and for sensors with sleeping mode.

In Giiney et al. (2010) the determination of sensor-to-sink data flow routes is
discussed. They formulate MILP models with different objective functions such as
minimization of total routing energy and minimization of total cost for commodity
flows. They aim to find the best locations of the sinks and information flow paths
between sensors and sinks when sensor locations are given. They test the solution
efficiency of their formulations and for the most efficient formulation they develop

heuristics and lower bounding approaches. However, the study does not consider to
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efficiently locate the sensors to cover the sensor field.

2.5. Sink Location

In Oyman and Ersoy (2004) the limited battery resource of the sensors tried to be
managed by deploying more than one sink node to maximize the network lifetime. If
the sink nodes are closer to the sensors that are sending information to itself, then the
corresponding energy consumption in transmission of the data will be lower. Utilizing
this idea, the study intends to find the locations of the sinks for the network to be op-
erable for at least given number of periods. Given the candidate locations for the sinks,
they develop an algorithm that decomposes the network into smaller sub-networks and
a reconstruction algorithm that is applied after the occurance of energy failures to im-
prove the network lifetime. The experiments are conducted through simulations which

show their approach is successful in prolonging the network lifetime.

In Yang (2006) the candidate locations of the sinks are explored by Genetic
Algorithms. They work on a grid sensor field with given locations of homogeneous
sensors. For a given network lifetime they aim to find the best locations of the sinks to
minimize the energy consumed in transmitting the data. The drawback of the paper

is it assumes the network lifetime is known a priori.

In Poe and Schmitt (2009) the sink placement problem for large size of sensor
networks is handled. In order to minimize energy consumption and consequently ex-
tend the network lifetime, they propose a local search technique that does not require
the location information of the sensors. Their self-organized sink placement (SOSP)
strategy sets up a group of communicating sensors for each sink among its n-hop dis-
tance neighbors. SOSP exhibits a good performance by applying locally optimal sink

placement in the experiments.
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2.6. Integrated Works

In Yang et al. (2006) the k-(Connected) Coverage Set (k-CCS/k-CS) problems
with the objective of minimizing total energy consumption while obtaining k£ coverage
for reliability is adressed. They consider a sensor network consisting of a set of sensors
deployed randomly. They propose one global solution for £-CS and two non-global
algorithms. The first one is a linear programming algorithm that uses a cluster-based
approach to select backbone sensors to form a set. The second uses the pruning al-
gorithm based on 2-hop neighborhood information. They analyze the performance of
their algorithms through theoretical analysis and simulations. However the developed
algorithms are for uniform coverage and they assume connectivity of the sensors with

each other but not connectivity of sensors with sinks.

In Liu and Liang (2008) the maximization of the network lifetime is addressed.
They start from an already studied idea which first generates disjoint subsets each of
which can cover all of the targets and works through activating only the sensors in one
of these subsets each time. They extend this approach by allowing overlaps among
these subsets. They partition the entire lifetime of a sensor into several equal intervals
and accepting the sensor to be contained by several subsets which satisfy both target
coverage and sensor connectivity. Initially they analyze the energy consumption of
sensors in a Steiner tree rooted at the base station and spanning the sensors in a sub-
set. Then they develop a heuristic algorithm, which takes into account the remaining
energy of the sensors, for the target coverage problem. They conduct experiments by
simulations to evaluate the performance of the proposed algorithm. The experimental
results show that the network lifetime delivered by their algorithm is extended with

the improvement of network connectivity.

In Li and Gao (2008) design of k-coverage schedules for wireless sensor networks
to maximize the network lifetime is addressed. In order to ensure the quality of surveil-
lance consuming as low energy as possible, they investigate the Sensor Scheduling for
k-Coverage (SSC) problem which requires to efficiently schedule the sensors to satisfy

k-coverage for the monitored area throughout the whole network lifetime. They pro-
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pose two heuristic algorithms under different scenarios. They evaluate their presented
algorithms through simulations. The drawback of the study is that it does not include

the connectivity issue.

In Liu et al. (2008) the reliability of network communication is focused. They
consider the problem of maintaining k-connectivity of sensor network at minimum en-
ergy level while keeping only a subset of sensors active to save energy. In their proposed
scheme, each sensor is assumed to have multiple power levels and neighbor proximity,
means exact location information is not adopted. Firstly the network partition is at-
tained by power based clustering and next sensors are divided into equivalent classes
according to the role of data forwarding to different adjacent clusters. Then Node
Scheduling and Power Adjustment (NSPA) algorithm selects a subset of sensors with
different power levels to construct the local minimum energy graph while maintaining
network connectivity. If the number of intra-cluster sensors which have adjacent clus-
ters exceeds a certain threshold, k-NSPA is employed to obtain k-connected topology.
The simulation shows that their scheme can maintain a k-connected network energy

efficiently. Again the connectivity is forced among sensors but not with a sink.

In Chaudhry et al. (2010) evolutionary methods are considered to find the best
locations of the sensors to meet multiple objectives such as achieving maximum uniform
coverage and maximum connectivity while minimizing the network energy cost. A
flexible algorithm for sensor placement (FLEX) is presented that uses evolutionary
computational approach to solve multiobjective sensor placement optimization problem
when the number of sensor nodes is not fixed and the maximum number of nodes is not
known a priori. They use Pareto dominance for Pareto-optimal layouts with respect
to the objectives. The flexibility of the algorithm is illustrated by solving the sensor
placement problem for diferent applications like facility surveillance, coverage with and
without obstacles, preferential surveillance and forming a clustering hierarchy. The
drawback of the study is that they assume that the communication is among sensors

but not with a base station.

In Tiirkogullar: et al. (2010a) the design issues of sensor placement for the cover-
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age of the sensor field, their activity schedules and determination of sensor-to-sink data
flow routes for wireless sensor networks are addressed. They propose a MILP model
that formulates these network design issues to maximize the network lifetime in hetero-
geneous sensor networks with the requirement of differentiated coverage. Their solution
procedure consists of a heuristic which first finds connected sensor sets with minimum
cost satisfying the coverage constraints and then determines optimal sensor-to-sink
data routes with optimal flow quantities. The computational experiments performed
on various test instances indicate that the heuristic is efficient and accurate to solve
the problem. The same problem is again investigated in Tiirkogullar et al. (2010b)
with a different solution approach. They present a two-phase heuristic, which solves
the linear programming relaxation by column generation in the first phase and in the
second phase contructs a feasible solution for the original problem using the columns
obtained in the first phase. Their computational experiments illustrate the quality of

their solution method.
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3. SENSOR PLACEMENT, SCHEDULING AND
ROUTING PROBLEM WITH CONNECTIVITY
RESTRICTIONS

3.1. Introduction

In this chapter, a mixed-integer linear programming (MILP) formulation for the
Sensor Placement, Scheduling and Routing Problem with Connectivity Restrictions
(PSRPC) is presented. PSRPC aims to determine the optimal sensor locations, to find
the activity schedules of the sensors, to assign at least one sink for each sensor and to
build the data flow routes from each sensor to the corresponding sink to maximize the

network lifetime subject to coverage, flow balance, energy and budget constraints.

3.2. Mathematical Programming Formulations

We consider a sensor field consisting of N points indexed as i € N = {1,..., N}.
The locations of the sensors and sinks can be determined from the same index set
N. The sensors can be of K different types indexed as k € K = {1,..., K} with
known sensing (r;) and communication (r{) ranges. We are assuming that a sink is
a special type of sensor, namely type-0. Therefore, we define the index set K’ =
K |J{0} including the type index for sink. The unit cost (c;;) of placing a type-k
sensor at point j is known. There is a total available budget of B monetary units. In
a period ¢ indexed as t € T = {1,...,T} a sensor can be active or standby. We are
considering sufficiently long planning horizon T to determine the maximum lifetime
over it. Therefore, planning horizon T" becomes an upperbound on the lifetime L of
the network. A type-k sensor has an initial battery energy of Ej units which will be
consumed by e; units for sensing the network, e}, units for receiving and ej units for
transmitting the data in the active periods of the sensor. In a period, an active type-k
sensor located at point j generates hj, data packets, where data packet is a unit that

measures data volume.
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Technical characteristics of the existing commercial sensors, such as (xbow, 2009),
reveal that the energy expenditure of a standby sensor is negligible. We also assume
that, we can save energy if we keep a sensor in standby mode instead of activating it
without performing any of sensing points in the sensor field, receiving and processing
the data and transmitting the data packets to other sensors or a sink. This assumption
works until the periods are not exceptionally short durations. Sinks have unlimited
battery energy, they can receive data packets from the active sensors but cannot sense

points in the sensor field or transmit the data packets to other active sensors or sinks.

In the sequel indices ¢ and j represent the sensor and sink locations, indices k
and [ characterize the sensor types and index ¢ shows the period. For convenience, a

type-k sensor located at point j will be reprented by the pair (7, k).

3.2.1. Main Model

The MILP model we introduce in this section, locates the sensors, determine their
activity schedules, assigns a sink for each active sensor and determines the sensor-to-
sink data flow routes while maximizing the WSN’s lifetime. Locations of the sensors
are determined with decision variables xj;. The location variable is one if a type-k
sensor is placed at point j of the sensor field and zero otherwise. The determination
of the periods that a sensor is active or standby gives us its activity schedule. The
activity schedule variable z;;, becomes one if a sensor (j, k) is active at period ¢ and
zero otherwise. In a period each active sensor should be assigned to a sink in order
to send the collected information from the sensor field. The decision variables related
with sink assignments of the sensors are u;;;;. A sink assignment variable takes value
one if an active sensor (j, k) is assigned to a sink located at point ¢ in period ¢ and
zero otherwise. The decision variable n; is one if a period ¢ is within the lifetime
L, and zero otherwise. The information collected from the sensor field by the active
sensors should be sent to the corresponding sinks through the sensor-to-sink data flow
routes. The flow variable ;1 represents the amount of data that is sent from sensor
(1,1) to sensor (j,k) in period t. Lastly, the variable L represents the lifetime of the

WSN, which we aim to maximize. In the model, locations and activity schedules and
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sink assignments of sensors are of consideration. The assumptions related with sinks
provide some information about the decision variables. Firstly, the locations of the
sinks are konown a priori. Therefore, for £ = 0 we are given for which j locations
xj is equal to one. Since sinks have infinite battery energy, we can assume that sinks
are active in all periods which means the variable z;q; is equal to one for all periods ¢
within the lifetime L if there is a sink at location j. For convenience, a sink (7,0) is
assigned to itself as its sink assignment, i.e. u;; is equal to one for all periods ¢ within
the lifetime L if ¢ = j and zero otherwise. Sinks are the data collection points of the
sensor field, which means they are expected to have data inflows but no outflows. As a
result, taking [ = 0 if there is a sink (¢, 0), then the flow variable y,o;: is equal to zero

for all sensors (j, k) in all periods ¢ within the lifetime L.

We define a;;, to represent the nonnegative coverage coefficients in the model.
The value of this coefficient can be determined depending on the sensing characteristics
of the sensors, i.e. perfect, imperfect and probabilistic sensing, in the sensor field. In
perfect sensing, a sensor can cover all of the points that are in its sensing range. In this
case a;;), is set to one if point ¢ is within the sensing range of the sensor (j, k) and zero
otherwise. Sinks, being a special kind of sensors, cannot contribute to the coverage of

a point in the sensor field. This means a;jo is equal to zero for all 7,5 € N.

Imperfect sensing implies sensing intensity of a sensor decreases as the distance
increases in its sensing range. Then, the coverage coefficients can be calculated as
aijl = A/ (dij)ek where d;; is the Euclidean distance between points ¢ and j. A, and 0,
are technological parameters of a type-k sensor. In probabilistic sensing a sensor can
cover a point in its sensing range with a probability. The probability of sensing a point
i from a sensor (j, k) can be given as p;, = e %, Note that the sensing probability
decreases as the distance d;; between the sensor and point increases. Exponential
decay parameter «y is a sensor specific parameter that shows how fast the probability
decreases. For a type-k sensor high oy value indicates low quality. In both cases, the
coverage coefficients appear to be nonnegative real numbers in [0, 1]. The definitions
of the coverage coefficients for imperfect and probabilistic sensing cases do not change

the structure of the mathematical model, but may affect the values of the other model
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parameters such as f;, coverage quality requirement of point i. The mathematical
model that we will introduce in this chapter assumes perfect sensing, but it is also
applicable for imperfect and probabilistic sensing cases after making the adjustments

in the coverage coefficients.

The aim of the sensor network is to cover the targeted points in the sensor field
by at least the required number of sensors. For this purpose, f; represents the coverage
quality requirement of a point ¢ in the sensor field. Their value depends on the sensing
characteristics and the type of coverage. They are positive integers for perfect sensing
case and become nonnegative rational numbers for imperfect and probabilistic sensing.
They are all same in uniform coverage and may have distinct values for differentiated
coverage. Similar to the coverage coefficients a;;,, the communication coefficients b;;
depend on the communication characteristics of the sensors. In perfect communication
by; value is one if a sensor at point j is within the communication range of sensor
(,1) and zero otherwise. According to our assumptions, sinks cannot transmit data
to another sensor or sink. Then, if we have a sink (7,0), i.e. [ = 0, b;p; will be equal
to zero for all points j. If the communication characteristic of the sensors is imperfect
or probabilistic, then the communication coefficients should be updated appropriately
as in the coverage coefficients. In our model, we assume perfect communication. Ob-
serve that the PSRPC model introduced below cannot be generalized to imperfect or

probabilistic communication cases easily.

Table 3.1. Index sets used in the model

Index sets | Definition
N Index set for sensor and sink locations
K Index set for sensor types
K’ Index set for sensor and sink types
T Index set for periods

There are different definitions used in literature for connectivity of a network. A
network can be considered to be connected if the active sensors can communicate at

least one of the other active sensors (Wang and Xiao, 2006). Another definition for



Table 3.2. Decision variables used in the model

Decision variables

Definition

L
Uz’
Tk
Zikt

Uijkt

Yiljkt

Lifetime of the WSN

One if period t is within the lifetime L, zero otherwise
One if a type-k sensor is placed at point j, zero otherwise
One if a sensor (j, k) is active in period t, zero otherwise
One if a sensor (j, k) is assigned to a sink located at point
7 in period ¢, zero otherwise

Amount of data flow from sensor (i,[) to sensor (j, k) in

period t

19

connectivity of the network is the existance of a path from each active sensor to a sink

node in order to transmit the data packets (Arai et al., 2010). In our study, a network

is assumed to be connected in a period ¢ if we can assign at least one sink for each
active sensor and construct data flow paths from each sensor to its assigned sink. Table

3.1, Table 3.2 and Table 3.3 summarize the index sets, decision variables and model

parameters used in our formulation, respectively.



