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ABSTRACT

ANALYSIS OF SINGLE AND TWO-ECHELON

INVENTORY SYSTEMS UNDER DISRUPTIONS IN

SUPPLY

In this thesis, we analyze two different models. In the first model, we consider

a two-echelon supply chain with a supplier, a manufacturer and two retailers. The

manufacturer is subject to non-stationary supply disruptions. The length of a supply

unavailability duration is a non-stationary geometric type random variable. In every

period the manufacturer places an order with the supplier by taking into account

any possible supply disruptions in the planning horizon, and subsequently makes an

allocation of available stock to retailers. At the retailer level, customer demand is

observed and it is assumed to be deterministic but time-dependent. The aim is to find

the optimal ordering policy for the manufacturer and the optimal allocation amounts

to the retailers that will minimize expected system-wide costs over a finite planning

horizon. We present a dynamic programming model and structural properties of the

optimal ordering policy under a simplified allocation rule. The structural results that

we obtain lead to an easy computational procedure for the optimal system-wide order-

up-to level. We also discuss the effectiveness of the allocation rule through a numerical

study.

In the second model, the environment is very similar to the first model, except

we have a single echelon system. In the second model, we have a supplier and a man-

ufacturer. The manufacturer is subject to stochastic demand and stochastic supplier

availability. The supplier’s availability structure is same as the supplier availability

structure in the first model. Demand uncertainty is also modeled similar to supplier

availability. Demand is either a fixed amount represented by d, or zero, with respective

probabilities. On the contrary to the first model, there is no retailer in this model and
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demand is observed at manufacturer. The objective is to minimize expected holding

and backlogging costs over a finite planning horizon considering stochastic demand

amounts under the supply uncertainty. We present a dynamic programming model

and a formula which explicitly determines the order-up-to levels. An algorithm is de-

veloped to compute the optimal inventory levels over the planning horizon using the

formula. We also present a numerical study for the model.
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ÖZET

TEK VE İKİ KATMANLI ENVANTER SİSTEMİNİN

TEDARİK KESİNTİSİNDE ANALİZİ

Bu tez çalışmasında, iki farklı model inceledik. İlk modelde, bir tedarikçi, bir

üretici ve üreticinin iki tane perakendecisinden oluşan iki kademeli bir tedarik zin-

cirini araştırdık. Üretici durağan olmayan tedarik kesintilerine sahiptir. Tedarik kesin-

tisinin süresinin uzunluğu durağan olmayan geometrik türde rassal bir değişkendir. Her

dönem, üretici tedarikçiye planlama dönemi içindeki olası tedarik kesintilerini dikkate

alarak sipariş verir ve daha sonra elindeki mevcut stoğun perakendicilere paylaştırmasını

yapar. Müşteri talebi perakendeci düzeyinde oluşmaktadır ve müşteri talebinin de-

terministik ama zamana bağımlılığı olduğunu varsaymaktayız. Amacımız, sonlu bir

planlama dönemi boyunca üreticinin tedarikçiye vereceği siparişler için optimal bir

sipariş politikası bulmak ve sistem genelinde beklenen maliyetleri en aza indiren perak-

endiciler için optimum stok paylaştırma miktarlarını tespit etmektir. Basitleştirilmiş

bir stok paylaştırma kuralı kullanarak bu model için dinamik programlama modelini

sunduk ve bu modeli kullanarak optimal sipariş miktarının karakteristik özelliklerini

gösterdik. Bu bulduğumuz karakteristiklerden yola çıkarak sistem için optimal sipariş

verme düzeyini bulan bir algoritma geliştirdik. Sayısal bir çalışma ile basitleştirilmiş

paylaştırma kuralının geçerliliğini de tartıştık.

Tek katmanlı bir envanter sistemi olması dışında ikinci modeldeki ortam ve parame-

treler ilk model ile çok benzerdir. İkinci modelde bir tedarikçi ve bir üretici vardır.

Üretici stokastik talep ve tedariğe sahiptir. Tedariğin yapısı ilk model ile aynıdır.

Talep belirsizliği de tedarik belirsizliğine benzemektedir. Talep belli olasılıklarla ile

ya sabit d değerindedir ya da sıfırdır. Sistemde herhangi bir perakendeci yoktur ve

talep ile üretici seviyesinde karşılaşılmaktadır. Amaç tedarik kısıntıları altında sonlu

bir planlama dönemi için yok satma ve stok tutma maliyetlerini en aza indirmektir.
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Bir dinamik programlama modeli oluşturduk ve sipariş verme düzlerini açıkça veren

bir formül belirledik. Bu formülden yararlanarak optimum stok seviyelerini belirleyen

bir algoritma geliştirdik. Model için sayısal bir analiz de sunduk.
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1. INTRODUCTION

In typical studies that analyze optimal inventory policies, usually the customer

demand, rather than the supply is the main focus of the study. In recent years, due to a

more global and integrated manufacturing environment, analysis of supply uncertainty

became important. Moreover, the availability of supply and the customer demand can

be correlated. That is, if the customer demand is high in a season, due to raw material

scarcity or capacity restrictions of the supplier, a disruption in supply may become

more likely. Our interest in this thesis is to investigate inventory models under supply

disruptions.

Global companies, in order to improve customer service levels and decrease lead

time, operate with several distribution centers which are supplied by a central ware-

house or a manufacturing facility. This type of distribution systems can be controlled

centrally, or information about distribution centers can be monitored centrally. Al-

though, these multi-echelon supply chain problems have been investigated for many

years, the effect of supply uncertainty is not considered extensively. One of our aims in

this thesis is to analyze a two-echelon supply chain which is supplied by an unreliable

supplier. We consider a two-echelon supply chain with a supplier, a manufacturer and

two retailers. Retailers are assumed to serve different customer segments, and there-

fore they are differentiated mainly by their unit backlogging costs. At the beginning

of each period, the manufacturer places an order with the outside supplier. The main

feature of our research is that, the supplier is unreliable and there is a possibility that

the manufacturer may not be able to receive the quantity that it orders. Subsequent

to manufacturer’s order from the supplier, and after the realization of its receipt (if

any), the manufacturer sends goods (after possible manufacturing and/or assembly

activities) to the retailers. The manufacturer as well as the retailers are allowed to

carry inventories. After receipt of the shipment by the retailers, customer demand

occurs at retailer level and holding (at each echelon) and backlogging (at retailer level)

costs are charged. The uncertainty structure of the supplier is simple, yet allows in-

teresting modeling possibilities. Supply is either fully available or unavailable with
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certain probabilities. The supply availability probabilities are time-dependent, reflect-

ing non-stationary supply disruptions or capacity shortages. Our supply process also

resembles a supply system where the inter-delivery times for the quantities ordered

are non-stationary random variables, and the supplier keeps track of the system-wide

inventory position for delivering the total outstanding orders when supply becomes

available. Demand values for the retailers over the planning horizon are assumed to

be deterministic, but non-stationary. This assumption is reasonable for a number of

applications, as retailers project their anticipated demands over a planning horizon,

and then the manufacturer makes a plan for the ordering and distribution of goods

based on these projected demand values. The system operates under a centralized de-

cision making, and accordingly the manufacturer has full information on stock levels,

cost and demand parameters of the retailers. In any period, when making an ordering

and allocation decision, the manufacturer takes into account the supply uncertainty

structure, and the manufacturer’s aim is to minimize the total expected ordering and

inventory related costs over a finite planning horizon.

We also consider a periodic review inventory problem for a manufacturer who has

both stochastic demand and supply. As in the previous model the supplier is unreliable,

and the supply disruption structure is same. However, unlike the previous model the

manufacturer faces stochastic demand. This problem is a single stage inventory prob-

lem with stochastic supply and demand. Demand has a binomial type distribution. In

other words, in each period with a certain probability demand is a fixed value d, or

zero. At the beginning of each period manufacturer places an order with supplier not

only considering the supply disruptions but also considering the demand possibilities.

During the ordering decision manufacturer tries to minimize stock holding and back-

logging costs. We assume that there is not any fixed ordering cost and unit purchasing

cost. After the receipt of the order (if any) from the supplier manufacturer makes the

production. Then, the demand is observed at the manufacturer (if any) and inventory

related costs are incurred at the end of the period at the manufacturer. We assume

that the lead time from supplier to manufacturer is zero and also production lead time

is zero.
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To the best of our knowledge, the literature on the inventory models treat supply

uncertainty in a multi-echelon environment is very scarce. In the first model that we

consider, we make three major contributions: i. We model a two-echelon supply chain

under randomly distributed periods of supply disruptions. ii. We provide characteriza-

tion and an easy-to-implement computational procedure for the optimal system-wide

order-up-to level when a simple rule is used for allocating the stock to retailers. iii.

We present a numerical study to test the effectiveness of the proposed allocation rule.

In the second model that we consider, the major contributions are as follows:

i. We model an inventory system under random supply disruptions and demand. ii.

We provide a new reformulation of the expected cost function. iii. We develop an

algorithm to compute the optimal order up-to-levels for the manufacturer. iv. We

present a numerical study.

In Chapter 2, we give a literature survey about inventory system with supply

uncertainty and multi-echelon inventory systems. The details of the two-echelon in-

ventory system with supply disruptions is given in Chapter 3. In Chapter 4, we analyze

the single stage inventory problem with stochastic supply and demand parameters. In

Chapter 5, we summarize our work and state some extensions for the problems.
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2. LITERATURE SURVEY

In this thesis, we treat a two-echelon centralized supply chain with supply uncer-

tainty and an inventory system with both supply and demand uncertainty in a single

stage. Therefore, our research is related to two main tracks in the literature: mod-

els with supply uncertainty, and multi-echelon inventory systems. In what follows we

review the most relevant papers from these two tracks.

The literature on supply or capacity uncertainty can roughly be categorized into

three groups. One of these groups handles supply uncertainty as randomness in yield.

Yano and Lee, 1995 provide a comprehensive review of literature on determining lot

sizes when production or procurement yield is random in both continuous and periodic

review systems. Gerchak et al., 1988 study a finite horizon problem with station-

ary, stochastic demand and stationary, stochastically-proportional random yield. They

prove that for a single period problem, order point is independent of yield uncertainty

and it is same as in constant yield model. They also show that the finite horizon

problem converges the infinite problem as number of period increases and the order

point in infinite horizon problem is not smaller than the order point of the certain

yield problem. Henig and Gerchak, 1990 extend Gerchak et al., 1988 and prove the

existence of critical order levels for both finite and infinite horizon problems and their

independence from random yield. Erdem and Ozekici, 2002 model a system where

yield is uncertain due to randomness in capacity of supplier. The major finding of Er-

dem and Ozekici is that a base stock policy is optimal for single, multiple and infinite

periods problems and the order-up-to level depends on the state of the environment.

In a recent paper Arifoglu and Ozekici, 2010 consider a model with fixed capacity and

Markov modulated random yield.

The second group of papers for supply uncertainty treats supply uncertainty as

capacity uncertainty. Gullu, 1998 considers the capacity uncertainty under stochastic

demand and utilizes the analogy between the class of base-stock production/inventory

policies that operate under demand/capacity uncertainty, and the G/G/1 queues. Cia-
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rallo et al., 1994 show the optimality of order-up-to type policies in the presence of

random capacity in single, multiple and infinite periods. Extending the model of Ciar-

allo et al., 1994, Wang and Gerchak, 1996 explore the implications of random yields and

variable capacity jointly for a finite-horizon periodic review inventory system and show

that the optimal policy is re-order type. Iida, 2002 develops upper and lower bounds

on the optimal policies for the infinite horizon non-stationary production-inventory

problem with an uncertain capacity constraint.

The third group of papers consider random disruptions in supply, i.e. models the

supply uncertainty as two different availability state which are randomly realized. Par-

lar and Berkin, 1991 analyze the continuous time problem which is very hard to struc-

ture. Assuming that the supply and no supply periods are exponentially distributed

or supply horizon is exponentially distributed and no supply period is deterministic,

they find optimal order quantities by using the renewal theory. Parlar and Perry, 1995

add cost for learning the state of the supplier to Parlar and Berkin, 1991 problem

environment. The problem in this case is not only when and how much stock to or-

der but also how much to wait to order again. Parlar and Perry, 1996 extend Parlar

and Berkin, 1991 to multiple suppliers and observe that as the number of suppliers

gets larger, the problem converges to classical EOQ model. Parlar, 1997, Mohebbi,

2004 and Mohebbi and Hao, 2006 extend Parlar and Berkin’s, 1991 paper by adding

non-zero random lead time under random demand. Parlar et al., 1995 investigate the

stochastic demand problem and impose dependency between available and unavailable

periods and show that optimal policy is (s,S) type. Ozekici and Parlar, 1999 show the

optimality of base stock policy when fixed ordering cost is zero, and (s,S) policy when

fixed ordering cost is non-zero. Song and Zipkin, 1996 analyze the Markovian model

of supply and random lead time and find out that classical policies are still optimal

with dynamically changing parameters. Gullu et al., 1997 analyze Bernoulli distributed

supplier availability. They show that the order up to level policy is optimal and find

newsboy problem similar formula to find optimal inventory level. In 1999, they extend

the study to partial availability. The first model in this thesis can be considered as

an extension of Gullu et al., 1997, and Gullu et al., 1999 where the general set-up of

the problem is similar but a multi-echelon system is considered. The second model in
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this thesis is another extension of Gullu et al., 1997, and Gullu et al., 1999 where the

customer demand is stochastic.

The details of multi-echelon inventory systems with deterministic demand and

no supply uncertainty can be found in Muckstadt et al., 1993. In their pioneering

work, Clark and Scarf, 1960 study a periodic review serial installation system. They

define ”echelon stock” as sum of all stock in the given node and all stock in lower

nodes with including transit stock. As in our study of Chapter 3, demand occurs at

the lowest echelon and excess demand is backordered. They prove the optimality of an

order-up-to type policy in each echelon. Federgruen and Zipkin, 1984a approximate

a central depot and several retailers with stochastic demand by a single location in-

ventory system problem. In their setting, central depot does not hold any inventory

and just distributes the stock to retailers. Similar to our work, they use a myopic

stock allocation rule. Federgruen, 1993 gives a comprehensive review for multi-echelon

inventory systems. Diks and Kok, 1998 analyze a continuous review divergent multi-

echelon inventory system. Their system is similar to Clark and Scharf’s, 1960 and

they use the equal probability of stock-out allocation approach similar to Eppen and

Schrage, 1981. Using a decomposition approach they find the optimal replenishment

policy for each echelon which is again order-up-level type. Muckstadt and Roundy,

1993 analyze serial, assembly and distribution systems with constant demand rate and

focus on reorder intervals rather than lot sizes. A review on multi-echelon assembly

and distribution systems is Houtum et al., 1996.

Distribution systems can be categorized according to the stage where the excess

stock is kept and also according to transshipment types between downstream nodes.

Our model can be considered as an extension of Eppen and Schrage, 1981 to a setting

with supplier uncertainty and deterministic demand. In their paper depot does not

hold any stock where in our case depot holds excess stock. According to the decision

structure distribution systems can be categorized as centralized systems and decentral-

ized systems. Eppen, 1979 compares a decentral system with two retailers normally

distributed random demand, that they give their orders independently from each other

considering minimization of their own backorder and holding costs, with a centralized
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system with two retailer and a central warehouse. In the centralized setting, ordering

decision is given together to minimize the system backorder and holding cost to sat-

isfy the total system demand (cumulation of two normally distributed demand) from

the central warehouse. Then, he concludes that centralized problem outperforms the

decentral system. Chen and Lin, 1989 extend Eppen, 1979 with concave holding and

penalty cost. Cherikh, 2000 shows that the central system in classical newsboy prob-

lem environment for single period is more profitable rather than less costly. Gross,

1963 analyzes ordering and transshipment rules in a two location distribution system.

