
A BILEVEL PARTIAL INTERDICTION PROBLEM WITH CAPACITATED

FACILITIES AND DEMAND OUTSOURCING

by

Sema Şengül Akca

BS, Mathematical Engineering, Yıldız Teknik University, 2007

Submitted to the Institute for Graduate Studies in

Science and Engineering in partial fulfillment of

the requirements for the degree of

Master of Science

Graduate Program in Industrial Engineering

Boğaziçi University

2011

ii

A BILEVEL PARTIAL INTERDICTION PROBLEM WITH CAPACITATED

FACILITIES AND DEMAND OUTSOURCING

APPROVED BY:

Assoc. Prof. Necati Aras

(Thesis Supervisor)

Assist. Prof. Deniz Aksen

(Thesis Co-supervisor)

Prof. Kuban Altınel

Assist. Prof. Caner Taşkın

Assoc. Prof. Aslı Sencer Erdem

DATE OF APPROVAL: 15.06.2011

To the Şengül and Akca families.

iv

ACKNOWLEDGEMENTS

First and foremost, I would like to express my sincere gratitude and regards

to my thesis supervisor Assoc. Prof. Necati Aras and my thesis co-supervisor Assist.

Prof. Deniz Aksen for their continuous guidance, support and endless patience in every

stage of my studies. This thesis would not have been completed or written without

their encouragement and effort.

I would also like to thank to Prof. Kuban Altınel, Assist. Prof. Caner Taşkın

and Assoc. Prof. Aslı Sencer Erdem for their interest and sparing time in examining

my thesis and taking part in my thesis jury.

I am also grateful to TUBITAK - Turkish Technological and Scientific Research

Institute - for their financial support during my master education.

My special thanks go to my thesis co-supervisor Assist. Prof. Deniz Aksen who

guided me about C# programming. I would also like to express my thanks to all my

close friends for their intimacy and sharing this unforgettable two years together.

I also gratefully acknowledge the Bogazici University Industrial Engineering fac-

ulty, assistants, and secretaries. It has been a great pleasure and honor to be a part of

this family.

At last but not the least, I am deeply indebted to my husband and my dear

parents, whose love, trust and support made this possible. Their patience deserve the

most appreciation. I would like to express how I am fortunate to have them.

v

ABSTRACT

A BILEVEL PARTIAL INTERDICTION PROBLEM WITH

CAPACITATED FACILITIES AND DEMAND

OUTSOURCING

The bilevel partial interdiction problem with capacitated facilities and demand

outsourcing involves a static Stackelberg game between a system planner and a poten-

tial attacker. The system planner (defender) is responsible for satisfying the overall

demand of customers in an existing service network and aims at minimizing the to-

tal demand-weighted transportation cost while serving customers from the capacitated

facilities. Simultaneously, he should consider the possible capacity reduction of some

facilities in the wake of a destructive attack while the attacker’s objective is to cause

maximum disruption in the service level. The number of facilities to be attacked can-

not be known a priori but heavily depends upon the attacker’s interdiction budget.

Regarding the partial interdiction concept, this defender-attacker relationship is for-

mulated as a bilevel programming model. The attacker takes on the leader role, and

forces the system planner, who acts as the follower, to meet customer demands with a

higher outsourcing cost. Two different methods are proposed in this study. The first

method is a progressive grid search which is impracticable on large-sized problems.

The second method is a multi-start revised simplex search heuristic which is based on

the Nelder-Mead simplex search method and is developed to overcome the exponential

time complexity of the first method. We also develop an exhaustive search to solve

all combinations of the full interdiction of the facilities to assess the benefit of partial

interdiction from the perspective of the attacker. Our test results indicate that it would

be more beneficial to disrupt facility capacities partially rather than totally from the

perspective of the attacker.

vi

ÖZET

KAPASİTE KISITLI ÇİFT DÜZEYLİ KISMI SALDIRI

PROBLEMİ

Çift düzeyli kısmi saldırı problemi, sistem planlayıcısı(savunan) ile potansiyel

saldırgan(terörist) arasındaki statik Stackelberg oyununu içerir. Sistem planlayıcısı

mevcut hizmet ağının işletilmesinden sorumludur ve amacı, belli kapasitelere sahip

tesislerden müşteri taleplerini sağlarken talep ağırlıklı taşıma maliyetini enküçüklemektir.

Bunu yaparken, terörist saldırısı sonucu bazı tesislerin tam kapasiteyle hizmet vere-

meyeceğini hesaba katmaktadır. Saldırılacak tesis sayısı önceden bilinememekle be-

raber saldırganın bütçesine bağlıdır. Kısmi saldırı kavramı kullanılarak, problem çift

düzeyli programlama modeli olarak formüle edilmiştir. Saldırgan lider oyuncudur ve

saldırı sonrası müşteri talebini en yüksek maliyetle sistem planlayıcısına sağlatmaya

çalışırken, takipçi oyuncu olan sistem planlayıcısı bunun tam tersini amaçlamaktadır.

Problemimizi çözmek için iki metot önermekteyiz. Bunlardan ilki, problem büyüklüğüne

oranla üssel bir çözüm süresi gerektiren kafes araması yöntemidir. İkincisi, ilk yöntemin

büyük problemlerde uygulanamaması nedeniyle geliştirilen tekrarlı revize edilmiş sim-

pleks araması yöntemidir. Literatürde ilk kez bu çalışmada kısmi saldırı fikri kul-

lanıldığından, bunun tam saldırılara oranla yarar sağlayıp sağlamadığını araştırmak

amacıyla tam saldırılı problemleri çözen tam arama yöntemi geliştirilmiştir. Saldırganın

bütçesi göz önüne alınarak mevcut tesis kapasitelerinin tam olarak imha edilmesinin

kombinasyonlarını değerlendiren bu yöntem, saldırgan açısından kısmen saldırmanın

tamamen saldırmaktan daha iyi sonuçlar vereceğini göstermiştir.

vii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iv

ABSTRACT . v

ÖZET . vi

LIST OF FIGURES . ix

LIST OF TABLES . xi

LIST OF SYMBOLS . xiii

LIST OF ACRONYMS/ABBREVIATIONS . xv

1. INTRODUCTION . 1

2. LITERATURE SURVEY . 4

2.1. Interdiction Problems for Facility Location 4

2.2. Bilevel Programming Problems . 8

3. PROBLEM FORMULATION . 11

4. SOLUTION PROCEDURES . 15

4.1. A Progressive Grid Search (PGS) . 15

4.2. Multi-Start Revised Simplex Search (MS-RSS) 19

4.2.1. Basic Principles of the Nelder-Mead Simplex Search 21

4.2.2. Problems with NMSS and RSS 24

4.2.2.1. Bounded Spaces . 24

4.2.2.2. Collapsing Simplex . 25

4.2.2.3. Premature Convergence 26

4.2.2.4. Plateau Problem . 27

4.2.2.5. Cycling . 28

4.2.3. Significant Factors Affecting the Performance of the NMSS algo-

rithm . 28

4.2.3.1. Size the Initial Simplex 29

4.2.3.2. The Shrinkage Coefficient 29

4.2.4. Adaptive Linear Penalty . 30

4.2.5. Multi-Start Revised Simplex Search Procedure 32

4.2.5.1. Initial Simplex Generation 33

viii

4.2.5.2. A Single MS-RSS Run 35

4.2.5.3. Termination Criterion 36

4.3. An Exhaustive Search for Full Interdiction Problem 38

5. COMPUTATIONAL RESULTS . 40

5.1. Random Problem Generation . 40

5.2. Computational Environment . 41

5.3. Results of the BPIP Problem Instances 42

5.3.1. Contribution of Phase Approach in MS-RSS 44

5.3.2. Contribution of Plateau Counter in MS-RSS 48

5.3.3. Contribution of Cycling Check in MS-RSS 50

5.3.4. The Effect of the Number of Multi-starts on MS-RSS 51

5.3.5. Partial Interdiction Problems versus Full Interdiction Problems 54

5.3.6. The Effect of the Budget in Attacker’s Strategies 57

6. CONCLUSION . 61

APPENDIX A: CUSTOMER AND FACILITY CONFIGURATIONS 64

APPENDIX B: OVERALL RESULTS TO MS-RSS AND PGS 67

APPENDIX C: EFFECT OF CYCLING CHECK IN MS-RSS 69

APPENDIX D: EFFECT OF THE MULTI-START NUMBER IN MS-RSS . . 70

APPENDIX E: PARTIAL INTERDICTION vs. FULL INTERDICTION . . . 72

APPENDIX F: BUDGET EFFECT IN INTERDICTION STRATEGIES . . . 76

REFERENCES . 78

ix

LIST OF FIGURES

Figure 4.1. The first step of PGS . 16

Figure 4.2. The second step of PGS . 17

Figure 4.3. The third step of PGS . 18

Figure 4.4. Reflection step of NMSS . 22

Figure 4.5. Expansion step of NMSS . 23

Figure 4.6. Partial interior contraction step of NMSS 23

Figure 4.7. Partial exterior contraction step of NMSS 23

Figure 4.8. Shrinkage step of NMSS . 24

Figure 5.1. The average CPU times to small-sized problems for different num-

ber of multi-starts . 51

Figure 5.2. The average attacker’s objective value to small-sized problems for

different number of multi-starts 52

Figure 5.3. The average CPU times to large-sized problems for different number

of multi-starts . 52

Figure 5.4. The average attacker’s objective value to large-sized problems for

different number of multi-starts 53

Figure 5.5. The objective values and the marginal contributions of instance 7-1 57

x

Figure 5.6. The objective values and the marginal contributions of instance 14-1 58

