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ABSTRACT 

 

 

TUNED MASS DAMPER APPLICATIONS 

ON SLENDER STRUCTURES TO IMPROVE  

EARTHQUAKE AND WIND RESPONSE 

 

 

The subject of the study is to improve earthquake and wind response of slender 

structures by using Tuned Mass Damper (TMD) applications. TMD application on main 

structure reduces the structural response amplitude by creating additional damping.  A 

vibration analysis employing transfer matrices was applied for a slender structure with 

varying cross sections. The analysis is applied to an existing reinforced concrete minaret 

structure as a case study due to its poor dynamic response and lack of sufficient studies. 

Best applicable and efficient TMD type was investigated to improve the dynamic response 

of selected minaret structure. Structure response was analyzed with and without TMD 

installation by using MATLAB for discrete mass model. Harmonic excitation was 

considered to simulate the ground motion and improvements in the response were 

discussed. SAP2000 software was also used to analyze the same structure through Finite 

Element Method technique. 1999 Kocaeli and 1999 Düzce earthquakes ground motion 

records were used to verify the effectiveness of the developed TMD. Wind response is also 

considered. Detailed fabrication drawings were prepared by considering the challenging 

installation constraints. Feasibility study of the developed TMD was discussed for 

applications either in new structures or retrofits. 
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ÖZET 

 

 

NARİN YAPILARDAKİ DEPREM VE RÜZGAR 

TEPKİLERİNİN İYİLEŞTİRİLMESİ İÇİN 

AYARLI KÜTLE SÖNÜMLEYİCİSİ UYGULAMALARI 

 

 

Bu tez çalışmasının amacı, narin yapıların deprem ve rüzgâr etkileri karşısındaki 

dinamik davranışlarının ‘Ayarlı Kütle Sönümleyicisi (AKS)’ sistemi kullanılarak 

iyileştirilmesidir. Ana yapı üzerine monte edilen AKS ilave bir sönümleme oluşturarak ana 

yapının titreşim genliğini azaltır. Bu çalışmada transfer matrisleri kullanılarak değişken 

kesitli narin yapıların titreşim analizi yapıldı. Söz konusu analiz betonarme bir minare için 

örnek çalışma olarak uygulandı. Dinamik davranışlarının iyi olmaması ve üzerinde 

yeterince çalışma olmaması sebebi ile tipik bir minare örnek çalışmaya konu edildi.  

Seçilen minare yapısının dinamik davranışını iyileştirmek için en ekonomik, en verimli ve 

uygulanabilir AKS tipi araştırıldı. Yapının davranışı, AKS'siz ve AKS'li olarak MATLAB 

programı aracılığı ile müstakil kütle modeli kullanılarak analiz edildi. Deprem hareketini 

simule etmek amacı ile harmonik bir yer etkisi uygulandı ve yapının davranışındaki 

iyileştirmeler tartışıldı. Aynı yapı üzerinde SAP2000 yazılımı kullanılarak Sonlu 

Elemanlar Yöntemi metodu ile analiz yapıldı. AKS uygulamasının etkinliğini görmek 

amacı ile minare modeline 1999 Kocaeli Depremi ve 1999 Düzce Depremi uygulanarak 

titreşim analizi yapıldı. Minarenin rüzgâr etkisi altındaki davranışı çalışıldı. Zor montaj 

şartları göz önünde bulundurularak, detaylı imalat projeleri hazırlandı. Geliştirilen AKS'nin 

fizibilite hesabı yapılarak gerek yeni projelerde gerekse eski yapılarda güçlendirme amaçlı 

kullanılması araştırıldı. 
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1.  INTRODUCTION 

 

 

This thesis concerns the dynamic response improvement of slender structures by 

using Tuned Mass Dampers (TMD). A TMD consists of a relatively small mass which is 

attached to the main structure via springs and dampers. Mass, spring and damping 

parameters are tuned in regard to the natural frequency of the system to reduce the 

amplification factor at resonance during any earthquake or wind effect. TMD installation 

mainly improves the structural response by increasing the damping characteristic of the 

structure. 

 

The particular problem chosen for the case study is that a typical reinforced concrete 

minaret structure which are built as one of the major structures in a Mosque project. 

Turkish style minarets are very sensitive and fragile against low frequency excitations. The 

reason for this selection is mainly their poor performance during the major earthquakes in 

Turkey and lack of sufficient studies about the subject. Majority of the minarets either 

collapsed or severely damaged during these earthquakes. They created significant impact 

on the casualties and property losses directly or indirectly. Any improvement of dynamic 

response through TMD installation will solve the problem of structural engineers who are 

trying to find a solution for earthquake strengthening of exiting minarets. This study will 

also allow them to built better performing new minarets for the mosque construction 

projects in the future.  

 

Discrete mass model was used to perform the vibration analysis on the structure. It 

was not so easy to obtain stiffness matrix of such non-uniform cantilever beam model. 

Therefore, traditional equation of motion originated by Newton’s 2nd law and dynamic 

equilibrium was not preferred. Instead of this well known equation of motion, Transfer 

Matrix method was selected to perform the vibration analysis of the slender structure. This 

method allows the successive determination of the deflection, slope, moment, and shear 

diagrams for any chosen frequency. Boundary conditions can be applied to the analysis by 

relatively straightforward means, and structural damping can be included by introducing 

complex impedance. The transfer matrix method is particularly well adapted to numerical 

calculations and avoids the complexity of obtaining stiffness matrix of non-uniform 



         2   
 

cantilever beams. Structure’s response was analyzed with and without TMD installation by 

using MATLAB. Harmonic base excitation was considered in the analysis and the TMD is 

optimized for the first natural frequency. Results show significant decrease in lateral 

displacements. 

 

SAP2000 software was also used to analyze the same structure through Finite 

Element Method technique in a more sophisticated manner. Ground motions recorded 

during 1999 Kocaeli and 1999 Düzce earthquakes were used to perform time history 

analysis. SAP2000 analysis results confirm the improvement on response. By this way, 

benefits of TMD installation on slender structures like minarets were demonstrated.  

 

         Wind response of slender structures is also studied. Vortex shedding frequency which 

might trigger the resonance and its related critical wind velocity is estimated for the sample 

structure. The most cost-effective way to improve the structure’s response to vortex 

shedding is studied and improvements by TMD application are discussed. 

 

Another issue was the feasibility of the developed TMD application. To have a better 

cost estimation, detailed fabrication drawings were prepared. Feasibility study shows that 

developed TMD for minarets is a feasible tool to improve their dynamic behavior. 

However a shake table test should be performed on a model structure before a real 

application. Results of the shake table test should be encouraging to initiate the real 

applications at site. This can be a target of future studies.   
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2.  SLENDER STRUCTURES & DAMPING 

 

 

2.1.  Introduction 

 

Slender structures are widely available in the world and they are built due to 

technical, architectural, cultural, social and economical reasons. They are named as slender 

structures due to their geometry which can be described as relatively high structures with 

low widths. A structure can also be characterized as slender, when its structural analysis 

and design are mainly governed by lateral loads (earthquake and wind) versus gravity 

loads. Typical slender structures are; skyscrapers, high-rise buildings, telecommunication 

towers, industrial chimneys, towers, minarets, poles, masts, bridges etc. Most of the 

construction projects nowadays have many constraints regarding very different aspects. 

Economical restrictions as well as architectural preferences do not always satisfy 

engineering requirements even for structures like bridges and high-rise buildings. 

Sometimes it becomes also necessary to find compromises regarding the serviceability and 

even the structural integrity of a structure. High and slender structures as well as the need 

for light-weight materials increase the danger of unintended disturbing and even dangerous 

vibration. Hence, the check of dynamic performance should always be taken into 

consideration when wind, pedestrians, traffic, machinery or earthquakes have to be 

considered. Natural structural frequencies as well as possible excitation frequencies are 

always very important first indicators for the judgment of structural behavior. Resonance 

effects may occur when the excitation frequency is close to structural ones. Sometimes this 

does not play a very important role or it can be accepted. In other cases, the serviceability 

level of the structure is reduced significantly; people do not feel comfortable. There are 

even cases in which fatigue problems may occur. By increased amplitudes the stress levels 

are also increasing in a dangerous manner and thus, fatigue has always to be investigated 

for bridges and similar structures. [1] 
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2.2  Damping Sources 

 

Slender structures generally have little damping characteristic which is coming from 

the nature of their construction materials. Therefore they are easily excited by dynamic 

loads like wind and earthquakes. Ground motions generated by earthquakes and vortex 

shedding due to wind create flexural vibrations on slender structures. When the frequency 

of the excitation approaches to the natural frequency of the structure, resonance 

phenomenon occurs and response of the structure becomes out of control due to light 

damping. Displacement response increases under resonance condition and most of the 

structures are not capable of handling such high displacements due to structural 

constraints. Eventually total energy of the structure will reach a limit where the structure 

can’t resist and failure occurs. Failure of the slender structure can severely damage the 

neighboring buildings as well as itself. Therefore, any excitation with a frequency closer to 

the natural frequency of the structure should be prevented somehow.  

 

An increase in the effective damping of a structure, accomplished by any of the four 

major sources of damping: structural, aerodynamic, soil, and auxiliary, will also lead to 

decreased structural motion. Structural damping is limited to the damping already available 

inherently in the materials: steel, concrete, or their composite. At times, aerodynamic 

damping may also contribute in the along wind direction, depending on the wind velocity, 

structural shape, and building dynamic characteristics. However, the contribution in the 

across wind direction is negligible and may even become adverse at higher wind speeds, 

though the presence of adjacent structures may introduce different effects. Although not 

marked for high rise buildings, damping contributions may also be obtained from the soil-

foundation interaction, i.e. soil damping. Unfortunately, these three forms of damping 

make only limited contributions. In addition, the damping in the structure cannot be 

engineered like the mass and stiffness properties of the structure, nor can it be accurately 

estimated until the structure is completed, resulting a certain level of uncertainty. In cases 

where the inherent damping is not sufficient, auxiliary damping devices may be 

introduced, offering a somewhat more predictable, adaptable, and reliable method of 

imparting additional damping to a system. [2] 
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2.3.  Auxiliary Damping Sources 

 

Unlike the mass and stiffness characteristics of the structural system, damping does 

not relate to a unique physical phenomenon and is often difficult to engineer without the 

addition of external damping systems. Furthermore, the amount of inherent damping 

cannot be estimated with certainty; however, a known level of damping may be introduced 

through an auxiliary source. Such sources come in the form of both active and passive 

systems, illustrated schematically in Figure 2.1, which may be further subcategorized 

based on their mechanism of energy dissipation and system requirements. [2] 

 

 

Figure 2.1. Various auxiliary damping devices utilizing inertial effects.[2] 

(Con: controller, a: actuator, Ex: excitation, S: sensor) 

 

Such systems have become increasingly popular, especially in Japan, for the 

mitigation of motions as a result of wind, and in some cases, for wind and seismic 

considerations. Accordingly, each of these auxiliary damping systems will be discussed 

herein, with specific attention to notable applications of these devices to actual structures 

in Australia, China, Canada, Japan, and the United States to control wind induced 

vibrations. [2] 
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2.3.1.  Passive Dampers (With Indirect Energy Dissipation) 

 

Commonly, auxiliary damping may be supplied through the incorporation of some 

secondary system capable of passive energy dissipation, for example, the addition of a 

secondary mass attached to the structure by a spring and damping element in order to 

counteract the building motion. Such passive systems were embraced for their simplicity 

and ability to reduce the structural response. Among the passive devices that impart 

indirect damping through modification of the system characteristic, the most popular 

concept is the damped secondary inertial system, which will be discussed below. These 

systems impart indirect damping to the structure by modifying its frequency response. [2] 

 

2.3.1.1.  Tuned Mass Dampers (TMDs).  Typically a TMD consists of an inertial mass 

attached to the building location with maximum motion, generally near the top, through a 

spring and damping mechanism, typically viscous and viscoelastic dampers, shown 

previously in Figure 2.1. TMDs transmit inertial force to the building's frame to reduce its 

motion, with their effectiveness determined by their dynamic characteristics, stroke and the 

amount of added mass they employ. Additional damping introduced by the system is also 

dependent on the ratio of the damper mass to the effective mass of the building in the mode 

of interest, typically resulting in TMDs which weigh 0.25 % - 1.0 % of the building's 

weight in the fundamental mode (typically around one third). Often, space restrictions will 

not permit traditional TMD configurations, requiring the installation of alternative 

configurations including multi-stage pendulums, inverted pendulums, and systems with 

mechanically-guided slide tables, hydrostatic bearings, and laminated rubber bearings. Coil 

springs or variable stiffness pneumatic springs typically provide the stiffness for the tuning 

of TMDs. Although TMDs are often effective, even better responses have been noted 

through the use of multiple-damper configurations (MDCs) which consist of several 

dampers placed in parallel with distributed natural frequencies around the control tuning 

frequency. For the same total mass, a multiple mass damper can significantly increase the 

equivalent damping introduced to the system. Presently, there are several types of TMDs in 

use in Japan, typically employing oil dampers, though a few viscous and viscoelastic 

dampers being used. In addition, several other structures in the United States, Australia, 

and Canada employ TMDs. [2] 
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2.3.1.2.  Tuned Liquid Dampers (TLDs).  Tuned Liquid Dampers, encompassing both 

Tuned Sloshing Dampers (TSDs) and Tuned Liquid Column Dampers (TLCDs) delineated 

in Figure 2.2, have become a popular form of inertial damping device since their first 

applications to ground structures in the 1980’s. In particular, the TSDs are extremely 

practical, currently being proposed for existing water tanks on the building by configuring 

internal partitions into multiple dampers without adversely affecting the functional use of 

the water supply tanks. Considering only a small additional mass, if any, is added to the 

building, these systems and their counterpart TMDs can reduce acceleration responses to 

1/2 to 1/3 of the original response, depending on the amount of liquid mass. This, coupled 

with their low maintenance requirements, has been responsible for their wide use. [2] 

 

Currently, both deep and shallow water configurations of TSDs, which exploit the 

amplitude of fluid motion and wave-breaking patterns to provide additional damping, are 

in application worldwide. The shallow water configurations dissipate energy through the 

viscous action and wave breaking, though recently, Yalla and Kareem (1999) have noted 

and modeled the high amplitude liquid impacts or slamming phenomena. The addition of 

PVC floater beads may also add to the dissipation of sloshing energy. Deep water TSDs, 

on the other hand, requires baffles or screens to increase the energy dissipation of the 

sloshing fluid. However, the entire water mass often does not participate in providing the 

secondary mass in these configurations. [2] 

 

 

Figure 2.2. Schematic of the TLD Family. [2] 

 

While the natural frequency of a TLD may be simply adjusted by the depth of water, 

hw, and the dimension of the container DD, there are practical limitations on the water 

depth and thus the frequency which may be obtained by a given container design. One 
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possible solution is a special device, which adjusts the sloshing frequency of the damper 

using a spring mechanism so that the same device can be effective and the building 

experience a change in the dynamic characteristics. With this device, the TLD can be made 

into one large tank instead of using multiple containers. The extension of the TLCD 

concept to active control strategies is currently being investigated using a nine story steel 

building. At the structure’s top floor, a pressurized u-shaped oscillator is installed with a 

natural frequency which may be adjusted through the modulation of the pressure in the air 

chamber. In addition, other configurations such as LCVA, adaptive TLCDs and inertia 

pump dampers, amplitude-dependent orifice and multiple orifice systems have been 

explored as effective sources of secondary damping for structures. [2] 

 

2.3.1.3.  Impact Dampers (TIDs).  Impact Dampers serve as a practical and unique form of 

inertial system. The devices are typically in the form of small rigid masses suspended from 

the top of a container mounted at its side to the structure, as shown schematically in Figure 

2.3. The container is designed to a specified dimension so that an optimal spacing is left 

between the suspended mass and the container, allowing collisions to occur between the 

two as the structure vibrates. While gap distance serves as a major parameter in the design 

of such systems, the suspension length and mass size are also of extreme importance, 

dictating the frequency of the system. This type of damper is particularly effective for 

masts and tower-like structures with oscillations in one plane and is being used widely, 

particularly for roof-top masts. [2] 

 

 

Figure 2.3. Schematic of an impact damper. [2] 
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While impact dampers have been used extensively to control the vibrations of turbine 

blades, printed circuit boards, and machine tools, their application for the vibration of large 

structures is still relatively limited. Early applications of impact dampers in the form of 

chains encased in plastic were utilized by the Navy in their communications antennas. 

These pioneering applications proved that displacements could be significantly reduced via 

the impact of the coated chains. This form of impact damper, termed Hanging Chain 

Damper (HCD), with rubber coated chains housed in cylinders combines the benefits of the 

inelastic impacts with the added internal friction of the chain links rubbing against each 

other. These technologies have been repeatedly used in towers, masts, and light poles in 

Australia and Japan to control vibrations due to wind. [2] 

 

2.3.2.  Passive Dampers (With Direct Energy Dissipation) 

  

Passive systems may also raise the level of damping in a structure through a direct 

energy dissipation mechanism, such as the flow of a highly viscous fluid through an orifice 

or by the shearing action of a polymeric/rubber-like (viscoelastic) material. Other classes 

of passive systems with direct energy dissipation include Viscous Damping Devices 

(VDDs), Friction Systems, and Metallic Dissipaters. The application of such mechanisms 

to structures, particularly for seismic events, has grown in popularity both in the United 

States and in Japan, as they require very little space and can be easily retrofitted into 

existing frames. Their efficiency under large amplitude events such as earthquakes has 

made them a popular choice in seismic areas. [2] 

 

2.3.3.  Active Dampers 

 

In the quest to control the vibration of structures, passive control had originally been 

favored for its simplicity and reliability - the devices remained functional without an 

external power source and posed no significant risk of generating an unstable situation. 

Still, without the use of control mechanisms, the devices were incapable of adjusting to a 

variation in any parameters of the system. Clearly, more efficient and swifter control could 

be obtained from a system with the ability to respond to changes - hence, active control 

emerged, producing smaller devices that were capable of controlling the vibration of 

structural systems. This aim is accomplished through the use of hydraulic or electro-

mechanical actuator systems driven by an appropriate control algorithm, such as: closed 
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loop or feedback, in which the control forces are determined by the feedback response of 

the structure, open loop or feed forward, in which the control forces are determined by 

measured external excitations, or closed-open loop or feed forward-feedback, in which the 

control forces are determined by both measured response of the structure and measured 

external excitation. Active systems include active mass drivers, active variable stiffness 

systems (AVS), active tendon control systems, active gyro stabilizers (AGS), active 

aerodynamic appendages, and active pulse control systems. [2] 

 

2.3.4.  Hybrid Dampers 

 

Another genre of control systems, hybrid systems, were also devised to overcome the 

shortcomings of a passive system, e.g. its inability to respond to suddenly applied loads 

like earthquakes and weather fronts. In the case of a TMD, the building may be equipped 

with a passive auxiliary mass damper system and a tertiary small mass connected to the 

secondary mass with a spring, damper, and an actuator. The secondary system is set in 

motion by the active tertiary mass, and it is driven in the direction opposite to the TMD, 

magnifying its motion, and hence, making it more effective. [2] 

 

Hybrid Mass Dampers (HMDs), behave as either a TMD, utilizing the concept of 

moving mass supported mechanisms of the same natural period as the building, or an 

AMD according to the wind conditions, building and damper mass vibration 

characteristics. As a result of this unique feature, the devices are often termed tuned active 

dampers (TAD). The active portion of the system is only used when there is high building 

excitation, otherwise, it behaves passively. In such systems, the device will typically 

maintain active control, and in the event of a power failure or extreme excitations which 

exceed the actuator capabilities, will automatically switch into passive mode until the 

system can safely resume normal operations. This combination of passive and active 

systems in Japan has been found to reduce structural responses by more than 50 %. While 

these systems are expensive to install, the reduced operation of the AMD implies low 

maintenance and operation costs. Japanese researchers have devoted numerous studies 

toward the application of hybrid devices in structures. In fact, most applications of active 

control technologies are of the hybrid type. [2] 
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2.3.5.  Semi-Active Dampers 

 

Following extensive work in both active and passive control, researchers have 

developed a new generation of control devices, semi-active control, which combine the 

best features of its parent devices. Possessing the adaptability of active control without the 

potential for instability, semiactive systems can respond quickly to a sudden gust front or 

earthquake and provide damping which is excitation-level independent, unlike passive 

systems which operate at non-optimal values of damping most of the time. Preliminary 

work indicates that such devices can approach performance levels obtained by active 

systems without the risk of destabilization or high power requirements. This latter feature 

is particularly attractive. Since the devices do not introduce mechanical energy into the 

system, power requirements are relatively low, insuring that the system can remain 

operational even on battery power during extreme events such as earthquakes. [2] 

 

        Since the implementation of TMDs is often restricted by budget and technical 

constraints, it is important to design a low cost TMD solution that is simple, robust, easy to 

install and maintenance free. Slender structures like towers, chimneys or minarets are not 

controlled online by qualified technicians during daily performance. Any solutions to 

improve dynamic response of such structures should be maintenance free and operate 

without any power requirement. That is the reason why passive TMDs have such wide 

application field. Motivated by that, a feasible passive TMD whose design is intended to 

overcome the aforementioned constraints is presented in this study, in spite of the 

summarized functional advantageous of active or semi-active TMDs. 
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3.  TUNED MASS DAMPER SYSTEMS 

 

 

3.1.  Introduction 

 

A tuned mass damper (TMD) is a device consisting of a mass, a spring, and a damper 

that  is  attached  to  a  structure  in  order  to  reduce  the  dynamic  response  of  the 

structure. The frequency of the damper is tuned to a particular structural frequency so that 

when that frequency is excited, the damper will resonate out of phase with the structural 

motion. Energy  is  dissipated  by  the  damper force  acting  on  the structure. The TMD 

concept was first applied by Frahm in 1909 to reduce the rolling motion of ships as well as 

ship hull vibrations. A  theory  for  the TMD  was  presented  later  in  the  paper  by 

Ormondroyd  and Den Hartog in 1928, followed by a detailed discussion of optimal tuning 

and damping parameters in Den Hartog.[3] The initial theory was applicable for an 

undamped SDOF system subjected to a sinusoidal force excitation. Extension of the theory 

to damped SDOF systems has been investigated by numerous researchers. Significant 

contributions were made by Randall et al.[21], Warburton [22], Warburton and Ayorinde 

[23], and Tsai and Lin [24]. 

 

A rigorous theory of tuned mass dampers for SDOF systems subjected to harmonic 

force excitation and harmonic ground motion is discussed next. Various cases, including an 

undamped DVA attached to an undamped SDOF system and a damped  TMD  attached  to  

an  undamped  SDOF  system.[4] 

 

3.2.  Tuned Mass Damper Theory for SDOF Systems 

 

In what follows, various cases ranging from fully undamped to fully damped 

conditions are analyzed and design procedures are presented. 
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3.2.1. Undamped Structure: Dynamic Vibration Absorber 

 

When there is not any damping on TMD, the system is called as Dynamic Vibration 

Absorber (DVA) or Tuned Vibration Absorber (TVA). Figure 3.1 shows a SDOF system 

having mass m and stiffness k , subjected to both external forcing and ground motion. A 

DVA with mass md and stiffness kd is attached to the primary mass. The various 

displacement measures are, the absolute ground motion ug , the relative motion between the 

primary mass and the ground u , and the relative displacement between the damper and the 

primary mass ud . With this notation, the governing equations take the form 

 

         

Figure 3.1. SDOF system coupled with a TMD. [4] 

 

g ga  u= ɺɺ  

 

 d d d d d g
m ( u u ) k u -m a+ + =ɺɺ ɺɺ

           (3.1) 

 

                                          (3.2) 

 

Where ag is the absolute ground acceleration and p is the external force applied to the 

primary mass. The excitation is considered to be periodic of frequency Ω, 

 

                                                  (3.3) 

 

                                              (3.4)
 

 

Expressing the response as 

d d g
mu ku - k u -ma p+ = +ɺɺ

g g
ˆa a sin t= Ω

ˆp p sin t= Ω
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                                                    (3.5) 

 

                                                  (3.6)
 

 

and substituting for these variables, the equilibrium equations are transformed to 

 

                                 (3.7) 

 

                         (3.8)
 

 

The solutions for û  and ˆ
du  are given by 

 

        (3.9) 

 

                                     (3.10) 

 

dm
m

m
=

 

where 

 

2 2 2
1 [1 ][1 ]dD m= − − −ρ ρ ρ                                   (3.11)

 
 

and the ρ terms are dimensionless frequency ratios, 

 

                                                 (3.12) 

 

 

                                              (3.13) 

 

Selecting the mass ratio and damper frequency ratio such that 

ˆu u sin t= Ω

d d
ˆu u sin t= Ω

ˆ ˆ ˆ[ ] 2 2

d d d d d gm k u m u m a− Ω + − Ω = −

2ˆ ˆ ˆ ˆ[ ]d d gk u m k u ma p− + − Ω + = − +

/k m

Ω Ω
= =ρ

ω

/
d

d d dk m

Ω Ω
= =ρ

ω

2 2

1 1

ˆˆ 1 1
ˆ ( ) ( )gd d

ma mp
u

k D k D

− + −
= −

ρ ρ

2

1 1

ˆˆ
ˆ ( ) ( )gd

d

d d

mamp m
u

k D k D
= −

ρ
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21 0d m− + =ρ
 
                                                                                                                                        (3.14) 

 

reduces the solution to 
 

                                                       (3.15) 

 

 

 

2
ˆˆ

ˆ g

d

d d

map
u

k k
= − +ρ

 
                (3.16)

 

 

This choice isolates the primary mass from ground motion and reduces the response 

due to external force to the pseudo static value ˆ /p k . A typical range for m  is 0.01 to 0.1. 

Then the optimal damper frequency is very close to the forcing frequency. The exact 

relationship follows from Eq. 3.14; 

 

 d opt|
1 m

Ω
=

+
ω                                        (3.17) 

 

We determine the corresponding damper stiffness with 

 

 

                                       (3.18) 

 

Finally, using Eq. 3.18 in Eq. 3.16 gives;
 

 

 
2

ˆˆ1
ˆ g

d

am p
u

m k

 +
= + 

Ω     

                            (3.19)

 

 

We specify the amount of relative displacement for the damper and determine m  

with Eq. 3.19. Given m  and Ω , the stiffness is found using Eq. 3.18. It should be noted 

that this stiffness applies for a particular forcing frequency. Once the mass damper 

properties are defined, Eq. 3.9 and 3.10 can be used to determine the response for a 

ˆ
ˆ

p
u

k
=

2
2| [ | ]

1
d opt d opt d

mm
k m

m
ω

Ω
= =

+
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different forcing frequency. The primary mass will move under ground motion excitation 

in this case. 

 

3.2.2.  Undamped Structure: Tuned Mass Damper 

 

When damping is included in a Dynamic Vibration Absorber, then it is called as 

Tuned Mass Damper. Typical TMD configuration is shown in Figure 3.2. The equations of 

motion for this case are  

 

                                 (3.20) 

 

(3.21) 

 

 

 

 

 

Figure 3.2. Undamped SDOF system coupled with a damped TMD system. [4] 

 

The inclusion of the damping terms in Eq. 3.20 and 3.21 produces a phase shift 

between the periodic excitation and the response. It is convenient to work initially with the 

solution expressed in terms of complex quantities. We express the excitation as 

 

                                             (3.22) 

 

                                          (3.23) 

 

Where ˆ
ga  and p̂  are real quantities. The response is taken as 

 

d d d d d d d d g
m u c u k u m u m a+ + + = −ɺɺ ɺ ɺɺ

d d d d g
mu ku c u k u ma p+ − − = − +ɺɺ ɺ

ˆ i t

g ga a e Ω=

ˆ  i tp p e Ω=
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                                                      (3.24) 

 

          (3.25) 

 

Where the response amplitudes, u  and du  , are considered to be complex quantities. 