In this paper transshipment is possible before demand realization. The rationale for

making this transshipment is to have a balanced stock among the locations. So, backo-

rder cost is also minimized. Das, 1975 modifies Gross’s work to include transshipment

possibility in the middle of a period. Another paper, in which transshipment is allowed,

is Tagaras’, 1989 paper. In this problem setting, the source of two lower locations has

infinite capacity and meet the order of both locations. However, if the realized stochas-

tic demand of a location is higher than its order up-to level but the realized demand is

smaller than the order up-to level of other location, then the excess stock in the second

location can be transferred to first location which not only decreases the average ex-

pected cost but it also increases the service levels in locations. However, the marginal

effect of pooling decreases as the number of locations increases, by Cai and Du, 2009.

Gerchak and He, 2003 and Berman et al., 2010 analyze the effect of demand variability

on the benefit of pooling. As a result of these papers on risk/stock pooling, it can be

stated that pooling stocks into a central warehouse decreases the expected cost as well

as increases the profitability since it decreases the risk of uncertain demand. Having

a higher demand in a location can be counterbalanced by having a lower demand in

another location. Additionally, Axsäter, 2003 gives a recent review of multi-echelon

distribution systems. Since in the literature centralized systems is referred as efficient

systems, we also consider a centralized distribution system in this thesis.

In multi-echelon problems, two or more different retailers are supplied from a

common manufacturer who has limited stock. Thus we have stock allocation problem,

i.e, we should make an allocation of the limited stocks to retailers. In literature,

stock allocation problem is investigated in several articles in different contexts. Frank
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et al., 1999 find optimal ordering policy for two demand classes where first one has

deterministic demand structure whose demand should be satisfied fully but the second

demand class has uncertainty whose demand can be satisfied partially resulting in

lost sales. This approach is similar to our allocation policy in the sense that first

demand class has priority over the second but we have back-orders instead of lost

sales. Nahmias and Demmy, 1981 study high and low demand classes stock rationing

considering a support level K for high priority demand class. When stock on hand is

equal to or smaller than the support level K, then the low priority demand class starts

to be backordered. Fill rates of systems with and without support level is compared

in the paper and expected backorder rate expressions are derived. Similarly, Ha, 1997

has also two demand classes and first one has priority over the second one. Again, Ha,

1997 applies stock rationing rule and even there is stock or production the low priority

demand class may not be satisfied in order to reserve some stock to high demand class

customers. He applies the queueing theory and using the monotone switching curve

solves the problem. De Véricourt, 2002 extends Ha, 1997 to N demand classes and

gives the characterization of stock allocation policy in a make-to-stock environment

with several customers and also provide an algorithm to find optimal parameters to be

used in stock allocation. Arslan et al., 2007 analyze a similar problem to Nahmias and

Demmy, 1981. They change allocation rule in such a way that when a replenishment

comes even the stock on-hand inventory does not reach the critical ratio, stock is not

reserved to higher demand classes but stock is firstly allocated to satisfy the backorders.

Backorders are satisfied in the order of occurrence, i.e, first backorder is satisfied firstly.

They show the equivalence of this system to serial inventory system and develop an

heuristic. Cachon and Lariviere, 1999 treat stock allocation from a different perspective

than other papers, in the sense that in their setting supplier does not know the demand

figures of the retailers. Supplier only makes the allocation to retailers according to the

received order quantities from the retailers. They find out that in this setting retailers

can distort their orders to get a higher portion from available stock. Additionally,

not only allocated quantity is manipulated but also supplier’s capacity estimation is

misled. They propose to use pricing mechanism to have a undistorted order quantities

from retailers.
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Based on our review of the literature above, we combine ideas from supply un-

certainty, multi-echelon systems and stock rationing literature in a novel manner.
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3. ANALYSIS OF A TWO-ECHELON SUPPLY CHAIN

WITH DISRUPTIONS IN SUPPLY AND

DETERMINISTIC DEMAND

In the first part of this Chapter 3, we develop the dynamic model of the problem.

In the second part we propose a simplified stock allocation policy for the problem.

Then we modify the dynamic model that we develop in the first part according to the

simplified allocation policy. In the fourth part, we construct an algorithm to calculate

the order-up-to level for each period. Finally, in the fifth part we make the numerical

analysis on the problem.

3.1. Development of the Dynamic Model

At the beginning of any period n, the manufacturer observes the inventory posi-

tions of Retailer 1, I1,n and Retailer 2, I2,n, and also the system-wide inventory level

I0,n. Then, the manufacturer places an order of size un with the supplier. Let Sn(un)

be the random variable denoting the amount received from the supplier. In this the-

sis, the supply uncertainty structure assumes that Sn(un) = un with probability pn

and Sn(un) = 0 with probability qn = 1 − pn. The manufacturer pays c per each

received unit. After the realization of the supply, the system-wide inventory raises to

Y0,n := I0,n + Sn(un). Then, the manufacturer makes a stock allocation to the retail-

ers by amounts u1,n and u2,n, which increases the stock level of retailer i to a level

Yi,n := Ii,n + ui,n, i = 1, 2. Let Di(n, n+ k) be the total demand observed at retailer i

over the periods n, n+ 1, . . . , n+ k. In particular, Di(n, n) is the demand of retailer i

in period n. We also let D(n, n+ k) = D1(n, n+ k)+D2(n, n+ k) be the total system-

wide demand over the periods n, n + 1, . . . , n + k. After the receipt of the allocation

quantities by the retailers, demands are observed, and relevant end-of-period inventory

holding and backlogging costs are charged at each location. Let hi,n be the holding cost

per unit residing at location i at the end of period n, where i = 0 for the manufacturer

and i = 1, 2 for the retailers. Also let bi,n be the unit backlogging cost for Retailer i,
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Figure 3.1. Time and Order of Events

charged for the units which are short at the end of period n. Backlogging cost is only

charged at the retailer level. We assume that the lead-time from the supplier to the

manufacturer and the lead-times from the manufacturer to the retailers are negligible.

Accordingly, let Ln(Y0,n,Yn) be the single period cost function associated with the

decision Yn = (Y1,n, Y2,n):

Ln(Y0,n,Yn) = h0,n(Y0,n −
2∑

i=1

Yi,n)
+ +

2∑
i=1

hi,n(Yi,n −Di(n, n))
+

+
2∑

i=1

bi,n(Di(n, n)− Yi,n)
+. (3.1)

Figure 3.1 illustrates the timing and order of various events and decisions within

a period.

For notational convenience, set In = (I0,n, I1,n, I2,n), and let Cn(In) be the min-

imum expected cost of operating the system in periods n, n + 1, . . . , N + 1 with a

starting inventory vector of In, where N is the length of the planning horizon with

CN+1(IN+1) ≡ 0. Furthermore, let un = (u1,n, u2,n) and define the set A(In, un) as:

A(In, un) = {un : un ≥ 0 ,
2∑

i=1

(Ii,n + ui,n) ≤ I0,n + Sn(un)}.

Essentially, given the inventory levels, In, and the order amount, un, A(In, un) defines
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the set of feasible allocation amounts to the retailers. Then, Cn(In) can be written as:

Cn(In) = min
un≥0

E[cSn(un) + min
un∈A(In,un)

{Ln(I0,n + Sn(un), I1,n + u1,n, I2,n + u2,n)

+ Cn+1(I0,n + Sn(un)−D(n, n), I1,n + u1,n −D1(n, n), I2,n + u2,n −D2(n, n))}].

(3.2)

At the beginning of the period n, the manufacturer places an order of size un (the

outer minimization), receives Sn(un), and pays the purchasing cost cSn(un). Then, the

manufacturer decides on the allocation amounts (the inner minimization) and the single

period cost Ln is incurred. The new state In+1 = (I0,n+Sn(un)−D(n, n), I1,n+u1,n−

D1(n, n), I2,n + u2,n − D2(n, n)) is observed and Cn+1 is incurred. The expectation

is taken over Sn(un) since it is a random variable. Letting Y0,n = I0,n + un and

Yi,n = Ii,n + ui,n, and taking the expectation in the above expression yields

Cn(In) = min
Y0,n≥I0,n

{cY0,npn − cI0,npn

+ pn min
Yn∈B(Y0,n,I1,n,I2,n)

{Ln(Y0,n,Yn)

+ Cn+1(Y0,n −D(n, n), Y1,n −D1(n, n), Y2,n −D2(n, n))}

+ qn min
Yn∈B(I0,n,I1,n,I2,n)

{Ln(I0,n,Yn)

+ Cn+1(I0,n −D(n, n), Y1,n −D1(n, n), Y2,n −D2(n, n))}}, (3.3)

where

B(I, I1,n, I2,n) = {Yn : Yi,n ≥ Ii,n i = 1, 2 ,
2∑

i=1

Yi,n ≤ I}.

We define an auxiliary function Gn(Y0,n, I1,n, I2,n) for n = 1, 2, . . . , N as:

Gn(Y0,n, I1,n, I2,n) = min
Yn∈B(Y0,n,I1,n,I2,n)

{Ln(Y0,n,Yn) + cY0,n + Cn+1(Y0,n −D(n, n),

Y1,n −D1(n, n), Y2,n −D2(n, n))}. (3.4)

By using the auxiliary function (3.4), and the fact that cpnY0,n + cqnI0,n − cI0,n =
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cpnY0,n − cpnI0,n, (3.3) can be rewritten as

Cn(In) = pn min
Y0,n≥I0,n

{Gn(Y0,n, I1,n, I2,n)}+ qnGn(In)− cI0,n. (3.5)

It is certainly possible to evaluate the optimal policy of the problem numerically, by

using a backward dynamic programming algorithm which utilizes (3.5), (3.4), and the

starting solution CN+1(IN+1) = 0. However, it is very difficult to obtain analytical

insight and derive structural properties of the optimal solution due to complex nature

of the problem. The main difficulty is the existence of the inner minimization solving

the allocation problem. In the next section we propose a plausible simplified model

that resolves the allocation problem in a particular way.

3.2. A Simplified Allocation Policy

In this section we present a simple allocation policy for the problem in Section 1.

Specifically this policy assumes that

i. The manufacturer tries to satisfy the current period’s demand as much as possible

using its inventory on-hand. That is, there is no intentionally reserving stock for

the future periods at the expense of a retailer.

ii. The holding cost of the manufacturer is smaller than the holding costs of retailers,

h0,n ≤ hi,n for i = 1, 2. Therefore, there is no economies of scale in transferring

the excess amount to the retailers as it is more costly to keep stock at the retailer

level. Therefore, the manufacturer increases stock levels of the retailers at most

up to their current demand values, Yi,n ≤ Di(n, n) for i = 1, 2. The implication

of this assumption is that the single period cost function changes as

Ln(Y0,n,Yn) = h0,n(Y0,n −D(n, n))+ +
2∑

i=1

bi,n(Di(n, n)− Yi,n)
+. (3.6)

Since Yi,n ≤ Di(n, n) for i = 1, 2 and provided that the retailers have zero stock

at the beginning of the planning horizon, inventory levels of the retailers at the
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beginning of any period can be at most zero. That is, Ii,n+1 = Yi,n−Di(n, n) ≤ 0.

iii. The manufacturer makes a prioritization between retailers based on their unit

backlogging costs. Without loss of generality assume that b1,n ≥ b2,n. The manu-

facturer, accordingly first tries to meet the demand of Retailer 1. After satisfying

the demand of Retailer 1, if manufacturer has still on-hand stock then the demand

of Retailer 2 is tried to be met as much as possible.

Although the allocation policy is quite simple and myopically decides on the

quantities to be sent to retailers, in many industries it is very common to define cus-

tomer or retailer priorities in case of shortages in capacity or available inventory. Most

of the time, because a customer is more profitable or has more trade volume, or simply

has a strict contractual agreement, he can have a higher priority than others. When

allocating available stock to orders, customer priority is essential, and we adopt the

same customer priority logic into our allocation rule. We assume that the first retailer

is more important than the second one, and this importance is quantified with a higher

backlogging cost. The optimal policy may be such that, after satisfying the demand of

Retailer 1, if there is still stock, the manufacturer reserves some or all of this stock to

satisfy the possible demands of Retailer 1 in subsequent periods, by deliberately forcing

a backlog at Retailer 2. Even though such a policy may be favorable from a cost point

of view, it would be quite difficult to implement it in an actual distribution setting, as

this would cause a considerable loss of customer goodwill at Retailer 2. Therefore, the

simple allocation rule that we impose is reasonable from the implementation point of

view.

We should note that under our allocation rule, the “inner optimization” problem

in Cn(In) is eliminated and the manufacturer only decides on how many units to order,

and then the inventory on hand is allocated to retailers by the policy explained above.

Our aim is to provide a restructuring of the problem under this allocation policy,

and then to present a characterization of the optimal system-wide stock replenishment

quantity.
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3.3. A Restructuring of the Optimization Model

We first note that, by using the proposed allocation policy a state reduction

is possible. Mainly, I1,n can be eliminated from the state description of the dy-

namic programming model (3.5). That is, by only knowing Y0,n and I2,n, we can

make the allocation and determine stock levels of retailers before demand realization.

Suppose that after replenishment from the supplier, the system-wide inventory level

is Y0,n. Then, after the allocation the stock level of Retailer 1 will raise to Y1,n =

min(D1(n, n), Y0,n−I2,n). Similarly, the post-allocation stock level of Retailer 2 will be

Y2,n = min(D2(n, n), Y0,n − Y1,n) = min(D2(n, n), Y0,n −min(D1(n, n), Y0,n − I2,n)) =

max(I2,n,min(Y0,n − D1(n, n), D2(n, n))). Therefore, it is enough to know the total

system-wide stock after replenishment from the supplier, Y0,n, and inventory level of

Retailer 2 at the beginning of the period, I2,n, in order to find the post-allocation in-

ventory levels, Y1,n and Y2,n, of retailers. With that in mind, the auxiliary function

(3.4) can be redefined as Gn(Y0,n, I2,n) for n = 1, 2, . . . , N , having state variables as the

system-wide inventory level after replenishment from the supplier, Y0,n and inventory

level at Retailer 2 at the beginning of period n, I2,n:

Gn(Y0,n, I2,n) =



Ln(Y0,n, Y0,n − I2,n, I2,n) + Cn+1(Y0,n −D(n, n), I2,n −D2(n, n))

+cY0,n , if Y0,n ≤ D1(n, n) + I2,n

Ln(Y0,n, D1(n, n), Y0,n −D1(n, n)) + Cn+1(Y0,n −D(n, n), Y0,n−

D(n, n)) + cY0,n , if D1(n, n) + I2,n ≤ Y0,n ≤ D1(n, n)

Ln(Y0,n, D1(n, n), Y0,n −D1(n, n)) + Cn+1(Y0,n −D(n, n), Y0,n

−D(n, n)) + cY0,n , if D(n, n) ≥ Y0,n ≥ D1(n, n)

Ln(Y0,n, D1(n, n), D2(n, n)) + Cn+1(Y0,n −D(n, n), 0) + cY0,n ,

if Y0,n ≥ D(n, n)

(3.7)

where analogous to (3.5)

Cn(I0,n, I2,n) = pn min
Y0,n≥I0,n

{Gn(Y0,n, I2,n)}+ qnGn(I0,n, I2,n)− cI0,n, (3.8)
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and CN+1(I0,N+1, I2,N+1) = 0. The four regions over which Gn(Y0,n, I2,n) is defined can

be explained as follows:

• Case 1: If Y0,n ≤ D1(n, n) + I2,n, then the manufacturer cannot satisfy the demand

of Retailer 1 since Y0,n−I2,n ≤ D1(n, n). So, the whole stock at the manufacturer

is sent to Retailer 1, increasing its inventory level to Y0,n − I2,n.