Figure 5.7. The visualization of the instance 7-1 59

Figure A.1. Customer and facility configuration of instance 5-1 64

Figure A.2. Customer and facility configuration of instance 5-2 64

Figure A.3. Customer and facility configuration of instance 5-3 65

Figure A.4. Customer and facility configuration of instance 15-1 65

Figure A.5. Customer and facility configuration of instance 15-2 66

Figure A.6. Customer and facility configuration of instance 15-3 66

xi

LIST OF TABLES

Table 5.1. Random problem generation table 41

Table 5.2. The results of MS-RSS and PGS to small-sized problem instances

based on high level budget with K = 6 43

Table 5.3. The average results of MS-RSS and PGS to small-sized problem

instances based on high level budget with K = 6 44

Table 5.4. The results of MS-RSS and PGS to small-sized problem instances

based on low level budget with K = 6 45

Table 5.5. The average results of MS-RSS and PGS to small-sized problem

instances based on low level budget with K = 6 46

Table 5.6. The results of MS-RSS with single phase and three phases based on

high level budget with K = 6 . 47

Table 5.7. The results of MS-RSS with single phase for K = 18 and three

phases for K = 6 . 48

Table 5.8. The effect of plateau check in MS-RSS 49

Table 5.9. Partial interdiction vs. full interdiction (high level budget) 55

Table 5.10. Partial interdiction vs. full interdiction (low level budget) 56

Table 5.11. The facility interdiction fractions of Problem instance 7-1 for dif-

ferent interdiction budget . 59

xii

Table B.1. MS-RSS solutions to large-sized problem instances based on high

level budget with K = 6 . 67

Table B.2. MS-RSS solutions to large-sized problem instances based on low

level budget with K = 6 . 68

Table C.1. The results of MS-RSS and MS-RSS without cycling check to in-

stances based on high level budget with K = 6 69

Table D.1. MS-RSS solutions problem instances based on high level budget

with K = 1 and K = 6 . 70

Table D.2. MS-RSS solutions to problem instances based on high level budget

with K = 6 and K = 10 . 71

Table E.1. Partial interdiction versus full interdiction based on high level bud-

get with K = 6 . 72

Table E.2. Partial interdiction versus full interdiction based on low level budget

with K = 6 . 74

Table F.1. MS-RSS solutions to instance 7-1 based on different budget levels . 76

Table F.2. MS-RSS solutions to instance 14-1 based on different budget levels 77

xiii

LIST OF SYMBOLS

a Size of a simplex

ai Demand of customer i

ci Cost of shipping customer i’s one unit demand for one unit

distance

cp Cost of outsourcing customer i’s one unit demand (indepen-

dent of distance)

(cxi, cyi) The coordinates of customer i

dij Euclidean distance between customer i and facility at site j

ej Cost of interdicting full capacity of facility at site j

etot Total interdiction budget of the attacker

(fxj, fyj) The coordinates of facility site j

qj Capacity of the facility at site j

Sj Fraction of the facility capacity lost at site j due to an inter-

diction

sl Large step size for Lagrangian multipliers

ss Standard step size for Lagrangian multipliers

x0 Point with the lowest function value f(x0)

xe Expansion point

xn Point with the highest function value, f(xn

x The centroid of the simplex with respect to x0

xr Reflection point

xic Partial interior contraction point

xoc Partial exterior contraction point

Vij Assignment of customer i to facility at site j after the attack

∆i,j Possible increment in the ith element of Sj vector

λi Lagrangian multiplier

α Reflection coefficient

γ Expansion coefficient

xiv

β Contraction coefficient

δ Shrink coefficient

ϕ Iteration number

υ Initial step size parameter

τ Phase Counter

ω Plateau Counter

xv

LIST OF ACRONYMS/ABBREVIATIONS

BCRIMF-CE Budget constrained r–interdiction median problem with ca-

pacity expansion

BIP Bilevel interdiction problem

BMILP Bilevel mixed integer linear program

BP Bilevel programming

BPIP Bilevel partial interdiction problem

ES Exhaustive Search

FRIMT Fortification r–interdiction median problem with facility re-

covery time

H Simplex with n+1 vertices

IMF Interdiction median problem with fortification

K Multi-start number

LLP Lower level problem

MCLIP Maximum covering location interdiction problem

MCLP Maximal covering location problem

MCPC Maximal covering problem with precedence constraints

MIP Mixed integer programming

MILP Mixed integer linear programming

MS-RSS Multi-start Revised Simplex Search

NMSS Nelder-Mead Simplex Search

PGS Progressive Grid Search

RIC r-interdiction covering problem

RIM r-interdiction median problem

RIMF r-interdiction median problem with fortification

S-RIMF Stochastic r-interdiction median problem with fortification

SVIs Supervalid Inequalities

U Uniform

ULP Upper level problem

1

1. INTRODUCTION

Having a history larger than the modern nation-state, terrorist attacks concern

both the government and public interest since terrorists are developing new capabilities

for attack and improving the efficiency of the existing methods. The flexibility and

adaptability of terror throughout the years has contributed to the growth in the number

of terrorist attacks. Alterations in the tactics and techniques of the terrorists have

been considerable but what is more considerable is the places where terrorism is used.

Most of the recent attacks affirm an alarming trend toward more sophisticated, better

planned and coordinated strikes so as to engender the utmost harm to public. For

instance, The 2003 İstanbul bombings were realized by suicide bombers at the British

Consulate and headquarter of a British bank, leaving 57 people dead and 700 wounded.

With the aim of maximizing the impact of bombs, the bombers waited for the traffic

lights to turn red. The most appalling example is the 9/11 which were a series of

intentional attacks by al-Qaeda to the World Trade Center buildings and the Pentagon

resulting in 3000 mortalities where the overwhelming majority of these was civilians

from various nations.

The aggressive use of modern technology for information management, commu-

nication, and intelligence has increased the attractiveness of soft targets for terrorist

attacks. Attacks to telecommunication towers in Afghanistan (2008), to an ambulance

station in North Ireland (1999), and to electric grid (Motto et al., 2005) are significant

examples where the terrorists’ intent is to troublesome service level rather than to kill

people.

In this thesis, we focus on a service network which is considered a soft target

and study the bilevel partial interdiction problem for the planning of critical facilities

referred to the BPIP. The problem corresponds to a static Stackelberg game between

a system planner referred to as defender and a potential attacker. The aim of the

former is to provide critical service to customers residing at a number of demand nodes

under the man-made attacks, whereas that of the latter is to cause the maximum

2

possible disruption to this service system. Since these facilities are apt to interdiction

attempts of the attacker, the defender has to consider the attacks while deciding on the

allocation of the resources to minimize the worst-case disruption cost that can possibly

be inflicted by the attacker.

One of the differentiating features of this study is that it is the first attempt for

the partial interdiction of the facilities in the leader-follower game, and this difficult

problem is not addressed before in the literature. Notably lacking in the past model

development is partial disruption on the facilities. In some cases, it is quite possible that

the facilities may operate at a reduced level compared to their defined level of operation

unless they are completely damaged. Most of the past works cannot be directly applied

in this type of problem since they focus only on full interdiction, in other words, if a

facility is attacked, any demand node in the system cannot be served from this facility.

The aim of this paper is to propose a new model for the partial interdiction model for

capacitated facilities and a solution methodology to guide planners and policy makers.

The problem is modeled as a bilevel mixed integer programming formulation

and two solution algorithms are developed. One of them is a progressive grid search

which explores the optimal solution of the problems through grid points. The other

one is based on a direct search methods, the Nelder-Mead Simplex search (NMSS).

Although it is a very efficient optimization algorithm, we encountered many problems

such as bounded spaces, collapse of simplex, large plateaus and premature convergence

problems in the implementation of NMSS. We therefore employ a variant of NMSS

procedure, which is based on the Revised Simplex Search (RSS)(Humphrey and Wilson,

2000). It consists of a three-phase application of the NMSS method. Additionally, we

include some mechanisms that are designed to avoid some of the critical weaknesses

of NMSS as mentioned above. The search procedure explores the solution space for

finding the attacker’s optimal interdiction policy which is used as an input to the second

level problem. The second level problem is then solved to optimality by CPLEX 11.0 to

obtain the system planner’s optimal reaction plan. The results obtained on 84 randomly

generated test instances reveal that the proposed solution algorithm works quite well

in a wide spectrum of problem sizes. Finally, in an effort to assess the performance of

3

the partial interdiction concept, an exhaustive search for full interdiction problems is

developed.

4

2. LITERATURE SURVEY

2.1. Interdiction Problems for Facility Location

The identification of critical system components due to deliberate sabotage and

terrorist attacks is of particular concern in the operation of critical network infrastruc-

tures. Critical infrastructure includes certain components of a system whose failure

may cause a disorder in the operational and functional capabilities of the system re-

sulting in the deterioration of the performance due to service disruptions or excessive

transportation costs. When this failure possibility is considered in the design phase

of the network, the effect of such a disorder can be mitigated. Based on this mo-

tivation, a variety of systematic and analytical tools to address issues of increasing

the post-attack functionality of the network in the presence of malicious actions of an

intelligent attacker have recently been developed. The vast majority of these efforts

focus on modeling these rational attacks through the use of interdiction models which

are rooted in military defense applications. Intentional attacks are different from the

natural catastrophic events, labor actions or other similar factors in that a terrorist

intelligently attacks the system in order to cause the maximum damage.

In the wake of a destructive attack, many interdiction models that differ in the

objectives and underlying network structures have been proposed in the literature.

Much research has been dedicated to the design of survivable networks and the re-

inforcement or fortification of existing networks. Wollmer made the first attempt to

model interdiction of supply lines as an optimization model (Wollmer, 1964). Since

then, numerous papers dealing with the interdiction of transportation networks have

appeared. The majority of the past work is founded on the network optimization the-

ory and generally seeks interdicting arcs with the intention of minimizing the network

flow capacity (McMaster and Mustin, 1970; Ghare et al., 1971; Wood, 1993) or max-

imizing the shortest path between a specified origin and destination (Fulkerson and

Harding, 1977; Golden, 1978; Israeli and Wood, 2002). Supply or emergency facility

interdiction in a service network has recently been modeled. As opposed to the arc

5

interdiction models, facilities are potential targets for attackers in facility interdiction

models. Since the center of attention in the proposed model is the facility interdictions,

the literature corresponding to this type of interdiction models is reviewed.