Table 3.3. Parameters used in the model

Parameters | Definition

@k One if point 7 is within the coverage range of sensor (7, k),
zero otherwise

biij One if a sensor located at point j is within the commu-
nication range of sensor (i,1), zero otherwise

B Total available budget

Cjk Cost of placing a type-k sensor at point j

s Energy consumption of a type-k sensor for transmitting
one unit of flow

ey Energy consumption of a type-k sensor for receiving one
unit of flow

ey Energy consumption of a type-k sensor for sensing and
processing during a period

Ey Initial battery energy of a type-k sensor

fi Coverage quality requirement for point ¢

hjg Number of data packets generated by sensor (j, k) per
period

N Number of candidate locations for sensors and sinks

K Number of sensor types

T Communication range of a type-k sensor

T} Sensing range of a type-k sensor

T Planning horizon

20
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The problem of placing sensors, scheduling and routing with communication re-

strictions (PSRPC) under coverage, energy and budget constraints in order to maximize

the network lifetime can be modeled as the following MILP:

PSRPC :

max L
s.t.
L>1

Z Z QijpZikt = fitu

jEN keK

E E yiljkt+hjkzjktzg E Yikilt
iEN IeK iEN €K’

E E yjkiOtZE g Pt

jEN keK JjEN keK

Z(ezzjkt + e}, Z Z Yitjke 1 €5 Z Z Yjkirr) < Ej

teT i€EN leK i€EN leK’

Z Z Yikie < Mizjie

i€EN leK’

Z Z Yijor < Maxjo

iEN leK
Zikt < T
Zikt < My

Uijrt < Tip

Uijkt < Zikt
g Uikt = Zjkt

iEN

Zuijkt <1

€N

(3.1)

(3.2)
teT (3.3)
ieEN; teT (3.4)
JEN; keK; teT (3.5)
ieN;teT (3.6)
JEN; ke K (3.7)
JEN; keK;teT (3.38)
JEN; LeT (3.9)

JeEN; keK; teT 3.10

JeEN; keK; teT 3.11
,JEN; ke K; teT (3.13

(
(
i,JEN; keK; teT (
(
(3.14

10)
11)
3.12)
13)
JEN; keK;teT 14)

JEN; ke K;teT (3.15)
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Uity < Upjke 1 Yirjke > 0 v,i,j € N; ke Kl € K;t e T (3.16)
Yijre < Mabij i,jEN; ke K3 1€ K; teT (3.17)
Z Z ciktik < B (3.18)
JEN keK

N, Tk, Zines Uighe € {0, 1}, L 2 0, yajee 2 0. (3.19)

Objective function (3.1) maximizes the network lifetime. Constraint (3.2) elim-
inates the trivial but nonsense solution {n = 0, x = 0, z = 0, u = 0, y = 0},
which gives L = 0, from the solution space. The solution is not meaningful since a
realistic WSN is expected to operate at least one period. Constraints (3.3) determine
the periods that are within the lifetime L and constraints (3.4) try to activate the sen-
sors to satisfy the coverage quality requirement f; of each point ¢ in the sensor field for
these periods. One important observation is when the time is beyond the lifetime, i.e.
t > L, constraints (3.3) set n; to 0 which makes coverage constraints (3.4) redundant.
Constraints (3.5) ensure the data flow balance for each sensor (j, k) in each period ¢. If
a sensor (7, k) is active in period ¢, then it adds h;j, units of flow, i.e. data packets, to
the incoming data flow from the active sensors and sends the total flow to other active
sensors or a sink as outflow. Constraints (3.6) consider the incoming data flow to a sink
located at point 7. Since we assign a sink for each sensor (j, k) and each active sensor
initiates h;, units of data flow, we expect that the data flow of each active sensor will
be reached to the corresponding sink. This means each active sensor contributes by
h;i, units to the inflow of its assigned sink which generates the constraints (3.6). In a
period an active sensor consumes energy for sensing and processing the data collected
from the sensor field, for receiving data from other active sensors and transmitting data
to other active sensors or a sink. Total consumed energy of a type-k sensor during its
active periods is limited by the initial battery energy Ej, which is modeled with the
energy constraints (3.7). Constraints (3.8) guarantee that there is no outflow from a
sensor (7, k) in standby mode. Besides, total outflow from an active sensor in a period
is bounded by My, where M, is a sufficiently large number. We define M for this model
as (max;y hjp) N(K + 1), since there are N different candidate locations and K + 1

different sensor types including the sink type to place an active sensor, to which sensor
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(4, k) can transmit at most (max;y h;,) units of data packets in a period. Another
bound on flow variables is given by the constraints (3.9). In order to send a flow to a
sink (j,0), there should be a sink at point j. Total inflow to an existing sink can be
at most M, which is determined as (max; j h;,) N K for our model. The reason for the
difference among M; and M, is that there cannot be outflow from a sink. Constraints
(3.10) force to deploy a sensor before activating it and constraints (3.11) guarantee that
a sensor is not active for the periods out of the lifetime L. A feasible sink assignment of
a sensor (7, k) to a sink (7,0) in a period t requires an active sensor (7, k) and a sink lo-
cated at point ¢ which can be provided by the constraints (3.12) and (3.13). Moreover,
according to constraints (3.14) and (3.15) we can find one and only one sink for each
active sensor in a period t. One may argue why there is unique sink for each active
sensor in a period t. We prefer to model for a unique sink since it will simplify the
determination of the flow routes from sensors to sinks in the solution procedure. The
active sensors can send their data to the assigned sink through the other active sensors.
Then, a sensor (i,1) can have a sink assignment the same with one of the sensors to
which sensor (i,1) sends flow. Constraints (3.16) make use of this idea and bound the
sink assignment variables of sensor (i,1), i.e. wy, with the ones of sensor (j, k), i.e.
Uyjkt, if there is a flow from sensor (i,1) to sensor (j,k). Communication range of a
sensor (i,[) determines the candidate sensors to which it can send flow in a period.
Constraints (3.17) give a bound to the flow from sensor (i,[) to sensor (j, k) with the
corresponding communication coefficient b;;. Constraints (3.18) force that the total
deployment cost does not exceed the total available budget. Finally, constraints (3.19)
put the nonnegativity restriction on the decision variables. In the model, constraints
to limit the number of sensors located at the same point are not included since we
observe that in the optimal solution two or more sensors are rarely active at the same

point within the same period while it is not an energy efficient activity schedule.
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Note that the above formulation is not linear because of the constraints (3.16).
On the other hand, the formulation can be linearized by introducing binary variables

wiike € {0, 1} as follows:

Yitjit < Mowije i,jEN; ke K3 leK;teT (3.20)

Upitt — Uit < Mo(1 — wijkt) v,i,jEN; ke K’; le K; te T (3.21)

We can still make some modifications with the above constraints (3.21) through the
sink assignment variables u;jo;. As it is discussed above, the sink assignment variables
for sinks are not actually decision variables since we know their values when we are
given the locations of sinks. Therefore, we can simply drop w;;o; variables and propose

the following set of constraints instead of (3.21):

Uil — Ugjkt < Mg(l — wﬂjkt) U,i,j € N; k’,l € K; teT (322)

Upilt — 1j(U>[Ej0 S M2(1 — wilet) U,i,j - N, l - K, t S T (323)

The characteristic function 1;(v) is defined as:

1, ifv=y;
1;(v) = (3.24)

0, otherwise.

The replacement strategy makes use of our previous assumption that w;jo: is equal to
one if i = j and zero otherwise. When there is a flow from an active sensor (7,1) to a
sink (j,0), we may assign sink (7, 0) to this sensor, i.e. u;y; < 1, but it does not mean

that we can assign this sensor to another sink, i.e. u,;; <0 for v # j.

In order to visualize the problem better we can make some observations related
with the mathematical formulation. Let in flow;, = ZieN ZleK Yajke and out flow,, =
Y ien Dick Yikie- Notice that, if we decide to locate a sensor (j,k), i.e. zj = 1, in
period ¢ then it is necessary to assign a sink to it by constraints (3.14) and there will

be some outflow from the sensor, i.e. outflow;, > 0, by constraints (3.5). On the
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other hand, if a sensor (j, k) is not active, i.e. zj, = 0, in period ¢t then there cannot
be outflow from the sensor, i.e. outflow;;, = 0, by constraints (3.8). Besides, the flow
balance constraint (3.5) for sensor (7, k) implies in flow;;, = out flow;; from which we
conclude inflow;; = 0 also. This means, until a sensor (j, k) is not active in period ¢,

there will not be any incoming and outgoing flows for sensor (j, k).

Proposition 3.1. If there is a flow from sensor (j, k) to sink (i,0) in period t, then
there cannot be any outflow from sensor (j, k) to another sink directly and sink (i,0)

is the unique sink assignment for sensor (j, k) in period t, i.e. w;jp = 1.

Proof. Let (i1,0) and (i5,0) be two different sinks in the sensor field. Assume for
contradiction that there are positive outflows from sensor (j,k) to both of the sinks
directly, i.e. yjri,0r > 0 and yjri,0r > 0. We have defined that a sink is assigned to itself
as its sink assignment, meaning u;,;,0 = 1 and uj;,0¢ = 0 for all j # 7; and similarly
for sink (iz,0). Since yjri,or > 0, constraints (3.16) imply wyjp < Uy for all v and
similarly w,;xe < Uyiyor for all v. Assume without loss of generality that sensor (j, k)
is assigned to sink (i1, 0) in period ¢, i.e. u; 1, = 1. Besides, from constraints (3.15)
uyjke = 0 for all v # iy. However, for v = iy the inequality w;, jxt(= 1) < wi4,0:(= 0)
will give a contradiction. Hence, an active sensor (j, k) can send flow directly to only

one sink which is its unique sink assignment. O]

Proposition 3.2. If there is a flow from sensor (j1, k1) to sink (i1,0) in period t, then
there cannot be any outflow from sensor (ji, k1) to another sensor (jo, ko) that has sink

assignment different than the one of sensor (ji, k1) in period t.

Proof. Let (i1,0) and (ig,0) be two different sinks in the sensor field. From Proposition
(3.1) sink (41, 0) is the unique sink assignment of sensor (jy, k1) in period ¢, i.e. w; j 5 =
1 and ;¢ = 0 for all v # 4;. Assume sink (iq,0), different than sink (i1, 0), is the
unique sink assignment of sensor (jq, k2) in period ¢, i.e. Uj,jpkyt = 1 and Uyjppye = 0
for all v # iy. If there is a flow from sensor (ji, k1) to sensor (jo, ko) in period t, i.e.
Yjrkjokot > 0, then from constraints (3.16) we should have uyj gt < Uyjokye for all v.
However, taking v = 4; gives w;,jkt(= 1) < Wi jokot(= 0), which is a contradiciton.

Hence the results follows. O
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Proposition 3.3. Assuming a sensor (j, k) is assigned to a sink (v,0), there cannot
be any outflow from sensor (j,k) to a sensor (i,1), which is assigned to another sink

in period t.

Proof. Assume sensor (j, k) is assigned to sink (vy,0), i.e. u, ;e = 1, and sensor (j, k) is
assigned to sink (vq, 0), i.€. Uy, = 1, in period t. By constraints (3.14) these are unique
sink assignments of sensors (j, k) and (7, 1), respectively. Assume for contradiction there
is a flow from sensor (7, k) to sensor (¢,1), yjrur > 0. Then, from constraints (3.16) we
have wyjie < Uy for all v. Taking v = vy gives Uy, jue(= 1) < wy (= 0) which is a

contradiction. O

Notice that the above formulation cannot eliminate flow loops in the network.
This means an active sensor (i,[) sends flow to another active sensor (7, k), then sensor
(7, k) sends this flow back to the sensor (7,[) and so on. This kind of repetition in flow
of data consumes the battery energy without a valuable output. Moreover, consider
an active sensor (z,1) and two other active sensors, say sensors (j, k) and (r,m), in the
communication range of sensor (i,1). In such a case sensor (i,1) can send data flow to
one or both of the sensors (j, k) and (r,m) in that period. From the point of view of
sensor (4,1), energy consumption for transmitting a data packet will be the same for all
alternatives of sending its data packets, since both sensors are in the communication
range of sensor (i,l). Therefore, without loss of generality we can assume that there
can be only one outflow path for an active sensor in a period. This means an active
sensor (7,1) will choose only one active sensor in its communication range, say sensor
(7, k) with by; = 1, to send its flow. The following set of constraints aim to eliminate

flow loops by forcing a unique outflow path from a sensor:

DN wiw <1 ieN:;leK;teT (3.25)

JEN keK’
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Figure 3.1. A sample sensor network operating for T = 2 periods

In order to illustrate the problem, we can consider a sample solution for a problem
instance defined on a 4 x 4 grid whose model parameters can be given as: we have
two different sensor types (i.e. K = 2) and two sinks, planning horizon is equal to two
(i.e. T = 2), coverage quality requirement is one for each point (i.e. f; = 1 for all
i € N), sensing range of type-1 sensors is one and half of the sensing range of type-2
sensors (i.e. 2r{ = rj = 2), communication range of type-1 sensors is two and half of
the communication range of type-2 sensors (i.e. 2r{ = r§ = 4) and each active sensor

can transmit h;, = 24 data packets in a period.

Notice that in Figure 3.1, activity schedules of the deployed sensors may change
from one period to another. Active sensors collect data from the points in their sensing
range, process them as data packets and transmit the data either directly or through

other active sensors to the corresponding sink. There can be only one outflow from a
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sensor which prevents loops in the flow routes. Sinks have unlimited energy capacity

and are active in all periods without contributing to the sensing process.
3.2.2. Formulations with Alternative Objectives

The formulation given in the previous subsection tries to maximize the lifetime of
the WSN. It is also possible to give mathematical formulations which use other objective
functions such as the minimization of total deployement cost and minimization of total
energy consumption. For the sake of completeness, the MILP formulations for these
two objectives will be given here, but solution procedure will not be analyzed in this

study.
The following MILP formulation aims to minimize the total deployment cost.

PSRPC :

min Z Z CikT ik (3.26)

JEN keK

s.t. (3.2) - (3.15),(3.17), (3.19), (3.20), (3.22), (3.23), (3.25).

The other MILP formulation tries to minimize the total energy consumption over

all periods.

PSRPC :

min Z(eizjkt + e} Z Z Yiljkt + € Z Z Yikilt) (3.27)

teT 1€EN leK €N leK’

s.t. (3.2) - (3.6), (3.8) - (3.15), (3.17) - (3.19), (3.20), (3.22), (3.23), (3.25).
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3.3. Valid Inequalities

The MILP formulation of PSRPC proposed in the previous subsection is suffi-
cient to define the feasible solution space. In this section, we give some other set of
constraints which are also valid for the convex hull of the mixed integer set, which we
will call as 2. These valid inequalities are not necessary for the problem formulation
but they will hopefully improve the performance of the solution procedure. The convex
hull of the mixed integer set, namely €2, is generated by the constraints (3.2) - (3.19),
(3.20), (3.22), (3.23), (3.25) and defined as:

Q={L,n,x,z,uy,w: Lnxzuy,w

satisfy constraints (3.2) — (3.15), (3.17) — (3.19), (3.20), (3.22), (3.23), (3.25) }

Proposition 3.4.

SN vk )0 hikzim ieN: leK; teT (3.28

JEN keK’ JEN keK

are valid inequalities for the convex hull €.

Proof. Intuitively, if a sensor (j, k) is not active in period ¢, there cannot be any outflow
from this sensor in that period and if there is an outflow from an active sensor (7, k), it
is at most the total flow contribution of active sensors. For a formal proof consider a
feasible solution (L,n,x,z,u,y,w) in Q. Let totalflow(t) represents the total amount
of inflow to all sinks in period ¢, i.e. > > 1k D jen Yitjor- Obviously, totalflow(t) is

the maximum possible outflow from a sensor (i,[). Then

Z Z Yitjkt < Z Z Zyilet

jeEN keK’ i€EN leK jeEN

— Z Z Z haujie (by constraints (3.6))

jEN ieN IeK

We know from constraints (3.13) - (3.15) for a sensor (i,1) there is only one sink
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assignment, say sink (jy,0), in a period t. Hence

Z Z Z haugin = Z Z hiwgyire

JEN €N leK ieN leK
< Z Z hizi (by constraints (3.13))
ieN leK
which shows that constraints (3.28) are valid inequalities for €. ]

Proposition 3.5.

Wikt < by i,JEN; ke K’ e K; te T (3.29)

are valid inequalities for the convex hull €.

Proof. We know from constraints (3.17) that an active sensor (7,1) can send flow to an
active sensor (7, k) if it is in the communication range of sensor (7,1). In addition, from
constraints (3.20) variable w;;x: is forced to be one if flow variable ;5 is positive.
For a formal proof consider a feasible solution (L,n,x,z,u,y,w) in Q. If by; =1
then flow variables y;;x: > 0 by constraints (3.17) and w;;xe € {0,1} by constraints
(3.20) which will be feasible with respect to constraints (3.29). If b;; = 0 then flow
variables v, = 0 by constraints (3.17) and wy; e € {0,1} by constraints (3.20).
Setting w;x = 0 is feasible with respect to constraints (3.29) and €. O

There are some other valid inequalities proposed in the literature that are also
relevant for our problem (Tiirkogullary, 2010c). We state them without proof in the

following.
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Proposition 3.6.