• Case 2: If Y0,n ≤ D1(n, n) and Y0,n − I2,n ≥ D1(n, n), then the manufacturer can

satisfy the demand of Retailer 1, and increases its inventory level to D1(n, n).

The remaining stock is sent to Retailer 2, increasing its inventory level to Y0,n −

D1(n, n).

• Case 3: If D(n, n) ≥ Y0,n ≥ D1(n, n), then the on-hand stock at the manufacturer

is not enough to satisfy the total demand of both retailers. According to our

allocation rule, the manufacturer fully satisfies the demand of Retailer 1, that is

increasing its stock level to its demand value, D1(n, n), then sends the remaining

stock on-hand to Retailer 2, increasing its stock level to Y0,n −D1(n, n).

• Case 4: If Y0,n ≥ D(n, n), then the total system-wide stock is enough to satisfy

the total demand in period n, and the manufacturer increases the stock levels of

retailers to their respective demand values.

We should note that the post-allocation stock levels of the retailers are independent of

I2,n, as long as Y0,n ≥ D1(n, n).

3.4. Characterization of the Optimal Ordering Policy

Our first observation is that Gn(Y0,n, I2,n) is not convex in Y0,n for a given I2,n.

Considering a problem with N = 5, c = 1, and h0,n = 3, b1,n = 20, b2,n = 2, D1(n, n) =

5, D2(n, n) = 3, pn = 0, 40 for all n = 1, 2, . . . , 5, Figure 3.2 presents G1(Y0,1, I2,1)

for different values of Y0,1 when I2,n = 0, and we can clearly observe the kinks in the

function.

A closer inspection of Figure 3.2 also reveals that the kinks in G1 occur at points

5, 8, 13, 16, 21, . . ., and these points correspond to cumulative retailer demandsD1, D1+
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Figure 3.2. Non-convexity of Function G1

D2, 2D1 +D2, 2D1 +2D2, 3D1 +2D2, . . .. In fact, for the last period (period N) in the

planning horizon, GN can be written as:

GN(Y0,N , I2,N) =



LN(Y0,N , Y0,N − I2,N , I2,N) + cY0,N

if Y0,N ≤ D1(N,N) + I2,N

LN(Y0,N , D1(N,N), Y0,N −D1(N,N)) + cY0,N

if D1(N,N) + I2,N ≤ Y0,N ≤ D1(N,N)

LN(Y0,N , D1(N,N), Y0,N −D1(N,N)) + cY0,N

if D(N,N) ≥ Y0,N ≥ D1(N,N)

LN(Y0,N , D1(N,N), D2(N,N)) + cY0,N

if Y0,N ≥ D(N,N)

. (3.9)

and it can easily be seen that GN(Y0,N , I2,N) is minimized at Y ∗
0,N = D(N,N) for any

given I2,N ≤ 0 since c ≤ bi,N for i = 1, 2. Note that, the minimizer Y ∗
0,N = D(N,N) is

independent of I2,N , and it corresponds to a cumulative retailer demand. Also, from

CN(I0,N , I2,N) = pN minY0,N≥I0,N{GN(Y0,N , I2,N)}+ qNGN(I0,N , I2,N)− cI0,N , it can be

concluded that CN(I0,N , I2,N) is minimized at I∗0,N = Y ∗
0,N = D(N,N). Our next aim

is to utilize these observations for an easily computable characterization of the optimal

system-wide order-up-to level. Our exposition consists of the following steps:

i. We inductively show that the optimal system-wide order-up-to level of period n is
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greater than or equal to the total demand of period n. Therefore, this optimal

level, Y ∗
0,n is independent of the inventory level of the retailers.

ii. We also show that Y ∗
0,n ≤ Y ∗

0,n+1+D(n, n). That is, there is a bound on the system-

wide order-up-to level for period n, and this bound depends on the order-up-to

level of the succeeding period.

iii. We obtain slopes of Gn in between the kink points (see Figure 3.2) and utilize

these slopes for finding the optimal solution. For instance, in Figure 3.2, the slope

of G1 for 13 ≤ Y0,1 ≤ 16 is 0.52 = (241.2 − 239.6)/3. Let δ be the slope of Gn

for a given interval. Note that these slopes very much depend on the regions of

Y0,n in equation (3.7). In order to be able to obtain δ values for different values

of Y0,n, we need to be able to rewrite Gn(Y0,n, I2,n) in a different form. In the

following theorem, we provide these alternative expressions for Gn(Y0,n, I2,n), for

Y0,n ≤ Y ∗
0,n+1 +D(n, n) (equations (3.10)-(3.14)).

Proposition 3.1. Define τn as the random variable that indicates the first period

after n that the supplier becomes fully available. Therefore, {τn = i} means

that the supplier becomes available the first time in period n + i. Note that,

P (τn = l) = pn+l

∏l−1
j=1 qn+j for l = 1, 2, . . . with

∏0
j=1 = 1. Suppose that Y0,n ≤

Y ∗
0,n+1 + D(n, n). Then, Gn(Y0,n, I2,n) can be reexpressed by using the random

variable τn as in equations (3.10)-(3.14) for different intervals of Y0,n for period

n. Note that
∑0

i=1 = 0.

• Case 1: If Y0,n ≤ D1(n, n) + I2,n:

Gn(Y0,n, I2,n) = Ln(Y0,n, Y0,n − I2,n, I2,n)

+
N−n∑
i=1

Ln+i(Y0,n −D(n, n+ i− 1), Y0,n − I2,n −D1(n, n+ i− 1),

I2,n −D2(n, n+ i− 1))P (τn > i)

+
N−n∑
i=1

Gn+i(Y
∗
0,n+i, I2,n −D2(n, n+ i− 1))P (τn = i)

+
N−n∑
i=1

cD(n, n+ i− 1)P (τn = i)

+cY0,nP (τn > N − n). (3.10)
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• Case 2: If D1(n, n) + I2,n ≤ Y0,n ≤ D1(n, n):

Gn(Y0,n, I2,n) = Ln(Y0,n, D1(n, n), Y0,n −D1(n, n))

+
N−n∑
i=1

Ln+i(Y0,n −D(n, n+ i− 1), D1(n, n)−D1(n, n+ i− 1),

Y0,n −D2(n, n+ i− 1)−D1(n, n))P (τn > i)

+
N−n∑
i=1

Gn+i(Y
∗
0,n+i, Y0,n −D2(n, n+ i− 1)−D1(n, n))P (τn = i)

+
N−n∑
i=1

cD(n, n+ i− 1)P (τn = i)

+cY0,nP (τn > N − n). (3.11)

• Case 3: If D1(n, n) ≤ Y0,n ≤ D(n, n):

Gn(Y0,n, I2,n) = Ln(Y0,n, D1(n, n), Y0,n −D1(n, n))

+
N−n∑
i=1

Ln+i(Y0,n −D(n, n+ i− 1), D1(n, n)−D1(n, n+ i− 1),

Y0,n −D2(n, n+ i− 1)−D1(n, n))P (τn > i)

+
N−n∑
i=1

Gn+i(Y
∗
0,n+i, Y0,n −D2(n, n+ i− 1)−D1(n, n))P (τn = i)

+
N−n∑
i=1

cD(n, n+ i− 1)P (τn = i)

+cY0,nP (τn > N − n). (3.12)

• Case 4: If Y0,n = D(n, n + k) + x k = 0, 1, 2, . . . , N − n and 0 ≤ x ≤

D1(n+ k + 1, n+ k + 1):

Gn(Y0,n, I2,n) = Ln(Y0,n, D1(n, n), D2(n, n))

+
k∑

i=1

Ln+i(Y0,n −D(n, n+ i− 1), D1(n+ i, n+ i), D2(n+ i, n+ i))P (τn > i)

+Ln+k+1(Y0,n −D(n, n+ k), Y0,n −D(n, n+ k), 0)P (τn > k + 1)

+
N−n∑
i=k+2

Ln+i(Y0,n −D(n, n+ i− 1), x−D1(n+ k + 1, n+ i− 1),

−D2(n+ k + 1, n+ i− 1))P (τn > i).
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+
k+1∑
i=1

Gn+i(Y
∗
0,n+i, 0)P (τn = i)

+
N−n∑
i=k+2

Gn+i(Y
∗
0,n+i,−D2(n+ k + 1, n+ i− 1))P (τn = i)

+
N−n∑
i=1

cD(n, n+ i− 1)P (τn = i)

+cY0,nP (τn > N − n). (3.13)

• Case 5: If Y0,n = D(n, n+k)+x k = 0, 1, 2, . . . , N −n and D1(n+k+1, n+

k + 1) < x < D(n+ k + 1, n+ k + 1):

Gn(Y0,n, I2,n) = Ln(Y0,n, D1(n, n), D2(n, n))

+
k∑

i=1

Ln+i(Y0,n −D(n, n+ i− 1), D1(n+ i, n+ i), D2(n+ i, n+ i))P (τn > i)

+Ln+k+1(Y0,n −D(n, n+ k), D1(n+ k + 1, n+ k + 1),

x−D1(n+ k + 1, n+ k + 1))P (τn > k + 1)

+
N−n∑
i=k+2

Ln+i(Y0,n −D(n, n+ i− 1),−D1(n+ k + 2, n+ i− 1),

x−D1(n+ k + 1, n+ k + 1)−D2(n+ k + 1, n+ i− 1))P (τn > i)

+
k+1∑
i=1

Gn+i(Y
∗
0,n+i, 0)P (τn = i)

+
N−n∑
i=k+2

Gn+i(Y
∗
0,n+i,

x−D1(n+ k + 1, n+ k + 1)−D2(n+ k + 1, n+ i− 1))P (τn = i)

+
N−n∑
i=1

cD(n, n+ i− 1)P (τn = i)

+cY0,nP (τn > N − n). (3.14)

Proof. Proof of the proposition is given in Appendix A.

δi,n,k, i = 1, 2, 2′, n = 1, 2, . . . , N , k = −1, 0, 1, . . . , N − n gives the slope of

Gn(Y0,n, I2,n) for different intervals of Y0,n in period n. When k = −1, Y0,n ≤ D(n, n).

For k ≥ 0, D(n, (k + 2)n) ≥ Y0,n ≥ D(n, (k + 1)n). For a given interval for Y0,n, let
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β > 0 be such that Y0,n−β also belongs to the same interval. The slope of a particular

interval indexed by (i, n, k) is given as:

δi,n,k = (Gn(Y0,n, I2,n)−Gn(Y0,n − β, I2,n))/β,

where Gn(Y0,n, I2,n) and Gn(Y0,n−β, I2,n) terms are given as in equations (3.10)-(3.14).

Slopes between the kink points is found by applying the definition of δi,n,k. Basically

it is just simple difference and division. For Y0,n ≤ D1(n, n) + I2,n:

δ1,n,0 = (Gn(Y0,n, I2,n)−Gn(Y0,n − β, I2,n))/β,

= {{Ln(Y0,n, Y0,n − I2,n, I2,n) +
N−n∑
i=1

Gn+i(Y
∗
0,n+i, I2,n −D2(n, n+ i− 1))P (τn = i)

+
N−n∑
i=1

Ln+i(Y0,n −D(n, n+ i− 1), Y0,n − I2,n −D1(n, n+ i− 1),

I2,n −D2(n, n+ i− 1))P (τn > i)

+
N−n∑
i=1

cD(n, n+ i− 1)P (τn = i) + cY0,nP (τn > N − n)}

−{Ln(Y0,n − β, Y0,n − β − I2,n, I2,n)

+
N−n∑
i=1

Gn+i(Y
∗
0,n+i, I2,n −D2(n, n+ i− 1))P (τn = i)

+
N−n∑
i=1

Ln+i(Y0,n − β −D(n, n+ i− 1), Y0,n − β − I2,n −D1(n, n+ i− 1),

I2,n −D2(n, n+ i− 1))P (τn > i)

+
N−n∑
i=1

cD(n, n+ i− 1)P (τn = i) + cY0,nP (τn > N − n)}}/β,

= {βb1,n + β

N−n∑
i=1

b1,n+iP (τn > i)}/β,

=
N−n∑
i=0

b1,n+iP (τn > i). (3.15)

Other slope equations (3.17) - (3.20) can be derived similarly. The slope expressions

for different intervals are as follows:
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• Case 1: If Y0,n ≤ D1(n, n) + I2,n:

δ1,n,−1 = −
N−n∑
i=0

b1,n+iP (τn > i) + cP (τn > N − n). (3.16)

• Case 2: If D1(n, n) + I2,n ≤ Y0,n ≤ D1(n, n):

δ2,n,−1 = −
N−n∑
i=0

b2,n+iP (τn > i) + cP (τn > N − n). (3.17)

• Case 3: If D1(n, n) ≤ Y0,n ≤ D(n, n):

δ2′,n,−1 = −
N−n∑
i=0

b2,n+iP (τn > i) + cP (τn > N − n). (3.18)

• Case 4: If Y0,n = D(n, n + k) + x k = 0, 1, 2, . . . , N − n and 0 < x ≤ D1(n + k +

1, n+ k + 1):

δ1,n,k =
k∑

i=0

h0,n+iP (τn > i)−
N−n∑
i=k+1

b1,n+iP (τn > i) + cP (τn > N − n). (3.19)

• Case 5: If Y0,n = D(n, n+k)+x k = 0, 1, 2, . . . , N−n and D1(n+k+1, n+k+1) <

x ≤ D(n+ k + 1, n+ k + 1):

δ2,n,k =
k∑

i=0

h0,n+iP (τn > i)−
N−n∑
i=k+1

b2,n+iP (τn > i) + cP (τn > N − n). (3.20)

In the following theorem we will present a key result which will characterize an

interval for optimal system wide order up to level of a period. This result shows that

our assumption in proposition 3.1., Y ∗
0,n ≥ D(n, n) for n = 1, 2, . . . , N , is correct which

means that indeed proposition 3.1. always holds.

Theorem 3.1. i. Y ∗
0,n ≥ D(n, n) for n = 1, 2, . . . , N .

ii. Cn(I0,n, I2,n) is minimized at I0,n = Y ∗
0,n where Y ∗

0,n minimizes Gn(Y0,n, I2,n) for

n = 1, 2, . . . , N .
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iii. Y ∗
0,n ≤ Y ∗

0,n+1 +D(n, n) for n = 1, 2, . . . , N .

Proof. We prove the theorem by induction. For period N , Y ∗
0,N = D(N,N) as shown

previously, and therefore part i holds. We have shown that part ii also holds for period

N . Part iii follows trivially with the convention that Y ∗
0,N+1 = 0 (recall that CN+1 = 0).

Suppose that these assertions hold for n + 1. In particular, if part ii holds for period

n+ 1, then for Y0,n ≥ D(n, n) + Y ∗
0,n+1, we have:

Gn(Y0,n, I2,n) = Ln(Y0,n, D1(n, n), D2(n, n)) + Cn+1(Y0,n −D(n, n), 0),

≥ Ln(Y
∗
0,n+1 +D(n, n), D1(n, n), D2(n, n)) + Cn+1(Y0,n −D(n, n), 0),

≥ Ln(Y
∗
0,n+1 +D(n, n), D1(n, n), D2(n, n)) + Cn+1(Y

∗
0,n+1, 0),

= Gn(Y
∗
0,n+1 +D(n, n), I2,n). (3.21)

The first inequality follows from the fact that Ln(Y0,n, D1(n, n), D2(n, n)) increases for

Y0,n ≥ D(n, n). The second inequality is due to the induction hypothesis for part ii.