The first published study of supply or emergency facility interdiction in a ser-

vice network belongs to (Church et al., 2004). Given p existing facilities serving the

customers, the authors develop two facility interdiction models from the attacker’s

viewpoint called the r-interdiction median model (RIM) and the r-interdiction cov-

ering model (RIC), which are based on the p-median problem and on the maximal

covering problem, respectively. The aim of RIM is to determine a subset of r facili-

ties to be destroyed among the set of p supply or emergency response facilities whose

removal will fulfill the attacker’s aim the most. On the other hand, the objective of

RIC is to choose a subset of r facilities among the set of p existing facilities, which if

attacked will cause the greatest reduction in covered customer demand. As can be seen,

RIM and RIC identify the most critical facilities in the network. These two single-level

models are solved with a commercial MILP solver.

Church and Scaparra extend the interdiction models of (Church et al., 2004)

to include the option of fortification against interdiction in (Church and Scaparra,

2007). In fact, the reason for the fortification is provide a less costly alternative to

the system planners as they can allocate limited resources among possible mitigation

investments to protect the critical infrastructure from distruption. By doing so, they

may offer the continuity of service provision in the existence of deliberate attacks.

Adding the fortification option results in a mixed-integer linear programming problem

called the interdiction median problem with fortification (IMF). IMF identifies the best

fortification plan by fortifying a subset of q facilities among the set of p facilities in a

service system with n demand nodes. The defender’s objective is to minimize the total

demand satisfaction cost expressed as the demand-weighted shortest distance between

the non-interdicted facilities and customers, while the attacker’s objective is the reverse

of that of the leader, i.e., interdicting r facilities. Due to the number of all possible

ways of losing r out of p facilities, the size of IMF therefore grows rapidly as p and

r increase resulting in long computation times. Real-world systems involving a large

6

number of vulnerable facilities make it impracticable to apply.

With the purpose of handling larger-sized instances of IMF, the authors de-

velop two different solution approaches for the resulting r-interdiction median problem

with fortification (RIMF) in two subsequent works. The first approach presented in

(Scaparra and Church, 2008) is based on a reformulation of the problem as a maximal

covering model with precedence constraints (MCPC). They devise a solution technique

for the reformulated problem which yields upper and lower bounds. The dimension

of the model is reduced using a linear interpolation search procedure that exploits the

properties of the coverage function. The resulting model can then be solved easily

to optimality by CPLEX. Since the solution time is again sensitive to r, the method

requires the enumeration of all patterns. The second approach provided in (Scaparra

and Church, 2008) is a tree search algorithm that takes advantage of the bilevel for-

mulation of the problem. In this study, an implicit enumeration algorithm to solve

the bilevel integer programming (BIP) formulation of the RIMF is proposed for the

first time. RIMF is described within a game theoretic framework as a leader-follower

or Stackelberg game and formulated as a bilevel programming problem where the for-

tification problem (defender’s problem) is the ULP and the interdiction problem (the

attacker’s problem) is the LLP which is RIC. Apart from large r values, the tree search

algorithm surpasses MCPC solutions.

A recent working paper by Scaparra solves the stochastic version of RIMF referred

to as S-RIMF. The authors address a maximum coverage type formulation for the S-

RIMF (Scaparra et al., 2008). This formulation copes with a random number of losses

and captures the uncertainty in the scope of man-made attacks. By using monotonically

increasing and decreasing probability distributions, S-RIMF aims at minimizing the

expected cost expressed as the probability weighted sum of the costs associated with

the worst-case interdiction patterns for every feasible value of r.

Aksen et al. propose a budget constrained extension of the RMIF. Their new

model, called as the budget constrained r–interdiction median problem with capacity

expansion (BCRIMF-CE), adapts a BP formulation of RMIF and uses a budget con-

7

straint instead of a predetermined number of facilities to be protected (Aksen et al.,

2010). The defender has budget for fortification, and protects any number of facilities

as long as the budget allows. They also incorporate the capacity expansion at a unit

cost that incurs at some facilities due to the reassignment of customers to these facili-

ties following the interdiction of the attacker. The inclusion of the capacity expansion

costs is added to both the defender and attacker’s objective function. The authors solve

the resulting bilevel programming model through an implicit enumeration algorithm

applied on a binary tree similar to the solution methodology described in (Scaparra

and Church, 2008) to evaluate the attacker’s response.

To our knowledge, the first published study considering the triple problem of

location, protection, and interdiction upon a median-type service network is due to

(Aksen et al., 2009). This study elaborates on the facility location decision extension

of the BCRIMF-CE of (Aksen et al., 2010). It is termed as the bilevel fixed charged

location problem (BCFLP). To solve the resulting problem, the authors propose and

compare three different methods. The first method is an optimal exhaustive search

algorithm with exponential time complexity. The second one is a two-phase tabu

search heuristic developed to overcome the first method’s impracticality on large size

problem instances. Finally, the third one is a sequential solution method in which the

defender’s location and protection decisions are separated.

The literature mentioned above consists of a small number of interdiction models

that mainly concentrate principally on uncapacitated facility interdiction and protec-

tion although many real-life systems operate with a capacity limitation. The first

attempt for handling capacitated facilities is due to (Scaparra and Church, 2010).

They propose a model to optimize a limited amount of protection budget to reduce

the adverse impact of a possible disaster via advanced protection of a set of existing

capacitated facilities. The complexity of the resulting problem is increased by adding

capacity constraints within a protection-interdiction model. Therefore, it is formu-

lated as tri-level optimization model. By dualization of the lower problem, the model

is reduced from a tri-level model to a bi-level model which can be handled by implicit

enumeration algorithm developed in (Scaparra and Church, 2008).

8

The most recent extension to interdiction models is due to (Losada et al., 2011).

This paper combines the concepts of the facility recovery time and the possibility of

multiple disruptions over time. The problem is named as the fortification r-interdiction

median problem with facility recovery time (FRIMT), and formulated via a bilevel

mixed integer linear program (BMILP) for the fortification of an uncapacitated facility

network. The goal of the problem is to harden or protect the critical components fully

and to accelerate their recovery times. To solve the resulting problem, the authors

propose three assorted decomposition techniques. These techniques not only solve

medium to large size problem instances of FRIMT but also provide general a solution

methodology for the interdiction models with some suitable alterations.

2.2. Bilevel Programming Problems

As can be seen, many interdiction models that have been developed to solve the

most destructive case or to determine the best protection policy of a system with limited

resources are formulated via bilevel programming (BP) formulation in the literature.

BP problems are a special case of the multilevel optimization with two levels in which a

subset of the variables in the upper level problems is constrained to be a solution of the

lower level optimization problem. Interdiction problems are often described as a two

person game (Stackelberg, 1952) where one level of the problem involves the system

planner or defender’s decisions about constructing his or her system by considering the

effect of other player’s (the follower) reactions. The final outcome is the best one for

the leader.

The general BP problem is of the form:

min
x

F (x,y) (2.1)

s.t.

G(x,y) ≤ 0 (2.2)

H(x,y) = 0 (2.3)

9

where x is a given vector and F (x,y) is defined as the optimal objective value of the

following problem:

min
y

f(x,y) (2.4)

s.t.

g(x,y) ≤ 0 (2.5)

h(x,y) = 0 (2.6)

xi ∈ < i = 1, ..., n, (2.7)

yj ∈ < j = 1, ..., n (2.8)

where x is a vector of the upper level problem variables, and y is a vector of the lower

level problem variables. F (x,y) is the upper level objective function, H(x,y) and

G(x,y) are the upper level equality and inequality constraints, respectively. f(x,y) is

the lower level objective function, h(x,y) and g(x,y) are the lower level equality and

inequality constraints, respectively.

Unlike two person zero-sum games, these are sequantial games and the solution

cannot be found via game theoretic solution procedures. The second player’s problem

called the lower level problem (LLP) takes part in the set of constraints of the leader’s

problem called the upper level problem (ULP). The ULP variables are fixed to ex-

emplify a leader’s feasible solution with the intent of obtaining the follower’s optimal

reaction scheme. In other words, when the ULP variables are assigned to fixed values,

the optimal values of the LLP variables of the attacker are found. The final incumbent

solution of the bilevel problem is the one giving the best ULP objective value among

the set of feasible pairs of leader’s action and the follower’s optimal reaction.

By their nature, bilevel problems can be very difficult to solve as each level

includes an objective that may be the exact opposite of the next. Both the levels of

BP can be linear, integer, mixed-integer or nonlinear programming problems. When

integer variables appear at both levels, it is inevitable that the problem becomes more

difficult to solve. As a consequence, methods developed for the solution of the BP have

10

so far addressed a very restricted class of problems in the literature. Moore and Bard

propose a branch and bound type of enumerative solution for the solution of purely

integer linear BP, namely BIP (Moore and Bard, 1990). Wen and Yang introduce

another branch and bound technique for the solution of the mixed-integer BP where

only the first level problem has discrete decision variables and the second level problem

has continuous decision variables (Wen and Yang, 1990). Dempe develop cutting plane

and parametric solution approaches to solve problem in which the second level problem

has separable outer variables in its objective function (Dempe, 2002). Gümüş and

Floudas suggest two approaches to solve the mixed-integer nonlinear bilevel problem

to global optimality (Gümüş and Floudas, 2005).

11

3. PROBLEM FORMULATION

In this chapter we present our mathematical formulation to the BPIP problem.

We acquaint some concepts and methodologies which are followed by the explanation

of the mathematical model.

In the partial interdiction problem proposed in this study, two types of decisions

are being made by two different agents called the defender and the attacker, whose

objective functions cannot be weighted and aggregated into a single objective. The

system operator (defender) determines what is left after an attack operates as efficient

as possible, while the interdictor (attacker) decides what facilities to disrupt at what

fraction. The problem is modeled as a bilevel programming (BP) problem that espe-

cially fits this kind of defender-attacker relationships. In the first level problem (i.e.,

the ULP), the attacker, who is also the leader, tries to choose which facilities to attack

in order to reduce their capacities considering his limited budget so as to increase the

operational cost of the existing system. An important assumption is that the number

of the attacks depends on the limited budget of the attacker since each facility has

a different cost of interdiction at full capacity. The attacker has perfect information

so that when the allocation of the customer demand is determined by the defender

(follower), it is also known by the attacker. In the second level problem (i.e., the LLP),

the defender attempts to assign customers to the nearest facilities taking into account

the remaining capacities of the facilities. The demand nodes are served by the system

planner. Since additional outsourcing cost incurs due to the need of satisfying the

overall demand of the customers, the system planner tries to minimize the unsatisfied

demand.