The real and imaginary parts of ag correspond to cosine and sine input. Then the 

corresponding solution is given by either the real (for cosine) or imaginary (for sine) parts 

of u and ud. Substituting Eq. 3.24 and 3.25 in the set of governing equations and cancelling 

i te Ω  from both sides results in 

 

                             (3.26) 

 

                          (3.27) 

 

The solution of the governing equations is    

 

   (3.28) 

 

where      
d2d
d

d

c

m
=ξ

ω
 

 

 

                                              (3.29) 

 

Where  

             (3.30) 

 

 

                                                     (3.31) 

 

and ρ  was defined earlier as the ratio of Ω to ω  [see Eq. 3.12]. 

i tu ue Ω=

2 2 ˆ[ ]d d d d d d gm ic k u m u m aΩ + Ω + − Ω = −

2 ˆ ˆ[ ] [ ]d d d gic k u m k u ma p− Ω + + − Ω + = − +

2 2

2 2 2 22
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[ ] [(1 ) 12 ( )]d d
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a mp

u m m
kD k

f i f f i f
D
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2

2 2

ˆˆ g

d

a mp
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kD kD
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2 2 2
2

2 2 2[1 [1 (1 )[ ] 2 ]] df mf i fD m= − − + − +− ρ ρ ρ ξ ρ ρ
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ω
ω

i t
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Converting the complex solutions to polar form leads to the following expressions: 

 

                                          (3.32) 

 

 

                                     (3.33) 

 

Where the H factors define the amplification of the pseudo-static responses, and the 

δ’s are the phase angles between the response and the excitation. The various H and δ 

terms are as follows: 

                        (3.34) 

 

 

              (3.35) 

 

                                          (3.36) 

 

 

                                         (3.37) 

 

 

       (3.38) 

 

Also 

                                     (3.39) 

 

                                    (3.40) 
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                               (3.41) 

 

 

                                 (3.42) 

 

                               (3.43) 

 

For most applications, the mass ratio is less than about 0.05. Then the amplification 

factors for external loading (H1) and ground motion (H2) are essentially equal. A similar 

conclusion applies for the phase shift. In what follows, the solution corresponding to 

ground motion is examined and the optimal values of the damper properties for this 

loading condition are established. An in-depth treatment of the external forcing case is 

contained in Den Hartog’s text. [3] 

 

Figure 3.3 shows the variation of (H2) with forcing frequency for specific values of 

damper mass m  and frequency ratio , and various values of the damper damping ratio, dξ . 

When 0d =ξ , there are two peaks with infinite amplitude located on each side of 1=ρ . 

As dξ  is increased, the peaks approach each other and then merge into a single peak 

located at 1≈ρ . The behavior of the amplitudes suggests that there is an optimal value of 

dξ  for a given damper configuration ( md and kd or, equivalently, m and f ). Another key 

observation is that all the curves pass through two common points, P and Q. Since these 

curves correspond to different values of dξ , the location of P and Q must depend only on 

m  and f . Proceeding with this line of reasoning, the expression for H2 can be written as 

 

                               (3.44) 
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As seen above, the ai terms are functions of m , ρ , and f . Then for H2 to be independent 

of 
d

ξ , the following condition must be satisfied: 

 

                                           (3.45) 

 

The corresponding values for H2 are 

   

                                           (3.46) 

 

Substituting for the ai terms in Eq. 3.45, we obtain a quadratic equation for 2ρ : 

 

                           (3.47) 

 

The two positive roots 1ρ and 2ρ  are the frequency ratios corresponding to points P 

and Q. Similarly, Eq. 3.46 expands to 

                                         (3.48) 

 

 

 Figure 3.3. Plot of H2 versus ρ [4] 
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Figure 3.3 shows different values for H2 at points P and Q. For optimal behavior, we 

want to minimize the maximum amplitude. As a first step, we require the values of H2 for 

1ρ  and 2ρ  to be equal. This produces a distribution that is symmetrical about 

2 1/ (1 )m= +ρ , as illustrated in Figure 3.4. Then, by increasing the damping ratio
d

ξ , we 

can lower the peak amplitudes until the peaks coincide with points P and Q. This state 

represents the optimal performance of the TMD system. A further increase in 
d

ξ  causes 

the peaks to merge and the amplitude to increase beyond the optimal value. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4. Plot of H2 versus ρ  for  fopt. [4] 

 

Requiring the amplitudes to be equal at P and Q is equivalent to the following 

condition on the roots: 

                        (3.49)
 

 

Then, substituting for 1ρ  and 2ρ  using Eq. 3.47, we obtain a relation between the 

optimal tuning frequency and the mass ratio: 

                                         

             (3.50) 
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                                       (3.51) 

 

The corresponding roots and optimal amplification factors are 

 

                                 (3.52) 

 

                                               (3.53) 

 

The expression for the optimal damping at the optimal tuning frequency is 

 

                                      (3.54) 

 

Figure 3.5 through Figure 3.8 show the variation of the optimal parameters with the 

mass ratio m . The response of the damper is defined by Eq. 3.33. Specializing this equation 

for the optimal conditions leads to the plot of amplification versus mass ratio contained in 

Figure 3.9. A comparison of the damper motion with respect to the motion of the primary 

mass for optimal conditions is shown in Figure 3.10.  

 

Lastly, response curves for a typical mass ratio, 0.01m = , and optimal tuning are 

plotted in Figure 3.11 and Figure 3.12. The response for no damper is also plotted in 

Figure 3.11. We observe that the effect of the damper is to limit the motion in a frequency 

range centered on the natural frequency of the primary mass and extending about 0.15ω. 

Outside of this range, the motion is not significantly influenced by the damper. 

 

The maximum amplification for a damped SDOF system without a TMD, 

undergoing harmonic excitation, is given as: 

 

                                               (3.55) 
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Figure 3.5. Optimum tuning frequency ratio, fopt[4] 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6. Input frequency ratios at which the response is independent of damping. [4] 
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Figure 3.7. Optimal damping ratio for TMD. [4] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8. Maximum dynamic amplification factor for SDOF system (optimal tuning  

and damping). [4] 
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Figure 3.9. Maximum dynamic amplification factor for TMD. [4] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.10. Ratio of maximum TMD amplitude to maximum system amplitude. [4] 
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Figure 3.11. Response curves for amplitude of system with optimally tuned TMD. [4] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.12. Response curves for amplitude of optimally tuned TMD. [4] 
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Since ξ  is small, a reasonable approximation is 

 

                                                     (3.56) 

 

Expressing the optimal H2 in a similar form provides a measure of the equivalent 

damping ratio 
e

ξ  for the primary mass: 

 

                                                  (3.57) 

 

 

Figure 3.13 shows the variation of 
e

ξ  with the mass ratio. A mass ratio of 0.02 is 

equivalent to about 5% damping in the primary system. 

 

The design of a TMD involves the following steps: 

 

• Establish the allowable values of displacement of the primary mass and the TMD 

for the design loading. This data provides the design values for 2 opt|H  and 4 opt|H . 

 

• Determine the mass ratios required to satisfy these motion constraints from  

Figure 3.8 and Figure 3.9 Select the largest value of m . 

 

• Determine fopt form Figure 3.5. 

 

• Compute ωd :  

ωd= fopt ω           (3.58) 

• Compute kd : 

kd= md ωd
2 = m  k  fopt

2         (3.59) 

• Determine opt|dξ  from Figure 3.7. 

 

• Compute cd : 

cd= opt2 |dξ md ωd = m  fopt [ d opt2 |ξ m ω]       (3.60) 

1

2
H ≈

ξ

2 opt

1

2 |
e

H
=ξ
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Figure 3.13. Equivalent damping ratio for optimally tuned TMD. [4] 
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3.3.  Examples of Existing Tuned Mass Damper Systems 

 

Although the majority of applications have been for mechanical systems, tuned mass 

dampers have been used to improve the response of building structures under wind and 

earthquake excitation. A short description of the various types of dampers and several 

building structures that contain tuned mass dampers follows. 

 

3.3.1.  Translational Tuned Mass Dampers 

 

Figure 3.14 illustrates the typical configuration of a unidirectional translational tuned 

mass damper. The mass rests on bearings that function as rollers and allow the mass to 

translate laterally relative to the floor. Springs and dampers are inserted between the mass 

and the adjacent vertical support members, which transmit the lateral “out-of-phase” force 

to the floor level and then into the structural frame. Bidirectional translational dampers are 

configured with springs/dampers in two orthogonal directions and provide the capability 

for controlling structural motion in two orthogonal planes. Some examples of early 

versions of this type of damper are described next.[4] 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.14. Schematic diagram of a translational tuned mass damper. [4] 

 

John Hancock Tower: Two dampers were added to the 60-story John Hancock 

Tower in Chicago to reduce the response to wind gust loading. The dampers are placed at 

opposite ends of the fifty-eighth story, 67 m apart, and move to counteract sway as well as 

twisting due to the shape of the building. Each damper weighs 2700 kN and consists of a 

lead-filled steel box about 5.2 m square and 1 m deep that rides on a 9 m long steel plate. 

The lead-filled weight, laterally restrained by stiff springs anchored to the interior columns 
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of the building and controlled by servo-hydraulic cylinders, slides back and forth on a 

hydrostatic bearing consisting of a thin layer of oil forced through holes in the steel plate. 

Whenever the horizontal acceleration exceeds 0.003g for two consecutive cycles, the 

system is automatically activated. This system was designed and manufactured by 

LeMessurier Associates/SCI in association with MTS System Corp., at a cost of around 3 

million dollars, and is expected to reduce the sway of the building by 40 to 50 %. [4] 

 

Citicorp Center: The Citicorp (Manhattan) TMD was also designed and 

manufactured by LeMessurier Associates/SCI in association with MTS System Corp. This 

building is 279 m high and has a fundamental period of around 6.5 s with an inherent 

damping ratio of 1% along each axis. The Citicorp TMD, located on the sixty-third floor in 

the crown of the structure, has a mass of 366 Mg, about 2 % of the effective modal mass of 

the first mode, and was 250 times larger than any existing tuned mass damper at the time 

of installation. Designed to be biaxially resonant on the building structure with a variable 

operating period of 6.25s ± 20 %, adjustable linear damping from 8 to 14 %, and a peak 

relative displacement of ±1.4m, the damper is expected to reduce the building sway 

amplitude by about 50 %. This reduction corresponds to increasing the basic structural 

damping by 4 %. The concrete mass block is about 2.6 m high with a plan cross section of 

9.1 m by 9.1 m and is supported on a series of twelve 60 cm diameter hydraulic pressure-

balanced bearings. During operation, the bearings are supplied oil from a separate 

hydraulic pump, which is capable of raising the mass block about 2 cm to its operating 

position in about 3 minutes. The damper system is activated automatically whenever the 

horizontal acceleration exceeds 0.003g for two consecutive cycles and will automatically 

shut itself down when the building acceleration does not exceed 0.00075g in either axis 

over a 30-minute interval. LeMessurier estimates Citicorp’s TMD, which cost about 1.5 

million dollars, saved 3.5 to 4 million dollars. This sum represents the cost of some 2800 

tons of structural steel that would have been required to satisfy the deflection constraints. 

[4] 

 

Canadian National Tower: The 102 m steel antenna mast on top of the Canadian 

National Tower in Toronto (553 m high including the antenna) required two lead dampers 

to prevent the antenna from deflecting excessively when subjected to wind excitation. The 

damper system consists of two doughnut-shaped steel rings, 35 cm wide, 30 cm deep, and 
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2.4 m and 3 m in diameter, located at elevations 488 m and 503 m. Each ring holds about 9 

metrictons of lead and is supported by three steel beams attached to the sides of the 

antenna mast. Four bearing universal joints that pivot in all directions connect the rings to 

the beams. In addition, four separate hydraulically activated fluid dampers mounted on the 

side of the mast and attached to the center of each universal joint dissipate energy. As the 

lead weighted rings move back and forth, the hydraulic damper system dissipates the input 

energy and reduces the tower’s response. The damper system was designed by Nicolet, 

Carrier, Dressel, and Associates, Ltd., in collaboration with Vibron Acoustics, Ltd. The 

dampers are tuned to the second and fourth modes of vibration in order to minimize 

antenna bending loads; the first and third modes have the same characteristics as the 

prestressed concrete structure supporting the antenna and did not require additional 

damping. [4] 

 

Chiba Port Tower: Chiba Port Tower (completed in 1986) was the first tower in 

Japan to be equipped with a TMD. Chiba Port Tower is a steel structure 125 m high 

weighing 1950 metric tons and having a rhombus-shaped plan with a side length of 15 m. 

The first and second mode periods are 2.25 s and 0.51 s, respectively for the x direction 

and 2.7 s and 0.57 s for the y direction. Damping for the fundamental mode is estimated at 

0.5 %. Damping ratios proportional to frequencies were assumed for the higher modes in 

the analysis. The purpose of the TMD is to increase damping of the first mode for both the 

x and y directions. Figure 3.15 shows the damper system. Manufactured by Mitsubishi 

Steel Manufacturing Co., Ltd., the damper has mass ratios with respect to the modal mass 

of the first mode of about 1/120 in the x direction and 1/80 in the y direction; periods in the 

x and y directions of 2.24 s and 2.72 s, respectively; and a damper damping ratio of 15 %. 

The maximum relative displacement of the damper with respect to the tower is about ±1 m 

in each direction. Reductions of around 30 to 40% in the displacement of the top floor and 

30 % in the peak bending moments are expected. The early versions of TMDs employ 

complex mechanisms for the bearing and damping elements, have relatively large masses, 

occupy considerable space, and are quite expensive. Recent versions, such as the scheme 

shown in Figure 3.16. have been designed to minimize these limitations. This scheme 

employs a multi assembly of elastomeric rubber bearings, which function as shear springs, 

and bitumen rubber compound (BRC) elements, which provide viscoelastic damping 

capability. The device is compact in size, requires unsophisticated controls, is 
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multidirectional, and is easily assembled and modified. Figure 3.17 shows a full-scale 

damper being subjected to dynamic excitation by a shaking table. An actual installation is 

contained in Figure 3.18. [4] 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.15. Tuned mass damper for Chiba-Port Tower. [4] 
 

 

 

Figure 3.16. Tuned mass damper with spring and damper assemblage. [4] 
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Figure 3.17. Deformed position—tuned mass damper. [4] 
 
 
 

 
 

Figure 3.18. Tuned mass damper - Huis Ten Bosch Tower, Nagasaki. [4] 
 

 
 
3.3.2.  Pendulum Tuned Mass Dampers 

 

The problems associated with the bearings can be eliminated by supporting the mass 

with cables which allow the system to behave as a pendulum. Figure 3.19a shows a simple 
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pendulum attached to a floor. Movement of the floor excites the pendulum. The relative 

motion of the pendulum produces a horizontal force that opposes the floor motion. This 

action can be represented by an equivalent SDOF system that is attached to the floor, as 

indicated in Figure 3.19b. The equation of motion for the horizontal direction is 

 

                                          (3.61) 

 

where T is the tension in the cable. When θ  is small, the following approximations apply: 

 

                                             (3.62) 

 

        Τ ≈ md g                                              (3.63) 

Introducing these approximations transforms Eq. 3.61 to 

 

                                        (3.64) 

 

and it follows that the equivalent shear spring stiffness is
 

 

                                                  (3.65) 

 

 

Figure 3.19. A simple pendulum tuned mass damper. [4] 
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The natural frequency of the pendulum is related to keq by 

 

                                                (3.66) 

 

 

Then, the natural period of the pendulum is 

 

                                                  (3.67) 

 

The simple pendulum tuned mass damper concept has a serious limitation. Since the 

period depends on L, the required length for large Td may be greater than the typical story 

height. For instance, the length for Td = 5 s is 6.2 meters whereas the story height is 

between 4 and 5 meters. This problem can be eliminated by resorting to the scheme 

illustrated in Figure 3.20. The interior rigid link magnifies the support motion for the 

pendulum and results in the following equilibrium equation: 

 

 

 

Figure 3.20. Compound pendulum. [4] 
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                                   (3.68) 

 

The rigid link moves in phase with the damper and has the same displacement 

amplitude. Then, taking u1= ud in Eq. 3.68 results in 

 

 

                                       (3.69) 

 

 

The equivalent stiffness is md  g / 2L, and it follows that the effective length is equal 

to 2L. Each additional link increases the effective length by L. An example of a pendulum- 

type damper is described next. 

 

Crystal Tower : The tower, located in Osaka, Japan, is 157 m high and 28 m by 67 m 

in plan, weighs 44000 metric tons, and has a fundamental period of approximately 4 s in 

the north south direction and 3 s in the east-west direction. A tuned pendulum mass damper 

was included in the early phase of the design to decrease the wind-induced motion of the 

building by about 50 %. Six of the nine air cooling and heating ice thermal storage tanks 

(each weighing 90 tons) are hung from the top roof girders and used as a pendulum mass. 

Four tanks have a pendulum length of 4 m and slide in the north-south direction; the other 

two tanks have a pendulum length of about 3 m and slide in the east-west direction. Oil 

dampers connected to the pendulums dissipate the pendulum energy. Views of the actual 

building and one of the tanks are presented in Figure 3.21. The cost of this tuned mass 

damper system was around $350000, less than 0.2 % of the construction cost. 

 

A modified version of the pendulum damper is shown in Figure 3.22. The restoring 

force provided by the cables is generated by introducing curvature in the support surface 

and allowing the mass to roll on this surface. The vertical motion of the weight requires an 

energy input. Assuming θ is small, the equations for the case where the surface is circular 

are the same as for the conventional pendulum with the cable length L, replaced with the 

surface radius R. [4] 

1
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Figure 3.21. Ice storage tank—Crystal Tower. [4] 
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Figure 3.22. Rocker pendulum. [4] 
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4.  TRANSFER MATRICES 

 

 

In this study, variable cross section beam structures will be analyzed. Transfer 

matrices will be used to in the analyses due to these simplicity on beam applications. 

Firstly, transfer matrices of spring-mass systems and beams in free vibration mode will be 

introduced. Then, transfer matrices of damped and forced vibrations of spring-mass 

systems and beams will be studied.  

 

4.1.  Transfer Matrix of Spring-Mass System 

 

Let us consider a spring-mass system of the type shown in Figure 4.1 which is 

vibrating with circular frequency ω. The masses mi-1 and mi , are connected by a massless 

spring of stiffness ki. The state vector just to the right of mass mi is denoted by R

iz , and the 

state vector to the left is denoted by L

iz .  

 

 

Figure 4.1. Spring mass system.[11] 

 

If we isolate the spring ki and use the convention explained above, the positive forces 

and deflections are as shown in Figure 4.2. From the equilibrium of the spring we 

immediately obtain; 

                            (4.1) 

                                                                  

and from the stiffness property of the spring we have the further relation 

 

                                            (4.2) 

1
R L

i iN N− =

1 1( )L R

i i i i iN N k x x− −= = −
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Figure 4.2. Free-body diagram of spring i. [11] 

                                                                                                                                                                                                                 
Rewriting these equations in the form 

                                                     

 

                                  (4.3) 

 

 

                                (4.4) 

 

We can then take one more step to express the equations in matrix notation, 

            

                                (4.5) 

or 

 

                                                     (4.6) 

 

Hence by means of the matrix Fi , we have been able to express the state vector L

iz in 

terms of the state vector 1
R

i−z . The matrix Fi  is known as the field transfer m a t r i x  or more 

simply as the field matrix. 

 

The matrix relation that exists between the state vectors to the left and right of mass i 

can be found by considering the forces acting on the mass as in Figure 4.3. The two spring 

forces are R

iN  and L

iN ,  and in addition there is the inertia force 2
i im xω  acting in the 

positive direction . Since the mass is rigid, the deflections to the left and right of mass im  

are the same, so that 

1
1      

R

i
i i

i

N
x x

k

−
−= +

1 1(0)    L R

i i iN x N− −= +

1

1
1

0 1

L R

i

i i

x x
k

N N
−

 
    =         

1
L R

i i i−=z F z
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         (4.7) 

 

 

 

 

 

 
Figure 4.3. Free-body diagram of mass mi [11]              

 

and from the equilibrium of the forces we have 

 

                                               (4.8) 

 

Rewritten in matrix notation, the above equations become 

 

                                             (4.9)          

                                                                   

 

or 

                                                    (4.10) 

 

Again we have found a matrix relation between two adjacent state vectors. This time, 

since we are simply transferring over a point, the matrix is known as the point transfer 

matrix, or the point matrix. 

 

4.2.  Plane Flexural Vibration of a Straight Beam 

 

When computing the flexural vibrations of beams with distributed mass, it is often 

advisable to follow the technique of replacing the actual beam by a beam of the same 

flexural stiffness which is mass-less between discrete points where the mass is 

concentrated. Such a system as in Figure 4.4 is easily analyzed by transfer matrices. The 

first step is to isolate the beam element between the points (i-1) and i. The sign convention 

explained at the beginning of this section is applied to the straight beam, as illustrated in 

Figure 4.5. 

2R L

i i i iN N m x= − ω

2

1 0

1

R L

ii i

x x

mN N

    
=     −    ω

R L

i i i=z P z

R L

i ix x=
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Figure 4.4. Beam with concentrated masses. [11] 

 

 

 

 

 

 

 

 

 

Figure 4.5. Sign convention for beam. [11] 

 

The two displacements are the deflection w  and the slope Ψ ,  the corresponding 

forces being the shear force V  and the bending moment M .  The forces and deflections at 

the extremities of the beam element are shown in Figure 4.6. The equilibrium of the 

element requires that the sum of the vertical forces be zero and that the sum of the 

moments about, let us say, point i-1 be zero. The two equilibrium equations are then

                   
                                                 (4.11) 

                                          (4.12) 

 

 

 

 

 

 

 

Figure 4.6. End forces and deflections for massless beam. [11] 

1  0L R

i iV V −− =

1  0L R L

i i i iM M V l−− − =
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We obtain two further equations for the end deflection and slope of a cantilever of 

flexural stiffness EJ subjected to moment M and shear V at its free end (Figure 4.7) from 

elementary beam theory:  

 

 

 

 

 

 

 

 

Figure 4.7. Cantilever subjected to force V and moment M .  [11] 

 

            (4.13)        

(4.14) 

 

Applying these results to the problem at hand and noting that the point i-1 has a 

deflection w i - 1  and a slope Ψ i - 1 , we obtain the equations 

                         (4.15) 

 

                  

                (4.16) 

 

 

We note from Eq. 4.11 and 4.12 that 

 

                                          (4.17) 

 

                                     (4.18) 
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Eq. 3.11 and 3.12 and Eq. 3.15 and 3.16 can be rewritten such that all the state-vector 

elements at point iL
 can be expressed in terms of those at point i-l R

:  

 

                        (4.19) 

 
 

    
2

1 1 1( ) 2( )
L R R Ri i

i i i i

i i

l l
= M V

EJ EJ
− − −+ +Ψ Ψ        (4.20) 

 

(4.21) 

                                              

 

                                                     (4.22) 

 

or in matrix notation, 

   

2 3

2

1

1 l

0 1
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2 6
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1

L R

i i

i
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V V
−

 
 
 

− −    
    
   =  
    
    
    

 
  

Ψ Ψ
       (4.23) 

                       

or 

                                                   (4.24) 

 

The point matrix connecting R

iz  with L

iz is found by noting that the deflection, slope 

and moment are continuous across the concentrated mass m i ,  so that 

                                            (4.25) 

 

                                                     (4.26) 

 

                                                   (4.27) 
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The vibrating mass, however, introducing an inertia force causes a discontinuity in 

the shear. The free-body diagram shown in Figure 4.8 yields from simple equilibrium 

considerations the relation 
                                              (4.28) 

 

In matrix notation Eq. 4.25, 4.26 , 4.27  and 4.28 become 

 

 

                      

                      (4.29) 

  

or   

                                                    (4.30) 

 

 

 

 

 

Figure 4.8: Free-body diagram of mass mi [11] 

 

Another point matrix that can be easily obtained covers the case when the beam has a 

spring support as shown in Figure 4.9. We can again relate the state vectors R
iz  and L

iz  by 

means of a point matrix. The deflection, slope, and moment are continuous over the point i, 

but on account of the spring restoring force a discontinuity occurs in the shear force. If the 

spring is deflected by an amount wi then the restoring force is ki wi where ki is the stiffness 

of the spring as shown in Figure 4.10. The relations of the state-vector elements to the left 

and right of the spring are then 

 

 

 

 

 

Figure 4.9.  Beam on elastic support[11] 
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                                        (4.31) 

 

                                                     (4.32) 

 

                                                   (4.33) 

 

                                                (4.34) 

 

 

 

 

 

 

Figure 4.10. Free-body diagram of the elastic support. [11] 

 

Which in matrix notation become 

 

 

 

        (4.35) 

 

 

 

or  

                                                    (4.36) 

 

4.3.  Elimination of Intermediate State Vectors 

 

The application of transfer matrices to more complicated problems will now be 

discussed. Let us consider the beam as shown in Figure 4.11 that is made up of piecewise 

uniform massless elements, with masses concentrated at discrete points. The transfer 

matrices for a uniform massless beam, Eq. 4.23, and for a concentrated mass, Eq. 4.29, 
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have already been derived, so that with the dimensions of the beams and the magnitude of 

the masses given, the following matrix relations exist between adjacent state vectors: 

 

z1
L = F1 z0         (4.37) 

z1
R = P1 z1

L         (4.38) 

z2
L = F2 z1

R         (4.39) 

z2
R = P2 z2

L         (4.40) 

z3
L = F3 z2

R         (4.41) 

z3
R = P3 z3

L         (4.42) 

z4
L = F4 z3

R         (4.43) 

z4
R = P4 z4

L           (4.44) 

z5
L = F5 z4

R         (4.45) 

z5
R = P5 z5

L         (4.46) 

z6
L = F6 z5

R         (4.47) 

z6
R = P6 z6

L         (4.48) 

z7 = F7 z6
R         (4.49) 

 

 

 

 

 

 

Figure 4.11. Beam with discrete masses. [11] 

 

From the last two equations z7 = F7 z6
R and z6

R = P6 z6
L  it follows that z7 = F7 P6 z6

L. 

Now using the relation z6
L = F6 z5

R , we obtain   

  

z7 = F7 P6 F6 z5
R             (4.50) 

 

This procedure is continued until we finally obtain the relation between the state 

vectors at the two ends of the beam: 

 

z7 = F7 P6 F6 P5 F5 P4 F4 P3 F3 P2 F2 P1 F1 z0      (4.51) 
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z7 = U z0        (4.52) 

 

In this manner all the intermediate state vectors have been eliminated. Rewriting Eq. 

4.52 in full we have 

 

 

                     (4.53) 

 

 

 

The coefficients u11 to u44 all being known functions of the circular frequency ω. 

Expanding the matrix product gives the four equations 

 

                        (4.54) 

                                (4.55) 

                                (4.56) 

                                 (4.57) 

 

4.4.  Determination of Natural Frequencies 

 

Natural frequencies of a beam can be calculated by applying the boundary conditions 

to the Eq. 4.54 to 4.57. Due to the characteristic of beams, four of the end conditions 

should have zero value and eventually two equations remain. Determinant equation of this  

2 x 2 matrix gives the natural frequencies of the system. Consider the following two cases:  

  

Case 1: Beam Simply Supported at Both Ends as shown in Figure 4.12a. The boundary 

conditions are; 
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Substituting these in Eq. 4.54 and 4.55, we obtain 

 

                                                (4.58) 

 

                                                (4.59) 

 

For a nontrivial solution of these equations the determinant of the coefficients must 

be zero, that is, 

 

                                              (4.60) 

 

 

 

 

 

 

 

Figure 4.12. Two cases of boundary conditions. [11] 

 

Since the elements uik are known functions of the circular frequency ω, this deter-

minant serves to compute the natural circular frequencies. In view of the fact that the beam 

possesses six discrete masses, the expansion of the frequency determinant leads to an 

equation of sixth degree in ω 2. 

 

Case 2: Left Side Built-in, Right Side Free (Figure 3.12b). The boundary conditions 

 

 

 

 

yield, after substitution in Eq. 4.56 and 4.57, and the frequency determinant is; 
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             (4.61) 

 

In practice we are usually interested in the natural frequencies of a particular system 

subjected to only one set of boundary conditions. When this is so, it is not necessary to 

carry through the complete matrix multiplication. Consider, for example, the beam 

illustrated in Figure 4.13, which is, let us say, divided into three parts whose transfer 

matrices A,B and C are known. The beam is simply supported on the left and fully built-in 

on the right. From our discussion above we have the relations,  

 

                                               (4.62) 

                                             (4.63) 

 

                                          (4.64) 

 

 

 

 

 

 

Figure 4.13. Beam of three sections.

 

[11]

                                                                   

That is, the state vectors at the points 1, 2, and 3 are found by multiplying the state 

vector z0 by the matrices A, BA, and CBA, respectively. When the matrix multiplication 

has been completed, we can see that, since the deflection and moment at point 0 are zero, 

the first and third columns are multiplied by zero, and thus play no part in the calculation. 

Elements that appear in the first and third columns of the matrices A, BA, and CBA may 

therefore be dropped. This has been indicated by drawing vertical lines between the 

unnecessary elements. With the boundary conditions at point 3 being w3=Ψ3=0, we obtain 

the relations; 

                                                   12 0 14 0 0e e V+ =Ψ                                                            (4.65)
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                                                                22 0 24 0 0e e V+ =Ψ                                              (4.66)
 

from which the frequency determinant is 

      

                                          (4.67) 

 

In this problem it is unnecessary to compute e32, e34, e42, and e44. 