L= n=0 (3.30)

teT
Ni_1 > Ny teT (331)
Z Z Ejkx]-k Z ElbL (332)
JENEEK

Z Z Z(ez + hyrey)zjee 2 EwL (3.33)

JENEEK teT

Z Z CikZjkt Z C’lbnt teT (334)

jEN keK
> i < Ei z; e N, ke K (3.35)
= (ep + hyweg)zipe | JE ‘

are valid inequalities for the convex hull 2, where Ey, denotes a lower bound on the

optimal value of the following binary integer programming (BIP) problem:

min » Y > (e} + hykef)pi (3.36)

JEN kEK teT
38.1.
Z Z a;jkPjk > fi i€ N (3.37)
jeEN keK
pir €{0,1} jEN; ke K (3.38)

and Cy, is a lower bound on the optimal value of the following BIP problem:

min Z Z Z CikDijk (3.39)

JENEkeK teT
S.1.
Z Z @ijkPik = fi ieN (3.40)
JEN keK
pjk € {0,1} jeN: ke K (3.41)

Proof. See (Tirkogullari, 2010c). O
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4. SOLVING THE SENSOR PLACEMENT, SCHEDULING
AND ROUTING PROBLEM WITH CONNECTIVITY
RESTRICTIONS

4.1. Introduction

The computational results related with exact solution procedure reported in
Chapter 6 show that it is not efficient even for small instances of PSRPC. Therefore,
heuristic solution techniques can be utilized. In this chapter two different Lagrangean
relaxation strategy and the corresponding Lagrangean heuristics for PSRPC are intro-
duced. We try to relax some of the complicating constraints using Lagrange multipliers
and solve the Lagrangean dual problem using the subgradient algorithm. The objective
function value of a Lagrangean subproblem will be an upper bound for the main prob-
lem since we are relaxing some of the constraints which give a larger solution space to
maximize the lifetime. However, solutions obtained from the Lagrangean subproblems
may not be feasible with respect to the relaxed constraints. Then, we can construct
feasible solutions of PSRPC with some heuristic approaches to the solutions of the
Lagrangean subproblems and reach a lower bound for objective function value of the
main problem. Since we cannot find optimum solutions of PSRPC instances, our aim
in this chapter is to develop Lagrangean heuristics that find tight lower and upper
bounds for the PSRPC.

4.2. First Lagrangean Heuristic

We first add dummy constraints in order to replicate activity scheduling variables
2kt with new variables g;x: € {0, 1} to the MILP formulation introduced in section (3.2)

which can be given as:

ikt < Zjkt JEN; keK; teT (4.1)

Gjkt = Zjkt JEN; keK; teT (4.2)
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Then, we replace zj;; variables in constraints (3.5), (3.7) and (3.8) with gz variables.
We aim to decompose the Lagrangean subproblem into smaller subproblems with this

equivalent formulation.

The Lagrangean heuristic is based on the relaxation of the constraints (3.4), (3.6),
(3.22), (3.23), (3.18), (4.1) and (4.2). Note that the constraints (3.6) are equalities.
Therefore, in order to update the Lagrange multipliers in the sugradient algorithm

together, we split these equality constraints into two as follows:

Z Z Yjkior < Z Z Pt ieN; teT (4.3)

JEN keK JEN keK
SO wirior = D> hjrtijue i€ N; teT (4.4)
JEN keK JEN k€K

As a result, we relax the constraints (3.4), (4.3), (4.4), (3.22), (3.23), (3.18), (4.1)
and (4.2) with multipliers A >0, p' >0, > >0, 6' >0, >0, 0 >0, € >0 and

€2 > 0, respectively, in order to obtain the Lagrangean subproblem:

Lus(\, u', p?, 8%, 8% 0, €', €) =maxL + 0 (B—Zchkxjk)

jeEN keK
- Z Z it {Z Z (hjrtijne — yjki()t)}

iCN teT JEN keK
2 h
+ Mot (yjkiOt - jkuijkt)
iEN teT jEN k€K

+ Z Z Z Z Z Z Onitiie (Mo (1 — Wijre) — Uoite + Unjie) (4.5)

veEN €N leK jeN keK teT

+ Z Z Z Z Z Saitjor (Ma(1 — wirjor) — wyire + 15(v)j0)

veN ieN leK jeN teT

YD { (Z > aijkzjkt> - fint}

iEN teT JEN keK

+ Z Z Z Ejl‘kt(zjkt - gjkt) + Z Z Z eikt(gjk’t - ijt)

JEN keK teT JEN keK teT
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s.t.(3.2), (3.3), (3.5), (3.7) — (3.15), (3.17), (3.19), (3.20), (3.25). (4.6)

The Lagrangean subproblem decomposes into three subproblems for a given set of
Lagrange multiplier values. The objective value of the first subproblem is a func-
tion of A, i.e. Zj(A), the objective value of the second subproblem is a function of
A, pt, w2 8, 8% 0 €'and €', ie. Zo(X, p', p? &', 6%, 0, €', €?) and the ob-
jective value of the third subproblem is a function of p', p?, 8, 8%, €' and €2, i.e.
Zs(ut, p?, &', 8%, €', €?). For simplicity, we will denote the objective function values
of the first, second and third subproblems as Z;, Z> and Z3 in the sequel, respec-
tively. These subproblems and their solution procedures are discussed in the following

subsections.
4.2.1. First Subproblem

The mathematical program of the first subproblem SP; can be given as:

SPy: Zij(A) =max L — Z (Z )\itfi> ¢ (4.7)

teT \ieN

s.t. (3.2), (3.3)

L>0, n €{0,1} teT (4.8)

The objective function can be written as L — ZteT vy where v = ZieN Nit fi-
Notice that v, values, coefficients of n;, are nonnegative. Therefore, since the objective
is a maximization we would like to assign zero to variable n; instead of one. Suppose
that L = tg — 1. When n; = 0 constraints (3.3) become t > t,. This means, we have
to assign n; = 1 for t < t5. Hence, for a given L we can determine the n; variables
and calculate the objective function value. As a result, we can find Z; by enumerating
objective function for all possible values of L € {1, ..., T} and select the solution which

gives the highest objective.
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Proposition 4.1. The computational complexity of the solution procedure for SPy s

O(NT).

Proof. Calculating v; for a given ¢ is O(N). Then calculating all v; values are O(NT).
For a given L value, calculating the objective function is O(7T). Finding L which gives
the maximum objective value is O(T'). Hence, the computational complexity of the

solution procedure is O(NT). O

4.2.2. Second Subproblem

The mathematical program of the second subproblem SP, can be given as:

SPy: Zy(X, u', p?, 8%, 8% 0, €', €?) = max —HZchkxjk

JEN keK

+ Z Z Z { <Z )\itaijk> + €p — G?kt} Zjkt (4.9)

JEN keK teT i€EN

+ Z Z Z Z YijktWijkt

i€EN jeEN keK teT

s.t. (3.10) — (3.15)

Tk, Zjkt, Wigke € {0, 1} i,jeN; ke K; teT (4.10)

where

Yijkt = hjk(ﬂz‘lt - M?t) + Z Z(‘Sz‘lvljkt - 51'1jkvlt) - Z 51'2jl<;v0t' (4-11)

veEN leK veEN

Notice that SP, can be decomposed with respect to point j and sensor type k. This

means, Zy = y jeN Y okek Z3F where ZJ* is obtained by solving problem SPJ* given
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as:

SP": ZN (N, pt, p?, 8, 8% 0, €, €) = max —fcjrg

+ Z { (Z )\itaijk> + €y — E?kt} ikt (4.12)

teT €N

+ Z Z VijktWijkt

i€EN teT

s.t. (3.10) — (3.15), (4.10).

A feasible solution of S PZj k assigns a sink for a deployed sensor (7, k) at the periods
it is active. This means, if x;;, = 0, then z;;; = 0 and u;j; = 0 necessarily. On the other
hand, if we have a sensor (j, k), i.e. xj; = 1, and if it is active at period ¢, i.e. zji = 1,
then the best possible sink to assign sensor (j,k) can be i = argmax;en {7Vijre}- Let

CU = max;en {7ijit}- If there is a sensor (j, k) it can be activated at period ¢ if

1EN

Finally, it will be meaningful to deploy a sensor (j, k), i.e. zj; =1, if

CX =—fcj+ Y CZ > 0. (4.14)
teT
Therefore, for a given j and £ indexes, we start by assuming zj; = 1 and try to

determine the periods ¢, in which we assign the sink (¢,0) from i = arg max;en {7Vijit }
to activate the deployed sensor (j, k) by checking (4.13). After enumarating over all
points ¢ and periods t, if (4.14) is provided then we can activate sensor (j, k) and assign
the selected sink to it in the determined periods. In the case we could not satisfy (4.14),
i.e. our initial assumption z;;, = 1 was not true, the solution of the subproblem (j, k)

will be z;, = 0, 2 = 0 and w5 = 0 for all points 7 and periods ¢.

Proposition 4.2. The computational complexity of the solution procedure for SPs is



37

O(N3K2T).

Proof. First let us consider a given subproblem (7, k). Calculating ~;jz for all points
i in a period t is O(N?K). Calculating CU for a period is O(N). Calculating CZ,
for a period is O(N) and O(NT) for all periods. Calculating CX is O(T). Solving a
subproblem (j, k) is O(N?KT). Therefore, computational complexity of the solution
procedure for SP, is O(N3K?T). O

4.2.3. Third Subproblem

The mathematical program of the third subproblem SP; can be given as:

SPy: Zs(u', p?, 8', 6% €', €) =max — Z Z Z(e}kt - e?kt)gjkt

JEN keK teT

=D D 3D (i — ) ysmion (4.15)

JjeEN k€K ieN teT

=555 S 50 (5 st e+ ()

i€N leK jeN teT keK \veN veEN

s.t. (3.9), (3.20), (3.17), (3.25)
Constraints (3.5), (3.7), (3.8) where 2, is  replaced by g (4.16)

Gjikts Wikar € {0, 1} and yjpe > 0 ijeEN, ke K, le K’ teT (417)

Notice that SPs is a MILP. Hence, it can be solved using a commercial LP solver

such as CPLEX (ilog, 2007).

Hence, we obtain an upper bound on the network lifetime L with the Lagrangean
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problem as:

LUB :Zl+ZQ+Zg—|—A (418)

where

NSLED ) 9) )3 91| P SLITA EVRETREHERE) I

veEN €N leK jeN teT keK

An upper bound Ly for PSRPC can be obtained with a given set of Lagrange
multipliers {X, p', p?, &', 67, 0, €', €} as explained above. The best, i.c. smallest,

upper bound can be found by solving the following Lagrangean dual problem

L*UB B AZO,pﬂ20,u220,511§31,2220,020,61zo,e2zo LUB(}" ”’1’ ”’2’ 51’ 52’ 0, 61’ 62) (4-20)
using the subgradient optimization algorithm (Held et al., 1974). At each iteration r
of the subgradient optimization procedure, the current upper bound Lg% is obtained
by solving SP;, SP, and SP;3 to optimality. We have relaxed some of the constraints
of PSRPC in the Lagrangean subproblem. Therefore, for a feasible solution of the
Lagrangean subproblem at iteration r, say (L™, n™ x) 2z g u® vy w)) the
nonnegative deviation from feasibility with respect to relaxed constraints can be rep-

resented with subgradients which are defined as:



SGA

= (§ : E :aUk”ijt
jEN keK

> flnt

r)

Sfot Z Z < ]k’uz]kt y]k"LOt)
jEN keK
2 ) (r)
SGy = Z Z (yg(‘kwt - J’Cuzykt>
JEN keK
SGml]kt M2(1 wz(l?kt) 1():21? + uz()?kt
2 r r
SG?}ilth = My(1 — wz(lj)Ot> - uizgt +1,; (U)xg'o)
S
JEN keK
(r) (r)
SG]kt Zikt — Gkt
(r) (r)
SG]kt gjkt ijt
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ieN;teT (4.21)
ieN; teT (4.22)
ieEN; teT (4.23)

v,i,j € N; k,le K; t € T (4.24)

v,i,jEe N; le K; teT  (4.25)

(4.26)
JEN; keK;teT (4.27)
JEN; keK; teT. (4.28)

They are used to update the Lagrange multipliers by defining a step length £ as

— Lip)

at each iteration r.

parameter and A is calculated as:

A= ZZ(SGQ

i€eN teT

2.2 0.0 0

veN ieN leK jeN teT

D (S

keK

{

DRI (CCA

JEN kEK teT

vzl]kt) )

+ (G, ))

Then, Lagrange multipliers A", p!, p

(4.29)

Here Lj 5 is the best available lower bound, 7 is step length

+(SGY? + (SG?)

(SGjor)” } +(SG")?

(4.30)

9(r) ) ™ o
51 L6, 0, el 2

at iteration
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r are updated as:

AT = max{ A7) — ¢0)(8G2), 0} iEN; teT (4.31)
ph 7 = max{ul” — £M(SGY), 0} i€EN; teT (4.32)
P27 = max{p2” — £M(SGY), 0} ieN;teT (4.33)
T <SGWW> 0} v,i,j €N; k1€ K; te T (434)
Saitgor = max{8Zigjo, — €V (SGi0.), 0} vijEN; LEK; teT (435)
0+ = max{0™) — ¢"(SG?), 0} (4.36)
e =max{el —€M(SGS,), 0} jeEN; keK;teT (4.37)
| =max{eZ; —€M(SGS,), 0} jeN; keK; teT. (4.38)

Lower bounds Lg; are computed at each iteration r by constructing a feasible solu-

tion to PSRPC from the solution of the Lagrangean subproblem. Feasible solution
procedures are explained in section (4.4). The output of the first Lagrangean Heuris-
tic (LH,) is the best lower bound Lj 5 found from the feasible solution generation
procedure and the smallest upper bound L;j;; found during the iterations. There are
different alternatives to finalize the iterations of the Lagrangean heuristic. It is possible
to terminate the subgradient algorithm if the gap between the best upper and lower
bounds is less than a certain threshold value, i.e. Lj;5 — L}z < m where n; is a small
nonnegative constant. However, this criterion may not be succesful if there is a duality
gap larger than 7,. Therefore, we can consider to use the step length parameter 7 as
another termination criterion. The value of 7 is halved if there is no improvement in
the best upper bound Lj; 5 for consecutive x iterations. The value k = 20 is suggested
in the literature (Beasley, 1993). We terminate the subgradient iterations if 7 becomes
smaller than a threshold value 7,. Related with the performance of the Lagrangean
heuristic, we observe that the feasible solution generation procedures find good lower
bounds in early iterations whereas the Lagrangean subproblem cannot improve the
best upper bound value considerably after some number of iterations. Therefore, in
order to save time the number of iterations in subgradient algorithm is limited with

parameter iterlim. The steps of LH; are given in Figure (4.1).
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1. Initialization: Set iteration counter r = 0, (¥ = 2, L¥, = oo, L} = 0 and
N 3 Sl 8 07, €y €4 forv,ij €N, kleK, te T,
2. While Lj;5 — L}z > m and ™ > 19 and r < iterlim Do
3. Solve subproblems SP;, SP,, SP;,
compute Lygp = Z1 + Zo+ Z3 + A
and update Lyp = min{L} g, ng}.
4. If L}, is not updated consecutive last « iterations Then set 7 « /2.