It is important to mention that when the facility is interdicted by the attacker, a

partial damage may be caused. This means that facilities will not be rendered totally

inoperative after an attack, but will continue to provide service with less than their full

capacity depending on the degree of interdiction. For instance, after an interdiction 60

percent of the capacity of the facility may continue to serve its customers as the rest

12

of its capacity is damaged by the attacker. Another vital assumption is that a demand

node can be served by only one facility. This means that the demand of a customer is

either satisfied totally by a facility or its demand must be outsourced from a supplier.

In the model, index i and j represent respectively the ith customer and the jth

facility. Parameters and decision variables are given below:

Index Sets:

• I = set of demand nodes (customers), I = {1,2,...,n}

• J = set of existing facility sites (locations), J = {1,2,...,m}

Parameters:

• ai = demand of customer i

• ci = cost of shipping customer i’s unit demand per unit distance

• dij = Euclidean distance between customer i and facility j

• cp = cost of outsourcing customer i’s unit demand (independent of distance)

• ej = cost of interdicting full capacity of facility j

• etot = total interdiction budget of the attacker

• qj = capacity of facility j

Decision Variables:

Vij =

 1 if customer i is assigned to facility j after attack

0 otherwise

Sj = fraction of facility j’s capacity lost due to attack

Decision variables Sj of the ULP represent partial interdiction, whereas variables

Vij of the LLP indicate the reassignments of customers to facilities after attack.

13

The mathematical model is given as follows.

max
S

Zdef(S) (3.1)

s.t.∑
j∈J

ejSj ≤ etot (3.2)

0 ≤ Sj ≤ 1 j ∈ J (3.3)

where S is a given vector and Zdef(S) is defined as the optimal objective value of the

following integer problem:

Zdef(Ŝ) = min
V

∑
i∈I

∑
j∈J

aicidijVij + cp
∑
i∈I

ai(1−
∑
j∈J

Vij) (3.4)

s.t.∑
i∈I

aiVij ≤ (1− Ŝj)qj j ∈ J (3.5)

∑
j∈J

Vij ≤ 1 i ∈ I (3.6)

Vij ∈ {0, 1} i ∈ I, j ∈ J (3.7)

In the above formulation, (3.1)–(3.3) correspond to the formulation of the ULP, and

(3.4)–(3.7) represent the LLP. Expression (3.1) shows the leader’s objective function.

Constraint (3.2) is the budget constraint of the attacker for interdictions. Since the

attacker has a limited budget for interdicting the facilities, and each facility has its own

cost of interdiction, the number of the attacks is not fixed. In other words, the number

of interdicted facilities cannot be known a priori, but depends on the attacker’s budget

and choices for attacking facilities. Constraint set in (3.3) is trivial lower and upper

bound constraint on Sj.

The computation of the system cost after interdiction, Zdef(S), requires solving

the lower level problem. The Sj values obtained in the ULP serve as input parameters to

the LLP. The defender’s objective function in (3.4) is the same as the leader’s objective

14

function except the sense of optimization, which is maximization for the attacker and

minimization for the defender. It consists of two components. The first component is

the total shipment cost from facilities to customers, and the second one is the total

penalty cost incurred due to unsatisfied demand. Recall that if a customer is not

assigned to any facility, its demand must be outsourced. Increasing the outsourcing

cost will be beneficial to the attacker as the operating cost of the defender is increased.

Constraints (3.5) state the capacity restriction of the system planner. The term on the

right-hand side of this inequality represents the remaining capacity after attack and

takes constant value as the Sj variables are fixed at the ULP. In brief, constraints (3.5)

ensure that if a facility is interdicted and some of its capacity is lost, the demand of

customers assigned to this facility cannot exceed its remaining capacity. It is obvious

that if there is no interdiction, the full capacity of facility j is used. The constraint

set (3.6) maintains that some customers might not be assigned to facilities after attack

due to the capacity reduction in the system. Finally, binary constraints on decision

variable Vij stated in (3.7) indicate the single-source assignment of customers.

15

4. SOLUTION PROCEDURES

BPIP contains continuous variables in the ULP and binary ones in the LLP.

Hence, it is a mixed-integer bilevel programming problem that belongs to NP-hard

problems (Moore and Bard, 1990). It is impossible to apply directly any procedure in

the literature to solve BPIP. We therefore need efficient heuristic methods to produce

high quality solutions to BPIP. To this end, we devise two search procedures: a pro-

gressive grid search and multi-start revised simplex search. Commonly, they consist of

a search for the best facility interdiction ratio decisions of the attacker represented by

the Sj variables in the ULP. Regarding their own rules, in fact, they traverse a larger

portion of the entire solution space so as to yield better solution. The solution to the

LLP is obtained through a general purpose IP solver, e.g. CPLEX. Finally, we develop

an exhaustive search for full interdiction problems to evaluate the value of the partial

interdiction problems.

In this chapter, we first present the details of our progressive grid search which

is followed by the explanation of our problem specific simplex-based search procedure.

Finally, we conclude this chapter with the working mechanism of the exhaustive search.

4.1. A Progressive Grid Search (PGS)

When an optimization problem has continuous variables like Sj, there are an

infinite number of points in the domain, and this severely restricts the possibility of

implicit enumeration even on small-sized instances. In this cases, performing a grid

search can be a useful approach. Grid search divides the search space into equally

positioned of points and evaluates the objective value at each point. If the domain is

n-dimensional hyper-cube with length D on each side and the distance between grid

points is K on each coordinate, then there are (dD
K
e+ 1)n grid points, where dxe is the

lowest integer greater than or equal to x. Hence, the number of function evaluations

required to obtain the best solution grows exponentially in n.

16

The error in the approximation of the global optimum can be decreased by low-

ering the value of K. As a result, the number of grid points will be increased and the

quality of the results will be improved. On the other hand, the exponential increase in

the number of the function evaluations results in long computational time, especially

for high dimensional problems. We, therefore, rectify PGS to avoid this increase with

a selective positioning of the grid points, namely, the determination of the support

points. Using PGS, the number of actual function evaluations is limited to the number

of support points. The computational efficiency of this method is two-fold. Firstly, the

number of support points used to find the final point is relatively small. Secondly, the

set of support points are nested. This property reduces the number of required function

evaluations by reusing the objective values of the support points that are calculated in

the previous step. This also provides sampling refinement of grid points by selecting

new support points around the best support point calculated so far.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

S2

S1

Support Points Best Point

Figure 4.1. The first step of PGS

PGS consists of three steps. In the first step, K is set to 0.2. The search procedure

is applied upon the ULP decision variables, i.e., Sj. n is equal to the number of the

facilities, i.e. the parameter m, and D = uj − lj = 1, since lj = 0 (lower bound of the

Sj variable) and uj = 1 (upper bound of the Sj variable). Therefore, six grid points are

17

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

S2

S1

Support Points Best Point

Figure 4.2. The second step of PGS

needed for each dimension, namely, for each facility. The first step of the search results

in 6m grid points to be evaluated. A grid point configuration, called a support point,

represent the interdiction scheme of the attacker. They are used as an input to the

LLP, and the objective values of each scheme is obtained by solving the resulting IP

with CPLEX to optimality. Since we have a maximization problem, the support point

with the maximum objective value is the best support point labeled as S*. It is used as

the midpoint of the interval in which new support points are selected to be employed

in the next step of the search. The support points of the second step are equally spaced

in the new interval with length D′=2K with K = 0.1, and are constructed around the

neighborhood of the best support point of the first step. lj = S∗j − 0.2, and uj = S∗j+

0.2 in the second step. The number of the new support points in each dimension is five,

so there are 5m support points in total. After their objective values are evaluated, they

are used for the determination of the best support point in the second step. The point

with the highest objective value is assigned to S′
*
, and is used for the determination

of the new support points as in the first step. In the last and third step, K = 0.05, lj

= Sj′∗ − 0.1, and uj = Sj′∗+ 0.1. The best support point obtained at the end of the

evaluations is the solution of PGS.

18

Let us consider a two-facility problem. K = 0.2 and six points are equally spaced

in the interval [0, 1] in the first step of PGS. Since m = 2, 36 points are obtained over

the feasible region. All the combinations of the Sj values are sent to the LLP as an

input parameter and their objective values are evaluated by solving them to optimality

using CPLEX. Since we have a maximization problem, Sj values related to the best

objective value are selected for the next step of PGS. Let us assume that the best

support point is selected as (0.2, 0.4) (See Figure 4.1).

It is likely that the global optimum is in the neighborhood of this point. Then, the

search procedure is repeated in the new interval with length 2K including as midpoints

S∗1 and S∗2 . In this step, these new intervals are divided into four subintervals since K

= 0.1 as in Figure 4.2.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

S2

S1

Support Points Best Point

Figure 4.3. The third step of PGS

The new 25 support points obtained are evaluated as in the first step, and the

best pair is again selected to start the next and last step of PGS. Let assume that the

best support point is (0.1, 0.5). Since we know that the global optimum is likely to

be in the interval (0, 0.2) for facility 1, and in the interval (0.4, 0.6) for facility 2, we

divide these intervals into four subintervals by choosing K = 0.05 as in Figure 4.3.

19

The new support points are equally spaced of points over the new interval and

their objective values are calculated. The best support point obtained at the end of

this step is the solution of the PGS algorithm.

Due to the exponential nature, PGS can only solve small sized problems. There-

fore, we perform this search on our problem instances in which the number of facilities

varies from 4 to 10 as it spends more than 3 days to solve an instance with m = 10.

4.2. Multi-Start Revised Simplex Search (MS-RSS)

The use of efficient heuristics to obtain solutions for the BPIP in a reasonable com-

putational time becomes inevitable especially when the problem size increases towards

realistic values. Motivated by this fact, we devise a simplex-based search heuristic

called Multi-Start Revised Simplex Search (MS-RSS).

Let us consider unconstrained continuous optimization problem:

max f(x) (4.1)

s.t.

−∞ ≤ x ≤ +∞ (4.2)

where x is a vector of continuous variables, and f(x) is an objective function.