 

4.5.  Determination of Mode Shapes 

 

With the natural frequencies of an elastic system having been found by means of 

transfer matrices, it is an easy matter to compute the normal modes using the calculations 

already carried out. Let us reconsider the example discussed in Sec. 3.2 which is illustrated 

in Figure 3-13. In the abridged version of the matrix layout we saw that the state vectors 

z1, z2 a n d  z3 could be expressed in terms of the unknowns at point 0, namely, the slope ψ0 

and the shear V0. When the boundary conditions at the right end are applied, we have the 

Eq. 4.65 between ψ 0 and V0, giving V0 = -(e12/e14)ψ0 , so that the column vector {V0  ψ0} can 

be rewritten in terms of ψ 0 alone as {1  -e12/e14}ψ0. All the state vectors may then be 

expressed in terms of ψ0 only, and remains undetermined but which can be arbitrarily 

chosen as unity. When this is done, the expressions for the state vectors are then given by; 

          

      

(4.68) 

 

           

                                  

(4.69) 

                        

                                

 

 

                                  (4.70) 
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4.6.  Forced Vibrations of a Straight Beam 

 

The transfer matrix relating the state vectors between adjacent points has already 

been derived in Section 4.1. Let us now find the corresponding relations when a length of 

beam is subjected to a uniformly distributed harmonic load  q cosΩt (Figure 4.14). 

 

From equilibrium conditions we have for the massless beam 

 

                                                 (4.71) 

  

                                      (4.72) 

 

Also, from strength of materials [Eq. 4.15 and 4.16], we obtain the relations 

                      (4.73) 

           (4.74) 

 

 

 

 

 

 

 

 

Figure 4.14. Beam subjected to uniformly distributed load q cos Ωt. [11] 

 

The elimination of  and  L L

i iM V  from the right-hand side of these equations gives 
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Repeating the equilibrium equations 

 

       (4.77) 

                                   

                                         (4.78) 

 

and again introducing the identity l 1≡ , the above equations in matrix form become 

 

  

 

 

 

                  (4.79) 

 

                                                      

 

 

                                                   (4.80) 
 

 

Where ɶz  is the extended state vector and Fɶ  is the extended field transfer matrix. 

 

4.7.  Transfer Matrices Applied to Forced Damped Vibrations 

 

We shall now compute the steady-state vibrations of the system of Figure 4.15 with 

the help of transfer matrices. The field transfer matrix was found for the case of free 

vibrations by Eq. 4.5. In case of damping, complex impedance or complex stiffness 

Ωz( ) should be introduced.     

      z( ) jcΩ = Ω          (4.81) 

 

If we consider steady-state forced vibrations, we should add an extra column to the 

Eq. 4.5 with the addition of complex impedance where the stiffness values are involved. 

The extended transfer matrix relating 1 0andL Lz  zɶ ɶ  becomes 
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                         (4.82)

 

 

 

 

The extended point matrix for the concentrated mass is given by the relation 

 

                   (4.83) 

 

 

 
Figure 4.15. Simple damped system in steady state oscillation. [11] 

 

Since in this case x0=0 , we may drop the first column of Eq. 4.82 and the transfer 

matrix product has the form 
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Applying the boundary condition 0R

iN = , we obtain the relation 
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So that                   0 21

P
N

m / ( k jc )
=

− Ω + Ω
                                        (4.86)     

 

Thus                                 0
1 2 2

N P P
x

k jc k jc m k m jc
= = =

+ Ω + Ω − Ω − Ω + Ω
                      (4.87)           

 

 

 

 

 

Figure 4.16. (a) Spring of stiffness k and (b) damper of complex stiffness jcΩ. [11] 

 

Two further simple examples of extended transfer matrices are given by Eq. 4.89 and 

4.91 for the spring shown in Figure 3.16a and the damper in Figure 3.16b: 
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Which when written in real form is ; 
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and for the viscous damper 

 

 

 
                                                                                
                                                       (4.90)                    
 
 
 
 

 

or in real form 
 

 

 

 

      

         (4.91) 

    

 

 

 

 

 
For easier coordination the elements of the state vector have been written above the 

associated columns. 

 

 

 
 

 

 

 

 

Figure 4.17. Spring and damper in parallel. [11] 
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We stated that a damper has a complex impedance or complex stiffness given by Eq. 

4.81 at the beginning of this section. The stiffness of two springs in parallel is the sum of 

the two individual springs, so that the combination shown in Figure 4.17 has a complex 

stiffness k jc+ Ω . The mechanical admittance or receptance, which is defined as the 

reciprocal of the complex stiffness, is 1 / ( k jc )+ Ω .The extended transfer matrix for the 

structural unit of Figure 4.17 is given below in complex as well as in real form:  
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                        (4.93) 

 

 

 

 

 

When springs and dampers are connected in series as shown in Figure 3.18, the total 

admittance is found by adding the admittances of the individual elements so that the 

extended transfer matrix becomes 
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        (4.94) 

 

 

 

or 

 

 

 

 
    

 (4.95) 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.18: Spring and damper in series. [11] 

 

 

Another important "building block" is represented in Figure 4.19, where a point mass 

is subjected to a harmonic force of complex amplitude and is restrained by an absolute 

spring and an absolute damper. The extended point matrix is then, 
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                                (4.96)      

 

 
or 

 

 

 

            (4.97)

   

  

 
 

 

 

 

 

 

 

 

Figure 4.19: Point mass with harmonic exciting force. [11] 

 

For the case of structural damping it is easy to establish the transfer matrix for a massless 

beam. According to Eq. 4.23 the transfer matrix for an undamped massless beam is 
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Replacing EJ  by  EJ(1 + jg), we obtain the complex extended transfer matrix of the 

massless beam with structural damping in steady-state vibration, as follows: 
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We can write Eq. 4.99 in its real form, we find ; 
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5.  CASE STUDY 

 

 

5.1.  Structure Selection for the Case Study 

 

Many studies investigating the seismic and wind response of slender structures like 

buildings, bridges and towers are available. Also a large number of TMD applications were 

available on slender structures worldwide to improve their dynamic response and they 

were reviewed as a summary in the second chapter.  However, there are only a few studies 

investigating the lateral response of reinforced concrete minarets. Majority of them are 

about modal analysis and dynamic stress analysis of these slender structures. Sezen et al. 

[5] attempts to identify the structural vulnerabilities of minarets based on their past seismic 

performance. Surprisingly no study was available that investigates TMD applications to 

improve their dynamic response against earthquake and wind. Architectural characteristic 

of Turkish style minarets are limiting the structural engineers while designing better 

performing minarets. They can perform perfect static design but they have no choice other 

than TMD application to minimize the resonance impact on dynamic response. Minarets 

are indispensible towers in any mosque building. Size of the mosque specifies the number 

of the minarets. Therefore, the number of the minarets and their vulnerability is much 

bigger than the expected. Because of these reasons, it will be very good to investigate the 

TMD applications and their effectiveness on Turkish style minaret structures. 

 

5.2.  Minaret Structures 

 

A minaret is a slender tower built next to a mosque. While most historical minarets 

were constructed using reinforced or unreinforced stone or brick masonry, the majority of 

minarets recently constructed in Turkey are reinforced concrete (RC) structures. As shown 

in Figure 5.1, a typical minaret structure comprises a base or boot on top of its foundation, 

a tapered transition segment, a circular body or shaft with one or more balconies, and a 

spire at the top. The base or boot is usually square or polygonal, and is sometimes called 

the pulpit by architects. The minaret can be free standing or the boot may be attached to the 

mosque structure. The minaret contains interior spiral stairs running all the way up to the 
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highest balcony level which are not externally visible. Historically the balconies are built 

so that someone could climb up the stairs and call for prayer. With the advent of 

loudspeakers, these balconies are not needed; however, one or more balconies are built in 

each minaret mainly for architectural reasons. Balconies create mass concentrations along 

the minaret’s height and affect its dynamic structural response. [5] 

 

 

Figure 5.1. Typical reinforced concrete minarets in Turkey. [5] 

 

Currently, there are no structural code requirements or guidelines for the design of 

reinforced concrete minarets, or minarets in general, in Turkey. As a result, these slender 

structures have been built, for the most part, by experienced contractors and construction 

workers with no engineering knowledge. In most cases, each contractor constructs a typical 

minaret with the same structural and architectural features regardless of the local soil 

conditions or seismicity of the region. [5] 

 

Turkey is located in one of the most seismically active regions of the world. Fifty-

seven destructive earthquakes have struck Turkey in the twentieth century, resulting in the 

destruction of infrastructure and more than 90 000 deaths. During these earthquakes, many 

minarets were damaged or have collapsed as shown in Figure 5.3. Sezen et al. [10] 

documents and discusses vulnerabilities and damages to 64 masonry and RC minarets after 
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the 1999 Kocaeli (Mw7.4) and Düzce (Mw7.2) earthquakes. As a result of these two 

earthquakes, the collapse of 115 minarets in the city of Düzce alone was reported [26]. 

Sezen et al. reports that approximately 70% of the RC and masonry minarets surveyed in 

Düzce sustained severe damage or collapsed. Even though the minarets are hardly ever 

occupied, they are located mostly in residential areas or shopping districts, and their 

collapse sometimes causes loss of life as shown in Figure 5.2. It is extremely important to 

regulate the construction and design of these slender structures for safety reasons in 

anticipation of future earthquakes. In addition to widespread earthquake damage and 

collapses, some reported failures of minarets due to wind loading indicate that most of 

these tower structures are vulnerable to lateral loads. 

 

   

Figure 5.2. Collapse of a minaret onto a nearby building. [5]     

 

     

Figure 5.3. Collapse of minaret on its main building. [5] 
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5.3.  TMD Type Selection 

 

The architectural, geometrical, and material properties of minarets vary widely. For 

example, the height of a typical minaret can be between 10 m and 55 m. The minaret may 

have one or more balconies. The representative RC minaret investigated in this study is 

assumed to be 50 m high, including a 11.5 m boot, 5.0 m transition segment, 27.7 m 

cylindrical body, and 6 m spire. The assumed outer diameter and thickness of the cylinder 

are 2.2 m and 0.25 m, respectively. The view of the representative minaret is shown in 

Figure 5.4. Larger technical drawings of the minaret can be found in Appendix D. 

 

 

Figure 5.4. Minaret structure for the case study. 
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It will be a challenging job to find an appropriate place on minaret structure to install 

the TMD setup. Its outer view looks very slender and elegant. Any additional mass, spring, 

pendulum or damping unit will affect its architectural image. It might be a good idea to 

replace the balcony rail with rolled steel sheet and hang this sheet as additional mass with 

steel wires to the upper section. By this way we will not increase the total weight of the 

minaret by adding an additional mass on it and we might use the self weight of the balcony 

rails as damper mass. Hanging wires which work as pendulum length will affect the 

outlook of the minaret and will not be accepted by the architects. At the same time TSD or 

TLCD options could not be considered as a feasible option for our case due to water 

density. We need to store 1-2 % of the structure weight as water on top of the minaret. 

Unfortunately, there is not such a space there. 

 

We should find a suitable location in the structure which does not to create any 

impact on outer view. Also TMD could be protected from atmospheric conditions and 

maintenance issue should be simplified. It was noted that inner staircase is terminated at 

upper balcony level. Therefore, inner room of the upper cylindrical body, from balcony 

level to the spire section will be a convenient place to install the TMD. Inner diameter is 

about 1.85 m and effective height is 4.0 m by allowing 2.0 m clearance for balcony door in 

case of any call for prayers. 

 

Bidirectional translational damper can be configured with springs and dampers in 

two orthogonal directions and provide the capability for controlling structural motion in 

both directions. The layout of this configuration is shown in Figure 5.5. The problems 

associated with the bearings and sliding surface can be eliminated by supporting the mass 

with a steel rod which allow the system to behave as a pendulum. It should be a hybrid 

TMD between translational and pendulum type. Since the pendulum operates as a soft 

spring, TMD stiffness should be maintained primarily by orthogonal springs. This is a 

custom made pendulum type TMD with additional springs and viscous dampers. The 

layout of applicable TMD to the minaret is shown in Figure 5.6.  

 

In this configuration radial displacement of TMD is less compared to the pendulum 

length. Therefore TMD mass makes small oscillations with an angle less than π/6 radians 

from vertical axis. In case of small oscillations, it is known that any system with an 
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orthogonal configuration of springs with k/2 stiffness will have an equivalent stiffness 

value k in any principal direction. The verification of this statement is shown in    

Appendix C. 

 

 

Figure 5.5. Springs and Dampers in two orthogonal directions. 

 

 

Figure 5.6. TMD layout developed for minarets  

 

This type of TMD was used in La Prade Heavy Water Plant to improve wind 

response of an elevator tower.[6] Picture of this TMD is shown on Figure 5.7. Inverted 

pendulum was used in that project. 
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Figure 5.7. TMD used in La Prade Heavy Water Plant [6] 

 

5.4.  Vibration Analysis of the Minaret with Transfer Matrix Method 

 

Conventional method for dynamic analysis of structures requires the well known 

equation of motion derived from Newton’s 2nd law and dynamic equilibrium. This equation 

requires stiffness matrix for the system. Stiffness matrix can be obtained easily for framed 

structures moving on a plane or any system loaded axially. However flexural vibration 

creates bending and rotation effect on the system and is not so easy to obtain stiffness 

matrix.  

 

Transfer Matrix Method explained in Chapter 3 was used to avoid the complexity of 

obtaining stiffness matrix of non-uniform cantilever beams. This method allows the 

successive determination of the deflection, slope, moment, and shear diagrams for any 

chosen frequency. Boundary conditions can be applied to the analysis by relatively 
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straightforward means, and structural damping can be included by introducing complex 

impedance. 

 

Discrete mass model was used to perform the vibration analysis on the structure. 

This method of analysis considers the minaret to consist of a series of concentrated masses 

connected by massless beam sections. The relations which will link adjacent masses are 

formulated using the assumptions made for linear elastic materials. Each mass corresponds 

to the weight of one particular section of the minaret. The beam section which connects it 

to adjacent masses has a cross-section corresponding to the minaret model as shown in 

Figure 5.8. Average dimensions of the minaret were used at the tapered section. The 

relations can be mathematically combined with similar expressions for adjoining sections 

so that the beam equations can be represented as a series of matrices. The boundary 

conditions developed for the cantilever beam  model are applied to the matrices 

corresponding to the sections at which these conditions occur. After computing the matrix 

resulting from the series of matrices, the determinant of the coefficients is set equal to zero 

to determine the eigenvalues or natural frequencies of the model. With these frequencies, 

deflection, slope, moment, and shear distributions against any excitation load can be 

plotted as a result of analysis.  

 

Elastic material properties are used in all dynamic analyses presented below. This is 

mainly because the vast majority of RC minarets failed to develop plastic hinges during 

recent earthquakes. They either failed without any indication of ductile response as shown 

in Figure 5.3, or remained elastic with virtually no visible damage. [5] 

 

It is usually burdensome to include all components in a structural model and consider 

their effect on the total behavior. Therefore inner stair cases can be ignored while modeling 

the structure.  

 

Model of the minaret is consisting of 13 discrete masses and massless elastic sections 

as shown in Figure 5.8. Spire mass was modeled as concentrated mass m13. Balcony and 

related platform masses are also considered in the value of m11 and m8. 
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Figure 5.8. Discrete mass model of minaret  
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Mass, length and Inertia of the model sections are listed on Table 5.1. 

  
 

  

Table 5.1. Mass, Length and Inertia values of the minaret model 
 

 

Figure 5.9. Simplified  
   minaret  model 
 

 

Modulus of elasticity of concrete is taken as 27 GPa 

 

Ei = 27 GPa valid for all sections. 

 

Moment of inertia for the sections are estimated as follows; 

 

 h = 3.10 m  ;  b = 0.40 m 

 4 4
1 2 3 4

1
[ ( 2 ) ]

12
I  I  I  I   h h b  = = = = − −  

 

mi Mass (kg) 

 

Li Length (m) 

 

Ii Inertia (m4) 

m1 36,3 103 
L1 1,75 I1 5,364 

m2 41,5 103 L2 3,75 I2 5,364 

m3 41,5 103 L3 4,00 I3 5,364 

m4 35,2 103 L4 4,50 I4 5,364 

m5 11,8 103 L5 4,10 I5 0,74 

m6 11,8 103 L6 3,20 I6 0,74 

m7 11,8 103 L7 3,20 I7 0,74 

m8 20,1 103 L8 3,50 I8 0,74 

m9 11,4 103 L9 3,45 I9 0,74 

m10 11,4 103 L10 3,10 I10 0,74 

m11 18,2 103 L11 3.45 I11 0,74 

m12 11,5 103 L12 4.05 I12 0,575 

m13 7,8 103 L13 3,65 I13 0,575 
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 D = 2.20 m  ;  d = 1.70 m  

 
4 4 4

5 6 7 8 9 10 11   [ – ] 0,74
64

I  I  I  I  I  I  I D  d   m= = = = = = = =
π

 

  

 D = 2.20 m  ;  d = 1.85 m  

 
4 4 4

12 13   [ – ] 0,575
64

I  I D  d   m= = =
π

 

 

 

Figure 5.10: Cross section of minaret boot 

 

 

        

Figure 5.11. Cross section of cylindrical minaret body 
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5.4.1. Natural Frequencies of the Minaret 

 

Free vibration of the model will be studied first. Since the structure has light 

structural damping, no damping will be assumed during free vibration. We know the 

relationship between state vector and field transfer matrix for free vibration as per Eq. 

3.24;  

 

z =F zL R

i i i-1 . 

 

We also know the relationship between state vector and point transfer matrix for free 

vibration as per Eq. 3.30 is;  

 

R L
i i i=z P z  

 

State vectors for each node on model will be as following; 

    

z1
L  = F1 z0   z1

R  = P1 z1
L 

z2
L  = F2 z1

R  z2
R  = P2 z2

L 

z3
L  = F3 z2

R  z3
R  = P3 z3

L 

z4
L  = F4 z3

R  z4
R  = P4 z4

L 

z5
L  = F5 z4

R  z5
R  = P5 z5

L 

z6
L  = F6 z5

R  z6
R  = P6 z6

L 

z7
L  = F7 z6

R  z7
R  = P7 z7

L 

z8
L  = F8 z7

R  z8
R  = P8 z8

L 

z9
L  = F9 z8

R  z9
R  = P9 z9

L 

z10
L = F10 z9

R  z10
R = P10 z10

L 

z11
L = F11 z10

R  z11
R = P11 z11

L 

z12
L = F12 z11

R  z12
R = P12 z12

L 

z13
L = F13 z12

R  z13
R = P13 z13

L 

 

State vectors are also defined in a shorter form; 
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z1
R = P1 F1 z0  z2

R = P2 F2 z1
R 

z3
R = P3 F3 z2

R  z4
R = P4 F4 z3

R 

z5
R = P5 F5 z4

R  z6
R = P6 F6 z5

R 

z7
R = P7 F7 z6

R  z8
R = P8 F8 z7

R 

                                            z9
R = P9 F9 z8

R         z10
R = P10 F10 z9

R 

                                            z11
R = P11 F11 z10

R       z12
R = P12 F12 z11

R 

                                            z13 = P13 F13 z12
R                   

 

Eq. 3.52 allows to make in a more compact way; 

 

z13  = P13 F13 P12 F12 P11 F11 P10 F10 P9 F9 P8 F8 P7 F7 P6 F6 P5 F5 P4 F4 P3 F3 P2 F2 P1 F1 z0 

      (5.1) 

 

z13 = Uz0                (5.2) 

 

U  = P13 F13 P12 F12 P11 F11 P10 F10 P9 F9 P8 F8 P7 F7 P6 F6 P5 F5 P4 F4 P3 F3 P2 F2 P1 F1 

      (5.3) 

                                                             

All field matrices are constructed by using the Eq. 4.23 

 

 

2 3

2

1

0 1

0

2 6

0 0 1

2

0 1

0

i i

i

i i

i i

i i

i

i

EI EI

L L

EI E

L

L

L

I

L

 
 
 
 
 
 

=  
 
 
 
 
  

F                                       (5.4) 

 

All point matrices are constructed by using the Eq. 4.29 
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                                              (5.5)    

 

 

 

Then, general transfer matrix U will be a 4x4 ; 

 

 
 

                                    
                                              (5.6) 

 
 

 
Boundary Conditions due to clamped at the base (node 0) and free at the tip (node 

13) requires;   

  M13= 0  , V13 = 0  , w0  = 0  , �0 = 0 

 

 
Governing equation between base and tip will be ; 

 
 

                                             

                      (5.7) 

 
 

 

Eventually frequency determinant will be obtained by Eq. 4.61; 

 

 
                                              (5.8) 

 

 

Roots of the frequency determinant will give the square of natural frequencies. 

Matlab codes are submitted in Appendix A.1. for our case study. The natural frequencies 

of minaret structure obtained through Matlab are listed on Table 5.2. 

2

1 0

0 1

0 0 1 0

0

0 0

0 0

0 1

i

i

 

m

 
 
 =
 
 
  

P

ω

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

u u u u

u u u u

u u u u

u u u u

 
 
 
 
 
 

11 12 13 14

21 22 23 24

31 32 33 34

41 42 431 43 04

0

0

0

0

u u u u

u u u u

u u u u

u u

w

   
M

u u V

−     
    
    =
    
    

    

Ψ

33 34

43 44

0
u u

u u

 
= 
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Table 5.2. Natural frequencies and periods of discrete mass model obtained from Matlab    

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

5.4.2.  Natural Modes of the Minaret 

 

Boundary conditions of fixed base structure  requires  w0 (displacement at fixed end) 

and Ψ0 (slope at fixed end) should be 0. Then the governing equation becomes; 

 

                                                         u33 Mo + u34 V0 = 0                                (5.9) 

 
         u34 Mo + u44 V0 = 0         (5.10) 

 
 

Let's consider the Eq. 5.9 and get V0 in terms of Mo  

 

 

                                                 (5.11) 

 

ωi 

Natural 
Frequencies 

(rad/sec) 

 

    f i 

Natural 
Frequencies 

(Hz) 

 ω1 6,6 f 1 1,1 

ω2 32,2 f 2 5,1 

ω3 72,6 f 3 11,6 

ω4 137,2 f 4 21,8 

ω5 239,6 f 5 38,1 

ω6 355,5 f 6 56,6 

ω7 453,5 f 7 72,2 

ω8 630,2 f 8 100,3 

ω9 779,4 f 9 124,0 

 ω10 1.010,0 f 10 160,8 

 ω11 1.165,3 f 11 185.5 

 ω12 1.336,9 f 12 212,8 

 ω13 2.550,4 f 13 405,9 

33
0 0

34

u
V M

u
= −
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                                            (5.12) 

 

 

To determine the normal modes M0 can be taken as unity; 

 

 

                                            (5.13) 

 

 

(Pi Fi )
* means that 1st and 2nd column of matrix multiplication are multiplied by 0. 

Therefore they should be dropped. 

             

z2 = (P2 F2)
* z1                            (5.14)                                           

z3 = (P3 F3)
*  z2                           (5.15) 

z4 = (P4 F4)
*  z3                           (5.16) 

z5 = (P5 F5)
*  z4             (5.17) 

z6 = (P6 F6)
*  z5            (5.18) 

z7 = (P7 F7)
*  z6            (5.19) 

z8 = (P8 F8)
*  z7                       (5.20) 

z9 = (P9 F9)
*  z8                       (5.21) 

z10 = (P10 F10)
*  z9            (5.22) 

z11 = (P11 F11)
*  z10            (5.23) 

z12 = (P12 F12)
*  z11            (5.24) 

z13 = (P13 F13)
*  z12            (5.25) 

 

Any mode shape will be obtained by using the related natural frequency in the above 

mentioned calculations. Lateral displacement values ( w ) will be extracted from each state 

vector and their values are plotted after normalization against height of each node. Matlab 

codes are submitted in the Appendix A.2 for our case study. Mode shapes of minaret 

structure for flexural vibrations obtained through Matlab are shown in figures from 5.12 to 

5.24. 

 

033

0
34

1
M

Mu
V

u

 
   =   −    

( )1 1 1 33

34

1
*

u

u

 
 =  −
  

z P F
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Figure 5.12. 1st Normal Mode Shape 
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Figure 5.13. 2nd Normal Mode Shape 
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Figure 5.14. 3rd Normal Mode Shape 
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Figure 5.15. 4th Normal Mode Shape 
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Figure 5.16. 5th Normal Mode Shape 
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Figure 5.17. 6th Normal Mode Shape 
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Figure 5.18. 7th Normal Mode Shape 
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Figure 5.19. 8th Normal Mode Shape 
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Figure 5.20. 9th Normal Mode Shape 
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Figure 5.21. 10th Normal Mode Shape 
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Figure 5.22. 11th Normal Mode Shape 

 

-20 -15 -10 -5 0 5 10 15 20
0

5

10

15

20

25

30

35

40

45

50
MOD(12)

Displacement (m)

H
e

ig
h

t 
(m

)

 

Figure 5.23. 12th Normal Mode Shape 
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Figure 5.24. 13th Normal Mode Shape 

 

5.4.3.  TMD Model 

 

Linear Elastic vibration analysis of a beam by using transfer matrix method was 

studied in Chapter 4. In case of a TMD application on main beam,  branch formulation  

should be derived to account for TMD effect in the system. Due to geometrical constraints 

mentioned in section 5.3, upper part of the minaret body just below the spire was selected 

as best location for TMD installation. In fact, the best efficiency will be obtained when 

TMD is located in the spire. However there is not such a possibility. Therefore the selected 

location is considered almost the top level of the structure where TMD could be installed. 

We first consider no damping. A branch formulation for DVA which is connected to the 

node 12 is derived hereafter; 

 
 

 

                                         (5.26) 

 
2 1

1
1

0 1

L R

d

x x
k

N N

 
    =         
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Figure 5.25. Minaret model with a DVA 

 

 

 
Figure 5.26.  DVA model 

 
 

 N1= N2 = kd (x2 – x1)        (5.27) 

 

     1
2 1

d

N
x x

k
= +          (5.28) 
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    2

2 2

1 0

1

R L

d

x x

mN N

    
=     −    ω

        (5.29) 

   

          2

2 1

1
11 0

1
0 1

R R

d

d

x x
k

mN N

 
     =      −       

ω
                  (5.30) 

 

 

                                             

     (5.31) 

  

    

x2 = Ax1 + B N              (5.32) 

 

0 = C x1 + D N        (5.33) 

     1

C
N x

D
= −          (5.34) 

 

     1eqN k  x=          (5.35) 

 

          
2

2

d d

eq

d d

k  m  
k

( k m  )
=

−

ω
ω

                                         (5.36) 

 

 

 

Figure 5.27.  Free body diagram mass m12 

 

 

Free body diagram of m12 shown on Figure 5.27 yields simple equilibrium condition; 

2
22 1 1

1

1
1

0
1

R

R R R

d

d

d

d

kx x A B x

N C D Nm
m

k

 
         = =        −       − + 
 

ω
ω
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                                   (5.37) 

 

Point transfer matrix for mass m12 will be as following; 

 

 

                                   (5.38)                                                 

 

 

All other transfer matrices Fi and Pi  are the same as in the case of without DVA 

except P12. P12 should be a special one due to DVA effect. When damping is included in a 

DVA, then it is called TMD configuration as shown in Figure 5.28. Damping effect should 

be inserted in the stiffness value of the spring by considering the damper's complex 

impedance or complex stiffness  jcω. 

 

 
 

Figure 5.28: TMD model without mass 
 

 

kdc = Total stiffness of the damped system. 

 

                                                           kdc = kd + jcdω                                (5.39) 

 

                     

(5.40) 

 

We obtain the equivalent stiffness of a TMD on mass m12 by inserting Eq. 5.39 in Eq. 5.36; 

 

kdeq = Equivalent stiffness of TMD on mass m12 

2

12

12

0 0

0

1 0

0 1

0 0 1 0

0

0

0 1

P

+

 
 
 =
 
 
  eq

 

m  kω

2
12 12 12 12= − +R L

eqV V ( m  k ) w ω

1j = −
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          (5.41) 

 

 

                 
2 2 2 4 2 4 2 5

2 2 2 2 2 2 2 2

d d d d d d d d

deq

d d d d d d

k  m  k  m  c  m  c  m  
k   j

( k m  ) c  ( k m  ) c  

ω − ω + ω ω
= −

− ω + ω − ω + ω
      (5.42) 

 

 

In case of an earthquake ground motion, there will be an external force on all masses 

in the system with mi guɺɺ magnitude. 

 

where      

    mi : discrete mass of each element 

    guɺɺ : peak ground displacement 

 

TMD mass will also receive this earthquake force. Eq. 5.33 should be changed due to 

equivalent earthquake force. 

