
OPTIMAL PLACEMENT, SCHEDULING AND ROUTING TO MAXIMIZE

LIFETIME IN WIRELESS SENSOR NETWORKS UNDER CONNECTIVITY

RESTRICTIONS

by

Banu Kabakulak

B.S. in Industrial Engineering, Boğaziçi University, 2007

B.S. in Mathematics, Boğaziçi University, 2007

Submitted to the Institute for Graduate Studies in

Science and Engineering in partial fulfillment of

the requirements for the degree of

Master of Science

Graduate Program in Industrial Engineering

Boğaziçi University

2010

ii

OPTIMAL PLACEMENT, SCHEDULING AND ROUTING TO MAXIMIZE

LIFETIME IN WIRELESS SENSOR NETWORKS UNDER CONNECTIVITY

RESTRICTIONS

APPROVED BY:

Prof. İ. Kuban Altınel

(Thesis Supervisor)

Assoc. Prof. M. Necati Aras

Prof. Cem Ersoy

DATE OF APPROVAL: 15.09.2010

iii

to my family,

Mr. Ergün Önal

and Prof. İ. Kuban Altınel

iv

ACKNOWLEDGEMENTS

I would like to express my deepest gratitude to my thesis supervisor Prof. İ.

Kuban Altınel, for his wise, enlightening ideas, invaluable contributions, guidance and

endless motivation in this study. It has been a real pleasure to work with him in this

work. I also would like to thank Assoc. Prof. M. Necati Aras for valuable guidance

throughout this project. I am grateful to Prof. Cem Ersoy for his interest, comments

and willingness to serve as my commmittee member.

I would like to thank all of my collegues for their technical support and inspring

discussions during the development of solution strategies of the model. Specifically, I

thank Yavuz Boğaç Türkoğulları for sharing details of his Ph.D. thesis with me.

Finally, I also feel grateful towards my family and my mathematics teacher Mr.

Ergün Önal at high school for their great supports and valuable trust during all my

life and also in my education.

v

ABSTRACT

OPTIMAL PLACEMENT, SCHEDULING AND ROUTING

TO MAXIMIZE LIFETIME IN WIRELESS SENSOR

NETWORKS UNDER CONNECTIVITY RESTRICTIONS

A wireless sensor network consists of distributed autonomous electronic devices

called sensors. They are capable of sensing the changes in their vicinity, process the

information as data packets and transmit the data to other sensors or a base station

namely sink. In order to have an effective sensor network that can keep track of

the changes in the interested region, sensors have to work cooperatively since they

have limited battery energy. Working in accordance is also important to transmit the

collected information eventually to a sink, since sensors can communicate only with the

others that fall in a certain range. In most of the real life applications, for a wireless

sensor network the number of periods that the network can operate as desired is a

significant performance indicator.

In this thesis, we propose mixed-integer linear programming models to maximize

the network lifetime by optimally determining the locations of sensors, activity sched-

ules of the deployed sensors, sink assignments of the active sensors and their data flow

routes to the corresponding sink over a finite planning horizon subject to coverage,

flow conservation, energy consumption and budget constraints. Then, we introduce

valid inequalities to solve the problem easily. Due to the characteristics of the prob-

lem, even the small instances cannot be solved exactly in considerable amount of time

and the linear programming relaxations give poor upper bounds. Hence, we develop

heuristics using techniques such as Lagrangean relaxation and greedy selection crite-

rion. Computational experiments indicate that the heuristic methods are accurate and

efficient.

vi

ÖZET

KABLOSUZ DUYGAÇ AĞLARININ ÖMRÜNÜ EN

BÜYÜKLEMEK İÇİN YERLEŞTİRME, ÇİZELGELEME

VE ROTALAMA PROBLEMLERİNİN BAĞLILIK

KISITLARI ALTINDA ÇÖZÜLMESİ

Bir kablosuz duygaç ağı, duygaç adı verilen, dağıtık ve bağımsız çalışabilen

elektronik aygıtlardan oluşur. Duygaçlar yakınlarında meydana gelen değişiklikleri

duyumsayabilir, bu bilgiyi veri paketi olarak işleyebilir ve verileri diğer duygaçlara ya

da ana alıcılara iletebilir. İlgilenilen bölge ile ilgili değişiklikleri takip edebilen etkin

bir duygaç ağı oluşturabilmek için kısıtlı pil enerjisine sahip duygaçların birbirleriyle

uyumlu çalışması gerekmektedir. Uyumlu calışma, duygaçlar sadece belli bir aralıkta

yer alan duygaçlarla iletişim kurabildiğinden, toplanan bilgilerin sonunda bir alıcıya

iletilebilmesi için de önemlidir. Uygulamaların çoğunda, bir kablosuz duygaç ağı için

ağın istenildiği gibi çalışabildiği dönem sayısı anlamlı bir başarı göstergesidir.

Bu tezde, ilkin duygaçların en iyi yerlerini, en iyi etkinlik çizelgelerini, çalışan

duygaçların alıcı atamalarını ve duygaçlardan alıcılarına olan en iyi bilgi akış rota-

larını bularak ağın ömrünü enbüyükleyen karışık tamsayılı programlama gösterimleri

geliştirilmektedir. Gösterimler sonlu bir planlama çevreni içinde kaplama, akış ko-

runumu, enerji tüketimi ve bütçe kısıtlarını dikkate almaktadırlar. Daha sonra, prob-

lemi kolayca çözebilmeyi sağlayan geçerli eşitsizlikler önerilmektedir. Problemin yapısı

sebebiyle, dikkate değer bir süre içinde küçük örnekler için dahi en iyi çözümler hesa-

planamamakta ve doğrusal programlama gevşetmeleri zayıf üst sınırlar vermektedir.

Bu sebeple, Lagrange gevşetmesi ve açgözlü seçim ölçütü gibi teknikleri kullanan

sezgisel yöntemler geliştirilmektedir. Yapılan bilgisayısal deneyler bu sezgisel yöntem-

lerin doğru ve etkin olduğunu göstermektedir.

vii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iv

ABSTRACT . v

ÖZET . vi

LIST OF FIGURES . ix

LIST OF TABLES . xi

LIST OF SYMBOLS/ABBREVIATIONS . xiv

1. INTRODUCTION . 1

2. LITERATURE SURVEY . 5

2.1. Introduction . 5

2.2. Sensor Placement . 5

2.3. Sensor Activity Scheduling . 7

2.4. Data Routing . 9

2.5. Sink Location . 11

2.6. Integrated Works . 12

3. SENSOR PLACEMENT, SCHEDULING AND ROUTING PROBLEM WITH

CONNECTIVITY RESTRICTIONS . 15

3.1. Introduction . 15

3.2. Mathematical Programming Formulations 15

3.2.1. Main Model . 16

3.2.2. Formulations with Alternative Objectives 28

3.3. Valid Inequalities . 29

4. SOLVING THE SENSOR PLACEMENT, SCHEDULING AND ROUTING

PROBLEM WITH CONNECTIVITY RESTRICTIONS 32

4.1. Introduction . 32

4.2. First Lagrangean Heuristic . 32

4.2.1. First Subproblem . 34

4.2.2. Second Subproblem . 35

4.2.3. Third Subproblem . 37

4.3. Second Lagrangean Heuristic . 42

viii

4.3.1. First Subproblem . 43

4.3.2. Second Subproblem . 43

4.4. Generating a Feasible Solution . 47

4.4.1. Greedy Heuristic . 47

4.4.2. Discrimination Heuristic . 60

5. THE SINK LOCATION, SENSOR PLACEMENT, SCHEDULING AND ROUT-

ING PROBLEM WITH CONNECTIVITY RESTRICTIONS 64

5.1. Introduction . 64

5.2. Model Formulation . 64

5.3. Solution Procedures . 65

5.3.1. Local Search Heuristic . 65

5.3.2. Tabu Search Heuristic . 68

6. COMPUTATIONAL RESULTS . 71

6.1. Introduction . 71

6.2. Test Environment . 71

6.3. Results for Sensor Placement, Scheduling and Routing Problem with

Connectivity Restrictions . 72

6.4. Results for Sink Location, Sensor Placement, Scheduling and Routing

Problem with Connectivity Restrictions 81

7. CONCLUSIONS . 120

REFERENCES . 122

ix

LIST OF FIGURES

Figure 3.1. A sample sensor network operating for T = 2 periods 27

Figure 4.1. First Lagrangean heuristic, LH1 41

Figure 4.2. Second Lagrangean heuristic, LH2 45

Figure 4.3. Greedy heuristic, GH . 48

Figure 4.4. Providing feasibility subject to coverage and budget constraints

(first part) . 49

Figure 4.5. Providing feasibility subject to coverage and budget constraints

(second part) . 50

Figure 4.6. Providing feasibility in period t subject to sink assignment con-

straints . 53

Figure 4.7. Providing feasibility in period t subject to connectivity restrictions 55

Figure 4.8. Discrimination heuristic, DH . 61

Figure 4.9. Eliminating unnecessary sensors from network in period t 62

Figure 5.1. Local search heuristic, LS . 67

Figure 5.2. Tabu search heuristic, TS . 70

Figure 6.1. Comparison of LH1 and LH2 at low energy level 78

x

Figure 6.2. Comparison of LH1 and LH2 at medium energy level 79

Figure 6.3. Comparison of LH1 and LH2 at high energy level 80

Figure 6.4. Comparison of algorithms GH and DH at low energy level 85

Figure 6.5. CPU times for algorithms GH and DH at low energy level 86

Figure 6.6. Comparison of algorithms GH and DH at medium energy level . 87

Figure 6.7. CPU times for algorithms GH and DH at medium energy level . 88

Figure 6.8. Comparison of algorithms GH and DH at high energy level 89

Figure 6.9. CPU times for algorithms GH and DH at high energy level 90

Figure 6.10. Sensitivity of the algorithms LS and TS to the number of sinks . 115

Figure 6.11. Performance of the algorithms LS and TS with GH and DH . . . 116

Figure 6.12. Comparison of the algorithms LS and TS with their best subalgo-

rithms . 117

Figure 6.13. CPU times for LS and TS algorithms with 2 sinks 118

Figure 6.14. CPU times for LS and TS algorithms with 3 sinks 119

xi

LIST OF TABLES

Table 3.1. Index sets used in the model . 18

Table 3.2. Decision variables used in the model 19

Table 3.3. Parameters used in the model . 20

Table 6.1. Sensor specifications . 71

Table 6.2. Energy levels used in PSRPC runs 72

Table 6.3. Formulas for the budget levels used in PSRPC runs 72

Table 6.4. Comparison of LH1 and LH2 with CPLEX 11.0 at low energy level 75

Table 6.5. Comparison of LH1 and LH2 with CPLEX 11.0 at medium energy

level . 76

Table 6.6. Comparison of LH1 and LH2 with CPLEX 11.0 at high energy level 77

Table 6.7. Energy levels used in LS and TS runs 81

Table 6.8. Formulas for the budget levels used in LS and TS runs 81

Table 6.9. Comparison of brute force results of Greedy and Discrimination

Heuristics . 84

Table 6.10. The explored percentage of a s-swap neighborhood by LS and TS 91

Table 6.11. Results for LS and TS with GH at low energy level 93

xii

Table 6.12. Results for LS and TS with GH at low energy level (cont) 94

Table 6.13. Results for LS and TS with GH at medium energy level 95

Table 6.14. Results for LS and TS with GH at medium energy level (cont) . . 96

Table 6.15. Results for LS and TS with GH at high energy level 97

Table 6.16. Results for LS and TS with GH at high energy level (cont) 98

Table 6.17. CPU times for LS and TS with GH at low energy level 100

Table 6.18. CPU times for LS and TS with GH at medium energy level . . . 101

Table 6.19. CPU times for LS and TS with GH at high energy level 102

Table 6.20. Results for LS and TS with DH at low energy level 104

Table 6.21. Results for LS and TS with DH at low energy level (cont) 105

Table 6.22. Results for LS and TS with DH at medium energy level 106

Table 6.23. Results for LS and TS with DH at medium energy level (cont) . . 107

Table 6.24. Results for LS and TS with DH at high energy level 108

Table 6.25. Results for LS and TS with DH at high energy level (cont) 109

Table 6.26. CPU times for LS and TS with DH at low energy level 111

Table 6.27. CPU times for LS and TS with DH at medium energy level . . . 112

xiii

Table 6.28. CPU times for LS and TS with DH at high energy level 113

xiv

LIST OF SYMBOLS/ABBREVIATIONS

aijk one if a type-k sensor located at point i can cover point j,

zero otherwise

bilj one if point j is within the communication range of a type-k

sensor located at point i, zero otherwise

B total available budget

cjk cost of placing a type-k sensor on point j

ec
k energy consumption of a type-k sensor for transmitting one

unit of flow

er
k energy consumption of a type-k sensor for receiving one unit

of flow

es
k energy consumption of a type-k sensor located at point i for

sensing and processing during a period

Ek initial battery energy of a type-k sensor

fi coverage quality requirement for point i

gjkt one if a type-k sensor located at point j is active in period t,

zero otherwise

hjk number of data packets generated by a type-k sensor located

at point j

K number of sensor types

K index set for sensor types

K’ index set for sensor and sink types

L lifetime of the wireless sensor network

M1 sufficiently large number

M2 sufficiently large number

N number of candidate locations

N index set for sensor and sink locations

nt one if period t is within the lifetime L, zero otherwise

rc
k communication range for a type-k sensor

rs
k sensing range for a type-k sensor

S number of sinks

xv

T planning horizon

T index set for periods

uijkt one if a type-k sensor located at point j is assigned to a sink

located at point i in period t, zero otherwise

wiljkt one if there is a flow from a type-l sensor located at point i to

a type-k sensor located at point j in period t, zero otherwise

xjk one if a type-k sensor is placed at point j, zero otherwise

yiljkt amount of flow from a type-l sensor located at point i to a

type-k sensor located at point j in period t

zjkt one if a type-k sensor located at point j is active in period t,

zero otherwise

δviljkt Lagrangean dual variable for sink assignment constraints

εjkt Lagrangean dual variable for copy constraints

λit Lagrangean dual variable for coverage constraints

µit Lagrangean dual variable for sink flow constraints

θ Lagrangean dual variable for budget constraint

BIP binary-integer programming

DH discrimination heuristic

GH greedy heuristic

LH1 first Lagrangean heuristic

LH2 second Lagrangean heuristic

LPSRPC sink location, sensor placement, scheduling and routing prob-

lem under connectivity restrictions

LS local search heuristic

MILP mixed-integer linear program

PSRPC sensor placement, scheduling and routing problem under con-

nectivity restrictions

RP routing problem

SPP sensor placement problem

TS tabu search heuristic

WSN wireless sensor network

xvi

1

1. INTRODUCTION

A sensor is an inexpensive, low-power electronic device that can sense its neigh-

borhood, process the information as data packets and communicate with the other

sensors that are close enough. Depending on its type, a sensor may sense and process

temperature, humidity, light, vibration, sound, radiation and many other factors (Karl

and Willig, 2003). A Wireless Sensor Network (WSN) is a network in which sensors

are deployed over the interested region, i.e. the sensor field, possibly remote or inac-

cessible to humans. WSNs are used currently for battlefield surveillance in military,

forest fire detection in environmental sciences, monitoring of human physiological data

in health (Akyıldız et al., 2002). A sensor collects information within its sensing range,

after processing the data transmits to a base station namely a sink either directly

or through other sensors that are within its communication range. The specifications

related with the sensing and communication ranges, cost and the initial battery energy

of the sensor can change depending on the type of the sensor.

The sensors in a WSN may be identical, in this case we have a homogeneous

network. On the other hand, we can have different types of sensors in a heterogeneous

network, which means their technical specifications and costs can be distinct. A sensor

can be in either active or standby mode. In the active mode, sensor can perform

sensing, processing and communicating activities. A standby sensor does not perform

any of these activities but operates at the minimum energy level. A sensor consumes

energy for sensing, information processing, data receiving and transmitting according

to the technical characteristics of its type.

Each sensor in the network has limited battery energy and become obsolete when

it is out of energy. Since budget is limited and a sensor consumes energy for collecting

information, processing and transmitting the data, the network has a finite lifetime.

In this thesis, we aim to maximize the lifetime of a WSN by determining the optimal

locations of sensors and sinks, periods to be active for each sensor in order to use its

energy economically, i.e. their activity schedules, assignments of sinks for each active

2

sensor and sensor-to-sink data flow routes.

The structure of the sensor field may be different from application to application.

It can consists of discrete points, a two or three dimensional region as for the cameras

in an art galery (Cardei and Wu, 2006). In this study, we assume that the sensor field is

consisting of discrete points. Each point has to be covered by at least a certain number

of sensors according to their importance level. For a critical point, it may be preferable

to cover this point with numerous sensors to be secure in a sensor failure case. We

have uniform coverage if coverage quality requirements are the same for all points in

the sensor field and differentiated coverage if the coverage quality requirements vary.

One of the design issues of a WSN is to determine the locations of the active

sensors in a period in order to satisfy the coverage quality requirements of each point

in the sensor field. This is also known as Sensor Placement Problem (SPP) (Sahni and

Xu, 2005). In our work, it is assumed that the coverage requirements of the points

in the network can be different which gives arise to a differentiated CP, otherwise

we would have a uniform CP. Depending on the characteristics of the sensor field,

the locations of the sensors can be random, i.e. we cannot know the locations of the

sensors a priori, or deterministic which means we can place a sensor exactly where we

have decided. Our focus will be on deterministic sensor placement case. An effective

sensor placement should use less budget as possible.

The limited battery energy of the sensors forces to consume energy economically

for the sensor network to operate for a long time. Therefore, the deployed sensors have

to remain in standby mode to save energy when they are not necessary in providing

coverage of the points and keeping connectivity among the sensors. For each time

period, the determination of the active and standby sensors among the deployed sensors

to maximize the network lifetime while satisfying the coverage requirements of all points

and staying communicated is the problem of activity scheduling of sensors (Wang et al.,

2009). The schedule of the active and standby sensors in a period affects the network

lifetime since scheduling is a way to use the limited energy efficiently.

3

Transmission of the collected information in the form of data packets from sensors

to their assigned sinks also uses energy. The energy requirement for the transmission of

a data packet generated by a sensor that is far from its assigned sink will be larger than

the amount for a data packet generated by a sensor that is close to its sink. Hence,

when we are given the locations of sinks and sensors with their assignments, we can

determine the least energy consuming sensor-to-sink data flow routes. This problem is

addressed as the Routing Problem (RP) (Schurgers and Srivastava, 2001).

Locations of the sinks are substantial for the lifetime of the network since they

affect the sensor-to-sink data flow routes directly. A sink should be close to the sensors

that are assigned to itself in order to minimize the amount of energy spent during the

data transmission. This problem is referred to as the Sink Location Problem (SLP)

(Liu and Xu, 2010).

In this thesis, we first concentrate on the Sensor Placement, Scheduling and Rout-

ing Problem under Connectivity Restrictions (PSRPC) which assumes that sink loca-

tions are given but determines the deployments and activity schedules of the sensors

and establishes the sensor-to-sink data flow routes using the sink assignments decided

for each sensor in order to maximize the network lifetime. We introduce a mixed-integer

linear programming (MILP) model for the PSRPC. We provide a Lagrangean relax-

ation based heuristic solution procedure in order to solve large PSRPC instances. The

heuristic gives a feasible solution which will be a lower bound and a relaxed solution

which will be an upper bound on the optimal lifetime value of the PSRPC instance.

Then, we add the deterrmination of optimal sink locations to the problem to obtain

the Sink Location, Sensor Placement, Scheduling and Routing Problem under Connec-

tivity Restrictions (LPSRPC) and propose a solution procedure based on a search on

possible sink locations using a solution of PSRPC.

In the remainder of the thesis, we first briefly review the studies in the literature

related with sensor placement, sensor activity scheduling, data routing and sink loca-

tion in the next chapter. We provide MILP formulations for PSRPC and propose some

valid inequalities for the main MILP formulation in the third chapter. In the fourth

4

chapter, we give the details of two different heuristic solution methods making use of

the Lagrangean relaxation approach and subgradient algorithm for the PSRPC. In the

fifth chapter, we extend our mathematical model to include the sink location problem,

namely LPSRPC, and establish two different heuristic solution procedures to solve the

LPSRPC instances. The sixth chapter reports the experimental results for proposed

MILP models obtained with the introduced solution procedures. Finally the seventh

chapter concludes the thesis.

5

2. LITERATURE SURVEY

2.1. Introduction

In this chapter, we present the previous studies on the design issues of wireless

sensor networks. The works on locating sensors to cover each point in the sensor field by

at least its required coverage quality are listed in Section 2.2, determining the activity

schedules of each sensor during the lifetime of the network are summarized in Section

2.3, assigning at least one sink for each active sensor and finding the sensor-to-sink

data flow routes are included in Section 2.4, locating the sinks in the sensor field are

given in Section 2.5 and the studies that are combining at least two of these design

issues are presented in Section 2.6.

2.2. Sensor Placement

In Chakrabarty et al. (2002) an integer linear program (ILP) is proposed to

determine the optimum locations of sensors. The model minimizes the total deployment

cost of sensors of two types on a grid network in order to cover all grid points that have

uniform coverage quality requirement. They develop a divide and conquer approach for

the solution procedure. The model does not include energy consumption constraints

of sensors and routing of the data packets. Besides, the exact solution of the proposed

ILP becomes computationally difficult for large instances.

In Dhillon and Chakrabarty (2003) heuristic procedures are developed to locate

the sensors on a grid sensor network assuming sensors can imprecisely detect changes.

They consider different objectives such as the minimization of total sensors in the

network, maximizing average coverage of points and maximizing the coverage of points

that are covered with the least number of sensors. However, the study does not present

any method for the energy consumption and data routing issues.

In Lin and Chiu (2005) the determination of the sensor locations for the uniform

6

coverage problem under budget constraints is addressed. They aim to locate the sensors

accurately even the Euclidean distance between two grid points becomes very small.

In order to minimize of maximum distance error, they develop a simulated annealing

based solution strategy which can find optimum solution for small sensor fields and

can give a feasible placement of the sensors for large sensor fields. Again the energy

limitation of the sensors is not considered.

In Altınel et al. (2008) differentiated point coverage problem is formulated as a

binary integer programming (BIP) model. In the formulation, they consider a hetero-

geneous sensor network and differentiated coverage requirements for grid points in the

sensor field. The objective is to minimize the total cost of sensor deployment. More-

over, the model is applicable for perfect, imperfect and uncertain sensing cases. For

the solution procedure, they develop Lagrangean relaxation based heuristic and ap-

proximation algorithms that can give good solutions even for large instances in three

hours. In Wang and Zhong (2006) a similar ILP is analyzed and an approximation

algorithm that converts the optimal solution for the linear relaxation of ILP to an

integer solution for the original ILP problem is developed. On the other hand, both of

the studies ignore the energy consumption and data flow problems.

In Yuan et al. (2008) the direction of the research is the coverage problem for

target detection. In these sonar like systems, targets emit signals and sensors detect

target by measuring the energy of signals which decays with the distance. A group

of sensor report the signal emissions in their sensing range to a central sensor called

cluster head. In the case there is a target in the sensing range of the sensors in a cluster,

cluster head decides whether there is really a target or it is only a false alarm by fusing

the incoming information from the sensors in its cluster. The problem is a probabilistic

coverage case, since a target may not be detected after the fusion of the information.

Their aim is to determine the locations of sensors to minimize the false alarm rate in

the network. They generate cluster based divide and conquer approach for the solution

procedure which can give results for large instances in acceptable durations.

7

2.3. Sensor Activity Scheduling

In Nakamura et al. (2005) the problem of extending network lifetime by mini-

mizing the energy consumption of the sensors is discussed. They present a dynamic

mixed integer linear programming (MILP) model to assure the coverage of the target

area and connectivity for each period to minimize the energy consumption in flat net-

works. Their test results for the model show that their model is succesful to prolong

the network lifetime. There are two major drawbacks of the work: it assumes that

the locations of the sensors that can cover the target region are given and it does not

consider the energy consumption in data flows.

In Pazand and Datta (2006) extending the lifetime of sensor networks through

efficient activity scheduling of sensors is addressed. The sensors of k types are randomly

and uniformly spread over the sensor field. They prefer to develop a sensor scheduling

method independent from the location information, since it is costly to obtain, using a

graph theoretical approach. They introduce minimum dominating sets of sensors each

of which ensures the coverage of the network. The minimum dominating sets are built

via a heuristic. A target node, that should be covered by the sensors, sends a “Hello”

message to its neighborhood and detect the sensors that can cover itself through the

reply messages from sensors. At each period of the network, only one dominating set

is active to cover the sensor field and the other sensors are in sleep mode. Simulations

are conducted for the experimental results of their method upto 300 sensors distributed

over a 2500 m2 region. The drawback of the study is that it assumes the located sensors

satisfy the coverage requirements of the points in the sensor field. Moreover, although

the sensors in a dominating set are connected from the construction of the sets, the

routing of the data to the sink nodes is not discussed in the paper.

In Yang and Cardei (2010) energy efficient sensor scheduling problem to maximize

network lifetime is studied. The solution method makes use of the property that

covering all of the sensor field is not necessary in all periods within the network lifetime.

Instead the active sensors receive directions from the sink node about which part of the

sensor field should they collect information. According to this information, which is

8

updated at each period, the decision of activating new sensors or turning off the active

sensors is done. For the system to be operable, we want the network to be globally

connected and the coverage of the network is provided. They define dominating set as

a subset of sensors such that every sensor is either in the subset or can communicate

with a sensor in the subset. Then, they introduce connected dominating sets (CDS),

which can satisfy the current coverage requirements, as the backbone of the network.

The message from the sink is propagated by the sensors in a CDS to all active and

standby sensors in the network. As the message spread over the sensor field, sensors in

the required region turn to active mode to satisfy coverage requirements of the points

and provide global connectivity. They make simulations which reveal that the average

number of active sensors in the sensor field drops and the network lifetime is improved

compared with the method in which the meassages are directly sended from sinks to

sensors. Despite the study decreases the energy consumption by efficiently scheduling

the activities of the sensors, it neglects the transmission of the data and the respective

energy consumption. Besides, the determation of the sensor locations is not a design

issue of the paper.

In Yardibi and Karasan (2008) similar to the work by Yang and Cardei, 100%

coverage of the sensor field is not required. Therefore, minimization of energy used

in partial coverage through scheduling the sensor activities can improve the network

lifetime. For this purpose, they develop distributed adaptive sleep scheduling algorithm

(DASSA) which does not require the location information of the sensors. The sink node

solves a simple ILP problem to determine the activity schedules of the sensors that are

closer to itself since all network flows have to pass through these sensors. The selected

active sensors search for the neighbor sensors which have sufficient remaining energy to

be activated. The algorithm provides the coverage of the target region by satisfying the

connectivity of the operating sensors. The computational experiments indicate that

the performance of DASSA is superior than the centralized sleep scheduling algorithm

(CSSA) which uses the location information of the sensors.

In Fei et al. (2010) densely deployed sensor networks are studied. They inves-

tigate the coverage aware sensor scheduling problem using genetic algorithms. Under

9

uniform coverage requirements, they aim to optimally schedule the already located

sensors in different time slots to maximize the overall coverage. They evaluate the

performance of their algorithms under various planning horizons through simulations

and observe that the algorithm can maximize the overall coverage of the sensor field.

The energy consumption for data transmission is disregarded.

In Lin et al. (2010) the sensors are scheduled for prolonging the network lifetime

with an ant colony system based method. The algorithm first finds the maximum

number of disjoint sets of sensors each of which can fulfill the sensing coverage and

network connectivity requirements at the same time for a heterogeneous sensor network.