It is often desired in many fields such as mathematics, physics, and engineering to

solve these types of problems via calculus. As real life problems are quite complex with

many variables, the derivatives of their functions are likely to be difficult or impossible

to evaluate in a form suitable for calculus. In the case where the gradient of the function

is not available, the optimal value of the problem is usually estimated via calculation

of its values at several points. Based on this idea, we construct a new method upon the

Nelder-Mead Simplex Search (NMSS) which is the most popular direct search method

for minimizing unconstrained functions.

20

The NMSS, also known as amoeba, generates a sequence of changing simplices,

which are modified so that the simplex adapts itself to the local landscape. The name

amoeba stems from the oozing behavior of the simplex as it traverses the landscape.

Three basic construction principles are defined to determine a new point of the simplex:

expansion, reflection, and contraction. Each of these principles is designed to help the

simplex expand itself along the direction of improvement and contract itself where

improvement is not found.

In fact, the simplex search method of Spendley, Hext and Himsworth is the first

method for non-linear simplex search. It relies on the comparison of function values at

the n+1 vertices xi of a simplex (where n is the dimension of the problem), and has

the minimal number of rules for simplex manipulations between iterations (Spendley

et al., 1962). This simplex search method is modified by Nelder and Mead by adding

expansion and contraction operations (Nelder and Mead, 1965). The underlying idea

of these modifications is rooted in the following observation: the performance of the

search procedure is improved when the simplex is allowed to adjust its shape with the

curvature of the function.

NMSS has been used in a wide variety of context, especially in chemistry and

chemical engineering. Despite its success, NMSS and other simplex methods have not

received much attention within operations research community because of the ad-hoc

nature for long period. There are few studies which describe the theoretical prop-

erties and problems that simplex methods cannot solve. The first theoretical study

about NMSS is provided in (Gurson, 2000). In this study, simplex-based direct search

methods are analyzed and the small ambiguities in these algorithms are resolved. In

recent years, theoretical analysis has lead to modifications in the NMSS algorithm.

In (Wolff, 2004), NMSS is used for finding global minima of non-linear optimization

problems with simple bounds and non-linear constraints. Luersen et al. introduce a

set of restart options and three convergence criteria to detect whether the bounded

NMSS procedure is failed (Luersen et al., 2004). The phase concept is added into the

NMSS procedure by (Zhao et al., 2009). In this article, NMSS is altered such that the

search is restarted by constructing an initial simplex around the solution obtained in

21

the previous phase to avoid being trapped in local minima. Significant factors that af-

fect the overall efficiency of the search procedure are identified as the size of the initial

simplex and the adjustment of the shrinkage coefficient.

4.2.1. Basic Principles of the Nelder-Mead Simplex Search

In this section, a step-by-step description of the NMSS is provided since our pro-

posed algorithm MS-RSS is constructed upon the rules of this method. It is worth not-

ing that the original NMSS is devised for minimization problems and can be modified

for maximization problems with a little effort. As BPIP is a maximization problem, we

explain the basic principles of the NMSS procedure with respect to the maximization

types of problems by exemplifying with a two-dimensional NMSS.

NMSS starts with a non-degenerate simplex of n+1 vertices, which are selected

randomly in <n. By a non-degenerate simplex, we mean a set of n+1 vertices in <n

with the property that the set of simplex edges adjacent to any given vertex spans <n.

At the beginning of an NMSS iteration, vertices are labeled as x0, x1, ..., xn such

that f (x0) ≤ f(x1) ≤ ...≤ f(xn), where x0 denotes the point with the lowest objective

value f(x0) among the all vertices, whereas xn refers to the point that has the highest

objective value f(xn).

In the maximization problem, it is desirable to replace x0 with a point whose

objective value is higher than f(x0) in order to reach an optimum. As a result, three

construction principles are defined to determine a new point of the simplex. Each

of these principles is designed to help the simplex better follow the gradient of the

function. The intention of NMSS algorithm is to pull the simplex toward the region of

interests in the solution space by expanding it along the direction of improvement and

by contracting it in the opposite directions when improvement is not achieved.

Let H ⊂ <n be a simplex with n+1 vertices. The centroid x of all vertices in the

simplex with respect to x0 is calculated using the formula:

22

−
x = 1

n

n+1∑
i=1

xi

The first construction principle is the reflection of the corner x0 at x. x0 is

reflected through x to obtain a new point xr. This step always provides another non-

degenerate simplex consisting of n of the original vertices and x0’s reflection point.

The simplex will be flipped towards the region of interest, thereby locating a valid

local maximizer. xr is determined from:

xr = x + α(x − x0) with reflection coefficient 0 ≤ α ≤ 1.

Figure 4.4. Reflection step of NMSS

The visualization of the reflection step for a two-dimensional NMSS can be seen

in Figure 4.4. Vertex x0 has the lowest objective value (left), therefore it must be

reflected through x, which is the centroid of x1 and x2, to a new point xr (center).

The new non-degenerate simplex including x1, x2 and xr is then generated (right).

The second type of simplex alteration is the expansion of the corner x0 in the

direction of xr − x. The new point xe is determined from xe = xr + γ(xr − x)

with the expansion constant γ>1. The purpose of the expansion step is simple. When

the reflection point has a higher objective value than f(x0), it could be beneficial to

continue sampling the function in the same direction. Therefore, simplex is expanded

outward from x in the direction of plausible function increase (See Figure 4.5).

In some cases, the reflection and expansion steps do not improve upon the current

highest objective value, resulting the third construction principle: contraction. The

simplex is contracted in one of the three ways. The first way is the partial interior

contraction of x0 in the direction of x0 − x. x0 is more likely to be closer to maximum

23

Figure 4.5. Expansion step of NMSS

point if the objective value of x0 is more than that of the reflection point xr. The

simplex is then contracted from x toward x0 as illustrated in Figure 4.6. The new

contraction point xic is calculated from xic = x + β(x0 − x) with the contraction

constant 0 ≤ β ≤ 1.

Figure 4.6. Partial interior contraction step of NMSS

If this is not the case and xr has the objective value more than x0 has, a partial

exterior contraction is applied. In this type of contraction step, the simplex is con-

tracted from x toward xr (See Figure 4.7). The new contraction point xoc is determined

from xoc = x + β(x̂ − x) with the contraction constant 0 ≤ β ≤ 1.

Figure 4.7. Partial exterior contraction step of NMSS

Finally, as a third way, if no improvement has been found at the end of the two

24

contraction steps mentioned above, total contraction to xn is applied. The simplex is

shrunk toward xn, namely, the point with highest function value f(xn). As can be seen

in Figure 4.8, all the points in the simplex will be replaced by xi’ = δ(xn − xi)

Figure 4.8. Shrinkage step of NMSS

4.2.2. Problems with NMSS and RSS

Having capacitated facilities and continuous variables rather than integer vari-

ables, we encountered many problems in the application of the original NMSS during

our preliminary experiments. Although some modifications in the literature have im-

proved the performance of the original NMSS method to some extent, we are faced

with many obstacles such as being trapped in local optima, reaching a plateau, and

simplex initialization problems that have served as major impediments or barriers to

progress in this research. Therefore, we have to make a lot of modifications in the

existing procedure and also develop some algorithms. In this section, these common

problems in simplex-based search algorithm are addressed.

4.2.2.1. Bounded Spaces. The basic simplex algorithm assumes that vertices of the

simplex have inputs that are valid for (−∞,+∞). Therefore, the new vertex obtained

by the move operations may take any value in the search space. On the other hand,

in our problem, Sj variables are bounded. In order to deal with this problem, some

straightforward solutions are developed in the literature. One of them is the assignment

of a large negative (positive) value to the objective function of the point that violates

the boundary condition in the maximization (minimization) problem (Brooks, 2000).

Simplex search is then forced to immediate contraction as the new point is worse than

the current worst. After a number of contractions, the simplex becomes small enough

for reflections and cannot replace its points with the ones outside the boundary. As a

25

result, it is a useful solution although it may take more iterations to find optima lie on

or near the boundary. However, applying this strategy may cause creating an infinite

plateau extending beyond the boundary and pulling the simplex towards this plateau.

As a result, simplex can be away from the region including the optimum.

Another strategy is to protect boundary-violating points on bounds (Wolff, 2004).

The reflection, expansion and contraction moves of the simplex search algorithm can

be modified so that the points taking value beyond the boundary after the moves

are placed as a new point on the boundary. This strategy avoids pulling the simplex

towards the plateau. The danger with this approach is the collapse of the simplex

along some dimension, causing unreachable parts of the search space.

In this study, a new strategy is developed as a third way for dealing with bounded

space problem. It is the combination of projecting the points beyond the boundary on

bounds and using the adaptive linear penalty function method. The move operations

of the NMSS are used for searching the solutions of the ULP whose decision variables

(i.e., Sj) are bounded between 0 and 1. Considering the new points obtained after

an MS-RSS iteration, if a boundary-violating point has a value less than zero, then

it is projected on the lower bound taking value 0, whereas when that point takes a

value larger than one, then the related Lagrangian multiplier is updated causing a

penalty cost affecting the objective value adversely. Using the penalty method for

the upper bound violations rather than the projection methods provides a superior

solution for BPIP as it preserves the new simplex against collapsing. The bounded

N-M offers just the projection of the boundary-violating point on the boundary (Wolff,

2004). Our preliminary experiments showed that applying only this strategy, in many

circumstances, may result in the loss of the dimension in the simplex. In other words,

the collapse of the simplex along one or more dimension is very likely as explained in

the following.

4.2.2.2. Collapsing Simplex. Another problem that can arise while using a simplex-

based search algorithm is the case when all the points in the simplex have the same

26

value in the same dimension. All reflections and contractions will occur along the

line or hyper-plane formed by these points forcing the rest of the search space to be

unreachable.

For example, let us assume that a simplex search is performed on a two di-

mensional problem. Therefore, three points with two components are needed for the

construction of the simplex. Consider that the second components of these points have

the same value. All contractions and reflections will occur along the line formed by

these points in the current simplex.