5. Construct a feasible solution with objective value L(Lr])3 using one of the al-

gorithms described in section (4.4) and update L} ; = max{L} g, L(LTI); :

6. Update Lagrange multipliers X, p', p?, &', 62, 6, €', € with equations
(4.31) - (4.38).

7. r—r+1

8. End While

Figure 4.1. First Lagrangean heuristic, L H;

Proposition 4.3. The computational complexity of the solution procedure for LH; is
O(N3K?T (iterlim) + O(Ogp,)(iterlim) + Opp(iterlim)) where O(Ogp,) denotes the
complezity of the algorithm to solve SPs; and O(Orp) represents the complexity of the

algorithm to generate a lower bound.

Proof. Initializing the algorithm is O(N3*K?T). Solving SP; is O(NT) and SP; is
O(N3K?T). Solving SP3 is O(Ogp,). Constructing a lower bound is O(Org). Up-
dating Lagrange multipliers is O(N3K?T). Then, computational complexity of the
algorithm is O(N3K?T (iterlim) + O(Ogsp, ) (iterlim) + Opg(iterlim)). O
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4.3. Second Lagrangean Heuristic

Second Lagrangean heuristic is based on the relaxation of the constraints (3.4),
(4.3), (4.4), (3.22), (3.23) and (3.18) with multipliers A > 0, pu! > 0, pu®> >0, 6" >
0, 62 > 0 and € > 0, respectively. Then, the following Lagrangean subproblem is

obtained:

LUB(}\, IJ’17 HQ’ 517 52’ 9) =max L+ 6 (B— chjkxjk)

JEN keK
- Z Z Hit {Z Z (hjrwijne — yjkiOt)}
€N teT jEN EEK
+ Z Z it {Z Z (Yjkior — hjkuz’jkt)}
iEN teT JEN keK (4.39)

+ Z Z Z Z Z Z (Zl,iljkt (Mo(1 — wigjre) — Uit + Unje)

veEN 1€N IeK jeN keK teT

YY1~ i) s+ 1,00

veN €N leK jeN teT

LYY { (Z 5 ) . fn}

iEN teT JEN kK

such that (3.2), (3.3), (3.5), (3.7) — (3.15), (3.17), (3.19), (3.20), (3.25). (4.40)

The Lagrangean subproblem decomposes into two subproblems for a given set of
Lagrange multipliers. The objective value of the first subproblem is a function of
A, ie. Zi(A), and the objective value of the second subproblem is a function of
X, pb, o p? 8Y, 8% and 0, ie. Zy(A, p', p? &', 6%, 6). For simplicity, we will
denote the objective function values of the first and second subproblems as Z; and Z,

in the sequel.



43

4.3.1. First Subproblem

The mathematical program of the first subproblem SP; is the same as the first

subproblem given in Subsection 4.2.1. Therefore, the solution strategy is the same as

Spl’S.
4.3.2. Second Subproblem

The mathematical program of the second subproblem SP, can be given as:

SPy: Zy(X, pt, p?, 8, 8% 6) = max —QZchkarjk

JEN keK

1593 ] D SR ERES 3) ) ) pEMEN®

JEN keK teT \ieN i€N jeN keK teT

- Z Z Z Z(M}t - M?t)yjki()t

i€EN jeN keK teT

N Z Z Z Z Z M, ( (Z 511)iljk:twiljkt) + (SgiletWilet)

veEN €N leK jeN teT keK

(4.41)

st (3.5), (3.7)-(3.15), (3.17), (3.19), (3.20), (3.25)

Tjky Zjkty Wijkt, Wikilt € {0, 1} and Yjkilt >0 1,J € N, ke K, l e K’, teT (442)

where 7;;: is as defined in equation (4.11).

Notice that SP, can decompose with respect to point j. This means, Zy =
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ZjeN 7} where Z} is obtained by solving problem SPj given as:

SP]: Zi(X, p*, p?, &', 6% 6) = max —Hchkxjk

keK

903 DSERINEHES ) y) oot

keK teT \ieN 1€EN keK teT
(4.43)

N Z Z Z(N%t - N?t)yjkmt

1€EN k€K teT

=20 > > M ( (Z 5iujktwiljkt> + 53i13'0twi110t>

veEN €N leK teT keK

s.t. (3.5), (3.7) = (3.15), (3.17), (3.19), (3.20), (3.25), (4.10).

Notice that SPJ is a MILP. Hence, it can be solved with the help of a commercial
LP solver such as CPLEX (ilog, 2007).

Hence, we get an upperbound on the network lifetime L with first Lagrangean

subproblem as:
Lyp =21+ Zy+ A (4.44)
where A is as defined in equation (4.19).

Similar to the first Lagrangean heuristic, we try to find the values of multipliers
(X, p', p?, 6%, 8% 0} which gives the best upper bound Lyp for PSRPC. For this

purpose, we solve the Lagrangean dual problem

Ly = min Lus(A u', p, &', 8%, 0) (4.45)

A>0,p! >0,u2>0,6">0,6%>0,6>0

using the subgradient optimization algorithm. At each iteration r of the subgradi-

ent algorithm, the current upper bound L(Ur])g is obtained by solving SP; and SP,
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1. Initialization: Set iteration counter r = 0, (¥ = 2, L¥, = oo, L} = 0 and
Nl 20§ 52 00 forv,ij N, k1€ K, teT.
2. While Lj;5 — L}z > m and ™ > 19 and r < iterlim Do
3. Solve subproblems SP; and SPs,
compute Lygp = Z1 + Zo+ Z3 + A
and update Lyp = min{L} g, ng}.
4. If L}, is not updated consecutive last « iterations Then set 7 « /2.

5. Construct a feasible solution with objective value L ])3 using one of the al-

gorithms described in section (4.4) and update L} ; = max{L} g, L(LTI); :

6. Update Lagrange multipliers X, p!, p?, &', 6, 6 with equations (4.31) -
(4.36).

7. re—r-+1

8. End While

Figure 4.2. Second Lagrangean heuristic, LH,

to optimality. For a feasible solution of the Lagrangean subproblem at iteration 7,
say (LM, nM x 7z u® v w) subgradients can be calculated as in equations
(4.21) - (4.26) given in the previous section. The step length is determined with the

equation (4.29) where A value is found as:

A= ZZ(SGQ (SG™y? (SGQf)Q)

i€EN teT

+zzzzz{(z >) (S }+<see>2 i

veEN 1€N leK jeN teT keK

Finally, Lagrange multipliers A, g™, p2”. 67, 627, 60 at iteration r can be
updated with the equations (4.31) - (4.36). We can summarize the steps of LH; as in
Figure (4.2).
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Proposition 4.4. The computational complexity of the solution procedure for LHy
is O(Ogp, (iterlim) + Opp(iterlim) + N*K?T (iterlim)) where O(Ogp,) indicates the
complexity of the algorithm to solve SPy and O(Org) represents the complexity of the

algorithm to generate a lower bound.

Proof. Initializing the algorithm is O(N®K?T). Solving SP; is O(NT). Solving SP,
is O(Ogp,). Constructing a lower bound is O(Op). Updating Lagrange multipliers is
O(N3K?T). Then, complexity of the algorithm is O(Ogp, (iterlim) + Oy g(iterlim) +
N3K?T (iterlim)). O
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4.4. Generating a Feasible Solution

The algorithms for Lagrangean heuristics given in sections (4.2) and (4.3) require
lower bounds in order to update the Lagrange multipliers at each iteration. The lower
bounds can be obtained by a heuristic that uses the current solution of the Lagrangean
subproblem. The heuristic constructs a feasible solution from it by recovering the
infeasibilities with respect to the relaxed constraints of the Lagrangean subproblem.
In this section, we introduce two different algorithms to generate a feasible solution

out of the current solution of the Lagrangean subproblem.

4.4.1. Greedy Heuristic

First heuristic consists of three main steps, namely providing feasibility subject
to coverage and budget constraints, providing feasibility subject to sink assignment
constraints and determining feasible values for variables y and w. Each step of the

algorithm is done for all periods ¢t < T'. The algorithm is given in Figure (4.3).

In the solution of the Lagrangean subproblem, it is possible for a sensor (j, k) to
overuse its battery energy Ej. In Step 1 of the algorithm, we find the first period ¢
that a sensor (j, k) violates the energy constraint (3.7). Then, the sensor is scheduled

to be in standby mode for the periods t > t.

We use the algorithms given in Figure (4.4) and Figure (4.5) to satisfy the cover-
age and budget constraints. For each period t < T', we check if every point in the sensor
field is covered by the required number of sensors or not. If each point is covered and
budget constraint is satisfied then we move to the next period. If budget constraint
is not held, we consider to remove some of the deployed sensors without harming the
coverage constraints. For this purpose, we delete sensors, i.e. set xj;, = 0, that are in
standby mode until the current period since they do not contribute to the coverage of
the points in any of the periods. Deleting sensor (7, k) improves remaining budget B"*™
by ¢;,r monetary units and we continue with the process while the remaining budget is

negative or we cannot find a sensor to delete.
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1. For each sensor (7, k) Do
1.1. For each t < 7T Do
t =t and Go to Step (1.2)
End If
End For
1.2. For each £ >t
Set 2 =0
End For
End For
2. Use the algorithm in Figures (4.4) and (4.5) to obtain a feasible solution subject
to the budget constraint and coverage constraints with objective value L.
3. If L =0 Then
Stop
Else
For all t < L Do
Use the algorithm in Figure (4.6) to generate a feasible solution subject
to the sink assignment constraints with objective value L.
End For
End If
4. If L = 0 Then
Stop
Else
Solve RP described in this subsection to determine data flows y and dummy

variables w. The feasible solution is optimal with L,z = L.

End If

Figure 4.3. Greedy heuristic, GH
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1. Set L) =T
2. Forallt < L(LT])S Do
2.1. If every point is covered Then
If budget constraint is satisfied Then
t—1t+1
Else /* Budget is violated */
Remove standby sensors in periods [0, ¢] starting with the ones hav-
ing the largest cost until budget constraint is satisfied.
If this is not possible Then
L =t—1 and Stop
End If
End If

Figure 4.4. Providing feasibility subject to coverage and budget constraints (first
part)

After this procedure, it is possible that the budget constraint is violated. In
this case, one can consider to delete active sensors whose removal do not harm the
coverage of the points. This strategy is used only when we are in the first period, i.e.
t = 1, for the sake of simplicity of the heuristic. If budget is still violated then we set
L =t —1 and stop the algorithm. On the other hand, if there is an undercovered point
in the sensor field then we first try to ensure coverage in the network by activating the
existing sensors. Let {L® n® x®) 2z (g)) v&) w1 be the solution found with
the Lagrangean subproblem at iteration r. Observe that activating a standby sensor

does not demand budget usage.
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2.2. Else /* There is at least one undercovered point */
2.2.1 While there is a sensor (j, k) with positive CEPj; value Do
Find a sensor that can cover some undercovered points with the
highest positive C'E P}, value and activate this sensor.
If there is no such sensor Then Go to Step (2.2.2)
End While
2.2.2 While there is a sensor (7, k) with positive CCRj;, value Do
Find a sensor that can cover some undercovered points with the
highest positive CC R, value.
If there is no such sensor Then L =t — 1 and Stop
Else
If budget is enough Then Deploy and activate this sensor.
Else
Remove standby sensors in periods [0, ¢] starting with the ones hav-
ing the largest cost until enough budget is obtained.
If budget is enough Then Deploy and activate this sensor.
Else L =t — 1 and Stop
End While
End If
End For

Figure 4.5. Providing feasibility subject to coverage and budget constraints (second

part)
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We choose the standby sensor to activate in a gereedy way by calculating a
product for each sensor in period t. For this product we first calculate the shortages
in the coverage qualities for each point in the sensor field, namely the undercoverage

values as:

U = max {fmgr) - (Z Z aijkzj(Zl) ,0} i€ N (4.47)

JEN k€K

For a standby sensor, it is a reason of choice if it can cover as many points as
possible that have positive undercoverage values. In addition, as the sensor has more
remaining energy in its battery, the need for the deployment of the new sensors will be
less in the future since we can activate the sensor in these periods also. Therefore, we

can define the coverage energy product, i.e. C’EPJ%), for each sensor in period t as:

. (") prem
(Zie{iw}%o} awk) Lk Lkt

Cjk

CEP} = jEN; ke K (4.48)

where E7™ represents the remaining energy of a sensor (7, k) in period t.

Then, we activate the standby sensors starting from the one with the highest
positive CEP].(,Z) value and continue until we provide coverage constraints or we do not
have stanby sensors with positive C’EPj(,:) value. This means, it is possible that we
can not satisfy the coverage constraints after this process. If this is the case, then we
consider to deploy new sensors and activate them, i.e. ;. = zj = 1, in period ¢. In
order to determine which sensors to deploy and activate in period ¢, we calculate a

coverage cost ratio, i.e. C’CR;Q, for each sensor (7, k) as:

() -0)5

Cjk

CCRY) = jeN; ke K (4.49)

where Fj, represents the initial battery energy of a type-k sensor.
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Observe that, we have to have sufficient budget to deploy a sensor. Then, as
far as our budget allows we continue with the procedure starting from the sensor with
the highest positive CCR?,? value until we satisfy coverage constraints or there is no
sensor with positive C’C’Rﬂ) value. If we can not achieve the coverage constraints and
still have some candidate sensors with positive C’C’Rﬁ) value after the process, we try
to generate sufficient budget by deleting standby sensors that are not used until the
current period. The procedure proceeds as the budget allows and there are candidate
sensors to deploy. If coverage is not provided, then we set L = t — 1 and stop the

algorithm.

Proposition 4.5. The computational complezity of the algorithms given in Figure (4.4)
and Figure (4.5) is given as O(1yN3KT+71 N*KT?) where 1, = max; {Z]EN ZkeKa,-jk}

is the mazximum number of points in the sensor field that a sensor can cover.

Proof. Checking coverage for all points in the sensor field is O(m;N). Checking bud-
get constraint is O(NK). In a period t, removing standby sensors until period ¢
is O(NKT). Then, step (2.1) is O(nN + NKT). Calculating CEPj;; values in a
period ¢ is O(N?K) and finding the highest one is O(NK). Then, step (2.2.1) is
O(1N3K). Calculating CCRj values in a period ¢ is O(N?K) and finding the high-
est one is O(NK) results step (2.2.2) is O(1y N*K + 7, N?KT). This means, step (2.2)
is O(iN3*K + 1y N?KT). As a result, providing feasibility subject to coverage and
budget constraints is O(ry N*KT + 1y N*KT?). O
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1. Initialization: For all sink (i,0) set sensorset;; = 0 and for all sensor (j, k) set
sensorset;, = —1. Set setlevel = 0.
2. For all active sensors in period ¢ Do
2.1. If setlevel = 0 Then
For all sinks (7,0) and active sensors (j, k) Do
If bji; = 1 and sensor (7, k) has no sink assignment Then
Uijie = 1, sensorsetj, =1
End If
End For
2.2. Else /* setlevel > 1 */
For all disjoint active sensors (¢,1) and (j, k) Do
If sensorsety, = setlevel, bj,; = 1 and sensor (j,k) has no sink
assignment Then
Uyjkt < Uiy Tor all v and sensorset ;i = setlevel + 1
End If
End For
End If
setlevel «— setlevel + 1
End For
3. For all active sensor (j, k)
3.1. If sensor (j, k) has no sink assignment Then
Use the algorithm in Figure (4.7) to generate a feasible solution subject
to connectivity restrictions.
If this is not possible Then L = ¢ — 1 and Stop
End If
End For

Figure 4.6. Providing feasibility in period ¢ subject to sink assignment constraints
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For each period ¢ we use the algorithms given in Figure (4.6) and Figure (4.7)
to assign a unique sink for each active sensor (j, k). The algorithm collects sensors
that have similar communication properties in a set. The variable setlevel is an iter-
ation counter over all sets and sensorset;i; represents the set index to which sensor
(7, k) belongs. By definition all sinks (i,0) are collected in a set at setlevel = 0, i.e.
sensorset;y = 0. Then, for setlevel = 0 we collect all active sensors (j, k) that can
communicate with at least one of the sinks (¢,0) directly, i.e. bjr; = 1, in a new set.
This new set has the index (setlevel + 1) and for all active sensors (7, k) with b = 1
is in this set, i.e. sensorset i = setlevel + 1. Generalizing this idea, a set with index
(setlevel + 1) is obtained by collecting the active sensors (7, k) that can communicate
with at least one of the sensors (7,[) directly, means b;;; = 1, that is in the set with
index setlevel. Defining sensorset i, = setlevel + 1 indicates sensor (7, k) is a member

of the set with index (setlevel + 1).