Then the incremental solution meachanism builds disjoint connected cover sets on the

basis of well designed construction graph. For further efficiency of the method a local

search process is also developed. Experimental results show that the proposed method

can find high quality solutions at a fast speed for WSNs with different characteristics.

2.4. Data Routing

In Ergen and Varaiya (2006) given the locations of the sensors that satisfies the

coverage constraints the problem of locating the relay sensors to decrease the energy

consumption during communication. Their objective is to minimize the total energy

consumption so that the network is operable during the desired lifetime. They first

formulate the problem as a nonlinear programming problem. For the solution of the

problem, they develop an approximation algorithm based on restricting the locations

where the relay nodes are allowed to a square lattice. Their algorithm approximates the

original problem with performance ratio of two by trading complexity. The drawback

of this study is that they assume only one information collection point.

In Byun et al. (2006) the lifetime of the sensor network is maximized through

energy efficient coverage maintenance strategy. Their solution method makes use of the

probabilistic approaches for power conservation. Each sensor calculates a probability

with the information of geographical density of the sensors at each period. Depending

on this probability, a sensor decides to which sensors should the data packets be trans-

10

mitted. The simulations indicate the method is efficient, however this study does not

try to locate the sensors to provide coverage but to operate sensor network that covers

the sensor field energy efficiently as long as possible.

In Cheng et al. (2008) given a covered sensor field with the located sensors the

problem of locating least number of relay sensors that are not sensing but communi-

cating to provide the global connectivity of the network. They model the problem by a

network optimization problem namely Steiner Minimum Tree with Minimum number

of Steiner Points and bounded edge length (SMT-MSP). They develop two approxi-

mation algorithms, whose performance ratios are 3 and 2.5 respectively, to solve the

problem. The aim of the study is only to obtain a globally connected network without

dealing with the problems of coverage of the sensor field or routing the data flows to

an accumulation sensor.

In Hua and Yum (2008) an optimal routing and data aggregation scheme for wire-

less sensor networks is proposed. The objective is to maximize the network lifetime by

jointly optimizing data aggregation and routing. They adopt a model to integrate data

agregation with the underlying routing scheme and present a smoothing approxima-

tion function for the optimization problem. The necessary and sufficient conditions for

achieving the optimality are derived and a distributed gradient algorithm is designed

accordingly. They show that the proposed scheme can significantly reduce the data

traffic and improve the network lifetime. The distributed algorithm can converge to the

optimal value efficiently under all network configurations. The work is not extended

for multiple sink nodes and for sensors with sleeping mode.

In Güney et al. (2010) the determination of sensor-to-sink data flow routes is

discussed. They formulate MILP models with different objective functions such as

minimization of total routing energy and minimization of total cost for commodity

flows. They aim to find the best locations of the sinks and information flow paths

between sensors and sinks when sensor locations are given. They test the solution

efficiency of their formulations and for the most efficient formulation they develop

heuristics and lower bounding approaches. However, the study does not consider to

11

efficiently locate the sensors to cover the sensor field.

2.5. Sink Location

In Oyman and Ersoy (2004) the limited battery resource of the sensors tried to be

managed by deploying more than one sink node to maximize the network lifetime. If

the sink nodes are closer to the sensors that are sending information to itself, then the

corresponding energy consumption in transmission of the data will be lower. Utilizing

this idea, the study intends to find the locations of the sinks for the network to be op-

erable for at least given number of periods. Given the candidate locations for the sinks,

they develop an algorithm that decomposes the network into smaller sub-networks and

a reconstruction algorithm that is applied after the occurance of energy failures to im-

prove the network lifetime. The experiments are conducted through simulations which

show their approach is successful in prolonging the network lifetime.

In Yang (2006) the candidate locations of the sinks are explored by Genetic

Algorithms. They work on a grid sensor field with given locations of homogeneous

sensors. For a given network lifetime they aim to find the best locations of the sinks to

minimize the energy consumed in transmitting the data. The drawback of the paper

is it assumes the network lifetime is known a priori.

In Poe and Schmitt (2009) the sink placement problem for large size of sensor

networks is handled. In order to minimize energy consumption and consequently ex-

tend the network lifetime, they propose a local search technique that does not require

the location information of the sensors. Their self-organized sink placement (SOSP)

strategy sets up a group of communicating sensors for each sink among its n-hop dis-

tance neighbors. SOSP exhibits a good performance by applying locally optimal sink

placement in the experiments.

12

2.6. Integrated Works

In Yang et al. (2006) the k-(Connected) Coverage Set (k-CCS/k-CS) problems

with the objective of minimizing total energy consumption while obtaining k coverage

for reliability is adressed. They consider a sensor network consisting of a set of sensors

deployed randomly. They propose one global solution for k-CS and two non-global

algorithms. The first one is a linear programming algorithm that uses a cluster-based

approach to select backbone sensors to form a set. The second uses the pruning al-

gorithm based on 2-hop neighborhood information. They analyze the performance of

their algorithms through theoretical analysis and simulations. However the developed

algorithms are for uniform coverage and they assume connectivity of the sensors with

each other but not connectivity of sensors with sinks.

In Liu and Liang (2008) the maximization of the network lifetime is addressed.

They start from an already studied idea which first generates disjoint subsets each of

which can cover all of the targets and works through activating only the sensors in one

of these subsets each time. They extend this approach by allowing overlaps among

these subsets. They partition the entire lifetime of a sensor into several equal intervals

and accepting the sensor to be contained by several subsets which satisfy both target

coverage and sensor connectivity. Initially they analyze the energy consumption of

sensors in a Steiner tree rooted at the base station and spanning the sensors in a sub-

set. Then they develop a heuristic algorithm, which takes into account the remaining

energy of the sensors, for the target coverage problem. They conduct experiments by

simulations to evaluate the performance of the proposed algorithm. The experimental

results show that the network lifetime delivered by their algorithm is extended with

the improvement of network connectivity.

In Li and Gao (2008) design of k-coverage schedules for wireless sensor networks

to maximize the network lifetime is addressed. In order to ensure the quality of surveil-

lance consuming as low energy as possible, they investigate the Sensor Scheduling for

k-Coverage (SSC) problem which requires to efficiently schedule the sensors to satisfy

k-coverage for the monitored area throughout the whole network lifetime. They pro-

13

pose two heuristic algorithms under different scenarios. They evaluate their presented

algorithms through simulations. The drawback of the study is that it does not include

the connectivity issue.

In Liu et al. (2008) the reliability of network communication is focused. They

consider the problem of maintaining k-connectivity of sensor network at minimum en-

ergy level while keeping only a subset of sensors active to save energy. In their proposed

scheme, each sensor is assumed to have multiple power levels and neighbor proximity,

means exact location information is not adopted. Firstly the network partition is at-

tained by power based clustering and next sensors are divided into equivalent classes

according to the role of data forwarding to different adjacent clusters. Then Node

Scheduling and Power Adjustment (NSPA) algorithm selects a subset of sensors with

different power levels to construct the local minimum energy graph while maintaining

network connectivity. If the number of intra-cluster sensors which have adjacent clus-

ters exceeds a certain threshold, k-NSPA is employed to obtain k-connected topology.

The simulation shows that their scheme can maintain a k-connected network energy

efficiently. Again the connectivity is forced among sensors but not with a sink.

In Chaudhry et al. (2010) evolutionary methods are considered to find the best

locations of the sensors to meet multiple objectives such as achieving maximum uniform

coverage and maximum connectivity while minimizing the network energy cost. A

flexible algorithm for sensor placement (FLEX) is presented that uses evolutionary

computational approach to solve multiobjective sensor placement optimization problem

when the number of sensor nodes is not fixed and the maximum number of nodes is not

known a priori. They use Pareto dominance for Pareto-optimal layouts with respect

to the objectives. The flexibility of the algorithm is illustrated by solving the sensor

placement problem for diferent applications like facility surveillance, coverage with and

without obstacles, preferential surveillance and forming a clustering hierarchy. The

drawback of the study is that they assume that the communication is among sensors

but not with a base station.

In Türkoğulları et al. (2010a) the design issues of sensor placement for the cover-

14

age of the sensor field, their activity schedules and determination of sensor-to-sink data

flow routes for wireless sensor networks are addressed. They propose a MILP model

that formulates these network design issues to maximize the network lifetime in hetero-

geneous sensor networks with the requirement of differentiated coverage. Their solution

procedure consists of a heuristic which first finds connected sensor sets with minimum

cost satisfying the coverage constraints and then determines optimal sensor-to-sink

data routes with optimal flow quantities. The computational experiments performed

on various test instances indicate that the heuristic is efficient and accurate to solve

the problem. The same problem is again investigated in Türkoğulları et al. (2010b)

with a different solution approach. They present a two-phase heuristic, which solves

the linear programming relaxation by column generation in the first phase and in the

second phase contructs a feasible solution for the original problem using the columns

obtained in the first phase. Their computational experiments illustrate the quality of

their solution method.

15

3. SENSOR PLACEMENT, SCHEDULING AND

ROUTING PROBLEM WITH CONNECTIVITY

RESTRICTIONS

3.1. Introduction

In this chapter, a mixed-integer linear programming (MILP) formulation for the

Sensor Placement, Scheduling and Routing Problem with Connectivity Restrictions

(PSRPC) is presented. PSRPC aims to determine the optimal sensor locations, to find

the activity schedules of the sensors, to assign at least one sink for each sensor and to

build the data flow routes from each sensor to the corresponding sink to maximize the

network lifetime subject to coverage, flow balance, energy and budget constraints.

3.2. Mathematical Programming Formulations

We consider a sensor field consisting of N points indexed as i ∈ N = {1, ..., N}.
The locations of the sensors and sinks can be determined from the same index set

N . The sensors can be of K different types indexed as k ∈ K = {1, ..., K} with

known sensing (rs
k) and communication (rc

k) ranges. We are assuming that a sink is

a special type of sensor, namely type-0. Therefore, we define the index set K’ =

K
⋃{0} including the type index for sink. The unit cost (cjk) of placing a type-k

sensor at point j is known. There is a total available budget of B monetary units. In

a period t indexed as t ∈ T = {1, ..., T} a sensor can be active or standby. We are

considering sufficiently long planning horizon T to determine the maximum lifetime

over it. Therefore, planning horizon T becomes an upperbound on the lifetime L of

the network. A type-k sensor has an initial battery energy of Ek units which will be

consumed by es
k units for sensing the network, er

k units for receiving and ec
k units for

transmitting the data in the active periods of the sensor. In a period, an active type-k

sensor located at point j generates hjk data packets, where data packet is a unit that

measures data volume.

16

Technical characteristics of the existing commercial sensors, such as (xbow, 2009),

reveal that the energy expenditure of a standby sensor is negligible. We also assume

that, we can save energy if we keep a sensor in standby mode instead of activating it

without performing any of sensing points in the sensor field, receiving and processing

the data and transmitting the data packets to other sensors or a sink. This assumption

works until the periods are not exceptionally short durations. Sinks have unlimited

battery energy, they can receive data packets from the active sensors but cannot sense

points in the sensor field or transmit the data packets to other active sensors or sinks.

In the sequel indices i and j represent the sensor and sink locations, indices k

and l characterize the sensor types and index t shows the period. For convenience, a

type-k sensor located at point j will be reprented by the pair (j, k).

3.2.1. Main Model

The MILP model we introduce in this section, locates the sensors, determine their

activity schedules, assigns a sink for each active sensor and determines the sensor-to-

sink data flow routes while maximizing the WSN’s lifetime. Locations of the sensors

are determined with decision variables xjk. The location variable is one if a type-k

sensor is placed at point j of the sensor field and zero otherwise. The determination

of the periods that a sensor is active or standby gives us its activity schedule. The

activity schedule variable zjkt becomes one if a sensor (j, k) is active at period t and

zero otherwise. In a period each active sensor should be assigned to a sink in order

to send the collected information from the sensor field. The decision variables related

with sink assignments of the sensors are uijkt. A sink assignment variable takes value

one if an active sensor (j, k) is assigned to a sink located at point i in period t and

zero otherwise. The decision variable nt is one if a period t is within the lifetime

L, and zero otherwise. The information collected from the sensor field by the active

sensors should be sent to the corresponding sinks through the sensor-to-sink data flow

routes. The flow variable yiljkt represents the amount of data that is sent from sensor

(i, l) to sensor (j, k) in period t. Lastly, the variable L represents the lifetime of the

WSN, which we aim to maximize. In the model, locations and activity schedules and

17

sink assignments of sensors are of consideration. The assumptions related with sinks

provide some information about the decision variables. Firstly, the locations of the

sinks are konown a priori. Therefore, for k = 0 we are given for which j locations

xjk is equal to one. Since sinks have infinite battery energy, we can assume that sinks

are active in all periods which means the variable zj0t is equal to one for all periods t

within the lifetime L if there is a sink at location j. For convenience, a sink (j, 0) is

assigned to itself as its sink assignment, i.e. uij0t is equal to one for all periods t within

the lifetime L if i = j and zero otherwise. Sinks are the data collection points of the

sensor field, which means they are expected to have data inflows but no outflows. As a

result, taking l = 0 if there is a sink (i, 0), then the flow variable yi0jkt is equal to zero

for all sensors (j, k) in all periods t within the lifetime L.

We define aijk to represent the nonnegative coverage coefficients in the model.

The value of this coefficient can be determined depending on the sensing characteristics

of the sensors, i.e. perfect, imperfect and probabilistic sensing, in the sensor field. In

perfect sensing, a sensor can cover all of the points that are in its sensing range. In this

case aijk is set to one if point i is within the sensing range of the sensor (j, k) and zero

otherwise. Sinks, being a special kind of sensors, cannot contribute to the coverage of

a point in the sensor field. This means aij0 is equal to zero for all i, j ∈ N .

Imperfect sensing implies sensing intensity of a sensor decreases as the distance

increases in its sensing range. Then, the coverage coefficients can be calculated as

aijk = λk/(dij)
θk where dij is the Euclidean distance between points i and j. λk and θk

are technological parameters of a type-k sensor. In probabilistic sensing a sensor can

cover a point in its sensing range with a probability. The probability of sensing a point

i from a sensor (j, k) can be given as pijk = e−αkdij . Note that the sensing probability

decreases as the distance dij between the sensor and point increases. Exponential

decay parameter αk is a sensor specific parameter that shows how fast the probability

decreases. For a type-k sensor high αk value indicates low quality. In both cases, the

coverage coefficients appear to be nonnegative real numbers in [0, 1]. The definitions

of the coverage coefficients for imperfect and probabilistic sensing cases do not change

the structure of the mathematical model, but may affect the values of the other model

18

parameters such as fi, coverage quality requirement of point i. The mathematical

model that we will introduce in this chapter assumes perfect sensing, but it is also

applicable for imperfect and probabilistic sensing cases after making the adjustments

in the coverage coefficients.

The aim of the sensor network is to cover the targeted points in the sensor field

by at least the required number of sensors. For this purpose, fi represents the coverage

quality requirement of a point i in the sensor field. Their value depends on the sensing

characteristics and the type of coverage. They are positive integers for perfect sensing

case and become nonnegative rational numbers for imperfect and probabilistic sensing.

They are all same in uniform coverage and may have distinct values for differentiated

coverage. Similar to the coverage coefficients aijk, the communication coefficients bilj

depend on the communication characteristics of the sensors. In perfect communication

bilj value is one if a sensor at point j is within the communication range of sensor

(i, l) and zero otherwise. According to our assumptions, sinks cannot transmit data

to another sensor or sink. Then, if we have a sink (i, 0), i.e. l = 0, bi0j will be equal

to zero for all points j. If the communication characteristic of the sensors is imperfect

or probabilistic, then the communication coefficients should be updated appropriately

as in the coverage coefficients. In our model, we assume perfect communication. Ob-

serve that the PSRPC model introduced below cannot be generalized to imperfect or

probabilistic communication cases easily.

Table 3.1. Index sets used in the model

Index sets Definition

N Index set for sensor and sink locations

K Index set for sensor types

K’ Index set for sensor and sink types

T Index set for periods

There are different definitions used in literature for connectivity of a network. A

network can be considered to be connected if the active sensors can communicate at

least one of the other active sensors (Wang and Xiao, 2006). Another definition for

19

Table 3.2. Decision variables used in the model

Decision variables Definition

L Lifetime of the WSN

nt One if period t is within the lifetime L, zero otherwise

xjk One if a type-k sensor is placed at point j, zero otherwise

zjkt One if a sensor (j, k) is active in period t, zero otherwise

uijkt One if a sensor (j, k) is assigned to a sink located at point

i in period t, zero otherwise

yiljkt Amount of data flow from sensor (i, l) to sensor (j, k) in

period t

connectivity of the network is the existance of a path from each active sensor to a sink

node in order to transmit the data packets (Arai et al., 2010). In our study, a network

is assumed to be connected in a period t if we can assign at least one sink for each

active sensor and construct data flow paths from each sensor to its assigned sink. Table

3.1, Table 3.2 and Table 3.3 summarize the index sets, decision variables and model

parameters used in our formulation, respectively.

20

Table 3.3. Parameters used in the model

Parameters Definition

aijk One if point i is within the coverage range of sensor (j, k),

zero otherwise

bilj One if a sensor located at point j is within the commu-

nication range of sensor (i, l), zero otherwise

B Total available budget

cjk Cost of placing a type-k sensor at point j

ec
k Energy consumption of a type-k sensor for transmitting

one unit of flow

er
k Energy consumption of a type-k sensor for receiving one

unit of flow

es
k Energy consumption of a type-k sensor for sensing and

processing during a period

Ek Initial battery energy of a type-k sensor

fi Coverage quality requirement for point i

hjk Number of data packets generated by sensor (j, k) per

period

N Number of candidate locations for sensors and sinks

K Number of sensor types

rc
k Communication range of a type-k sensor

rs
k Sensing range of a type-k sensor

T Planning horizon

21

The problem of placing sensors, scheduling and routing with communication re-

strictions (PSRPC) under coverage, energy and budget constraints in order to maximize

the network lifetime can be modeled as the following MILP:

PSRPC :

max L (3.1)

s.t.

L ≥1 (3.2)

Tnt ≥ L + 1− t t ∈ T (3.3)
∑
j∈N

∑

k∈K

aijkzjkt ≥ fint i ∈ N ; t ∈ T (3.4)

∑
i∈N

∑

l∈K

yiljkt + hjkzjkt =
∑
i∈N

∑

l∈K’

yjkilt j ∈ N ; k ∈ K ; t ∈ T (3.5)

∑
j∈N

∑

k∈K

yjki0t =
∑
j∈N

∑

k∈K

hjkuijkt i ∈ N ; t ∈ T (3.6)

∑
t∈T

(es
kzjkt + er

k

∑
i∈N

∑

l∈K

yiljkt + ec
k

∑
i∈N

∑

l∈K’

yjkilt) ≤ Ek j ∈ N ; k ∈ K (3.7)

∑
i∈N

∑

l∈K’

yjkilt ≤ M1zjkt j ∈ N ; k ∈ K ; t ∈ T (3.8)

∑
i∈N

∑

l∈K

yilj0t ≤ M2xj0 j ∈ N ; t ∈ T (3.9)

zjkt ≤ xjk j ∈ N ; k ∈ K ; t ∈ T (3.10)

zjkt ≤ nt j ∈ N ; k ∈ K ; t ∈ T (3.11)

uijkt ≤ xi0 i, j ∈ N ; k ∈ K ; t ∈ T (3.12)

uijkt ≤ zjkt i, j ∈ N ; k ∈ K ; t ∈ T (3.13)
∑
i∈N

uijkt ≥ zjkt j ∈ N ; k ∈ K ; t ∈ T (3.14)

∑
i∈N

uijkt ≤ 1 j ∈ N ; k ∈ K ; t ∈ T (3.15)

22

uvilt ≤ uvjkt if yiljkt > 0 v, i, j ∈ N ; k ∈ K’; l ∈ K ; t ∈ T (3.16)

yiljkt ≤ M2bilj i, j ∈ N ; k ∈ K’; l ∈ K ; t ∈ T (3.17)
∑
j∈N

∑

k∈K

cjkxjk ≤ B (3.18)

nt, xjk, zjkt, uijkt ∈ {0, 1} , L ≥ 0, yiljkt ≥ 0. (3.19)

Objective function (3.1) maximizes the network lifetime. Constraint (3.2) elim-

inates the trivial but nonsense solution {n = 0, x = 0, z = 0, u = 0, y = 0},
which gives L = 0, from the solution space. The solution is not meaningful since a

realistic WSN is expected to operate at least one period. Constraints (3.3) determine

the periods that are within the lifetime L and constraints (3.4) try to activate the sen-

sors to satisfy the coverage quality requirement fi of each point i in the sensor field for

these periods. One important observation is when the time is beyond the lifetime, i.e.

t > L, constraints (3.3) set nt to 0 which makes coverage constraints (3.4) redundant.

Constraints (3.5) ensure the data flow balance for each sensor (j, k) in each period t. If

a sensor (j, k) is active in period t, then it adds hjk units of flow, i.e. data packets, to

the incoming data flow from the active sensors and sends the total flow to other active

sensors or a sink as outflow. Constraints (3.6) consider the incoming data flow to a sink

located at point i. Since we assign a sink for each sensor (j, k) and each active sensor

initiates hjk units of data flow, we expect that the data flow of each active sensor will

be reached to the corresponding sink. This means each active sensor contributes by

hjk units to the inflow of its assigned sink which generates the constraints (3.6). In a

period an active sensor consumes energy for sensing and processing the data collected

from the sensor field, for receiving data from other active sensors and transmitting data

to other active sensors or a sink. Total consumed energy of a type-k sensor during its

active periods is limited by the initial battery energy Ek, which is modeled with the

energy constraints (3.7). Constraints (3.8) guarantee that there is no outflow from a

sensor (j, k) in standby mode. Besides, total outflow from an active sensor in a period

is bounded by M1, where M1 is a sufficiently large number. We define M1 for this model

as (maxj,k hjk)N(K + 1), since there are N different candidate locations and K + 1

different sensor types including the sink type to place an active sensor, to which sensor

23

(j, k) can transmit at most (maxj,k hjk) units of data packets in a period. Another

bound on flow variables is given by the constraints (3.9). In order to send a flow to a

sink (j, 0), there should be a sink at point j. Total inflow to an existing sink can be

at most M2 which is determined as (maxj,k hjk)NK for our model. The reason for the

difference among M1 and M2 is that there cannot be outflow from a sink. Constraints

(3.10) force to deploy a sensor before activating it and constraints (3.11) guarantee that

a sensor is not active for the periods out of the lifetime L. A feasible sink assignment of

a sensor (j, k) to a sink (i, 0) in a period t requires an active sensor (j, k) and a sink lo-

cated at point i which can be provided by the constraints (3.12) and (3.13). Moreover,

according to constraints (3.14) and (3.15) we can find one and only one sink for each

active sensor in a period t. One may argue why there is unique sink for each active

sensor in a period t. We prefer to model for a unique sink since it will simplify the

determination of the flow routes from sensors to sinks in the solution procedure. The

active sensors can send their data to the assigned sink through the other active sensors.

Then, a sensor (i, l) can have a sink assignment the same with one of the sensors to

which sensor (i, l) sends flow. Constraints (3.16) make use of this idea and bound the

sink assignment variables of sensor (i, l), i.e. uvilt, with the ones of sensor (j, k), i.e.

uvjkt, if there is a flow from sensor (i, l) to sensor (j, k). Communication range of a

sensor (i, l) determines the candidate sensors to which it can send flow in a period.

Constraints (3.17) give a bound to the flow from sensor (i, l) to sensor (j, k) with the

corresponding communication coefficient bilj. Constraints (3.18) force that the total

deployment cost does not exceed the total available budget. Finally, constraints (3.19)

put the nonnegativity restriction on the decision variables. In the model, constraints

to limit the number of sensors located at the same point are not included since we

observe that in the optimal solution two or more sensors are rarely active at the same

point within the same period while it is not an energy efficient activity schedule.

24

Note that the above formulation is not linear because of the constraints (3.16).

On the other hand, the formulation can be linearized by introducing binary variables

wiljkt ∈ {0, 1} as follows:

yiljkt ≤ M2wiljkt i, j ∈ N ; k ∈ K’; l ∈ K ; t ∈ T (3.20)

uvilt − uvjkt ≤ M2(1− wiljkt) v, i, j ∈ N ; k ∈ K’; l ∈ K ; t ∈ T (3.21)

We can still make some modifications with the above constraints (3.21) through the

sink assignment variables uij0t. As it is discussed above, the sink assignment variables

for sinks are not actually decision variables since we know their values when we are

given the locations of sinks. Therefore, we can simply drop uij0t variables and propose

the following set of constraints instead of (3.21):

uvilt − uvjkt ≤ M2(1− wiljkt) v, i, j ∈ N ; k, l ∈ K ; t ∈ T (3.22)

uvilt − 1j(v)xj0 ≤ M2(1− wilj0t) v, i, j ∈ N ; l ∈ K ; t ∈ T (3.23)

The characteristic function 1j(v) is defined as:

1j(v) =





1, if v = j;

0, otherwise.

(3.24)

The replacement strategy makes use of our previous assumption that uij0t is equal to

one if i = j and zero otherwise. When there is a flow from an active sensor (i, l) to a

sink (j, 0), we may assign sink (j, 0) to this sensor, i.e. ujilt ≤ 1, but it does not mean

that we can assign this sensor to another sink, i.e. uvilt ≤ 0 for v 6= j.

In order to visualize the problem better we can make some observations related

with the mathematical formulation. Let inflowjk =
∑

i∈N

∑
l∈K yiljkt and outflowjk =

∑
i∈N

∑
l∈K’ yjkilt. Notice that, if we decide to locate a sensor (j, k), i.e. zjkt = 1, in

period t then it is necessary to assign a sink to it by constraints (3.14) and there will

be some outflow from the sensor, i.e. outflowjk > 0, by constraints (3.5). On the

25

other hand, if a sensor (j, k) is not active, i.e. zjkt = 0, in period t then there cannot

be outflow from the sensor, i.e. outflowjk = 0, by constraints (3.8). Besides, the flow

balance constraint (3.5) for sensor (j, k) implies inflowjk = outflowjk from which we

conclude inflowjk = 0 also. This means, until a sensor (j, k) is not active in period t,

there will not be any incoming and outgoing flows for sensor (j, k).

Proposition 3.1. If there is a flow from sensor (j, k) to sink (i, 0) in period t, then

there cannot be any outflow from sensor (j, k) to another sink directly and sink (i, 0)

is the unique sink assignment for sensor (j, k) in period t, i.e. uijkt = 1.

Proof. Let (i1, 0) and (i2, 0) be two different sinks in the sensor field. Assume for

contradiction that there are positive outflows from sensor (j, k) to both of the sinks

directly, i.e. yjki10t > 0 and yjki20t > 0. We have defined that a sink is assigned to itself

as its sink assignment, meaning ui1i10t = 1 and uji10t = 0 for all j 6= i1 and similarly

for sink (i2, 0). Since yjki10t > 0, constraints (3.16) imply uvjkt ≤ uvi10t for all v and

similarly uvjkt ≤ uvi20t for all v. Assume without loss of generality that sensor (j, k)

is assigned to sink (i1, 0) in period t, i.e. ui1jkt = 1. Besides, from constraints (3.15)

uvjkt = 0 for all v 6= i1. However, for v = i1 the inequality ui1jkt(= 1) ≤ ui1i20t(= 0)

will give a contradiction. Hence, an active sensor (j, k) can send flow directly to only

one sink which is its unique sink assignment.

Proposition 3.2. If there is a flow from sensor (j1, k1) to sink (i1, 0) in period t, then

there cannot be any outflow from sensor (j1, k1) to another sensor (j2, k2) that has sink

assignment different than the one of sensor (j1, k1) in period t.