To avoid this problem, two possible strategies can be embedded in the simplex

search algorithm. The first strategy is to modify the algorithm such that when the

collapse of the simplex is detected, reflection or contraction is applied with the second-

worst point rather than the first one. In fact, the detection of the collapsing simplex,

i.e, collinearity check, is also another problem. All the vertices in the simplex have to be

checked after each reflection and contraction to decide whether any points are collinear.

This is an expensive operation especially when a search space is high dimensional.

Comparing the new point obtained as a result of reflection or contraction operations

to each point in the current simplex is a simple method requiring less operation and

time.

The second strategy is to select a new point randomly when all points have the

same value in the same dimension. Since the randomly assigned point will have a

different value for the problematic dimension, all contractions and reflections will not

occur along the line or the hyperplane formed by these points. This solution requires

less effort as there is no need for checking the collinearity.

4.2.2.3. Premature Convergence. Another problem that simplex-based search algo-

rithms are susceptible to is the premature termination at a local optimum. If a vertex

of the simplex reaches at a local optimum in the solution space, the algorithm will try

a reflection. This action will not help remove the worst point in the current simplex,

27

and then, contraction along one dimension will be attempted. This operation will also

not be able to change the worst point, the simplex will shrink along multiple dimen-

sions repeatedly, decreasing the size of the simplex. Checking whether the norm of

the vector between the point with the highest objective value and the other points in

the current simplex are within a given precision reveals that all the points are within

the basis of attraction of an optimum and that the simplex is converged to that local

optimum rather than global optimum.

In order to improve the chance of obtaining a better solution, random restart

technique, commonly used within hill-climbing algorithms, can be incorporated into

NMSS procedure. To guard against premature convergence, the most effective solu-

tion is to step away from the current termination point, restart the search procedure

with a new larger simplex, cache the value once an optimum is found, and compare

these resulting alternative termination points. As the number of restarting grows, the

solution quality is increased along with the computational time rise.

4.2.2.4. Plateau Problem. Getting caught in a plateau is another problem that weak-

ens the efficiency of the simplex-based search algorithms. Consider the situation in

which all n+1 vertices have the same objective value f . When these points are re-

flected, it is possible that the new point has the same objective value f implying that

each of these points maps to a point on the plateau. The new point will be generated

from these points at the next iteration as the simplex search algorithm has no memory

beyond the current simplex points. Consequently, the simplex might visit the same

points repetitively. It is obvious that after some reflection operations, the new points

may lead away from the plateau. However, when inappropriate points are initially

chosen for the operations of the algorithm, plateau problem can still take place.

Counting the reflections with no improvements is suggested as a conservative

approach to cope with the plateau problem (Brooks, 2000). A counter can be added to

the basic algorithm. As soon as the objective values of the n+1 vertices are evaluated

and they have the same objective value f after the reflection step, the counter is

28

adjusted. Nonetheless, our preliminary experiments reveal that the occurrence of the

plateau problem is not restricted to the reflection step. To this end, we expand this

check for any move of the search. If the new point obtained after the moves of the

simplex search produce a different value than that of the n+1 vertices have, the counter

is set to zero. Otherwise, it is incremented. Once the counter reaches n+2, a plateau

problem is detected. If this is the case, the search obviously ends up with the objective

value f . Hence, selecting a new set of random simplex points to restart the algorithm

may be a very competent policy.

4.2.2.5. Cycling. Cycling can occur in the reflection step. Consider a two-dimensional

simplex search in which three vertices are needed for a simplex. Suppose that x0 has

the lowest objective value f(x0), and the reflection step is chosen to generate a new

simplex point x3 at iteration ϕ. The resulting simplex of the iteration ϕ, which is also

the initial simplex of the next iteration, consists of x1, x2, and x3. At iteration ϕ+1,

in some cases, it is quite possible that x3 can have the lowest objective value and that

the reflection step might be chosen. After the reflection of x3, the simplex at iteration

ϕ is reached again since the new point of the simplex is x0. As a result, the current

simplex will be reflected again to x3 at iteration ϕ+2 again, causing a cycling of the

simplices.

For the sake of preventing the search from going back to the same solution, the

point reflected is not allowed to reflect at the next two iterations. Hence, the second

worst point rather than the worst point is used for the reflection move.

4.2.3. Significant Factors Affecting the Performance of the NMSS algorithm

In this section, two significant factors that affect the performance are described.

The initial simplex size and the shrinkage coefficient δ are identified as significant

factors that reduce the drawbacks of the N-M procedure (Humphrey and Wilson, 2000).

29

4.2.3.1. Size the Initial Simplex. In a simplex search algorithm, starting with a larger

initial simplex generally gives better results. Although simplex can be far from the

optimum, when the procedure is started with a larger simplex, more ground of the

search space will be covered as a result of each operation of the NMSS algorithm and

any errant contraction or shrinkages will have less severe impact on reaching the true

optimum. In contrast, if the procedure is started with a smaller simplex, the algorithm

has to iterate many times when the initial simplex is started far from the true optimum.

The procedure would become more susceptible to any errant contractions or shrinkages.

When the simplex is near the optimum, the progress of the procedure towards the

optimum would be slowed from errant operations significantly. Considering the facts

mentioned above, taking the initial step size parameter υ larger might improve the

overall performance of the procedure.

4.2.3.2. The Shrinkage Coefficient. By performing the shrinkage operation, each edge

of the simplex is rescaled by shrink coefficient δ. Since 0 ≤ δ ≤ 1, shrinkages reduce the

size of the simplex remarkably, and protecting against errant shrinkages might result in

better performance of the NMSS method. Humphrey and Wilson have been observed

that a protection against premature convergence can be obtained by increasing the

value of the shrinkage coefficient linearly when a restarting procedure is performed

(Humphrey and Wilson, 2000).

During the earlier simplex search iterations, the current simplex is usually far from

the global optimum. Any errant shrinkage will have a less severe effect on the procedure.

If the procedure detects that a shrinkage operation must be performed, the smaller

value of δ allows this operation to be more successful in pulling the simplex towards a

locally convex neighborhood of the optimum. After several errant shrinkages during the

earlier search iterations, however, simplex becomes too small to make effective progress

towards the optimum. When restarting procedure is applied in the search procedure,

the formation of the new initial simplex around the solution obtained in the previous

phase may result in a higher likelihood of performing errant shrinkages since the new

simplex is usually constructed in a subregion of the region of interest. In the later

30

phases of the search, it is therefore advantageous to increase the value of the shrinkage

coefficient δ linearly to avoid significant reduction in the size of the simplex.

4.2.4. Adaptive Linear Penalty

The original NMSS is developed for unconstrained and unbounded optimization

problems. Real-life problems, however, might contain many constraints and bounded

variables. The penalty method can be an effective approach for handling constraints

and bounded variables for the modifications of NMSS.

Penalty method adds penalty terms to the objective function. Every time a

constraint is violated or a bounded variable takes value beyond its upper bound, the

objective function is penalized. As a result, solutions will not leave the feasible domain.

Let us consider the problem

max f(x) (4.3)

s.t.

gi(x) ≤ 0, i = 1, 2, ...,m (4.4)

hi(x) = 0, i = m+ 1,m+ 2, ..., n (4.5)

l ≤ x ≤ u (4.6)

where the vectors l and u represent lower and upper bounds on variables, gi and hi the

inequality and equality constraints, respectively.

This problem can be written in an unconstrained penalized form as

max f(x)+
∑
i∈I

λi Pi(x)

where P denotes relative penalty cost and λ penalty parameter.

31

If the ith constraint is violated, relative penalty cost Pi(x) will be less than zero.

Otherwise, it will take a value of zero meaning that no penalty has occurred for the

related constraint.

Appropriate values of penalty parameters λi need to be estimated. They are

usually initialized as zero. When the related constraints of the new changed simplex

point xnew are violated, the penalty parameters of these constraints are updated using

the formula:

λnewi =λi+s×Pi(x), i = 1,2,...,m

where s is a positive step size. Since s and Pi(x) are strictly positive, λnewi ≥ λi

≥ 0.

Considering the unlimited growth of the penalty costs, the constraints g(x) ≤ 0

and h(x) = 0 are less violated for growing number of iteration.

Step size s may influence the performance of the overall procedure. If a small

step size is chosen, the penalty parameters will not be increased fast enough and the

optimum will be found in a region with strongly violated constraints. It also takes

many iterations. On the contrary, a large step size s may let NMSS fail in generating

a well designed simplex. Consequently, a series which will be a constant small value

and a large one for certain number of iterations can be used for step size.

Let ss denotes the standard step size and sl a large step size with 0<ss<sl. The

step size of the penalty parameter is then determined from

sϕ =

 sl if ϕs and ϕ mod | ϕs | = 0

ss otherwise

where ϕ refers to the iteration number and ϕs a fixed number of iterations in

which small step sized will be used while updating the multipliers.

32

4.2.5. Multi-Start Revised Simplex Search Procedure

As mentioned before, NMSS can fail to converge or may converge to a non-optimal

solution. A multi-start strategy in which randomly determined points used as starting

points of our single simplex-based search can lead to substantial improvements in the

efficiency. It should be noted that the success of this strategy heavily relies upon the

solution quality of single starts. Many users consider that a random restart technique,

commonly used within hill-climbing algorithms, is the easiest fix to improve the chance

of obtaining better solution as it guards against premature convergence. Our proposed

algorithm is actually based on the Revised Simplex Search (RSS) of Humphrey and

Wilson (2000). RSS is developed for unconstrained and unbounded problems and is

probably the most efficient modification of NMSS. It consists of three-phase application

of the NMSS method where: i) the search is restarted such that the ending values for

the one phase is the starting values for the next phase, ii) the size of the initial simplex

is decreased geometrically while the shrinkage coefficient is reduced progressively to

provide adequate protection against premature convergence, iii) the final estimated

optimum is taken over all phases of the search procedure.

Due to capacitated facilities and continuous variables, the original RSS algorithm

cannot be applied directly to the BPIP problem. It is therefore modified by including

some additional modifications. In MS-RSS, this modified RSS is started K times from

different randomly selected points. The exact reason for the multi-start strategy is the

observation that although the modified RSS procedure is started three times, the final

estimates of the global values are not well enough in most of the cases. Therefore, the

modified RSS is restarted K times. The best solution of each start is cached once the

incumbent of the three phases is found. These values are compared to each other in

order to find the optimal solution of the overall procedure, in other words, the final

estimated optimum is the best of the ending values of K RSS runs.