Therefore, part iii holds for period n. Then, it follows that we can obtain the slopes of

Gn(Y0,n, I2,n) as in equations (3.16)-(3.20). Note from these equations that, as bi,n > c

the slope is negative for any Y0,n ≤ D(n, n) (also see Figure 3.2 for Y0,1 ≤ 8). Hence,

Gn(Y0,n, I2,n) is decreasing over this region, and therefore Y ∗
0,n ≥ D(n, n), which is part

i, and part i also follows. This completes the induction.

In what follows we present observations on the slopes of the function Gn(Y0,n, I2,n)

that will lead to an efficient computational procedure for the optimal system-wide

order-up-to levels:

• Consider the region Y0,n ≥ D(n, n) and equations (3.19) and (3.20) for a given k,

and note that:

δ1,n,k − δ2,n,k = −
N−n∑
i=k+1

b1,n+iP (τn > i) +
N−n∑
i=k+1

b2,n+iP (τn > i),

≤ 0 since b1,n+i ≥ b2,n+i. (3.22)
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So, if it is not beneficial to order to Retailer 1, δ1,n,k > 0, then it is also not

beneficial to Retailer 2, δ2,n,k > 0, for the same subsequent period n + k + 1.

Conversely, if it is not beneficial to keep stock to Retailer 2 for the future period

n + k + 1, δ2,n,k > 0, it can still be beneficial to keep stock for the future period

n + k + 1 for Retailer 1. This is quite intuitive since the backlogging cost of

Retailer 1 is at least equal to the backlogging cost of Retailer 2.

• As seen from equations (3.16)-(3.20), slope expressions are independent from the

particular demand values. Therefore, when it is beneficial to increase the system-

wide inventory level for a small amount, that is, when the slope is negative, it

is beneficial to increase it up to the next cumulative demand point (up to the

point where the slope expression changes). So, the optimal inventory level is one

of the cumulative retailer demand points given by: {D(n, n), D(n, n) + D1(n +

1, n + 1), D(n, n + 1), D(n, n + 1) +D1(n + 2, n + 2), D(n, n + 3), . . . , D(n,N −

1) +D1(N,N), D(n,N)}, and it can be characterized as: Y0,n = D1(n, n+K1) +

D2(n, n+K2) where K2 ∈ {K1, K1 − 1}, and K1 ∈ {1, 2, . . . , N − n}.

• Fix a retailer i and observe that the marginal benefit of keeping stock for further

periods decreases for that retailer:

δi,n,k − δi,n,k+1 = −h0,n+k+1P (τn > k + 1)− bi,n+k+1P (τn > k + 1),

≤ 0. (3.23)

So, if it is not beneficial to keep stock for a future period n+ k+ 1 for a retailer,

δi,n,k > 0, then it is also not beneficial for further periods k′ + 1 ≥ k + 1, since

δi,n,k′ ≥ δi,n,k > 0

• If δ1,n,k ≥ 0 for some k then Y ∗
0,n ≤ D(n, n+ k). This follows from the fact that for

k′ ≥ k δ1,n,k′ ≥ 0. Additionally, since δ1,n,k ≥ δ2,n,k, δ2,n,k′ ≥ 0 for k′ ≥ k.

• We already know that Y ∗
0,n ≥ D(n, n). In order to understand if one needs to hold

more stock than D(n, n), it is sufficient to check δ1,n,0, note that if δ1,n,0 > 0, then

δ2,n,0 > 0 too. Then if δ1,n,0 > 0 Y ∗
0,n = D(n, n). But if δ1,n,0 ≤ 0, then by at least

keeping stock for the demand of Retailer 1 in period n + 1 one can decrease the

cost. So, in this case Y ∗
0,n ≥ D(n, n) +D1(n+ 1, n+ 1).
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Suppose that Y ∗
0,n+1 = D1(n+ 1, n+K1) +D2(n+ 1, n+K2) for some 1 ≤ K1 ≤

N − n, K2 ∈ {K1, K1 − 1} and n ≤ N − 1. Trivially, for n = N − 1, Y ∗
0,N = D(N,N),

so K1 = K2 = 1. First, we should check if δ1,n,0 > 0. If this is the case, then

Y ∗
0,n = D(n, n), as there is no benefit of keeping more stock. Otherwise, consider

raising the inventory level to Y ′
0,n = D(n, n) +D1(n+ 1, n + 1). The marginal change

in the cost function due to keeping an extra stock of D1(n+1, n+1) on top of D(n, n)

is given by δ1,n,0D1(n + 1, n + 1). Similarly, consider raising the inventory level to

Y ′′
0,n = D(n, n + 1). The marginal change in the cost function in this case would be

δ1,n,0D1(n+1, n+1)+δ2,n,0D2(n+1, n+1). Obviously, Y ′′
0,n is a better decision than Y ′

0,n

if δ2,n,0D2(n+ 1, n+ 1) < 0. We can extend this idea and define for k2 ∈ {k1 − 1, k1}:

R(k1, k2) =

k1∑
i=0

δ1,n,iD1(n+ i+ 1, n+ i+ 1) +

k2∑
i=0

δ2,n,iD2(n+ i+ 1, n+ i+ 1), (3.24)

where
∑−1

i=0 = 0. R(k1, k2) is the marginal change in the cost function for period n

when the system-wide order-up-to level is increased from D(n, n) (the minimum needs

to be hold) to D1(n, n + k1 + 1) +D2(n, n + k2 + 1). In order this move to be viable,

we should have R(k1, k2) ≤ 0. One can simply search for all k1 and k2 ∈ {k1 − 1, k1}

values that minimize R(k1, k2). Let

(K∗
1 , K

∗
2 ) = argmin

k1 ∈ {0, 1, . . . , K1 − 1}

k2 ∈ {k1 − 1, k1}

{R(k1, k2)}. (3.25)

Note that, k1 in (3.25) is restricted to be less than or equal to K1 − 1 as we know that

Y ∗
0,n ≤ D(n, n) + Y ∗

0,n+1. Suppose that R(K∗
1 , K

∗
2) > 0. Then, we set Y ∗

0,n = D(n, n),

as there is no marginal benefit of increasing the stock level beyond its lower bound

D(n, n). Otherwise, we let Y ∗
0,n = D1(n, n+K∗

1 + 1) +D2(n, n+K∗
2 + 1).
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3.4.1. Algorithm

The following algorithm calculates the optimal system-wide order-up-to levels for

all periods n = 1, 2, . . . , N .

Step 0. K1 = K2 = 1 (Y ∗
0,N = D(N,N)).

Step 1. For n = N − 1 to 1:

Check δ1,n,0 ≤ 0. If this is true, then continue with step 2, otherwise set K∗
1 =

K∗
2 = −1 and go to step 3.

Step 2. For n = N − 1 to 1 and δ1,n,1 ≤ 0:

Solve (3.25) to find K∗
1 and K∗

2 .

Step 3. Y ∗
0,n = D1(n, n+K∗

1 + 1) +D2(n, n+K∗
2 + 1)

Set K1 = K∗
1 + 2 and K2 = K∗

2 + 2.

3.5. Numerical Analysis

In this section we conduct a numerical analysis on the behavior of the order-up-to

level and compare the problem result under the simplified allocation rule and without

allocation rule.

We analyze the optimal order up to levels in different parameter combinations

where N = 8. The different patterns for demand values, backorder costs, availability

probabilities of supplier and unit purchasing cost is summarized in Table 3.1. The

average demand per period is 9 in demand patterns dp1, dp2 and dp3 and it is 12 in

dp′1, dp
′
2 and dp′3. The demand patterns are same except values between dp1 and dp′1,

dp2 and dp′2, dp3 and dp′3. We have fixed the demand pattern of Retailer 2 to dp3 and

the backorder cost pattern to bp1 in all scenarios. The holding cost of manufacturer is

fixed to h0,n = 1 for all n = 1, 2 . . . , 8.

The scenarios which are generated by the combinations of above demand, supply

probability, backorder cost and unit cost patterns are listed in Table B.1 in Appendix

B. We have examined 144 many different scenarios. Optimal order-up-to levels for each
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Table 3.1. Parameter Patterns

Demand Availability prob. Backorder cost Unit cost

n dp1 dp2 dp3 dp′1 dp′2 dp′3 pp1 pp2 pp3 pp4 bp1 bp2 bp3 cp1 cp2

1 6 6 9 9 9 12 0.1 0.9 0.9 0.5 5 10 20 0 2

2 6 12 9 9 15 12 0.1 0.9 0.1 0.5 5 10 20 0 2

3 6 6 9 9 9 12 0.1 0.9 0.9 0.5 5 10 20 0 2

4 6 12 9 9 15 12 0.1 0.9 0.1 0.5 5 10 20 0 2

5 12 6 9 15 9 12 0.1 0.9 0.9 0.5 5 10 20 0 2

6 12 12 9 15 15 12 0.1 0.9 0.1 0.5 5 10 20 0 2

7 12 6 9 15 9 12 0.1 0.9 0.9 0.5 5 10 20 0 2

8 12 12 9 15 15 12 0.1 0.9 0.1 0.5 5 10 20 0 2

period for the general problem, i.e. when there is not any simplified allocation rule,

and for the problem with simplified allocation rule is shown in Table C.1 in Appendix

C. In the total cost column of the table, optimal cost values of the scenarios are listed

which are the expected total cost of operating the system from the beginning of first

period to end of planning horizon with initial inventory level zero i.e., C1(0) where

0 is a zero vector, (0, 0, 0) for the general problem and C1(0, 0) for the problem with

simplified allocation rule.

The results of two sample problem with allocation rule is shown in Table 3.2. As

seen from the table, in the scenario 25 the optimal system-wide inventory level in terms

of number of period kept gets larger as goes to the beginning of the planning horizon.

However, in the scenario 43 it fluctuates because in this scenario the backlogging cost

of Retailer 1 is not large enough to counterbalance the cost increase of keeping stock

for Retailer 2. We observe that when supplier availability probability is constant over

the periods, i.e, when it is all 0.1, pp1, or 0.9, pp2, or 0.5, pp4, number of period kept,

k, monotonically increases as goes to the beginning of the planning horizon. But when

the supplier availability probability is cyclic between 0.1 and 0.9 it can fluctuate as

described above. Another observation is that when the backlogging cost is 5 for both

retailers, since the retailers become identical in terms of their costs even their demand
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values are different manufacturer does not hold any stock for Retailer 1, i.e, kept stock

is multiples of period demands exactly as expected. Problem resembles the one retailer

case.

Table 3.2. Resulsts of Sample Problems

With allocation rule

Scenario n Y ∗
0,n in terms of next period num.

43

8 21 0

7 21 0

6 42 1

5 33 1 for Retailer 1

4 36 1

3 30 1

2 30 1

1 30 1

25

8 21 0

7 33 1 for Retailer 1

6 42 1

5 54 1 for Retailer 1

4 48 1 for Retailer 1

3 42 1 for Retailer 1

2 36 1 for Retailer 1

1 36 1 for Retailer 1

In numerical analysis, it is seen that only in 29 scenarios the total cost starting

from period n = 1 to end of n = N = 8 with initial zero inventory level differs between

general problem and the problem with simplified allocation rule out of 144 scenarios.

Additionally, the biggest deviation is smaller than 0.7 percent. The biggest differences

occur in pp4 parameter. Out of these 29 scenarios 12 of them has pp4 and these are

the top 12 biggest differences. If we ignore these scenarios with pp4, then only in

17 scenarios the total cost is different and the maximum deviation is less than 0.015

percent. So, we can say that the allocation rule performance is worst when supply
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probability is 0.5 percent. It performs better when supplier probability is higher or

smaller or even it fluctuates between high and small values since in extreme cases

manufacturer keeps or does not keep stock for both retailers. However, when supply

probability is in the middle, manufacturer may want to keep stock for first retailer and

not for the second which contradicts each other and decreases the performance of the

algorithm.
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4. ANALYSIS OF AN INVENTORY SYSTEM WITH

DISRUPTIONS IN SUPPLY WITH STOCHASTIC

DEMAND

In the first part of Chapter 4, we develop the dynamic programming model of

the problem and in the second part, we structure the order-up-to levels of the problem

and develop an algorithm to calculate the optimal inventory levels of the periods. In

the last part, we give numerical examples for the problem.

4.1. Development of the Dynamic Model and Structural Results

At the beginning of any period n, the manufacturer observes the inventory posi-

tion, In, and places an order of size un with the supplier. Let Sn(un) be the random

variable denoting the amount received from the supplier in period n. The supply un-

certainty structure that we consider assumes that Sn(un) = un with probability pn

and, Sn(un) = 0 with probability qn = 1 − pn. There is not any fix order cost or unit

purchasing cost. After the realization of supply, the inventory level at manufacturer

becomes Yn, Yn = In+Sn(un), and then the demand in period n is observed as Dn = d

with probability αn and Dn = 0 with probability 1 − αn. Afterwards, relevant end-

of-period inventory holding and backlogging costs are charged. Let hn be the holding

cost per unit residing at the end of period n and bn be the unit backlogging cost that is

charged for the units short at the end of period n. We assume that the lead-time from

the supplier to the manufacturer and production time at manufacturer are negligible.

As a summary in a period the following events are realized in the following order:

i. Initial inventory position In is observed.

ii. Order un is given to supplier.

iii. Order is realized as Sn(un), Sn(un) = 0 with probability 1− pn and Sn(un) = un

with probability pn. Lead time is assumed as zero. Inventory position becomes

Yn = In + Sn(un).
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vi. Demand of the period, Dn, is realized. It is either 0 or d. Inventory position

becomes Yn −Dn ∈ {Yn, Yn − d}.

v. Holding or backlogging cost is charged.

Let Ln(Yn) be the single period cost and Ln(Yn) be the expected single period cost

function associated with the inventory position Yn after the supply realization but

before the demand realization in period n:

Ln(Yn) = hn(Yn −Dn)
+ + bn(Dn − Yn)

+. (4.1)

Ln(Yn) = EDn [Ln(Yn)],

= (1− αn)(hn(Yn)
+ + bn(−Yn)

+) + αn(hn(Yn − d)+ + bn(d− Yn)
+).

(4.2)

As seen from the above equation Ln(Yn) is a convex function since it is combination of

convex functions.

We define Cn(In) as the minimum expected cost of operating the system in periods

n, n+1, . . . , N +1 with a starting inventory In, where N is the length of the planning

horizon with CN+1(IN+1) ≡ 0. Cn(In) can be written as:

Cn(In) = min
un≥0

{ESn(un)[EDn [Ln(In + Sn(un)) + Cn+1(In + Sn(un)−Dn)]]}. (4.3)

The outer expectation in equation (4.3) is for the supplier availability and the inner

one is for demand uncertainty. If we interchange the order of the expectations and take

the expectation for supplier availability uncertainty, Sn(un), we get equation (4.4).

Cn(In) = EDn [pn min
un≥0

{Ln(In+un)+Cn+1(In+un−Dn)}+qn{Ln(In)+Cn+1(In−Dn)}].

(4.4)
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When we move the demand expectation into the minimization term, we obtain equation

(4.5).

Cn(In) = pn min
un≥0

{EDn [Ln(In+un)+Cn+1(In+un−Dn)]}+qnEDn [Ln(In)+Cn+1(In−Dn)].