Proof. Let (i1, 0) and (i2, 0) be two different sinks in the sensor field. From Proposition

(3.1) sink (i1, 0) is the unique sink assignment of sensor (j1, k1) in period t, i.e. ui1j1k1t =

1 and uvj1k1t = 0 for all v 6= i1. Assume sink (i2, 0), different than sink (i1, 0), is the

unique sink assignment of sensor (j2, k2) in period t, i.e. ui2j2k2t = 1 and uvj2k2t = 0

for all v 6= i2. If there is a flow from sensor (j1, k1) to sensor (j2, k2) in period t, i.e.

yj1k1j2k2t > 0, then from constraints (3.16) we should have uvj1k1t ≤ uvj2k2t for all v.

However, taking v = i1 gives ui1j1k1t(= 1) ≤ ui1j2k2t(= 0), which is a contradiciton.

Hence the results follows.

26

Proposition 3.3. Assuming a sensor (j, k) is assigned to a sink (v, 0), there cannot

be any outflow from sensor (j, k) to a sensor (i, l), which is assigned to another sink

in period t.

Proof. Assume sensor (j, k) is assigned to sink (v1, 0), i.e. uv1jkt = 1, and sensor (j, k) is

assigned to sink (v2, 0), i.e. uv2ilt = 1, in period t. By constraints (3.14) these are unique

sink assignments of sensors (j, k) and (i, l), respectively. Assume for contradiction there

is a flow from sensor (j, k) to sensor (i, l), yjkilt > 0. Then, from constraints (3.16) we

have uvjkt ≤ uvilt for all v. Taking v = v1 gives uv1jkt(= 1) ≤ uv1ilt(= 0) which is a

contradiction.

Notice that the above formulation cannot eliminate flow loops in the network.

This means an active sensor (i, l) sends flow to another active sensor (j, k), then sensor

(j, k) sends this flow back to the sensor (i, l) and so on. This kind of repetition in flow

of data consumes the battery energy without a valuable output. Moreover, consider

an active sensor (i, l) and two other active sensors, say sensors (j, k) and (r,m), in the

communication range of sensor (i, l). In such a case sensor (i, l) can send data flow to

one or both of the sensors (j, k) and (r,m) in that period. From the point of view of

sensor (i, l), energy consumption for transmitting a data packet will be the same for all

alternatives of sending its data packets, since both sensors are in the communication

range of sensor (i, l). Therefore, without loss of generality we can assume that there

can be only one outflow path for an active sensor in a period. This means an active

sensor (i, l) will choose only one active sensor in its communication range, say sensor

(j, k) with bilj = 1, to send its flow. The following set of constraints aim to eliminate

flow loops by forcing a unique outflow path from a sensor:

∑
j∈N

∑

k∈K’

wiljkt ≤ 1 i ∈ N ; l ∈ K ; t ∈ T (3.25)

27

Figure 3.1. A sample sensor network operating for T = 2 periods

In order to illustrate the problem, we can consider a sample solution for a problem

instance defined on a 4 × 4 grid whose model parameters can be given as: we have

two different sensor types (i.e. K = 2) and two sinks, planning horizon is equal to two

(i.e. T = 2), coverage quality requirement is one for each point (i.e. fi = 1 for all

i ∈ N), sensing range of type-1 sensors is one and half of the sensing range of type-2

sensors (i.e. 2rs
1 = rs

2 = 2), communication range of type-1 sensors is two and half of

the communication range of type-2 sensors (i.e. 2rc
1 = rc

2 = 4) and each active sensor

can transmit hjk = 24 data packets in a period.

Notice that in Figure 3.1, activity schedules of the deployed sensors may change

from one period to another. Active sensors collect data from the points in their sensing

range, process them as data packets and transmit the data either directly or through

other active sensors to the corresponding sink. There can be only one outflow from a

28

sensor which prevents loops in the flow routes. Sinks have unlimited energy capacity

and are active in all periods without contributing to the sensing process.

3.2.2. Formulations with Alternative Objectives

The formulation given in the previous subsection tries to maximize the lifetime of

the WSN. It is also possible to give mathematical formulations which use other objective

functions such as the minimization of total deployement cost and minimization of total

energy consumption. For the sake of completeness, the MILP formulations for these

two objectives will be given here, but solution procedure will not be analyzed in this

study.

The following MILP formulation aims to minimize the total deployment cost.

PSRPC1 :

min
∑
j∈N

∑

k∈K

cjkxjk (3.26)

s.t. (3.2) - (3.15),(3.17), (3.19), (3.20), (3.22), (3.23), (3.25).

The other MILP formulation tries to minimize the total energy consumption over

all periods.

PSRPC2 :

min
∑
t∈T

(es
kzjkt + er

k

∑
i∈N

∑

l∈K

yiljkt + ec
k

∑
i∈N

∑

l∈K’

yjkilt) (3.27)

s.t. (3.2) - (3.6), (3.8) - (3.15), (3.17) - (3.19), (3.20), (3.22), (3.23), (3.25).

29

3.3. Valid Inequalities

The MILP formulation of PSRPC proposed in the previous subsection is suffi-

cient to define the feasible solution space. In this section, we give some other set of

constraints which are also valid for the convex hull of the mixed integer set, which we

will call as Ω. These valid inequalities are not necessary for the problem formulation

but they will hopefully improve the performance of the solution procedure. The convex

hull of the mixed integer set, namely Ω, is generated by the constraints (3.2) - (3.19),

(3.20), (3.22), (3.23), (3.25) and defined as:

Ω = {L,n,x, z,u,y,w : L,n,x, z,u,y,w

satisfy constraints (3.2)− (3.15), (3.17)− (3.19), (3.20), (3.22), (3.23), (3.25)}

Proposition 3.4.

∑
j∈N

∑

k∈K’

yiljkt ≤
∑
j∈N

∑

k∈K

hjkzjkt i ∈ N; l ∈ K; t ∈ T (3.28)

are valid inequalities for the convex hull Ω.

Proof. Intuitively, if a sensor (j, k) is not active in period t, there cannot be any outflow

from this sensor in that period and if there is an outflow from an active sensor (j, k), it

is at most the total flow contribution of active sensors. For a formal proof consider a

feasible solution (L,n,x, z,u,y,w) in Ω. Let totalflow(t) represents the total amount

of inflow to all sinks in period t, i.e.
∑

i∈N

∑
l∈K

∑
j∈N yilj0t. Obviously, totalflow(t) is

the maximum possible outflow from a sensor (i, l). Then

∑
j∈N

∑

k∈K’

yiljkt ≤
∑
i∈N

∑

l∈K

∑
j∈N

yilj0t

=
∑
j∈N

∑
i∈N

∑

l∈K

hilujilt (by constraints (3.6))

We know from constraints (3.13) - (3.15) for a sensor (i, l) there is only one sink

30

assignment, say sink (jil, 0), in a period t. Hence

∑
j∈N

∑
i∈N

∑

l∈K

hilujilt =
∑
i∈N

∑

l∈K

hilujililt

≤
∑
i∈N

∑

l∈K

hilzilt (by constraints (3.13))

which shows that constraints (3.28) are valid inequalities for Ω.

Proposition 3.5.

wiljkt ≤ bilj i, j ∈ N; k ∈ K’; l ∈ K; t ∈ T (3.29)

are valid inequalities for the convex hull Ω.

Proof. We know from constraints (3.17) that an active sensor (i, l) can send flow to an

active sensor (j, k) if it is in the communication range of sensor (i, l). In addition, from

constraints (3.20) variable wiljkt is forced to be one if flow variable yiljkt is positive.

For a formal proof consider a feasible solution (L,n,x, z,u,y,w) in Ω. If bilj = 1

then flow variables yiljkt ≥ 0 by constraints (3.17) and wiljkt ∈ {0, 1} by constraints

(3.20) which will be feasible with respect to constraints (3.29). If bilj = 0 then flow

variables yiljkt = 0 by constraints (3.17) and wiljkt ∈ {0, 1} by constraints (3.20).

Setting wiljkt = 0 is feasible with respect to constraints (3.29) and Ω.

There are some other valid inequalities proposed in the literature that are also

relevant for our problem (Türkoğulları, 2010c). We state them without proof in the

following.

31

Proposition 3.6.

L−
∑
t∈T

nt = 0 (3.30)

nt−1 ≥ nt t ∈ T (3.31)
∑
j∈N

∑

k∈K

Ejkxjk ≥ ElbL (3.32)

∑
j∈N

∑

k∈K

∑
t∈T

(es
k + hjke

c
k)zjkt ≥ ElbL (3.33)

∑
j∈N

∑

k∈K

cjkzjkt ≥ Clbnt t ∈ T (3.34)

∑
t∈T

zjkt ≤
⌊

Ek

(es
k + hjkec

k)zjkt

⌋
xjk j ∈ N; k ∈ K (3.35)

are valid inequalities for the convex hull Ω, where Elb denotes a lower bound on the

optimal value of the following binary integer programming (BIP) problem:

min
∑
j∈N

∑

k∈K

∑
t∈T

(es
k + hjke

c
k)pjk (3.36)

s.t.
∑
j∈N

∑

k∈K

aijkpjk ≥ fi i ∈ N (3.37)

pjk ∈ {0, 1} j ∈ N; k ∈ K (3.38)

and Clb is a lower bound on the optimal value of the following BIP problem:

min
∑
j∈N

∑

k∈K

∑
t∈T

cjkpjk (3.39)

s.t.
∑
j∈N

∑

k∈K

aijkpjk ≥ fi i ∈ N (3.40)

pjk ∈ {0, 1} j ∈ N; k ∈ K (3.41)

Proof. See (Türkoğulları, 2010c).

32

4. SOLVING THE SENSOR PLACEMENT, SCHEDULING

AND ROUTING PROBLEM WITH CONNECTIVITY

RESTRICTIONS

4.1. Introduction

The computational results related with exact solution procedure reported in

Chapter 6 show that it is not efficient even for small instances of PSRPC. Therefore,

heuristic solution techniques can be utilized. In this chapter two different Lagrangean

relaxation strategy and the corresponding Lagrangean heuristics for PSRPC are intro-

duced. We try to relax some of the complicating constraints using Lagrange multipliers

and solve the Lagrangean dual problem using the subgradient algorithm. The objective

function value of a Lagrangean subproblem will be an upper bound for the main prob-

lem since we are relaxing some of the constraints which give a larger solution space to

maximize the lifetime. However, solutions obtained from the Lagrangean subproblems

may not be feasible with respect to the relaxed constraints. Then, we can construct

feasible solutions of PSRPC with some heuristic approaches to the solutions of the

Lagrangean subproblems and reach a lower bound for objective function value of the

main problem. Since we cannot find optimum solutions of PSRPC instances, our aim

in this chapter is to develop Lagrangean heuristics that find tight lower and upper

bounds for the PSRPC.

4.2. First Lagrangean Heuristic

We first add dummy constraints in order to replicate activity scheduling variables

zjkt with new variables gjkt ∈ {0, 1} to the MILP formulation introduced in section (3.2)

which can be given as:

gjkt ≤ zjkt j ∈ N ; k ∈ K ; t ∈ T (4.1)

gjkt ≥ zjkt j ∈ N ; k ∈ K ; t ∈ T (4.2)

33

Then, we replace zjkt variables in constraints (3.5), (3.7) and (3.8) with gjkt variables.

We aim to decompose the Lagrangean subproblem into smaller subproblems with this

equivalent formulation.

The Lagrangean heuristic is based on the relaxation of the constraints (3.4), (3.6),

(3.22), (3.23), (3.18), (4.1) and (4.2). Note that the constraints (3.6) are equalities.

Therefore, in order to update the Lagrange multipliers in the sugradient algorithm

together, we split these equality constraints into two as follows:

∑
j∈N

∑

k∈K

yjki0t ≤
∑
j∈N

∑

k∈K

hjkuijkt i ∈ N ; t ∈ T (4.3)

∑
j∈N

∑

k∈K

yjki0t ≥
∑
j∈N

∑

k∈K

hjkuijkt i ∈ N ; t ∈ T (4.4)

As a result, we relax the constraints (3.4), (4.3), (4.4), (3.22), (3.23), (3.18), (4.1)

and (4.2) with multipliers λ ≥ 0, µ1 ≥ 0, µ2 ≥ 0, δ1 ≥ 0, δ2 ≥ 0, θ ≥ 0, ε1 ≥ 0 and

ε2 ≥ 0, respectively, in order to obtain the Lagrangean subproblem:

LUB(λ, µ1, µ2, δ1, δ2, θ, ε1, ε2) = max L + θ

(
B −

∑
j∈N

∑

k∈K

cjkxjk

)

+
∑
i∈N

∑
t∈T

µ1
it

{∑
j∈N

∑

k∈K

(hjkuijkt − yjki0t)

}

+
∑
i∈N

∑
t∈T

µ2
it

{∑
j∈N

∑

k∈K

(yjki0t − hjkuijkt)

}

+
∑
v∈N

∑
i∈N

∑

l∈K

∑
j∈N

∑

k∈K

∑
t∈T

δ1
viljkt (M2(1− wiljkt)− uvilt + uvjkt)

+
∑
v∈N

∑
i∈N

∑

l∈K

∑
j∈N

∑
t∈T

δ2
vilj0t (M2(1− wilj0t)− uvilt + 1j(v)xj0)

+
∑
i∈N

∑
t∈T

λit

{(∑
j∈N

∑

k∈K

aijkzjkt

)
− fint

}

+
∑
j∈N

∑

k∈K

∑
t∈T

ε1
jkt(zjkt − gjkt) +

∑
j∈N

∑

k∈K

∑
t∈T

ε2
jkt(gjkt − zjkt)

(4.5)

34

s.t. (3.2), (3.3), (3.5), (3.7)− (3.15), (3.17), (3.19), (3.20), (3.25). (4.6)

The Lagrangean subproblem decomposes into three subproblems for a given set of

Lagrange multiplier values. The objective value of the first subproblem is a func-

tion of λ, i.e. Z1(λ), the objective value of the second subproblem is a function of

λ, µ1, µ2, δ1, δ2, θ ε1and ε1, i.e. Z2(λ, µ1, µ2, δ1, δ2, θ, ε1, ε2) and the ob-

jective value of the third subproblem is a function of µ1, µ2, δ1, δ2, ε1 and ε2, i.e.

Z3(µ
1, µ2, δ1, δ2, ε1, ε2). For simplicity, we will denote the objective function values

of the first, second and third subproblems as Z1, Z2 and Z3 in the sequel, respec-

tively. These subproblems and their solution procedures are discussed in the following

subsections.

4.2.1. First Subproblem

The mathematical program of the first subproblem SP1 can be given as:

SP1 : Z1(λ) = max L −
∑
t∈T

(∑
i∈N

λitfi

)
nt (4.7)

s.t. (3.2), (3.3)

L ≥ 0, nt ∈ {0, 1} t ∈ T (4.8)

The objective function can be written as L −∑
t∈T υtnt where υt =

∑
i∈N λitfi.

Notice that υt values, coefficients of nt, are nonnegative. Therefore, since the objective

is a maximization we would like to assign zero to variable nt instead of one. Suppose

that L = t0 − 1. When nt = 0 constraints (3.3) become t ≥ t0. This means, we have

to assign nt = 1 for t < t0. Hence, for a given L we can determine the nt variables

and calculate the objective function value. As a result, we can find Z1 by enumerating

objective function for all possible values of L ∈ {1, ..., T} and select the solution which

gives the highest objective.

35

Proposition 4.1. The computational complexity of the solution procedure for SP1 is

O(NT).

Proof. Calculating υt for a given t is O(N). Then calculating all υt values are O(NT).

For a given L value, calculating the objective function is O(T). Finding L which gives

the maximum objective value is O(T). Hence, the computational complexity of the

solution procedure is O(NT).

4.2.2. Second Subproblem

The mathematical program of the second subproblem SP2 can be given as:

SP2 : Z2(λ, µ1, µ2, δ1, δ2, θ, ε1, ε2) = max −θ
∑
j∈N

∑

k∈K

cjkxjk

+
∑
j∈N

∑

k∈K

∑
t∈T

{(∑
i∈N

λitaijk

)
+ ε1

jkt − ε2
jkt

}
zjkt

+
∑
i∈N

∑
j∈N

∑

k∈K

∑
t∈T

γijktuijkt

(4.9)

s.t. (3.10)− (3.15)

xjk, zjkt, uijkt ∈ {0, 1} i, j ∈ N ; k ∈ K ; t ∈ T (4.10)

where

γijkt = hjk(µ
1
it − µ2

it) +
∑
v∈N

∑

l∈K

(δ1
ivljkt − δ1

ijkvlt)−
∑
v∈N

δ2
ijkv0t. (4.11)

Notice that SP2 can be decomposed with respect to point j and sensor type k. This

means, Z2 =
∑

j∈N

∑
k∈K Zjk

2 where Zjk
2 is obtained by solving problem SP jk

2 given

36

as:

SP jk
2 : Zjk

2 (λ, µ1, µ2, δ1, δ2, θ, ε1, ε2) = max −θcjkxjk

+
∑
t∈T

{(∑
i∈N

λitaijk

)
+ ε1

jkt − ε2
jkt

}
zjkt

+
∑
i∈N

∑
t∈T

γijktuijkt

(4.12)

s.t. (3.10)− (3.15), (4.10).

A feasible solution of SP jk
2 assigns a sink for a deployed sensor (j, k) at the periods

it is active. This means, if xjk = 0, then zjkt = 0 and uijkt = 0 necessarily. On the other

hand, if we have a sensor (j, k), i.e. xjk = 1, and if it is active at period t, i.e. zjkt = 1,

then the best possible sink to assign sensor (j, k) can be i = arg maxi∈N {γijkt}. Let

CU = maxi∈N {γijkt}. If there is a sensor (j, k) it can be activated at period t if

CZt =

{(∑
i∈N

λitaijk

)
+ ε1

jkt − ε2
jkt

}
+ CU > 0. (4.13)

Finally, it will be meaningful to deploy a sensor (j, k), i.e. xjk = 1, if

CX = −θcjk +
∑
t∈T

CZt > 0. (4.14)

Therefore, for a given j and k indexes, we start by assuming xjk = 1 and try to

determine the periods t, in which we assign the sink (i, 0) from i = arg maxi∈N {γijkt},
to activate the deployed sensor (j, k) by checking (4.13). After enumarating over all

points i and periods t, if (4.14) is provided then we can activate sensor (j, k) and assign

the selected sink to it in the determined periods. In the case we could not satisfy (4.14),

i.e. our initial assumption xjk = 1 was not true, the solution of the subproblem (j, k)

will be xjk = 0, zjkt = 0 and uijkt = 0 for all points i and periods t.

Proposition 4.2. The computational complexity of the solution procedure for SP2 is

37

O(N3K2T).

Proof. First let us consider a given subproblem (j, k). Calculating γijkt for all points

i in a period t is O(N2K). Calculating CU for a period is O(N). Calculating CZt

for a period is O(N) and O(NT) for all periods. Calculating CX is O(T). Solving a

subproblem (j, k) is O(N2KT). Therefore, computational complexity of the solution

procedure for SP2 is O(N3K2T).

4.2.3. Third Subproblem

The mathematical program of the third subproblem SP3 can be given as:

SP3 : Z3(µ
1, µ2, δ1, δ2, ε1, ε2) = max −

∑
j∈N

∑

k∈K

∑
t∈T

(ε1
jkt − ε2

jkt)gjkt

−
∑
j∈N

∑

k∈K

∑
i∈N

∑
t∈T

(µ1
it − µ2

it)yjki0t

−
∑
i∈N

∑

l∈K

∑
j∈N

∑
t∈T

M2

{∑

k∈K

(∑
v∈N

δ1
viljkt

)
wiljkt +

(∑
v∈N

δ2
vilj0t

)
wilj0t

}
(4.15)

s.t. (3.9), (3.20), (3.17), (3.25)

Constraints (3.5), (3.7), (3.8) where zjkt is replaced by gjkt (4.16)

gjkt, wjkilt ∈ {0, 1} and yjkilt ≥ 0 i, j ∈ N , k ∈ K , l ∈ K’, t ∈ T (4.17)

Notice that SP3 is a MILP. Hence, it can be solved using a commercial LP solver

such as CPLEX (ilog, 2007).

Hence, we obtain an upper bound on the network lifetime L with the Lagrangean

38

problem as:

LUB = Z1 + Z2 + Z3 + ∆ (4.18)

where

∆ = θB +
∑
v∈N

∑
i∈N

∑

l∈K

∑
j∈N

∑
t∈T

{(∑

k∈K

δ1
viljktM2

)
+ δ2

vilj0t(M2 + 1j(v)xj0)

}
(4.19)

An upper bound LUB for PSRPC can be obtained with a given set of Lagrange

multipliers {λ, µ1, µ2, δ1, δ2, θ, ε1, ε2} as explained above. The best, i.e. smallest,

upper bound can be found by solving the following Lagrangean dual problem

L∗UB = min
λ≥0,µ1≥0,µ2≥0,δ1≥0,δ2≥0,θ≥0,ε1≥0,ε2≥0

LUB(λ, µ1, µ2, δ1, δ2, θ, ε1, ε2) (4.20)

using the subgradient optimization algorithm (Held et al., 1974). At each iteration r

of the subgradient optimization procedure, the current upper bound L
(r)
UB is obtained

by solving SP1, SP2 and SP3 to optimality. We have relaxed some of the constraints

of PSRPC in the Lagrangean subproblem. Therefore, for a feasible solution of the

Lagrangean subproblem at iteration r, say (L(r),n(r),x(r), z(r),g(r),u(r),y(r),w(r)), the

nonnegative deviation from feasibility with respect to relaxed constraints can be rep-

resented with subgradients which are defined as:

39

SGλ
it =

(∑
j∈N

∑

k∈K

aijkz
(r)
jkt

)
− fin

(r)
t i ∈ N ; t ∈ T (4.21)

SGµ1

it =
∑
j∈N

∑

k∈K

(
hjku

(r)
ijkt − y

(r)
jki0t

)
i ∈ N ; t ∈ T (4.22)

SGµ2

it =
∑
j∈N

∑

k∈K

(
y

(r)
jki0t − hjku

(r)
ijkt

)
i ∈ N ; t ∈ T (4.23)

SGδ1

viljkt = M2(1− w
(r)
iljkt)− u

(r)
vilt + u

(r)
vjkt v, i, j ∈ N ; k, l ∈ K ; t ∈ T (4.24)

SGδ2

vilj0t = M2(1− w
(r)
ilj0t)− u

(r)
vilt + 1j(v)x

(r)
j0 v, i, j ∈ N ; l ∈ K ; t ∈ T (4.25)

SGθ = B −
∑
j∈N

∑

k∈K

cjkx
(r)
jk (4.26)

SGε1

jkt = z
(r)
jkt − g

(r)
jkt j ∈ N ; k ∈ K ; t ∈ T (4.27)

SGε2

jkt = g
(r)
jkt − z

(r)
jkt j ∈ N ; k ∈ K ; t ∈ T. (4.28)

They are used to update the Lagrange multipliers by defining a step length ξ(r) as

ξ(r) =
π(L

(r)
UB − L∗LB)

A
(4.29)

at each iteration r. Here L∗LB is the best available lower bound, π is step length

parameter and A is calculated as:

A =
∑
i∈N

∑
t∈T

(
(SGλ

it)
2 + (SGµ1

it)2 + (SGµ2

it)2
)

+
∑
v∈N

∑
i∈N

∑

l∈K

∑
j∈N

∑
t∈T

{(∑

k∈K

(SGδ1

viljkt)
2

)
+ (SGδ2

vilj0t)
2

}
+ (SGθ)2

+
∑
j∈N

∑

k∈K

∑
t∈T

(
(SGε1

jkt)
2 + (SGε2

jkt)
2
)

(4.30)

Then, Lagrange multipliers λ(r), µ1(r)
, µ2(r)

, δ1(r)

, δ2(r)

, θ(r), ε1(r)
, ε2(r)

at iteration

40

r are updated as:

λ
(r+1)
it = max{λ(r)

it − ξ(r)(SGλ
it), 0} i ∈ N ; t ∈ T (4.31)

µ1(r+1)

it = max{µ1(r)

it − ξ(r)(SGµ1

it), 0} i ∈ N ; t ∈ T (4.32)

µ2(r+1)

it = max{µ2(r)

it − ξ(r)(SGµ2

it), 0} i ∈ N ; t ∈ T (4.33)

δ1(r+1)

viljkt = max{δ1(r)

viljkt − ξ(r)(SGδ1

viljkt), 0} v, i, j ∈ N ; k, l ∈ K ; t ∈ T (4.34)

δ2(r+1)

vilj0t = max{δ2(r)

vilj0t − ξ(r)(SGδ2

vilj0t), 0} v, i, j ∈ N ; l ∈ K ; t ∈ T (4.35)

θ(r+1) = max{θ(r) − ξ(r)(SGθ), 0} (4.36)

ε1(r+1)

jkt = max{ε1(r)

jkt − ξ(r)(SGε1

jkt), 0} j ∈ N ; k ∈ K ; t ∈ T (4.37)

ε2(r+1)

jkt = max{ε2(r)

jkt − ξ(r)(SGε2

jkt), 0} j ∈ N ; k ∈ K ; t ∈ T. (4.38)

Lower bounds L
(r)
LB are computed at each iteration r by constructing a feasible solu-

tion to PSRPC from the solution of the Lagrangean subproblem. Feasible solution

procedures are explained in section (4.4). The output of the first Lagrangean Heuris-

tic (LH1) is the best lower bound L∗LB found from the feasible solution generation

procedure and the smallest upper bound L∗UB found during the iterations. There are

different alternatives to finalize the iterations of the Lagrangean heuristic. It is possible

to terminate the subgradient algorithm if the gap between the best upper and lower

bounds is less than a certain threshold value, i.e. L∗UB − L∗LB < η1 where η1 is a small

nonnegative constant. However, this criterion may not be succesful if there is a duality

gap larger than η1. Therefore, we can consider to use the step length parameter π as

another termination criterion. The value of π is halved if there is no improvement in

the best upper bound L∗UB for consecutive κ iterations. The value κ = 20 is suggested

in the literature (Beasley, 1993). We terminate the subgradient iterations if π becomes

smaller than a threshold value η2. Related with the performance of the Lagrangean

heuristic, we observe that the feasible solution generation procedures find good lower

bounds in early iterations whereas the Lagrangean subproblem cannot improve the

best upper bound value considerably after some number of iterations. Therefore, in

order to save time the number of iterations in subgradient algorithm is limited with

parameter iterlim. The steps of LH1 are given in Figure (4.1).

41

1. Initialization: Set iteration counter r = 0, π(0) = 2, L∗UB = ∞, L∗LB = 0 and

λ
(r)
it , µ1(r)

it , µ2(r)

it , δ1(r)

viljkt, δ2(r)

vilj0t, θ(r), ε1(r)

jkt , ε2(r)

jkt for v, i, j ∈ N , k, l ∈ K , t ∈ T.

2. While L∗UB − L∗LB ≥ η1 and π ≥ η2 and r ≤ iterlim Do

3. Solve subproblems SP1, SP2, SP3,

compute LUB = Z1 + Z2 + Z3 + ∆

and update LUB = min{L∗UB, L
(r)
UB}.

4. If L∗UB is not updated consecutive last κ iterations Then set π ← π/2.

5. Construct a feasible solution with objective value L
(r)
LB using one of the al-

gorithms described in section (4.4) and update L∗LB = max{L∗LB, L
(r)
LB}.

6. Update Lagrange multipliers λ, µ1, µ2, δ1, δ2, θ, ε1, ε2 with equations

(4.31) - (4.38).