The proposed procedure is given in the following.

33

4.2.5.1. Initial Simplex Generation. One of the weaknesses of direct search methods is

excessive sensitivity to starting values and premature termination at a local optimum.

Due to the high possibility of being trapped in a local optimum, it is of great importance

to initialize the first simplex of MS-RSS from a good starting point to improve the

performance of the solution procedure.

An efficient action is to generate initial simplex from the different part of the

search space at each restart. With this purpose, we devise two initial vertex generation

methods which are based upon the start number of MS-RSS. We let Sj denote the

vertex of these generation methods for j =1,. . . ,m+1 where Sj is the m dimensional

vector with elements si,j for i = 1, 2,. . . , m. Note that, the interdiction fraction

Sj corresponds to xi which is used in definition of NMSS method. Similarly, m, the

number of the existing facilities, is used in our problem instead of n in NMSS definition.

The working mechanisms of the initial simplex generation methods are as follows.

In the first and the second start of MS-RSS, a deterministic initial simplex vertex

generation is used. It is worth noting that Sj is the m dimensional unit vector with

elements si,j which are one in the jth component and zero elsewhere for i = 1, 2,. . . , m.

Sj’s are used as an input parameter of the LLP, and then, the objective functions are

calculated by solving the LLP with CPLEX, and sorted in non-decreasing order. This

generation method lies on the logic that an intelligent interdictor would first prefer to

hit the facility the loss of which costs the maximum increase in the objective value, and

then, would proceed with the remaining facilities which causes the maximum harm as

long as his budget allows.

When the starting number is more than two, the initial vertex is generated via

double randomization scheme. Both the facility to be attacked and the ratio of the

interdiction are determined randomly. The aim of double randomization is to provide

intensification and diversification of the search space. Obtaining the index i randomly,

elements si,1 are also determined randomly for i = 1,2,. . . ,m to construct the initial

vertex S1. If the budget underutilization is detected, si,1’s are increased one by one

with ∆i,j which is determined via formula: ∆i,j = min{ 1 − si,j , etot−eused
ej

} where

34

eused is the current budget used to interdict facilities before the current si,j increment.

After increasing si,j values with ∆i,j’s, their new respective objective function values

are sorted in non-decreasing order. Starting from the si,j values with the maximum

increase in the objective value toward that with less increase, ∆i,j’s are added until no

budget is left.

At the end of deterministic and double randomization vertex generation methods,

the initial vertex S1 is generated. It is customary to specify a starting point in <n that

is taken as one of the initial simplex vertices in the lack of information about the

function. The remaining vertices of the simplex are then produced with respect to S1

in one of the two ways: Haftka and Gürdal’s method and the standard unit vector

method explained in Humphrey and Wilson, 2000.

When the start number is an odd number, Haftka and Gürdal’s method is used

by initializing a simplex of size a at S1 based on rule

Sj= S1 + p ei +
∑
k∈I

q ek

where ei are the unit base vectors and

p = a
n
√
2
(
√
n+ 1 + n− 1)

q = a
n
√
2
(
√
n+ 1 − 1) where a = 1 in our problem. Applying these formulae, Sj

may have some components larger than one which violates the upper bound of the ULP

variables resulting in an infeasible solution. Since any component of the vertex j cannot

exceed one, we normalize its components by dividing them with its largest component.

This act guarantees a boundary feasibility, but not budget feasibility. Therefore, after

the normalization step, if budget is exceeded, we scale the components of the vertex j

by dividing them by the scalar product of unit interdiction costs and interdiction ratios

of facilities to obtain budget feasible solution.

For even start numbers, the standard unit vector method that generates the initial

35

simplex by perturbing the starting point by a specified step v along m coordinates is

used as explained in (Humphrey and Wilson, 2000). In terms of the initial vertex S1,

the remaining vertices of the initial simplex are given by Sj= S1 + υei where υ is 1 in

our problem.

As this formulation would end up with boundary violating components, the same

scaling methodology used in Haftka and Gürdal’s method is applied. By applying these

two simplex generation methods in MS-RSS, we obtain K different initial simplices.

Each simplex includes m+1 vertices each of which consists of m elements. As soon as

an initial vertex is generated, MS-RSS continues with the single MS-RSS run which is

explained in the following paragraphs.

4.2.5.2. A Single MS-RSS Run. It includes three phases indexed by the phase counter

τ . Within each phase, a new simplex is generated via the reflection, expansion and

contraction operations of the N-M procedure as described in Section 4.2.1 in each

additional iteration ϕ.

In the initialization step of the modified RSS, phase counter τ and iteration

counter ϕ are set to 1. As recommended by Nelder and Mead (Nelder and Mead,

1965); the reflection, expansion, contraction and shrinkage coefficients in the NMSS

iterations should satisfy α > 0, β > 1, 0< γ <1, and 0< δ <1, respectively. Chooses

for these values are α = 1, β = 2, γ = 0.5, and δ = 0.5 in our procedure as they

are universal values. Considering the number of the restart, a deterministic or double

randomization method is used to yield the initial vertex of the starting simplex. It

is noteworthy that the formula used in the determination of the remaining vertices of

the initial simplex depends on the number of the restart. Once the initial simplex is

generated, the centroid of the vertices is calculated as in Section 4.2.1.

Sj ≡ [s1,j,s2,j...,sm,j] denote the jth vertex of the current simplex.

At the beginning of any iteration, the objective values of m+1 points of the

36

current simplex are calculated and sorted in non-increasing order. In this step, these

values are checked for the plateau problem which let the search method fail in visiting

the same points repeatedly. When they are the same for all vertices of the simplex,

the plateau counter ω is incremented by one. ω is only set to zero in case the new

point obtained as the result of search operations yields a different objective value from

that of m vertices have. After ω reaches m+2 which indicates that no improvements

are obtained during the last m+2 iterations, the simplex is detected to be caught in a

plateau. Hence, the new phase is started (as described below). On the other hand, the

iteration number ϕ is increased by one and a suitable move operation of the original

NMSS is performed.

RSS is developed for unconstrained and unbounded optimization problem. On

contrary, BPIP contains budget constraint and bounded variables like Sj’s. The com-

bination of the two approaches is used to adapt the attacker’s budget constraint and

bounded variables. Considering the new points obtained after simplex search moves, if

a boundary-violating point has a value less than the lower bound of the variable, then

it is projected on the lower bound. When that point takes value more than the upper

bound and/or the budget constraint is violated, the adaptive penalty method is applied

and the related Lagrangian multiplier is updated causing a penalty cost affecting the

objective value of the problem adversely.

Cycling check is applied after the reflection move operations. If a point is re-

flected, it is not allowed to be reflected in the next two iterations. The second worst

point is reflected in the case the worst point cannot be reflected.

4.2.5.3. Termination Criterion. To complete a simplex-based search algorithm, ter-

mination criteria should be defined. Since multi-phase and multi-start policies are

applied, we use three termination criteria for the current phase, and one for a single

RSS run, and finally one for the overall procedure. After each reflection, expansion,

37

and contraction, the volume of the simplex is controlled as

max
0≤i≤n

‖Si − Smax‖ ≤

 ε1 ‖Smax‖ , if ‖Smax‖ 6= 0

ε2, otherwise

where ε1 and ε2 are user-specified tolerances. The maximum number of the iterations

ϕmax is also introduced to determine the termination of the current phase as the second

usual criterion. The third and the last one is the detection of a plateau problem. In

the case that these termination conditions are not satisfied, ϕ is incremented and one

iteration of single RSS run is performed. Otherwise, the best point of the last iteration

is recorded as the termination point of the current phase (S*), phase counter τ is

incremented. It is expected that the attacker depletes his or her all budget in the

optimal solution, however, this is not always the case in the preliminary solution of the

experiments. After the termination of each phase S* values are increased as

S* = S* + min{ 1-si,j , etot−eused
ej

}

These values are sorted in non-decreasing order. The same scaling methodology

used in Haftka and Gürdal’s method is applied. After the termination of a phase, a

new phase is started following the settings described below.

At the beginning of a new phase, the iteration number ϕ, the plateau counter ω

and penalty parameters λi’s are set to zero. The search is restarted by initializing a

new and larger simplex around the best solution found in the previous iteration. To

manage this, the first vertex of the initial simplex is selected as the best solution of the

previous phase. In addition, the initial step size υ for the current phase is decreased

geometrically using the formula υτ = 1
2
υ(τ−1). The shrink coefficient is also increased

linearly as δτ = δ(τ−1) + 0.2 and the other vertices of the initial simplex are constructed

with initial vertex generation methods mentioned above regarding the restart number

of MS-RSS. Finally, the phase counter τ is incremented by one.

For the termination of a single RSS run, τ is taken into consideration. If τ > 3, the

38

final estimate S* of the global optimum is computed as the best ending values for the

three phases. MS-RSS is terminated when the start number reaches the predetermined

multi-start number. The best objective value is obtained among the best ending values

for the three phases of all RSS.

4.3. An Exhaustive Search for Full Interdiction Problem

Up to here, we focus on the partial interdiction. Research on facility interdiction

models in the literature concentrate on full facility interdiction. Since this thesis is

the first attempt for partial interdiction concept, the question about the benefit of the

partial interdiction model upon full interdiction models may arise. Hence, we develop

an exhaustive search and solution validation method called ES so as to assess the value

of the partial interdiction from the perspective of the attacker. Performing ES upon

the same BPIP instances, we can evaluate the value of partial interdiction.

Exhaustive search is a trivial but very general problem-solving technique that

consists of systematically enumerating all possible candidate solutions and checking

whether each candidate satisfies the constraints of the problem. This search is simple

to implement, and will always find a solution if it exists. However, its cost is propor-

tional to the number of candidate solutions, which, in many practical problems, tends

to grow very quickly as the size of the problem increases. It investigates in all site

combinations to interdict full capacities of p facilities among m existing ones. For each

combination, all budget-feasible subsets of interdiction scenarios are checked. Then,

our BP problem is reduced into single level integer optimization problem which can be

solved to optimality with commercial solvers.