Observe that, from the criteria used for defining the sets, there is a sensor (i,1)
in a set with index setlevel to which a flow can be sent from a sensor (j, k) in a set
with index (setlevel +1). That is, we can have y;;; > 0 for these sensors. Constraints
(3.16) make use of the flows among the sensors to assign sinks to the sensors. Taking
these constraints into account, since yjix > 0 is possible we set w,jie = Uy for all
v. For a sink (7,0) at setlevel = 0, sink assignment is u;0; = 1 and w0 = 0 for all
v # i. Then, for a sensor (j, k) at setlevel = 1 if bj; = 1 we make the sink assignment
as Uyjkt = Uyior for all v. Hence, ;i is one for only v = 4, which is the unique sink
assignment of the sensor (j, k) in period ¢. Notice that there can be more than one sink
(7,0) with which sensor (j, k) can communicate directly. In this case, only one sink is
chosen arbitrarily to make the sink assignment. For the sensors at setlevel > 1, the
approach is similar. By this way, we satisfy Constraints (3.16) after the determination

of flows in the network which will be explained in the following paragraphs.
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1. Initialization: Set ( = (ZJEN Y okek zjkt> (max;;, hji) and calculate C’lek values.
2. While {(j, k) : x50 = 1, zjre = 0, Efg > (e; +C(ef, +¢;))} # @ and CRj;, > 0 Do
2.1. Find a sensor satisfying (3 a sink (7,0) such that 3 a path from sensor (7, k)
to the sink) with the highest CR},C value, say sensor (j*, k*)
2.2. Activate sensor (j*, k*) and assign it to sink (7, 0)
2.3. For all active sensors (7, k) that have no sink assignment Do
If a sensor (j, k) satisfies (3 a sink (7,0) such that 3 a path from sensor
(4, k) to the sink) Then w;jr = 1
End For
2.4. If the network is connected Then Stop
Else Go to Step 3
End If
End While
3. Calculate C'R%, values
4. While {(j, k) : z;, = 0, 3 a sensor (i,1) that has a sink assignment or a sink
(4,0) with bjr; = 1} # @ and CR3, > 0 Do
4.1. Find sensor, say (j*,k*), with the highest C'R}; value
4.2. If B™™ > ¢j« p» Then
4.2.1. Deploy and activate sensor (j*, k*) and assign it to sink (4, 0)
4.2.2. Repeat Step (2.3)
4.2.3. If the network is connected Then Stop
Else L =t — 1 Stop
End If
4.3. Else
Remove standby sensors in periods [0, ¢] starting with the ones having
the largest cost until enough budget is obtained.
If B™™ > ¢;« p» Then Repeat Steps (4.2.1) - (4.2.3)
Else L =t — 1 Stop
End If
End If
End While

Figure 4.7. Providing feasibility in period ¢ subject to connectivity restrictions
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Proposition 4.6. The computational complezity of the algorithm in Figure (4.6) is
given as O(N3K3T + N°K*).

Proof. Initializing the algorithm is O(NK). Step (2.1) is O(N?K) and step (2.2) is
O(N3K?). Then, step 2 is O(N*K?). Satisfiying connectivity restrictions is O(N2 KT+
N*K3). Then, step 3 is O(N3K3T + N°K*?). As aresult, providing feasibility in period
t subject to sink assignment constraints is O(N3K3T + N°K*). O

One important point is that after the set generation algorithm explained above
we can have sensors that do not belong to any of these sets. This means these sensors
cannot communicate any of the sensors in the sets. Hence, we cannot assign sinks to
these sensors with our algorithm. At this point, we use the algorithm given in Figure
(4.7) to maintain the communication in the network. We first consider to activate
standby sensors since the strategy is free. A standby sensor to activate is selected in a
greedy way among the ones that have sufficient remaining energy and can communicate
directly with at least one of the sensors in the sets and at least one of the sensors that
are outside the sets. We determine a communication ratio for each standby sensor

(7,k) in period t as

, <Z i€ (i,0) [uyis =0 Yo aijk) x('Z)ET'l?;n
Cleli): (7)6{(»” vilt } J J ]€N7 keK (450)

Cjk

where E7/" represents the remaining energy of a sensor (j, k) in period ¢.

Then, we activate the standby sensors starting from the one with the highest pos-
itive C’le.,(;) value and continue until all sensors find a set or we do not have standby
sensors with positive C’le-,j) value. Observe that, by activating a standby sensor we can
insert more than one isolated sensor in a set, since either isolated sensors can commu-
nicate with each other or the activated sensor is in the communication range of more
than one isolated sensor. After the activation of a standby sensor, both possibilities are

checked in order to provide communication with the least number of additional sensors.

If there are still sensors outside the sets then we consider to deploy new sensors and
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activate them, i.e. z;, = 2, = 1, in period ¢t. In order to determine which sensors
to deploy and activate in a period ¢, we calculate another communication ratio, i.e.

CR?,(;), for each sensor (7, k) as:

. (Zu D) [tz =0 Yo aijk) (1 —x?) E,

Cjk

where Fj. represents the initial battery energy of a type-k sensor.

It is possible that the remaining budget is not adequate to deploy the candidate
sensor that has largest C’R?,(;) value. In this case, we delete unused sensors until the
current period to find the necessary fund. If we cannot obtain sufficient budget to
deploy the selected sensor then we update L =t—1and stop the algorithm. We
continue with the algorithm until we can find a sensor that has positive C’R;,i;) value

and we can deploy the sensor either with the remaining budget or the generated budget

after removing some of the sensors.

Proposition 4.7. The computational complexity of the algorithm in Figure (4.7) is
given as O(N?*K*T + N1K3).

Proof. Calculating ¢ is O(NK) and calculating C'Rj;, values is O(N?K?). This means,
initializing the algorithm is O(N2K?). Finding a sensor (j*, k*) according to the con-
ditions in step (2.1) is O(N?K). Assigning sink for active sensors in step (2.3) is
O(N3K?). Checking connectivity is O(NK). Therefore, step 2 is O(N*K?). Calculat-
ing CR3, values is O(N?K?) and finding the maximum one is O(NK). Step (4.2) is
O(N3K?) and step (4.3) is O(NKT+ N3K?). Therefore, step 4 is O(N?K*T+ N*K3).
As a result, providing feasibility in period ¢ subject to connectivity restrictions is

O(N2K2T + N*K?3). 0

The last step of the greedy algorithm aims to find the values of the data flows in
the network. For this purpose, for each period ¢ within the lifetime L we consider the

Routing Problem (RP), which tries to find the minimum energy consuming sensor-to-
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sink data flow paths.

RP :

min e, Z Z Yijk + €5, Z Z Yikil (4.52)

iEN €K iEN IEK’
s.t.
Z Z Yijk + i Zine = Z Z Yikil JEN; ke K (4.53)
iEN I€K iEN 1K’
SO o= > byl i€N (4.54)
JEN k€K jeEN keK
SN i < MiZj jEN; ke K (4.55)
ieN IeK’
Z Zyiljo < Moo jeN (4.56)
iEN I€K
Yajr < Mo (2 - Z |Tpitr — uvjktl) /2 i,j € N; k€ K’ 1 € K (4.57)

vEN

Yijk < Moby; i,jeEN; ke K5 l € K (4.58)
Yije > 0, (4.59)

where {L®) a®) %@ 70 (g0) y®) w1} is the solution after applying the first three
steps of the greedy heuristic GH.

Actually, at this step of the algorithm we should decide on the values for both
data flows y and dummy variables w. Notice that variables y are continuous and
variables w are binary. Therefore, if we have included the variables w to the RP, then
we would have a MILP instead of a LP, which is obviously more difficult to solve. Then,
we add constraints (4.57) to satisfy constraints (3.16). Constraints (4.57) calculate the
absolute difference among the sink assignment variables of sensors (i,1) and (j, k).
Observe that since each sensor is assigned to only one sink, total difference can be
either zero means they are assigned to same sink or two means they are assigned to
different sinks. According to constraints (3.16), if there is a positive flow from sensor

(i,1) to (j, k), then the sink assignments can be the same and they have to be the same
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as we have shown in Proposition 3.3. Constraints (4.57), allowing a possible flow from
sensor (i,1) to sensor (j, k) only if they have the same sink assignments, guarantee the
feasibility with respect to Constraints (3.16). Therefore, setting wyjp = 1 if Yk > 0
and zero otherwise, where y* is an optimal flow obtained by solving RP at period ¢, is

feasible with respect to constraints (3.20) and (3.21).

Proposition 4.8. Based on the Karmarkar’s interior point algorithm (Karmarkar,
1984), the solution algorithm for RP is of complexity O(NSK°Lg) where Lp is the

size of the LP instance in terms of the number of bits necessary for storage.

Proof. According to the potential reduction algorithm developed by Ye (1991), Kar-
markar’s interior point algorithm can be solved in O(n®L) number of iterations where
n is the number of variables and L number of bits required for storage. For our case,

number of variables of the RP is O(N?K?). Number of constraints is O(N?K?). [

Then combining the subalgorithms described above, we can reach the following

proposition related with the overall cost of the greedy algorithm.

Proposition 4.9. The computational complezity of the algorithm in Figure (4.3) is
given as O(N?K?T? + ryN3KT + 1yN?KT? + N3K3T + N°K* + N°K°®Lg) where

T = max; {ZjeN ZkeK aijk} is the mazimum number of points in the sensor field that
a sensor can cover and Lp is the size of the RP instance in terms of the number of

bits necessary for storage.

Proof. Calculating total energy consumption of a sensor (7, k) upto period t is O(NKT).
Calculating step (1.1) is O(NKT?). Calculating step (1.2) is O(T). Then, step 1 is
O(N?K?*T?). Complexity of step 2 is O(rN3*KT + 1y N*KT?). Complexity of step
3 is O(N3K3T + N°K?). Step 4 is O(N°KSLg). As a result, greedy heuristic is
O(N2K*T? + \N3KT + 7 N?KT? + N3K3T + N°K* + N°K°Lp). O
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4.4.2. Discrimination Heuristic

Discrimination heuristic (DH) is another approach to generate a feasible solution
from the solution of the Lagrangean subproblem at iteration r. Actually, this heuris-
tic uses almost the same subalgorithms with greedy heuristic but in different order.
Greedy heuristic first tries to restore the feasibility with respect to the coverage and
budget constraints in all periods within the planning horizon. After this, the connec-
tivity is checked for all periods within the lifetime while making the sink assignments.
Finally, for all periods within the lifetime data flow routes are determined. One major
drawback of this procedure is that we are consuming most of our budget while we
are trying to satisfy coverage constraints for more periods as possible. This decreases
our chance to provide connectivity by deploying new sensors. Hence we can end up
with unsatisfactory lower bound. On the other hand, discrimination heuristic consid-
ers feasibility with respect to coverage, budget and connectivity constraints and the
determination of data routes for each period independently. This means, we cannot

move to the next period without satisfying all relaxed constraints in a period.

We use the algorithm given in Figure (4.8) to obtain a feasible solution to PSRPC.
For period t we check the coverage and budget constraints. If the coverage constraints
are satisfied with the available budget, then we use algorithm in Figure (4.6) to assign
sinks to the active sensors. We consider to remove sensors that are in standby mode
until period ¢ when the budget is over. If connectivity is achieved, using the algorithm
in Figure (4.9) we eliminate active sensors whose removal does not affect the coverage

and connectivity of the network in period t starting from the most expensive one.

Proposition 4.10. The computational complexity of the algorithm in Figure (4.9) is
given as O(N*K?).

Proof. Reassigning the sinks to the sensors is O(N3K?). This process is repeated for

NK times. Hence, eliminating unnecessary sensors is O(N*K3). O
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1. Apply Step 1 of the algorithm in Figure (4.3).
2. Set L) =T
3. For all t < L"), Do
If every point is covered Then
If budget constraint is satisfied Then
3.1. Use the algorithm in Figure (4.6) to generate a feasible solution
subject to the sink assignment constraints.
3.2. If the network is connected Then
t—t+1
3.2.1 Use the algorithm in Figure (4.9) to eliminate the active sensors
that do not harm coverage or connectivity restrictions.
3.2.2. Solve RP to determine data flows y. Set L;z = L and Stop
Else L =t — 1 and Stop
End If
Else
Remove standby sensors in periods [0, ¢] starting with the ones hav-
ing the largest cost until budget constraint is satisfied.
If this is not possible Then L =t — 1 and Stop
Else Repeat Steps (3.1) and (3.2)
End If
End If
Else
Apply Step (2.2) of the algorithm in Figure (4.5)
If coverage constraints are satisfied Then Repeat Steps (3.1) and (3.2)
Else L =t — 1 and Stop
End If
End For

Figure 4.8. Discrimination heuristic, DH
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1. While {(j, k) : zjxx = 1 and Vv with a,;, = 1, 3 sensor (i,1) zy = 1 with
avip =1} # & Do
1.1. While {(j,%) : zjx = 1 and Vo with by, = 1, 3 sensor (i,1) z;; = 1 with
biw =1} # @ Do
Zjie = 0
Reassign the sinks to the remaining active sensors
End While
End While

Figure 4.9. Eliminating unnecessary sensors from network in period ¢

Data flow routes are determined with the linear program RP as explained in the
previous subsection and move to the next period. In case the coverage is not satisfied
in period t, we use algorithms given in Figure (4.4) and Figure (4.5). If we can satisfy
the coverage constraints, then we continue with finding the sink assignments and the

corresponding data flow routes, in period t.

Proposition 4.11. The computational complexity of the algorithm in Figure (4.8) is
given as O(N3K3T? + N°K*T + N*K3T + N°K®TLg + 1 N3KT + 7, N> KT?) where
71 = max; {ZJEN > ke aijk} 15 the maximum number of points in the sensor field that
a sensor can cover and Lp is the size of the RP instance in terms of the number of

bits necessary for storage.
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Proof. The complexity of step 1 is O(N?K?T?). Checking coverage is of O(N?K) and
checking budget takes O(NK). Satisfying sink assignment constraints is O(N3K3T +
N°K*). Checking connectivity is O(NK). Eliminating unnecessary sensors from the
network is O(N*K3). Solving LP is O(N®K°Lg). Removing standby sensors from the
network is O(NKT). Applying step (2.2) to provide feasibility subject to coverage and
budget constraints is O(7; N>*K + 7 N?KT). Then, the complexity of the algorithm is
O(N3K3T? + N°K*T + N*K3T + NSKTLg + 7y N3KT + 1 N*KT?). ]
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5. THE SINK LOCATION, SENSOR PLACEMENT,
SCHEDULING AND ROUTING PROBLEM WITH
CONNECTIVITY RESTRICTIONS

5.1. Introduction

We have developed solution strategies for PSRPC which assumes that we are given
the sink locations in the previous chapter. These solution techniques can be utilized to
find good, possibly optimal, sink locations. In this chapter given the number of sinks
in the sensor field, we aim to develop heuristics to find good locations for sinks in order

to maximize the network lifetime.
5.2. Model Formulation

The mathematical model that locates the sinks, places sensors, determines the
activity schedules of the sensors and constructs the sensor-to-sink data flow routes un-

der connectivity restrictions (LPSRPC) can be given as follows:
LPSRPC :

max L (5.1)

s.b. (3.2) = (3.15), (3.17) — (3.19), (3.20), (3.22), (3.23), (3.25)

iEN

where S is the given number of sinks in the WSN.