7. r ← r + 1

8. End While

Figure 4.1. First Lagrangean heuristic, LH1

Proposition 4.3. The computational complexity of the solution procedure for LH1 is

O(N3K2T (iterlim) + O(OSP3)(iterlim) + OLB(iterlim)) where O(OSP3) denotes the

complexity of the algorithm to solve SP3 and O(OLB) represents the complexity of the

algorithm to generate a lower bound.

Proof. Initializing the algorithm is O(N3K2T). Solving SP1 is O(NT) and SP2 is

O(N3K2T). Solving SP3 is O(OSP3). Constructing a lower bound is O(OLB). Up-

dating Lagrange multipliers is O(N3K2T). Then, computational complexity of the

algorithm is O(N3K2T (iterlim) +O(OSP3)(iterlim) + OLB(iterlim)).

42

4.3. Second Lagrangean Heuristic

Second Lagrangean heuristic is based on the relaxation of the constraints (3.4),

(4.3), (4.4), (3.22), (3.23) and (3.18) with multipliers λ ≥ 0, µ1 ≥ 0, µ2 ≥ 0, δ1 ≥
0, δ2 ≥ 0 and θ ≥ 0, respectively. Then, the following Lagrangean subproblem is

obtained:

LUB(λ, µ1, µ2, δ1, δ2, θ) = max L + θ

(
B −

∑
j∈N

∑

k∈K

cjkxjk

)

+
∑
i∈N

∑
t∈T

µ1
it

{∑
j∈N

∑

k∈K

(hjkuijkt − yjki0t)

}

+
∑
i∈N

∑
t∈T

µ2
it

{∑
j∈N

∑

k∈K

(yjki0t − hjkuijkt)

}

+
∑
v∈N

∑
i∈N

∑

l∈K

∑
j∈N

∑

k∈K

∑
t∈T

δ1
viljkt (M2(1− wiljkt)− uvilt + uvjkt)

+
∑
v∈N

∑
i∈N

∑

l∈K

∑
j∈N

∑
t∈T

δ2
vilj0t (M2(1− wilj0t)− uvilt + 1j(v)xj0)

+
∑
i∈N

∑
t∈T

λit

{(∑
j∈N

∑

k∈K

aijkzjkt

)
− fint

}

(4.39)

such that (3.2), (3.3), (3.5), (3.7)− (3.15), (3.17), (3.19), (3.20), (3.25). (4.40)

The Lagrangean subproblem decomposes into two subproblems for a given set of

Lagrange multipliers. The objective value of the first subproblem is a function of

λ, i.e. Z1(λ), and the objective value of the second subproblem is a function of

λ, µ1, µ2, δ1, δ2 and θ, i.e. Z2(λ, µ1, µ2, δ1, δ2, θ). For simplicity, we will

denote the objective function values of the first and second subproblems as Z1 and Z2

in the sequel.

43

4.3.1. First Subproblem

The mathematical program of the first subproblem SP1 is the same as the first

subproblem given in Subsection 4.2.1. Therefore, the solution strategy is the same as

SP1’s.

4.3.2. Second Subproblem

The mathematical program of the second subproblem SP2 can be given as:

SP2 : Z2(λ, µ1, µ2, δ1, δ2, θ) = max −θ
∑
j∈N

∑

k∈K

cjkxjk

+
∑
j∈N

∑

k∈K

∑
t∈T

(∑
i∈N

λitaijk

)
zjkt +

∑
i∈N

∑
j∈N

∑

k∈K

∑
t∈T

γijktuijkt

−
∑
i∈N

∑
j∈N

∑

k∈K

∑
t∈T

(µ1
it − µ2

it)yjki0t

−
∑
v∈N

∑
i∈N

∑

l∈K

∑
j∈N

∑
t∈T

M2

((∑

k∈K

δ1
viljktwiljkt

)
+ δ2

vilj0twilj0t

)

(4.41)

s.t. (3.5), (3.7)- (3.15), (3.17), (3.19), (3.20), (3.25)

xjk, zjkt, uijkt, wjkilt ∈ {0, 1} and yjkilt ≥ 0 i, j ∈ N , k ∈ K , l ∈ K’, t ∈ T (4.42)

where γijkt is as defined in equation (4.11).

Notice that SP2 can decompose with respect to point j. This means, Z2 =

44

∑
j∈N Zj

2 where Zj
2 is obtained by solving problem SP j

2 given as:

SP j
2 : Zj

2(λ, µ1, µ2, δ1, δ2, θ) = max −θ
∑

k∈K

cjkxjk

+
∑

k∈K

∑
t∈T

(∑
i∈N

λitaijk

)
zjkt +

∑
i∈N

∑

k∈K

∑
t∈T

γijktuijkt

−
∑
i∈N

∑

k∈K

∑
t∈T

(µ1
it − µ2

it)yjki0t

−
∑
v∈N

∑
i∈N

∑

l∈K

∑
t∈T

M2

((∑

k∈K

δ1
viljktwiljkt

)
+ δ2

vilj0twilj0t

)

(4.43)

s.t. (3.5), (3.7)− (3.15), (3.17), (3.19), (3.20), (3.25), (4.10).

Notice that SP j
2 is a MILP. Hence, it can be solved with the help of a commercial

LP solver such as CPLEX (ilog, 2007).

Hence, we get an upperbound on the network lifetime L with first Lagrangean

subproblem as:

LUB = Z1 + Z2 + ∆ (4.44)

where ∆ is as defined in equation (4.19).

Similar to the first Lagrangean heuristic, we try to find the values of multipliers

{λ, µ1, µ2, δ1, δ2, θ} which gives the best upper bound LUB for PSRPC. For this

purpose, we solve the Lagrangean dual problem

L∗UB = min
λ≥0,µ1≥0,µ2≥0,δ1≥0,δ2≥0,θ≥0

LUB(λ, µ1, µ2, δ1, δ2, θ) (4.45)

using the subgradient optimization algorithm. At each iteration r of the subgradi-

ent algorithm, the current upper bound L
(r)
UB is obtained by solving SP1 and SP2

45

1. Initialization: Set iteration counter r = 0, π(0) = 2, L∗UB = ∞, L∗LB = 0 and

λ
(r)
it , µ1(r)

it , µ2(r)

it , δ1(r)

viljkt, δ2(r)

vilj0t, θ(r) for v, i, j ∈ N , k, l ∈ K , t ∈ T.

2. While L∗UB − L∗LB ≥ η1 and π ≥ η2 and r ≤ iterlim Do

3. Solve subproblems SP1 and SP2,

compute LUB = Z1 + Z2 + Z3 + ∆

and update LUB = min{L∗UB, L
(r)
UB}.

4. If L∗UB is not updated consecutive last κ iterations Then set π ← π/2.

5. Construct a feasible solution with objective value L
(r)
LB using one of the al-

gorithms described in section (4.4) and update L∗LB = max{L∗LB, L
(r)
LB}.

6. Update Lagrange multipliers λ, µ1, µ2, δ1, δ2, θ with equations (4.31) -

(4.36).

7. r ← r + 1

8. End While

Figure 4.2. Second Lagrangean heuristic, LH2

to optimality. For a feasible solution of the Lagrangean subproblem at iteration r,

say (L(r),n(r),x(r), z(r),u(r),y(r),w(r)), subgradients can be calculated as in equations

(4.21) - (4.26) given in the previous section. The step length is determined with the

equation (4.29) where A value is found as:

A =
∑
i∈N

∑
t∈T

(
(SGλ

it)
2 + (SGµ1

it)2 + (SGµ2

it)2
)

+
∑
v∈N

∑
i∈N

∑

l∈K

∑
j∈N

∑
t∈T

{(∑

k∈K

(SGδ1

viljkt)
2

)
+ (SGδ2

vilj0t)
2

}
+ (SGθ)2 (4.46)

Finally, Lagrange multipliers λ(r), µ1(r)
, µ2(r)

, δ1(r)

, δ2(r)

, θ(r) at iteration r can be

updated with the equations (4.31) - (4.36). We can summarize the steps of LH2 as in

Figure (4.2).

46

Proposition 4.4. The computational complexity of the solution procedure for LH2

is O(OSP2(iterlim) + OLB(iterlim) + N3K2T (iterlim)) where O(OSP2) indicates the

complexity of the algorithm to solve SP2 and O(OLB) represents the complexity of the

algorithm to generate a lower bound.

Proof. Initializing the algorithm is O(N3K2T). Solving SP1 is O(NT). Solving SP2

is O(OSP2). Constructing a lower bound is O(OLB). Updating Lagrange multipliers is

O(N3K2T). Then, complexity of the algorithm is O(OSP2(iterlim) + OLB(iterlim) +

N3K2T (iterlim)).

47

4.4. Generating a Feasible Solution

The algorithms for Lagrangean heuristics given in sections (4.2) and (4.3) require

lower bounds in order to update the Lagrange multipliers at each iteration. The lower

bounds can be obtained by a heuristic that uses the current solution of the Lagrangean

subproblem. The heuristic constructs a feasible solution from it by recovering the

infeasibilities with respect to the relaxed constraints of the Lagrangean subproblem.

In this section, we introduce two different algorithms to generate a feasible solution

out of the current solution of the Lagrangean subproblem.

4.4.1. Greedy Heuristic

First heuristic consists of three main steps, namely providing feasibility subject

to coverage and budget constraints, providing feasibility subject to sink assignment

constraints and determining feasible values for variables y and w. Each step of the

algorithm is done for all periods t ≤ T . The algorithm is given in Figure (4.3).

In the solution of the Lagrangean subproblem, it is possible for a sensor (j, k) to

overuse its battery energy Ek. In Step 1 of the algorithm, we find the first period t̄

that a sensor (j, k) violates the energy constraint (3.7). Then, the sensor is scheduled

to be in standby mode for the periods t ≥ t̄.

We use the algorithms given in Figure (4.4) and Figure (4.5) to satisfy the cover-

age and budget constraints. For each period t ≤ T , we check if every point in the sensor

field is covered by the required number of sensors or not. If each point is covered and

budget constraint is satisfied then we move to the next period. If budget constraint

is not held, we consider to remove some of the deployed sensors without harming the

coverage constraints. For this purpose, we delete sensors, i.e. set xjk = 0, that are in

standby mode until the current period since they do not contribute to the coverage of

the points in any of the periods. Deleting sensor (j, k) improves remaining budget Brem

by cjk monetary units and we continue with the process while the remaining budget is

negative or we cannot find a sensor to delete.

48

1. For each sensor (j, k) Do

1.1. For each t ≤ T Do

If
∑

t̄∈{1,...,t}(e
s
kzjkt̄ +er

k

∑
i∈N , l∈K yiljkt̄ +ec

k

∑
i∈N , l∈K’ yjkilt̄) > Ek Then

t̄ = t and Go to Step (1.2)

End If

End For

1.2. For each t̂ ≥ t̄

Set zjkt̂ = 0

End For

End For

2. Use the algorithm in Figures (4.4) and (4.5) to obtain a feasible solution subject

to the budget constraint and coverage constraints with objective value L̄.

3. If L̄ = 0 Then

Stop

Else

For all t ≤ L̄ Do

Use the algorithm in Figure (4.6) to generate a feasible solution subject

to the sink assignment constraints with objective value L̂.

End For

End If

4. If L̂ = 0 Then

Stop

Else

Solve RP described in this subsection to determine data flows y and dummy

variables w. The feasible solution is optimal with LLB = L̂.

End If

Figure 4.3. Greedy heuristic, GH

49

1. Set L
(r)
LB = T

2. For all t ≤ L
(r)
LB Do

2.1. If every point is covered Then

If budget constraint is satisfied Then

t ← t + 1

Else /* Budget is violated */

Remove standby sensors in periods [0, t] starting with the ones hav-

ing the largest cost until budget constraint is satisfied.

If this is not possible Then

L̄ = t− 1 and Stop

End If

End If

Figure 4.4. Providing feasibility subject to coverage and budget constraints (first

part)

After this procedure, it is possible that the budget constraint is violated. In

this case, one can consider to delete active sensors whose removal do not harm the

coverage of the points. This strategy is used only when we are in the first period, i.e.

t = 1, for the sake of simplicity of the heuristic. If budget is still violated then we set

L̄ = t−1 and stop the algorithm. On the other hand, if there is an undercovered point

in the sensor field then we first try to ensure coverage in the network by activating the

existing sensors. Let {L(r),n(r),x(r), z(r), (g(r)),y(r),w(r)} be the solution found with

the Lagrangean subproblem at iteration r. Observe that activating a standby sensor

does not demand budget usage.

50

2.2. Else /* There is at least one undercovered point */

2.2.1 While there is a sensor (j, k) with positive CEPjk value Do

Find a sensor that can cover some undercovered points with the

highest positive CEPjk value and activate this sensor.

If there is no such sensor Then Go to Step (2.2.2)

End While

2.2.2 While there is a sensor (j, k) with positive CCRjk value Do

Find a sensor that can cover some undercovered points with the

highest positive CCRjk value.

If there is no such sensor Then L̄ = t− 1 and Stop

Else

If budget is enough Then Deploy and activate this sensor.

Else

Remove standby sensors in periods [0, t] starting with the ones hav-

ing the largest cost until enough budget is obtained.

If budget is enough Then Deploy and activate this sensor.

Else L̄ = t− 1 and Stop

End While

End If

End For

Figure 4.5. Providing feasibility subject to coverage and budget constraints (second

part)

51

We choose the standby sensor to activate in a gereedy way by calculating a

product for each sensor in period t. For this product we first calculate the shortages

in the coverage qualities for each point in the sensor field, namely the undercoverage

values as:

U
(r)
i = max

{
fin

(r)
t −

(∑
j∈N

∑

k∈K

aijkz
(r)
jkt

)
, 0

}
i ∈ N (4.47)

For a standby sensor, it is a reason of choice if it can cover as many points as

possible that have positive undercoverage values. In addition, as the sensor has more

remaining energy in its battery, the need for the deployment of the new sensors will be

less in the future since we can activate the sensor in these periods also. Therefore, we

can define the coverage energy product, i.e. CEP
(r)
jk , for each sensor in period t as:

CEP
(r)
jk =

(∑
i∈{i|U(r)

i >0} aijk

)
x

(r)
jk Erem

jkt

cjk

j ∈ N ; k ∈ K (4.48)

where Erem
jkt represents the remaining energy of a sensor (j, k) in period t.

Then, we activate the standby sensors starting from the one with the highest

positive CEP
(r)
jk value and continue until we provide coverage constraints or we do not

have stanby sensors with positive CEP
(r)
jk value. This means, it is possible that we

can not satisfy the coverage constraints after this process. If this is the case, then we

consider to deploy new sensors and activate them, i.e. xjk = zjkt = 1, in period t. In

order to determine which sensors to deploy and activate in period t, we calculate a

coverage cost ratio, i.e. CCR
(r)
jk , for each sensor (j, k) as:

CCR
(r)
jk =

(∑
i∈{i|U(r)

i >0} aijk

)(
1− x

(r)
jk

)
Ek

cjk

j ∈ N ; k ∈ K (4.49)

where Ek represents the initial battery energy of a type-k sensor.

52

Observe that, we have to have sufficient budget to deploy a sensor. Then, as

far as our budget allows we continue with the procedure starting from the sensor with

the highest positive CCR
(r)
jk value until we satisfy coverage constraints or there is no

sensor with positive CCR
(r)
jk value. If we can not achieve the coverage constraints and

still have some candidate sensors with positive CCR
(r)
jk value after the process, we try

to generate sufficient budget by deleting standby sensors that are not used until the

current period. The procedure proceeds as the budget allows and there are candidate

sensors to deploy. If coverage is not provided, then we set L̄ = t − 1 and stop the

algorithm.

Proposition 4.5. The computational complexity of the algorithms given in Figure (4.4)

and Figure (4.5) is given as O(τ1N
3KT+τ1N

2KT 2) where τ1 = maxi

{∑
j∈N

∑
k∈K aijk

}

is the maximum number of points in the sensor field that a sensor can cover.

Proof. Checking coverage for all points in the sensor field is O(τ1N). Checking bud-

get constraint is O(NK). In a period t, removing standby sensors until period t

is O(NKT). Then, step (2.1) is O(τ1N + NKT). Calculating CEPjkt values in a

period t is O(N2K) and finding the highest one is O(NK). Then, step (2.2.1) is

O(τ1N
3K). Calculating CCRjkt values in a period t is O(N2K) and finding the high-

est one is O(NK) results step (2.2.2) is O(τ1N
3K + τ1N

2KT). This means, step (2.2)

is O(τ1N
3K + τ1N

2KT). As a result, providing feasibility subject to coverage and

budget constraints is O(τ1N
3KT + τ1N

2KT 2).

53

1. Initialization: For all sink (i, 0) set sensorseti0t = 0 and for all sensor (j, k) set

sensorsetjkt = −1. Set setlevel = 0.

2. For all active sensors in period t Do

2.1. If setlevel = 0 Then

For all sinks (i, 0) and active sensors (j, k) Do

If bjki = 1 and sensor (j, k) has no sink assignment Then

uijkt = 1, sensorsetjkt = 1

End If

End For

2.2. Else /* setlevel ≥ 1 */

For all disjoint active sensors (i, l) and (j, k) Do

If sensorsetilt = setlevel, bjki = 1 and sensor (j, k) has no sink

assignment Then

uvjkt ← uvilt for all v and sensorsetjkt = setlevel + 1

End If

End For

End If

setlevel ← setlevel + 1

End For

3. For all active sensor (j, k)

3.1. If sensor (j, k) has no sink assignment Then

Use the algorithm in Figure (4.7) to generate a feasible solution subject

to connectivity restrictions.

If this is not possible Then L̂ = t− 1 and Stop

End If

End For

Figure 4.6. Providing feasibility in period t subject to sink assignment constraints

54

For each period t we use the algorithms given in Figure (4.6) and Figure (4.7)

to assign a unique sink for each active sensor (j, k). The algorithm collects sensors

that have similar communication properties in a set. The variable setlevel is an iter-

ation counter over all sets and sensorsetjkt represents the set index to which sensor

(j, k) belongs. By definition all sinks (i, 0) are collected in a set at setlevel = 0, i.e.

sensorseti0t = 0. Then, for setlevel = 0 we collect all active sensors (j, k) that can

communicate with at least one of the sinks (i, 0) directly, i.e. bjki = 1, in a new set.

This new set has the index (setlevel + 1) and for all active sensors (j, k) with bjki = 1

is in this set, i.e. sensorsetjkt = setlevel + 1. Generalizing this idea, a set with index

(setlevel + 1) is obtained by collecting the active sensors (j, k) that can communicate

with at least one of the sensors (i, l) directly, means bjki = 1, that is in the set with

index setlevel. Defining sensorsetjkt = setlevel +1 indicates sensor (j, k) is a member

of the set with index (setlevel + 1).

Observe that, from the criteria used for defining the sets, there is a sensor (i, l)

in a set with index setlevel to which a flow can be sent from a sensor (j, k) in a set

with index (setlevel +1). That is, we can have yjkilt > 0 for these sensors. Constraints

(3.16) make use of the flows among the sensors to assign sinks to the sensors. Taking

these constraints into account, since yjkilt > 0 is possible we set uvjkt = uvilt for all

v. For a sink (i, 0) at setlevel = 0, sink assignment is uii0t = 1 and uvi0t = 0 for all

v 6= i. Then, for a sensor (j, k) at setlevel = 1 if bjki = 1 we make the sink assignment

as uvjkt = uvi0t for all v. Hence, uvjkt is one for only v = i, which is the unique sink

assignment of the sensor (j, k) in period t. Notice that there can be more than one sink

(i, 0) with which sensor (j, k) can communicate directly. In this case, only one sink is

chosen arbitrarily to make the sink assignment. For the sensors at setlevel > 1, the

approach is similar. By this way, we satisfy Constraints (3.16) after the determination

of flows in the network which will be explained in the following paragraphs.

55

1. Initialization: Set ζ =
(∑

j∈N

∑
k∈K zjkt

)
(maxjk hjk) and calculate CR1

jk values.

2. While {(j, k) : xjk = 1, zjkt = 0, Erem
jkt ≥ (es

k + ζ(er
k + ec

k))} 6= ∅ and CR1
jk > 0 Do

2.1. Find a sensor satisfying (∃ a sink (i, 0) such that ∃ a path from sensor (j, k)

to the sink) with the highest CR1
jk value, say sensor (j∗, k∗)

2.2. Activate sensor (j∗, k∗) and assign it to sink (i, 0)

2.3. For all active sensors (j, k) that have no sink assignment Do

If a sensor (j, k) satisfies (∃ a sink (i, 0) such that ∃ a path from sensor

(j, k) to the sink) Then uijkt = 1

End For

2.4. If the network is connected Then Stop

Else Go to Step 3

End If

End While

3. Calculate CR2
jk values

4. While {(j, k) : xjk = 0, ∃ a sensor (i, l) that has a sink assignment or a sink

(i, 0) with bjki = 1} 6= ∅ and CR2
jk > 0 Do

4.1. Find sensor, say (j∗, k∗), with the highest CR2
jk value

4.2. If Brem ≥ cj∗,k∗ Then

4.2.1. Deploy and activate sensor (j∗, k∗) and assign it to sink (i, 0)

4.2.2. Repeat Step (2.3)

4.2.3. If the network is connected Then Stop

Else L̂ = t− 1 Stop

End If

4.3. Else

Remove standby sensors in periods [0, t] starting with the ones having

the largest cost until enough budget is obtained.

If Brem ≥ cj∗,k∗ Then Repeat Steps (4.2.1) - (4.2.3)

Else L̂ = t− 1 Stop

End If

End If

End While

Figure 4.7. Providing feasibility in period t subject to connectivity restrictions

56

Proposition 4.6. The computational complexity of the algorithm in Figure (4.6) is

given as O(N3K3T + N5K4).

Proof. Initializing the algorithm is O(NK). Step (2.1) is O(N2K) and step (2.2) is

O(N3K2). Then, step 2 isO(N4K3). Satisfiying connectivity restrictions isO(N2K2T+

N4K3). Then, step 3 is O(N3K3T +N5K4). As a result, providing feasibility in period

t subject to sink assignment constraints is O(N3K3T + N5K4).

One important point is that after the set generation algorithm explained above

we can have sensors that do not belong to any of these sets. This means these sensors

cannot communicate any of the sensors in the sets. Hence, we cannot assign sinks to

these sensors with our algorithm. At this point, we use the algorithm given in Figure

(4.7) to maintain the communication in the network. We first consider to activate

standby sensors since the strategy is free. A standby sensor to activate is selected in a

greedy way among the ones that have sufficient remaining energy and can communicate

directly with at least one of the sensors in the sets and at least one of the sensors that

are outside the sets. We determine a communication ratio for each standby sensor

(j, k) in period t as

CR1(r)

jk =

(∑
(i,l)∈{(i,l)|uvilt=0 ∀v} aijk

)
x

(r)
jk Erem

jkt

cjk

j ∈ N ; k ∈ K (4.50)

where Erem
jkt represents the remaining energy of a sensor (j, k) in period t.

Then, we activate the standby sensors starting from the one with the highest pos-

itive CR1(r)

jk value and continue until all sensors find a set or we do not have standby

sensors with positive CR1(r)

jk value. Observe that, by activating a standby sensor we can

insert more than one isolated sensor in a set, since either isolated sensors can commu-

nicate with each other or the activated sensor is in the communication range of more

than one isolated sensor. After the activation of a standby sensor, both possibilities are

checked in order to provide communication with the least number of additional sensors.

If there are still sensors outside the sets then we consider to deploy new sensors and

57

activate them, i.e. xjk = zjkt = 1, in period t. In order to determine which sensors

to deploy and activate in a period t, we calculate another communication ratio, i.e.

CR2(r)

jk , for each sensor (j, k) as:

CR2(r)

jk =

(∑
(i,l)∈{(i,l)|uvilt=0 ∀v} aijk

)(
1− x

(r)
jk

)
Ek

cjk

j ∈ N ; k ∈ K (4.51)

where Ek represents the initial battery energy of a type-k sensor.

It is possible that the remaining budget is not adequate to deploy the candidate

sensor that has largest CR2(r)

jk value. In this case, we delete unused sensors until the

current period to find the necessary fund. If we cannot obtain sufficient budget to

deploy the selected sensor then we update L̂ = t − 1 and stop the algorithm. We

continue with the algorithm until we can find a sensor that has positive CR2(r)

jk value

and we can deploy the sensor either with the remaining budget or the generated budget

after removing some of the sensors.

Proposition 4.7. The computational complexity of the algorithm in Figure (4.7) is

given as O(N2K2T + N4K3).

Proof. Calculating ζ is O(NK) and calculating CR1
jk values is O(N2K2). This means,

initializing the algorithm is O(N2K2). Finding a sensor (j∗, k∗) according to the con-

ditions in step (2.1) is O(N2K). Assigning sink for active sensors in step (2.3) is

O(N3K2). Checking connectivity is O(NK). Therefore, step 2 is O(N4K3). Calculat-

ing CR2
jk values is O(N2K2) and finding the maximum one is O(NK). Step (4.2) is

O(N3K2) and step (4.3) is O(NKT +N3K2). Therefore, step 4 is O(N2K2T +N4K3).

As a result, providing feasibility in period t subject to connectivity restrictions is

O(N2K2T + N4K3).

The last step of the greedy algorithm aims to find the values of the data flows in

the network. For this purpose, for each period t within the lifetime L̂ we consider the

Routing Problem (RP), which tries to find the minimum energy consuming sensor-to-

58

sink data flow paths.

RP :

min er
k

∑
i∈N

∑

l∈K

yiljk + ec
k

∑
i∈N

∑

l∈K’

yjkil (4.52)

s.t.
∑
i∈N

∑

l∈K

yiljk + hjkz̄jkt =
∑
i∈N

∑

l∈K’

yjkil j ∈ N ; k ∈ K (4.53)

∑
j∈N

∑

k∈K

yjki0 =
∑
j∈N

∑

k∈K

hjkūijkt i ∈ N (4.54)

∑
i∈N

∑

l∈K’

yjkil ≤ M1z̄jkt j ∈ N ; k ∈ K (4.55)

∑
i∈N

∑

l∈K

yilj0 ≤ M2xj0 j ∈ N (4.56)

yiljk ≤ M2

(
2−

∑
v∈N

|ūvilt − ūvjkt|
)

/2 i, j ∈ N ; k ∈ K’; l ∈ K (4.57)

yiljk ≤ M2bilj i, j ∈ N ; k ∈ K’; l ∈ K (4.58)

yiljk ≥ 0, (4.59)

where {L̄(r), n̄(r), x̄(r), z̄(r), (ḡ(r)),y(r),w(r)} is the solution after applying the first three

steps of the greedy heuristic GH.

Actually, at this step of the algorithm we should decide on the values for both

data flows y and dummy variables w. Notice that variables y are continuous and

variables w are binary. Therefore, if we have included the variables w to the RP, then

we would have a MILP instead of a LP, which is obviously more difficult to solve. Then,

we add constraints (4.57) to satisfy constraints (3.16). Constraints (4.57) calculate the

absolute difference among the sink assignment variables of sensors (i, l) and (j, k).

Observe that since each sensor is assigned to only one sink, total difference can be

either zero means they are assigned to same sink or two means they are assigned to

different sinks. According to constraints (3.16), if there is a positive flow from sensor

(i, l) to (j, k), then the sink assignments can be the same and they have to be the same

59

as we have shown in Proposition 3.3. Constraints (4.57), allowing a possible flow from

sensor (i, l) to sensor (j, k) only if they have the same sink assignments, guarantee the

feasibility with respect to Constraints (3.16). Therefore, setting wiljkt = 1 if y∗iljk > 0

and zero otherwise, where y∗ is an optimal flow obtained by solving RP at period t, is

feasible with respect to constraints (3.20) and (3.21).