 

0 = C x1 + D N + E        (5.43) 

 

where          E = - md guɺɺ  

 

     1

C E
N -  x -

D D
=         (5.44) 

 

 

     1deqN k  x F= +         (5.45) 

 

 
2 2 2 2 3

2 2 2 2 2 2 2 2

d g d d d d d g d d

d d d d d d

m u ( k k m c ) m u ( c m )
F  +  j

( k m ) c ( k m ) c

− ω + ω ω
= −

− ω + ω − ω + ω

ɺɺ ɺɺ

     (5.46) 

 

2

2

ω
=

− ω
dc d

deq

dc d

k  m  
k   

k m  
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5.4.4. TMD Optimization 

 

We need to develop a Single Degree of Freedom (SDOF) system to obtain the 

optimized  TMD parameters as explained in section 3.2.2. Fixed base structure should be 

converted to a model with a single mass on top of a massless beam. This is a typical SDOF 

system as shown in Figure 5.29. Natural frequency of the SDOF model should be identical 

with the 1st natural frequency of minaret. Equivalent mass at free end where TMD located 

should be calculated. Therefore the height of the beam should be considered as height of 

the TMD in minaret. It is assumed that structure has uniform bending stiffness. Lateral 

deflection of such beam with m/L unit mass from basic strength of materials will be as 

follows; 

  

    
2

3
Px

y( x ) ( L x )  
6 E I

= −         (5.47) 

 

    
2

3
3

2
maxy x

y( x ) ( L x )  
L

= −         (5.48) 

 

    2 3

3
3

2
maxy

y( x ) ( x L x )  
L

= −
ɺ

ɺ         (5.49) 

 

         21
[ ( )]

2
T m y x= ɺ          (5.50) 

 

2 3 2max
max 3

0

1
( ) (3 )

2 2

L
ym

T x L x dx
L L

= −∫
ɺ

        (5.51) 

 

    
2

7max
max 6

( )1 33

2 354

ym
T L

L L
=

ɺ
        (5.52) 

 

    2
max max

1 33
( )

2 140
T m y= ɺ         (5.53) 
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 Figure 5.29. SDOF model of minaret 

 

    

By Rayleigh’s Energy Method 

  

 T1+U1 = T2+U2         (5.54) 

 

     2
max max

1
( )

2 eqT m y= ɺ                               (5.55) 

 

                                                               meq = 0.236 m                                                   (5.56) 
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 Figure 5.30: Equivalent mass for SDOF model 

 

     

It is also assumed that minaret has a constant bending stiffness. 

 

    = 262500 x 0.236 + 7800eqm  

    69750 kgeqm  =  

 

 

    Figure 5.31. SDOF model of minaret with TMD 
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 Due to geometrical constrains, there is a limited space inside the minaret to locate 

the TMD. Therefore the size of TMD mass should be minimized. We also know that when 

the mass ratio is smaller, the displacement of the TMD mass is increased. Section 3.2.2 

states that the allowable values of primary mass displacement and TMD mass should be 

estimated for the design loading at first. This data provides the design values for 2 |optH  

and 4 |optH . 

 

• Let's assume a mass ratio as 0.05 due to space limitation at the upper part of the 

minaret. Figure 3.10 shows that optimum displacement ratio is 4 against 0.05 mass 

ratio [19]. Given displacement ratio looks acceptable.  

 

m = 69750 kg  ,  md = 3490 kg 

 

• Determine fopt from Figure 3.5.  

fopt = 0.94 

 

• Compute ωd,   ωd= fopt ω 

ωd  = 6.2 rad/sec 

  

• Compute kd,   kd= md ωd
2 

kd =  134.155 N/m 
 

• Determine opt|dξ  from Figure 3.7. 

opt|dξ  = 0.135 

 

• Compute cd ,  cd= opt2 |dξ md ωd 

cd = 5842 N sec/m 
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Figure 5.32.  Normalized frequency response of m12 without TMD 

 

         Frequency response of minaret model without a TMD is shown in Figure 5.32. 

Frequency response of minaret model with TMD at m12 elevation is also shown in Figure 

5.33. Optimized TMD parameters obtained through SDOF approximation were used in this 

response. It is easily seen that optimization is not perfect. Two peaks of the response curve 

are not at same level. The main reason for this deviation from the optimum state is the 

SDOF approximation.  

 

         A Matlab code was developed to estimate the optimized TMD parameters by 

applying iterations. We will use the existing parameters as an initial guess values for the 

new optimization program. The related Matlab codes are available in Appendix A.3. 

Optimized stiffness and damping values are estimated as follows; 

  

 kd =  125.970 N/m    cd = 7.020 N sec/m 

 

         Frequency response with optimized parameters are shown in Figure 5.33 and Figure 

5.34. The related Matlab codes are available in Appendix A.4. 
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Figure 5.33.  Normalized frequency response of m12 with TMD  
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Figure 5.34.  Normalized frequency response of m12 with optimized TMD around 1st 

natural frequency 
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Figure 5.35.  Normalized frequency response of m12 with optimized TMD  

around 1st and 2nd natural frequency 
 

 

5.4.5.  Dynamic Analysis of Minaret Against Harmonic Base Excitation Through 

MATLAB 

 

 

Discrete mass model described in section 5.4 was used also here. First, the minaret 

without TMD is analyzed then the minaret with TMD. 

 

5.4.5.1. Dynamic Analysis of Minaret without TMD. Structural damping values are taken 

as 5% for reinforced concrete structures. Transfer functions which accommodate the 

structural damping were mentioned in Section 4.7. Eq. 4.101 shows the field transfer 

function for a flexural massless beam in case of a forced vibration. Point transfer function 

on a flexural massless beam will be as following in case of base excitation; 
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Figure 5.36.  Flexural vibration model of minaret without TMD 
 

 

 

 iw  = Displacement of ith node 

 

 ɺɺ
gu  = Base excitation acceleration 

                                                                                               

mi = Concentrated masses 
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          (5.57) 
 
 
 
 
 
 
 
 
 

 

Similar matrix operations should be performed here as applied in Section 5.4.3. Only 

forcing terms and structural damping coefficients should be added in transfer functions. 

Related MATLAB codes are submitted in Appendix A.5. 

 

Let's apply 2 harmonic base excitation as following; 

 

Case 1:  ω  = 6,6 rad/sec  (1st natural frequency) 

            ωgu Asin t=ɺɺ  

  A  = 1.0 m /sec2 

Case 2:  ω  = 32,2 rad/sec( 2nd natural frequency) 

            ωgu Asin t=ɺɺ  

  A  = 1.0 m/ sec2 

 

Output response of the model for 1st Case are plotted in Figure 5.37 to Figure 5.44 

and 2nd Case are plotted in Figure 5.45 to Figure 5.52. 

2
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Figure 5.37.  Displacement curve / case 1 no TMD 
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Figure 5.38. Rotation diagram / case 1 no TMD 
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Figure 5.39. Moment diagram / case 1 no TMD 
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Figure 5.40. Shear diagram / case 1 no TMD 
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Figure 5.41. Absolute Displacement curve / case 2 no TMD 
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Figure 5.42. Absolute Rotation diagram / case 2 no TMD 
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Figure 5.43. Absolute Moment diagram / case 2 no TMD 
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Figure 5.44. Absolute Shear diagram / case 2 no TMD 
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Observations from the minarets that collapsed during recent earthquakes showed that 

the bottom of the cylindrical minaret body immediately above the transition segment is the 

most vulnerable section under seismic loading [5]. Therefore, reactions and stress state at 

4th node will also be investigated together with base reactions and deflections at 12th node 

where TMD installation is planned. They are listed on the Table 5.3. 

 

Table 5.3. Response outputs of minaret without TMD against harmonic base excitation 

 Case 1 Case 2 

Displacement at 12th node                     (m) 65.6 x 10-2 1.3 x 10-2 

Base shear                                              (N) 1.95 x 106 1.29 x 106 

Base moment                                     (N m) 67.07 x 106 18.19 x 106 

Shear at 4th node                                    (N) 1.84 x 106 0.71 x 106 

Moment   at 4th node                         (N m) 40.08 x 106 1.76 x 106 

Shear stress at 4th node                     (MPa) 1.20  0.46 

Bending stress at 4th node                 (MPa) 59.6 2.62  

 

 

It should be noted that according to the current Turkish building code [13], the 

minimum concrete strength is 20 MPa. It is assumed that representative minaret was 

constructed according to the minimum code requirements. It is easily seen that during the 

vibration at 1st natural frequency, bending stress at 4th node exceeds concrete bearing 

capacity and crack occurs. Structure collapse will follow the non ductile behavior. 

However the stresses during 2nd natural frequency vibration are below the elastic limit. 

 

5.4.5.2. Dynamic Analysis of Minaret with TMD. In case of TMD involvement, only point 

transfer function at 12th node should be changed by the addition of Eq. 5.45 to the related 

transfer matrices.  
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      (5.58) 

              

 

 

 

 

 

Let's use the same optimal stiffness and damping values obtained through 

optimization program in section 5.4.4. 

 

Where,  kd =  125.970 N/m , cd = 7.020 N sec/m , md = 3.490 kg 

 

Matlab codes for dynamic analysis of minaret model with TMD are submitted in 

Appendix A.6. The same base excitation parameters are applied as in the previous section 

for minaret without TMD; 

 

Case 1:   ω  = 6.6 rad/sec  (1st natural frequency) 

  ωgu Asin t=ɺɺ  

  A   = 1.0 m/sec2 

Case 2:   ω  = 32.2 rad/sec( 2nd natural frequency) 

  ωgu Asin t=ɺɺ  

  A    = 1.0 m/sec2 

 

Output response of the model for 1st Case are plotted in Figure 5.45 to Figure 5.48 

and 2nd Case are plotted in Figure 5.49 to Figure 5.52. 
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Figure 5.45. Displacement curve / case 1 with TMD 
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Figure 5.46. Rotation diagram / case 1 with TMD 
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Figure 5.47. Moment diagram / case 1 with TMD 
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Figure 5.48. Shear diagram / case 1 with TMD 
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Figure 5.49. Absolute Displacement curve / case 2 with TMD 
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Figure.5.50. Absolute Rotation diagram / case 2 with TMD 
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Figure 5.51. Absolute Moment diagram / case 2 with TMD 
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Figure 5.52. Absolute Shear diagram / case 2 with TMD 
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Same reactions and stress states as in the previous section are calculated and listed on 

Table 5.4. for minaret equipped with TMD. 

 

Table 5.4. Response outputs of minaret with TMD against harmonic base excitation 

 Case 1 Case 2 
Displacement at 12th node                     (m) 13.9 x 10-2 1.2 x 10-2 

Base shear                                              (N) 0.47 x 106 1.26 x 106 

Base moment                                     (N m) 14.37 x 106 17.65 x 106 

Shear at 4th node                                  (N ) 0.38 x 106 0.54 x 106 

Moment   at 4th node                        (N m) 6.87 x 106 1.13 x 106 

Shear stress at 4th node                    (MPa) 0.25  0.35  

Bending stress at 4th node               (MPa) 10.21  1.68  

 

Response improvements are listed on Table 5.5. It is seen that there is significant 

improvement on response at 1st natural frequency.  Bending stresses are below the elastic 

limit. It is verified that TMD installation performs excellent improvement at 1st natural 

vibration mode. 

 

Table 5.5. Response improvement of minaret via TMD installation against harmonic base 

excitation. Case 1: 1st natural frequency. Case 2: 2nd natural frequency. 

 Case 1 Case 2 
Displacement at 12th node                      

79 % 8 % 
Base shear                                               

76 % 2 % 
Base moment                                      

79 % 3 % 
Shear at 4th node                                   

79 %  24 %  
Moment at 4th node                         

83 % 36 % 
Shear stress at 4th node                     

79 %  24 % 
Bending stress at 4th node                

83 % 36 % 
 

 
         TMD mass makes relative displacement against minaret wall which is modeled as 

m12. This relative displacement is important while designing TMD and its connections. 

Such a free space should be allocated for TMD mass to allow free vibration. Any touch up 
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to the main structure will create an impact which is not desired and substantially structure 

can collapse. Therefore this relative displacement has significant role in a TMD design. 

 

          Eq. 5.32 gives the displacement of TMD in terms of displacement of m12, other 

TMD parameters and circular frequency. It can be simplified as following; 

     2 1

d d

N
x  x  = 

k jc
−

+ ω
        (5.59)

  

where                                                       1deqN k  x F= +                                                (5.60) 
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              (5.62) 

 

           Since maximum x1 value was estimated during the vibration analysis and listed on 

Table 5.4., relative displacement can be easily estimated by using Eq. 5.59. A Matlab code 

is created to calculate relative displacement of TMD mass against connection point and 

listed in Appendix A.11. Relative displacement was estimated as 0.33 m by using above 

mentioned Matlab codes. It should be pointed out that relative displacement is strongly 

depending on the excitation amplitude.  

 

5.5. Vibration Analysis of the Minaret with Finite Element Method 

 

Earthquake ground motions are typical random vibrations of ground which occur 

during seismic movements of earth. Each earthquake has its own characteristic 

displacement, velocity and acceleration records. Amplitude and frequency parameters of 

each specific earthquake vary at different locations due to several reasons. Distance to fault 

line and soil conditions could be some of the major reasons. Therefore ground motion data 

of a specific earthquake is recorded differently at other locations. The ground acceleration 

is defined by numerical values at discrete time instants. These time instants should be 

closely spaced to describe accurately the highly irregular variation of acceleration with 
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time. Typically, the time interval is chosen to be 5/1000 to 1/50 of a second requiring 6000 

to 1500 ordinates to describe the ground motion of 30 sec. [7] 

 

Ground acceleration during earthquake varies irregularly to such an extent that 

analytical solution of the equation must be ruled out. Therefore, numerical methods are 

necessary to determine the structural response and any of the methods presented in chapter 

5 of ref. [7] could be used.  

 

Greatest interest in structural engineering is the deformation of the system or the 

displacement of the mass relative to the moving ground, to which the internal forces are 

linearly related. These are the bending moments and shears in the beams and columns of 

the structure. [7] Therefore it is sufficient to analyze and compare the displacement of 

structure with and without TMD application. Displacement of structure with and without 

TMD installation gives enough information about the response improvement due to linear 

relationship of force, moment and displacement parameters. Sezen et al. [5] documents that 

maximum displacements and maximum stresses occur at about the same time, respectively. 

 

    

Figure 5.53. Minaret model used in SAP2000 program 
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It is usually burdensome to include all components in a structural model and consider 

their effect on the total behavior. In this study, a finite element model representing the 

same minaret will be used to analyze the dynamic response. Shell type model is developed. 

The interior spiral stairs are ignored in model as shown in Figure 4.53. SAP2000 [8] FEM 

software was used to analyze the model.  

 

5.5.1. Natural Frequencies of the Minaret 

 

Natural frequencies for the first 5 modes estimated from the modal analyses are 

given in Table 5.6. All natural frequencies and periods obtained from SAP2000 are listed 

in Appendix B.1.  

 

Table 5.6. First 5 natural frequencies of FEM model obtained from SAP2000 

 
 
 
 
 
 
 
 
 
 

 

When we compare Table 5.2 and Table 5.6, we see that the first three natural 

frequencies match pretty closely.  

 

5.5.2. Natural Modes of the Minaret 

 

          First 5 modal shapes in one direction obtained from modal analysis through 

SAP2000 are shown in Figure 5.54. 

   ωi 
Natural Frequencies 

(rad/sec) 

 

    f i 
Natural Frequencies 

(Hz) 

ω1 7,0 f 1 1,1 

ω2 32,8 f 2 5,2 

ω3 71,2 f 3 11,3 

ω4 121,8 f 4 19,4 

ω5 193,0 f 5 30,7 
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               1st Mode    2nd Mode         3rd Mode                  4th Mode            5th Mode 

Figure 5.54. First 5 modal shapes in one direction of FEM model obtained from SAP2000 

 

5.5.3.  Dynamic Analysis Against Earthquake Ground Motion 

 

Two ground motions are used in the dynamic time history analyses of the minaret 

model with and without TMD installation. 17 August 1999 Kocaeli earthquake record in 

East-West direction which is shown in Figure 5.55 is used for the 1st case. Then 12 

November Düzce earthquake record in East-West direction which is shown in Figure 5.56 

is used for the 2nd case. Optimized TMD parameters are adjusted slightly to correlate the 

differences in the natural frequencies of finite element method analysis against discrete 

mass model. 

 

The lateral displacement graphs of joint 1026 at upper cylindrical body of minaret model 

without TMD are shown in Figure 5.57. Joint 1026 specifies a point on the shell model at 

43.250 m elevation from the ground level which belongs to the plane of TMD installation. 

The maximum lateral displacements at the top of the cylindrical body (joint 1026) are 8.4 

cm and 31.5 cm as calculated using the Kocaeli and Düzce ground motions, respectively. 

 

The lateral displacements of joint 1026 and base reactions of model without TMD, as 

calculated from the time history analysis of model using the 1999 Düzce and Kocaeli input 

motions, are shown on Table 5.7. Base reactions of the model against Kocaeli and Düzce 

earthquakes are listed on Table B.2. and B.3. respectively. 
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Figure 5.55. Acceleration of Kocaeli earthquake recorded at Izmit Meteroloji station. [9] 

 

 

Figure 5.56. Acceleration of Düzce earthquake recorded at Düzce Meteroloji station. [9] 

           

 

Table 5.7. Response outputs of minaret without TMD against earthquake ground motion. 

 Kocaeli EQ Düzce EQ 
Displacement at the top of cylindrical body (joint 1026)  (m) 8.4 x 10-2 31.5 x 10-2 
Base shear                                                                          (N) 0.74 x 106 1.47 x 106 
Base moment                                                                 (N m) 11.34 x 106 39.65 x 106 

 

 

 

Figure 5.57. Displacement plot of joint 1026 without TMD against Kocaeli Earthquake  

by SAP2000   
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Figure 5.58. Displacement plot of joint 1026 without TMD against Düzce Earthquake  

by SAP2000 

 

Now, response of the model equipped with TMD will be studied. Optimized TMD 

parameters obtained in section 5.4.4 should be revised due to slight differences in the 

natural frequencies of FEM and discrete mass models. Natural frequencies and periods of 

the model with TMD are listed in Appendix B.4. As shown on Table 5.7 there is only 6 % 

difference in the 1st natural frequency. Therefore similar procedure should be repeated here 

as in section 5.4.4. 

 

• Let's assume the same 0.05 mass ratio as in section 5.4.4.  

md = 3490 kg 

 

• Determine fopt from Figure 3.5  

fopt = 0.94 

 

• Compute ωd,   ωd = fopt ω 

ωd  = 6.58 rad/sec 

  

• Compute kd,   kd = md ωd
2 

kd =  151104 

 

Since there are 2 springs in parallel, stiffness of each spring in the model should be 

half value. 
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• Determine d opt|ξ  from Figure 3.7 

d opt|ξ  = 0.135 

 

• Compute cd ,  cd = d opt2 |ξ md ωd 

cd = 6200 

 

Since there are 2 viscous dampers in parallel, coefficient of each damper in the 

model should be half value. 

 

Uncoupled spring and damper from link elements are used to specify the TMD 

parameters like stiffness and damping. Joint mass was assigned to simulate the TMD mass. 

Sketch of the TMD elements and their connection to shell joints in SAP2000 model is 

shown in Figure 5.59. The lateral displacements of joint 1026 and base reactions of model 

with TMD, as calculated from the time history analysis of model using the 1999 Düzce and 

Kocaeli input motions, are shown on Table 5.8.  

 

 

 

Figure 5.59. Uncoupled spring and damper from Link elements to model TMD  

in SAP2000 

 

The lateral displacement graphs of joint 1026 at upper cylindrical body of minaret 

model with TMD are shown in Figure 5.60 and Figure 5.61. Base reactions of the model 

against Kocaeli and Düzce earthquakes are listed on Table B.5. and B.6. respectively. 
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Figure 5.60. Displacement plot of joint 1026 with TMD against Kocaeli Earthquake  

by SAP2000  

 

 

Figure 5.61. Displacement plot of joint 1026 with TMD against Düzce Earthquake  

by SAP2000 

 

Table 5.8. Response outputs of minaret with TMD against earthquake ground motion. 

 
 

Kocaeli EQ Düzce EQ 

Displacement at the top of cylindrical body (joint 1026) (m) 6.0 x 10-2 24.1 x 10-2 
Base shear                                                                         (N) 0.75 x 106 1.4 x 106 
Base moment                                                                (N m) 10.22 x 106 32.53 x 106 
 

TMD mass displacement has to be checked against minaret wall to prevent any 

impact. Junction point of the spring and damper combination is joint 1562. Displacement 

plot of joint 1562 for Kocaeli Earthquake is shown in Figure 5.62 and Düzce Earthquake in 
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Figure 5.63.   As seen in the related figures, maximum displacement occurs as 13 cm at 

4.89 sec for Kocaeli case. Minaret wall at that elevation (joint 1026) makes maximum 

displacement as 6 cm. The worst case for the relative displacement can be approximated 

with π phase shift. In this case, maximum relative displacement reaches 19 cm. However 

the same calculation ends with 71cm for the maximum relative displacement against Düzce 

earthquake. There should be sufficient gap between the TMD mass and minaret wall to 

prevent any impact. This issue is very important and should be considered during TMD 

detailed design.  

 

 

Figure 5.62. Displacement plot of TMD mass (Joint 1562) against Kocaeli Earthquake  

by SAP2000 

 

 

 

Figure 5.63. Displacement plot of TMD mass (Joint 1562) against Düzce Earthquake by 

SAP2000 
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           Dynamic response improvement on displacements, base shears and base moments 

against Kocaeli and Düzce earthquakes are listed on Table 5.9. 

 

 

Table 5.9. Response improvement of minaret via TMD installation against  

Kocaeli and Düzce earthquakes 

 Kocaeli EQ Düzce EQ 

Improvement in Displacement of joint 1026     29 % 24 % 

Improvement in Base shear                      - 1 % 5 % 

Improvement in Base moment             10 % 18 % 

 

 

           It is seen that response improvement is not as good as the case with harmonic base 

excitation at the 1st natural frequency. The reason can be explained with the dominating 

frequency of the earthquake itself. We should change the earthquake ground acceleration 

records from time domain to frequency domain by using Fourier transform to find out the 

dominating frequencies. A matlab code is prepared to make Fourier transformation and it is 

listed in Appendix A.8. Figure 5.64 and Figure 5.67 show the ground acceleration records 

of Düzce and Kocaeli earthquakes respectively in time domain. Figure 5.65 and Figure 

5.68 show frequency spectrum of each earthquake respectively. Dominating frequency is 

not so visible in such large frequency range. Therefore, Figure 5.66 and Figure 5.69 were 

prepared to get dominating frequencies easily. Dominating frequencies of Düzce 

earthquake are recorded as 0.235 Hz, 0.811 Hz and 1.197 Hz from Figure 4.66. 

Dominating frequencies of Kocaeli earthquake are recorded as 1.097 Hz, 1.732 Hz and 

2.598 Hz from Figure 5.66. Especially 3rd dominating frequency of Düzce and 1st 

dominating frequency of Kocaeli are very close to the 1st natural frequency of our 

structure. However other major dominating frequencies are affecting the performance of 

the TMD. It is a well-known fact that TMDs are very efficient in narrow band excitations.  

Generally earthquakes are not narrow band excitations. As a result, their efficiencies are 

not as high as in the case of harmonic excitations'. 
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Figure 5.64. Düzce earthquake ground acceleration records in time domain 
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Figure 5.65. Düzce earthquake ground acceleration records in frequency domain 
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Figure 5.66. Enlarged view of Düzce earthquake ground acceleration records in  

frequency domain 
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Figure 5.67. Kocaeli earthquake ground acceleration records in time domain 



         120   
 

 

0 5 10 15
0

20

40

60

80

100

120

140

160

180

Fourier Amplitude Spectrum

Frequency [Hz]

A
m

p
lit

ud
e

 
Figure 5.68. Kocaeli earthquake ground acceleration records in frequency domain 
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Figure 5.69. Enlarged view of Kocaeli earthquake ground acceleration records in 

frequency domain 
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5.5.4.  Dynamic Analysis Against Harmonic Base Excitation 

 

Same minaret model will be used in this section to analysis the structure against 

harmonic base excitation through SAP2000. Let's apply 2 harmonic base excitations as 

following to the model without TMD; 

 

Case 1:       ωgu Asin t=ɺɺ  

      ω  =  7.0 rad/sec (1st natural frequency)   

       
T   =  0.898 sec 

      A    =  1.0 m /sec2 

  Number of cycles   =  10 cycles 

 

Case 2:       ωgu Asin t=ɺɺ  

      ω  =  32.8 rad/sec (2nd natural frequency)   

       
T   =  0.192 sec 

      A    =  1.0 m /sec2 

  Number of cycles   =  40 cycles 

 

Displacement response of joint 1026 without TMD for Case 1 is plotted in Figure 

5.70 and Case 2 is plotted in Figure 5.71. Base reactions of the model against Case 1 and 

Case 2 excitations are listed in Appendix B.7. and B.8. respectively. Response output 

summary of structure without TMD is listed on Table 5.10. 

 

Table 5.10. Response outputs of minaret without TMD against harmonic base excitation. 

 
 

Case 1 Case 2 

Displacement at the top of cylindrical body (joint 1026)   (m) 22.7 x 10-2 0.65 x 10-2 

Base shear                                                                           (N) 1.00 x 106 0.64 x 106 

Base moment                                                                  (N m) 31.08 x 106 8.52 x 106 

 

 

Now, response of the model equipped with TMD will be studied. Optimized TMD 

parameters obtained in section 5.5.3 will also be used for this analysis. The lateral 
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displacement graphs of joint 1026 at upper cylindrical body of minaret model with TMD 

are shown in Figure 5.72 and Figure 5.73 for Case 1 and Case 2 excitations respectively. 

Base reactions of the model against Case 1 and Case 2 excitations are listed in Appendix 

B.9. and B.10. respectively. Response output summary of structure with TMD is listed on 

Table 5.11. 

 

 

Figure 5.70. Displacement plot of joint 1026 without TMD against harmonic base 

excitation with ω = 7.0 

 

 

Figure 5.71. Displacement plot of joint 1026 without TMD against harmonic base 

excitation with ω = 32.8 



         123   
 

 

Figure 5.72. Displacement plot of joint 1026 with TMD against harmonic base excitation 

with ω = 7.0 

 

Table 5.11. Response outputs of minaret with TMD against harmonic base excitation. 

 Case 1 Case 2 
Displacement at the top of cylindrical body (joint 1026)  (m) 10.6 x 10-2 0.6 x 10-2 

Base shear                                                                          (N) 0.49 x 106 0.62 x 106 

Base moment                                                                 (N m) 14.57 x 106 8.13 x 106 

 

 

 

Figure 5.73. Displacement plot of joint 1026 with TMD against harmonic base excitation 

with ω = 32.8 
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Table 5.12. Response improvement of minaret via TMD installation against harmonic  

base excitation 

 Case 1 Case 2 

Improvement in Displacement of joint 1026     53 % 8 % 

Improvement in Base shear                      51 % 3 % 

Improvement in Base moment             53 % 5 % 

 

 

          Relative displacement between TMD mass and minaret inner wall should be also 

checked. TMD mass was assigned at joint 1562 as joint mass. Its displacement plot is 

shown in Figure 5.74 and Figure 5.75 for Case 1 and Case 2 excitations. It is noted that 

maximum displacement occurs at case 1 with a value of 0.29 m. At the same time minaret 

wall has a maximum displacement value as 0.11 m. By considering the phase shift, there 

should be minimum 0.40 m clear distance to allow TMD mass travel radially in all 

directions.  

 

 

 

Figure 5.74. Displacement plot of joint 1562 with TMD against harmonic base excitation 

with ω = 7.0 
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Figure 5.75. Displacement plot of joint 1562 with TMD against harmonic base excitation 

with ω = 32.8 

 

5.6.  Wind Response 

 

          Two basic types of loads can be applied by wind, namely static pressure and 

harmonic excitation. These loads are normally experienced simultaneously, although static 

drag can exist without harmonic excitation under certain conditions. Static drag forces can 

cause a structure to deflect significantly, especially in strong storms. However the presence 

of dynamic loading on structures does not require extremely high wind velocities, only that 

one or more harmonic excitation sources be present. These dynamic loads, if acting at or 

near a structural resonance, can cause large vibration amplitudes. [14] Static pressure is out 

of our concern, only dynamic response of the structures against harmonic excitations will 

be studied in this section. There are three types of sources which create dynamic wind 

forces on structures: [12] 

 

• Forces due to turbulence within the structure's wake, particularly due to vortex 

shedding, 

• Turbulent forces in the earth’s boundary layer, 

• Forces induced by motion of the structure, 

           

 Only vortex shedding will be studied in the next chapter due to its easy occurrence 

especially on the cylindrical structures like minarets. 
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5.6.1. Vibration Due To Vortex Shedding 

 
          When wind flows around a circular body like minaret, it applies static pressure on 

the structure as shown in Figure 5.76. Since the air has a certain viscosity, air speed gets 

down slightly where it contacts the structure during flowing. This causes a speed change 

between the layers of wind due to boundary layer condition. As wind speed increases, this 

boundary layer can separate from the leeward side of the structure because of its excessive 

curvature. This causes a phenomenon called vortex shedding. As this separation occurs, 

vortices are formed on either side of the structure as shown in Figure 5.77. Vortex 

shedding produces forces which originate in the wake behind the structure, act mainly in 

the across-wind direction, and are, in general, rather regular. The resultant oscillation is 

resonant in character, is often almost periodic, and usually appears in the direction 

perpendicular to that of the wind. Lightly damped structures such as minarets, chimneys 

and towers are particularly susceptible to vortex shedding. 