The median constraint (5.2) guarantee to place S sinks in the network. One
important point related with the sinks is that they are special types of sensors, hence
deploying a sink on a point ¢ is costless and sink (z,0) will be in active mode during

the lifetime of the network without any energy constraint.
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One can observe that when the locations of S sinks are given, i.e. x;y values
are known, the problem will reduce to PSRPC for which we have introduced solution
procedures in the previous section. Since we have finite number of points to locate the
sinks, we can find the best locations for sinks by simply enumarating over all possible
combinations. However, as the number of candidate locations increases linearly, the
number of possible combinations increase exponentially. Therefore, instead of trying
all alternative locations for S sinks, we can develop search algorithms to find good
locations for sinks that maximizes the lifetime L of the network. Two different search
algorithms are built: a local search heuristic and tabu search heuristic whose details

are explained in the following section.

5.3. Solution Procedures
5.3.1. Local Search Heuristic

Local search techniques are frequently used for solving hard combinatorial opti-
mization problems such as the p-median problem (Arya et al., 2004). We make use of
similar searching strategy in order to locate S sinks. A solution § = {s, ..., sg} will be
the set of locations of S sinks and By, (S) will be the set of all neighbors around the
solution § with the neighborhood function N. In order to generate neighbors around
the current solution S, we swap the locations of randomly selected s sinks out of S sinks
of the current solution. Therefore, for our problem N, will be s-swap neighborhood
function. Observe that, s can take different values, i.e. s =1,...,.5, which gives alterna-
tive neighborhood functions. Moreover, we can calculate the size of the neighborhood
By (S), i.e. the number of solutions in By, (S), when we are given the neighborhood
function N. For a N, neighborhood function, the size of the neighborhood NS, can

be calculated as

NS, = (N h S) <S) se{l,..,5} (5.3)

S S

where NN is the number of candidate locations to locate a sink.
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The local search heuristic is given in Figure (5.1) and starts with an initial solution
Sy, which is obtained by locating S sinks randomly. An initial network lifetime L g
is calculated using the sink locations &y with one of the feasible solution generation
algorithm, namely greedy or discriminative heuristic. For a given solution S and for
each s-swap neighborhood of S, we consider the P, percentage of the neighborhood to
search an improving solution. Then, we select the best improving solution among all
s-swap neighborhoods, s = 1,..., .5, to update the network lifetime L. We continue
with improving the lower bound for the network lifetime L until the algorithm run
for iterlim many iterations or we cannot update the current Ly for NI consecutive

iterations.

Notice that, if we are searching for all solutions in the s-swap neighborhoods,
i.e. P, =1, and we cannot update the current lower bound at last iteration, then we
can stop since we are at a local optimum. This means, if we decide to take P, = 1,
then we can select NI = 1 since choosing NI greater than one is meaningless. On
the other hand, picking a P, € (0,1) decreases the power of the algorithm in terms of
intensification in a neighborhood. As a result, one can choose larger NI values while

decreasing the P, value not to lose much from the power of the algorithm.

Proposition 5.1. The computational complexity of the solution procedure for LS 1is
O(1eS3(iterlim) + 0ppS(iterlim)) where T, = max, { NS, P,} is the mazimum num-
ber of solutions generated from a s-swap neighborhood and O(Opg) represents the com-

plexity of the algorithm to generate a lower bound.
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1. Initialization: Locate S sinks randomly, use the algorithm GH (or DH) to gen-
erate an initial lower bound, Lyp. Set t = 0, noimpr =0 and L}z = 0.
2. While t < iterlim, novmpr < NI Do
For all s < S Do
count = 0, Ly = 0;
While count < NS, P, Do
Change locations of s-sinks randomly and use the algorithm GH (or
DH) to generate a lower bound, L.
Update L;p = max {E, LLB} and count < count + 1
End While
End For
Update Lj 5 = max{Lp, L} 5} and set noimpr = 0.
If L} 5 is not updated Then
notmpr «— noimpr + 1
End If
t—1t+1
End While

Figure 5.1. Local search heuristic, LS

Proof. Expected number of iterations to locate S sinks is O(S5?). Finding lower bound
is O(Orp). Then, initializing the algorithm is O(S? + Orp). Changing the loca-
tions of s-sinks is O(S?). Finding best lower bound in the s-swap neighborhood
is O(195% + 7,0rp). Doing this for all s-swap neigborhoods is O(725% + 7,01pS).
We repeat this until the stopping condition is satisfied. Hence, complexity of step 2
is O(1S3(iterlim) + 7,0rpS(iterlim)) which is also the complexity of the LS algo-
rithm. O
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5.3.2. Tabu Search Heuristic

Second search heuristic for the sink locations is a tabu search algorithm. Different
than the local search algorithm, tabu search aims to visit as distict parts of the solution
space as possible by forbidding to revisit the recent tabutenure many solutions from
the solution space of sink locations (Gendreau and Potvin, 2005). The superiority
of tabu search algorithm over the local search is that tabu search can both search a
neighborhood intensively and search diverse regions of the solution space at the same
time whereas local search algorithm even though performing well in intensification, can

be very poor in diversification.

As in the local search, we are using S different neighborhood functions Ny, namely
s-swap neighborhood functions for s = 1, ..., S. The tabu search algorithm described in
Figure (5.2) locates S sinks initially. This solution is used to find an initial lower bound
Ly p for the network lifetime and added to the tabulist in order to prohibit returning
to this solution for at least tabutenure many iterations. We search for an improving
solution in the P percentage of the neighborhood By, (S) of a current solution S for all
s. The Ly g is updated with the best improving lower bound for network lifetime L and
the corresponding sink locations, which will be in the tabulist for the next tabutenure
updates, will be the new locations for sinks. The algorithm stops after iterlim many

iterations or N/ many consecutive nonimproving iterations.

Notice that, both local search and tabu search algorithms move to the steepest
ascent neighbor from the current solution. One may prefer to move to an improving or
even a nonimproving solution with a probability which can be helpful to reach other
parts of the solution space or we can allow a move although it is tabu if there is no risk
of cycling to deeply search a particular region. The aspirations in the algorithms may

result in a better lower bound for network lifetime L (Sacchi and Armentano, 2010).

Proposition 5.2. The computational complexity of the solution procedure for T'S is
O(19S3(tabutenure) (iterlim) + 1OppS(iterlim)) where 75 = max, {NS,P,} is the
maximum number of solutions generated from a s-swap neighborhood and O(Orp) Tep-

resents the complexity of the algorithm to generate a lower bound.
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Proof. Initializing the algorithm is O(S? + Orp). Finding non-tabu locations for
s-sinks is O(S*(tabutenure)). Finding best lower bound in the s-swap neighbor-
hood is O(mS?(tabutenure) + 7,0rp). Doing this for all s-swap neighorhoods is
O(153(tabutenure) + 15015S). Adding a sink set {sj, ..., sg} to the tabu list is
O(S(tabutenure)). We repeat these until the stopping condition is satisfied. Hence,
complexity of step 2 is O(125%(tabutenure)(iterlim) + 1,0 pS(iterlim)) which is also
the complexity of the T'S algorithm. O
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1. Initialization: Locate S sinks randomly, add {si, ..., sg} to tabulist and use
the algorithm GH (or DH) to generate an initial lower bound, Lyg. Set t = 0,
notmpr = 0 and L} 5 = 0.

2. While t < iterlim, noimpr < NI Do

For all s <5 Do
count =0, L;g = 0;
While count < NS,P, Do
Change locations of s-sinks randomly until we find a sink set
{s1, ..., ss} ¢ tabulist.
Use the algorithm GH (or DH) to generate a lower bound, L.
Update L;p = max {E, LLB} and count <« count + 1
End While
End For
Update L}z = max{L.p, L]z}, add {s}, .., s&} to tabulist and set
noimpr = 0.
If L} 5 is not updated Then
notmpr «— noimpr + 1
End If
t—1t+1
End While

Figure 5.2. Tabu search heuristic, TS
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6. COMPUTATIONAL RESULTS

6.1. Introduction

In this chapter we evaluate experimentally the performance of the developed
methods in the thesis. We first evaluate the performance of the two Lagrangean
Heuristics for PSRPC and find the accuracy of the solution methods. Then, we test
the solutions found by search algorithms using Greedy Heuristic and Discrimination

Heuristic. Finally, we evaluate the sensitivity of the algorithms to the number of sinks.

6.2. Test Environment

All the experiments are carried out on a computer with Intel Xeon 3.40 GHz
processor and 32 GB of RAM working under Windows 2003 Server operating system.
In the experiments we assume that the sensor field has a square n x n grid structure
with n? points and the coverage requirements are selected as f; = 2 for all points in the
sensor field. There are K = 2 sensor types, and parameter values are depend on the
sensor type given in Table 6.1. The value of e; is based on a period length 12 hours.
We are assuming that every half an hour, i.e. 1800 seconds, a data packet is generated
which is equivalent to 24 data packets in a period, i.e. h;, = 24 data packets/period.
The values for the parameters ej, e}, ef, and Ej, are based on the experimental results

for a Mica2 mote studied by Torres and Kabara (2006). In the experiments, for each

Table 6.1. Sensor specifications

k Cik ri | 75 | es (Joules) | e (Joules) | e (Joules)
1|  rand(1,10) |1 /15| 744 0.01 0.013
2 || rand (¢j1,¢1 +5) | 2 | 3 744 0.01 0.018

network instance we assign three budget B levels, namely low, medium and high under
three initial battery energy Ej levels again low, medium and high. The performance

of the search heuristics are tested with two values of the number of sinks, S.
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6.3. Results for Sensor Placement, Scheduling and Routing Problem with

Connectivity Restrictions

In this section we evaluate the accuracy and efficiency of the First Lagrangean
Heuristic (L H;) and Second Lagrangean Heuristic (L Hs) developed in Chapter 3. They
are both generating feasible solutions with Greedy Heuristic (GH). Energy levels used
in these experiments are summarized in Table 6.2 and the formulas to calculate the
budget levels are given in Table 6.3. In all instances we aim to cover each point in the
sensor field by at least one active sensor in each period over planning horizon T" = 30.
We compare the results provided by LH; and LH, with those given by the solver
CPLEX 11.0 (ilog, 2007).

Table 6.2. Energy levels used in PSRPC runs
k| Eiow | Emedium | Ehigh
1] 1000 | 2000 3000
2| 2000 | 3000 | 4000

The initial battery energies of the sensors given in Table 6.2 are lower than the
real ones. As we have explained in Chapter 3, both of the algorithms LH; and LH,
are exponential, hence we cannot reach any solution with these algorithms under real
energy parameters. Therefore, we evaluate the performances of the Lagrangean heuris-
tics on simplified instances and use more accurate parameters in the runs for search
algorithms which are polynomial. Similarly, budgets are lower than the ones in the

experiments for search algorithms.

Table 6.3. Formulas for the budget levels used in PSRPC runs
Blow ZjeN(O‘75 Ci1 + 0.25 ng) / 4

Bmedium ZjeN<O'50 Cj1 + 0.50 ng) / 3

Bhigh ZjeN(O'25 Ci1 + 0.75 ng) / 2

The results for two Lagrangean Heuristics, summarized in Table 6.4, include the
lower bounds obtained with Greedy Heuristic and the upper bounds calculated from

the respective relaxed model on the optimal value of the network lifetime. We denote by
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L7 5 the best lifetime value, which is a lower bound on the optimal objective, generated
by GH over the iterations of LH; and LH,. We represent the best upper bound that
is found in all iterations of LH; and LHy by Lj;5. In order to generate the optimal
solutions, we use CPLEX 11.0 with the default options. In each problem instance
a time limit of three hours, which is larger than the CPU time of the Lagrangean
heuristics for the same instance, is given to CPLEX 11.0. The imposed time limit is
either sufficient to find an optimum solution or a feasible solution, or CPLEX 11.0
cannot reach any solution. An optimum solution for the problem instance is indicated
with an (*) in the table under the L%, column. If CPLEX 11.0 stops with a feasible
solution than this will be a lower bound on the optimum objective value and given in
column LY. If there is no solution found by CPLEX 11.0 at the end of imposed time
limit, we report this with a (—) in the table. Since CPLEX 11.0 cannot give a feasible
solution for all instances of 5 x 5 grid network, we do not continue with CPLEX 11.0
for larger problem instances. For the upper bound, the linear relaxation of a problem
instance is solved and listed under the LE% column. We also set some limits on both
of the Lagrangean heuristics, since they include MILP models to be solved at each
iteration. The heuristics LH; and LH, run for at most iterlim = 1000 iterations while
the value of 7, which is initially two and halved after each 15 consecutive nonimproving
iterations for the best lower bound, is greater than 0.05 and the difference between the
best upper bound and best lower bound is greater than % 10 of the best upper bound.
We solve S P; of LH; until the gap between the best lower and upper bounds is less than
%o 5. In addition to this limitation, we run SP, of LH, at most six hours since SPs
of LH, involves additional constraints, which makes the problem more complicated,
besides the constraints of SP; in LH,. The CPU times in seconds are listed for the
algorithms LH; and LH, and for CPLEX 11.0 to find a solution for PSRPC.

We see that CPLEX 11.0 can find an optimal solution only for 4 x 4 grid instance
with low energy and low budget levels, gives a feasible solution for six instances in 4
x 4 grid and cannot give any solution for the rest of the instances. These results
show how it is difficult to generate an optimum solution even for the small instances
of PSRPC. The instance that is optimally solved by CPLEX 11.0 is also solved by
LH, and LH, to optimality. For the six instances that CPLEX 11.0 gives a feasible
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solution, the algorithm LH; finds better solutions than CPLEX 11.0 for two of them
and gives the same results for the others whereas the algorithm L Hs finds better lower
bounds for three instances and worse lower bounds for two instances. Comparing the
Lagrangean Heuristics for the 15 instances among the ones that we can solve with LH;
and L H,, first heuristic gives better lower bounds and for one instance LH; gives worse
lower bound. In 26 of the instances LH; finds better upper bounds than LH;. We
observe that as the size of the problem instance increases, the performance of LH; in
finding upper bound decreases. This can be due to the requirement of more iterations
to converge to a good upper bound when the problem gets larger. We observe that the
average CPU time of LH; is larger than the one of LH, for all energy levels as shown
in Figure 6.1 - Figure 6.3. This can be the result of our termination criteria used in
SP; of LHy and SP, of LH,. As the size of the instance gets larger, to solve S P3 until
the criterion is satisfied becomes more time consuming at each iteration which requires
more time to complete the given number of iterations. Another reason can be since
the best upper bound found by the algorithm LH is not updated in all iterations, it
is possible that the best lower bound is also not updated for the most of the iterations
which quickly decreases the value of m below the critical value hence the algorithm

terminates before the Lagrangean heuristic LH;.

We express the accuracy of the methods as percent deviation from the best known

upper bound. For instance the accuracy of LH; can be given as

min(Lﬁg, L*UB) —Lip
min(Lf]g, L*UB)

100 x (6.1)
An accurate solution method is expected to have small accuracy calculated as in above
formula since closer best lower and upper bounds means we have more information
about where the optimum solution lies. From this point of view, we observe that for
all energy levels LH, has the lowest average accuracy value whereas LH, has smaller
average accuracy level than CPLEX11.0. Hence, we can conclude that on average
solution method LH; is more accurate than LH, with feasible solution generation

algorithm G H and both of them are performing better than CPLEX11.0.
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Figure 6.1. Comparison of LH; and LH, at low energy level
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Figure 6.2. Comparison of LH; and LH, at medium energy level
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Figure 6.3. Comparison of LH; and LH, at high energy level
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6.4. Results for Sink Location, Sensor Placement, Scheduling and Routing

Problem with Connectivity Restrictions

In this section we assess the performance of the Local Search (LS) and Tabu
Search (7T'S) heuristics developed in Chapter 5. The feasible solution generation al-
gorithms GH and DH are used in both of them. The energy levels selected for the
experiments are summarized in Table 6.7 and the formulas to calculate the budget
levels are given in Table 6.8 which are similar to the properties of real sensors. The
full energy capacity of a type-k sensor’s battery represents its high energy level. The
medium energy level is 2/3 of full battery energy and 1/3 of full battery energy refers

to low energy level.