Proposition 4.8. Based on the Karmarkar’s interior point algorithm (Karmarkar,

1984), the solution algorithm for RP is of complexity O(N6K6LB) where LB is the

size of the LP instance in terms of the number of bits necessary for storage.

Proof. According to the potential reduction algorithm developed by Ye (1991), Kar-

markar’s interior point algorithm can be solved in O(n3L) number of iterations where

n is the number of variables and L number of bits required for storage. For our case,

number of variables of the RP is O(N2K2). Number of constraints is O(N2K2).

Then combining the subalgorithms described above, we can reach the following

proposition related with the overall cost of the greedy algorithm.

Proposition 4.9. The computational complexity of the algorithm in Figure (4.3) is

given as O(N2K2T 2 + τ1N
3KT + τ1N

2KT 2 + N3K3T + N5K4 + N6K6LB) where

τ1 = maxi

{∑
j∈N

∑
k∈K aijk

}
is the maximum number of points in the sensor field that

a sensor can cover and LB is the size of the RP instance in terms of the number of

bits necessary for storage.

Proof. Calculating total energy consumption of a sensor (j, k) upto period t isO(NKT).

Calculating step (1.1) is O(NKT 2). Calculating step (1.2) is O(T). Then, step 1 is

O(N2K2T 2). Complexity of step 2 is O(τ1N
3KT + τ1N

2KT 2). Complexity of step

3 is O(N3K3T + N5K4). Step 4 is O(N6K6LB). As a result, greedy heuristic is

O(N2K2T 2 + τ1N
3KT + τ1N

2KT 2 + N3K3T + N5K4 + N6K6LB).

60

4.4.2. Discrimination Heuristic

Discrimination heuristic (DH) is another approach to generate a feasible solution

from the solution of the Lagrangean subproblem at iteration r. Actually, this heuris-

tic uses almost the same subalgorithms with greedy heuristic but in different order.

Greedy heuristic first tries to restore the feasibility with respect to the coverage and

budget constraints in all periods within the planning horizon. After this, the connec-

tivity is checked for all periods within the lifetime while making the sink assignments.

Finally, for all periods within the lifetime data flow routes are determined. One major

drawback of this procedure is that we are consuming most of our budget while we

are trying to satisfy coverage constraints for more periods as possible. This decreases

our chance to provide connectivity by deploying new sensors. Hence we can end up

with unsatisfactory lower bound. On the other hand, discrimination heuristic consid-

ers feasibility with respect to coverage, budget and connectivity constraints and the

determination of data routes for each period independently. This means, we cannot

move to the next period without satisfying all relaxed constraints in a period.

We use the algorithm given in Figure (4.8) to obtain a feasible solution to PSRPC.

For period t we check the coverage and budget constraints. If the coverage constraints

are satisfied with the available budget, then we use algorithm in Figure (4.6) to assign

sinks to the active sensors. We consider to remove sensors that are in standby mode

until period t when the budget is over. If connectivity is achieved, using the algorithm

in Figure (4.9) we eliminate active sensors whose removal does not affect the coverage

and connectivity of the network in period t starting from the most expensive one.

Proposition 4.10. The computational complexity of the algorithm in Figure (4.9) is

given as O(N4K3).

Proof. Reassigning the sinks to the sensors is O(N3K2). This process is repeated for

NK times. Hence, eliminating unnecessary sensors is O(N4K3).

61

1. Apply Step 1 of the algorithm in Figure (4.3).

2. Set L
(r)
LB = T

3. For all t ≤ L
(r)
LB Do

If every point is covered Then

If budget constraint is satisfied Then

3.1. Use the algorithm in Figure (4.6) to generate a feasible solution

subject to the sink assignment constraints.

3.2. If the network is connected Then

t ← t + 1

3.2.1 Use the algorithm in Figure (4.9) to eliminate the active sensors

that do not harm coverage or connectivity restrictions.

3.2.2. Solve RP to determine data flows y. Set LLB = L̄ and Stop

Else L̄ = t− 1 and Stop

End If

Else

Remove standby sensors in periods [0, t] starting with the ones hav-

ing the largest cost until budget constraint is satisfied.

If this is not possible Then L̄ = t− 1 and Stop

Else Repeat Steps (3.1) and (3.2)

End If

End If

Else

Apply Step (2.2) of the algorithm in Figure (4.5)

If coverage constraints are satisfied Then Repeat Steps (3.1) and (3.2)

Else L̄ = t− 1 and Stop

End If

End For

Figure 4.8. Discrimination heuristic, DH

62

1. While {(j, k) : zjkt = 1 and ∀v with avjk = 1, ∃ sensor (i, l) zilt = 1 with

avil = 1} 6= ∅ Do

1.1. While {(j, k) : zjkt = 1 and ∀v with bjkv = 1, ∃ sensor (i, l) zilt = 1 with

bilv = 1} 6= ∅ Do

zjkt = 0

Reassign the sinks to the remaining active sensors

End While

End While

Figure 4.9. Eliminating unnecessary sensors from network in period t

Data flow routes are determined with the linear program RP as explained in the

previous subsection and move to the next period. In case the coverage is not satisfied

in period t, we use algorithms given in Figure (4.4) and Figure (4.5). If we can satisfy

the coverage constraints, then we continue with finding the sink assignments and the

corresponding data flow routes, in period t.

Proposition 4.11. The computational complexity of the algorithm in Figure (4.8) is

given as O(N3K3T 2 + N5K4T + N4K3T + N6K6TLB + τ1N
3KT + τ1N

2KT 2) where

τ1 = maxi

{∑
j∈N

∑
k∈K aijk

}
is the maximum number of points in the sensor field that

a sensor can cover and LB is the size of the RP instance in terms of the number of

bits necessary for storage.

63

Proof. The complexity of step 1 is O(N2K2T 2). Checking coverage is of O(N2K) and

checking budget takes O(NK). Satisfying sink assignment constraints is O(N3K3T +

N5K4). Checking connectivity is O(NK). Eliminating unnecessary sensors from the

network is O(N4K3). Solving LP is O(N6K6LB). Removing standby sensors from the

network is O(NKT). Applying step (2.2) to provide feasibility subject to coverage and

budget constraints is O(τ1N
3K + τ1N

2KT). Then, the complexity of the algorithm is

O(N3K3T 2 + N5K4T + N4K3T + N6K6TLB + τ1N
3KT + τ1N

2KT 2).

64

5. THE SINK LOCATION, SENSOR PLACEMENT,

SCHEDULING AND ROUTING PROBLEM WITH

CONNECTIVITY RESTRICTIONS

5.1. Introduction

We have developed solution strategies for PSRPC which assumes that we are given

the sink locations in the previous chapter. These solution techniques can be utilized to

find good, possibly optimal, sink locations. In this chapter given the number of sinks

in the sensor field, we aim to develop heuristics to find good locations for sinks in order

to maximize the network lifetime.

5.2. Model Formulation

The mathematical model that locates the sinks, places sensors, determines the

activity schedules of the sensors and constructs the sensor-to-sink data flow routes un-

der connectivity restrictions (LPSRPC) can be given as follows:

LPSRPC :

max L (5.1)

s.t. (3.2)− (3.15), (3.17)− (3.19), (3.20), (3.22), (3.23), (3.25)
∑
i∈N

xi0 = S (5.2)

where S is the given number of sinks in the WSN.

The median constraint (5.2) guarantee to place S sinks in the network. One

important point related with the sinks is that they are special types of sensors, hence

deploying a sink on a point i is costless and sink (i, 0) will be in active mode during

the lifetime of the network without any energy constraint.

65

One can observe that when the locations of S sinks are given, i.e. xi0 values

are known, the problem will reduce to PSRPC for which we have introduced solution

procedures in the previous section. Since we have finite number of points to locate the

sinks, we can find the best locations for sinks by simply enumarating over all possible

combinations. However, as the number of candidate locations increases linearly, the

number of possible combinations increase exponentially. Therefore, instead of trying

all alternative locations for S sinks, we can develop search algorithms to find good

locations for sinks that maximizes the lifetime L of the network. Two different search

algorithms are built: a local search heuristic and tabu search heuristic whose details

are explained in the following section.

5.3. Solution Procedures

5.3.1. Local Search Heuristic

Local search techniques are frequently used for solving hard combinatorial opti-

mization problems such as the p-median problem (Arya et al., 2004). We make use of

similar searching strategy in order to locate S sinks. A solution S = {s1, ..., sS} will be

the set of locations of S sinks and BNs(S) will be the set of all neighbors around the

solution S with the neighborhood function Ns. In order to generate neighbors around

the current solution S, we swap the locations of randomly selected s sinks out of S sinks

of the current solution. Therefore, for our problem Ns will be s-swap neighborhood

function. Observe that, s can take different values, i.e. s = 1, ..., S, which gives alterna-

tive neighborhood functions. Moreover, we can calculate the size of the neighborhood

BNs(S), i.e. the number of solutions in BNs(S), when we are given the neighborhood

function Ns. For a Ns neighborhood function, the size of the neighborhood NSs can

be calculated as

NSs =

(
N − S

s

)(
S

s

)
s ∈ {1, ..., S} (5.3)

where N is the number of candidate locations to locate a sink.

66

The local search heuristic is given in Figure (5.1) and starts with an initial solution

S0, which is obtained by locating S sinks randomly. An initial network lifetime LLB

is calculated using the sink locations S0 with one of the feasible solution generation

algorithm, namely greedy or discriminative heuristic. For a given solution S and for

each s-swap neighborhood of S, we consider the Ps percentage of the neighborhood to

search an improving solution. Then, we select the best improving solution among all

s-swap neighborhoods, s = 1, ..., S, to update the network lifetime LLB. We continue

with improving the lower bound for the network lifetime L until the algorithm run

for iterlim many iterations or we cannot update the current LLB for NI consecutive

iterations.

Notice that, if we are searching for all solutions in the s-swap neighborhoods,

i.e. Ps = 1, and we cannot update the current lower bound at last iteration, then we

can stop since we are at a local optimum. This means, if we decide to take Ps = 1,

then we can select NI = 1 since choosing NI greater than one is meaningless. On

the other hand, picking a Ps ∈ (0, 1) decreases the power of the algorithm in terms of

intensification in a neighborhood. As a result, one can choose larger NI values while

decreasing the Ps value not to lose much from the power of the algorithm.

Proposition 5.1. The computational complexity of the solution procedure for LS is

O(τ2S
3(iterlim) + τ2OLBS(iterlim)) where τ2 = maxs {NSsPs} is the maximum num-

ber of solutions generated from a s-swap neighborhood and O(OLB) represents the com-

plexity of the algorithm to generate a lower bound.

67

1. Initialization: Locate S sinks randomly, use the algorithm GH (or DH) to gen-

erate an initial lower bound, LLB. Set t = 0, noimpr = 0 and L∗LB = 0.

2. While t < iterlim, noimpr ≤ NI Do

For all s ≤ S Do

count = 0, LLB = 0;

While count ≤ NSsPs Do

Change locations of s-sinks randomly and use the algorithm GH (or

DH) to generate a lower bound, L̄.

Update LLB = max
{
L̄, LLB

}
and count ← count + 1

End While

End For

Update L∗LB = max {LLB, L∗LB} and set noimpr = 0.

If L∗LB is not updated Then

noimpr ← noimpr + 1

End If

t ← t + 1

End While

Figure 5.1. Local search heuristic, LS

Proof. Expected number of iterations to locate S sinks is O(S2). Finding lower bound

is O(OLB). Then, initializing the algorithm is O(S2 + OLB). Changing the loca-

tions of s-sinks is O(S2). Finding best lower bound in the s-swap neighborhood

is O(τ2S
2 + τ2OLB). Doing this for all s-swap neigborhoods is O(τ2S

3 + τ2OLBS).

We repeat this until the stopping condition is satisfied. Hence, complexity of step 2

is O(τ2S
3(iterlim) + τ2OLBS(iterlim)) which is also the complexity of the LS algo-

rithm.

68

5.3.2. Tabu Search Heuristic

Second search heuristic for the sink locations is a tabu search algorithm. Different

than the local search algorithm, tabu search aims to visit as distict parts of the solution

space as possible by forbidding to revisit the recent tabutenure many solutions from

the solution space of sink locations (Gendreau and Potvin, 2005). The superiority

of tabu search algorithm over the local search is that tabu search can both search a

neighborhood intensively and search diverse regions of the solution space at the same

time whereas local search algorithm even though performing well in intensification, can

be very poor in diversification.

As in the local search, we are using S different neighborhood functionsNs, namely

s-swap neighborhood functions for s = 1, ..., S. The tabu search algorithm described in

Figure (5.2) locates S sinks initially. This solution is used to find an initial lower bound

LLB for the network lifetime and added to the tabulist in order to prohibit returning

to this solution for at least tabutenure many iterations. We search for an improving

solution in the Ps percentage of the neighborhood BNs(S) of a current solution S for all

s. The LLB is updated with the best improving lower bound for network lifetime L and

the corresponding sink locations, which will be in the tabulist for the next tabutenure

updates, will be the new locations for sinks. The algorithm stops after iterlim many

iterations or NI many consecutive nonimproving iterations.

Notice that, both local search and tabu search algorithms move to the steepest

ascent neighbor from the current solution. One may prefer to move to an improving or

even a nonimproving solution with a probability which can be helpful to reach other

parts of the solution space or we can allow a move although it is tabu if there is no risk

of cycling to deeply search a particular region. The aspirations in the algorithms may

result in a better lower bound for network lifetime L (Sacchi and Armentano, 2010).

Proposition 5.2. The computational complexity of the solution procedure for TS is

O(τ2S
3(tabutenure)(iterlim) + τ2OLBS(iterlim)) where τ2 = maxs {NSsPs} is the

maximum number of solutions generated from a s-swap neighborhood and O(OLB) rep-

resents the complexity of the algorithm to generate a lower bound.

69

Proof. Initializing the algorithm is O(S2 + OLB). Finding non-tabu locations for

s-sinks is O(S2(tabutenure)). Finding best lower bound in the s-swap neighbor-

hood is O(τ2S
2(tabutenure) + τ2OLB). Doing this for all s-swap neigborhoods is

O(τ2S
3(tabutenure) + τ2OLBS). Adding a sink set {s1, ..., sS} to the tabu list is

O(S(tabutenure)). We repeat these until the stopping condition is satisfied. Hence,

complexity of step 2 is O(τ2S
3(tabutenure)(iterlim) + τ2OLBS(iterlim)) which is also

the complexity of the TS algorithm.

70

1. Initialization: Locate S sinks randomly, add {s1, ..., sS} to tabulist and use

the algorithm GH (or DH) to generate an initial lower bound, LLB. Set t = 0,

noimpr = 0 and L∗LB = 0.

2. While t < iterlim, noimpr ≤ NI Do

For all s ≤ S Do

count = 0, LLB = 0;

While count ≤ NSsPs Do

Change locations of s-sinks randomly until we find a sink set

{s1, ..., sS} /∈ tabulist.

Use the algorithm GH (or DH) to generate a lower bound, L̄.

Update LLB = max
{
L̄, LLB

}
and count ← count + 1

End While

End For

Update L∗LB = max {LLB, L∗LB}, add {s∗1, ..., s∗S} to tabulist and set

noimpr = 0.

If L∗LB is not updated Then

noimpr ← noimpr + 1

End If

t ← t + 1

End While

Figure 5.2. Tabu search heuristic, TS

71

6. COMPUTATIONAL RESULTS

6.1. Introduction

In this chapter we evaluate experimentally the performance of the developed

methods in the thesis. We first evaluate the performance of the two Lagrangean

Heuristics for PSRPC and find the accuracy of the solution methods. Then, we test

the solutions found by search algorithms using Greedy Heuristic and Discrimination

Heuristic. Finally, we evaluate the sensitivity of the algorithms to the number of sinks.

6.2. Test Environment

All the experiments are carried out on a computer with Intel Xeon 3.40 GHz

processor and 32 GB of RAM working under Windows 2003 Server operating system.

In the experiments we assume that the sensor field has a square n × n grid structure

with n2 points and the coverage requirements are selected as fi = 2 for all points in the

sensor field. There are K = 2 sensor types, and parameter values are depend on the

sensor type given in Table 6.1. The value of es
k is based on a period length 12 hours.

We are assuming that every half an hour, i.e. 1800 seconds, a data packet is generated

which is equivalent to 24 data packets in a period, i.e. hjk = 24 data packets/period.

The values for the parameters es
k, er

k, ec
k and Ek are based on the experimental results

for a Mica2 mote studied by Torres and Kabara (2006). In the experiments, for each

Table 6.1. Sensor specifications

k cjk rs
k rc

k es
k (Joules) er

k (Joules) ec
k (Joules)

1 rand (1, 10) 1 1.5 744 0.01 0.013

2 rand (cj1, cj1 + 5) 2 3 744 0.01 0.018

network instance we assign three budget B levels, namely low, medium and high under

three initial battery energy Ek levels again low, medium and high. The performance

of the search heuristics are tested with two values of the number of sinks, S.

72

6.3. Results for Sensor Placement, Scheduling and Routing Problem with

Connectivity Restrictions

In this section we evaluate the accuracy and efficiency of the First Lagrangean

Heuristic (LH1) and Second Lagrangean Heuristic (LH2) developed in Chapter 3. They

are both generating feasible solutions with Greedy Heuristic (GH). Energy levels used

in these experiments are summarized in Table 6.2 and the formulas to calculate the

budget levels are given in Table 6.3. In all instances we aim to cover each point in the

sensor field by at least one active sensor in each period over planning horizon T = 30.

We compare the results provided by LH1 and LH2 with those given by the solver

CPLEX 11.0 (ilog, 2007).

Table 6.2. Energy levels used in PSRPC runs

k Elow Emedium Ehigh

1 1000 2000 3000

2 2000 3000 4000

The initial battery energies of the sensors given in Table 6.2 are lower than the

real ones. As we have explained in Chapter 3, both of the algorithms LH1 and LH2

are exponential, hence we cannot reach any solution with these algorithms under real

energy parameters. Therefore, we evaluate the performances of the Lagrangean heuris-

tics on simplified instances and use more accurate parameters in the runs for search

algorithms which are polynomial. Similarly, budgets are lower than the ones in the

experiments for search algorithms.

Table 6.3. Formulas for the budget levels used in PSRPC runs

Blow

∑
j∈N(0.75 cj1 + 0.25 cj2) / 4

Bmedium

∑
j∈N(0.50 cj1 + 0.50 cj2) / 3

Bhigh

∑
j∈N(0.25 cj1 + 0.75 cj2) / 2

The results for two Lagrangean Heuristics, summarized in Table 6.4, include the

lower bounds obtained with Greedy Heuristic and the upper bounds calculated from

the respective relaxed model on the optimal value of the network lifetime. We denote by

73

L∗LB the best lifetime value, which is a lower bound on the optimal objective, generated

by GH over the iterations of LH1 and LH2. We represent the best upper bound that

is found in all iterations of LH1 and LH2 by L∗UB. In order to generate the optimal

solutions, we use CPLEX 11.0 with the default options. In each problem instance

a time limit of three hours, which is larger than the CPU time of the Lagrangean

heuristics for the same instance, is given to CPLEX 11.0. The imposed time limit is

either sufficient to find an optimum solution or a feasible solution, or CPLEX 11.0

cannot reach any solution. An optimum solution for the problem instance is indicated

with an (∗) in the table under the LIP
LB column. If CPLEX 11.0 stops with a feasible

solution than this will be a lower bound on the optimum objective value and given in

column LC
LB. If there is no solution found by CPLEX 11.0 at the end of imposed time

limit, we report this with a (—) in the table. Since CPLEX 11.0 cannot give a feasible

solution for all instances of 5 × 5 grid network, we do not continue with CPLEX 11.0

for larger problem instances. For the upper bound, the linear relaxation of a problem

instance is solved and listed under the LLP
UB column. We also set some limits on both

of the Lagrangean heuristics, since they include MILP models to be solved at each

iteration. The heuristics LH1 and LH2 run for at most iterlim = 1000 iterations while

the value of π, which is initially two and halved after each 15 consecutive nonimproving

iterations for the best lower bound, is greater than 0.05 and the difference between the

best upper bound and best lower bound is greater than % 10 of the best upper bound.

We solve SP3 of LH1 until the gap between the best lower and upper bounds is less than

� 5. In addition to this limitation, we run SP2 of LH2 at most six hours since SP2

of LH2 involves additional constraints, which makes the problem more complicated,

besides the constraints of SP3 in LH1. The CPU times in seconds are listed for the

algorithms LH1 and LH2 and for CPLEX 11.0 to find a solution for PSRPC.

We see that CPLEX 11.0 can find an optimal solution only for 4 × 4 grid instance

with low energy and low budget levels, gives a feasible solution for six instances in 4

× 4 grid and cannot give any solution for the rest of the instances. These results

show how it is difficult to generate an optimum solution even for the small instances

of PSRPC. The instance that is optimally solved by CPLEX 11.0 is also solved by

LH1 and LH2 to optimality. For the six instances that CPLEX 11.0 gives a feasible

74

solution, the algorithm LH1 finds better solutions than CPLEX 11.0 for two of them

and gives the same results for the others whereas the algorithm LH2 finds better lower

bounds for three instances and worse lower bounds for two instances. Comparing the

Lagrangean Heuristics for the 15 instances among the ones that we can solve with LH1

and LH2, first heuristic gives better lower bounds and for one instance LH1 gives worse

lower bound. In 26 of the instances LH1 finds better upper bounds than LH2. We

observe that as the size of the problem instance increases, the performance of LH1 in

finding upper bound decreases. This can be due to the requirement of more iterations

to converge to a good upper bound when the problem gets larger. We observe that the

average CPU time of LH1 is larger than the one of LH2 for all energy levels as shown

in Figure 6.1 - Figure 6.3. This can be the result of our termination criteria used in

SP3 of LH1 and SP2 of LH2. As the size of the instance gets larger, to solve SP3 until

the criterion is satisfied becomes more time consuming at each iteration which requires

more time to complete the given number of iterations. Another reason can be since

the best upper bound found by the algorithm LH2 is not updated in all iterations, it

is possible that the best lower bound is also not updated for the most of the iterations

which quickly decreases the value of π below the critical value hence the algorithm

terminates before the Lagrangean heuristic LH1.

We express the accuracy of the methods as percent deviation from the best known

upper bound. For instance the accuracy of LH1 can be given as

100× min(LLP
UB, L∗UB)− L∗LB

min(LLP
UB, L∗UB)

. (6.1)

An accurate solution method is expected to have small accuracy calculated as in above

formula since closer best lower and upper bounds means we have more information

about where the optimum solution lies. From this point of view, we observe that for

all energy levels LH1 has the lowest average accuracy value whereas LH2 has smaller

average accuracy level than CPLEX11.0. Hence, we can conclude that on average

solution method LH1 is more accurate than LH2 with feasible solution generation

algorithm GH and both of them are performing better than CPLEX11.0.

T
ab

le
6.

4.
C

om
p
ar

is
on

of
L

H
1

an
d

L
H

2
w

it
h

C
P

L
E

X
11

.0
at

lo
w

en
er

gy
le

ve
l

N
et

w
or

k
L
if
et

im
e

A
cc

u
ra

cy
C

P
U

T
im

e
(s

)

L
H

1
L

H
2

C
P

L
E

X
11

.0

n
×

n
B

L
∗ L

B
L
∗ U

B
L
∗ L

B
L
∗ U

B
L

I
P

L
B

L
L

P
U

B
L

H
1

L
H

2
C

P
L
E

X
11

.0
L

H
1

L
H

2
C

P
L
E

X
11

.0

4
×

4

15
2

2.
91

2
30

2∗
30

31
.2

4
93

.3
3

93
.3

3
98

83
.7

87
67

44
.5

97
22

50
.1

4

30
3

3.
28

3
30

3
30

8.
50

90
.0

0
90

.0
0

29
90

.0
6

66
24

.6
2

10
80

0

59
5

8.
56

5
30

—
30

41
.5

9
83

.3
3

—
36

82
.1

3
75

20
.1

0
10

80
0

5
×

5

27
2

30
2

30
—

30
93

.3
3

93
.3

3
—

46
00

9.
50

18
27

4.
23

10
80

0

55
4

4.
44

3
30

—
30

9.
90

90
.0

0
—

12
90

4.
26

16
13

3.
41

10
80

0

10
4

6
8.

50
5

30
—

30
29

.3
8

83
.3

3
—

22
50

0.
05

18
43

0.
91

10
80

0

6
×

6

39
2

30
2

30
—

—
93

.3
3

93
.3

3
—

32
02

44
2.

35
33

08
4.

26
—

77
4

6.
09

3
30

—
—

34
.3

4
90

.0
0

—
11

16
20

.5
0

32
30

6.
56

—

14
4

7
10

.7
7

5
30

—
—

35
.0

3
83

.3
3

—
10

34
20

.8
0

31
84

7.
24

—

7
×

7

52
2

30
2

30
—

—
93

.3
3

93
.3

3
—

86
24

92
.4

8
69

39
0.

42
—

10
7

4
30

4
30

—
—

86
.6

7
86

.6
7

—
88

59
41

.3
9

74
04

3.
06

—

19
8

6
30

6
30

—
—

80
.0

0
80

.0
0

—
12

37
61

.8
6

61
52

4.
61

—

8
×

8

69
—

—
2

30
—

—
—

93
.3

3
—

—
13

09
76

.4
2

—

14
2

—
—

4
30

—
—

—
86

.6
7

—
—

16
22

31
.8

—

26
1

—
—

6
30

—
—

—
80

.0
0

—
—

29
37

34
.1

3
—

9
×

9

85
—

—
2

30
—

—
—

93
.3

3
—

—
86

52
6.

10
—

17
7

—
—

4
30

—
—

—
86

.6
7

—
—

86
46

9.
08

—

32
8

—
—

7
30

—
—

—
76

.6
7

—
—

87
64

6.
00

—

A
v
e
ra

g
e
:

3.
92

14
.9

6
3.

72
30

2.
50

30
53

.0
5

87
.5

9
91

.6
7

44
89

70
.7

6
67

97
2.

64
93

75
.0

2

T
ab

le
6.

5.
C

om
p
ar

is
on

of
L

H
1

an
d

L
H

2
w

it
h

C
P

L
E

X
11

.0
at

m
ed

iu
m

en
er

gy
le

ve
l

N
et

w
or

k
L
if
et

im
e

A
cc

u
ra

cy
C

P
U

T
im

e
(s

)

L
H

1
L

H
2

C
P

L
E

X
11

.0

n
×

n
B

L
∗ L

B
L
∗ U

B
L
∗ L

B
L
∗ U

B
L

I
P

L
B

L
L

P
U

B
L

H
1

L
H

2
C

P
L
E

X
11

.0
L

H
1

L
H

2
C

P
L
E

X
11

.0

4
×

4

15
4

19
.6

4
2

30
4

30
79

.6
3

93
.3

3
86

.6
7

36
82

.1
3

67
29

.3
7

10
80

0

30
6

14
.2

8
4

30
6

30
57

.9
8

86
.6

7
80

.0
0

13
75

1.
88

66
27

.9
2

10
80

0

59
10

13
.7

3
10

30
1

30
27

.1
4

66
.6

7
96

.6
7

25
40

4.
54

75
46

.9
1

10
80

0

5
×

5

27
2

30
0

30
—

30
93

.3
3

10
0.

00
—

28
37

89
.3

2
18

26
6.

50
10

80
0

55
6

10
.6

1
6

30
—

30
43

.4
3

80
.0

0
—

10
14

41
.6

6
16

02
0.