 

  

Figure 5.76. Normal airflow around a cylindrical object [17] 

 

 

Figure 5.77. Disturbed airflow around a cylindrical object [17] 

 

The frequency of the shedding, nearly constant in many cases, depends on the shape 

and size of the body, the velocity of the flow, and to a lesser degree on the surface 
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roughness and the turbulence of the flow. If the cross section of the body is noncircular, it 

also depends on the wind direction. The dominant frequency of vortex shedding, fs is given 

by 

                
cpss

  V
f S             

D
=                                         (5.63) 

 

 Where    S =  Strouhal number  

    V =  Mean wind velocity 

    D = Width of the object.  

          For a body having a rectangular or square cross section, the Strouhal number is 

almost independent of the Reynolds number. 

 

                                                           
  VD

Re = 
v

                                                            (5.64) 

 

Where   v  = kinematic viscosity  

  v  = 1.51 10-5 m2/sec.  (For air under normal conditions; 20 ˚C and 1 atm) 

 

For a body having a circular cross section, the Strouhal number varies with the 

regime of the flow as characterized by the Reynolds number. There are three major 

regions: the subcritical region for 53 10Re ≤ , the supercritical region for 5 63 10 3 10 Re≤ ≤ , 

and the transcritical region for 63 10Re ≥ . Approximate values of the Strouhal number for 

typical cross sections are given in Table 29.2 of reference [18].  

 

5.6.2. Prediction of Vortex-Induced Oscillations 

 

Although the mechanism of vortex shedding and the character of the lift forces have 

been the subject of a great number of studies, the available information does not permit an 

accurate prediction of these oscillations.[18] The motion is most often viewed as forced 

oscillation due to the lift force, which, per unit length, may be written as: 

 

                                           ( )2

L L

 1
F  = ρ D V  C t

2
                                 (5.65) 
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Where CL(t) is a lift coefficient fluctuating in a harmonic or random way. Hence, the 

solution of the response depends on the time-history assumed for CL(t). The variation of 

structure diameter and wind velocity makes this lift force vary along the length of the 

structure. In order to apply the lift forces in the calculations, relationships suggested by the 

ASME standards [14] should be used to apply the across-wind lift forces. The standards 

exploit the near-uniform velocity profile on the upper one-third of the structure to provide 

a lateral force ("lift" force) per unit length that is independent of height. Moreover, the 

dynamic loads near the top of the stack are much more effective in exciting the first and 

second modes of concern in this work. 

 

5.6.3. Harmonic Excitation of Structures by Vortex Shedding 

 

Harmonic excitation represents a traditional model for vortex excitation, but it is 

really justified only for very low Reynolds numbers ( ≤  300) or possibly for large vibration 

where the motion starts controlling both the wake and the lift forces in the form of the 

"locking-in" phenomenon. Strongest oscillations arise at that wind velocity for which the 

frequency of vortex shedding fs is equal to one of the natural frequencies of the structure fi.   

This resonant wind velocity is, from Eq. 5.63, 

 

             
c i

 1
V  =  f  D

S
           (5.66) 

 

With free-standing towers and stacks, resonance in the first two modes is met most 

often; resonance with higher modes has been observed as well with guyed towers. At the 

resonant wind velocity, the lift force is given by Eq. 5.65 in which  

 

     2L L iC ( t ) C sin  f t= π                                           (5.67) 

 

and CL = amplitude of lift coefficient. Assuming a uniform wind profile and a constant 

diameter D ,  the resonant amplitude of mode i at the critical wind velocity Vc  will be as 

follow: 

            
3

2 2
0

 
( )   ( ) ( ) 

16  

H

L
i i i

i

C D
u z z z dz

S M

ρ
φ φ

π ζ
= ∫                            (5.68) 
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Where M i  is given by Eq. 5.69 and ζ = structural damping ratio.  

 

                                                            2

0

H

i iM m( z ) ( z ) dz= φ∫                                         (5.69) 

 

The formula can be further simplified if it is assumed that the lift force is distributed 

along the structure in proportion to the mode ( )i zφ . (This assumption reflects the loss of 

span wise correlation of the forces.) Then, with constant mass per unit length m(z)=m, 

the resonant amplitude at the height where the modal displacement is maximum: 

 

                                                         

3

2 2

 
  

16  S
L

i

C D
u

m

ρ
π ζ

=                                          (5.70) 

 

For the first mode of a free-standing structure, this occurs at the tip. In higher modes, 

this amplitude appears at the height where local resonance takes place.   For circular 

cylinders, a design value of the lift coefficient CL is about 2 Lσ  . This simple formula 

can be used for the first estimate of the amplitudes that are likely to represent the upper 

bound. It is also indicative of the role of the diameter, mass, and damping of the structure.    

 

5.6.4. Vortex Shedding in the Case Study 

 

         When wind speed reaches to the critical wind speed for structure, resonance occurs. 

Vc is estimated by Eq. 5.66;  

  

 Vc = 12.1 m/sec by considering,  S = 0.2  From table 29.2 of [18] 

      fi = 1.1 Hz 1st natural speed of the minaret 

      D= 2.2 m Outer diameter of the minaret 

 

         This critical speed is quite low, when compared with the recorded maximum wind 

speeds all over Turkey.[10] It means that minaret structures have the high risk of vortex 

shedding excitations.  
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          Lift force per unit length at the critical wind speed is estimated by using Eq. 4.65. 

 

 FL = 137.1 N/m by considering,  ρ  = 1.2041 kg/m3 at 20 0C  

      Lσ  = 0.5   From table 29.2 of [18] 

 

 Response against harmonic lift force which is assumed uniformly distributed over 

the structure can be improved in a couple of ways. First, stiffness of the structure can be 

increased by thicker structural walls or additional supports. This results in significant 

additional cost and conflicts with architectural concept. Also increased mass will affect the 

earthquake performance of the structure. There might be the second solution as to remove 

exciting vortex shedding occurrence by eliminating the wind around the structure or vortex 

breakers on the structure. These solutions again have the same disadvantageous as in the 

stiffness increasing. It seems that the developed TMD against earthquake excitations will 

also improve the response of the structure against vortex shedding without any additional 

cost.   

      

         Now the same TMD design and its performance will be checked against vortex 

shedding excitations here. Let's use lift force as exciting force q in the related field transfer 

matrix Eq. 3.79. Then revise the Matlab codes already prepared for the base excitations 

model with and without TMD installation. Matlab codes without TMD are presented in 

Appendix A.9. and with TMD in Appendix A.10. The response parameters of the structure 

without TMD are listed on Table 5.13 and for the structure equipped with TMD on Table 

5.14. Response improvements are listed on Table 5.15. There are significant improvements 

in the response as seen on the table. It is verified that TMD application is a cost effective 

way of improving dynamic response against vortex shedding.  

 

Table 5.13. Response outputs of minaret without TMD against vortex shedding 

 Vortex shedding 
without TMD 

Displacement at 12th node                     (m) 2.2 x 10-2 

Base shear                                              (N) 6.57 x 104 

Base moment                                     (N m) 2.62 x 106 
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Table 5.14. Response outputs of minaret with TMD against vortex shedding 

 Vortex shedding 
with TMD 

Displacement at 12th node                     (m) 0.3 x 10-2 

Base shear                                              (N) 3.19 x 104 

Base moment                                     (N m) 4.49 x 105 

 

 

Table 5.15. Response improvement of minaret via TMD installation against vortex 

shedding 

 

Displacement at 12th node                      
86 % 

Base shear                                               
51 % 

Base moment                                      
83 % 
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6.  TMD DESIGN FOR MINARET 

 

 

6.1 TMD Design 

 

TMD type selection and the reasons for this selection were elaborated in Section 5.3. 

General layout was also decided by considering the severe constraints. Now, all 

components of TMD should be designed according to the above mentioned issues and 

analysis results. In section 5.4.4 optimized TMD stiffness, damping and mass values were 

estimated on the basis of translational TMD assumption as shown in Figure 6.1. However 

selected TMD type is a hybrid one, like combination of pendulum and a translational TMD 

as shown in Figure 6.2. 

 

       

 

  

Figure 6.1. Equivalent model a translational TMD 
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Figure 6.2. Equivalent model of the selected hybrid TMD 

 

There are 2 components which creates real stiffness in selected hybrid TMD 

configuration. They are springs and pendulum. Since they are in parallel connections, their 

stiffness values should be added. 

 

     kpendulum= md g/L1                                                          (6.1) 

 

 

Where;         md =3490 kg    ,   L1=2.95 m      ,     L2=1.25 m 

 

kpendulum= 11606 N/m     

          kd = *
4springsk + kpendulum                                                (6.2) 

 

 *
4springsk =114364 N/m                                                              

     2 *1
4 4

2

(springs springs

  L
k  )  k  

L
=          (6.3) 

 

4springsk =636962 N/m     (Total stiffness value of four orthogonal springs) 
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     21
4

2

(dampers d

  L
c  )  c  

L
=           (6.4) 

 

Where;                                            cd=7020 N s/m     

 

4dampersc = 39099 N s/m (Total damping coefficient value of four orthogonal damper) 

 

It is verified in Appendix C that general stiffness value of 4 orthogonal springs with 

stiffness k will be 2k for small displacements.  Accuracy of this approximation decreases 

with increasing displacements. It is anticipated that displacement ratio will be less than 0.4 

in our TMD design. Then maximum variation in stiffness value will be 11 %. It was noted 

in section 5.4.4 that such changes in stiffness and damping values do not affect the 

response of the structure significantly. 

 

springk = 318481 N/m     (Stiffness value of each spring) 

damperc = 19550 N s/m (Damping coefficient value of each damper) 

 

Frame Structure: Main concern is the access difficulties to the top of cylindrical body 

of minaret just under the spire section. There are not any hoisting possibilities inside or 

outside of the structure. Even mobile cranes will not be good choice due to closer distances 

of neighboring buildings around the minaret. Therefore frame structure should be designed 

for bolt connection and all components should be loose. They will be carried to their final 

location by the workers via the ladders.   

 

S235 quality steel was preferred for the structure due to low cost and easy 

availability. Chemical anchors were selected to fix the frame to the minaret wall to prevent 

any local stress concentration in the cylindrical body.  Detailed design of frame structure is 

available in Appendix D 

 

Pendulum Rod: In spite of translational TMD assumption, outlook of designed TMD 

looks like a pendulum type. Access difficulties to the TMD location for future maintenance 

and integrity of the TMD with minaret structure forced us to select such a hybrid type 
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TMD. We could select an inverted pendulum as in reference [6]. But instability of inverted 

pendulum will be disturbing the springs in case of any excitation. Normal pendulum will 

work better by creating additional stiffness and restoring force due to gravity. It will help 

to the springs to reach their neutral position just after any excitation.  

 

S355 quality square bar is selected for the rod material due to high strength demand 

against bending stresses. It is connected to the frame via universal rod end bearing. Rod 

end bearing allows it to oscillate in any radial directions. Spring damper combination is 

connected to the rod via sliding joint. This joint is free to slide on the rod. A circular plate 

is screwed to the rod to support the lamellar pendulum mass. Rod mass was also 

considered while estimating the lamellar pendulum mass. Rod mass consideration was 

shown in Pendulum Mass section. Pendulum rod is supported by spring and damper 

configuration at point A as shown in Figure 6.2. Although it is not a fixed connection, let's 

assume as fixed. Natural frequency of this cantilever pendulum rod should not match with 

the natural frequency of the system. 

 

     
3

1 2 )
rod rod

rod

  3 E  I
k   

(L L
=

−
  

    

Where; E=210 103 MPa Irod= 8.333 10-6 m4               
krod=1068550 N/m 

 

     /roro d dd k mω =  

rodω = 17.5 rad/sec 

 

rodω is quite far from natural frequency of the system which was 6.6 rad/sec. 

Therefore rod design is acceptable. 

 

Pendulum Mass: There is a limited space to locate the pendulum mass. Lead is 

preferred due to high density against steel or other ordinary materials which is 11.34 g/cm3. 

It should be lamellar type to maintain the installation at site one by one. Also it will be 

easier for workers to carry them all the way to the upper sections of the minaret. Space 

between the mass and structure wall should be convenient for the relative movement 
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during any excitation. It is considered that 62.5 cm is sufficient for that purpose. Finally 

diameter of the lamellar weight is selected as 60 cm. Lamellar mass quantities can be 

increased or decreased to tune the TMD mass at site. Pendulum rod mass was considered 

while estimating the lamellar pendulum mass. 

 

     md= mrodeq + mlamellar 

      

     
4rodeq rod

 1
m  m  =  

 

Where;    mrod = 263 kg 

 

mrodeq = 66 kg 

mlamellar= 3424 kg 

 

Spring and Damper Combination: Four mutually perpendicular and horizontal spring 

and damper combinations are attached to the pendulum rod via a sliding joint. Their 

vertical position can be adjusted in case of any demand at site. While the plane of 

orthogonal springs is being changed, stiffness of the system will be affected. Eventually 

natural frequency of the TMD will be affected due to changes in the equivalent mass value. 

This reality can be a good tool to tune the TMD under real conditions. 

 

The maximum relative displacement of the TMD mass corresponds to an angular 

displacement of 10 degrees from the vertical axis. The pendulum mass contacts to the 

minaret wall at that point. Urethane bumper ring should be installed on to the wall to 

cushion any potential impacts. General assembly drawings and related fabrication 

drawings for each items described above are available in Appendix D. 

 

Springs and dampers can be purchased from relevant suppliers. Stiffness value for 

springs, damping coefficient for dampers are the key issues while procuring from the 

market. Technical parameters and dimensions are given in their detailed fabrication 

drawings. Standard components from the market should be preferred if their dimensions 

and technical parameters are in close range to the design values. 
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6.2  TMD Cost Analysis 

 

Cost items for the designed TMD will be as following; 

 

Description .   Quantity         Unit Rate  Cost        

Frame Structure   500 kg   4 $/kg       2.000 $ 

Pendulum Rod       60 kg   6 $/kg             360 $ 

Pendulum mass   3.490 kg  1 $/kg       3.490 $ 

Spring / Damper Combination 4 set        800 $/set    3.200 $ 

Freight charges to site       1 set           500 $/set       500 $ 

Installation charges   1 set        2.750 $/set    2.750 $ 

            Total Cost:  12.300 $ 

 

Cost items for a typical new minaret construction will be as following; 

 

Description    Quantity  Unit Rate  Cost         

Concrete    115 m3   100 $/m3  11.500 $ 

Reinforcing bar   13 ton   1.000 $/kg  13.000 $ 

Formwork    700 m2   40 $/m2  28.000 $ 

Others     1 set   5.000 $/set    5.000 $ 

        Total Cost:  57.500 $ 

 

         TMD will cost approximately 20 % of a new minaret construction. This ratio will 

make TMD application feasible to improve their earthquake and wind response. 
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7.  CONCLUSION  

 

 

7.1.  Results 

 

In this study, the process of analyzing and improving the response of slender 

structures subjected to earthquake and wind loads by using TMD application was studied 

in detail. Dynamic response and improvements by TMD application of a minaret as an 

example slender structure was studied in detail against various earthquake and 

aerodynamic forces such as harmonic base excitation, earthquake ground acceleration and 

vortex shedding due to wind. First, a computer program was developed which utilizes the 

transfer matrix method. Then, FEM analysis was carried out. TMD's response 

improvements are estimated clearly. 

 

           It was noted that TMD application improves the displacement and base bending 

moments approximately 80-90 % in case of harmonic base excitation or vortex shedding 

with 1st natural frequency. TMD does not improve the response at the same level with 2nd 

natural frequency excitation, due to TMD tuning according to the 1st natural mode. It was 

also noted that TMD application does not drastically improve the response of the slender 

structures against earthquake loads as in the case with harmonic excitations. The reason 

was discussed in the related section in detail. Earthquakes become very destructive if their 

dominant frequency matches with the one of the natural modes of the slender structures. 

TMD will improve the performance of the structure in this coincidence. Therefore TMD 

installation will improve the response when the structure gets into the resonance.  

 

          One of the goals of this study was to design a cost effective and applicable TMD 

setup. Feasibility study in section 5.2 encourages the TMD application. Structural response 

is improved by spending approximately 20 % of its original construction cost.   This ratio 

will be much less when other indirect cost arises after the structure collapse. 
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          It was verified that TMD application is a cost effective and innovative solution to 

improve the dynamic response of slender structures against earthquake and wind 

excitations. 

 

7.2.  Recommendations 

 

For the future studies, the following recommendations are suggested: 

 

• Only bending vibration is treated in this study. Structural designers concerns other 

modes of vibration, such as axial or ovalling as well. These vibration modes should 

also be added to the analyze in more detail. 

 

• Linear elastic vibration analysis is carried out in this study. Nonlinear analysis 

should be also considered in future studies. 

 

• This study was done according to the theory of bending vibration of beams. No 

testing was included. Results of this study should be verified with testing a small 

model on a shake table.  

 

• Real TMD application on minarets or slender structures should be done according 

to a valid building code. Unfortunately Turkish Seismic Design Code [20] does not 

refer any TMD applications and its performance criteria. Building code should 

allow the TMD applications to increase the damping of structures.  

 

• TMD applications should be designed according to a design earthquake. It can be a 

moderate or maximum credible earthquake (MCE). Also local soil conditions 

should be considered. Design earthquake will dictate the TMD mass displacement 

amplitude. TMD mass displacement is one of the major constraints in slender 

structures. 

 

• Gravity loads were not considered in this study. Future studies may include gravity 

loads as well.   
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APPENDIX A:  MATLAB CODES & OUTPUTS 
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A.1.  CODES TO DETERMINE NATURAL FREQUENCIES 

clear all; close all; clc;  
m=zeros(13,1);  % Mass matrix 
L=zeros(13,1);  % Length matrix 
I=zeros(13,1);  % Inertia matrix 
F=zeros(13,1);  % Field transfer matrix 
P=zeros(13,1);  % Point transfer matrix 
% Discrete mass values of the minaret (kg) 
m(1,1)=36.3*10^3; 
m(2,1)=41.5*10^3; 
m(3,1)=41.5*10^3; 
m(4,1)=35.2*10^3; 
m(5,1)=11.8*10^3; 
m(6,1)=11.8*10^3; 
m(7,1)=11.8*10^3; 
m(8,1)=20.1*10^3; 
m(9,1)=11.4*10^3; 
m(10,1)=11.4*10^3; 
m(11,1)=18.2*10^3; 
m(12,1)=11.5*10^3; 
m(13,1)=7.8*10^3 
% Distances between Discrete masses (m) 
L(1,1)=1.75; 
L(2,1)=3.75; 
L(3,1)=4.0; 
L(4,1)=4.50; 
L(5,1)=4.10; 
L(6,1)=3.20; 
L(7,1)=3.20; 
L(8,1)=3.50; 
L(9,1)=3.45; 
L(10,1)=3.1; 
L(11,1)=3.45; 
L(12,1)=4.05; 
L(13,1)=3.65 
% Inertia values between Discrete masses (m4) 
I(1,1)=5.364; 
I(2,1)=5.364; 
I(3,1)=5.364; 
I(4,1)=5.364; 
I(5,1)=0.74; 
I(6,1)=0.74; 
I(7,1)=0.74; 
I(8,1)=0.74; 
I(9,1)=0.74; 
I(10,1)=0.74; 
I(11,1)=0.74; 
I(12,1)=0.575; 
I(13,1)=0.575 
% Modulus of elasticity for reinforced concrete (Pa) 
E=27*10^9 
% Elements of Field Transfer Matrix 
for i=1.13; 
Fi=[1 L(i) ((L(i))^2)/(2*E*I(i)) ((L(i))^3)/(6*E*I(i)) ; 0 1 

L(i)/(E*I(i)) ((L(i))^2)/(2*E*I(i)) ; 0 0 1 L(i) ; 0 0 0 1]; 
    if i==1 
        F1=Fi; 
    elseif i==2 
        F2=Fi; 
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    elseif i==3 
        F3=Fi; 
    elseif i==4 
        F4=Fi; 
    elseif i==5 
        F5=Fi; 
    elseif i==6 
        F6=Fi; 
    elseif i==7 
        F7=Fi; 
    elseif i==8 
        F8=Fi; 
    elseif i==9 
        F9=Fi; 
    elseif i==10 
        F10=Fi; 
    elseif i==11 
        F11=Fi; 
    elseif i==12 
        F12=Fi; 
    elseif i==13 
        F13=Fi; 
end 
end 
a = sym('a'); 
% Elements of Point Transfer Matrix 
for i=1.13; 
    Pi=[1 0 0 0 ; 0 1 0 0 ; 0 0 1 0 ; m(i)*a 0 0 1]; 
    if i==1 
        P1=Pi; 
    elseif i==2 
        P2=Pi; 
    elseif i==3 
        P3=Pi; 
    elseif i==4 
        P4=Pi; 
    elseif i==5 
        P5=Pi; 
    elseif i==6 
        P6=Pi; 
    elseif i==7 
        P7=Pi; 
    elseif i==8 
        P8=Pi; 
    elseif i==9 
        P9=Pi; 
    elseif i==10 
        P10=Pi; 
    elseif i==11 
        P11=Pi; 
    elseif i==12 
        P12=Pi; 
    elseif i==13 
        P13=Pi; 
end 
end 
% Short form of F1 due to cantilever boundary condition 
F1K=F1(1.4,3.4); 
% Total Transfer matrixes 
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U=P13*F13*P12*F12*P11*F11*P10*F10*P9*F9*P8*F8*P7*F7*P6*F6*P5*F5*P4*F4*P3*

F3*P2*F2*P1*F1K; 
% Frequency determinant 
U1=U(3.4,1.2); 
Z=det(U1); 
digits (10); 
syms a; 
p = sym2poly(Z); 
r = roots(p); 
% Natural frequencies of minaret (rad/sec) 
w=realsqrt(r) 
% Natural frequencies of minaret (1/sec) 
f=realsqrt(r)/(2*(pi)) 
 

 

A.2.  CODES TO DETERMINE NORMAL MODE SHAPES 

clear all; close all; clc;  
w=[6.6 32.2 72.6 137.2 239.6 355.5 453.5 630.2 779.4 1010 1165.3 1336.9 

2550.4]; % Natural frequencies of the system 
E=27*10^9;   % Modulus of elasticity for reinforced concrete (Pa) 
m=zeros(13,1);  % Mass matrix 
L=zeros(13,1);  % Length matrix 
I=zeros(13,1);  % Inertia matrix 
F=zeros(13,1);  % Field transfer matrix 
P=zeros(13,1);  % Point transfer matrix 
dis=zeros(13,1);  % Displacement matrix 
% Discrete mass values of the minaret (kg) 
m(1,1)=36.3*10^3; 
m(2,1)=41.5*10^3; 
m(3,1)=41.5*10^3; 
m(4,1)=35.2*10^3; 
m(5,1)=11.8*10^3; 
m(6,1)=11.8*10^3; 
m(7,1)=11.8*10^3; 
m(8,1)=20.1*10^3; 
m(9,1)=11.4*10^3; 
m(10,1)=11.4*10^3; 
m(11,1)=18.2*10^3; 
m(12,1)=11.5*10^3; 
m(13,1)=7.8*10^3; 
% Distances between Discrete masses (m) 
L(1,1)=1.75; 
L(2,1)=3.75; 
L(3,1)=4.0; 
L(4,1)=4.50; 
L(5,1)=4.10; 
L(6,1)=3.20; 
L(7,1)=3.20; 
L(8,1)=3.50; 
L(9,1)=3.45; 
L(10,1)=3.1; 
L(11,1)=3.45; 
L(12,1)=4.05; 
L(13,1)=3.65; 
% Inertia values between Discrete masses (m4) 
I(1,1)=5.364; 
I(2,1)=5.364; 
I(3,1)=5.364; 
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I(4,1)=5.364; 
I(5,1)=0.74; 
I(6,1)=0.74; 
I(7,1)=0.74; 
I(8,1)=0.74; 
I(9,1)=0.74; 
I(10,1)=0.74; 
I(11,1)=0.74; 
I(12,1)=0.575; 
I(13,1)=0.575; 
% Elements of Field Transfer Matrix 
for i=1.13; 
Fi=[1 L(i) ((L(i))^2)/(2*E*I(i)) ((L(i))^3)/(6*E*I(i)) ; 0 1 

L(i)/(E*I(i)) ((L(i))^2)/(2*E*I(i)) ; 0 0 1 L(i) ; 0 0 0 1]; 
    if i==1 
        F1=Fi; 
    elseif i==2 
        F2=Fi; 
    elseif i==3 
        F3=Fi; 
    elseif i==4 
        F4=Fi; 
    elseif i==5 
        F5=Fi; 
    elseif i==6 
        F6=Fi; 
    elseif i==7 
        F7=Fi; 
    elseif i==8 
        F8=Fi; 
    elseif i==9 
        F9=Fi; 
    elseif i==10 
        F10=Fi; 
    elseif i==11 
        F11=Fi; 
    elseif i==12 
        F12=Fi; 
    elseif i==13 
        F13=Fi; 
end 
end 
for ii=1.13 
% Elements of Point Transfer Matrix 
for i=1.13; 
    Pi=[1 0 0 0 ; 0 1 0 0 ; 0 0 1 0 ; m(i)*w(ii)^2 0 0 1]; 
    if i==1 
        P1=Pi; 
    elseif i==2 
        P2=Pi; 
    elseif i==3 
        P3=Pi; 
    elseif i==4 
        P4=Pi; 
    elseif i==5 
        P5=Pi; 
    elseif i==6 
        P6=Pi; 
    elseif i==7 
        P7=Pi; 
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    elseif i==8 
        P8=Pi; 
    elseif i==9 
        P9=Pi; 
    elseif i==10 
        P10=Pi; 
    elseif i==11 
        P11=Pi; 
    elseif i==12 
        P12=Pi; 
    elseif i==13 
        P13=Pi; 
end 
end 
% Transfer matrices 
U1=P1*F1; 
U2=P2*F2*U1; 
U3=P3*F3*U2; 
U4=P4*F4*U3; 
U5=P5*F5*U4; 
U6=P6*F6*U5; 
U7=P7*F7*U6; 
U8=P8*F8*U7; 
U9=P9*F9*U8; 
U10=P10*F10*U9; 
U11=P11*F11*U10; 
U12=P12*F12*U11; 
U13=P13*F13*U12;   
Z0=[0 0 1 -(U13(3,3)/U13(3,4))]' 
% Estimation of state vectors for each nodes 
Z1=U1*Z0; 
Z2=U2*Z0; 
Z3=U3*Z0; 
Z4=U4*Z0; 
Z5=U5*Z0; 
Z6=U6*Z0; 
Z7=U7*Z0; 
Z8=U8*Z0; 
Z9=U9*Z0; 
Z10=U10*Z0; 
Z11=U11*Z0; 
Z12=U12*Z0; 
Z13=U13*Z0; 
% Lateral displacements at each node    
dis=[Z0(1)/Z13(1) Z1(1)/Z13(1) Z2(1)/Z13(1) Z3(1)/Z13(1) Z4(1)/Z13(1) 

Z5(1)/Z13(1) Z6(1)/Z13(1) Z7(1)/Z13(1) Z8(1)/Z13(1) Z9(1)/Z13(1) 

Z10(1)/Z13(1) Z11(1)/Z13(1) Z12(1)/Z13(1) Z13(1)/Z13(1)] 
y=[0 1.75 5.5 9.5 14.0 18.1 21.3 24.5 28 31.45 34.55 38.0 42.05 45.7]; 
figure 
plot(dis,y) 
grid 
title('MOD(ii)') 
xlabel('Displacement (m)') 
ylabel('Height (m)') 
end 
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A.3.  CODES FOR TMD OPTIMIZATION 

clear all 
close all 
global  md  eval 
md = 3490;     % TMD mass (kg) 
eval=[6.6 32.2 72.6 137.2 239.6 355.5 453.5 630.2 779.4 1010 1165.3 

1336.9 2550.4]; % Natural frequencies of the system 
x0 = [125970; 7020];    % Starting guess of the solution [kd ; cd] 
options = optimset('TolX',1e-10,'TolFun',1e-

10,'MaxFunEvals',100000,'MaxIter',100000); 
[x,fval] = fminimax(@trans,x0,[],[],[],[],[0; 0],[],[],options); 
tmax=max(fval) 
x 
 