Table 6.7. Energy levels used in LS and T'S runs
k| Eiow | Emedium | Ehigh
1] 19200 | 38400 | 57600
2 || 28800 | 57600 | 86400

Low budget level allows to deploy 75% of the points with type-1 and 25% with
type-2 sensors, with medium budget level we can deploy 50% of the points with type-1
and 50% with type-2 sensors and with high level budget we can deploy 25% of the
points with type-1 sensors and 75% with type-2 sensors.

Table 6.8. Formulas for the budget levels used in LS and 7'S runs
Biow ZjeN(0.75 cj1 +0.25 ¢j2)

Binedium Z]EN(05O Cj1 + 0.50 CjQ)

Bhigh ZJEN(025 Ci1 + 0.75 Cj2

In all instances we aim to cover each point in the sensor field by at least two
active sensors in period t. The network lifetime is maximized over a planning horizon

T = 400.

First we compare the efficiency of the feasible solution generation algorithms GH
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and DH to find a lower bound for the network lifetime. Their sensitivity to the number
of sinks is also evaluated by conducting experiments with two and three sinks located
randomly over the sensor field. The accuracy of the heuristics can be analyzed for the
instances upto 5 x 5 grid network by using the results of brute force computations,
since they show the optimal solution for the given instance, summarized in Table 6.9.
As far as we can observe from the results that Discrimination Heuristic (DH) gives
better lower bounds for the network lifetime than Greedy Heuristic (GH) but requires

a little more time to find the solution on average.

The quality of the lower bounds obtained from algorithms GH and DH at one
iteration and the corresponding computational times can be seen from Figure 6.4 -
Figure 6.9 for each energy level. In order to see the performance of algorithms GH and
DH with respect to the number of sinks, we take the difference of the lower bounds
obtained for three sinks and two sinks. Moreover, the lower bounds found by algorithms
G H and DH with the same number of sinks are evaluated through taking the difference
of the lower bounds calculated by each algorithm for two sinks (and three sinks). As
shown in the figures, for every energy level GH cannot improve the lifetime as the
number of sinks increases. On the other hand, on average D H improves the lifetime as
the number of sinks increases for low and high energy levels while it cannot develop the
average lifetime for medium energy level due to its worse performance at medium and
high budget levels. When there are two sinks in the sensor field, algorithm DH gives
better lower bounds than GH for all energy levels except low energy level. However,

DH outperforms at all energy levels when we have three sinks.

Regarding with the computational times, at all energy levels the average CPU
times of GH both for two and three sinks are larger than the average CPU time of DH
with any number of sinks. More specifically, algorithm G H requires more time on the
average to find a lower bound with three sinks than it does for two sinks for low and
high energy levels. At medium energy level, average CPU time for two sinks is larger
than the one of three sinks. On the other side, algorithm DH uses more time on the

average for three sinks than it does for two sinks for all energy levels.



83

The results indicate that algorithm D H is performing better than algorithm GH
at one iteration in terms of lower bound on the network lifetime and the computational
time. The weakness of algorithm GH may be due to its inefficient budget usage strat-
egy. According to algorithm in Figure 4.3, the coverage and budget constraints are
tried to be satisfied as more periods as possible within the planning horizon. For this
purpose, in the case of requirement new sensors are deployed and activated which con-
sumes the budget. After this step, the algorithm settles the connectivity of the network
and make the sink assignments for the active sensors. Deployment of new sensors can
again be necessary, especially for large size sensor fields, to provide the connectivity
constraints. However, this needs available budget which is highly depleted at first step.
Therefore, even though we have a lot of periods in which the coverage constraints are
satisfied, we can provide connectivity for few periods only since there is not enough
budget to deploy new sensors. On the contrary, the algorithm DH deals each period
seperately to satisfy the coverage, budget and connectivity constraints which manages
the budget more efficiently. As a result, algorithm G'H reports a weak lower bound
for the network lifetime than algorithm DH does. Besides, algorithm G'H has to work
on periods which will not be within the lifetime at the end of the algorithm which

increases the computational time unnecessarily.
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Table 6.9. Comparison of brute force results of Greedy and Discrimination Heuristics

Optimum Lifetime

CPU Time (s)

S =2 S =3 S =2 S =3

nxn E, B GH DH GH DH GH DH GH  DH
15 76 88 76 88 4748 52.62 261.64 275.32

4x4 low 30 101 106 101 106 3424 7157 200.69  339.39
5 101 106 101 106 72.68 8296 339.00  260.43

15 154 176 154 176 123.00 127.96 354.44  353.32

4 x4 medium 30 205 215 205 215 68.07 147.13 249.36  402.23
59 205 215 205 215 147.56 167.21 457.15  444.83

15 232 267 232 267 191.12 11634 449.53  591.82

4x4 high 30 309 324 309 324 5514 139.76 407.06 612.33
59 309 324 309 324 13425 145.06 67581  684.86

27 101 101 101 101 24594 239.58 1979.12 1855.26

5x5 low 55 101 101 101 101 24227 256.02 2041.45 2028.69
104 114 114 114 114 28379 28391 2383.99 2298.60

27 205 202 205 202 47415 534.60 5716.51 5804.42

5x5 medium 55 205 202 205 202 52220 509.89 5646.97 6235.28
104 231 228 231 228 570.93 551.34 5041.87 6507.82

27 309 304 309 304 744.64 764.41 5708.66 5655.69

5x5 high 55 309 304 309 304 768.89 723.32 8657.64 7490.95
104 348 342 348 342 806.04 876.44 8161.54 7016.95

Average: 200.8 206.6 200.8 206.6 307.63 321.67 2707.36 2713.79
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Figure 6.4. Comparison of algorithms GH and DH at low energy level

8x8
Medium Budget

20x20 4x4

8x8
High Budget

20x20



500

4

400

3

2

CPU Times (secs)

150

100

CPU Times (secs)

300

200

86

50

50

50

50

——— GH with 2 sinks
—— GH with 3 sinks
DH with 3 sinks
DH with 2 sinks

[ | ] [ R M B R

80

70

[e2]
o

a1
o

N
o

30

20

4x4 8x8 20x20 4x4 8x8 20x20 4x4 8x8 20x20
Low Budget Medium Budget High Budget

Average GH (2 sinks)
Average GH (3 sinks)
Average DH (2 sinks)
Average DH (3 sinks)
Overall Average GH (2 sinks)
Overall Average GH (3 sinks)
Overall Average DH (2 sinks)
Overall Average DH (3 sinks)

4x4 8x8 20x20 4x4 8x8 20x20 4x4 8x8 20x20
Low Budget Medium Budget High Budget
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Figure 6.6. Comparison of algorithms GH and DH at medium energy level
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We conduct experiments for each of the search algorithms LS and T'S with al-
gorithms GH and DH seperately under different number of sinks. Our intention is to
understand given the number of sinks in the network and the search algorithm, which
feasible solution generation algorithm gives good lower bounds for the network lifetime.
The performance of the search algorithms LS and T'S are compared for a given number
of sinks with their best executing heuristic. Both of the search algorithms run for at
most iterlem = 100 iterations while the best lower bound is updated at least once
in any consecutive NI = 20 iterations. The length of the tabu list, i.e. tabutenure,
is assumed to be 10 for the algorithm 7'S. The percentage of the size of a s-swap
neighborhood that is explored by each search algorithm can be summarized in Table
6.10.

Table 6.10. The explored percentage of a s-swap neighborhood by LS and T'S
LS TS

s 1 2 3|1 2 3
P, (%) |20 40 40 |100 20 10

The search algorithms we propose are generating lower bounds for the network
lifetime. Then the accuracy of the search algorithms can be done through comparison
of the best known lower bound with the one found by the search algorithm. The
optimum lower bound values with feasible solution generation algorithms GH and
DH are given by Brute Force (BF) algorithm for instances upto 5 x 5 as in Table
6.9. Besides, the algorithms LS and T'S find lower bound values. Therefore, given a
feasible solution generation algorithm, say F'S € {GH, DH}, and a search algorithm,
say SA € {LS, TS}, the accuracy of the lower bound generated with the algorithm
SA using algorithm F'S can be given as

maxps{BFrs, LSps, T Srs} — SArs
maxpg{BFps, LSps,T'Sps}

100 x (6.2)

The results summarized in Table 6.11 and Table 6.12 list the lower bounds for

network lifetime of the algorithms LS and T'S with subalgorithm GH at low energy
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level. We can observe that on the average, applying a search algorithm over the possible
locations of sinks improves the lifetime found by algorithm G H that runs for only one
iteration. However, at low energy level we cannot upgrade the network lifetime when
we search the solution space with algorithm TS instead of algorithm LS. Besides,
increasing the number of sinks in the sensor field does not help the network to operate
longer periods. We can see the results for medium energy level in Table 6.13 and Table
6.14, and for high energy level in Table 6.15 and Table 6.16. As the initial energy level
of the sensors gets higher, the average lower bound for the network lifetime develops as
expected. On the other hand, even though we can find better lower bounds when we
search for alternative locations for the sinks, we cannot expand the network lifetime by
introducing additional sinks to the sensor field for both of the search algorithms. These
results are similar to low energy level case, from which we conclude that algorithm G H

1s not sensitive to the increment in the number of sinks from two to three in the network.

The accuracies of the search algorithms are also listed in the tables from which
we can see with the same number of sinks, both of the algorithms LS and T'S have
identical accuracy levels for all energy levels. Comparing the average accuracies of
the algorithms LS and T'S under different number of sinks, we can conclude that at
low and medium energy levels the search algorithms appear to be more accurate with
two sinks than with three sinks. However, at high energy level the search algorithms
become more efficient with three sinks. This means, with the increasing number of
sinks in the network, both of the search algorithms generate better lower bounds that
are closer to the best known solution when the sensors have the highest initial battery
energy. However, this is a misleading interpretation of the results since the average
for three sinks is calculated with less number of instances. The average accuracies for
the common 21 instances including 10 x 10 network, which are given in “Adjusted
Avg” row of the tables, reveal that at high energy level there is no difference among

the accuracies of two and three-sink cases.
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Computational times of the search algorithms LS and T'S with subalgorithm GH
at different energy levels are given in the Table 6.17 - Table 6.19. At all energy levels,
the average computational time for algorithm LS is less than the average required
time for algorithm 7'S with two sinks. When there are three sinks in the sensor field,
both of the search algorithms consume almost same amount of time on average to
find a lower bound. We expect that a search algortihm terminates in longer time as
there are more sinks in the network since the size of a s-swap neighborhood increases
which requires more iterations to search a certain percantage of the neighborhood. The
reported average computation times in the tables do not agree with the expectation.
This is again due to the number of instances that are used to calculate the average
running times of the algorithms. Our expectation appears to be valid if we calculate
the average computation times for the same number of instances as given in “Adjusted

Avg’row.
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Table 6.17. CPU times for LS and T'S with GH at low energy level

CPU Times (s)
S=2 S=3

nxn B GH LSGH TSGH GH LSGH TSGH

111 1.03 12.02 20.00 0.94 25.65 21.33
4 x4 126 0.91 5.90 24.06 0.85 20.81 17.59
136 1.08 14.55 23.19 1.02 33.06 24.96

197 1.55 28.96 60.73 1.35 61.72 52.48
5 XD 223 1.54 35.86 43.39 1.36 62.07 57.89
238 1.67 37.92 48.14 1.46 72.19 66.41

275 2.12 63.71 80.16 2.14 116.82  101.35
6 x 6 312 0.24 38.21 55.25 0.24 70.61 72.79
331 2.29 76.53 96.00 2.30 131.07  123.74

375 3.26 110.35  203.74  3.45 205.90 175.34
7TxXT 426 3.62 131.93  222.26 3.63  227.27 23141
453 3.71 138.76  223.42 3.71 219.51  246.73

497 5.13 19790  399.81  5.10 33142  308.68
8 x 8 562 5.11 182.18 37294 557  339.64 342.13
593 5.10 179.27 43210  5.08  347.15  327.88

622 8.14 31815 569.53  7.94  566.04 576.30
9%x9 705 876  330.29 59256  9.34  565.43 483.34
745 8.99  356.49 647.16 859  508.81 573.11

754 15.17  592.20 638.12 14.31  961.69  912.98
10 x 10 855 1722  645.86 730.32 15.50 1086.73 1030.04
903 15.61  684.19 754.95 16.32 1047.74 1051.38

1686 123.39 3908.05 4132.92 131.33 — —
15 x 15 1918 130.54 3662.65 5050.96 133.99 — —
2024 133.99 4087.74 3929.83 118.23 — —

2958  410.57 — — 433.66 — —
20 x 20 3369  508.93 — — 513.67 — —
3564  515.32 — — 014.33 — —

Average: 71.64  659.57 806.19 7242  333.40 323.71

Adjusted Avg: 5.35 198.63  297.04  5.25 333.40  323.71
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Table 6.18. CPU times for LS and T'S with GH at medium energy level

CPU Times (s)
S=2 S=3

nxn B GH LSGH TSGH GH LSGH TSGH

111 1.38 33.40 42.00 1.27 54.40 37.80
4 x4 126 1.17 15.15 35.57 1.02 40.50 33.66
136 1.64 31.73 48.16 1.41 67.60 48.91

197 2.31 71.91 88.44 2.10 129.53  115.88
5 X 5 223 2.49 72.46 84.56 2.11 130.82  125.26
238 2.47 86.47 89.41 2.30 142.24  127.68

275 3.57 140.12  170.34  3.36  243.74  209.41
6 x 6 312 0.38 79.62 112.81 0.39 144.51  140.72
331 3.94 149.54  203.10  3.82 270.16  261.82

375 2.79  221.46 40270  6.12  390.18  385.45
7TxXT 426 6.58  262.85 391.76 640  454.80 449.61
453 6.65  261.33 475.15  6.68  447.26  416.68

497 9.35 336.71 837.55 952  833.64 660.67
8 x 8 562 945  387.42 864.67 10.19 687.73  667.64
593 9.36  385.68 807.40  9.69  683.16 690.73

622 15.13  713.60 1263.79 15.54 1148.69 &877.02
9%x9 705 17.97  757.04 144547 16.62 1181.77 1092.68
745 17.43  806.68 1417.14 17.21 1137.72 1164.73

754 29.10 1187.48 1406.82 28.58 1839.75 1972.17
10 x 10 835 33.61 1253.36 1501.37 33.04 1834.40 2371.13
903 32.10 1457.29 1690.32 38.42 1977.02 2016.71

1686  181.94 5101.14 5029.65 160.45 — —
15 x 15 1918  234.89 7431.15 9277.23 242.56 — —
2024 24748 8116.57 7844.08 245.04 — —

2958  860.69 — — 781.32 — —
20 x 20 3369  599.30 — — 277.80 — —
3564  611.40 — — 094.23 — —

Average: 109.17 1223.34 1480.31 104.34 659.03  660.30

Adjusted Avg: 10.09 414.82 636.98 10.28 659.03  660.30




Table 6.19. CPU times for LS and T'S with GH at high energy level

CPU Times (s)