53
10

80
0

10
4

11
17

.5
4

10
30

—
30

37
.2

9
66

.6
7

—
66

19
3.

28
18

50
8.

25
10

80
0

6
×

6

39
4

22
.3

6
4

30
—

—
82

.1
1

86
.6

7
—

69
30

95
.5

6
32

77
3.

20
—

77
8

11
.5

2
8

30
—

—
30

.5
2

73
.3

3
—

14
89

02
.5

9
30

47
8.

73
—

14
4

12
20

.2
7

12
30

—
—

40
.7

9
60

.0
0

—
34

55
52

.0
2

32
17

8.
80

—

7
×

7

52
4

30
4

30
—

—
86

.6
7

86
.6

7
—

98
94

6.
27

66
40

3.
31

—

10
7

8
30

8
30

—
—

73
.3

3
73

.3
3

—
97

38
0.

83
68

88
8.

76
—

19
8

12
30

12
30

—
—

60
.0

0
60

.0
0

—
89

15
9.

32
63

06
1.

42
—

8
×

8

69
4

30
4

30
—

—
86

.6
7

86
.6

7
—

11
78

15
.6

8
14

14
93

.6
8

—

14
2

8
30

8
30

—
—

73
.3

3
73

.3
3

—
19

66
89

.1
8

14
08

49
.8

0
—

26
1

—
—

14
30

—
—

—
53

.3
3

—
—

28
57

59
.9

2
—

9
×

9

85
—

—
4

30
—

—
—

86
.6

7
—

—
86

98
7.

47
—

17
7

—
—

8
30

—
—

—
73

.3
3

—
—

86
48

0.
70

—

32
8

—
—

10
30

—
—

—
66

.6
7

—
—

86
53

3.
44

—

A
v
e
ra

g
e
:

7.
07

22
.1

4
7.

11
30

3.
67

30
62

.3
0

76
.3

0
87

.7
8

16
29

86
.0

2
66

42
1.

60
10

80
0

T
ab

le
6.

6.
C

om
p
ar

is
on

of
L

H
1

an
d

L
H

2
w

it
h

C
P

L
E

X
11

.0
at

h
ig

h
en

er
gy

le
ve

l

N
et

w
or

k
L
if
et

im
e

A
cc

u
ra

cy
C

P
U

T
im

e
(s

)

L
H

1
L

H
2

C
P

L
E

X
11

.0

n
×

n
B

L
∗ L

B
L
∗ U

B
L
∗ L

B
L
∗ U

B
L

I
P

L
B

L
L

P
U

B
L

H
1

L
H

2
C

P
L
E

X
11

.0
L

H
1

L
H

2
C

P
L
E

X
11

.0

4
×

4

15
5

5.
66

4
30

1
30

11
.6

7
86

.6
7

96
.6

7
62

16
8.

60
65

11
.9

0
10

80
0

30
9

11
.4

9
8

30
—

30
21

.6
6

73
.3

3
—

38
38

5.
88

66
19

.6
7

10
80

0

59
14

22
.9

8
13

30
5

30
39

.0
8

56
.6

7
83

.3
3

40
00

2.
87

75
17

.2
6

10
80

0

5
×

5

27
5

21
.8

2
4

30
—

30
77

.0
9

86
.6

7
—

20
01

98
.1

6
18

23
8.

83
10

80
0

55
9

12
.4

0
5

30
—

30
27

.4
3

83
.3

3
—

18
87

55
.2

2
15

90
9.

70
10

80
0

10
4

15
19

.5
0

14
30

—
30

23
.1

0
53

.3
3

—
34

76
32

.3
9

18
68

1.
06

10
80

0

6
×

6

39
5

23
.4

1
5

30
—

—
78

.6
4

83
.3

3
—

48
75

34
.4

8
32

26
7.

35
—

77
10

15
.1

5
9

30
—

—
33

.9
9

70
.0

0
—

69
30

93
.4

5
32

39
1.

73
—

14
4

15
20

.6
4

15
30

—
—

27
.3

2
50

.0
0

—
68

20
00

.6
4

37
06

3.
98

—

7
×

7

52
5

30
5

30
—

—
83

.3
3

83
.3

3
—

11
46

50
4.

17
72

77
9.

46
—

10
7

10
30

10
30

—
—

66
.6

7
66

.6
7

—
10

51
78

.1
4

58
19

5.
60

—

19
8

5
30

10
30

—
—

83
.3

3
66

.6
7

—
88

77
7.

79
60

38
2.

95
—

8
×

8

69
—

—
5

30
—

—
—

83
.3

3
—

—
14

53
35

.1
2

—

14
2

—
—

9
30

—
—

—
70

.0
0

—
—

28
34

43
.6

8
—

26
1

—
—

18
30

—
—

—
40

.0
0

—
—

18
66

21
.2

3
—

9
×

9

85
—

—
5

30
—

—
—

83
.3

3
—

—
86

61
2.

24
—

17
7

—
—

10
30

—
—

—
66

.6
7

—
—

86
49

3.
82

—

32
8

—
—

14
30

—
—

—
53

.3
3

—
—

86
86

8.
76

—

A
v
e
ra

g
e
:

8.
92

20
.2

5
9.

06
30

3.
00

30
47

.7
8

69
.8

1
90

.0
0

34
00

19
.3

2
68

99
6.

35
10

80
0

78

4x4 6x6 9x9 4x4 6x6 9x9 4x4 6x6 9x9
0

5

10

15

20

25

30

Low Budget Medium Budget High Budget

Li
fe

tim
e

(p
er

io
ds

)

4x4 6x6 9x9 4x4 6x6 9x9 4x4 6x6 9x9
0

0.5

1

1.5

2

2.5

3

x 10
6

Low Budget Medium Budget High Budget

C
P

U
 T

im
es

 (
se

cs
)

LH1 LB
LH2 LB
LH1 UB
LH2 UB

LH1
LH2
Average LH1
Average LH2

Figure 6.1. Comparison of LH1 and LH2 at low energy level

79

4x4 6x6 9x9 4x4 6x6 9x9 4x4 6x6 9x9
0

5

10

15

20

25

30

Low Budget Medium Budget High Budget

Li
fe

tim
e

(p
er

io
ds

)

4x4 6x6 9x9 4x4 6x6 9x9 4x4 6x6 9x9
0

1

2

3

4

5

6

7
x 10

5

Low Budget Medium Budget High Budget

C
P

U
 T

im
es

 (
se

cs
)

LH1 LB
LH2 LB
LH1 UB
LH2 UB

LH1
LH2
Average LH1
Average LH2

Figure 6.2. Comparison of LH1 and LH2 at medium energy level

80

4x4 6x6 9x9 4x4 6x6 9x9 4x4 6x6 9x9
0

5

10

15

20

25

30

Low Budget Medium Budget High Budget

Li
fe

tim
e

(p
er

io
ds

)

4x4 6x6 9x9 4x4 6x6 9x9 4x4 6x6 9x9
0

2

4

6

8

10

12
x 10

5

Low Budget Medium Budget High Budget

C
P

U
 T

im
es

 (
se

cs
)

LH1 LB
LH2 LB
LH1 UB
LH2 UB

LH1
LH2
Average LH1
Average LH2

Figure 6.3. Comparison of LH1 and LH2 at high energy level

81

6.4. Results for Sink Location, Sensor Placement, Scheduling and Routing

Problem with Connectivity Restrictions

In this section we assess the performance of the Local Search (LS) and Tabu

Search (TS) heuristics developed in Chapter 5. The feasible solution generation al-

gorithms GH and DH are used in both of them. The energy levels selected for the

experiments are summarized in Table 6.7 and the formulas to calculate the budget

levels are given in Table 6.8 which are similar to the properties of real sensors. The

full energy capacity of a type-k sensor’s battery represents its high energy level. The

medium energy level is 2/3 of full battery energy and 1/3 of full battery energy refers

to low energy level.

Table 6.7. Energy levels used in LS and TS runs

k Elow Emedium Ehigh

1 19200 38400 57600

2 28800 57600 86400

Low budget level allows to deploy 75% of the points with type-1 and 25% with

type-2 sensors, with medium budget level we can deploy 50% of the points with type-1

and 50% with type-2 sensors and with high level budget we can deploy 25% of the

points with type-1 sensors and 75% with type-2 sensors.

Table 6.8. Formulas for the budget levels used in LS and TS runs

Blow

∑
j∈N(0.75 cj1 + 0.25 cj2)

Bmedium

∑
j∈N(0.50 cj1 + 0.50 cj2)

Bhigh

∑
j∈N(0.25 cj1 + 0.75 cj2

In all instances we aim to cover each point in the sensor field by at least two

active sensors in period t. The network lifetime is maximized over a planning horizon

T = 400.

First we compare the efficiency of the feasible solution generation algorithms GH

82

and DH to find a lower bound for the network lifetime. Their sensitivity to the number

of sinks is also evaluated by conducting experiments with two and three sinks located

randomly over the sensor field. The accuracy of the heuristics can be analyzed for the

instances upto 5 × 5 grid network by using the results of brute force computations,

since they show the optimal solution for the given instance, summarized in Table 6.9.

As far as we can observe from the results that Discrimination Heuristic (DH) gives

better lower bounds for the network lifetime than Greedy Heuristic (GH) but requires

a little more time to find the solution on average.

The quality of the lower bounds obtained from algorithms GH and DH at one

iteration and the corresponding computational times can be seen from Figure 6.4 -

Figure 6.9 for each energy level. In order to see the performance of algorithms GH and

DH with respect to the number of sinks, we take the difference of the lower bounds

obtained for three sinks and two sinks. Moreover, the lower bounds found by algorithms

GH and DH with the same number of sinks are evaluated through taking the difference

of the lower bounds calculated by each algorithm for two sinks (and three sinks). As

shown in the figures, for every energy level GH cannot improve the lifetime as the

number of sinks increases. On the other hand, on average DH improves the lifetime as

the number of sinks increases for low and high energy levels while it cannot develop the

average lifetime for medium energy level due to its worse performance at medium and

high budget levels. When there are two sinks in the sensor field, algorithm DH gives

better lower bounds than GH for all energy levels except low energy level. However,

DH outperforms at all energy levels when we have three sinks.

Regarding with the computational times, at all energy levels the average CPU

times of GH both for two and three sinks are larger than the average CPU time of DH

with any number of sinks. More specifically, algorithm GH requires more time on the

average to find a lower bound with three sinks than it does for two sinks for low and

high energy levels. At medium energy level, average CPU time for two sinks is larger

than the one of three sinks. On the other side, algorithm DH uses more time on the

average for three sinks than it does for two sinks for all energy levels.

83

The results indicate that algorithm DH is performing better than algorithm GH

at one iteration in terms of lower bound on the network lifetime and the computational

time. The weakness of algorithm GH may be due to its inefficient budget usage strat-

egy. According to algorithm in Figure 4.3, the coverage and budget constraints are

tried to be satisfied as more periods as possible within the planning horizon. For this

purpose, in the case of requirement new sensors are deployed and activated which con-

sumes the budget. After this step, the algorithm settles the connectivity of the network

and make the sink assignments for the active sensors. Deployment of new sensors can

again be necessary, especially for large size sensor fields, to provide the connectivity

constraints. However, this needs available budget which is highly depleted at first step.

Therefore, even though we have a lot of periods in which the coverage constraints are

satisfied, we can provide connectivity for few periods only since there is not enough

budget to deploy new sensors. On the contrary, the algorithm DH deals each period

seperately to satisfy the coverage, budget and connectivity constraints which manages

the budget more efficiently. As a result, algorithm GH reports a weak lower bound

for the network lifetime than algorithm DH does. Besides, algorithm GH has to work

on periods which will not be within the lifetime at the end of the algorithm which

increases the computational time unnecessarily.

84

Table 6.9. Comparison of brute force results of Greedy and Discrimination Heuristics

Optimum Lifetime CPU Time (s)

S = 2 S = 3 S = 2 S = 3

n × n Ek B GH DH GH DH GH DH GH DH

4 × 4 low

15 76 88 76 88 47.48 52.62 261.64 275.32

30 101 106 101 106 34.24 71.57 200.69 339.39

59 101 106 101 106 72.68 82.96 339.00 260.43

4 × 4 medium

15 154 176 154 176 123.00 127.96 354.44 353.32

30 205 215 205 215 68.07 147.13 249.36 402.23

59 205 215 205 215 147.56 167.21 457.15 444.83

4 × 4 high

15 232 267 232 267 191.12 116.34 449.53 591.82

30 309 324 309 324 55.14 139.76 407.06 612.33

59 309 324 309 324 134.25 145.06 675.81 684.86

5 × 5 low

27 101 101 101 101 245.94 239.58 1979.12 1855.26

55 101 101 101 101 242.27 256.02 2041.45 2028.69

104 114 114 114 114 288.79 283.91 2383.99 2298.60

5 × 5 medium

27 205 202 205 202 474.15 534.60 5716.51 5804.42

55 205 202 205 202 522.20 509.89 5646.97 6235.28

104 231 228 231 228 570.93 551.34 5041.87 6507.82

5 × 5 high

27 309 304 309 304 744.64 764.41 5708.66 5655.69

55 309 304 309 304 768.89 723.32 8657.64 7490.95

104 348 342 348 342 806.04 876.44 8161.54 7016.95

Average: 200.8 206.6 200.8 206.6 307.63 321.67 2707.36 2713.79

85

4x4 8x8 20x20 4x4 8x8 20x20 4x4 8x8 20x20

−100

−80

−60

−40

−20

0

20

40

60

80

100

 Low Budget Medium Budget High Budget

D
iff

er
en

ce
 (

pe
rio

ds
)

4x4 8x8 20x20 4x4 8x8 20x20 4x4 8x8 20x20

−15

−10

−5

0

5

10

15

 Low Budget Medium Budget High Budget

D
iff

er
en

ce
 (

pe
rio

ds
)

Average GH 2 vs 3 sinks
Average DH 2 vs 3 sinks
Average 2 sinks GH vs DH
Average 3 sinks GH vs DH
Overall Average DH
Overall Average 2 sinks
Overall Average 3 sinks

GH (3 sinks) − GH (2 sinks)
DH (3 sinks) − DH (2 sinks)
DH (2 sinks) − GH (2 sinks)
DH (3 sinks) − GH (3 sinks)

Figure 6.4. Comparison of algorithms GH and DH at low energy level

86

4x4 8x8 20x20 4x4 8x8 20x20 4x4 8x8 20x20
0

50

100

150

200

250

300

350

400

450

500

Low Budget Medium Budget High Budget

C
P

U
 T

im
es

 (
se

cs
)

4x4 8x8 20x20 4x4 8x8 20x20 4x4 8x8 20x20
20

30

40

50

60

70

80

Low Budget Medium Budget High Budget

C
P

U
 T

im
es

 (
se

cs
)

Average GH (2 sinks)
Average GH (3 sinks)
Average DH (2 sinks)
Average DH (3 sinks)
Overall Average GH (2 sinks)
Overall Average GH (3 sinks)
Overall Average DH (2 sinks)
Overall Average DH (3 sinks)

GH with 2 sinks
GH with 3 sinks
DH with 3 sinks
DH with 2 sinks

Figure 6.5. CPU times for algorithms GH and DH at low energy level

87

4x4 8x8 20x20 4x4 8x8 20x20 4x4 8x8 20x20

−100

−50

0

50

100

150

200

 Low Budget Medium Budget High Budget

D
iff

er
en

ce
 (

pe
rio

ds
)

4x4 8x8 20x20 4x4 8x8 20x20 4x4 8x8 20x20
−20

−10

0

10

20

30

40

 Low Budget Medium Budget High Budget

D
iff

er
en

ce
 (

pe
rio

ds
)

Average GH 2 vs 3 sinks
Average DH 2 vs 3 sinks
Average 2 sinks GH vs DH
Average 3 sinks GH vs DH
Overall Average DH
Overall Average 2 sinks
Overall Average 3 sinks

GH (3 sinks) − GH (2 sinks)
DH (3 sinks) − DH (2 sinks)
DH (2 sinks) − GH (2 sinks)
DH (3 sinks) − GH (3 sinks)

Figure 6.6. Comparison of algorithms GH and DH at medium energy level

88

4x4 8x8 20x20 4x4 8x8 20x20 4x4 8x8 20x20
0

100

200

300

400

500

600

700

800

Low Budget Medium Budget High Budget

C
P

U
 T

im
es

 (
se

cs
)

4x4 8x8 20x20 4x4 8x8 20x20 4x4 8x8 20x20

70

80

90

100

110

120

130

Low Budget Medium Budget High Budget

C
P

U
 T

im
es

 (
se

cs
)

GH with 2 sinks
GH with 3 sinks
DH with 2 sinks
DH with 3 sinks

Average GH (2 sinks)
Average GH (3 sinks)
Average DH (2 sinks)
Average DH (3 sinks)
Overall Average GH (2 sinks)
Overall Average GH (3 sinks)
Overall Average DH (2 sinks)
Overall Average DH (3 sinks)

Figure 6.7. CPU times for algorithms GH and DH at medium energy level

89

4x4 8x8 20x20 4x4 8x8 20x20 4x4 8x8 20x20
−50

0

50

100

150

200

250

300

 Low Budget Medium Budget High Budget

D
iff

er
en

ce
 (

pe
rio

ds
)

4x4 8x8 20x20 4x4 8x8 20x20 4x4 8x8 20x20

0

10

20

30

40

50

60

70

 Low Budget Medium Budget High Budget

D
iff

er
en

ce
 (

pe
rio

ds
)

GH (3 sinks) − GH (2 sinks)
DH (3 sinks) − DH (2 sinks)
DH (2 sinks) − GH (2 sinks)
DH (3 sinks) − GH (3 sinks)

Average GH 2 vs 3 sinks
Average DH 2 vs 3 sinks
Average 2 sinks GH vs DH
Average 3 sinks GH vs DH
Overall Average DH
Overall Average 2 sinks
Overall Average 3 sinks

Figure 6.8. Comparison of algorithms GH and DH at high energy level

90

4x4 8x8 20x20 4x4 8x8 20x20 4x4 8x8 20x20
0

200

400

600

800

1000

1200

1400

Low Budget Medium Budget High Budget

C
P

U
 T

im
es

 (
se

cs
)

4x4 8x8 20x20 4x4 8x8 20x20 4x4 8x8 20x20
100

110

120

130

140

150

160

170

180

190

200

Low Budget Medium Budget High Budget

C
P

U
 T

im
es

 (
se

cs
)

GH with 2 sinks
GH with 3 sinks
DH with 2 sinks
DH with 3 sinks

Average GH (2 sinks)
Average GH (3 sinks)
Average DH (2 sinks)
Average DH (3 sinks)
Overall Average GH (2 sinks)
Overall Average GH (3 sinks)
Overall Average DH (2 sinks)
Overall Average DH (3 sinks)

Figure 6.9. CPU times for algorithms GH and DH at high energy level

91

We conduct experiments for each of the search algorithms LS and TS with al-

gorithms GH and DH seperately under different number of sinks. Our intention is to

understand given the number of sinks in the network and the search algorithm, which

feasible solution generation algorithm gives good lower bounds for the network lifetime.

The performance of the search algorithms LS and TS are compared for a given number

of sinks with their best executing heuristic. Both of the search algorithms run for at

most iterlim = 100 iterations while the best lower bound is updated at least once

in any consecutive NI = 20 iterations. The length of the tabu list, i.e. tabutenure,

is assumed to be 10 for the algorithm TS. The percentage of the size of a s-swap

neighborhood that is explored by each search algorithm can be summarized in Table

6.10.

Table 6.10. The explored percentage of a s-swap neighborhood by LS and TS

LS TS

s 1 2 3 1 2 3

Ps (%) 20 40 40 100 20 10

The search algorithms we propose are generating lower bounds for the network

lifetime. Then the accuracy of the search algorithms can be done through comparison

of the best known lower bound with the one found by the search algorithm. The

optimum lower bound values with feasible solution generation algorithms GH and

DH are given by Brute Force (BF) algorithm for instances upto 5 × 5 as in Table

6.9. Besides, the algorithms LS and TS find lower bound values. Therefore, given a

feasible solution generation algorithm, say FS ∈ {GH, DH}, and a search algorithm,

say SA ∈ {LS, TS}, the accuracy of the lower bound generated with the algorithm

SA using algorithm FS can be given as

100× maxFS{BFFS, LSFS, TSFS} − SAFS

maxFS{BFFS, LSFS, TSFS} . (6.2)

The results summarized in Table 6.11 and Table 6.12 list the lower bounds for

network lifetime of the algorithms LS and TS with subalgorithm GH at low energy

92

level. We can observe that on the average, applying a search algorithm over the possible

locations of sinks improves the lifetime found by algorithm GH that runs for only one

iteration. However, at low energy level we cannot upgrade the network lifetime when

we search the solution space with algorithm TS instead of algorithm LS. Besides,

increasing the number of sinks in the sensor field does not help the network to operate

longer periods. We can see the results for medium energy level in Table 6.13 and Table

6.14, and for high energy level in Table 6.15 and Table 6.16. As the initial energy level

of the sensors gets higher, the average lower bound for the network lifetime develops as

expected. On the other hand, even though we can find better lower bounds when we

search for alternative locations for the sinks, we cannot expand the network lifetime by

introducing additional sinks to the sensor field for both of the search algorithms. These

results are similar to low energy level case, from which we conclude that algorithm GH

is not sensitive to the increment in the number of sinks from two to three in the network.

The accuracies of the search algorithms are also listed in the tables from which

we can see with the same number of sinks, both of the algorithms LS and TS have

identical accuracy levels for all energy levels. Comparing the average accuracies of

the algorithms LS and TS under different number of sinks, we can conclude that at

low and medium energy levels the search algorithms appear to be more accurate with

two sinks than with three sinks. However, at high energy level the search algorithms

become more efficient with three sinks. This means, with the increasing number of

sinks in the network, both of the search algorithms generate better lower bounds that

are closer to the best known solution when the sensors have the highest initial battery

energy. However, this is a misleading interpretation of the results since the average

for three sinks is calculated with less number of instances. The average accuracies for

the common 21 instances including 10 × 10 network, which are given in “Adjusted

Avg” row of the tables, reveal that at high energy level there is no difference among

the accuracies of two and three-sink cases.

T
ab

le
6.

11
.

R
es

u
lt

s
fo

r
L

S
an

d
T

S
w

it
h

G
H

at
lo

w
en

er
gy

le
ve

l

L
ow

er
B

ou
n
d

A
cc

u
ra

cy

S
=

2
S

=
3

S
=

2
S

=
3

n
×

n
B

G
H

L
S

G
H

T
S

G
H

G
H

L
S

G
H

T
S

G
H

L
S

G
H

T
S

G
H

L
S

G
H

T
S

G
H

4
×

4

11
1

76
76

76
76

76
76

13
.6

4
13

.6
4

13
.6

4
13

.6
4

12
6

51
10

1
10

1
51

10
1

10
1

4.
72

4.
72

4.
72

4.
72

13
6

10
1

10
1

10
1

10
1

10
1

10
1

4.
72

4.
72

4.
72

4.
72

5
×

5

19
7

10
1

10
1

10
1

10
1

10
1

10
1

0
0

0
0

22
3

10
1

10
1

10
1

10
1

10
1

10
1

0
0

0
0

23
8

11
4

11
4

11
4

11
4

11
4

11
4

0
0

0
0

6
×

6

27
5

10
1

10
1

10
1

10
1

10
1

10
1

2.
88

2.
88

2.
88

2.
88

31
2

0
11

4
11

4
0

11
4

11
4

0
0

0
0

33
1

11
4

11
4

11
4

11
4

11
4

11
4

0
0

0
0

7
×

7

37
5

10
1

10
1

10
1

10
1

10
1

10
1

9.
01

9.
01

9.
01

9.
01

42
6

11
4

11
4

11
4

11
4

11
4

11
4

2.
56

2.
56

2.
56

2.
56

45
3

11
8

11
8

11
8

11
8

11
8

11
8

4.
84

4.
84

4.
84

4.
84

8
×

8

49
7

10
1

10
1

10
1

10
1

10
1

10
1

0
0

0
0

56
2

10
1

10
1

10
1

10
1

10
1

10
1

0
0

0
0

59
3

10
1

10
1

10
1

10
1

10
1

10
1

0
0

0
0

T
ab

le
6.

12
.

R
es

u
lt

s
fo

r
L

S
an

d
T

S
w

it
h

G
H

at
lo

w
en

er
gy

le
ve

l
(c

on
t)

L
ow

er
B

ou
n
d

A
cc

u
ra

cy

S
=

2
S

=
3

S
=

2
S

=
3

n
×

n
B

G
H

L
S

G
H

T
S

G
H

G
H

L
S

G
H

T
S

G
H

L
S

G
H

T
S

G
H

L
S

G
H

T
S

G
H

9
×

9

62
2

96
10

6
10

6
96

10
6

10
6

1.
85

1.
85

1.
85

1.
85

70
5

10
6

10
6

10
6

10
6

10
6

10
6

6.
19

6.
19

6.
19

6.
19

74
5

10
6

10
6

10
6

10
6

10
6

10
6

7.
83

7.
83

7.
83

7.
83

10
×

10

75
4

11
4

11
4

11
4

11
4

11
4

11
4

0
0

0
0

85
5

12
6

12
6

12
6

12
6

12
6

12
6

0
0

0
0

90
3

12
6

12
6

12
6

12
6

12
6

12
6

0
0

0
0

15
×

15

16
86

11
4

11
4

11
4

11
4

—
—

0
0

—
—

19
18

11
9

12
6

12
6

11
9

—
—

0
0

—
—

20
24

11
9

12
6

12
6

11
9

—
—

0
0

—
—

20
×

20

29
58

11
6

—
—

11
6

—
—

—
—

—
—

33
69

13
9

—
—

13
9

—
—

—
—

—
—

35
64

13
9

—
—

13
9

—
—

—
—

—
—

A
v
e
ra

g
e
:

10
4.

2
10

8.
7

10
8.

7
10

4.
2

10
6.

8
10

6.
8

2.
43

2.
43

2.
77

2.
77

A
d
ju

st
e
d

A
v
g
:

98
.5

10
6.

8
10

6.
8

98
.5

10
6.

8
10

6.
8

2.
77

2.
77

2.
77

2.
77

T
ab

le
6.

13
.

R
es

u
lt

s
fo

r
L

S
an

d
T

S
w

it
h

G
H

at
m

ed
iu

m
en

er
gy

le
ve

l

L
ow

er
B

ou
n
d

A
cc

u
ra

cy

S
=

2
S

=
3

S
=

2
S

=
3

n
×

n
B

G
H

L
S

G
H

T
S

G
H

G
H

L
S

G
H

T
S

G
H

L
S

G
H

T
S

G
H

L
S

G
H

T
S

G
H

4
×

4

11
1

15
4

15
4

15
4

15
4

15
4

15
4

12
.5

0
12

.5
0

12
.5

0
12

.5
0

12
6

10
3

20
5

20
5

10
3

20
5

20
5

4.
65

4.
65

4.
65

4.
65

13
6

20
5

20
5

20
5

20
5

20
5

20
5

4.
65

4.
65

4.
65

4.
65

5
×

5

19
7

20
5

20
5

20
5

20
5

20
5

20
5

0
0

0
0

22
3

20
5

20
5

20
5

20
5

20
5

20
5

0
0

0
0

23
8

23
1

23
1

23
1

23
1

23
1

23
1

0
0

0
0

6
×

6

27
5

20
5

20
5

20
5

20
5

20
5

20
5

2.
38

2.
38

2.
38

2.
38

31
2

0
23

1
23

1
0

23
1

23
1

0
0

0
0

33
1

23
1

23
1

23
1

23
1

23
1

23
1

0
0

28
.9

2
28

.9
2

7
×

7

37
5

20
5

20
5

20
5

20
5

20
5

20
5

8.
89

8.
89

36
.9

2
36

.9
2

42
6

23
1

23
1

23
1

23
1

23
1

23
1

2.
53

2.
53

2.
53

2.
53

45
3

23
9

23
9

23
9

23
9

23
9

23
9

4.
40

4.
40

4.
40

4.
40

8
×

8

49
7

20
5

20
5

20
5

20
5

20
5

20
5

0
0

0
0

56
2

20
5

20
5

20
5

20
5

20
5

20
5

0
0

0
0

59
3

20
5

20
5

20
5

20
5

20
5

20
5

0
0

0
0

T
ab

le
6.