% The aim is to minimize the peak of the nth natural frequency 
% in the transmissibility plot 
function f = trans(x) 
global md eval 
kd=x(1); 
cd=x(2); 
g=0.05 ;    % Structural Damping for R/C structure 
ug=5 ;       % Max harmonic ground acceleration  (m/sec2) 
E=27*10^9; % Modulus of elasticity for Reinforced concrete (N/m2) 
m=zeros(13,1);  % Mass matrix 
L=zeros(13,1);  % Length matrix 
I=zeros(13,1);  % Inertia matrix 
F=zeros(13,1);  % Field transfer matrix 
P=zeros(13,1);  % Point transfer matrix 
% Discrete mass values of the minaret (kg) 
m(1,1)=36.3*10^3; 
m(2,1)=41.5*10^3; 
m(3,1)=41.5*10^3; 
m(4,1)=35.2*10^3; 
m(5,1)=11.8*10^3; 
m(6,1)=11.8*10^3; 
m(7,1)=11.8*10^3; 
m(8,1)=20.1*10^3; 
m(9,1)=11.4*10^3; 
m(10,1)=11.4*10^3; 
m(11,1)=18.2*10^3; 
m(12,1)=11.5*10^3; 
m(13,1)=7.8*10^3; 
% Distances between Discrete masses (m) 
L(1,1)=1.75; 
L(2,1)=3.75; 
L(3,1)=4.0; 
L(4,1)=4.50; 
L(5,1)=4.10; 
L(6,1)=3.20; 
L(7,1)=3.20; 
L(8,1)=3.50; 
L(9,1)=3.45; 
L(10,1)=3.1; 
L(11,1)=3.45; 
L(12,1)=4.05; 
L(13,1)=3.65; 
% Inertia values between Discrete masses (m4) 
I(1,1)=5.364; 
I(2,1)=5.364; 
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I(3,1)=5.364; 
I(4,1)=5.364; 
I(5,1)=0.74; 
I(6,1)=0.74; 
I(7,1)=0.74; 
I(8,1)=0.74; 
I(9,1)=0.74; 
I(10,1)=0.74; 
I(11,1)=0.74; 
I(12,1)=0.575; 
I(13,1)=0.575; 
% Elements of Field Transfer Matrix 
for i=1.13; 
Fi=[1 L(i) ((L(i))^2)/(2*E*I(i)*(1+g^2)) ((L(i))^3)/(6*E*I(i)*(1+g^2)) 0 

0 g*((L(i))^2)/(2*E*I(i)*(1+g^2)) g*((L(i))^3)/(6*E*I(i)*(1+g^2)) 0 ; 0 1 

L(i)/(E*I(i)*(1+g^2)) ((L(i))^2)/(2*E*I(i)*(1+g^2)) 0 0 

g*L(i)/(E*I(i)*(1+g^2)) g*((L(i))^2)/(2*E*I(i)*(1+g^2)) 0 ; 0 0 1 L(i) 0 

0 0 0 0 ; 0 0 0 1 0 0 0 0 0 ; 0 0 -g*((L(i))^2)/(2*E*I(i)*(1+g^2)) -

g*((L(i))^3)/(6*E*I(i)*(1+g^2)) 1 L(i) ((L(i))^2)/(2*E*I(i)*(1+g^2)) 

((L(i))^3)/(6*E*I(i)*(1+g^2)) 0 ; 0 0 -g*L(i)/(E*I(i)*(1+g^2)) -

g*((L(i))^2)/(2*E*I(i)*(1+g^2)) 0 1 L(i)/(E*I(i)*(1+g^2)) 

((L(i))^2)/(2*E*I(i)*(1+g^2)) 0 ; 0 0 0 0 0 0 1 L(i) 0 ; 0 0 0 0 0 0 0 1 

0 ; 0 0 0 0 0 0 0 0 1 ]; 
    if i==1 
        F1=Fi; 
    elseif i==2 
        F2=Fi; 
    elseif i==3 
        F3=Fi; 
    elseif i==4 
        F4=Fi; 
    elseif i==5 
        F5=Fi; 
    elseif i==6 
        F6=Fi; 
    elseif i==7 
        F7=Fi; 
    elseif i==8 
        F8=Fi; 
    elseif i==9 
        F9=Fi; 
    elseif i==10 
        F10=Fi; 
    elseif i==11 
        F11=Fi; 
    elseif i==12 
        F12=Fi; 
    elseif i==13 
        F13=Fi; 
end 
end 
j=sqrt(-1); 
%w=0.1.0.01.1*eval(1); % Optimization frequency range 
w=0.5*eval(1):0.01.1.5*eval(1); % Optimization frequency range 
X=zeros(1,length(w)); 
for ii=1.length(w); 
% Elements of Point Transfer Matrix 
for i=1.13; 
     Pi=[1 0 0 0 0 0 0 0 0 ; 0 1 0 0 0 0 0 0 0 ; 0 0 1 0 0 0 0 0 0 ; 

m(i)*w(ii)^2 0 0 1 0 0 0 0 -m(i)*ug ; 0 0 0 0 1 0 0 0 0 ; 0 0 0 0 0 1 0 0 
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0 ; 0 0 0 0 0 0 1 0 0 ; 0 0 0 0 m(i)*w(ii)^2 0 0 1 0 ; 0 0 0 0 0 0 0 0 1 

]; 
    if i==1; 
        P1=Pi; 
    elseif i==2; 
        P2=Pi; 
    elseif i==3; 
        P3=Pi; 
    elseif i==4; 
        P4=Pi; 
    elseif i==5; 
        P5=Pi; 
    elseif i==6; 
        P6=Pi; 
    elseif i==7; 
        P7=Pi; 
    elseif i==8; 
        P8=Pi; 
    elseif i==9; 
        P9=Pi; 
    elseif i==10; 
        P10=Pi; 
    elseif i==11; 
        P11=Pi; 
    elseif i==12; 
        P12=Pi; 
    elseif i==13; 
        P13=Pi; 
end 
end 
A=(((kd^2)*md*(w(ii)^2))-

(kd*((md)^2)*(w(ii)^4))+((cd^2)*md*(w(ii)^4)))/(((kd-

(md*(w(ii)^2)))^2)+(((cd)^2)*(w(ii)^2))); 
B=-((cd*md^2)*w(ii)^5)/(((kd-(md*(w(ii)^2)))^2)+((cd^2)*(w(ii)^2))); 
C=-md*ug*(((-kd*md*(w(ii)^2))+(kd^2)+((cd^2)*(w(ii)^2)))/(((kd-

(md*(w(ii)^2)))^2)+((cd^2)*(w(ii)^2)))); 
D=md*ug*((md*cd*(w(ii)^3))/(((kd-(md*(w(ii)^2)))^2)+((cd^2)*(w(ii)^2)))); 
% Changes in P12 due to TMD impact 
P12=[1 0 0 0 0 0 0 0 0 ; 0 1 0 0 0 0 0 0 0 ; 0 0 1 0 0 0 0 0 0 ; 

((m(12)*w(ii)^2)+A) 0 0 1 -B 0 0 0 -m(12)*ug+C ; 0 0 0 0 1 0 0 0 0 ; 0 0 

0 0 0 1 0 0 0 ; 0 0 0 0 0 0 1 0 0 ; B 0 0 0 ((m(12)*w(ii)^2)+A) 0 0 1 D ; 

0 0 0 0 0 0 0 0 1]; 
% Transfer matrixes for nodes 
U1=P1*F1; 
U2=P2*F2*U1; 
U3=P3*F3*U2; 
U4=P4*F4*U3; 
U5=P5*F5*U4; 
U6=P6*F6*U5; 
U7=P7*F7*U6; 
U8=P8*F8*U7; 
U9=P9*F9*U8; 
U10=P10*F10*U9; 
U11=P11*F11*U10; 
U12=P12*F12*U11; 
U13=P13*F13*U12;   
% Estimation of state vector at ground level (Z0)by applying the boundary 

conditions 
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A=[U13(3,3) U13(3,4) U13(3,7)  U13(3,8); U13(4,3) U13(4,4) U13(4,7) 

U13(4,8) ; U13(7,3) U13(7,4) U13(7,7) U13(7,8) ; U13(8,3) U13(8,4) 

U13(8,7) U13(8,8)]; 
B=[-U13(3,9) -U13(4,9) -U13(7,9) -U13(8,9)]'; 
C=inv(A)*B; 
Z0=[0 0 C(1) C(2) 0 0 C(3) C(4) 1]' ; 
% Estimation of state vectors for 12th node 
Z12=U12*Z0; 
X(ii)=Z12(1)+j*Z12(5);  % Complex lateral displacements at 12th node  
end 
f=abs(X(1,:)); 
w=0.1.0.01.2*eval(1); % Ploting frequency range 
X=zeros(1,length(w)); 
for ii=1.length(w) 
% Elements of Point Transfer Matrix 
for i=1.13; 
     Pi=[1 0 0 0 0 0 0 0 0 ; 0 1 0 0 0 0 0 0 0 ; 0 0 1 0 0 0 0 0 0 ; 

m(i)*w(ii)^2 0 0 1 0 0 0 0 -m(i)*ug ; 0 0 0 0 1 0 0 0 0 ; 0 0 0 0 0 1 0 0 

0 ; 0 0 0 0 0 0 1 0 0 ; 0 0 0 0 m(i)*w(ii)^2 0 0 1 0 ; 0 0 0 0 0 0 0 0 1 

]; 
    if i==1; 
        P1=Pi; 
    elseif i==2; 
        P2=Pi; 
    elseif i==3; 
        P3=Pi; 
    elseif i==4; 
        P4=Pi; 
    elseif i==5; 
        P5=Pi; 
    elseif i==6; 
        P6=Pi; 
    elseif i==7; 
        P7=Pi; 
    elseif i==8; 
        P8=Pi; 
    elseif i==9; 
        P9=Pi; 
    elseif i==10; 
        P10=Pi; 
    elseif i==11; 
        P11=Pi; 
    elseif i==12; 
        P12=Pi; 
    elseif i==13; 
        P13=Pi; 
end 
end 
A=(((kd^2)*md*(w(ii)^2))-

(kd*((md)^2)*(w(ii)^4))+((cd^2)*md*(w(ii)^4)))/(((kd-

(md*(w(ii)^2)))^2)+(((cd)^2)*(w(ii)^2))); 
B=-((cd*md^2)*w(ii)^5)/(((kd-(md*(w(ii)^2)))^2)+((cd^2)*(w(ii)^2))); 
C=-md*ug*(((-kd*md*(w(ii)^2))+(kd^2)+((cd^2)*(w(ii)^2)))/(((kd-

(md*(w(ii)^2)))^2)+((cd^2)*(w(ii)^2)))); 
D=md*ug*((md*cd*(w(ii)^3))/(((kd-(md*(w(ii)^2)))^2)+((cd^2)*(w(ii)^2)))); 
% Changes in P12 due to TMD impact 
P12=[1 0 0 0 0 0 0 0 0 ; 0 1 0 0 0 0 0 0 0 ; 0 0 1 0 0 0 0 0 0 ; 

((m(12)*w(ii)^2)+A) 0 0 1 -B 0 0 0 -m(12)*ug+C ; 0 0 0 0 1 0 0 0 0 ; 0 0 

0 0 0 1 0 0 0 ; 0 0 0 0 0 0 1 0 0 ; B 0 0 0 ((m(12)*w(ii)^2)+A) 0 0 1 D ; 

0 0 0 0 0 0 0 0 1]; 
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% Transfer matrixes for nodes 
U1=P1*F1; 
U2=P2*F2*U1; 
U3=P3*F3*U2; 
U4=P4*F4*U3; 
U5=P5*F5*U4; 
U6=P6*F6*U5; 
U7=P7*F7*U6; 
U8=P8*F8*U7; 
U9=P9*F9*U8; 
U10=P10*F10*U9; 
U11=P11*F11*U10; 
U12=P12*F12*U11; 
U13=P13*F13*U12;   
% Estimation of state vector at ground level (Z0)by applying the boundary 

conditions 
A=[U13(3,3) U13(3,4) U13(3,7)  U13(3,8); U13(4,3) U13(4,4) U13(4,7) 

U13(4,8) ; U13(7,3) U13(7,4) U13(7,7) U13(7,8) ; U13(8,3) U13(8,4) 

U13(8,7) U13(8,8)]; 
B=[-U13(3,9) -U13(4,9) -U13(7,9) -U13(8,9)]'; 
C=inv(A)*B; 
Z0=[0 0 C(1) C(2) 0 0 C(3) C(4) 1]' ; 
% Estimation of state vector for 12th node 
Z12=U12*Z0; 
X(ii)=Z12(1)+j*Z12(5);  % Complex lateral displacements at 12th node      
end 
plot(w,abs(X(1,:))) 
grid 
title('Frequency Response of m12 with optimized TMD') 
xlabel('Frequency (rad/sec)') 
ylabel('Lateral displacement (m)') 

 

 

 

A.4.  CODES FOR FREQUENCY PLOT 

clear all; close all; clc;  
range=35% Frequency range for plotting (rad/sec) 
n=(range/0.1); 
w=zeros(1,n+1);  % Exciting frequency (rad/sec) 
X=zeros(1,n+1);  % Displacement of mass m12 (m) 
g=0.05      % Structural Damping for R/C structure 
ug=5       % Max harmonic ground acceleration  (m/sec2) 
kd=125970  % Stiffnes value of TMD (N/m) 
cd=7020 % Damping coeficient of TMD 
md=3500     % TMD mass (kg) 
E=27*10^9 % Modulus of elasticity for Reinforced concrete (N/m2) 
m=zeros(13,1);  % Mass matrix 
L=zeros(13,1);  % Length matrix 
I=zeros(13,1);  % Inertia matrix 
F=zeros(13,1);  % Field transfer matrix 
P=zeros(13,1);  % Point transfer matrix 
% Discrete mass values of the minaret (kg) 
m(1,1)=36.3*10^3; 
m(2,1)=41.5*10^3; 
m(3,1)=41.5*10^3; 
m(4,1)=35.2*10^3; 
m(5,1)=11.8*10^3; 
m(6,1)=11.8*10^3; 
m(7,1)=11.8*10^3; 
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m(8,1)=20.1*10^3; 
m(9,1)=11.4*10^3; 
m(10,1)=11.4*10^3; 
m(11,1)=18.2*10^3; 
m(12,1)=11.5*10^3; 
m(13,1)=7.8*10^3 
% Distances between Discrete masses (m) 
L(1,1)=1.75; 
L(2,1)=3.75; 
L(3,1)=4.0; 
L(4,1)=4.50; 
L(5,1)=4.10; 
L(6,1)=3.20; 
L(7,1)=3.20; 
L(8,1)=3.50; 
L(9,1)=3.45; 
L(10,1)=3.1; 
L(11,1)=3.45; 
L(12,1)=4.05; 
L(13,1)=3.65 
% Inertia values between Discrete masses (m4) 
I(1,1)=5.364; 
I(2,1)=5.364; 
I(3,1)=5.364; 
I(4,1)=5.364; 
I(5,1)=0.74; 
I(6,1)=0.74; 
I(7,1)=0.74; 
I(8,1)=0.74; 
I(9,1)=0.74; 
I(10,1)=0.74; 
I(11,1)=0.74; 
I(12,1)=0.575; 
I(13,1)=0.575 
% Elements of Field Transfer Matrix 
for i=1.13; 
Fi=[1 L(i) ((L(i))^2)/(2*E*I(i)*(1+g^2)) ((L(i))^3)/(6*E*I(i)*(1+g^2)) 0 

0 g*((L(i))^2)/(2*E*I(i)*(1+g^2)) g*((L(i))^3)/(6*E*I(i)*(1+g^2)) 0 ; 0 1 

L(i)/(E*I(i)*(1+g^2)) ((L(i))^2)/(2*E*I(i)*(1+g^2)) 0 0 

g*L(i)/(E*I(i)*(1+g^2)) g*((L(i))^2)/(2*E*I(i)*(1+g^2)) 0 ; 0 0 1 L(i) 0 

0 0 0 0 ; 0 0 0 1 0 0 0 0 0 ; 0 0 -g*((L(i))^2)/(2*E*I(i)*(1+g^2)) -

g*((L(i))^3)/(6*E*I(i)*(1+g^2)) 1 L(i) ((L(i))^2)/(2*E*I(i)*(1+g^2)) 

((L(i))^3)/(6*E*I(i)*(1+g^2)) 0 ; 0 0 -g*L(i)/(E*I(i)*(1+g^2)) -

g*((L(i))^2)/(2*E*I(i)*(1+g^2)) 0 1 L(i)/(E*I(i)*(1+g^2)) 

((L(i))^2)/(2*E*I(i)*(1+g^2)) 0 ; 0 0 0 0 0 0 1 L(i) 0 ; 0 0 0 0 0 0 0 1 

0 ; 0 0 0 0 0 0 0 0 1 ]; 
    if i==1 
        F1=Fi 
    elseif i==2 
        F2=Fi 
    elseif i==3 
        F3=Fi 
    elseif i==4 
        F4=Fi 
    elseif i==5 
        F5=Fi 
    elseif i==6 
        F6=Fi 
    elseif i==7 
        F7=Fi 
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    elseif i==8 
        F8=Fi 
    elseif i==9 
        F9=Fi 
    elseif i==10 
        F10=Fi 
    elseif i==11 
        F11=Fi 
    elseif i==12 
        F12=Fi 
    elseif i==13 
        F13=Fi 
end 
end 
for ii=1.n+1 
    w(ii)=(ii*0.1)-0.1; 
% Elements of Point Transfer Matrix 
for i=1.13; 
     Pi=[1 0 0 0 0 0 0 0 0 ; 0 1 0 0 0 0 0 0 0 ; 0 0 1 0 0 0 0 0 0 ; 

m(i)*w(ii)^2 0 0 1 0 0 0 0 -m(i)*ug ; 0 0 0 0 1 0 0 0 0 ; 0 0 0 0 0 1 0 0 

0 ; 0 0 0 0 0 0 1 0 0 ; 0 0 0 0 m(i)*w(ii)^2 0 0 1 0 ; 0 0 0 0 0 0 0 0 1 

]; 
    if i==1 
        P1=Pi 
    elseif i==2 
        P2=Pi 
    elseif i==3 
        P3=Pi 
    elseif i==4 
        P4=Pi 
    elseif i==5 
        P5=Pi 
    elseif i==6 
        P6=Pi 
    elseif i==7 
        P7=Pi 
    elseif i==8 
        P8=Pi 
    elseif i==9 
        P9=Pi 
    elseif i==10 
        P10=Pi 
    elseif i==11 
        P11=Pi 
    elseif i==12 
        P12=Pi 
    elseif i==13 
        P13=Pi 
end 
end 
% Equivalent stiffnes of TMD  
A=(((kd^2)*md*(w(ii)^2))-

(kd*(md^2)*(w(ii)^4))+((cd^2)*md*(w(ii)^4)))/(((kd-

(md*(w(ii)^2)))^2)+((cd^2)*(w(ii)^2))) 
B=-((cd*md^2)*w(ii)^5)/(((kd-(md*(w(ii)^2)))^2)+((cd^2)*(w(ii)^2))) 
C=-md*ug*(((-kd*md*(w(ii)^2))+(kd^2)+((cd^2)*(w(ii)^2)))/(((kd-

(md*(w(ii)^2)))^2)+((cd^2)*(w(ii)^2)))) 
D=md*ug*((md*cd*(w(ii)^3))/(((kd-(md*(w(ii)^2)))^2)+((cd^2)*(w(ii)^2)))) 
% Changes in P12 due to TMD impact 
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P12=[1 0 0 0 0 0 0 0 0 ; 0 1 0 0 0 0 0 0 0 ; 0 0 1 0 0 0 0 0 0 ; 

((m(12)*w(ii)^2)+A) 0 0 1 -B 0 0 0 -m(12)*ug+C ; 0 0 0 0 1 0 0 0 0 ; 0 0 

0 0 0 1 0 0 0 ; 0 0 0 0 0 0 1 0 0 ; B 0 0 0 ((m(12)*w(ii)^2)+A) 0 0 1 D ; 

0 0 0 0 0 0 0 0 1] 
% Transfer matrixes for nodes 
U1=P1*F1; 
U2=P2*F2*U1; 
U3=P3*F3*U2; 
U4=P4*F4*U3; 
U5=P5*F5*U4; 
U6=P6*F6*U5; 
U7=P7*F7*U6; 
U8=P8*F8*U7; 
U9=P9*F9*U8; 
U10=P10*F10*U9; 
U11=P11*F11*U10; 
U12=P12*F12*U11; 
U13=P13*F13*U12;   
% Estimation of state vector at ground level (Z0)by applying the boundary 

conditions 
A=[U13(3,3) U13(3,4) U13(3,7)  U13(3,8); U13(4,3) U13(4,4) U13(4,7) 

U13(4,8) ; U13(7,3) U13(7,4) U13(7,7) U13(7,8) ; U13(8,3) U13(8,4) 

U13(8,7) U13(8,8)]; 
B=[-U13(3,9) -U13(4,9) -U13(7,9) -U13(8,9)]'; 
C=inv(A)*B; 
Z0=[0 0 C(1) C(2) 0 0 C(3) C(4) 1]' 
% Estimation of state vectors for each nodes 
Z12=U12*Z0; 
j=sqrt(-1); 
XJ(ii)=Z12(1)+j*Z12(5)  % Complex lateral displacements at each node    
X(ii)=abs(XJ(ii))/abs(XJ(1)); 
end 
plot(w,X) 
grid 
title('Frequency Response of m12 with TMD') 
xlabel('Frequency (rad/sec)') 
ylabel('Lateral displacement (m)') 

 

 

A.5.  CODES FOR DYNAMIC ANALYSIS OF MODEL WITHOUT TMD 

clear all; close all; clc;  
w=6.6;      % Exciting frequency (rad/sec) 
g=0.05;      % Structural Damping for R/C structure 
ug=1;       % Max harmonic ground acceleration  (m/sec2) 
E=27*10^9; % Modulus of elasticity for Reinforced concrete (N/m2) 
m=zeros(13,1);  % Mass matrix 
L=zeros(13,1);  % Length matrix 
I=zeros(13,1);  % Inertia matrix 
F=zeros(13,1);  % Field transfer matrix 
P=zeros(13,1);  % Point transfer matrix 
% Discrete mass values of the minaret (kg) 
m(1,1)=36.3*10^3; 
m(2,1)=41.5*10^3; 
m(3,1)=41.5*10^3; 
m(4,1)=35.2*10^3; 
m(5,1)=11.8*10^3; 
m(6,1)=11.8*10^3; 
m(7,1)=11.8*10^3; 



         154   
 

m(8,1)=20.1*10^3; 
m(9,1)=11.4*10^3; 
m(10,1)=11.4*10^3; 
m(11,1)=18.2*10^3; 
m(12,1)=11.5*10^3; 
m(13,1)=7.8*10^3; 
% Distances between Discrete masses (m) 
L(1,1)=1.75; 
L(2,1)=3.75; 
L(3,1)=4.0; 
L(4,1)=4.50; 
L(5,1)=4.10; 
L(6,1)=3.20; 
L(7,1)=3.20; 
L(8,1)=3.50; 
L(9,1)=3.45; 
L(10,1)=3.1; 
L(11,1)=3.45; 
L(12,1)=4.05; 
L(13,1)=3.65; 
% Inertia values between Discrete masses (m4) 
I(1,1)=5.364; 
I(2,1)=5.364; 
I(3,1)=5.364; 
I(4,1)=5.364; 
I(5,1)=0.74; 
I(6,1)=0.74; 
I(7,1)=0.74; 
I(8,1)=0.74; 
I(9,1)=0.74; 
I(10,1)=0.74; 
I(11,1)=0.74; 
I(12,1)=0.575; 
I(13,1)=0.575; 
 % Elements of Field Transfer Matrix 
for i=1.13; 
Fi=[1 L(i) ((L(i))^2)/(2*E*I(i)*(1+g^2)) ((L(i))^3)/(6*E*I(i)*(1+g^2)) 0 

0 g*((L(i))^2)/(2*E*I(i)*(1+g^2)) g*((L(i))^3)/(6*E*I(i)*(1+g^2)) 0 ; 0 1 

L(i)/(E*I(i)*(1+g^2)) ((L(i))^2)/(2*E*I(i)*(1+g^2)) 0 0 

g*L(i)/(E*I(i)*(1+g^2)) g*((L(i))^2)/(2*E*I(i)*(1+g^2)) 0 ; 0 0 1 L(i) 0 

0 0 0 0 ; 0 0 0 1 0 0 0 0 0 ; 0 0 -g*((L(i))^2)/(2*E*I(i)*(1+g^2)) -

g*((L(i))^3)/(6*E*I(i)*(1+g^2)) 1 L(i) ((L(i))^2)/(2*E*I(i)*(1+g^2)) 

((L(i))^3)/(6*E*I(i)*(1+g^2)) 0 ; 0 0 -g*L(i)/(E*I(i)*(1+g^2)) -

g*((L(i))^2)/(2*E*I(i)*(1+g^2)) 0 1 L(i)/(E*I(i)*(1+g^2)) 

((L(i))^2)/(2*E*I(i)*(1+g^2)) 0 ; 0 0 0 0 0 0 1 L(i) 0 ; 0 0 0 0 0 0 0 1 

0 ; 0 0 0 0 0 0 0 0 1 ]; 
    if i==1 
        F1=Fi; 
    elseif i==2 
        F2=Fi; 
    elseif i==3 
        F3=Fi; 
    elseif i==4 
        F4=Fi; 
    elseif i==5 
        F5=Fi; 
    elseif i==6 
        F6=Fi; 
    elseif i==7 
        F7=Fi; 
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    elseif i==8 
        F8=Fi; 
    elseif i==9 
        F9=Fi; 
    elseif i==10 
        F10=Fi; 
    elseif i==11 
        F11=Fi; 
    elseif i==12 
        F12=Fi; 
    elseif i==13 
        F13=Fi; 
end 
end 
% Elements of Point Transfer Matrix 
for i=1.13; 
     Pi=[1 0 0 0 0 0 0 0 0 ; 0 1 0 0 0 0 0 0 0 ; 0 0 1 0 0 0 0 0 0 ; 

m(i)*w^2 0 0 1 0 0 0 0 -m(i)*ug ; 0 0 0 0 1 0 0 0 0 ; 0 0 0 0 0 1 0 0 0 ; 

0 0 0 0 0 0 1 0 0 ; 0 0 0 0 m(i)*w^2 0 0 1 0 ; 0 0 0 0 0 0 0 0 1 ]; 
    if i==1 
        P1=Pi; 
    elseif i==2 
        P2=Pi; 
    elseif i==3 
        P3=Pi; 
    elseif i==4 
        P4=Pi; 
    elseif i==5 
        P5=Pi; 
    elseif i==6 
        P6=Pi; 
    elseif i==7 
        P7=Pi; 
    elseif i==8 
        P8=Pi; 
    elseif i==9 
        P9=Pi; 
    elseif i==10 
        P10=Pi; 
    elseif i==11 
        P11=Pi; 
    elseif i==12 
        P12=Pi; 
    elseif i==13 
        P13=Pi; 
end 
end 
% Total Transfer matrixes for each node 
U1=P1*F1; 
U2=P2*F2*U1; 
U3=P3*F3*U2; 
U4=P4*F4*U3; 
U5=P5*F5*U4; 
U6=P6*F6*U5; 
U7=P7*F7*U6; 
U8=P8*F8*U7; 
U9=P9*F9*U8; 
U10=P10*F10*U9; 
U11=P11*F11*U10; 
U12=P12*F12*U11; 
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U13=P13*F13*U12;   
% Estimation of state vector at ground level (Z0)by applying the boundary 

conditions 
A=[U13(3,3) U13(3,4) U13(3,7)  U13(3,8) ; U13(4,3) U13(4,4) U13(4,7) 

U13(4,8) ; U13(7,3) U13(7,4) U13(7,7) U13(7,8) ; U13(8,3) U13(8,4) 

U13(8,7) U13(8,8)]; 
B=[-U13(3,9) -U13(4,9) -U13(7,9) -U13(8,9)]'; 
C=inv(A)*B; 
Z0=[0 0 C(1) C(2) 0 0 C(3) C(4) 1]'; 
% Estimation of state vectors for each nodes 
Z1=U1*Z0; 
Z2=U2*Z0; 
Z3=U3*Z0; 
Z4=U4*Z0; 
Z5=U5*Z0; 
Z6=U6*Z0; 
Z7=U7*Z0; 
Z8=U8*Z0; 
Z9=U9*Z0; 
Z10=U10*Z0; 
Z11=U11*Z0; 
Z12=U12*Z0; 
Z13=U13*Z0; 
j=sqrt(-1); 
% Lateral displacements at each node  
X=[Z0(1)+j*Z0(5) Z1(1)+j*Z1(5) Z2(1)+j*Z2(5) Z3(1)+j*Z3(5) Z4(1)+j*Z4(5) 

Z5(1)+j*Z5(5) Z6(1)+j*Z6(5) Z7(1)+j*Z7(5) Z8(1)+j*Z8(5) Z9(1)+j*Z9(5) 

Z10(1)+j*Z10(5) Z11(1)+j*Z11(5) Z12(1)+j*Z12(5) Z13(1)+j*Z13(5)]; 
% Rotations at each node 
F=[Z0(2)+j*Z0(6) Z1(2)+j*Z1(6) Z2(2)+j*Z2(6) Z3(2)+j*Z3(6) Z4(2)+j*Z4(6) 