(4.5)

To simplify the notation we define an auxiliary functionGn(Yn) which corresponds

to expected cost of operating the system after the supply realization but before demand

realization in period n to the end of planning horizon where the inventory level after

the supply realization is Yn in period n.

Gn(Yn) = EDn [Ln(Yn) + Cn+1(Yn −Dn)], (4.6)

= Ln(Yn) + (1− αn)Cn+1(Yn) + αnCn+1(Yn − d). (4.7)

If we plug equation (4.6) into equation (4.5) and use definiton Yn = In + un, we get

equation (4.8).

Cn(In) = pn min
un≥0

Gn(In + un) + qnGn(In),

= pn min
Yn≥In

Gn(Yn) + qnGn(In). (4.8)

Theorem 4.1. i. Gn(Yn) is convex in Yn and let Y ∗
n be its smallest minimizer in

period n.

ii. Cn(In) is convex in In and it is minimized at In = I∗n = Y ∗
n in period n where Y ∗

n

minimizes Gn(Yn).

iii. Order-up-to policy is optimal. An amount of un = Y ∗
n − In is ordered whenever

the inventory level at the beginning of period n, In, is less than or equal to Y ∗
n .

Otherwise no order is given, un = 0. In other words, un = max(Y ∗
n − In, 0).

Proof. For last period N , we have:

GN(YN) = LN(YN) + (1− αN)CN+1(YN) + αNCN+1(YN − d) = LN(YN), (4.9)
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since CN+1(IN) = 0 by assumption and LN(YN) is convex, GN(YN) is convex.

Since it is convex, there is at least a value which minimizes GN(YN). Let Y ∗
N be its

smallest minimizer.

CN(IN) = pN min
YN≥IN

GN(YN) + qNGN(IN),

=

 pNGN(Y
∗
N) + qNGN(IN) if IN ≤ Y ∗

N

pNGN(IN) + qNGN(IN) = GN(IN) if IN > Y ∗
N

. (4.10)

As seen from above, the order-up-to level form of ordering policy is optimum

in period N . The convexity of CN(IN) follows from the convexity of GN(YN). So,

propositions hold in period N . Assume they also hold in period n+1.Then, Gn(Yn) =

Ln(Yn) + (1 − αn)Cn+1(Yn) + αnCn+1(Yn − d) is convex from summation of convex

functions. Since Gn(Yn) is convex, it has at least a minimizer. Let us assume that the

smallest one is Y ∗
n . Now, we check Cn(In):

Cn(In) = pn min
Yn≥In

Gn(Yn) + qnGn(In),

=

 pnGn(Y
∗
n ) + qnGn(In) if In ≤ Y ∗

n

pnGn(In) + qnGn(In) = Gn(In) if In > Y ∗
n

. (4.11)

So, optimal ordering policy is seen as order-up-to type in period n. Convexity of Cn(In)

follows from the convexity of Gn(Yn). Then, propositions hold in period n.

As a result, by induction they hold for all periods n = 1, 2, . . . , N which completes

the proof.

For last period N , the optimal order-up-to level is the point where LN(YN) is

minimized as stated before. Let us find the optimal order-up-to level for period N :
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GN(YN) = LN(YN),

= (1− αN)(hN(YN)
+ + bN(−YN)

+) + αN(hN(YN − d)+ + bN(d− YN)
+),

= (1− αN)hNYN + αNbN(d− YN) for 0 ≤ YN ≤ d,

= ((1− αN)hN − αNbN)YN . (4.12)

Therefore,

min
0≤YN≤d

GN(Y ) = min
0≤YN≤d

{((1− αN)hN − αNbN)YN}. (4.13)

As a result, if (1 − αN)hN − αNbN > 0, GN(YN) is minimized at YN = Y ∗
N = 0.

If (1 − αN)hN − αNbN < 0, GN(YN) is minimized at YN = Y ∗
N = d. When (1 −

αN)hN − αNbN = 0, GN(YN) is minimized at YN = 0 or YN = d, then the optimal is

Y ∗
N = min(0, d) = 0 by the definition.

Theorem 4.2. i. Y ∗
n ≥ 0 for n = 1, 2, . . . , N .

ii. Y ∗
n ≤ d+ Y ∗

n+1 for n = 1, 2, . . . , N .

iii. If (1−αn)hn ≤ αnbn for all n = 1, 2, . . . , N , then Y ∗
n ≥ d for all n = 1, 2, . . . , N .

Proof. As explained above, since Y ∗
N = 0 or Y ∗

N = d, propositions hold in period N .

Suppose that they also hold in period n+ 1.

i. We will check if Gn(0) ≤ Gn(Yn) for Yn ≤ 0:

Gn(0) = Ln(0) + (1− αn)Cn+1(0) + αnCn+1(−d),

≤ Ln(Yn) + (1− αn)Cn+1(0) + αnCn+1(−d), (4.14)

since Ln(0) ≤ Ln(Yn). Because Cn+1(In+1) is minimized at Y ∗
n+1 and Y ∗

n+1 ≥ 0 ≥

Yn and Y ∗
n+1 ≥ 0 ≥ Yn − d,



35

Gn(0) ≤ Ln(Yn) + (1− αn)Cn+1(Yn) + αnCn+1(Yn − d),

= Gn(Yn). (4.15)

So, proposition holds in period n. By induction, Y ∗
n ≥ 0 for n = 1, 2, . . . , N .

ii. We will check if Gn(Y
∗
n+1 + d) ≤ Gn(Yn) for Y ≥ d+ Y ∗

n+1:

Gn(Y
∗
n+1 + d) = Ln(Y

∗
n+1 + d) + (1− αn)Cn+1(Y

∗
n+1 + d) + αnCn+1(Y

∗
n+1),

≤ Ln(Yn) + (1− αn)Cn+1(Y
∗
n+1 + d) + αnCn+1(Y

∗
n+1), (4.16)

since Ln(0) ≤ Ln(Yn). Then,

Gn(Y
∗
n+1 + d) ≤ Ln(Yn) + (1− αn)Cn+1(Yn) + αnCn+1(Yn − d),

= Gn(Yn). (4.17)

So, item ii holds for period n and by induction Yn ≥ d + Y ∗
n+1 holds for n =

1, 2, . . . , N .

iii. We will check the validity of Gn(d) ≤ Gn(Yn) for 0 ≤ Yn ≤ d when (1−αn)hn+c ≤

αnbn holds in period n. Note that since 0 ≤ Yn ≤ d when (1− αn)hn + c ≤ αnbn,

Ln(d) ≤ Ln(Yn) for Yn ≤ d :

Gn(d) = Ln(d) + (1− αn)Cn+1(d) + αnCn+1(0),

≤ Ln(Yn) + (1− αn)Cn+1(d) + αnCn+1(0),

≤ Ln(Yn) + (1− αn)Cn+1(Yn) + αnCn+1(Yn − d),

= Gn(Yn). (4.18)

So, item iii holds. By induction, Y ∗
n ≥ d for n = 1, 2, . . . , N if (1−αn)hn+c ≤ αnbn

for n = 1, 2, . . . , N .
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4.2. Reformulation of the Objective Function Based on Hitting Time

Analysis

We define τn such a period that for the first time after period n both the supplier

is available, Qn+τn = ∞, and the ordering quantity is non-negative, i.e, the beginning

inventory level is at most the optimal order-up-to level. If the inventory level is Yn in

period n after replenishment, Yn −D(n, n+ τn − 1) ≤ Y ∗
n+τn . We call τn as the hitting

time.

We rewrite function Gn(Yn) using the definition of τn. From period n to n + τn,

the replenishment from supplier is zero since either supplier is unavailable or order

quantity is zero by the definition of τn. So, during this time period inventory level

decreases stochastically by Dn+i in each period and the single period cost is incurred

accordingly. In other words, in period n+ i, for 0 ≤ i < τn, Ln+i(Yn −D(n, n+ i− 1))

is incurred with probability P (τn > i). However, in period τn + n manufacturer has

optimal order-up-to inventory position after replenishment by the definition of τn thus

Gn+i(Y
∗
n+i) is incurred with probability P (τn = i) from period τn+n to end of planning

horizon N . Thus, we can reexpress Gn(Yn) as in equation (4.19) using τn:

Gn(Yn) = Ln(Yn)+
N−n∑
i=1

E[Ln+i(Yn−D(n, n+ i−1))1{τn>i}]+
N−n∑
i=1

E[Gn+i(Y
∗
n+i)1{τn=i}].

(4.19)

If it is beneficial to increase inventory position from a demand multiple value,

manufacturer continues increase inventory position to next demand multiple, since

slope value does not change between two demand multiple points. So, order-up-to

levels are one of {0, d, 2d, . . . , (N − n + 1)d}. Let for some K ∈ {0, 1, . . . , N − n},

Y ∗
n+1 = Kd. Since we know that Y ∗

n ≤ Y ∗
n+1 + d, we define y(η) = jd− η for 0 ≤ η ≤ d

and j ∈ {0, 1, . . . , K+1} by guaranteeing non-negative y(η), y(η) ≥ 0, and y = y(0) =

jd. We define a new function, Gn(y, η) which represents the slopes between demand

multiples, Gn(y, η) = Gn(y)−Gn(y(η)). By using (4.19) we explore Gn(y, η) and then

we use this to check the benefit of increasing or decreasing the inventory level from a
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demand multiple point, y. Note that, τn also depends on η through y(η), but since

d ≥ η ≥ 0 and Y ∗
n+k ∈ {0, d, 2d, . . . , (N − n− k + 1)d}, if y −D(n, n + k − 1) ≥ Y ∗

n+k

then y(η) − D(n, n + k − 1) ≥ Y ∗
n+k. So, {τn = i} has the same probability for y(η)

for d ≥ η ≥ 0. Additionally, to rearrange and combine the similar terms and to have

a simpler form, we assume stationary and constant holding and backlogging costs in

this reformulation. In other words, hn = h and bn = b for all n = 1, 2, 3, . . . , N .

Gn(y, η) = Gn(y)−Gn(y(η)),

= Ln(y)− Ln(y(η)) +
N−n∑
i=1

E[1{τn>i}(Ln+i(y −D(n, n+ i− 1)),

−Ln+i(y(η)−D(n, n+ i− 1)))]. (4.20)

For any i in (4.20), by fixing Dn, Dn+1, . . . , Dn+i−1 we fix D(n, n + i − 1) and we fix

Qn+1, Qn+2, . . . , Qn+i−1. We define Vn(y, η) = Ln+i(y −D(n, n+ i− 1))−Ln+i(y(η)−

D(n, n+ i−1)). We have three partition for Vn(y, η) according to value D(n, n+ i−1):

• Case 1: y − D(n, n + i − 1) < d, i.e, y − D(n, n + i − 1) ∈ {0,−d,−2d, . . .} and

y(η)−D(n, n+ i−1) < d, i.e, y−η−D(n, n+ i−1) ∈ {−η,−d−η,−2d−η, . . .}:

Since inventory level is zero or there is backorder, either manufacturer increase

its backorder level by d with probability αn+i or remain as it is with probability

1−αn+i. In other words, with inventory level y(η), we have more backorder cost:

Vn+i(y, η) = Ln+i(y −D(n, n+ i− 1))− Ln+i(y(η)−D(n, n+ i− 1)),

= αn+i(d− y +D(n, n+ i− 1))b+ (1− αn+i)b(D(n, n+ i− 1)− y)

−αn+i(d− y +D(n, n+ i− 1) + η)b

−(1− αn+i)b(D(n, n+ i− 1)− y + η),

= −bη. (4.21)

• Case 2: y − D(n, n + i − 1) = d and y(η) − D(n, n + i − 1) = d − η: If demand

is d with probability αn+i, manufacturer with inventory level y has bη much less

backorder cost but if demand is zero with probability 1 − αn+i, it has hη more
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holding cost:

Vn+i(y, η) = Ln+i(y −D(n, n+ i− 1))− Ln+i(y(η)−D(n, n+ i− 1)),

= (1− αn+i)hd− (1− αn+i)h(d− η)− αn+ibη,

= −αn+ibη + (1− αn+i)hη. (4.22)

• Case 3: y−D(n, n+ i−1) > d namely y−D(n, n+ i−1) ≥ 2d and i.e, y−D(n, n+

i−1) ∈ {2d, 3d, . . .} and y(η)−D(n, n+ i−1) ≥ 2d, i.e, y−η−D(n, n+ i−1) ∈

{2d − η,−3d − η, . . .}: For both manufacturers with inventory level y and y(η)

since there are enough inventory for demand, they only incur holding cost. Since

inventory level for manufacturer with inventory level y is more than y(η) by η

much, he has more backorder cost by hη:

Vn+i(y, η) = Ln+i(y −D(n, n+ i− 1))− Ln+i(y(η)−D(n, n+ i− 1)),

= αn+i(y − d)h+ (1− αn+i)yh

−αn+i(y − η − d)h− (1− αn+i)(y − η)h,

= hη. (4.23)

As a result,

Gn(y, η) = Ln(y)− Ln(y(η)) +
N−n∑
i=1

E[Vn+i(y, η)1{τn>i}], (4.24)

where

Vn+i(y, η) = EDn+i
[Ln+i(y −D(n, n+ i− 1))− Ln+i(y(η)−D(n, n+ i− 1))],

=


−bη if y −D(n, n+ i− 1) < d

−αn+ibη + (1− αn+i)hη if y −D(n, n+ i− 1) = d

hη if y −D(n, n+ i− 1) > d

. (4.25)

As seen from above equation, the individual values of demand realizations are not
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important but the total is important. Now we will try to calculate the probability of

τn > i. As explained before, τn not only depends on supplier availability but also the

inventory level at the beginning of the period. For a fixed i, all possible combinations

of supplier availability is given by Ωi which is 2i subsets of {1, 2, . . . , i}. Elements of

Ωi is represented by Aj for j = 1, 2, . . . , 2i, Ωi = ∪2i

j=1Aj. Elements of a subset Aj

indicates the infinite supply periods, i.e the periods when the supplier is available. If

k ∈ Aj then Qn+k = ∞. Note that, A1, the first subset of Ωi is empty set, A1 = ∅,

which means that there is not any period in which supplier is available. For Ai ∈ Ωi,

PQ(Ai) =
∏

k∈Ai
pn+k

∏
k/∈Ai

qn+k is the probability of occurrence of this set. Up to now,

we are interested in supplier availability probability. However, even supplier is available

if the inventory level is higher than the optimal order-up-to level, manufacturer cannot

reach the optimal. In other words, if Y ∗
n+k < y −D(n, n+ k − 1), if the total demand

from period n to n+ k, excluding n+ k, is less than the difference between the initial

inventory level and the optimal order-up-to level, manufacturer cannot reach Y ∗
n+k, he

has much inventory than Y ∗
n+k. Then the condition for possible values of cumulative

demand, and the beginning inventory level, together with supply availability can be

expressed in the following sets:

U1
i (Aj) = {k ∈ Aj : D(n, n+ k − 1) < y − Y ∗

n+k, y −D(n, n+ i− 1) < d}

U2
i (Aj) = {k ∈ Aj : D(n, n+ k − 1) < y − Y ∗

n+k, y −D(n, n+ i− 1) = d}

U3
i (Aj) = {k ∈ Aj : D(n, n+ k − 1) < y − Y ∗

n+k, y −D(n, n+ i− 1) > d}

Since we know the subsets related with supplier availability and probability of demand,

we can calculate the probabilities of these sets, P (U1
i (Aj)), P (U2

i (Aj)) and P (U3
i (Aj)).