14
.

R
es

u
lt

s
fo

r
L

S
an

d
T

S
w

it
h

G
H

at
m

ed
iu

m
en

er
gy

le
ve

l
(c

on
t)

L
ow

er
B

ou
n
d

A
cc

u
ra

cy

S
=

2
S

=
3

S
=

2
S

=
3

n
×

n
B

G
H

L
S

G
H

T
S

G
H

G
H

L
S

G
H

T
S

G
H

L
S

G
H

T
S

G
H

L
S

G
H

T
S

G
H

9
×

9

62
2

19
4

21
4

21
4

19
4

21
4

21
4

2.
28

2.
28

2.
28

2.
28

70
5

21
4

21
4

21
4

21
4

21
4

21
4

4.
89

4.
89

4.
89

4.
89

74
5

21
4

21
4

21
4

21
4

21
4

21
4

6.
14

6.
14

6.
14

6.
14

10
×

10

75
4

23
1

23
1

23
1

23
1

23
1

23
1

0
0

0
0

85
5

25
6

25
6

25
6

25
6

25
6

25
6

0
0

0
0

90
3

25
6

25
6

25
6

25
6

25
6

25
6

4.
48

4.
48

4.
48

4.
48

15
×

15

16
86

14
7

14
7

14
7

14
7

—
—

31
.3

1
31

.3
1

—
—

19
18

25
6

25
6

25
6

25
6

—
—

0
0

—
—

20
24

25
6

25
6

25
6

25
6

—
—

0
0

—
—

20
×

20

29
58

23
1

—
—

23
1

—
—

—
—

—
—

33
69

10
3

—
—

10
3

—
—

—
—

—
—

35
64

10
3

—
—

10
3

—
—

—
—

—
—

A
v
e
ra

g
e
:

19
5.

9
21

6.
9

21
6.

9
19

5.
9

21
6.

5
21

6.
5

3.
71

3.
71

2.
75

2.
75

A
d
ju

st
e
d

A
v
g
:

19
9.

7
21

6.
5

21
6.

5
19

9.
7

21
6.

5
21

6.
5

2.
75

2.
75

2.
75

2.
75

T
ab

le
6.

15
.

R
es

u
lt

s
fo

r
L

S
an

d
T

S
w

it
h

G
H

at
h
ig

h
en

er
gy

le
ve

l

L
ow

er
B

ou
n
d

A
cc

u
ra

cy

S
=

2
S

=
3

S
=

2
S

=
3

n
×

n
B

G
H

L
S

G
H

T
S

G
H

G
H

L
S

G
H

T
S

G
H

L
S

G
H

T
S

G
H

L
S

G
H

T
S

G
H

4
×

4

11
1

23
2

23
2

23
2

15
4

23
2

23
2

13
.1

1
13

.1
1

13
.1

1
13

.1
1

12
6

15
4

30
9

30
9

15
4

30
9

30
9

4.
63

4.
63

4.
63

4.
63

13
6

30
9

30
9

30
9

30
9

30
9

30
9

4.
63

4.
63

4.
63

4.
63

5
×

5

19
7

30
9

30
9

30
9

30
9

30
9

30
9

0
0

0
0

22
3

30
9

30
9

30
9

30
9

30
9

30
9

0
0

0
0

23
8

34
8

34
8

34
8

34
8

34
8

34
8

0
0

0
0

6
×

6

27
5

30
9

30
9

30
9

30
9

30
9

30
9

2.
83

2.
83

2.
83

2.
83

31
2

0
34

8
34

8
0

34
8

34
8

0
0

0
0

33
1

34
8

34
8

34
8

34
8

34
8

34
8

0
0

0
0

7
×

7

37
5

30
9

30
9

30
9

30
9

30
9

30
9

8.
04

8.
04

8.
04

8.
04

42
6

34
8

34
8

34
8

34
8

34
8

34
8

0.
57

0.
57

0.
57

0.
57

45
3

35
9

35
9

35
9

35
9

35
9

35
9

4.
01

4.
01

4.
01

4.
01

8
×

8

49
7

30
9

30
9

30
9

30
9

30
9

30
9

0
0

0
0

56
2

30
9

30
9

30
9

30
9

30
9

30
9

0
0

0
0

59
3

30
9

30
9

30
9

30
9

30
9

30
9

0
0

0
0

T
ab

le
6.

16
.

R
es

u
lt

s
fo

r
L

S
an

d
T

S
w

it
h

G
H

at
h
ig

h
en

er
gy

le
ve

l
(c

on
t)

L
ow

er
B

ou
n
d

A
cc

u
ra

cy

S
=

2
S

=
3

S
=

2
S

=
3

n
×

n
B

G
H

L
S

G
H

T
S

G
H

G
H

L
S

G
H

T
S

G
H

L
S

G
H

T
S

G
H

L
S

G
H

T
S

G
H

9
×

9

62
2

29
2

32
3

32
3

29
2

32
3

32
3

2.
12

2.
12

2.
12

2.
12

70
5

32
3

32
3

32
3

32
3

32
3

32
3

4.
44

4.
44

4.
44

4.
44

74
5

32
3

32
3

32
3

32
3

32
3

32
3

6.
65

6.
65

6.
65

6.
65

10
×

10

75
4

34
8

34
8

34
8

34
8

34
8

34
8

0
0

0
0

85
5

38
6

38
6

38
6

38
6

38
6

38
6

0
0

0
0

90
3

38
6

38
6

38
6

38
6

38
6

38
6

3.
50

3.
50

3.
50

3.
50

15
×

15

16
86

21
6

21
6

21
6

21
6

—
—

32
.7

1
32

.7
1

—
—

19
18

14
9

38
4

38
4

14
9

—
—

0
0

—
—

20
24

14
9

38
4

38
4

14
9

—
—

0
0

—
—

20
×

20

29
58

26
2

—
—

26
2

—
—

—
—

—
—

33
69

38
4

—
—

38
4

—
—

—
—

—
—

35
64

38
4

—
—

38
4

—
—

—
—

—
—

A
v
e
ra

g
e
:

29
1.

2
32

6.
5

32
6.

5
32

6.
5

32
6.

3
32

6.
3

3.
63

3.
63

2.
60

2.
60

A
d
ju

st
e
d

A
v
g
:

30
0.

9
32

6.
3

32
6.

3
30

0.
9

32
6.

3
32

6.
3

2.
60

2.
60

2.
60

2.
60

99

Computational times of the search algorithms LS and TS with subalgorithm GH

at different energy levels are given in the Table 6.17 - Table 6.19. At all energy levels,

the average computational time for algorithm LS is less than the average required

time for algorithm TS with two sinks. When there are three sinks in the sensor field,

both of the search algorithms consume almost same amount of time on average to

find a lower bound. We expect that a search algortihm terminates in longer time as

there are more sinks in the network since the size of a s-swap neighborhood increases

which requires more iterations to search a certain percantage of the neighborhood. The

reported average computation times in the tables do not agree with the expectation.

This is again due to the number of instances that are used to calculate the average

running times of the algorithms. Our expectation appears to be valid if we calculate

the average computation times for the same number of instances as given in “Adjusted

Avg”row.

100

Table 6.17. CPU times for LS and TS with GH at low energy level

CPU Times (s)

S = 2 S = 3

n × n B GH LSGH TSGH GH LSGH TSGH

4 × 4

111 1.03 12.02 20.00 0.94 25.65 21.33

126 0.91 5.90 24.06 0.85 20.81 17.59

136 1.08 14.55 23.19 1.02 33.06 24.96

5 × 5

197 1.55 28.96 60.73 1.35 61.72 52.48

223 1.54 35.86 43.39 1.36 62.07 57.89

238 1.67 37.92 48.14 1.46 72.19 66.41

6 × 6

275 2.12 63.71 80.16 2.14 116.82 101.35

312 0.24 38.21 55.25 0.24 70.61 72.79

331 2.29 76.53 96.00 2.30 131.07 123.74

7 × 7

375 3.26 110.35 203.74 3.45 205.90 175.34

426 3.62 131.93 222.26 3.63 227.27 231.41

453 3.71 138.76 223.42 3.71 219.51 246.73

8 × 8

497 5.13 197.90 399.81 5.10 331.42 308.68

562 5.11 182.18 372.94 5.57 339.64 342.13

593 5.10 179.27 432.10 5.08 347.15 327.88

9 × 9

622 8.14 318.15 569.53 7.94 566.04 576.30

705 8.76 330.29 592.56 9.34 565.43 483.34

745 8.99 356.49 647.16 8.59 508.81 573.11

10 × 10

754 15.17 592.20 638.12 14.31 961.69 912.98

855 17.22 645.86 730.32 15.50 1086.73 1030.04

903 15.61 684.19 754.95 16.32 1047.74 1051.38

15 × 15

1686 123.39 3908.05 4132.92 131.33 — —

1918 130.54 3662.65 5050.96 133.99 — —

2024 133.99 4087.74 3929.83 118.23 — —

20 × 20

2958 410.57 — — 433.66 — —

3369 508.93 — — 513.67 — —

3564 515.32 — — 514.33 — —

Average: 71.64 659.57 806.19 72.42 333.40 323.71

Adjusted Avg: 5.35 198.63 297.04 5.25 333.40 323.71

101

Table 6.18. CPU times for LS and TS with GH at medium energy level

CPU Times (s)

S = 2 S = 3

n × n B GH LSGH TSGH GH LSGH TSGH

4 × 4

111 1.38 33.40 42.00 1.27 54.40 37.80

126 1.17 15.15 35.57 1.02 40.50 33.66

136 1.64 31.73 48.16 1.41 67.60 48.91

5 × 5

197 2.31 71.91 88.44 2.10 129.53 115.88

223 2.49 72.46 84.56 2.11 130.82 125.26

238 2.47 86.47 89.41 2.30 142.24 127.68

6 × 6

275 3.57 140.12 170.34 3.36 243.74 209.41

312 0.38 79.62 112.81 0.39 144.51 140.72

331 3.94 149.54 203.10 3.82 270.16 261.82

7 × 7

375 5.79 221.46 402.70 6.12 390.18 385.45

426 6.58 262.85 391.76 6.40 454.80 449.61

453 6.65 261.33 475.15 6.68 447.26 416.68

8 × 8

497 9.35 336.71 837.55 9.52 833.64 660.67

562 9.45 387.42 864.67 10.19 687.73 667.64

593 9.36 385.68 807.40 9.69 683.16 690.73

9 × 9

622 15.13 713.60 1263.79 15.54 1148.69 877.02

705 17.97 757.04 1445.47 16.62 1181.77 1092.68

745 17.43 806.68 1417.14 17.21 1137.72 1164.73

10 × 10

754 29.10 1187.48 1406.82 28.58 1839.75 1972.17

855 33.61 1253.36 1501.37 33.04 1834.40 2371.13

903 32.10 1457.29 1690.32 38.42 1977.02 2016.71

15 × 15

1686 181.94 5101.14 5029.65 160.45 — —

1918 234.89 7431.15 9277.23 242.56 — —

2024 247.48 8116.57 7844.08 245.04 — —

20 × 20

2958 860.69 — — 781.32 — —

3369 599.30 — — 577.80 — —

3564 611.40 — — 594.23 — —

Average: 109.17 1223.34 1480.31 104.34 659.03 660.30

Adjusted Avg: 10.09 414.82 636.98 10.28 659.03 660.30

102

Table 6.19. CPU times for LS and TS with GH at high energy level

CPU Times (s)

S = 2 S = 3

n × n B GH LSGH TSGH GH LSGH TSGH

4 × 4

111 1.78 48.12 71.76 1.53 66.46 53.37

126 1.38 27.59 43.56 1.26 55.15 62.74

136 2.09 54.78 77.61 1.98 98.46 97.33

5 × 5

197 2.93 105.02 121.17 2.78 179.30 177.26

223 2.88 110.05 128.27 2.71 176.55 182.06

238 3.20 112.37 151.02 2.93 208.90 186.48

6 × 6

275 5.04 209.92 353.86 5.06 357.50 364.50

312 0.52 116.23 204.44 0.54 209.78 221.98

331 5.55 216.48 372.17 5.32 375.07 380.39

7 × 7

375 8.28 344.10 552.68 8.59 586.56 612.73

426 9.30 390.28 675.48 9.74 680.38 553.72

453 9.65 397.23 802.93 9.88 687.01 688.69

8 × 8

497 13.82 560.20 1024.72 14.23 1020.50 987.16

562 13.66 606.67 992.74 13.91 1104.49 936.43

593 14.97 643.75 988.33 14.24 958.21 958.54

9 × 9

622 22.16 911.94 1982.59 22.84 1706.48 1448.06

705 25.87 1087.93 1724.96 24.90 1761.44 1740.35

745 25.19 1101.84 1583.66 24.80 1714.16 1750.33

10 × 10

754 45.12 1598.45 1863.37 51.72 2778.27 2833.14

855 49.80 2176.86 2380.09 59.82 3065.59 2870.14

903 48.64 2055.01 2543.26 63.59 2836.70 2879.49

15 × 15

1686 236.10 3100.83 6566.13 231.29 — —

1918 194.41 5545.24 6913.92 192.75 — —

2024 194.99 6045.50 7104.65 199.28 — —

20 × 20

2958 1078.04 — — 1071.01 — —

3369 1279.35 — — 1401.16 — —

3564 1405.70 — — 1308.64 — —

Average: 174.09 1148.60 1634.31 175.80 982.71 951.66

Adjusted Avg: 14.85 613.09 887.56 16.30 982.71 951.66

103

The lifetimes obtained from algorithms LS and TS with subalgorithm DH at

low energy level are given in Table 6.20 and Table 6.21. Contrary to algorithm GH,

algorithm DH is sensitive to the number of sinks in the sensor field which can be

observed from the average lifetimes for two and three sinks reported for the algorithm

DH that runs for one iteration. We observe from the average lifetime values that

exploring the candidate locations for the sinks with a search algorithm helps to find

good solutions. However, the average performances of the search algorithms LS and TS

do not expand with the increasing number of sinks. This is due to the weak performance

of the search algorithms at some budget levels of 4 × 4 instances. The lifetimes for 4 ×
4 instances found by the algorithm LS drop off at all budget levels when the number

of sinks in the network increases. In contrast with the intuiton, adding new sinks to

the network does not necessarily evolve the network lifetime since we are making the

use of a greedy selection criterion to make the sink assignments for active sensors.

The effect of energy consumption in data transmission is not reflected to this selection

rule. Therefore, an active sensor may be directed to a far sink even though there is

another sink which is closer to itself. As a result, there can be unnecessary energy

consumption, which declines the network lifetime, with the increased number of hops

until the information reaches to the corresponding sink. On the other hand, algorithm

TS seems to overcome the decreasing lifetime problem in 4 × 4 instances except for low

budget case. This can be explained with the better diversification strategy of algorithm

TS, which avoids stacking in a local optima for medium and high budget levels, when

it is compared with algorithm LS. Since low budget level is not sufficient to accept

the corresponding improving solution, it is not possible for algorithm TS to explore

the different parts of the solution space. Finally, we can observe that algorithm TS

outperforms algorithm LS for both number of sinks. At medium energy level, see Table

6.22 and Table 6.23, with two sinks both of the search algorithms give the same average

lifetimes, whereas with three sinks algorithm TS surpasses algorithm LS. Similar to

the low and medium energy levels, the performance of algorithm TS goes beyond the

one of algorithm LS for both number of sinks at high energy level as can be seen in

Table 6.24 and Table 6.25.

T
ab

le
6.

20
.

R
es

u
lt

s
fo

r
L

S
an

d
T

S
w

it
h

D
H

at
lo

w
en

er
gy

le
ve

l

L
ow

er
B

ou
n
d

A
cc

u
ra

cy

S
=

2
S

=
3

S
=

2
S

=
3

n
×

n
B

D
H

L
S

D
H

T
S

D
H

D
H

L
S

D
H

T
S

D
H

L
S

D
H

T
S

D
H

L
S

D
H

T
S

D
H

4
×

4

11
1

82
88

88
82

82
82

0
0

6.
82

6.
82

12
6

10
1

10
6

10
6

10
1

10
1

10
6

0
0

4.
72

0

13
6

10
1

10
6

10
6

10
1

10
1

10
6

0
0

4.
72

0

5
×

5

19
7

10
1

10
1

10
1

10
1

10
1

10
1

0
0

0
0

22
3

10
1

10
1

10
1

10
1

10
1

10
1

0
0

0
0

23
8

11
4

11
4

11
4

11
4

11
4

11
4

0
0

0
0

6
×

6

27
5

99
10

4
10

4
99

10
4

10
4

0
0

0
0

31
2

10
7

11
1

11
1

10
7

11
1

11
1

2.
63

2.
63

2.
63

2.
63

33
1

10
7

11
1

11
1

10
7

11
1

11
1

2.
63

2.
63

2.
63

2.
63

7
×

7

37
5

10
4

11
1

11
1

11
1

11
1

11
1

0
0

0
0

42
6

11
1

11
5

11
7

11
5

11
7

11
7

1.
71

0
0

0

45
3

11
1

12
4

12
4

11
9

12
4

12
4

0
0

0
0

8
×

8

49
7

99
99

99
99

99
99

1.
98

1.
98

1.
98

1.
98

56
2

99
99

99
99

99
99

1.
98

1.
98

1.
98

1.
98

59
3

99
99

99
99

99
99

1.
98

1.
98

1.
98

1.
98

T
ab

le
6.

21
.

R
es

u
lt

s
fo

r
L

S
an

d
T

S
w

it
h

D
H

at
lo

w
en

er
gy

le
ve

l
(c

on
t)

L
ow

er
B

ou
n
d

A
cc

u
ra

cy

S
=

2
S

=
3

S
=

2
S

=
3

n
×

n
B

D
H

L
S

D
H

T
S

D
H

D
H

L
S

D
H

T
S

D
H

L
S

D
H

T
S

D
H

L
S

D
H

T
S

D
H

9
×

9

62
2

10
7

10
8

10
8

10
8

10
8

10
8

0
0

0
0

70
5

11
3

11
3

11
3

11
1

11
3

11
3

0
0

0
0

74
5

11
4

11
5

11
5

11
1

11
5

11
5

0
0

0
0

10
×

10

75
4

10
8

10
8

10
8

10
8

10
8

10
8

5.
26

5.
26

5.
26

5.
26

85
5

11
3

12
0

12
0

11
3

12
0

12
0

4.
76

4.
76

4.
76

4.
76

90
3

11
3

12
1

12
1

11
3

12
3

12
3

3.
97

3.
97

3.
97

3.
97

15
×

15

16
86

10
7

10
8

10
8

10
7

—
—

5.
26

5.
26

—
—

19
18

11
4

11
4

11
4

11
4

—
—

9.
52

9.
52

—
—

20
24

11
4

11
4

11
4

11
4

—
—

9.
52

9.
52

—
—

20
×

20

29
58

96
—

—
96

—
—

—
—

—
—

33
69

10
5

—
—

10
5

—
—

—
—

—
—

35
64

31
—

—
10

5
—

—
—

—
—

—

A
v
e
ra

g
e
:

10
2.

6
10

8.
8

10
8.

8
10

5.
9

10
7.

7
10

8.
2

2.
13

2.
06

1.
90

1.
45

A
d
ju

st
e
d

A
v
g
:

10
5.

0
10

8.
3

10
8.

4
10

5.
7

10
7.

7
10

8.
2

1.
28

1.
20

1.
90

1.
45

T
ab

le
6.

22
.

R
es

u
lt

s
fo

r
L

S
an

d
T

S
w

it
h

D
H

at
m

ed
iu

m
en

er
gy

le
ve

l

L
ow

er
B

ou
n
d

A
cc

u
ra

cy

S
=

2
S

=
3

S
=

2
S

=
3

n
×

n
B

D
H

L
S

D
H

T
S

D
H

D
H

L
S

D
H

T
S

D
H

L
S

D
H

T
S

D
H

L
S

D
H

T
S

D
H

4
×

4

11
1

16
5

17
6

17
6

16
5

16
5

16
5

0
0

6.
25

6.
25

12
6

20
3

21
5

21
5

20
3

20
3

21
5

0
0

5.
58

0

13
6

20
3

21
5

21
5

20
3

20
3

21
5

0
0

5.
58

0

5
×

5

19
7

20
2

20
2

20
2

20
2

20
2

20
2

1.
46

1.
46

1.
46

1.
46

22
3

20
2

20
2

20
2

20
2

20
2

20
2

1.
46

1.
46

1.
46

1.
46

23
8

22
8

22
8

22
8

22
8

22
8

22
8

1.
30

1.
30

1.
30

1.
30

6
×

6

27
5

20
0

21
0

21
0

20
0

21
0

21
0

0
0

0
0

31
2

21
6

22
5

22
5

21
6

22
5

22
5

2.
60

2.
60

2.
60

2.
60

33
1

21
6

22
5

22
5

21
6

22
5

22
5

2.
60

2.
60

2.
60

2.
60

7
×

7

37
5

22
0

22
5

22
5

22
5

22
5

22
5

0
0

0
0

42
6

22
5

23
7

23
7

23
7

23
7

23
7

0
0

0
0

45
3

22
5

25
0

25
0

24
2

25
0

25
0

0
0

0
0

8
×

8

49
7

19
8

19
8

19
8

19
8

19
8

19
8

3.
41

3.
41

3.
41

3.
41

56
2

19
8

19
8

19
8

19
8

19
8

19
8

3.
41

3.
41

3.
41

3.
41

59
3

19
8

19
8

19
8

19
8

19
8

19
8

3.
41

3.
41

3.
41

3.
41

T
ab

le
6.

23
.

R
es

u
lt

s
fo

r
L

S
an

d
T

S
w

it
h

D
H

at
m

ed
iu

m
en

er
gy

le
ve

l
(c

on
t)

L
ow

er
B

ou
n
d

A
cc

u
ra

cy

S
=

2
S

=
3

S
=

2
S

=
3

n
×

n
B

D
H

L
S

D
H

T
S

D
H

D
H

L
S

D
H

T
S

D
H

L
S

D
H

T
S

D
H

L
S

D
H

T
S

D
H

9
×

9

62
2

20
6

21
9

21
9

21
9

21
9

21
9

0
0

0
0

70
5

20
6

22
5

22
5

21
9

22
5

22
5

0
0

0
0

74
5

20
6

22
8

22
8

21
9

22
8

22
8

0
0

0
0

10
×

10

75
4

21
9

21
9

21
9

21
9

21
9

21
9

5.
19

5.
19

5.
19

5.
19

85
5

22
6

24
4

24
4

22
6

24
5

24
5

4.
69

4.
69

4.
30

4.
30

90
3

22
6

26
8

26
8

22
6

26
8

26
8

0
0

0
0

15
×

15

16
86

21
0

21
4

21
4

21
0

—
—

0
0

—
—

19
18

22
8

22
8

22
8

22
8

—
—

10
.9

4
10

.9
4

—
—

20
24

22
8

22
8

22
8

22
8

—
—

10
.9

4
10

.9
4

—
—

20
×

20

29
58

19
8

—
—

23
1

—
—

—
—

—
—

33
69

22
9

—
—

10
3

—
—

—
—

—
—

35
64

22
9

—
—

10
3

—
—

—
—

—
—

A
v
e
ra

g
e
:

21
1.

5
21

9.
9

21
9.

9
20

6.
1

21
7.

8
21

8.
9

2.
14

2.
14

2.
22

1.
68

A
d
ju

st
e
d

A
v
g
:

20
9.

0
21

9.
4

21
9.

4
21

2.
4

21
7.

8
21

8.
9

1.
48

1.
48

2.
22

1.
68

T
ab

le
6.

24
.

R
es

u
lt

s
fo

r
L

S
an

d
T

S
w

it
h

D
H

at
h
ig

h
en

er
gy

le
ve

l

L
ow

er
B

ou
n
d

A
cc

u
ra

cy

S
=

2
S

=
3

S
=

2
S

=
3

n
×

n
B

D
H

L
S

D
H

T
S

D
H

D
H

L
S

D
H

T
S

D
H

L
S

D
H

T
S

D
H

L
S

D
H

T
S

D
H

4
×

4

11
1

24
9

26
7

26
7

24
9

24
9

24
9

0
0

6.
74

6.
74

12
6

30
6

32
4

32
4

30
6

30
6

32
4

0
0

5.
56

0

13
6

30
6

32
4

32
4

30
6

30
6

32
4

0
0

5.
56

0

5
×

5

19
7

30
4

30
4

30
4

30
4

30
4

30
4

1.
62

1.
62

1.
62

1.
62

22
3

30
4

30
4

30
4

30
4

30
4

30
4

1.
62

1.
62

1.
62

1.
62

23
8

34
2

34
2

34
2

34
2

34
2

34
2

1.
72

1.
72

1.
72

1.
72

6
×

6

27
5

30
2

31
8

31
8

30
2

31
8

31
8

0
0

0
0

31
2

32
4

33
9

33
9

32
4

33
9

33
9

2.
59

2.
59

2.
59

2.
59

33
1

32
4

33
9

33
9

32
4

33
9

33
9

2.
59

2.
59

2.
59

2.
59

7
×

7

37
5

32
9

33
6

33
6

33
6

33
6

33
6

0
0

0
0

42
6

33
6

34
9

35
0

34
9

35
0

35
0

0.
28

0
0

0

45
3

33
6

37
4

37
4

36
1

37
4

37
4

0
0

0
0

8
×

8

49
7

29
7

29
7

29
7

29
7

29
7

29
7

3.
88

3.
88

3.
88

3.
88

56
2

29
7

29
7

29
7

29
7

29
7

29
7

3.
88

3.
88

3.
88

3.
88

59
3

29
7

29
7

29
7

29
7

29
7

29
7

3.
88

3.
88

3.
88

3.
88

T
ab

le
6.

25
.

R
es

u
lt

s
fo

r
L

S
an

d
T

S
w

it
h

D
H

at
h
ig

h
en

er
gy

le
ve

l
(c

on
t)

L
ow

er
B

ou
n
d

A
cc

u
ra

cy

S
=

2
S

=
3

S
=

2
S

=
3

n
×

n
B

D
H

L
S

D
H

T
S

D
H

D
H

L
S

D
H

T
S

D
H

L
S

D
H

T
S

D
H

L
S

D
H

T
S

D
H

9
×

9

62
2

30
8

33
0

33
0

33
0

33
0

33
0

0
0

0
0

70
5

31
0

33
8

33
8

33
1

33
8

33
8

0
0

0
0

74
5

31
0

34
6

34
6

33
1

34
6

34
6

0
0

0
0

10
×

10

75
4

32
7

32
7

32
7

32
7

32
7

32
7

6.
03

6.
03

6.
03

6.
03

85
5

33
7

36
4

36
4

33
7

36
7

36
7

5.
70

5.
70

5.
70

5.
70

90
3

33
7

40
0

40
0

33
7

40
0

40
0

0
0

0
0

15
×

15

16
86

31
5

32
1

32
1

31
5

—
—

0
0

—
—

19
18

34
2

34
2

34
2

34
2

—
—

10
.9

4
10

.9
4

—
—

20
24

34
2

34
2

34
2

34
2

—
—

10
.9

4
10

.9
4

—
—

20
×

20

29
58

29
2

—
—

29
2

—
—

—
—

—
—

33
69

34
3

—
—

38
4

—
—

—
—

—
—

35
64

34
3

—
—

38
4

—
—

—
—

—
—

A
v
e
ra

g
e
:

31
7.