Z5(2)+j*Z5(6) Z6(2)+j*Z6(6) Z7(2)+j*Z7(6) Z8(2)+j*Z8(6) Z9(2)+j*Z9(6) 

Z10(2)+j*Z10(6) Z11(2)+j*Z11(6) Z12(2)+j*Z12(6) Z13(2)+j*Z13(6)]; 
% Bending moments at each node 
M=[Z0(3)+j*Z0(7) Z1(3)+j*Z1(7) Z2(3)+j*Z2(7) Z3(3)+j*Z3(7) Z4(3)+j*Z4(7) 

Z5(3)+j*Z5(7) Z6(3)+j*Z6(7) Z7(3)+j*Z7(7) Z8(3)+j*Z8(7) Z9(3)+j*Z9(7) 

Z10(3)+j*Z10(7) Z11(3)+j*Z11(7) Z12(3)+j*Z12(7) Z13(3)+j*Z13(7)]; 
% Shear Forces at each node 
V=[Z0(4)+j*Z0(8) Z1(4)+j*Z1(8) Z2(4)+j*Z2(8) Z3(4)+j*Z3(8) Z4(4)+j*Z4(8) 

Z5(4)+j*Z5(8) Z6(4)+j*Z6(8) Z7(4)+j*Z7(8) Z8(4)+j*Z8(8) Z9(4)+j*Z9(8) 

Z10(4)+j*Z10(8) Z11(4)+j*Z11(8) Z12(4)+j*Z12(8) Z13(4)+j*Z13(8)]; 
% Vertical coordiantes of each node 
y=[0 2.0 6.0 10.0 14.25 18.1 21.25 24.35 28 31.55 34.45 38 42.15 46.05]; 
plot(abs(X),y) 
grid 
title('Displacement') 
xlabel('X (m)') 
ylabel('H (m)') 
figure,plot(abs(F),y) 
grid 
title('Rotation ') 
xlabel('F (radyan)') 
ylabel('H (m)') 
figure,plot(abs(M),y) 
grid 
title('Bending Moment ') 
xlabel('M (N-m)') 
ylabel('H (m)') 
figure,plot(abs(V),y) 
grid 
title('Shear Force') 
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xlabel('V (N)') 
ylabel('H (m)') 
abs(X(13)) 
abs(M(1)) 
abs(V(1)) 
abs(M(5)) 
abs(V(5)) 

 

 

A.6.  CODES FOR DYNAMIC ANALYSIS OF MODEL WITH TMD 

clear all; close all; clc;  
w=32.2;      % Exciting frequency (rad/sec) 
g=0.05;      % Structural Damping for R/C structure 
ug=1;       % Max harmonic ground acceleration  (m/sec2) 
E=27*10^9; % Modulus of elasticity for Reinforced concrete (N/m2) 
kd=125970    % Stiffnes value of TMD (N/m) 
cd=7020      % Damping coeficient of TMD 
md=3490     % TMD mass (kg) 
m=zeros(13,1);  % Mass matrix 
L=zeros(13,1);  % Length matrix 
I=zeros(13,1);  % Inertia matrix 
F=zeros(13,1);  % Field transfer matrix 
P=zeros(13,1);  % Point transfer matrix 
% Discrete mass values of the minaret (kg) 
m(1,1)=36.3*10^3; 
m(2,1)=41.5*10^3; 
m(3,1)=41.5*10^3; 
m(4,1)=35.2*10^3; 
m(5,1)=11.8*10^3; 
m(6,1)=11.8*10^3; 
m(7,1)=11.8*10^3; 
m(8,1)=20.1*10^3; 
m(9,1)=11.4*10^3; 
m(10,1)=11.4*10^3; 
m(11,1)=18.2*10^3; 
m(12,1)=11.5*10^3; 
m(13,1)=7.8*10^3; 
% Distances between Discrete masses (m) 
L(1,1)=1.75; 
L(2,1)=3.75; 
L(3,1)=4.0; 
L(4,1)=4.50; 
L(5,1)=4.10; 
L(6,1)=3.20; 
L(7,1)=3.20; 
L(8,1)=3.50; 
L(9,1)=3.45; 
L(10,1)=3.1; 
L(11,1)=3.45; 
L(12,1)=4.05; 
L(13,1)=3.65; 
 % Inertia values between Discrete masses (m4) 
I(1,1)=5.364; 
I(2,1)=5.364; 
I(3,1)=5.364; 
I(4,1)=5.364; 
I(5,1)=0.74; 
I(6,1)=0.74; 
I(7,1)=0.74; 
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I(8,1)=0.74; 
I(9,1)=0.74; 
I(10,1)=0.74; 
I(11,1)=0.74; 
I(12,1)=0.575; 
I(13,1)=0.575; 
% Elements of Field Transfer Matrix 
for i=1.13; 
Fi=[1 L(i) ((L(i))^2)/(2*E*I(i)*(1+g^2)) ((L(i))^3)/(6*E*I(i)*(1+g^2)) 0 

0 g*((L(i))^2)/(2*E*I(i)*(1+g^2)) g*((L(i))^3)/(6*E*I(i)*(1+g^2)) 0 ; 0 1 

L(i)/(E*I(i)*(1+g^2)) ((L(i))^2)/(2*E*I(i)*(1+g^2)) 0 0 

g*L(i)/(E*I(i)*(1+g^2)) g*((L(i))^2)/(2*E*I(i)*(1+g^2)) 0 ; 0 0 1 L(i) 0 

0 0 0 0 ; 0 0 0 1 0 0 0 0 0 ; 0 0 -g*((L(i))^2)/(2*E*I(i)*(1+g^2)) -

g*((L(i))^3)/(6*E*I(i)*(1+g^2)) 1 L(i) ((L(i))^2)/(2*E*I(i)*(1+g^2)) 

((L(i))^3)/(6*E*I(i)*(1+g^2)) 0 ; 0 0 -g*L(i)/(E*I(i)*(1+g^2)) -

g*((L(i))^2)/(2*E*I(i)*(1+g^2)) 0 1 L(i)/(E*I(i)*(1+g^2)) 

((L(i))^2)/(2*E*I(i)*(1+g^2)) 0 ; 0 0 0 0 0 0 1 L(i) 0 ; 0 0 0 0 0 0 0 1 

0 ; 0 0 0 0 0 0 0 0 1 ]; 
    if i==1 
        F1=Fi; 
    elseif i==2 
        F2=Fi; 
    elseif i==3 
        F3=Fi; 
    elseif i==4 
        F4=Fi; 
    elseif i==5 
        F5=Fi; 
    elseif i==6 
        F6=Fi; 
    elseif i==7 
        F7=Fi; 
    elseif i==8 
        F8=Fi; 
    elseif i==9 
        F9=Fi; 
    elseif i==10 
        F10=Fi; 
    elseif i==11 
        F11=Fi; 
    elseif i==12 
        F12=Fi; 
    elseif i==13 
        F13=Fi; 
end 
end 
% Elements of Point Transfer Matrix 
for i=1.13; 
     Pi=[1 0 0 0 0 0 0 0 0 ; 0 1 0 0 0 0 0 0 0 ; 0 0 1 0 0 0 0 0 0 ; 

m(i)*w^2 0 0 1 0 0 0 0 -m(i)*ug ; 0 0 0 0 1 0 0 0 0 ; 0 0 0 0 0 1 0 0 0 ; 

0 0 0 0 0 0 1 0 0 ; 0 0 0 0 m(i)*w^2 0 0 1 0 ; 0 0 0 0 0 0 0 0 1 ]; 
    if i==1 
        P1=Pi; 
    elseif i==2 
        P2=Pi; 
    elseif i==3 
        P3=Pi; 
    elseif i==4 
        P4=Pi; 
    elseif i==5 
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        P5=Pi; 
    elseif i==6 
        P6=Pi; 
    elseif i==7 
        P7=Pi; 
    elseif i==8 
        P8=Pi; 
    elseif i==9 
        P9=Pi; 
    elseif i==10 
        P10=Pi; 
    elseif i==11 
        P11=Pi; 
    elseif i==12 
        P12=Pi; 
    elseif i==13 
        P13=Pi; 
end 
end 
 % Equivalent stiffnes of TMD  
A=(((kd^2)*md*(w^2))-(kd*(md^2)*(w^4))+((cd^2)*md*(w^4)))/(((kd-

(md*(w^2)))^2)+((cd^2)*(w^2))) 
B=-((cd*md^2)*w^5)/(((kd-(md*(w^2)))^2)+((cd^2)*(w^2))) 
C=-md*ug*(((-kd*md*(w^2))+(kd^2)+((cd^2)*(w^2)))/(((kd-

(md*(w^2)))^2)+((cd^2)*(w^2)))) 
D=md*ug*((md*cd*(w^3))/(((kd-(md*(w^2)))^2)+((cd^2)*(w^2)))) 
 % Changes in P12 due to TMD impact 
P12=[1 0 0 0 0 0 0 0 0 ; 0 1 0 0 0 0 0 0 0 ; 0 0 1 0 0 0 0 0 0 ; 

((m(12)*w^2)+A) 0 0 1 -B 0 0 0 -m(12)*ug+C ; 0 0 0 0 1 0 0 0 0 ; 0 0 0 0 

0 1 0 0 0 ; 0 0 0 0 0 0 1 0 0 ; B 0 0 0 ((m(12)*w^2)+A) 0 0 1 D ; 0 0 0 0 

0 0 0 0 1] 
 % Total Transfer matrixes for each node 
U1=P1*F1; 
U2=P2*F2*U1; 
U3=P3*F3*U2; 
U4=P4*F4*U3; 
U5=P5*F5*U4; 
U6=P6*F6*U5; 
U7=P7*F7*U6; 
U8=P8*F8*U7; 
U9=P9*F9*U8; 
U10=P10*F10*U9; 
U11=P11*F11*U10; 
U12=P12*F12*U11; 
U13=P13*F13*U12;   
 % Estimation of state vector at ground level (Z0)by applying the 

boundary conditions 
A=[U13(3,3) U13(3,4) U13(3,7)  U13(3,8) ; U13(4,3) U13(4,4) U13(4,7) 

U13(4,8) ; U13(7,3) U13(7,4) U13(7,7) U13(7,8) ; U13(8,3) U13(8,4) 

U13(8,7) U13(8,8)]; 
B=[-U13(3,9) -U13(4,9) -U13(7,9) -U13(8,9)]'; 
C=inv(A)*B; 
 Z0=[0 0 C(1) C(2) 0 0 C(3) C(4) 1]'; 
 % Estimation of state vectors for each nodes 
Z1=U1*Z0; 
Z2=U2*Z0; 
Z3=U3*Z0; 
Z4=U4*Z0; 
Z5=U5*Z0; 
Z6=U6*Z0; 
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Z7=U7*Z0; 
Z8=U8*Z0; 
Z9=U9*Z0; 
Z10=U10*Z0; 
Z11=U11*Z0; 
Z12=U12*Z0; 
Z13=U13*Z0; 
j=sqrt(-1); 
% Lateral displacements at each node  
X=[Z0(1)+j*Z0(5) Z1(1)+j*Z1(5) Z2(1)+j*Z2(5) Z3(1)+j*Z3(5) Z4(1)+j*Z4(5) 

Z5(1)+j*Z5(5) Z6(1)+j*Z6(5) Z7(1)+j*Z7(5) Z8(1)+j*Z8(5) Z9(1)+j*Z9(5) 

Z10(1)+j*Z10(5) Z11(1)+j*Z11(5) Z12(1)+j*Z12(5) Z13(1)+j*Z13(5)]; 
% Rotations at each node 
F=[Z0(2)+j*Z0(6) Z1(2)+j*Z1(6) Z2(2)+j*Z2(6) Z3(2)+j*Z3(6) Z4(2)+j*Z4(6) 

Z5(2)+j*Z5(6) Z6(2)+j*Z6(6) Z7(2)+j*Z7(6) Z8(2)+j*Z8(6) Z9(2)+j*Z9(6) 

Z10(2)+j*Z10(6) Z11(2)+j*Z11(6) Z12(2)+j*Z12(6) Z13(2)+j*Z13(6)]; 
 % Bending moments at each node 
M=[Z0(3)+j*Z0(7) Z1(3)+j*Z1(7) Z2(3)+j*Z2(7) Z3(3)+j*Z3(7) Z4(3)+j*Z4(7) 

Z5(3)+j*Z5(7) Z6(3)+j*Z6(7) Z7(3)+j*Z7(7) Z8(3)+j*Z8(7) Z9(3)+j*Z9(7) 

Z10(3)+j*Z10(7) Z11(3)+j*Z11(7) Z12(3)+j*Z12(7) Z13(3)+j*Z13(7)]; 
 % Shear Forces at each node 
V=[Z0(4)+j*Z0(8) Z1(4)+j*Z1(8) Z2(4)+j*Z2(8) Z3(4)+j*Z3(8) Z4(4)+j*Z4(8) 

Z5(4)+j*Z5(8) Z6(4)+j*Z6(8) Z7(4)+j*Z7(8) Z8(4)+j*Z8(8) Z9(4)+j*Z9(8) 

Z10(4)+j*Z10(8) Z11(4)+j*Z11(8) Z12(4)+j*Z12(8) Z13(4)+j*Z13(8)]; 
 % Vertical coordiantes of each node 
y=[0 2.0 6.0 10.0 14.25 18.1 21.25 24.35 28 31.55 34.45 38 42.15 46.05]; 
 plot(abs(X),y) 
grid 
title('Displacement') 
xlabel('X (m)') 
ylabel('H (m)') 
 figure,plot(abs(F),y) 
grid 
title('Rotation ') 
xlabel('Fi (radyan)') 
ylabel('H (m)') 
 figure,plot(abs(M),y) 
grid 
title('Bending Moment ') 
xlabel('M (N-m)') 
ylabel('H (m)') 
 figure,plot(abs(V),y) 
grid 
title('Shear Force') 
xlabel('V (N)') 
ylabel('H (m)') 
abs(X(13)) 
abs(M(1)) 
abs(V(1)) 
abs(M(6)) 
abs(V(6)) 

 

 

A.7.  CODES FOR ORTHOGONAL SPRINGS STIFFNESS VERIFICATION  

clc; 
clear all; 
r=860; 
k=50; 
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n=360 
for ii=1.5 
    h=ii*0.1*r; 
for i=1.n+1 
    A=(pi/180)*(i-1); 
if i<=90 
r1(i)=sqrt(((h*sin(A))^2+(r-h*cos(A))^2)); 
r2(i)=sqrt(((h*cos(A))^2+(r-h*sin(A))^2)); 
r3(i)=sqrt(((h*sin(A))^2+(r+h*cos(A))^2)); 
r4(i)=sqrt(((h*cos(A))^2+(r+h*sin(A))^2)); 
T1(i)=acos((r-h*(cos(A)))/r1(i)); 
T2(i)=acos((r-h*(sin(A)))/r2(i)); 
T3(i)=acos((r+h*(cos(A)))/r3(i)); 
T4(i)=acos((r+h*(sin(A)))/r4(i)); 
F1X(i)=-k*(r-r1(i))*cos(T1(i)); 
F2X(i)=k*(r-r2(i))*sin(T2(i)); 
F3X(i)=-k*(r3(i)-r)*cos(T3(i)); 
F4X(i)=-k*(r4(i)-r)*sin(T4(i)); 
F1Y(i)=k*(r-r1(i))*sin(T1(i)); 
F2Y(i)=-k*(r-r2(i))*cos(T2(i)); 
F3Y(i)=-k*(r3(i)-r)*sin(T3(i)); 
F4Y(i)=-k*(r4(i)-r)*cos(T4(i)); 
FX(i)=F1X(i)+F2X(i)+F3X(i)+F4X(i); 
FY(i)=F1Y(i)+F2Y(i)+F3Y(i)+F4Y(i); 
F(i)=sqrt((FX(i)^2+FY(i)^2)); 
Y(i)=F(i)/h; 
elseif i<=180 
r1(i)=sqrt(((h*sin(A))^2+(r-h*cos(A))^2)); 
r2(i)=sqrt(((h*cos(A))^2+(r-h*sin(A))^2)); 
r3(i)=sqrt(((h*sin(A))^2+(r+h*cos(A))^2)); 
r4(i)=sqrt(((h*cos(A))^2+(r+h*sin(A))^2)); 
T1(i)=acos((r-h*(cos(A)))/r1(i)); 
T2(i)=acos((r-h*(sin(A)))/r2(i)); 
T3(i)=acos((r+h*(cos(A)))/r3(i)); 
T4(i)=acos((r+h*(sin(A)))/r4(i)); 
F1X(i)=k*(r1(i)-r)*cos(T1(i)); 
F2X(i)=-k*(r-r2(i))*sin(T2(i)); 
F3X(i)=k*(r-r3(i))*cos(T3(i)); 
F4X(i)=k*(r4(i)-r)*sin(T4(i)); 
F1Y(i)=-k*(r1(i)-r)*sin(T1(i)); 
F2Y(i)=-k*(r-r2(i))*cos(T2(i)); 
F3Y(i)=k*(r-r3(i))*sin(T3(i)); 
F4Y(i)=-k*(r4(i)-r)*cos(T4(i)); 
FX(i)=F1X(i)+F2X(i)+F3X(i)+F4X(i); 
FY(i)=F1Y(i)+F2Y(i)+F3Y(i)+F4Y(i); 
F(i)=sqrt((FX(i)^2+FY(i)^2)); 
Y(i)=F(i)/h; 
elseif i<=270 
r1(i)=sqrt(((h*sin(A))^2+(r-h*cos(A))^2)); 
r2(i)=sqrt(((h*cos(A))^2+(r-h*sin(A))^2)); 
r3(i)=sqrt(((h*sin(A))^2+(r+h*cos(A))^2)); 
r4(i)=sqrt(((h*cos(A))^2+(r+h*sin(A))^2)); 
T1(i)=acos((r-h*(cos(A)))/r1(i)); 
T2(i)=acos((r-h*(sin(A)))/r2(i)); 
T3(i)=acos((r+h*(cos(A)))/r3(i)); 
T4(i)=acos((r+h*(sin(A)))/r4(i)); 
F1X(i)=k*(r1(i)-r)*cos(T1(i)); 
F2X(i)=k*(r2(i)-r)*sin(T2(i)); 
F3X(i)=k*(r-r3(i))*cos(T3(i)); 
F4X(i)=-k*(r-r4(i))*sin(T4(i)); 
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F1Y(i)=k*(r1(i)-r)*sin(T1(i)); 
F2Y(i)=k*(r2(i)-r)*cos(T2(i)); 
F3Y(i)=-k*(r-r3(i))*sin(T3(i)); 
F4Y(i)=k*(r-r4(i))*cos(T4(i)); 
FX(i)=F1X(i)+F2X(i)+F3X(i)+F4X(i); 
FY(i)=F1Y(i)+F2Y(i)+F3Y(i)+F4Y(i); 
F(i)=sqrt((FX(i)^2+FY(i)^2)); 
Y(i)=F(i)/h; 
else 
r1(i)=sqrt(((h*sin(A))^2+(r-h*cos(A))^2)); 
r2(i)=sqrt(((h*cos(A))^2+(r-h*sin(A))^2)); 
r3(i)=sqrt(((h*sin(A))^2+(r+h*cos(A))^2)); 
r4(i)=sqrt(((h*cos(A))^2+(r+h*sin(A))^2)); 
T1(i)=acos((r-h*(cos(A)))/r1(i)); 
T2(i)=acos((r-h*(sin(A)))/r2(i)); 
T3(i)=acos((r+h*(cos(A)))/r3(i)); 
T4(i)=acos((r+h*(sin(A)))/r4(i));   
F1X(i)=-k*(r-r1(i))*cos(T1(i)); 
F2X(i)=-k*(r2(i)-r)*sin(T2(i)); 
F3X(i)=-k*(r3(i)-r)*cos(T3(i)); 
F4X(i)=k*(r-r4(i))*sin(T4(i)); 
F1Y(i)=-k*(r-r1(i))*sin(T1(i)); 
F2Y(i)=k*(r2(i)-r)*cos(T2(i)); 
F3Y(i)=k*(r3(i)-r)*sin(T3(i)); 
F4Y(i)=k*(r-r4(i))*cos(T4(i)); 
FX(i)=F1X(i)+F2X(i)+F3X(i)+F4X(i); 
FY(i)=F1Y(i)+F2Y(i)+F3Y(i)+F4Y(i); 
F(i)=sqrt((FX(i)^2+FY(i)^2)); 
Y(i)=F(i)/h; 
end 
end 
x=0:1.n 
plot(x,Y) 
grid 
xlabel('ALFA - Degree') 
ylabel('F/h - Stiffness') 
figure 
end 

 

 

A.8.  CODES FOR FOURIER TRANSFORMATION OF EARTHQUAKE GROUND 

ACCELERATION RECORDS 

clc 
clear 
close all 
% %[filename, pathname]=uigetfile('*.asc', 'Choose acc file for source 1 

to process'); 
% file=input('data file name without extension=','s'); 
% ext='asc'; 
% filename=[file,'.',ext]; 
%Analysis Output File to be Processed 
[filename1,pathname]=uigetfile('*.txt','Analysis Output File(.txt)'); 
filename=load([pathname filename1]); 
acc=filename; 
acc=detrend(acc); 
delt=0.005; 
n=length(acc); 
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t=delt:delt:delt*n; 
figure(1); 
plot(t,acc) 
grid 
xlabel('Time (s)') 
ylabel('Acceleration (mg)') 
fs=1/delt; 
fn=fs/2; 
famp1=fft(acc)*delt; 
fa1=abs(famp1); 
n1=length(famp1); 
delf1=1/((n1-1)*delt); 
f1=(0:delf1.delf1*(n1/2))'; 
figure(2); 
grid on ; 
plot(f1,fa1(1.n1/2+1)); 
grid 
title(['Fourier Amplitude Spectrum']),xlabel('Frequency 

[Hz]'),ylabel('Amplitude') 

 

 

A.9.  CODES FOR WIND RESPONSE OF STRUCTURE WITHOUT TMD 

clear all; close all; clc;  
w=6.6;      % Exciting frequency (rad/sec) 
g=0.05;      % Structural Damping for R/C structure 
q=137.1;       % Lift force due to vortex shedding  (N/m) 
E=27*10^9; % Modulus of elasticity for Reinforced concrete (N/m2) 
 m=zeros(13,1);  % Mass matrix 
L=zeros(13,1);  % Length matrix 
I=zeros(13,1);  % Inertia matrix 
F=zeros(13,1);  % Field transfer matrix 
P=zeros(13,1);  % Point transfer matrix 
 % Discrete mass values of the minaret (kg) 
m(1,1)=36.3*10^3; 
m(2,1)=41.5*10^3; 
m(3,1)=41.5*10^3; 
m(4,1)=35.2*10^3; 
m(5,1)=11.8*10^3; 
m(6,1)=11.8*10^3; 
m(7,1)=11.8*10^3; 
m(8,1)=20.1*10^3; 
m(9,1)=11.4*10^3; 
m(10,1)=11.4*10^3; 
m(11,1)=18.2*10^3; 
m(12,1)=11.5*10^3; 
m(13,1)=7.8*10^3; 
% Distances between Discrete masses (m) 
L(1,1)=1.75; 
L(2,1)=3.75; 
L(3,1)=4.0; 
L(4,1)=4.50; 
L(5,1)=4.10; 
L(6,1)=3.20; 
L(7,1)=3.20; 
L(8,1)=3.50; 
L(9,1)=3.45; 
L(10,1)=3.1; 
L(11,1)=3.45; 
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L(12,1)=4.05; 
L(13,1)=3.65; 
 % Inertia values between Discrete masses (m4) 
I(1,1)=5.364; 
I(2,1)=5.364; 
I(3,1)=5.364; 
I(4,1)=5.364; 
I(5,1)=0.74; 
I(6,1)=0.74; 
I(7,1)=0.74; 
I(8,1)=0.74; 
I(9,1)=0.74; 
I(10,1)=0.74; 
I(11,1)=0.74; 
I(12,1)=0.575; 
I(13,1)=0.575; 
 % Elements of Field Transfer Matrix 
for i=1.13; 
Fi=[1 L(i) ((L(i))^2)/(2*E*I(i)*(1+g^2)) ((L(i))^3)/(6*E*I(i)*(1+g^2)) 0 

0 g*((L(i))^2)/(2*E*I(i)*(1+g^2)) g*((L(i))^3)/(6*E*I(i)*(1+g^2)) -

(q*(L(i))^4)/(24*E*I(i)*(1+g^2)) ; 0 1 L(i)/(E*I(i)*(1+g^2)) 

((L(i))^2)/(2*E*I(i)*(1+g^2)) 0 0 g*L(i)/(E*I(i)*(1+g^2)) 

g*((L(i))^2)/(2*E*I(i)*(1+g^2)) -(q*(L(i))^3)/(6*E*I(i)*(1+g^2)) ; 0 0 1 

L(i) 0 0 0 0 -(q*(L(i))^2)/(2) ; 0 0 0 1 0 0 0 0 -q*L(i) ; 0 0 -

g*((L(i))^2)/(2*E*I(i)*(1+g^2)) -g*((L(i))^3)/(6*E*I(i)*(1+g^2)) 1 L(i) 

((L(i))^2)/(2*E*I(i)*(1+g^2)) ((L(i))^3)/(6*E*I(i)*(1+g^2)) 0 ; 0 0 -

g*L(i)/(E*I(i)*(1+g^2)) -g*((L(i))^2)/(2*E*I(i)*(1+g^2)) 0 1 

L(i)/(E*I(i)*(1+g^2)) ((L(i))^2)/(2*E*I(i)*(1+g^2)) 0 ; 0 0 0 0 0 0 1 

L(i) 0 ; 0 0 0 0 0 0 0 1 0 ; 0 0 0 0 0 0 0 0 1 ]; 
    if i==1 
        F1=Fi; 
    elseif i==2 
        F2=Fi; 
    elseif i==3 
        F3=Fi; 
    elseif i==4 
        F4=Fi; 
    elseif i==5 
        F5=Fi; 
    elseif i==6 
        F6=Fi; 
    elseif i==7 
        F7=Fi; 
    elseif i==8 
        F8=Fi; 
    elseif i==9 
        F9=Fi; 
    elseif i==10 
        F10=Fi; 
    elseif i==11 
        F11=Fi; 
    elseif i==12 
        F12=Fi; 
    elseif i==13 
        F13=Fi; 
end 
end 
 % Elements of Point Transfer Matrix 
for i=1.13; 
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     Pi=[1 0 0 0 0 0 0 0 0 ; 0 1 0 0 0 0 0 0 0 ; 0 0 1 0 0 0 0 0 0 ; 

m(i)*w^2 0 0 1 0 0 0 0 0 ; 0 0 0 0 1 0 0 0 0 ; 0 0 0 0 0 1 0 0 0 ; 0 0 0 

0 0 0 1 0 0 ; 0 0 0 0 m(i)*w^2 0 0 1 0 ; 0 0 0 0 0 0 0 0 1 ]; 
    if i==1 
        P1=Pi; 
    elseif i==2 
        P2=Pi; 
    elseif i==3 
        P3=Pi; 
    elseif i==4 
        P4=Pi; 
    elseif i==5 
        P5=Pi; 
    elseif i==6 
        P6=Pi; 
    elseif i==7 
        P7=Pi; 
    elseif i==8 
        P8=Pi; 
    elseif i==9 
        P9=Pi; 
    elseif i==10 
        P10=Pi; 
    elseif i==11 
        P11=Pi; 
    elseif i==12 
        P12=Pi; 
    elseif i==13 
        P13=Pi; 
end 
end 
 % Total Transfer matrixes for each node 
U1=P1*F1; 
U2=P2*F2*U1; 
U3=P3*F3*U2; 
U4=P4*F4*U3; 
U5=P5*F5*U4; 
U6=P6*F6*U5; 
U7=P7*F7*U6; 
U8=P8*F8*U7; 
U9=P9*F9*U8; 
U10=P10*F10*U9; 
U11=P11*F11*U10; 
U12=P12*F12*U11; 
U13=P13*F13*U12;   
% Estimation of state vector at ground level (Z0)by applying the boundary 

conditions 
A=[U13(3,3) U13(3,4) U13(3,7)  U13(3,8) ; U13(4,3) U13(4,4) U13(4,7) 

U13(4,8) ; U13(7,3) U13(7,4) U13(7,7) U13(7,8) ; U13(8,3) U13(8,4) 