As a result we can calculate 4.24 as:

Gn(y, η) = Ln(y)− Ln(y(η)) +
N−n∑
i=1

∑
Aj∈Ωi

PQ(Aj)
3∑

k=1

(P (Uk
i (Aj))Vn+i(y, η)),

= Ln(y)− Ln(y(η)) +
N−n∑
i=1

∑
Aj∈Ωi

PQ(Aj)[P (U1
i (Aj))(−bη)

+P (U2
i (Aj))(−αb+ (1− α)h)η + P (U3

i (Aj))hη],
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= Ln(y)− Ln(y(η))− b

N−n∑
i=1

∑
Aj∈Ωi

PQ(Aj)[P (U1
i (Aj)) + αP (U2

i (Aj))]

+h
N−n∑
i=1

∑
Aj∈Ωi

PQ(Aj)[P (U2
i (Aj))(1− α) + P (U3

i (Aj))], (4.26)

where,

Ln(y)− Ln(y(η)) =


−bη if y < d

−αbη + (1− α)hη if y = d

hη if y > d

. (4.27)

As a result, if this difference, (4.26), is negative, then the optimal order-up-to level is

y otherwise manufacturer decrease the inventory level by d and check the difference

again. He will increase the inventory level up to point where this difference is positive.

We will state all these finding in the following theorem. No additional proof is

given for the theorem since it is derived from the results of above discussions.

Theorem 4.3. The optimal order-up-to level for period n ∈ {1, 2, . . . , N}, Y ∗
n is

equal to Knd for 0 ≤ Kn ≤ N − n + 1 with Kn = 1. If (1 − α)h − αb ≤ 0 then

Y ∗
N = d, otherwise Y ∗

N = 0. Given that Y ∗
n+1 = Kn+1d for 0 ≤ N − n and n < N ,

let

K ′ = max{i = 1, 2, . . . , Kn+1 + 1 : Gn(y, η) < 0}. (4.28)

Then, Y ∗
n = K ′d. If no such K ′ exists, then Y ∗

n = 0.

4.2.1. Algorithm

The following algorithm determines the optimal order-up-to levels.

Step 0. Check (1− α)h− αb ≤ 0. If this is true YN∗ = d and KN = 1, otherwise set

Y ∗
N = 0 and KN = 0
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Step 1. For n = N − 1 to 1:

Find K ′ which satisfy 4.28. If no such K ′ exists, set K ′ = 0

Step 2. Set Y ∗
n = K ′d and K = K ′.

4.3. Numerical Analysis

In this section we make numerical analysis on the behavior of the order-up-to level.

We check the optimal order-up-to levels in different parameter combinations where

N = 10. The different patterns for demand and supplier availability probabilities,

backorder cost and holding cost are shown in Table 4.1. We take fix demand value as

d = 10 and we fix the backorder cost to bn = 20 for all n = 1, 2, . . . , N in all scenarios .

Table 4.1. Parameter Patterns for Single Stage Inventory Problem

Holding cost Demand/Supply probability

n hp1 hp2 pp1 pp2 pp3 pp4 pp5

1 1 5 0.1 0.5 0.9 0.1 0.9

2 1 5 0.1 0.5 0.9 0.9 0.1

3 1 5 0.1 0.5 0.9 0.1 0.9

4 1 5 0.1 0.5 0.9 0.9 0.1

5 1 5 0.1 0.5 0.9 0.1 0.9

6 1 5 0.1 0.5 0.9 0.9 0.1

7 1 5 0.1 0.5 0.9 0.1 0.9

8 1 5 0.1 0.5 0.9 0.9 0.1

9 1 5 0.1 0.5 0.9 0.1 0.9

10 1 5 0.1 0.5 0.9 0.9 0.1

We generate 26 different scenarios using these patterns. Details of the scenarios

are listed in Table D.1 in Appendix D. Optimal order-up-to levels for each period and

total cost of operating the inventory system from period n = 1 to n = 10 with initial

inventory level zero are given in Table E.1 in Appendix E.

As seen from the results, when the probability patterns are constant over the
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planning horizon for demand and supply, the stock kept on-hand is monotonically

increases as going from the end of planning horizon to beginning. However, when the

probabilities are not constant the optimal order up-to level fluctuates as in scenario 19.

In scenarios 13 and 16, since the holding cost is relatively high and the probability

of non-zero demand is very low, the manufacturer does not hold any inventory in

any period. However, when the supply probability is also very low as in scenario 10,

manufacturer holds inventory in periods n = 1, 2, . . . , 7. When we decrease the holding

cost from 5 to 1, then we end up with scenario 4 (compared to 13) and scenario

7 (compared to 16). In scenarios 4 and 7, manufacturer holds stock in all periods

n = 1, 2, . . . , 10 since holding cost gets very low compared to backlogging cost.

When supply probability is pp3 and holding cost is hp2, optimal stock level for

periods does not change and it stays as constant over the planning horizon. Since the

supply probability and the holding cost are high, the risk does not change from the

beginning of planning horizon to the end of it, thus optimal inventory level does not

change over the horizon regardless of demand possibility. However, as in scenario 9,

if the holding cost is very low, the manufacturer plans to hold more inventory at the

beginning of the planning horizon.

Highest total cost occurs in scenarios 3 and 12, when the demand probability

is high and the supply probability is low as expected. Also, in these scenarios the

optimal inventory levels are higher. The lowest cost occurs in scenario 7, when the

supply probability is high and the demand probability is low.
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5. CONCLUSIONS

In this thesis, firstly we consider a two-echelon, single item, periodic review, de-

terministic demand inventory system under non-stationary supplier availability in finite

planning horizon where we have a supplier, manufacturer and two retailers. Retailers

differentiated from each other by their backlogging costs. Supplier availability has a

binomial structure namely supplier is either fully available or unavailable in each pe-

riod. After the delivery from supplier to manufacturer, manufacturer makes the stock

transfer to retailers. The problem is to find the optimal system-wide inventory level

considering the supplier unavailability.

Firstly we developed the dynamic programming formulation of the problem with-

out restricting the stock allocation rule. However, stock allocation decision in deter-

mining the system-wide inventory level complicates the problem very much. Then, we

described a simplified stock allocation rule and modified the dynamic programming ac-

cordingly. In the simplified allocation rule, we assumed that manufacturer firstly tries

to satisfy the demand of the retailer with higher backlogging cost as much as possible.

After satisfying the demand of this retailer, the demand of the other retailer is tried to

be satisfied. Although, the dynamic programming recursive function is not convex by

using the special characteristics of its slopes, we developed an approach to determine

the optimal system-wide inventory level of the system. Finally, we gave computational

results for this policy. As the supplier unavailability decreases and the backlogging

costs of retailers approach to each other, the optimal system-wide inventory levels

in the model with simplified allocation rule approaches to the optimal system-wide

inventory levels in the model without allocation rule.

Secondly in this thesis, we consider a manufacturer who has an unreliable supplier

and stochastic demand. Both demand and supply have binomial structure. Manufac-

turer give order with supplier and after the receipt of the order demand is realized

at the manufacturer. The aim of the manufacturer is to minimize total holding and

backlogging costs over the finite planning horizon.
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To solve this inventory problem, we developed the dynamic programming model.

Then using hitting time, we reformulated the problem and found the slope expression

of total cost function. By the help of the slope expression, we developed an algorithm

to calculate the optimal order-up-to levels.

This thesis can be further extended to advance supplier information area. Addi-

tionally, different supplier availability or demand patterns can be considered. We can

add fixed ordering cost and non-zero lead times, lead time from supplier to manufac-

turer, from manufacturer to retailers or manufacturing lead time. More complicated

supply chain structures can be modeled like stock keeping at retailers, demand realiza-

tion at manufacturer or lower holding cost at retailers. Contracting with supplier to

overcome the uncertainty can be analyzed.
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APPENDIX A: Proof of Proposition 3.1.

Alternative expressions are obtained by simple conditioning, substitution and

induction. For Case 1 Y0,n ≤ D1(n, n) + I2,n at period n = N equation (3.10) gives:

GN(Y0,N , I2,N) = LN(Y0,N , Y0,N − I2,N , I2,N)

+
N−N∑
i=1

LN+i(Y0,N −D(N, n+ i− 1), Y0,N − I2,N −D1(N,N + i− 1),

I2,N −D2(N,N + i− 1))P (τN > i)

+
N−N∑
i=1

GN+i(Y
∗
0,N+i, I2,n −D2(N,N + i− 1))P (τN = i)

+
N−N∑
i=1

cD(N,N + i− 1)P (τN = i)

+cY0,NP (τN > N −N),

= LN(Y0,N , Y0,N − I2,N , I2,N) + cY0,N . (A.1)

The equation (A.1) shows that the equation (3.10) holds in period N . Assume that it

also holds in period n+1. From the equations (3.7) and (3.8) for Y0,n ≤ D1(n, n)+ I2,n

we have:

Gn(Y0,n, I2,n) = Ln(Y0,n, Y0,n − I2,n, I2,n)

+Cn+1(Y0,n −D(n, n), I2,n −D2(n, n)) + cY0,n,

= Ln(Y0,n, Y0,n − I2,n, I2,n)

+pn+1 min
Y0,n+1≥I0,n+1

{Gn+1(Y0,n+1, I2,n+1)}+ qn+1Gn+1(I0,n+1, I2,n+1)

−cI0,n+1 + cY0,n, (A.2)

where I0,n+1 = Y0,n −D(n, n). By assumption Y0,n ≤ Y ∗
0,n+1 +D(n, n) in period n+ 1,

so I0,n+1 ≤ Y ∗
0,n+1. This means that we can increase the net inventory level to Y ∗

0,n+1
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in period n+ 1 with the probability pn+1.

Gn(Y0,n, I2,n) = Ln(Y0,n, Y0,n − I2,n, I2,n)

+pn+1Gn+1(Y
∗
0,n+1, I2,n+1) + qn+1Gn+1(I0,n+1, I2,n+1)

−cI0,n+1 + cY0,n. (A.3)

Replacing I0,n+1 and I2,n+1 with Y0,n−D(n, n) and I2,n−D2(n, n) respectively, we get:

Gn(Y0,n, I2,n) = Ln(Y0,n, Y0,n − I2,n, I2,n)

+pn+1Gn+1(Y
∗
0,n+1, I2,n −D2(n, n))

+qn+1Gn+1(Y0,n −D(n, n), I2,n −D2(n, n)) + cD(n, n). (A.4)

Using (3.10) for period n+ 1 to Gn+1(Y0,n −D(n, n), I2,n −D2(n, n)), we get:

Gn(Y0,n, I2,n) = Ln(Y0,n, Y0,n − I2,n, I2,n)

+pn+1Gn+1(Y
∗
0,n+1, I2,n −D2(n, n))

+qn+1{Ln+1(Y0,n −D(n, n), Y0,n − I2,n −D1(n, n), I2,n −D2(n, n))

+
N−n−1∑

i=1

Ln+1+i(Y0,n −D(n, n)−D(n+ 1, n+ i),

Y0,n+1 − I2,n −D1(n, n)−D1(n+ 1, n+ i),

I2,n −D2(n, n)−D2(n+ 1, n+ i))P (τn+1 > i)

+
N−n−1∑

i=1

Gn+1+i(Y
∗
0,n+1+i, I2,n −D2(n, n)−D2(n, n+ i))P (τn+1 = i)

+
N−n−1∑

i=1

cD(n+ 1, n+ i)P (τn+1 = i)

+c(Y0,n −D(n, n))P (τn+1 > N − n− 1)}+ cD(n, n). (A.5)

We replace pn+1 with P (τn = 1) and qn+1 with P (τn > 1) and then rearrange the terms

to get:
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Gn(Y0,n, I2,n) = Ln(Y0,n, Y0,n − I2,n, I2,n)

+P (τn = 1)Gn+1(Y
∗
0,n+1, I2,n −D2(n, n)) + P (τn > 1)

{Ln+1(Y0,n −D(n, n), Y0,n − I2,n −D1(n, n), I2,n −D2(n, n))

+
N−n−1∑

i=1

Ln+1+i(Y0,n −D(n, n+ i),

Y0,n+1 − I2,n −D1(n, n+ i), I2,n −D2(n, n+ i))P (τn+1 > i)

+
N−n−1∑

i=1

Gn+1+i(Y
∗
0,n+1+i, I2,n −D2(n, n+ i))P (τn+1 = i)

+
N−n−1∑

i=1

cD(n+ 1, n+ i)P (τn+1 = i) + cY0,nP (τn+1 > N − n− 1)

−cD(n, n)P (τn+1 > N − n− 1))}+ cD(n, n).

(A.6)

Let us combine the similar terms noting that P (τn > 1)P (τn+1 > i) = P (τn > i + 1),

P (τn > 1)P (τn+1 = i) = P (τn = i + 1) and P (τn > 1)P (τn+1 > N − n − 1) = P (τn >

N − n).

Gn(Y0,n, I2,n) = Ln(Y0,n, Y0,n − I2,n, I2,n)

+P (τn = 1)Gn+1(Y
∗
0,n+1, I2,n −D2(n, n)) + P (τn > 1)

Ln+1(Y0,n −D(n, n), Y0,n − I2,n −D1(n, n), I2,n −D2(n, n))

+
N−n−1∑

i=1

Ln+1+i(Y0,n −D(n, n+ i),

Y0,n+1 − I2,n −D1(n, n+ i), I2,n −D2(n, n+ i))P (τn > i+ 1)

+
N−n−1∑

i=1

Gn+1+i(Y
∗
0,n+1+i, I2,n −D2(n, n+ i))P (τn = i+ 1)

+
N−n−1∑

i=1

cD(n+ 1, n+ i)P (τn = i+ 1)

+cY0,nP (τn > N − n)− cD(n, n)P (τn > N − n) + cD(n, n).

(A.7)
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Rearrange the terms and −cD(n, n)P (τn > N − n) + cD(n, n) = cD(n, n){1− P (τn >

N − n) =
∑N−n

i=1 cD(n, n)P (τn = i) :

Gn(Y0,n, I2,n) = Ln(Y0,n, Y0,n − I2,n, I2,n)

+
N−n∑
i=1

Gn+i(Y
∗
0,n+i, I2,n −D2(n, n+ i− 1))P (τn = i)

+
N−n∑
i=1

Ln+i(Y0,n −D(n, n+ i− 1),

Y0,n − I2,n −D1(n, n+ i− 1),

I2,n −D2(n, n+ i− 1))P (τn > i)

+
N−n∑
i=1

cD(n, n+ i− 1)P (τn = i)

+cY0,nP (τn > N − n). (A.8)

Which is the same equation with (3.10) for period n. So, by induction it holds for all

period n = 1, 2, . . . , N .