S =2 S=3
n X n B GH LSecn  TScu GH LSecun  TScu
111 1.78 48.12 71.76 1.53 66.46 53.37
4 x 4 126 1.38 27.59 43.56 1.26 55.15 62.74
136 2.09 04.78 77.61 1.98 98.46 97.33
197 2.93 105.02  121.17 2.78 179.30  177.26
DX D 223 2.88 110.05  128.27 2.71 176.55  182.06
238 3.20 112.37  151.02 2.93 208.90  186.48
275 5.04 209.92  353.86 5.06 357.50  364.50
6 x 6 312 0.52 116.23  204.44 0.54 209.78  221.98
331 5.55 216.48  372.17 5.32 375.07  380.39
375 8.28 344.10  552.68 8.59 286.56  612.73
Tx T 426 9.30 390.28  675.48 9.74 680.38  553.72
453 9.65 397.23  802.93 9.88 687.01  688.69
497 13.82  560.20 1024.72 14.23 1020.50 987.16
8 X 8 262 13.66  606.67  992.74 13.91 1104.49 936.43
593 14.97  643.75  988.33 14.24  938.21  958.54
622 2216 911.94 1982.59 22.84 1706.48 1448.06
9%x9 705 25.87 1087.93 172496 2490 1761.44 1740.35
745 25.19 1101.84 1583.66 24.80 1714.16 1750.33
754 4512 1598.45 1863.37  51.72  2778.27 2833.14
10 x 10 835 49.80  2176.86 2380.09  59.82  3065.59 2870.14
903 48.64  2055.01 2543.26 63.59  2836.70 2879.49
1686  236.10 3100.83 6566.13 231.29 — —
15 x 15 1918  194.41 5545.24 6913.92 192.75 — —
2024 19499 6045.50 7104.65 199.28 — —
2958  1078.04 — — 1071.01 — —
20 x 20 3369  1279.35 — — 1401.16 — —
3564  1405.70 — — 1308.64 — —
Average: 174.09 1148.60 1634.31 175.80 982.71  951.66
Adjusted Avg: 1485 613.09 887.56 16.30  982.71  951.66
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The lifetimes obtained from algorithms LS and T'S with subalgorithm DH at
low energy level are given in Table 6.20 and Table 6.21. Contrary to algorithm GH,
algorithm DH is sensitive to the number of sinks in the sensor field which can be
observed from the average lifetimes for two and three sinks reported for the algorithm
DH that runs for one iteration. We observe from the average lifetime values that
exploring the candidate locations for the sinks with a search algorithm helps to find
good solutions. However, the average performances of the search algorithms LS and T'S
do not expand with the increasing number of sinks. This is due to the weak performance
of the search algorithms at some budget levels of 4 x 4 instances. The lifetimes for 4 x
4 instances found by the algorithm LS drop off at all budget levels when the number
of sinks in the network increases. In contrast with the intuiton, adding new sinks to
the network does not necessarily evolve the network lifetime since we are making the
use of a greedy selection criterion to make the sink assignments for active sensors.
The effect of energy consumption in data transmission is not reflected to this selection
rule. Therefore, an active sensor may be directed to a far sink even though there is
another sink which is closer to itself. As a result, there can be unnecessary energy
consumption, which declines the network lifetime, with the increased number of hops
until the information reaches to the corresponding sink. On the other hand, algorithm
TS seems to overcome the decreasing lifetime problem in 4 x 4 instances except for low
budget case. This can be explained with the better diversification strategy of algorithm
TS, which avoids stacking in a local optima for medium and high budget levels, when
it is compared with algorithm LS. Since low budget level is not sufficient to accept
the corresponding improving solution, it is not possible for algorithm 7'S to explore
the different parts of the solution space. Finally, we can observe that algorithm TS
outperforms algorithm LS for both number of sinks. At medium energy level, see Table
6.22 and Table 6.23, with two sinks both of the search algorithms give the same average
lifetimes, whereas with three sinks algorithm 7S surpasses algorithm LS. Similar to
the low and medium energy levels, the performance of algorithm 7'S goes beyond the
one of algorithm LS for both number of sinks at high energy level as can be seen in

Table 6.24 and Table 6.25.
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On the other hand, even after calculating the average lifetimes for the same
number of instances, both of the search algorithms cannot improve the average lifetime
with the increasing number of sinks in the network. This is again a result of the weak

performance of the algorithms in 4 x 4 with low budget instance.

The efficiencies of the search algorithms can be evaluated with the accuracy values
which are also given in the above tables. According to the adjusted accuracies, the
search algorithms with two sinks are more efficient than the ones with three sinks at
all energy levels. This result is due to the poor performance of the search algorithms
in 4 x 4 instances. Besides, given the number of sinks in the network, algorithm T'S
is more accurate than algorithm LS at all energy levels. Therefore, we can say that
algorithm 7'S' is more reliable than algorithm LS for both number of sinks at all energy

levels.

The computational times of the search algorithms are reported in Table 6.26 -
Table 6.28. Comparing the complexities of the search algorithms, we expect to have
higher computational times for algorithm 7'S than algorithm LS and for a search
algorithm with three sinks than a search algorithm with two sinks. Notice that the
results in the below tables are contradicting with the expectation. First, the running
times for algorithm LS come out to be higher than the ones for algorithm 7'S due
to the overload in the computer that these runs are obtained. Second, we observe
that the results agree with our expectation related with the effect of sink number on
computational time when we compare the average CPU times for the same number of

mstances.



Table 6.26. CPU times for LS and T'S with DH at low energy level

CPU Times (s)

S=2 S=3
nXxn B DH LSpy  TSpw DH LSpy  TSpu
111 0.99 27.79 20.52 1.03 48.66 26.14
4 x4 126 1.10 32.61 24.19 1.19 39.98 44.36
136 1.18 32.54 22.90 1.16 60.56 46.63
197 1.49 44.14 38.98 1.62 87.73 64.74
5 XD 223 1.50 44.23 39.61 1.65 87.82 74.64
238 1.59 46.98 44.12 1.80 107.11 81.00
275 2.38 94.59 80.16 245  232.07 13249
6 x 6 312 2.53 99.74 84.10 253 24714  135.59
331 2.41 105.81 85.97 254 23298 116.75
375 3.02 188.71  146.56  3.87  389.83  256.64
7TxXT 426 3.11 237.18 161.68  4.01 291.92  287.30
453 3.21 242.61 180.96  4.07  348.46  293.52
497 447  359.64 22098  5.62  508.52  326.81
8 X 8 562 4.51 336.16 22042 590  581.45  282.25
593 482  361.51 216.19 557  557.26  318.15
622 737 738.95 41396  9.77 154281 798.06
9%x9 705 8.47  823.71 408.10 10.21 1434.50 924.14
745 773 797.61  436.62 9.92 230593 855.01
754 11.99  967.55 658.36  14.52 1333.40 925.05
10 x 10 855 11.87 1362.61 996.70  15.55 1662.33 1609.94
903 12.07  1292.84 917.08 15.45 2256.72 2112.48
1686 95.97 7388.84 3406.78 79.38 — —
15 x 15 1918  98.60 9814.85 4828.71 92.99 — —
2024  94.23 9861.60 4412.94 93.78 — —
2958  247.74 — — 231.26 — —
20 x 20 3369  270.80 — — 253.48 — —
3564  89.78 — — 260.01 — —
Average: 36.85 1470.95 75277 4190 683.68  462.46
Adjusted Avg: 4.66 392.26  258.01 5.74  683.68  462.46
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Table 6.27. CPU times for LS and T'S with DH at medium energy level

CPU Times (s)

S =2 S=3
n X n B DH LSpu TSpu DH LSpy  TSpm
111 1.50 99.33 36.30 1.49 104.40  66.82
4 x 4 126 1.59 57.91 47.08 1.68 125.63  81.29
136 1.65 67.79 41.16 1.70 113.76  55.82
197 2.77 77.15 79.36 2.54 159.02  121.66
DX D 223 2.23 84.54 77.52 2.57 189.39  101.84
238 2.25 95.78 85.38 2.87 164.66  131.94
275 3.52 179.88 162.69  4.27  439.57  277.85
6 x 6 312 3.22 265.01 174.34 432 366.25  264.45
331 3.26 235.27 170.66 ~ 4.35  413.08  279.19
375 5.46 442.34  294.62 720  669.73  525.08
7TxX T 426 5.44 476.33  351.20 7.25 67596  529.21
453 5.57 429.33 33546 744  868.93  595.42
497 8.22 758.24  429.80 10.35 1007.91 618.18
8 X 8 262 8.30 727.65  444.03 10.34 1949.39 599.21
593 8.20 790.66  475.69 10.32 1819.90 567.36
622 14.14  1159.56  835.38 19.06 1930.70 1372.07
9%x9 705 13.93 122537 946.36 18.38 4004.39 1535.05
745 14.01 125497 1370.47 1896 2915.12 1423.78
754 22.85 227238 2162.63 28.48 4093.26 1791.68
10 x 10 855 25,53  2181.28 1901.90 28.90 4428.63 3233.14
903 28.74 1718.14 2678.74 29.48 4828.36 2878.07
1686 149.50 19097.13 8080.22 158.90 — —
15 x 15 1918  171.17 21255.69 8740.21 165.87 — —
2024 166.84 21282.05 8295.87 175.80 — —
2958 418.04 — — 824.48 — —
20 x 20 3369 514.98 — — 590.98 — —
3564 526.29 — — 592.88 — —
Average: 78.84  3174.74 1592.38 101.14 1488.95 811.86
Adjusted Avg: 8.66 693.28  623.85 10.57 1488.95 811.86
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Table 6.28. CPU times for LS and T'S with DH at high energy level

CPU Times (s)

S=2 S=3
nxXn B DH LSpu TSpu DH LSpy  TSpm
111 1.58 72.59 50.38 1.71 146.08  76.98
4 x4 126 2.13 60.46 58.25 2.14 109.31 94.68
136 1.93 67.78 59.69 1.97 134.33  91.00
197 2.78 128.24 113.26 3.28 303.43  182.23
DX D 223 3.36 135.18 106.74 3.44 27247 179.26
238 3.84 138.92 119.01 3.65 320.56  201.82
275 4.18 382.41 230.24 5.71 084.07  408.16
6 x 6 312 4.46 363.59 246.91 6.13 666.79  381.91
331 4.50 396.32 245.73 5.72 614.87  416.44
375 7.72 650.36 466.67 10.02  981.59  607.09
7Tx T 426 7.96 640.65 470.92 10.42  908.64 631.93
453 7.92 686.39 499.65 10.93  1141.01 628.59
497 12.15  848.51 648.58 14.84  1486.47 864.11
8 X 8 562 12.01 914.77 658.54 15.10  2889.28  827.58
593 12.33  1033.17  676.32 15.11 224943 801.75
622 20.48 212350  1180.78  27.59  3109.71 2098.05
9%x9 705 20.40  2087.53  1382.94  27.46  2555.94 2249.59
745 20.76  2052.93 1247.09  28.13  4262.53 1550.81
754 42.00 2869.12 1746.05  37.56  4105.32 2130.09
10 x 10 855 40.32  4881.37  3022.62  39.06 7776.44 5399.86
903 47.06  6673.36 324276  36.84 6309.54 4472.18
1686  228.86 26366.94 12082.11 249.20 — —
15 x 15 1918 234.07 26116.28 14096.34 255.13 — —
2024 25420 26431.46 11882.20 240.53 — —
2958  654.14 — — 864.22 — —
20 x 20 3369  697.69 — — 1369.46 — —
3564  697.16 — — 1365.28 — —
Average: 112.82  4421.74  2272.24  172.25 194894 1156.86
Adjusted Avg: 13.33 129558  784.44 14.61  1948.94 1156.86

113



114

The response of the search algorithms to the number of sinks and the subalgo-
rithms, i.e. GH or DH, are illustrated in Figure 6.10 and Figure 6.11, respectively.
The search algorithms are also compared in Figure 6.12 with each other with their best
performing subalgorithms in terms of network lifetime. The computational times for
the search algorithms with two and three sinks in the network are given in Figure 6.13
and Figure 6.14, respectively. The indifference of the lifetimes, that are obtained by
the search algorithms with subalgorithm G H, when the number of sinks in the network
is increased from two to three can be seen in Figure 6.10. On the other hand, subal-
gorithm DH can enhance the network lifetime as the number of sinks in the network
increases only at low energy level for each of the search algorithms. The best perform-
ing subalgorithm for a search algorithm can be found by analyzing the Figure 6.11. At
all energy levels and for both number of sinks, subalgorithm DH works better than
subalgorithm GH for both of the search algorithms. Therefore, we can conclude that
for both of the search algorithms DH is the best performing subalgorithm under both

number of sinks.

The search algorithms LS and T'S are compared under different number of sinks
with their best performing subalgorithms, i.e. subalgorithm DH for both of the algo-
rithms as we observe in Figure 6.11. For both number of sinks in the network and at

all energy levels algorithm T'S gives better lifetimes than algorithm LS.
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Figure 6.10. Sensitivity of the algorithms LS and T'S to the number of sinks
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Figure 6.11. Performance of the algorithms LS and T'S with GH and DH
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Figure 6.12. Comparison of the algorithms LS and T'S with their best subalgorithms
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Figure 6.13. CPU times for LS and T'S algorithms with 2 sinks
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Figure 6.14. CPU times for LS and T'S algorithms with 3 sinks
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7. CONCLUSIONS

In this thesis we first worked on Sensor Placement, Scheduling and Routing Prob-
lem with Connectivity Restrictions (PSRPC). We formulated a MILP for the problem
and proposed two Lagrangean Heuristics that make use of different relaxation strate-
gies for the solution procedure. Experiments show that the Lagrangean Heuristics are
performing better than the commercial solver for L in three hours. They generate a
feasible solution as lower bound and an upper bound for the large instances of the
problem for which the commercial solver can exibit neither a feasible solution nor an
upper bound. Besides, the first Lagrangean Heuristic outperforms than the second
one in terms of the quality of the upper bound and the computation time. We also
introduced new valid inequalities for the PSRPC in addition to the valid inequalities

proposed in the literature.

We then considered the problem of locating sinks integrated to the PSRPC. A
MILP formulation is given for the new problem. Two different search algorithms,
namely Local Search and Tabu Search, are developed with Greedy Heuristic or Dis-
crimination Heuristic, the feasible solution generating heuristics used in the Lagrangean
Heuristics for PSRPC. The algorithms search for a set of good locations for the sinks to
maximize the network lifetime. The results show that for both of the search algorithms
DH gives better lower bounds for the network lifetime than GH. Moreover, the search
algorithms can improve the lower bound when the number of sinks in the sensor field

increases with algorithm DH.

In this thesis experiments are conducted in order to determine the performance
of the feasible solution generation heuristics under three different energy and three
different budget levels. The results indicate that Discrimination Heuristic gives better
lower bounds than Greedy Heuristic while consuming more time. Moreover, the effect
of number of sinks on the network lifetime is investigated with both of the heuristics.
We observed that the network lifetime increases significantly as the number of sinks in

the sensor field increases. From the computational results we observe that the limited
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resources budget and energy are consumed for providing coverage and routing the data
to the sink nodes. Therefore to maximize the lifetime of a WSN one should consider

efficient coverage and communication strategies together.

As a future research one can introduce alternative formulations for PSRPC from
which a polynomial time algorithm can be obtained through Lagrangean relaxation or
some other technique which can be based on column generation or branch and price
methods. Alternative feasible solution generation algorithms can be developed which
improve the lower bound. In this study the sensor field was consisting of discrete
points. It may possible to consider coverage of a continuos region, means sensor field
includes infinitely many points, where the coverage quality of a sensor decays as the
Euclidean distance increases. Another research can be on developing algorithms for
activity scheduling of the sensors and data routing without the information of sensor
locations for large size sensor networks. We have assumed that sinks are stable during
the network lifetime. Therefore, a future study can focus on the mobile sinks which
can help to decrease the energy consumption in data transmission. Moreover, assuming
probabilistic communication case and imposing bounds on the data flows among sensors

can extend the topic of this thesis.
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