0
33

0.
0

33
0.

1
32

4.
1

32
7.

0
32

8.
7

2.
32

2.
31

2.
41

1.
88

A
d
ju

st
e
d

A
v
g
:

31
3.

4
32

9.
3

32
9.

4
31

8.
6

32
7.

0
32

8.
7

1.
69

1.
68

2.
41

1.
88

110

On the other hand, even after calculating the average lifetimes for the same

number of instances, both of the search algorithms cannot improve the average lifetime

with the increasing number of sinks in the network. This is again a result of the weak

performance of the algorithms in 4 × 4 with low budget instance.

The efficiencies of the search algorithms can be evaluated with the accuracy values

which are also given in the above tables. According to the adjusted accuracies, the

search algorithms with two sinks are more efficient than the ones with three sinks at

all energy levels. This result is due to the poor performance of the search algorithms

in 4 × 4 instances. Besides, given the number of sinks in the network, algorithm TS

is more accurate than algorithm LS at all energy levels. Therefore, we can say that

algorithm TS is more reliable than algorithm LS for both number of sinks at all energy

levels.

The computational times of the search algorithms are reported in Table 6.26 -

Table 6.28. Comparing the complexities of the search algorithms, we expect to have

higher computational times for algorithm TS than algorithm LS and for a search

algorithm with three sinks than a search algorithm with two sinks. Notice that the

results in the below tables are contradicting with the expectation. First, the running

times for algorithm LS come out to be higher than the ones for algorithm TS due

to the overload in the computer that these runs are obtained. Second, we observe

that the results agree with our expectation related with the effect of sink number on

computational time when we compare the average CPU times for the same number of

instances.

111

Table 6.26. CPU times for LS and TS with DH at low energy level

CPU Times (s)

S = 2 S = 3

n × n B DH LSDH TSDH DH LSDH TSDH

4 × 4

111 0.99 27.79 20.52 1.03 48.66 26.14

126 1.10 32.61 24.19 1.19 39.98 44.36

136 1.18 32.54 22.90 1.16 60.56 46.63

5 × 5

197 1.49 44.14 38.98 1.62 87.73 64.74

223 1.50 44.23 39.61 1.65 87.82 74.64

238 1.59 46.98 44.12 1.80 107.11 81.00

6 × 6

275 2.38 94.59 80.16 2.45 232.07 132.49

312 2.53 99.74 84.10 2.53 247.14 135.59

331 2.41 105.81 85.97 2.54 232.98 116.75

7 × 7

375 3.02 188.71 146.56 3.87 389.83 256.64

426 3.11 237.18 161.68 4.01 291.92 287.30

453 3.21 242.61 180.96 4.07 348.46 293.52

8 × 8

497 4.47 359.64 220.98 5.62 508.52 326.81

562 4.51 336.16 220.42 5.90 581.45 282.25

593 4.82 361.51 216.19 5.57 557.26 318.15

9 × 9

622 7.37 738.95 413.96 9.77 1542.81 798.06

705 8.47 823.71 408.10 10.21 1434.50 924.14

745 7.73 797.61 436.62 9.92 2305.93 855.01

10 × 10

754 11.99 967.55 658.36 14.52 1333.40 925.05

855 11.87 1362.61 996.70 15.55 1662.33 1609.94

903 12.07 1292.84 917.08 15.45 2256.72 2112.48

15 × 15

1686 95.97 7388.84 3406.78 79.38 — —

1918 98.60 9814.85 4828.71 92.99 — —

2024 94.23 9861.60 4412.94 93.78 — —

20 × 20

2958 247.74 — — 231.26 — —

3369 270.80 — — 253.48 — —

3564 89.78 — — 260.01 — —

Average: 36.85 1470.95 752.77 41.90 683.68 462.46

Adjusted Avg: 4.66 392.26 258.01 5.74 683.68 462.46

112

Table 6.27. CPU times for LS and TS with DH at medium energy level

CPU Times (s)

S = 2 S = 3

n × n B DH LSDH TSDH DH LSDH TSDH

4 × 4

111 1.50 59.33 36.30 1.49 104.40 66.82

126 1.59 57.91 47.08 1.68 125.63 81.29

136 1.65 67.79 41.16 1.70 113.76 55.82

5 × 5

197 2.77 77.15 79.36 2.54 159.02 121.66

223 2.23 84.54 77.52 2.57 189.39 101.84

238 2.25 95.78 85.38 2.87 164.66 131.94

6 × 6

275 3.52 179.88 162.69 4.27 439.57 277.85

312 3.22 265.01 174.34 4.32 366.25 264.45

331 3.26 235.27 170.66 4.35 413.08 279.19

7 × 7

375 5.46 442.34 294.62 7.20 669.73 525.08

426 5.44 476.33 351.20 7.25 675.96 529.21

453 5.57 429.33 335.46 7.44 868.93 595.42

8 × 8

497 8.22 758.24 429.80 10.35 1007.91 618.18

562 8.30 727.65 444.03 10.34 1949.39 599.21

593 8.20 790.66 475.69 10.32 1819.90 567.36

9 × 9

622 14.14 1159.56 835.38 19.06 1930.70 1372.07

705 13.93 1225.37 946.36 18.38 4004.39 1535.05

745 14.01 1254.97 1370.47 18.96 2915.12 1423.78

10 × 10

754 22.85 2272.38 2162.63 28.48 4093.26 1791.68

855 25.53 2181.28 1901.90 28.90 4428.63 3233.14

903 28.74 1718.14 2678.74 29.48 4828.36 2878.07

15 × 15

1686 149.50 19097.13 8080.22 158.90 — —

1918 171.17 21255.69 8740.21 165.87 — —

2024 166.84 21282.05 8295.87 175.80 — —

20 × 20

2958 418.04 — — 824.48 — —

3369 514.98 — — 590.98 — —

3564 526.29 — — 592.88 — —

Average: 78.84 3174.74 1592.38 101.14 1488.95 811.86

Adjusted Avg: 8.66 693.28 623.85 10.57 1488.95 811.86

113

Table 6.28. CPU times for LS and TS with DH at high energy level

CPU Times (s)

S = 2 S = 3

n × n B DH LSDH TSDH DH LSDH TSDH

4 × 4

111 1.58 72.59 50.38 1.71 146.08 76.98

126 2.13 60.46 58.25 2.14 109.31 94.68

136 1.93 67.78 59.69 1.97 134.33 91.00

5 × 5

197 2.78 128.24 113.26 3.28 303.43 182.23

223 3.36 135.18 106.74 3.44 272.47 179.26

238 3.84 138.92 119.01 3.65 320.56 201.82

6 × 6

275 4.18 382.41 230.24 5.71 584.07 408.16

312 4.46 363.59 246.91 6.13 666.79 381.91

331 4.50 396.32 245.73 5.72 614.87 416.44

7 × 7

375 7.72 650.36 466.67 10.02 981.59 607.09

426 7.96 640.65 470.92 10.42 908.64 631.93

453 7.92 686.39 499.65 10.93 1141.01 628.59

8 × 8

497 12.15 848.51 648.58 14.84 1486.47 864.11

562 12.01 914.77 658.54 15.10 2889.28 827.58

593 12.33 1033.17 676.32 15.11 2249.43 801.75

9 × 9

622 20.48 2123.50 1180.78 27.59 3109.71 2098.05

705 20.40 2087.53 1382.94 27.46 2555.94 2249.59

745 20.76 2052.93 1247.09 28.13 4262.53 1550.81

10 × 10

754 42.00 2869.12 1746.05 37.56 4105.32 2130.09

855 40.32 4881.37 3022.62 39.06 7776.44 5399.86

903 47.06 6673.36 3242.76 36.84 6309.54 4472.18

15 × 15

1686 228.86 26366.94 12082.11 249.20 — —

1918 234.07 26116.28 14096.34 255.13 — —

2024 254.20 26431.46 11882.20 240.53 — —

20 × 20

2958 654.14 — — 864.22 — —

3369 697.69 — — 1369.46 — —

3564 697.16 — — 1365.28 — —

Average: 112.82 4421.74 2272.24 172.25 1948.94 1156.86

Adjusted Avg: 13.33 1295.58 784.44 14.61 1948.94 1156.86

114

The response of the search algorithms to the number of sinks and the subalgo-

rithms, i.e. GH or DH, are illustrated in Figure 6.10 and Figure 6.11, respectively.

The search algorithms are also compared in Figure 6.12 with each other with their best

performing subalgorithms in terms of network lifetime. The computational times for

the search algorithms with two and three sinks in the network are given in Figure 6.13

and Figure 6.14, respectively. The indifference of the lifetimes, that are obtained by

the search algorithms with subalgorithm GH, when the number of sinks in the network

is increased from two to three can be seen in Figure 6.10. On the other hand, subal-

gorithm DH can enhance the network lifetime as the number of sinks in the network

increases only at low energy level for each of the search algorithms. The best perform-

ing subalgorithm for a search algorithm can be found by analyzing the Figure 6.11. At

all energy levels and for both number of sinks, subalgorithm DH works better than

subalgorithm GH for both of the search algorithms. Therefore, we can conclude that

for both of the search algorithms DH is the best performing subalgorithm under both

number of sinks.

The search algorithms LS and TS are compared under different number of sinks

with their best performing subalgorithms, i.e. subalgorithm DH for both of the algo-

rithms as we observe in Figure 6.11. For both number of sinks in the network and at

all energy levels algorithm TS gives better lifetimes than algorithm LS.

115

4x4 8x8 15x15 4x4 8x8 15x15 4x4 8x8 15x15
−6

−5

−4

−3

−2

−1

0

1

2

Low Budget Medium Budget High Budget

D
iff

er
en

ce
 (

pe
rio

ds
)

4x4 8x8 15x15 4x4 8x8 15x15 4x4 8x8 15x15

−12

−10

−8

−6

−4

−2

0

2

Low Budget Medium Budget High Budget

D
iff

er
en

ce
 (

pe
rio

ds
)

4x4 8x8 15x15 4x4 8x8 15x15 4x4 8x8 15x15
−20

−15

−10

−5

0

Low Budget Medium Budget High Budget

D
iff

er
en

ce
 (

pe
rio

ds
)

LS
DH

 (3 vs 2 sinks)

LS
GH

 (3 vs 2 sinks)

Avg LS
DH

 3 vs 2 sinks

TS
DH

 (3 vs 2 sinks)

TS
GH

 (3 vs 2 sinks)

Avg TS
DH

 3 vs 2 sinks

Low Energy Level

Medium Energy Level

High Energy Level

Figure 6.10. Sensitivity of the algorithms LS and TS to the number of sinks

116

4x4 8x8 15x15 4x4 8x8 15x15 4x4 8x8 15x15

−10

−5

0

5

10

Low Budget Medium Budget High Budget

D
iff

er
en

ce
 (

pe
rio

ds
)

4x4 8x8 15x15 4x4 8x8 15x15 4x4 8x8 15x15

−20

0

20

40

60

Low Budget Medium Budget High Budget

D
iff

er
en

ce
 (

pe
rio

ds
)

4x4 8x8 15x15 4x4 8x8 15x15 4x4 8x8 15x15

−40

−20

0

20

40

60

80

100

Low Budget Medium Budget High Budget

D
iff

er
en

ce
 (

pe
rio

ds
)

LS
2 sinks

 (DH − GH)

LS
3 sinks

 (DH − GH)

Avg LS
2 sinks

 DH vs GH

Avg LS
3 sinks

 DH vs GH

TS
2 sinks

 (DH − GH)

TS
3 sinks

 (DH − GH)

Avg TS
2 sinks

 DH vs GH

Avg TS
3 sinks

 DH vs GH

High Energy Level

Low Energy Level

Medium Energy Level

Figure 6.11. Performance of the algorithms LS and TS with GH and DH

117

4x4 8x8 15x15 4x4 8x8 15x15 4x4 8x8 15x15
−1

0

1

2

3

4

5

Low Budget Medium Budget High Budget

D
iff

er
en

ce
 (

pe
rio

ds
)

4x4 8x8 15x15 4x4 8x8 15x15 4x4 8x8 15x15

0

2

4

6

8

10

12

Low Budget Medium Budget High Budget

D
iff

er
en

ce
 (

pe
rio

ds
)

4x4 8x8 15x15 4x4 8x8 15x15 4x4 8x8 15x15

0

5

10

15

Low Budget Medium Budget High Budget

D
iff

er
en

ce
 (

pe
rio

ds
)

2 sinks (TS
DH

 − LS
DH

)

Avg 2 sinks TS
DH

 vs LS
DH

3 sinks (TS
DH

 − LS
DH

)

Avg 3 sinks TS
DH

 vs LS
DH

Low Energy Level

Medium Energy Level

High Energy Level

Figure 6.12. Comparison of the algorithms LS and TS with their best subalgorithms

118

4x4 8x8 15x15 4x4 8x8 15x15 4x4 8x8 15x15
0

2000

4000

6000

8000

10000

Low Budget Medium Budget High Budget

C
P

U
 T

im
e

(s
ec

s)

4x4 8x8 15x15 4x4 8x8 15x15 4x4 8x8 15x15
0

0.5

1

1.5

2

x 10
4

Low Budget Medium Budget High Budget

C
P

U
 T

im
e

(s
ec

s)

4x4 8x8 15x15 4x4 8x8 15x15 4x4 8x8 15x15
0

0.5

1

1.5

2

2.5

x 10
4

Low Budget Medium Budget High Budget

C
P

U
 T

im
e

(s
ec

s)

Average LS
GH

Average TS
GH

Average LS
DH

Average TS
DH

LS
DH

TS
DH

TS
GH

LS
GH

High Energy Level

Medium Energy Level

Low Energy Level

Figure 6.13. CPU times for LS and TS algorithms with 2 sinks

119

4x4 8x8 15x15 4x4 8x8 15x15 4x4 8x8 15x15
0

500

1000

1500

2000

2500

Low Budget Medium Budget High Budget

C
P

U
 T

im
e
 (

s
e
c
s
)

4x4 8x8 15x15 4x4 8x8 15x15 4x4 8x8 15x15
0

1000

2000

3000

4000

5000

Low Budget Medium Budget High Budget

C
P

U
 T

im
e
 (

s
e
c
s
)

4x4 8x8 15x15 4x4 8x8 15x15 4x4 8x8 15x15
0

1000

2000

3000

4000

5000

6000

7000

8000

Low Budget Medium Budget High Budget

C
P

U
 T

im
e
 (

s
e
c
s
)

Average LS
GH

Average TS
GH

Average LS
DH

Average TS
DH

LS
DH

TS
DH

TS
GH

LS
GH

Low Energy Level

High Energy Level

Medium Energy Level

Figure 6.14. CPU times for LS and TS algorithms with 3 sinks

120

7. CONCLUSIONS

In this thesis we first worked on Sensor Placement, Scheduling and Routing Prob-

lem with Connectivity Restrictions (PSRPC). We formulated a MILP for the problem

and proposed two Lagrangean Heuristics that make use of different relaxation strate-

gies for the solution procedure. Experiments show that the Lagrangean Heuristics are

performing better than the commercial solver for L in three hours. They generate a

feasible solution as lower bound and an upper bound for the large instances of the

problem for which the commercial solver can exibit neither a feasible solution nor an

upper bound. Besides, the first Lagrangean Heuristic outperforms than the second

one in terms of the quality of the upper bound and the computation time. We also

introduced new valid inequalities for the PSRPC in addition to the valid inequalities

proposed in the literature.

We then considered the problem of locating sinks integrated to the PSRPC. A

MILP formulation is given for the new problem. Two different search algorithms,

namely Local Search and Tabu Search, are developed with Greedy Heuristic or Dis-

crimination Heuristic, the feasible solution generating heuristics used in the Lagrangean

Heuristics for PSRPC. The algorithms search for a set of good locations for the sinks to

maximize the network lifetime. The results show that for both of the search algorithms

DH gives better lower bounds for the network lifetime than GH. Moreover, the search

algorithms can improve the lower bound when the number of sinks in the sensor field

increases with algorithm DH.

In this thesis experiments are conducted in order to determine the performance

of the feasible solution generation heuristics under three different energy and three

different budget levels. The results indicate that Discrimination Heuristic gives better

lower bounds than Greedy Heuristic while consuming more time. Moreover, the effect

of number of sinks on the network lifetime is investigated with both of the heuristics.

We observed that the network lifetime increases significantly as the number of sinks in

the sensor field increases. From the computational results we observe that the limited

121

resources budget and energy are consumed for providing coverage and routing the data

to the sink nodes. Therefore to maximize the lifetime of a WSN one should consider

efficient coverage and communication strategies together.

As a future research one can introduce alternative formulations for PSRPC from

which a polynomial time algorithm can be obtained through Lagrangean relaxation or

some other technique which can be based on column generation or branch and price

methods. Alternative feasible solution generation algorithms can be developed which

improve the lower bound. In this study the sensor field was consisting of discrete

points. It may possible to consider coverage of a continuos region, means sensor field

includes infinitely many points, where the coverage quality of a sensor decays as the

Euclidean distance increases. Another research can be on developing algorithms for

activity scheduling of the sensors and data routing without the information of sensor

locations for large size sensor networks. We have assumed that sinks are stable during

the network lifetime. Therefore, a future study can focus on the mobile sinks which

can help to decrease the energy consumption in data transmission. Moreover, assuming

probabilistic communication case and imposing bounds on the data flows among sensors

can extend the topic of this thesis.

122

REFERENCES

Akyildiz, I. F., W. Su, Y. Sankarasubramaniam and E. Çayırcı, 2002, “Wireless sensor

networks: a survey”, Computer Networks, Vol. 38, pp. 393-422.

Altınel, İ. K., N. Aras, E. Güney and C. Ersoy, 2008, “Binary integer programming for-

mulation and heuristics for differentiated coverage in heterogeneous sensor networks”,

Computer Networks, Vol. 52, Iss. 12, pp. 2419-2431.

Arai, S., Y. Iwatani and K. Hashimoto, 2010, “Fast sensor scheduling with communica-

tion costs for sensor networks”, Proceedings of American Control Conference, ACC,

Baltimore, MD, pp. 300.

Arya, V., N. Garg, R. Khandekar, A. Meyerson, K. Munagala, and V. Pandit, 2004,

“Local search heuristics for k-median and facility location problems”, SIAM Journal

on Computing, Vol. 33, No. 3, pp. 544-562.

Beasley, J. E. 1993, “Lagrangean heuristics for location problems”, European Journal

of Operational Research, Vol. 65, Iss. 3, pp. 383-399.

Byun, T. Y., M. Kim, S. Hwang and S. E. Jeon, 2006, “An active node set maintenance

scheme for distributed sensor networks”, Lecture Notes in Computer Science, Springer

Verlag, Berlin, Vol. 3982, pp. 134-143.

Cardei, M. and J. Wu, 2006, Coverage in wireless sensor networks, Technical Report,

Department of Computer Science and Engineering, Florida Atlantic University, Boca

Raton, Florida.

Chakrabarty, K., S. S. Iyengar, H. Qi and E. Cho, 2002, “Grid coverage and surveil-

lance and target location in distributed sensor networks”, IEEE Transactions on

Computers, Vol. 51, Iss. 12, pp. 1448.

123

Chaudhry, S. B., V. C. Hung, R. K. Guha and K. O. Stanley, 2010, “Pareto-based

evolutionary computational approach for wireless sensor placement”, Engineering

Applications of Artificial Intelligence, doi:10.1016/j.engappai.2010.07.007.

Cheng, X., D. Z. Du, L. Wang and B. Xu, 2008, “Relay sensor placement in wireless

sensor networks”, Wireless Networks, Vol. 14, pp. 347-355.

Dhillon, S. S. and K. Chakrabarty, 2003, “Sensor placement for effective coverage and

surveillance in distributed sensor networks”, Wireless Communications and Network-

ing, Vol. 3, pp. 1614.

Ergen, S. C. and P. Varaiya, 2006, “Optimal placement of relay nodes for energy effi-

ciency in sensor networks”, Proceedings of IEEE International Conference on Com-

munications, IEEE Communications Society, Piscataway, NJ, pp. 3473-3479.

Fei, X., S. Samarah and A. Boukerche, 2010, “A bio-inspired coverage-aware scheduling

scheme for wireless sensor networks”, Proceedings of IEEE International Symposium

on Parallel & Distributed Processing, Workshops and Phd Forum, IEEE Computer

Society, Piscataway, NJ, pp. 8.

Gendreau, M. and J. Y. Potvin, 2005, “Metaheuristics in combinatorial optimization”,

Annals of Operations Research, Vol. 140, pp. 189-213.

Güney, E., N. Aras, İ. K. Altınel and C. Ersoy, 2010, “Efficient integer programming

formulations for optimum sink location and routing in heterogeneous wireless sensor

networks”, Computer Networks, Vol. 54, pp. 1805-1822.

Held, M., P. Wolfe and H. P. Crowder, 1974, “Validation of subgradient optimization”,

Mathematical Programming, Vol. 6, pp. 62-88.

Hua, C. and T. S. P. Yum, 2008, “Optimal routing and data aggregation for maximizing

lifetime of wireless sensor networks”, IEEE/ACM Transactions on Networking, Vol.

16, No. 4, pp. 892-903.

124

Ilog, 2007, ILOG CPLEX 11.0 User’s Manual, ILOG Inc., viewed 21 September 2010,

<http://www.lingnan.net/lab/uploadfile/200864184419679.pdf>.

Karl, H. and A. Willig, 2003, A short survey of wireless sensor networks, TKN Tech-

nical Report TKN-03-018, Technical Univerity Berlin.

Karmarkar, N. 1984, “A new polynomial-time algorithm for linear programming”,

Combinatorica, Vol. 4, pp. 373-395.

Li, Y. and S. Gao, 2008, “Designing k-coverage schedules in wireless sensor networks”,

Journal of Combinatorial Optimization, Vol. 15, pp. 127-146.

Lin, F. Y. S. and P. L. Chiu, 2005, “A near-optimal sensor placement algorithm to

achieve complete coverage/discrimination in sensor networks”, IEEE Communica-

tions Letters, Vol. 9, No. 1, pp. 43-46.

Lin, Y., X. Hu and J. Zhang, 2010, “An ant-colony-system-based activity scheduling

method for the lifetime maximization of heterogeneous wireless sensor networks”,

Proceedings of the 12th Annual Genetic and Evolutionary Computation Conference,

ACM, New York, pp. 233-240.

Liu, X., L. Huang, W. Shi and H. Xu, 2008, “Energy-efficient location-independent

k-connected scheme in wireless sensor networks”, in Ali Miri (ed.), Wireless Sensor

and Actor Networks II, Springer, Boston, pp. 257-268.

Liu, Y. and W. Liang, 2008, “Prolonging network lifetime for target coverage in sensor

networks”, Lecture Notes in Computer Science, Springer Verlag, Berlin, Vol. 5258,

pp. 212-223.

Liu, Z. and W. Xu, 2010, “Zeroing-in on network metric minima for sink location de-

termination ”, Proceedings of the third ACM conference on Wireless network security,

ACM, New York, pp. 94-104.

Oyman, E. I. and C. Ersoy, 2004, “Multiple sink network design problem in large

125

scale wireless sensor networks”, Proceedings of IEEE International Conference on

Communications, IEEE Communications Society, Piscataway, NJ, Vol. 6, pp. 3663-

3667.

Pazand, B. and A. Datta, 2006, “Minimum dominating sets for solving the coverage

problem in wireless sensor networks”, Lecture Notes in Computer Science, Vol. 4239,

pp. 456-466.

Poe, W. Y. and J. B. Schmitt, 2009, “Sink placement without location information

in large-scale wireless sensor networks”, Proceedings of Asian Internet Engineering

Conference, ACM, New York, pp. 69-76.

Sacchi, L. H. and V. A. Armentano, 2010, “A computational study of parametric tabu

search for 0-1 mixed integer programs”, Computers & Operations Research, Vol. 38,

pp. 464-473.

Sahni, S. and X. Xu, 2005, “Algorithms for wireless sensor networks”, International

Journal of Distributed Sensor Networks, Vol. 1, Iss. 1, pp. 35-56.

Schurgers, C. and M. B. Srivastava, 2001, “Energy efficient routing in wireless sensor

networks”, Communications for Network-Centric Operations: Creating the Informa-

tion Force, IEEE Military Communications Conference, Los Angeles, CA, Vol. 1, pp.

357-361.

Torres, M. G. and J. Kabara, 2006, “Measuring energy consumption in wireless sensor

networks using GSP”, Proceedings of the 17th International Symposium on Personal,

Indoor and Mobile Radio Communications, IEEE, Piscataway, NJ, pp. 1-5.

Türkoğulları, Y. B., N. Aras, İ. K. Altınel and C. Ersoy, 2010a,“An efficient heuristic

for placement, scheduling and routing in wireless sensor networks”, Ad Hoc Networks,

Vol. 8, pp. 654-667.

Türkoğulları, Y. B., N. Aras, İ. K. Altınel and C. Ersoy, 2010b,“A column generation

126

based heuristic for sensor placement, activity scheduling and data routing in wireless

sensor networks”, European Journal of Operational Research, Vol. 207, pp. 1014-1026.

Türkoğulları, Y. B. 2010c, “Optimal placement, scheduling and routing to maximize

lifetime in wireless sensor networks”, PhD thesis, Boğaziçi University, İstanbul.

Wang, B., K. C. Chua, V. Srinivasan and W. Wang, 2009, “Scheduling sensor activity

for information coverage of discrete targets in sensor networks”, Wireless Communi-

cations and Mobile Computing, Vol. 9, pp. 745-757.

Wang, L. and Y. Xiao, 2006, “A survey of energy-efficient scheduling mechanisms in

sensor networks”, Mobile Networks and Applications, Vol. 11, pp. 723-740.

Wang, J. and N. Zhong, 2006, “Efficient point coverage in wireless sensor networks”,

Journal of Combinatorial Optimization, Vol. 11, pp. 291-304.

Xbow, 2009, 440 Series User’s Manual, Crossbow Technology Inc., viewed 21 Septem-

ber 2010, <http://www.xbow.com/pdf/440 Series Inertial Manual.pdf>.

Yang, L. 2006, “Determining sink node locations in wireless sensor networks”, Proceed-

ings of IEEE INternational Conference on Systems, Man and Cybernetics, IEEE,

Piscataway, NJ, pp. 3400-3404.

Yang, S., F. Dai, M. Cardei, J. Wu and F. Patterson, 2006, “On connected multi-

ple point coverage in wireless sensor networks”, International Journal of Wireless

Information Networks, Vol. 13, No. 4, pp. 289-301.

Yang, Y. and M. Cardei, 2010, “Adaptive energy efficient sensor scheduling for wireless

sensor networks”, Optimization Letters, Vol. 4, pp. 359-369.

Yardibi, T. and E. Karasan, 2010, “A distributed activity scheduling algorithm for

wireless sensor networks with partial coverage”, Wireless Networks, Vol. 16, pp. 213-

225.

127

Ye, Y. 1991, “AnO(n3L) potential reduction algorithm for linear programming”, Math-

ematical Programming, Vol. 50, pp. 239-258.

Yuan, Z., R. Tan, G. Xing, C. Lu, Y. Chen and J. Wang, 2008, “Fast sensor placement

algorithms for fusion-based target detection”, Proceedings of the Real Time Systems

Symposium, IEEE Computer Society, Piscataway, NJ, pp. 103-112.