The alternative expressions for other intervals can be proved similarly.
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APPENDIX B: Parameters of Scenarios for Two-Echelon

Problem

Table B.1. Parameter Sets of Scenarios for Two-Echelon Problem

Parameter Set

Scenarios cp bp pp dp

1 cp1 bp1 pp1 dp1

2 cp1 bp1 pp1 dp2

3 cp1 bp1 pp1 dp3

4 cp1 bp1 pp2 dp1

5 cp1 bp1 pp2 dp2

6 cp1 bp1 pp2 dp3

7 cp1 bp1 pp3 dp1

8 cp1 bp1 pp3 dp2

9 cp1 bp1 pp3 dp3

10 cp1 bp2 pp1 dp1

11 cp1 bp2 pp1 dp2

12 cp1 bp2 pp1 dp3

13 cp1 bp2 pp2 dp1

14 cp1 bp2 pp2 dp2

15 cp1 bp2 pp2 dp3

16 cp1 bp2 pp3 dp1

17 cp1 bp2 pp3 dp2

18 cp1 bp2 pp3 dp3

19 cp1 bp3 pp1 dp1

20 cp1 bp3 pp1 dp2

Parameter Set

Scenarios cp bp pp dp

21 cp1 bp3 pp1 dp3

22 cp1 bp3 pp2 dp1

23 cp1 bp3 pp2 dp2

24 cp1 bp3 pp2 dp3

25 cp1 bp3 pp3 dp1

26 cp1 bp3 pp3 dp2

27 cp1 bp3 pp3 dp3

28 cp2 bp1 pp1 dp1

29 cp2 bp1 pp1 dp2

30 cp2 bp1 pp1 dp3

31 cp2 bp1 pp2 dp1

32 cp2 bp1 pp2 dp2

33 cp2 bp1 pp2 dp3

34 cp2 bp1 pp3 dp1

35 cp2 bp1 pp3 dp2

36 cp2 bp1 pp3 dp3

37 cp2 bp2 pp1 dp1

38 cp2 bp2 pp1 dp2

39 cp2 bp2 pp1 dp3

40 cp2 bp2 pp2 dp1
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Table B.1. Parameter Sets of Scenarios for Two-Echelon Problem continue

Parameter Set

Scenarios cp bp pp dp

41 cp2 bp2 pp2 dp2

42 cp2 bp2 pp2 dp3

43 cp2 bp2 pp3 dp1

44 cp2 bp2 pp3 dp2

45 cp2 bp2 pp3 dp3

46 cp2 bp3 pp1 dp1

47 cp2 bp3 pp1 dp2

48 cp2 bp3 pp1 dp3

49 cp2 bp3 pp2 dp1

50 cp2 bp3 pp2 dp2

51 cp2 bp3 pp2 dp3

52 cp2 bp3 pp3 dp1

53 cp2 bp3 pp3 dp2

54 cp2 bp3 pp3 dp3

55 cp1 bp1 pp4 dp1

56 cp1 bp1 pp4 dp2

57 cp1 bp1 pp4 dp3

58 cp1 bp2 pp4 dp1

59 cp1 bp2 pp4 dp2

60 cp1 bp2 pp4 dp3

61 cp1 bp3 pp4 dp1

62 cp1 bp3 pp4 dp2

63 cp1 bp3 pp4 dp3

64 cp2 bp1 pp4 dp1

65 cp2 bp1 pp4 dp2

66 cp2 bp1 pp4 dp3

67 cp2 bp2 pp4 dp1

68 cp2 bp2 pp4 dp2

Parameter Set

Scenarios cp bp pp dp

69 cp2 bp2 pp4 dp3

70 cp2 bp3 pp4 dp1

71 cp2 bp3 pp4 dp2

72 cp2 bp3 pp4 dp3

73 cp1 bp1 pp1 dp′1

74 cp1 bp1 pp1 dp′2

75 cp1 bp1 pp1 dp′3

76 cp1 bp1 pp2 dp′1

77 cp1 bp1 pp2 dp′2

78 cp1 bp1 pp2 dp′3

79 cp1 bp1 pp3 dp′1

80 cp1 bp1 pp3 dp′2

81 cp1 bp1 pp3 dp′3

82 cp1 bp2 pp1 dp′1

83 cp1 bp2 pp1 dp′2

84 cp1 bp2 pp1 dp′3

85 cp1 bp2 pp2 dp′1

86 cp1 bp2 pp2 dp′2

87 cp1 bp2 pp2 dp′3

88 cp1 bp2 pp3 dp′1

89 cp1 bp2 pp3 dp′2

90 cp1 bp2 pp3 dp′3

91 cp1 bp3 pp1 dp′1

92 cp1 bp3 pp1 dp′2

93 cp1 bp3 pp1 dp′3

94 cp1 bp3 pp2 dp′1

95 cp1 bp3 pp2 dp′2

96 cp1 bp3 pp2 dp′3
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Table B.1. Parameter Sets of Scenarios for Two-Echelon Problem continue

Parameter Set

Scenarios cp bp pp dp

97 cp1 bp3 pp3 dp′1

98 cp1 bp3 pp3 dp′2

99 cp1 bp3 pp3 dp′3

100 cp2 bp1 pp1 dp′1

101 cp2 bp1 pp1 dp′2

102 cp2 bp1 pp1 dp′3

103 cp2 bp1 pp2 dp′1

104 cp2 bp1 pp2 dp′2

105 cp2 bp1 pp2 dp′3

106 cp2 bp1 pp3 dp′1

107 cp2 bp1 pp3 dp′2

108 cp2 bp1 pp3 dp′3

109 cp2 bp2 pp1 dp′1

110 cp2 bp2 pp1 dp′2

111 cp2 bp2 pp1 dp′3

112 cp2 bp2 pp2 dp′1

113 cp2 bp2 pp2 dp′2

114 cp2 bp2 pp2 dp′3

115 cp2 bp2 pp3 dp′1

116 cp2 bp2 pp3 dp′2

117 cp2 bp2 pp3 dp′3

118 cp2 bp3 pp1 dp′1

119 cp2 bp3 pp1 dp′2

120 cp2 bp3 pp1 dp′3

Parameter Set

Scenarios cp bp pp dp

121 cp2 bp3 pp2 dp′1

122 cp2 bp3 pp2 dp′2

123 cp2 bp3 pp2 dp′3

124 cp2 bp3 pp3 dp′1

125 cp2 bp3 pp3 dp′2

126 cp2 bp3 pp3 dp′3

127 cp1 bp1 pp4 dp′1

128 cp1 bp1 pp4 dp′2

129 cp1 bp1 pp4 dp′3

130 cp1 bp2 pp4 dp′1

131 cp1 bp2 pp4 dp′2

132 cp1 bp2 pp4 dp′3

133 cp1 bp3 pp4 dp′1

134 cp1 bp3 pp4 dp′2

135 cp1 bp3 pp4 dp′3

136 cp2 bp1 pp4 dp′1

137 cp2 bp1 pp4 dp′2

138 cp2 bp1 pp4 dp′3

139 cp2 bp2 pp4 dp′1

140 cp2 bp2 pp4 dp′2

141 cp2 bp2 pp4 dp′3

142 cp2 bp3 pp4 dp′1

143 cp2 bp3 pp4 dp′2

144 cp2 bp3 pp4 dp′3
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APPENDIX C: Results of Scenarios for Two-Echelon

Problem

Table C.1. Results of Scenarios for Two-Echelon Problem

Period

Sc. Num. Problem 1 2 3 4 5 6 7 8 Cost

1
with allocation rule 123 108 93 78 84 63 42 21 1797.91

without allocation rule 123 108 93 78 84 63 42 21 1797.91

2
with allocation rule 123 108 87 72 72 57 36 21 1904.95

without allocation rule 123 108 87 72 72 57 36 21 1904.95

3
with allocation rule 126 108 90 72 72 54 36 18 1943.35

without allocation rule 126 108 90 72 72 54 36 18 1943.35

4
with allocation rule 15 15 15 15 21 21 21 21 78.7

without allocation rule 15 15 15 15 21 21 21 21 78.7

5
with allocation rule 15 21 15 21 15 21 15 21 78.74

without allocation rule 15 21 15 21 15 21 15 21 78.74

6
with allocation rule 18 18 18 18 18 18 18 18 78.89

without allocation rule 18 18 18 18 18 18 18 18 78.89

7
with allocation rule 30 30 30 36 21 42 21 21 225.28

without allocation rule 30 30 30 36 21 42 21 21 225.28

8
with allocation rule 36 36 36 36 15 36 15 21 220.73

without allocation rule 36 36 36 36 15 36 15 21 220.73

9
with allocation rule 36 36 36 36 18 36 18 18 239.17

without allocation rule 36 36 36 36 18 36 18 18 239.17
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Table C.1. Results of Scenarios for Two-Echelon Problem continue

Period

Sc. Num. Problem 1 2 3 4 5 6 7 8 Cost

10
with allocation rule 123 120 105 90 84 63 42 21 2557.01

without allocation rule 123 120 105 90 84 63 42 21 2557.01

11
with allocation rule 123 120 99 84 72 57 36 21 2783.24

without allocation rule 123 120 99 84 72 57 36 21 2783.24

12
with allocation rule 126 117 99 81 72 54 36 18 2860.4

without allocation rule 126 117 99 81 72 54 36 18 2860.4

13
with allocation rule 21 21 21 27 33 33 33 21 112.7

without allocation rule 21 21 21 27 33 33 33 21 112.7

14
with allocation rule 27 27 27 27 27 27 27 21 112.7

without allocation rule 27 27 27 27 27 27 27 21 112.7

15
with allocation rule 27 27 27 27 27 27 27 18 113.03

without allocation rule 27 27 27 27 27 27 27 18 113.03

16
with allocation rule 30 30 30 36 33 42 33 21 301.6

without allocation rule 30 30 30 36 33 42 33 21 301.6

17
with allocation rule 36 36 36 36 27 36 27 21 302.08

without allocation rule 36 36 36 36 27 36 27 21 302.08

18
with allocation rule 36 36 36 36 27 36 27 18 331.76

without allocation rule 36 36 36 36 27 36 27 18 331.76

19
with allocation rule 135 120 105 90 84 63 42 21 4062

without allocation rule 135 120 105 90 84 63 42 21 4062

20
with allocation rule 135 120 99 84 72 57 36 21 4526.61

without allocation rule 135 120 99 84 72 57 36 21 4526.61

21
with allocation rule 135 117 99 81 72 54 36 18 4684.57

without allocation rule 135 117 99 81 72 54 36 18 4684.57

22
with allocation rule 21 21 21 27 33 33 33 21 126.55

without allocation rule 21 21 21 27 33 33 33 21 126.55
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Table C.1. Results of Scenarios for Two-Echelon Problem continue

Period

Sc. Num. Problem 1 2 3 4 5 6 7 8 Cost

23
with allocation rule 27 27 27 27 27 27 27 21 126.56

without allocation rule 27 27 27 27 27 27 27 21 126.56

24
with allocation rule 27 27 27 27 27 27 27 18 129.92

without allocation rule 27 27 27 27 27 27 27 18 129.92

25
with allocation rule 36 36 42 48 45 42 33 21 421.92

without allocation rule 36 36 42 48 54 42 33 21 421.93

26
with allocation rule 42 48 42 48 33 36 27 21 423.7

without allocation rule 42 48 42 48 42 36 27 21 423.71

27
with allocation rule 45 45 45 45 36 36 27 18 484.78

without allocation rule 45 45 45 45 45 36 27 18 484.78

28
with allocation rule 102 108 93 78 63 63 42 21 1950.12

without allocation rule 102 108 93 78 63 63 42 21 1950.12

29
with allocation rule 108 108 87 72 51 57 36 21 2057.51

without allocation rule 108 108 87 72 51 57 36 21 2057.51

30
with allocation rule 108 108 90 72 54 54 36 18 2097.24

without allocation rule 108 108 90 72 54 54 36 18 2097.24

31
with allocation rule 15 15 15 15 21 21 21 21 362.04

without allocation rule 15 15 15 15 21 21 21 21 362.04

32
with allocation rule 15 21 15 21 15 21 15 21 362.19

without allocation rule 15 21 15 21 15 21 15 21 362.19

33
with allocation rule 18 18 18 18 18 18 18 18 362.89

without allocation rule 18 18 18 18 18 18 18 18 362.89

34
with allocation rule 30 30 30 36 21 42 21 21 508.27

without allocation rule 30 30 30 36 21 42 21 21 508.27

35
with allocation rule 36 36 36 36 15 36 15 21 503.82

without allocation rule 36 36 36 36 15 36 15 21 503.82
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Table C.1. Results of Scenarios for Two-Echelon Problem continue

Period

Sc. Num. Problem 1 2 3 4 5 6 7 8 Cost

36
with allocation rule 36 36 36 36 18 36 18 18 522.86

without allocation rule 36 36 36 36 18 36 18 18 522.86

37
with allocation rule 114 108 105 90 75 63 42 21 2714.3

without allocation rule 114 108 105 90 75 63 42 21 2714.3

38
with allocation rule 114 108 99 84 63 57 36 21 2940.53

without allocation rule 114 108 99 84 63 57 36 21 2940.53

39
with allocation rule 117 108 99 81 63 54 36 18 3018.1

without allocation rule 117 108 99 81 63 54 36 18 3018.1

40
with allocation rule 21 21 21 27 33 33 21 21 396.27

without allocation rule 21 21 21 27 33 33 21 21 396.27

41
with allocation rule 27 27 27 27 27 27 15 21 396.29

without allocation rule 27 27 27 27 27 27 15 21 396.29

42
with allocation rule 27 27 27 27 27 27 18 18 397.21

without allocation rule 27 27 27 27 27 27 18 18 397.21

43
with allocation rule 30 30 30 36 33 42 21 21 584.6

without allocation rule 30 30 30 36 33 42 21 21 584.6

44
with allocation rule 36 36 36 36 27 36 15 21 585.19

without allocation rule 36 36 36 36 27 36 15 21 585.19

45
with allocation rule 36 36 36 36 27 36 18 18 615.47

without allocation rule 36 36 36 36 27 36 18 18 615.47

46
with allocation rule 126 120 105 90 75 63 42 21 4220.96

without allocation rule 135 120 105 90 75 63 42 21 4221.49

47
with allocation rule 126 120 99 84 63 57 36 21 4685.57

without allocation rule 135 120 99 84 63 57 36 21 4686.11

48
with allocation rule 126 117 99 81 63 54 36 18 4843.53

without allocation rule 135 117 99 81 63 54 36 18 4844.07
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Table C.1. Results of Scenarios for Two-Echelon Problem continue

Period

Sc. Num. Problem 1 2 3 4 5 6 7 8 Cost

49
with allocation rule 21 21 21 27 33 33 33 21 412.28

without allocation rule 21 21 21 27 33 33 33 21 412.28

50
with allocation rule 27 27 27 27 27 27 27 21 412.31

without allocation rule 27 27 27 27 27 27 27 21 412.31

51
with allocation rule 27 27 27 27 27 27 27 18 415.72

without allocation rule 27 27 27 27 27 27 27 18 415.72

52
with allocation rule 36 36 42 48 45 42 33 21 705.37

without allocation rule 36 36 42 48 54 42 33 21 705.39

53
with allocation rule 42 48 42 48 33 36 27 21 707.26

without allocation rule 42 48 42 48 42 36 27 21 707.28

54
with allocation rule 45 45 45 45 36 36 27 18 768.83

without allocation rule 45 45 45 45 45 36 27 18 768.85

55
with allocation rule 45 45 51 57 63 42 42 21 376.3

without allocation rule 45 45 51 57 63 42 42 21 376.3

56
with allocation rule 51 57 51 57 51 36 36 21 381.29

without allocation rule 51 57 51 57 51 36 36 21 381.29

57
with allocation rule 54 54 54 54 54 36 36 18 388.9

without allocation rule 54 54 54 54 54 36 36 18 388.9

58
with allocation rule 51 57 63 69 63 54 42 21 474.2

without allocation rule 51 57 63 69 63 54 42 21 474.2

59
with allocation rule 63 63 63 63 51 48 36 21 488.82

without allocation rule 63 63 63 63 51 48 36 21 488.82

60
with allocation rule 63 63 63 63 54 45 36 18 505.37

without allocation rule 63 63 63 63 54 45 36 18 505.37

61
with allocation rule 63 69 75 69 75 54 42 21 630.01

without allocation rule 72 57 63 69 75 54 42 21 634.31
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Table C.1. Results of Scenarios for Two-Echelon Problem continue