U13(8,7) U13(8,8)]; 
B=[-U13(3,9) -U13(4,9) -U13(7,9) -U13(8,9)]'; 
C=inv(A)*B; 
 Z0=[0 0 C(1) C(2) 0 0 C(3) C(4) 1]'; 
 % Estimation of state vectors for each nodes 
Z1=U1*Z0; 
Z2=U2*Z0; 
Z3=U3*Z0; 
Z4=U4*Z0; 
Z5=U5*Z0; 
Z6=U6*Z0; 
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Z7=U7*Z0; 
Z8=U8*Z0; 
Z9=U9*Z0; 
Z10=U10*Z0; 
Z11=U11*Z0; 
Z12=U12*Z0; 
Z13=U13*Z0; 
 j=sqrt(-1); 
% Lateral displacements at each node  
X=[Z0(1)+j*Z0(5) Z1(1)+j*Z1(5) Z2(1)+j*Z2(5) Z3(1)+j*Z3(5) Z4(1)+j*Z4(5) 

Z5(1)+j*Z5(5) Z6(1)+j*Z6(5) Z7(1)+j*Z7(5) Z8(1)+j*Z8(5) Z9(1)+j*Z9(5) 

Z10(1)+j*Z10(5) Z11(1)+j*Z11(5) Z12(1)+j*Z12(5) Z13(1)+j*Z13(5)]; 
% Rotations at each node 
F=[Z0(2)+j*Z0(6) Z1(2)+j*Z1(6) Z2(2)+j*Z2(6) Z3(2)+j*Z3(6) Z4(2)+j*Z4(6) 

Z5(2)+j*Z5(6) Z6(2)+j*Z6(6) Z7(2)+j*Z7(6) Z8(2)+j*Z8(6) Z9(2)+j*Z9(6) 

Z10(2)+j*Z10(6) Z11(2)+j*Z11(6) Z12(2)+j*Z12(6) Z13(2)+j*Z13(6)]; 
 % Bending moments at each node 
M=[Z0(3)+j*Z0(7) Z1(3)+j*Z1(7) Z2(3)+j*Z2(7) Z3(3)+j*Z3(7) Z4(3)+j*Z4(7) 

Z5(3)+j*Z5(7) Z6(3)+j*Z6(7) Z7(3)+j*Z7(7) Z8(3)+j*Z8(7) Z9(3)+j*Z9(7) 

Z10(3)+j*Z10(7) Z11(3)+j*Z11(7) Z12(3)+j*Z12(7) Z13(3)+j*Z13(7)]; 
 % Shear Forces at each node 
V=[Z0(4)+j*Z0(8) Z1(4)+j*Z1(8) Z2(4)+j*Z2(8) Z3(4)+j*Z3(8) Z4(4)+j*Z4(8) 

Z5(4)+j*Z5(8) Z6(4)+j*Z6(8) Z7(4)+j*Z7(8) Z8(4)+j*Z8(8) Z9(4)+j*Z9(8) 

Z10(4)+j*Z10(8) Z11(4)+j*Z11(8) Z12(4)+j*Z12(8) Z13(4)+j*Z13(8)]; 
 % Vertical coordiantes of each node 
y=[0 2.0 6.0 10.0 14.25 18.1 21.25 24.35 28 31.55 34.45 38 42.15 46.05]; 
 plot(abs(X),y) 
grid 
title('Displacement') 
xlabel('X (m)') 
ylabel('H (m)') 
 figure,plot(abs(F),y) 
grid 
title('Rotation ') 
xlabel('F (radyan)') 
ylabel('H (m)') 
 figure,plot(abs(M),y) 
grid 
title('Bending Moment ') 
xlabel('M (N-m)') 
ylabel('H (m)') 
 figure,plot(abs(V),y) 
grid 
title('Shear Force') 
xlabel('V (N)') 
ylabel('H (m)') 
 abs(X(13)) 
abs(M(1)) 
abs(V(1)) 

 

 

A.10.  CODES FOR WIND RESPONSE OF STRUCTURE EQUIPED WITH TMD 

clear all; close all; clc;  
 w=32.2;      % Exciting frequency (rad/sec) 
g=0.05;      % Structural Damping for R/C structure 
ug=0;       % Max harmonic ground acceleration  (m/sec2) 
q=137.1     % Lift force due to vortex shedding 
E=27*10^9; % Modulus of elasticity for Reinforced concrete (N/m2) 
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kd=125970    % Stiffnes value of TMD (N/m) 
cd=7020      % Damping coeficient of TMD 
md=3490     % TMD mass (kg) 
m=zeros(13,1);  % Mass matrix 
L=zeros(13,1);  % Length matrix 
I=zeros(13,1);  % Inertia matrix 
F=zeros(13,1);  % Field transfer matrix 
P=zeros(13,1);  % Point transfer matrix 
% Discrete mass values of the minaret (kg) 
m(1,1)=36.3*10^3; 
m(2,1)=41.5*10^3; 
m(3,1)=41.5*10^3; 
m(4,1)=35.2*10^3; 
m(5,1)=11.8*10^3; 
m(6,1)=11.8*10^3; 
m(7,1)=11.8*10^3; 
m(8,1)=20.1*10^3; 
m(9,1)=11.4*10^3; 
m(10,1)=11.4*10^3; 
m(11,1)=18.2*10^3; 
m(12,1)=11.5*10^3; 
m(13,1)=7.8*10^3; 
% Distances between Discrete masses (m) 
L(1,1)=1.75; 
L(2,1)=3.75; 
L(3,1)=4.0; 
L(4,1)=4.50; 
L(5,1)=4.10; 
L(6,1)=3.20; 
L(7,1)=3.20; 
L(8,1)=3.50; 
L(9,1)=3.45; 
L(10,1)=3.1; 
L(11,1)=3.45; 
L(12,1)=4.05; 
L(13,1)=3.65; 
% Inertia values between Discrete masses (m4) 
I(1,1)=5.364; 
I(2,1)=5.364; 
I(3,1)=5.364; 
I(4,1)=5.364; 
I(5,1)=0.74; 
I(6,1)=0.74; 
I(7,1)=0.74; 
I(8,1)=0.74; 
I(9,1)=0.74; 
I(10,1)=0.74; 
I(11,1)=0.74; 
I(12,1)=0.575; 
I(13,1)=0.575; 
% Elements of Field Transfer Matrix 
for i=1.13; 
Fi=[1 L(i) ((L(i))^2)/(2*E*I(i)*(1+g^2)) ((L(i))^3)/(6*E*I(i)*(1+g^2)) 0 

0 g*((L(i))^2)/(2*E*I(i)*(1+g^2)) g*((L(i))^3)/(6*E*I(i)*(1+g^2)) -

(q*(L(i))^4)/(24*E*I(i)*(1+g^2)) ; 0 1 L(i)/(E*I(i)*(1+g^2)) 

((L(i))^2)/(2*E*I(i)*(1+g^2)) 0 0 g*L(i)/(E*I(i)*(1+g^2)) 

g*((L(i))^2)/(2*E*I(i)*(1+g^2)) -(q*(L(i))^3)/(6*E*I(i)*(1+g^2)) ; 0 0 1 

L(i) 0 0 0 0 -(q*(L(i))^2)/(2) ; 0 0 0 1 0 0 0 0 -q*L(i) ; 0 0 -

g*((L(i))^2)/(2*E*I(i)*(1+g^2)) -g*((L(i))^3)/(6*E*I(i)*(1+g^2)) 1 L(i) 

((L(i))^2)/(2*E*I(i)*(1+g^2)) ((L(i))^3)/(6*E*I(i)*(1+g^2)) 0 ; 0 0 -
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g*L(i)/(E*I(i)*(1+g^2)) -g*((L(i))^2)/(2*E*I(i)*(1+g^2)) 0 1 

L(i)/(E*I(i)*(1+g^2)) ((L(i))^2)/(2*E*I(i)*(1+g^2)) 0 ; 0 0 0 0 0 0 1 

L(i) 0 ; 0 0 0 0 0 0 0 1 0 ; 0 0 0 0 0 0 0 0 1 ]; 
    if i==1 
        F1=Fi; 
    elseif i==2 
        F2=Fi; 
    elseif i==3 
        F3=Fi; 
    elseif i==4 
        F4=Fi; 
    elseif i==5 
        F5=Fi; 
    elseif i==6 
        F6=Fi; 
    elseif i==7 
        F7=Fi; 
    elseif i==8 
        F8=Fi; 
    elseif i==9 
        F9=Fi; 
    elseif i==10 
        F10=Fi; 
    elseif i==11 
        F11=Fi; 
    elseif i==12 
        F12=Fi; 
    elseif i==13 
        F13=Fi; 
end 
end 
% Elements of Point Transfer Matrix 
for i=1.13; 
     Pi=[1 0 0 0 0 0 0 0 0 ; 0 1 0 0 0 0 0 0 0 ; 0 0 1 0 0 0 0 0 0 ; 

m(i)*w^2 0 0 1 0 0 0 0 0 ; 0 0 0 0 1 0 0 0 0 ; 0 0 0 0 0 1 0 0 0 ; 0 0 0 

0 0 0 1 0 0 ; 0 0 0 0 m(i)*w^2 0 0 1 0 ; 0 0 0 0 0 0 0 0 1 ]; 
    if i==1 
        P1=Pi; 
    elseif i==2 
        P2=Pi; 
    elseif i==3 
        P3=Pi; 
    elseif i==4 
        P4=Pi; 
    elseif i==5 
        P5=Pi; 
    elseif i==6 
        P6=Pi; 
    elseif i==7 
        P7=Pi; 
    elseif i==8 
        P8=Pi; 
    elseif i==9 
        P9=Pi; 
    elseif i==10 
        P10=Pi; 
    elseif i==11 
        P11=Pi; 
    elseif i==12 
        P12=Pi; 
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    elseif i==13 
        P13=Pi; 
end 
end 
% Equivalent stiffnes of TMD  
A=(((kd^2)*md*(w^2))-(kd*(md^2)*(w^4))+((cd^2)*md*(w^4)))/(((kd-

(md*(w^2)))^2)+((cd^2)*(w^2))) 
B=-((cd*md^2)*w^5)/(((kd-(md*(w^2)))^2)+((cd^2)*(w^2))) 
C=-md*ug*(((-kd*md*(w^2))+(kd^2)+((cd^2)*(w^2)))/(((kd-

(md*(w^2)))^2)+((cd^2)*(w^2)))) 
D=md*ug*((md*cd*(w^3))/(((kd-(md*(w^2)))^2)+((cd^2)*(w^2)))) 
% Changes in P12 due to TMD impact 
P12=[1 0 0 0 0 0 0 0 0 ; 0 1 0 0 0 0 0 0 0 ; 0 0 1 0 0 0 0 0 0 ; 

((m(12)*w^2)+A) 0 0 1 -B 0 0 0 0 ; 0 0 0 0 1 0 0 0 0 ; 0 0 0 0 0 1 0 0 0 

; 0 0 0 0 0 0 1 0 0 ; B 0 0 0 ((m(12)*w^2)+A) 0 0 1 D ; 0 0 0 0 0 0 0 0 

1] 
% Total Transfer matrixes for each node 
U1=P1*F1; 
U2=P2*F2*U1; 
U3=P3*F3*U2; 
U4=P4*F4*U3; 
U5=P5*F5*U4; 
U6=P6*F6*U5; 
U7=P7*F7*U6; 
U8=P8*F8*U7; 
U9=P9*F9*U8; 
U10=P10*F10*U9; 
U11=P11*F11*U10; 
U12=P12*F12*U11; 
U13=P13*F13*U12;   
% Estimation of state vector at ground level (Z0)by applying the boundary 

conditions 
A=[U13(3,3) U13(3,4) U13(3,7)  U13(3,8) ; U13(4,3) U13(4,4) U13(4,7) 

U13(4,8) ; U13(7,3) U13(7,4) U13(7,7) U13(7,8) ; U13(8,3) U13(8,4) 

U13(8,7) U13(8,8)]; 
B=[-U13(3,9) -U13(4,9) -U13(7,9) -U13(8,9)]'; 
C=inv(A)*B; 
Z0=[0 0 C(1) C(2) 0 0 C(3) C(4) 1]'; 
% Estimation of state vectors for each nodes 
Z1=U1*Z0; 
Z2=U2*Z0; 
Z3=U3*Z0; 
Z4=U4*Z0; 
Z5=U5*Z0; 
Z6=U6*Z0; 
Z7=U7*Z0; 
Z8=U8*Z0; 
Z9=U9*Z0; 
Z10=U10*Z0; 
Z11=U11*Z0; 
Z12=U12*Z0; 
Z13=U13*Z0; 
j=sqrt(-1); 
% Lateral displacements at each node  
X=[Z0(1)+j*Z0(5) Z1(1)+j*Z1(5) Z2(1)+j*Z2(5) Z3(1)+j*Z3(5) Z4(1)+j*Z4(5) 

Z5(1)+j*Z5(5) Z6(1)+j*Z6(5) Z7(1)+j*Z7(5) Z8(1)+j*Z8(5) Z9(1)+j*Z9(5) 

Z10(1)+j*Z10(5) Z11(1)+j*Z11(5) Z12(1)+j*Z12(5) Z13(1)+j*Z13(5)]; 
% Rotations at each node 
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F=[Z0(2)+j*Z0(6) Z1(2)+j*Z1(6) Z2(2)+j*Z2(6) Z3(2)+j*Z3(6) Z4(2)+j*Z4(6) 

Z5(2)+j*Z5(6) Z6(2)+j*Z6(6) Z7(2)+j*Z7(6) Z8(2)+j*Z8(6) Z9(2)+j*Z9(6) 

Z10(2)+j*Z10(6) Z11(2)+j*Z11(6) Z12(2)+j*Z12(6) Z13(2)+j*Z13(6)]; 
% Bending moments at each node 
M=[Z0(3)+j*Z0(7) Z1(3)+j*Z1(7) Z2(3)+j*Z2(7) Z3(3)+j*Z3(7) Z4(3)+j*Z4(7) 

Z5(3)+j*Z5(7) Z6(3)+j*Z6(7) Z7(3)+j*Z7(7) Z8(3)+j*Z8(7) Z9(3)+j*Z9(7) 

Z10(3)+j*Z10(7) Z11(3)+j*Z11(7) Z12(3)+j*Z12(7) Z13(3)+j*Z13(7)]; 
% Shear Forces at each node 
V=[Z0(4)+j*Z0(8) Z1(4)+j*Z1(8) Z2(4)+j*Z2(8) Z3(4)+j*Z3(8) Z4(4)+j*Z4(8) 

Z5(4)+j*Z5(8) Z6(4)+j*Z6(8) Z7(4)+j*Z7(8) Z8(4)+j*Z8(8) Z9(4)+j*Z9(8) 

Z10(4)+j*Z10(8) Z11(4)+j*Z11(8) Z12(4)+j*Z12(8) Z13(4)+j*Z13(8)]; 
 % Vertical coordiantes of each node 
y=[0 2.0 6.0 10.0 14.25 18.1 21.25 24.35 28 31.55 34.45 38 42.15 46.05]; 
 plot(abs(X),y) 
grid 
title('Displacement') 
xlabel('X (m)') 
ylabel('H (m)') 
figure,plot(abs(F),y) 
grid 
title('Rotation ') 
xlabel('Fi (radyan)') 
ylabel('H (m)') 
figure,plot(abs(M),y) 
grid 
title('Bending Moment ') 
xlabel('M (N-m)') 
ylabel('H (m)') 
figure,plot(abs(V),y) 
grid 
title('Shear Force') 
xlabel('V (N)') 
ylabel('H (m)') 
abs(X(13)) 
abs(M(1)) 
abs(V(1)) 

 

 

A.11.  CODES TO CALCULATE RELATIVE DISPLACEMENT OF TMD MASS 

clear all; close all; clc;  
X1=0.139    % Max displacement of m12 (m) 
w=6.6;      % Exciting frequency (rad/sec) 
kd=125970    % Stiffnes value of TMD (N/m) 
cd=7020      % Damping coeficient of TMD 
md=3490     % TMD mass (kg) 
ug=1;       % Max harmonic ground acceleration  (m/sec2) 
j=sqrt(-1); 
% Equivalent stiffnes of TMD  
A=(((kd^2)*md*(w^2))-(kd*(md^2)*(w^4))+((cd^2)*md*(w^4)))/(((kd-

(md*(w^2)))^2)+((cd^2)*(w^2))) 
B=-((cd*md^2)*w^5)/(((kd-(md*(w^2)))^2)+((cd^2)*(w^2))) 
C=-md*ug*(((-kd*md*(w^2))+(kd^2)+((cd^2)*(w^2)))/(((kd-

(md*(w^2)))^2)+((cd^2)*(w^2)))) 
D=md*ug*((md*cd*(w^3))/(((kd-(md*(w^2)))^2)+((cd^2)*(w^2)))) 
RELDISP=(((A+j*B)*X1)+(C+j*D))/(kd+j*cd*w) 
abs(RELDISP) 
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APPENDIX B:  SAP 2000 OUTPUTS 
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B.1.  MODAL FREQUENCIES and PERIODS BY SAP2000 

 

TABLE:  Modal Periods And Frequencies       

OutputCase StepType StepNum Period Frequency CircFreq Eigenvalue 

Text Text Unitless Sec Cyc/sec rad/sec rad2/sec2 

MODAL Mode 1 0.896278 1.1157 7.0103 49.144 

MODAL Mode 2 0.896278 1.1157 7.0103 49.144 

MODAL Mode 3 0.191423 5.224 32.824 1077.4 

MODAL Mode 4 0.191423 5.224 32.824 1077.4 

MODAL Mode 5 0.088258 11.33 71.191 5068.1 

MODAL Mode 6 0.088258 11.33 71.191 5068.1 

MODAL Mode 7 0.071449 13.996 87.939 7733.3 

MODAL Mode 8 0.051591 19.383 121.79 14832 

MODAL Mode 9 0.051591 19.383 121.79 14832 

MODAL Mode 10 0.048188 20.752 130.39 17001 

MODAL Mode 11 0.032554 30.719 193.01 37253 

MODAL Mode 12 0.032554 30.719 193.01 37253 

MODAL Mode 13 0.02915 34.306 215.55 46461 

MODAL Mode 14 0.023573 42.421 266.54 71042 

MODAL Mode 15 0.023573 42.421 266.54 71043 

MODAL Mode 16 0.021592 46.314 291 84682 

MODAL Mode 17 0.021268 47.018 295.42 87274 

MODAL Mode 18 0.01905 52.494 329.83 108790 

MODAL Mode 19 0.01905 52.494 329.83 108790 

MODAL Mode 20 0.018943 52.79 331.69 110020 

MODAL Mode 21 0.018943 52.79 331.69 110020 

MODAL Mode 22 0.018375 54.422 341.94 116930 

MODAL Mode 23 0.018206 54.927 345.12 119110 

MODAL Mode 24 0.018206 54.927 345.12 119110 

MODAL Mode 25 0.017083 58.538 367.8 135280 

MODAL Mode 26 0.017083 58.538 367.8 135280 

MODAL Mode 27 0.01693 59.065 371.12 137730 

MODAL Mode 28 0.01693 59.065 371.12 137730 

MODAL Mode 29 0.01578 63.37 398.17 158540 

MODAL Mode 30 0.01578 63.371 398.17 158540 

MODAL Mode 31 0.015678 63.785 400.77 160620 

MODAL Mode 32 0.014882 67.194 422.19 178250 

MODAL Mode 33 0.014882 67.194 422.19 178250 

MODAL Mode 34 0.014668 68.175 428.36 183490 

MODAL Mode 35 0.014668 68.175 428.36 183490 

MODAL Mode 36 0.01459 68.538 430.64 185450 

MODAL Mode 37 0.014223 70.307 441.75 195140 

MODAL Mode 38 0.013754 72.706 456.82 208690 
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MODAL Mode 39 0.013595 73.554 462.15 213590 

MODAL Mode 40 0.013595 73.554 462.15 213590 

MODAL Mode 41 0.013203 75.739 475.88 226470 

MODAL Mode 42 0.0131 76.336 479.63 230050 

MODAL Mode 43 0.0131 76.336 479.63 230050 

MODAL Mode 44 0.013081 76.447 480.33 230720 

MODAL Mode 45 0.013081 76.447 480.33 230720 

MODAL Mode 46 0.012619 79.243 497.9 247900 

MODAL Mode 47 0.012474 80.168 503.71 253720 

MODAL Mode 48 0.012474 80.168 503.71 253720 

 

 

B.2.  BASE REACTIONS of MODEL W/O TMD AGAINST KOCAELI EARTHQUAKE  

 

TABLE:  Base Reactions       

OutputCase StepType StepNum GlobalFX GlobalMY 

Text Text Unitless N N-m 

th Max 

 

740741.5 11342387.23 

th Min 

 

-622980.49 -10399754.8 

     

     B.3.  BASE REACTIONS of MODEL W/O TMD AGAINST DÜZCE EARTHQUAKE  

 

TABLE:  Base Reactions       

OutputCase StepType StepNum GlobalFX GlobalMY 

Text Text Unitless N N-m 

th Max 

 

1466521.7 39651502.81 

th Min 

 

-1189908.6 -34312870 

 

 

B.4.  MODAL FREQUENCIES and PERIODS of MODEL with TMD  

 

TABLE:  Modal Periods And Frequencies       

OutputCase StepType StepNum Period Frequency CircFreq Eigenvalue 

Text Text Unitless Sec Cyc/sec rad/sec rad2/sec2 

MODAL Mode 1 1.058043 0.94514 5.9385 35.266 

MODAL Mode 2 1.058043 0.94514 5.9385 35.266 

MODAL Mode 3 0.809455 1.2354 7.7622 60.252 

MODAL Mode 4 0.809455 1.2354 7.7622 60.252 

MODAL Mode 5 0.191312 5.2271 32.843 1078.6 
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MODAL Mode 6 0.191312 5.2271 32.843 1078.6 

MODAL Mode 7 0.088256 11.331 71.193 5068.4 

MODAL Mode 8 0.088256 11.331 71.193 5068.4 

MODAL Mode 9 0.071449 13.996 87.939 7733.3 

MODAL Mode 10 0.051591 19.383 121.79 14832 

MODAL Mode 11 0.051591 19.383 121.79 14832 

MODAL Mode 12 0.048185 20.753 130.4 17003 

MODAL Mode 13 0.032553 30.719 193.01 37253 

MODAL Mode 14 0.032553 30.719 193.01 37253 

MODAL Mode 15 0.02915 34.306 215.55 46461 

MODAL Mode 16 0.023573 42.421 266.54 71044 

MODAL Mode 17 0.023573 42.421 266.54 71044 

MODAL Mode 18 0.021592 46.314 291 84682 

MODAL Mode 19 0.021268 47.018 295.42 87274 

MODAL Mode 20 0.01905 52.494 329.83 108790 

MODAL Mode 21 0.01905 52.495 329.83 108790 

MODAL Mode 22 0.018943 52.79 331.69 110020 

MODAL Mode 23 0.018943 52.79 331.69 110020 

MODAL Mode 24 0.018375 54.422 341.95 116930 

MODAL Mode 25 0.018206 54.927 345.12 119110 

MODAL Mode 26 0.018206 54.927 345.12 119110 

MODAL Mode 27 0.017083 58.538 367.8 135280 

MODAL Mode 28 0.017083 58.538 367.8 135280 

MODAL Mode 29 0.01693 59.065 371.12 137730 

MODAL Mode 30 0.01693 59.065 371.12 137730 

MODAL Mode 31 0.01578 63.371 398.17 158540 

MODAL Mode 32 0.01578 63.371 398.17 158540 

MODAL Mode 33 0.015678 63.785 400.77 160620 

MODAL Mode 34 0.014882 67.194 422.19 178250 

MODAL Mode 35 0.014881 67.2 422.23 178280 

MODAL Mode 36 0.014668 68.175 428.36 183490 

MODAL Mode 37 0.014668 68.175 428.36 183490 

MODAL Mode 38 0.01459 68.538 430.64 185450 

MODAL Mode 39 0.014223 70.307 441.75 195140 

MODAL Mode 40 0.013754 72.706 456.82 208690 

MODAL Mode 41 0.013595 73.554 462.15 213590 

MODAL Mode 42 0.013595 73.554 462.15 213590 

MODAL Mode 43 0.013203 75.739 475.88 226470 

MODAL Mode 44 0.0131 76.336 479.63 230050 

MODAL Mode 45 0.0131 76.336 479.63 230050 

MODAL Mode 46 0.013081 76.447 480.33 230720 

MODAL Mode 47 0.013081 76.447 480.33 230720 

MODAL Mode 48 0.012619 79.243 497.9 247900 
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B.5.  BASE REACTIONS of MODEL with TMD AGAINST KOCAELI EARTHQUAKE  

 

TABLE:  Base Reactions       

OutputCase StepType StepNum GlobalFX GlobalMY 

Text Text Unitless N N-m 

th Max 

 

749916.34 10221734.75 

th Min 

 

-647884.84 -11281046.7 

 

 

B.6.  BASE REACTIONS of MODEL with TMD AGAINST DÜZCE EARTHQUAKE 

  

TABLE:  Base Reactions       

OutputCase StepType StepNum GlobalFX GlobalMY 

Text Text Unitless N N-m 

th Max 

 

1387963.91 32529245.91 

th Min 

 

-1107237.87 -18684016 

 

 

B.7. BASE REACTIONS of MODEL W/O TMD AGAINST HARMONIC EXCITATION 

at 7.0 rad/sec 

 

TABLE:  Base Reactions           

OutputCase StepType GlobalFX GlobalFY GlobalFZ GlobalMX GlobalMY 

Text Text N N N N-m N-m 

th Max 995190.39 0.0001158 0.000003836 0.003974 31077432.1 

th Min -995663.72 -0.0001148 -0.00000397 -0.004018 -31060311.8 

        

B.8. BASE REACTIONS of MODEL W/O TMD AGAINST HARMONIC EXCITATION 

at 32.8 rad/sec 

 

TABLE:  Base Reactions           

OutputCase StepType GlobalFX GlobalFY GlobalFZ GlobalMX GlobalMY 

Text Text N N N N-m N-m 

th Max 633250.17 0.000003185 3.449E-07 0.00007942 8269992.2 

th Min -638614.68 -0.000003625 -3.841E-07 -0.00006936 -8520255.27 
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B.9. BASE REACTIONS of MODEL with TMD AGAINST HARMONIC EXCITATION 

at 7.0 rad/sec 

 

TABLE:  Base Reactions           

OutputCase StepType GlobalFX GlobalFY GlobalFZ GlobalMX GlobalMY 

Text Text N N N N-m N-m 

th Max 491810.41 0.00002401 0.35 0.0008233 14459273.51 

th Min -492173.35 -0.0000235 -0.35 -0.0008285 -14568905.9 

 

 

B.10. BASE REACTIONS of MODEL with TMD AGAINST HARMONIC 

EXCITATION at 32.8 rad/sec 

 

TABLE:  Base Reactions           

OutputCase StepType GlobalFX GlobalFY GlobalFZ GlobalMX GlobalMY 

Text Text N N N N-m N-m 

th Max 620340.66 0.00000274 2.33 0.00005586 7971719.48 

th Min -623140.07 -0.00000296 -2.33 -0.00005465 -8129726.57 
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APPENDIX C:  STIFFNESS VERIFICATION FOR ORTHOGONAL 

SPRINGS 
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           4 linear springs connected to each other with π/2 angle, as shown in Figure C.1 are 

considered as orthogonal springs. In case of a small displacement of center point from O to 

O' as shown in Figure C.2, stiffness of the configuration will be 2k. Proof of this statement 

is shown hereafter. 

 

Figure C.1  Orthogonal spring configuration 

 

 
Figure C.2  Displaced orthogonal spring configuration 
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F1x = -k(r-r1)cosθ1 
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F2x = k(r-r2)sinθ2 

F3x = -k(r3-r)cosθ3 

F4x = -k(r4-r)sinθ4 

F1y = k(r-r1)sinθ1 

F2y = -k(r-r2)cosθ2 

F3y = -k(r3-r)sinθ3 

F4y = -k(r4-r)cosθ4 
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As shown, stiffness of such a set up will be 2k for any small radial displacements. 

However we should check the stiffness variation in case of larger displacements. A matlab 

code was prepared to plot the stiffness variation with respect to the angular position of 

mass (α ) for different h/r values.  Stiffness variation curves are submitted in Figure C.3 to 

C.7. Related Matlab code is listed in Appendix A.7.  

 

Table C.1  Stiffness variation against α for different h/r values. 

h/r 0.1 0.2 0.3 0.4 0.5 

Minimum stiffness 99.25 97.05 93.51 88.90 83.64 

Maximum stiffness 100.50 101.94 104.22 107.15 110.56 

Max.Variation         % 0.75 2.95 6.49 11.10 16.36 

 

 
Maximum variation in stiffness value is 11.10 % in all ratios up to 0.4. This variation 

might be acceptable. However, effect on the system response should be also checked. 
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Figure C.3  Stiffness variation curve for h/r: 0.1 
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Figure C.4  Stiffness variation curve for h/r: 0.2 
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Figure C.5  Stiffness variation curve for h/r: 0.3 
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Figure C.6  Stiffness variation curve for h/r: 0.4 
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Figure C.7  Stiffness variation curve for h/r: 0.5 
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APPENDIX D:  TECHNICAL DRAWINGS 
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