Period

Sc. Num. Problem 1 2 3 4 5 6 7 8 Cost

62
with allocation rule 69 75 69 63 63 48 36 21 670.42

without allocation rule 63 63 63 63 63 48 36 21 673.7

63
with allocation rule 72 72 72 63 63 45 36 18 705.9

without allocation rule 63 63 63 63 63 45 36 18 709.42

64
with allocation rule 45 45 51 57 63 42 42 21 648.62

without allocation rule 45 45 51 57 63 42 42 21 648.62

65
with allocation rule 51 57 51 57 51 36 36 21 654.41

without allocation rule 51 57 51 57 51 36 36 21 654.41

66
with allocation rule 54 54 54 54 54 36 36 18 663.26

without allocation rule 54 54 54 54 54 36 36 18 663.26

67
with allocation rule 51 57 63 69 63 54 42 21 750.88

without allocation rule 51 57 63 69 63 54 42 21 750.88

68
with allocation rule 63 63 63 63 51 48 36 21 765.88

without allocation rule 63 63 63 63 51 48 36 21 765.88

69
with allocation rule 63 63 63 63 54 45 36 18 783.04

without allocation rule 63 63 63 63 54 45 36 18 783.04

70
with allocation rule 63 69 63 69 75 54 42 21 908.47

without allocation rule 72 57 63 69 75 54 42 21 912.66

71
with allocation rule 69 75 63 63 63 48 36 21 949.21

without allocation rule 63 63 63 63 63 48 36 21 952.25

72
with allocation rule 72 72 63 63 63 45 36 18 984.9

without allocation rule 63 63 63 63 63 45 36 18 988.21

73
with allocation rule 144 126 108 90 96 72 48 24 2121.8

without allocation rule 144 126 108 90 96 72 48 24 2121.8

74
with allocation rule 144 126 102 84 84 66 42 24 2228.84

without allocation rule 144 126 102 84 84 66 42 24 2228.84
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Table C.1. Results of Scenarios for Two-Echelon Problem continue

Period

Sc. Num. Problem 1 2 3 4 5 6 7 8 Cost

75
with allocation rule 147 126 105 84 84 63 42 21 2267.24

without allocation rule 147 126 105 84 84 63 42 21 2267.24

76
with allocation rule 18 18 18 18 24 24 24 24 91.85

without allocation rule 18 18 18 18 24 24 24 24 91.85

77
with allocation rule 18 24 18 24 18 24 18 24 91.89

without allocation rule 18 24 18 24 18 24 18 24 91.89

78
with allocation rule 21 21 21 21 21 21 21 21 92.04

without allocation rule 21 21 21 21 21 21 21 21 92.04

79
with allocation rule 36 36 36 42 24 48 24 24 265.15

without allocation rule 36 36 36 42 24 48 24 24 265.15

80
with allocation rule 42 42 42 42 18 42 18 24 260.59

without allocation rule 42 42 42 42 18 42 18 24 260.59

81
with allocation rule 42 42 42 42 21 42 21 21 279.03

without allocation rule 42 42 42 42 21 42 21 21 279.03

82
with allocation rule 144 141 123 105 96 72 48 24 3186.58

without allocation rule 144 141 123 105 96 72 48 24 3186.58

83
with allocation rule 144 141 117 99 84 66 42 24 3412.81

without allocation rule 144 141 117 99 84 66 42 24 3412.81

84
with allocation rule 147 138 117 96 84 63 42 21 3489.97

without allocation rule 147 138 117 96 84 63 42 21 3489.97

85
with allocation rule 27 27 27 33 39 39 39 24 137.23

without allocation rule 27 27 27 33 39 39 39 24 137.23

86
with allocation rule 33 33 33 33 33 33 33 24 137.23

without allocation rule 33 33 33 33 33 33 33 24 137.23

87
with allocation rule 33 33 33 33 33 33 33 21 137.56

without allocation rule 33 33 33 33 33 33 33 21 137.56
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Table C.1. Results of Scenarios for Two-Echelon Problem continue

Period

Sc. Num. Problem 1 2 3 4 5 6 7 8 Cost

88
with allocation rule 36 36 36 42 39 48 39 24 372.32

without allocation rule 36 36 36 42 39 48 39 24 372.32

89
with allocation rule 42 42 42 42 33 42 33 24 372.8

without allocation rule 42 42 42 42 33 42 33 24 372.8

90
with allocation rule 42 42 42 42 33 42 33 21 402.49

without allocation rule 42 42 42 42 33 42 33 21 402.49

91
with allocation rule 159 141 123 105 96 72 48 24 5299.63

without allocation rule 159 141 123 105 96 72 48 24 5299.63

92
with allocation rule 159 141 117 99 84 66 42 24 5764.25

without allocation rule 159 141 117 99 84 66 42 24 5764.25

93
with allocation rule 159 138 117 96 84 63 42 21 5922.21

without allocation rule 159 138 117 96 84 63 42 21 5922.21

94
with allocation rule 27 27 27 33 39 39 39 24 156.71

without allocation rule 27 27 27 33 39 39 39 24 156.71

95
with allocation rule 33 33 33 33 33 33 33 24 156.72

without allocation rule 33 33 33 33 33 33 33 24 156.72

96
with allocation rule 33 33 33 33 33 33 33 21 160.08

without allocation rule 33 33 33 33 33 33 33 21 160.08

97
with allocation rule 45 45 51 57 54 48 39 24 543.65

without allocation rule 45 45 51 57 63 48 39 24 543.66

98
with allocation rule 51 57 51 57 42 42 33 24 545.43

without allocation rule 51 57 51 57 51 42 33 24 545.44

99
with allocation rule 54 54 54 54 45 42 33 21 606.51

without allocation rule 54 54 54 54 54 42 33 21 606.52

100
with allocation rule 120 126 108 90 72 72 48 24 2299.66

without allocation rule 120 126 108 90 72 72 48 24 2299.66
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Table C.1. Results of Scenarios for Two-Echelon Problem continue

Period

Sc. Num. Problem 1 2 3 4 5 6 7 8 Cost

101
with allocation rule 126 126 102 84 60 66 42 24 2407.05

without allocation rule 126 126 102 84 60 66 42 24 2407.05

102
with allocation rule 126 126 105 84 63 63 42 21 2446.79

without allocation rule 126 126 105 84 63 63 42 21 2446.79

103
with allocation rule 18 18 18 18 24 24 24 24 422.52

without allocation rule 18 18 18 18 24 24 24 24 422.52

104
with allocation rule 18 24 18 24 18 24 18 24 422.67

without allocation rule 18 24 18 24 18 24 18 24 422.67

105
with allocation rule 21 21 21 21 21 21 21 21 423.37

without allocation rule 21 21 21 21 21 21 21 21 423.37

106
with allocation rule 36 36 36 42 24 48 24 24 595.41

without allocation rule 36 36 36 42 24 48 24 24 595.41

107
with allocation rule 42 42 42 42 18 42 18 24 590.96

without allocation rule 42 42 42 42 18 42 18 24 590.96

108
with allocation rule 42 42 42 42 21 42 21 21 610

without allocation rule 42 42 42 42 21 42 21 21 610

109
with allocation rule 135 126 123 105 87 72 48 24 3370.8

without allocation rule 135 126 123 105 87 72 48 24 3370.8

110
with allocation rule 135 126 117 99 75 66 42 24 3597.02

without allocation rule 135 126 117 99 75 66 42 24 3597.02

111
with allocation rule 138 126 117 96 75 63 42 21 3674.6

without allocation rule 138 126 117 96 75 63 42 21 3674.6

112
with allocation rule 27 27 27 33 39 39 24 24 468.19

without allocation rule 27 27 27 33 39 39 24 24 468.19

113
with allocation rule 33 33 33 33 33 33 18 24 468.21

without allocation rule 33 33 33 33 33 33 18 24 468.21
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Table C.1. Results of Scenarios for Two-Echelon Problem continue

Period

Sc. Num. Problem 1 2 3 4 5 6 7 8 Cost

114
with allocation rule 33 33 33 33 33 33 21 21 469.14

without allocation rule 33 33 33 33 33 33 21 21 469.14

115
with allocation rule 36 36 36 42 39 48 24 24 702.61

without allocation rule 36 36 36 42 39 48 24 24 702.61

116
with allocation rule 42 42 42 42 33 42 18 24 703.2

without allocation rule 42 42 42 42 33 42 18 24 703.2

117
with allocation rule 42 42 42 42 33 42 21 21 733.48

without allocation rule 42 42 42 42 33 42 21 21 733.48

118
with allocation rule 150 141 123 105 87 72 48 24 5485.93

without allocation rule 159 141 123 105 87 72 48 24 5486.46

119
with allocation rule 150 141 117 99 75 66 42 24 5950.54

without allocation rule 159 141 117 99 75 66 42 24 5951.08

120
with allocation rule 150 138 117 96 75 63 42 21 6108.5

without allocation rule 159 138 117 96 75 63 42 21 6109.04

121
with allocation rule 27 27 27 33 39 39 39 24 490.37

without allocation rule 27 27 27 33 39 39 39 24 490.37

122
with allocation rule 33 33 33 33 33 33 33 24 490.4

without allocation rule 33 33 33 33 33 33 33 24 490.4

123
with allocation rule 33 33 33 33 33 33 33 21 493.81

without allocation rule 33 33 33 33 33 33 33 21 493.81

124
with allocation rule 45 45 51 57 54 48 39 24 874.51

without allocation rule 45 45 51 57 63 48 39 24 874.53

125
with allocation rule 51 57 51 57 42 42 33 24 876.39

without allocation rule 51 57 51 57 51 42 33 24 876.41

126
with allocation rule 54 54 54 54 45 42 33 21 937.96

without allocation rule 54 54 54 54 54 42 33 21 937.98
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Table C.1. Results of Scenarios for Two-Echelon Problem continue

Period

Sc. Num. Problem 1 2 3 4 5 6 7 8 Cost

127
with allocation rule 54 54 60 66 72 48 48 24 441.12

without allocation rule 54 54 60 66 72 48 48 24 441.12

128
with allocation rule 60 66 60 66 60 42 42 24 446.11

without allocation rule 60 66 60 66 60 42 42 24 446.11

129
with allocation rule 63 63 63 63 63 42 42 21 453.71

without allocation rule 63 63 63 63 63 42 42 21 453.71

130
with allocation rule 63 69 75 81 72 63 48 24 577.84

without allocation rule 63 69 75 81 72 63 48 24 577.84

131
with allocation rule 75 75 75 75 60 57 42 24 592.46

without allocation rule 75 75 75 75 60 57 42 24 592.46

132
with allocation rule 75 75 75 75 63 54 42 21 609.01

without allocation rule 75 75 75 75 63 54 42 21 609.01

133
with allocation rule 78 84 90 81 87 63 48 24 800.5

without allocation rule 87 69 75 81 87 63 48 24 805.27

134
with allocation rule 84 90 84 75 75 57 42 24 840.9

without allocation rule 75 75 75 75 75 57 42 24 845.36

135
with allocation rule 87 87 87 75 75 54 42 21 876.39

without allocation rule 96 75 75 75 75 54 42 21 880.69

136
with allocation rule 54 54 60 66 72 48 48 24 759.16

without allocation rule 54 54 60 66 72 48 48 24 759.16

137
with allocation rule 60 66 60 66 60 42 42 24 764.95

without allocation rule 60 66 60 66 60 42 42 24 764.95

138
with allocation rule 63 63 63 63 63 42 42 21 773.8

without allocation rule 63 63 63 63 63 42 42 21 773.8

139
with allocation rule 63 69 75 81 72 63 48 24 901.35

without allocation rule 63 69 75 81 72 63 48 24 901.35



63

Table C.1. Results of Scenarios for Two-Echelon Problem continue

Period

Sc. Num. Problem 1 2 3 4 5 6 7 8 Cost

140
with allocation rule 75 75 75 75 60 57 42 24 916.35

without allocation rule 75 75 75 75 60 57 42 24 916.35

141
with allocation rule 75 75 75 75 63 54 42 21 933.5

without allocation rule 75 75 75 75 63 54 42 21 933.5

142
with allocation rule 78 84 75 81 87 63 48 24 1126.23

without allocation rule 87 69 75 81 87 63 48 24 1130.84

143
with allocation rule 84 90 75 75 75 57 42 24 1166.96

without allocation rule 75 75 75 75 75 57 42 24 1171.11

144
with allocation rule 87 87 75 75 75 54 42 21 1202.66

without allocation rule 96 75 75 75 75 54 42 21 1206.84
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APPENDIX D: Parameters of Scenarios for Single Stage

Inventory Problem

Table D.1. Parameter Set of Scenarios for Inventory Problem

n Holding cost Demand probability Supply probability

1 hp1 pp1 pp1

2 hp1 pp2 pp1

3 hp1 pp3 pp1

4 hp1 pp1 pp2

5 hp1 pp2 pp2

6 hp1 pp3 pp2

7 hp1 pp1 pp3

8 hp1 pp2 pp3

9 hp1 pp3 pp3

10 hp2 pp1 pp1

11 hp2 pp2 pp1

12 hp2 pp3 pp1

13 hp2 pp1 pp2

14 hp2 pp2 pp2

15 hp2 pp3 pp2

16 hp2 pp1 pp3

17 hp2 pp2 pp3

18 hp2 pp3 pp3

19 hp1 pp4 pp4

20 hp1 pp4 pp5
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Table D.1. Parameter Set of Scenarios for Inventory Problem continue

n Holding cost Demand probability Supply probability

21 hp1 pp5 pp4

22 hp1 pp5 pp5

23 hp2 pp4 pp4

24 hp2 pp4 pp5

25 hp2 pp5 pp4

26 hp2 pp5 pp5
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APPENDIX E: Results of Scenarios for Single Stage

Inventory Problem

Table E.1. Results of Scenarios for Inventory Problem

Period

Sc. Num. 1 2 3 4 5 6 7 8 9 10 Cost

1 20 20 20 10 10 10 10 10 10 10 612.94

2 60 50 50 40 40 30 30 20 20 10 2852.61

3 90 80 70 60 60 50 40 30 20 10 5046.71

4 10 10 10 10 10 10 10 10 10 10 137.49

5 30 30 30 30 30 20 20 20 20 10 399.49

6 40 40 40 40 40 40 30 30 20 10 609.43

7 10 10 10 10 10 10 10 10 10 10 92.72

8 10 10 10 10 10 10 10 10 10 10 110.49

9 20 20 20 20 20 20 20 20 20 10 127.5

10 10 10 10 10 10 10 10 0 0 0 736.33

11 40 30 30 30 30 20 20 20 10 10 3142.77

12 70 60 60 50 40 40 30 30 20 10 5452.07

13 0 0 0 0 0 0 0 0 0 0 360.04

14 20 20 20 20 20 10 10 10 10 10 786.91

15 30 30 30 30 20 20 20 20 20 10 1101.85

16 0 0 0 0 0 0 0 0 0 0 219.75

17 10 10 10 10 10 10 10 10 10 10 298.97

18 10 10 10 10 10 10 10 10 10 10 227.04

19 10 20 10 20 10 20 10 20 10 10 163.98

20 20 20 20 20 20 20 20 20 10 10 176.25
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Table E.1. Results of Scenarios for Inventory Problem continue

Period

Sc. Num. 1 2 3 4 5 6 7 8 9 10 Cost

21 20 20 20 20 20 20 20 10 10 10 350.48

22 20 10 20 10 20 10 20 10 10 10 164.99

23 10 10 10 10 10 10 10 10 0 10 300.29

24 10 10 10 10 10 10 10 10 10 10 417.34

25 10 10 10 10 10 10 10 10 10 0 554.4

26 10 10 10 10 10 10 10 10 10 0 316.82
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