Consider a vector S with m elements. Suppose that all elements in this vector

is set to zero at the initialization. Then, we have to check
(
m
p

)
combinations for p =

1,2,...,m where p denotes the number of the facilities to be totally interdicted, namely,

the number of 1’s in S vector. The budget constraint of the attacker’s problem is

checked for each combination. If the budget allows, the objective value of the de-

fender’s problem is obtained by solving the LLP with CPLEX. Reviewing all possible

39

combinations, the optimal solution is selected as the interdiction scenarios with the

maximum objective function value.

The number of function evaluations required to reach a result grows exponentially

in the number of the facilities m, and this strictly limits its applicability on large-sized

instances. We observed that ES works in acceptable time limits whenm≤ 15. However,

it needs enormous CPU times when m is large. For example, it spends almost 20 hours

to solve a high budget instance with m = 15. The computation time exceeds 40 hours

when m is raised to 16.

40

5. COMPUTATIONAL RESULTS

5.1. Random Problem Generation

The performance of the proposed solution methodologies are tested on 84 BPIP

instances which differ in customer and facility configurations along with parameters m

and etot. These instances are produced by using the data generation scheme of (Aksen et

al., 2010). The number of customers is set to 10m where m indicates the number of the

facilities in the existing system in each instance. Customers are uniformly distributed

over a circular area centered at the origin (0,0) as in (Aksen et al., 2010), but with the

radius R equal to 500 units. Apart from a side length of a square L which is set to

1000 units in our instances, candidate facility sites are dispersed uniformly on (m+1)

equidistant horizontal and vertical lines centered at the origin (0,0) hypothetically

dice a square. The corresponding vertical and horizontal coordinates on the plane are

calculated through the functions given in Table 5.1. All coordinates are then rounded

to the nearest integer. The visualization of customers and facility sites on the xy-plane

for m = 5 and m = 15 are shown in Appendix A.

Our test bed consists of two types of problem sets. As the literature indicates that

simplex-search type procedures tend to perform well for m ≤ 10 (Nelder and Mead,

1965; Barton and Ivey, 1996), we took m ≤ 10 as the “small-sized” test problems and

11 ≤ m ≤ 17 as the “large-sized” test problems. We use two budget levels in both

problem sizes. A low interdiction budget is equal to the 30 percent of the total cost

required for completely interdicting the facilities while a high interdiction budget is 60

percent of the same cost. Three random BPIP instances each with a low and a high

interdiction budget is generated for each of the m values. Thus, we obtain 42 BPIP

instances for the small-sized test problems with 4 ≤ m ≤ 10 , and 42 BPIP instances

for the large-sized test problems with 11 ≤ m ≤ 17.

The random problem generation template employed in the computational study

is described in Table 5.1. where U(0,1) stands for a uniform random number between

41

0 and 1, DU [lb,ub] typifies a random integer number between a lower bound lb and

an upper bound ub. (cxi, cyi) and (fxj, fyj) designate the coordinates of customer i

and facility j, respectively, and distance d(i, j) returns the Euclidean distance between

these two. Customer locations and the corresponding demand values are determined

independent of each other. The customer demand in both budget level types is deter-

mined randomly from the set {5, 10, 15,...,100}. Penalty cost induced from outsourcing

one unit customer demand is set to 100. Unit shipment costs are the same for each

customer and fixed to 0.1 TL in all instances.

It is noteworthy that we generate some additional variations of these 84 problem

instances by altering some of the parameter such as attacker’s budget etot, capacities

(qj’s) and the number of facilities (m) in the following sections.

Table 5.1. Random problem generation table

Parameters Values

Number of facilities (m) 4,5,...,17

Number of customers (n) 40,50,...,170

Demand of customer i (ai) 5,10,...,100

Unit shipment cost (ci) 0.1

Outsource cost (cp) 100

Capacity of facility j (qj) 400,420,...,800

Full interdiction cost of facility j (ej) 15000,16000,...,30000

Attacker’s budget (etot) η ×
∑
j∈J

ej

η 0.3,0.6

5.2. Computational Environment

The source codes of both the MS-RSS and PGS algorithms are written in C#

language and compiled through Microsoft Visual Studio 2005. CPLEX Callable Library

11.0 is called via C# environment for the solution of the defender’s LLP. CPU times

have been measured on a workstation equipped with two Intel Xeon X5460 3.16 GHz

Quad-Core processors and 16 GB RAM. One core of the processor in the workstation

42

is reserved for each test.

We present our experiments in the following order. First, we provide the over-

all results of 84 problem instances to the MS-RSS algorithm and that of 42 problem

instances to the PGS algorithms. Then, we perform some experiments on the com-

putational time and the attacker’s objective value (i.e., the operational cost to the

system planner in the existence of the malicious attacks). Finally, we give some com-

putational and managerial insights into the BPIP problem by analyzing it from the

different aspects of the overall results of experiments.

5.3. Results of the BPIP Problem Instances

In this section, we test the solution algorithms on our instances. The PGS algo-

rithm can solve only the small-sized test problems. Since the number of combinations

grows exponentially, the size of the instances with m > 10 are too large to be solved

by PGS. Therefore, we apply the MS-RSS algorithm on 84 instances and the PGS

algorithm on 42 instances, which are generated via the settings in Table 5.1.

The objective values and the CPU times obtained by MS-RSS and PGS for each

small-sized problem instance are provided in Table 5.2 and Table 5.4. In these tables,

“OV Gap (%)” refers to the gap between the objective values attained by MS-RSS and

PGS, which is computed by the formula 100 ×(OVMS−RSS − OVPGS)/OVPGS. Also,

“CPU Gap (%)” denotes the computational time gap between MS-RSS and PGS, which

is calculated as 100 × (CPUMS−RSS − CPUPGS)/CPUPGS. The detailed MS-RSS results

to the large-sized instances can be found in Appendix B.

The average results to the small-sized problem instances with high and with low

budget levels can be found in Table 5.3 and 5.5. An instance group represents three

random instances of the given the number of facility sites (m). The average of objective

values and CPU times are presented for each instance group as well as the average gap

between the solution of MS-RSS and the solution of PGS.

43

Table 5.2. The results of MS-RSS and PGS to small-sized problem instances based on

high level budget with K = 6

Instance etot OVMS−RSS CPUMS−RSS OVPGS CPUPGS OV Gap CPU Gap

No (TL) (TL) (sec) (TL) (sec) (%) (%)

4-1 46,800 168,174 29 167,380 4 0.47 625.00

4-2 57,600 140,902 29 139,637 3 0.91 866.67

4-3 43,800 146,357 33 144,944 5 0.97 560.00

5-1 73,800 213,249 67 211,799 12 0.68 458.33

5-2 69,000 167,760 48 166,584 14 0.71 242.86

5-3 72,600 183,783 91 183,775 16 0.00 468.75

6-1 87,000 201,362 90 201,060 67 0.15 34.33

6-2 81,600 202,636 131 200,818 93 0.91 40.86

6-3 77,400 205,554 105 203,722 125 0.90 -16.00

7-1 90,600 251,692 164 253,888 480 -0.86 -65.83

7-2 94,200 248,815 191 247,519 604 0.52 -68.38

7-3 96,600 248,187 426 246,119 574 0.84 -25.78

8-1 97,800 286,688 235 287,732 3,953 -0.36 -94.06

8-2 109,800 276,822 352 277,084 2,923 -0.09 -87.96

8-3 106,200 284,171 337 284,966 5,023 -0.28 -93.29

9-1 97,800 333,990 400 334,386 27,415 -0.12 -98.54

9-2 112,800 296,831 540 304,114 33,085 -2.39 -98.37

9-3 110,400 325,006 548 326,818 28,254 -0.55 -98.06

10-1 112,800 360,567 1,105 360,092 221,819 0.13 -99.50

10-2 119,400 348,330 859 349,406 221,395 -0.31 -99.61

10-3 137,400 357,653 470 358,521 227,275 -0.24 -99.79

The MS-RSS algorithm is a simplex-based heuristic algorithm and devised for

tackling BPIP for the first time. Since there is no proposed solution algorithm to

BPIP in the literature, we can only compare our solution methodology with PGS,

which is an exact solution algorithm for given decimal numbers that are corresponding

to the interdiction levels (i.e., the Sj values). Considering 42 instances, we conclude

that the CPU times of MS-RSS are visibly less than that of PGS. When m = 9, MS-

44

Table 5.3. The average results of MS-RSS and PGS to small-sized problem instances

based on high level budget with K = 6

Instance OVMS−RSS CPUMS−RSS OVPGS CPUPGS OV Gap CPU Gap

Group (TL) (sec) (TL) (sec) (%) (%)

4 151,811 30 150,654 4 86.90 0.78

5 188,264 69 187,386 14 78.45 0.46

6 203,184 109 201,867 95 11.84 0.65

7 249,565 260 249,175 553 -147.89 0.16

8 282,560 308 283,261 3,966 -1234.34 -0.25

9 318,609 496 321,773 29,585 -5945.48 -1.04

10 355,517 811 356,006 221,810 -2125.09 -0.14

RSS solves BPIP 8 times faster than PGS. At the time m is increased to 10, this value

increases to 50. In fifteen out of 42 instances, the objective values of PGS surpass

those of MS-RSS. The maximum gap is recorded as 0.97%. The average increase in

the objective values obtained from MS-RSS is 0.44%. The experiment indicates that

MS-RSS is an efficient algorithm that provides good near-optimal solutions for BPIP

instance within a reasonable amount of time. PGS, however, requires a large amount

of time to solve the instances with high m value.

5.3.1. Contribution of Phase Approach in MS-RSS

Our MS-RSS algorithm is actually based on the Revised Simplex Search (RSS) of

Humphrey and Wilson which consists of three-phase application of the NMSS method.

RSS is constructed upon the fact that the most effective solution is to step away from

the current termination point, restart the search procedure with a new larger simplex,

cache the value once an optimum is found, and compare these resulting alternative

termination points to guard against premature convergence. Much research in the

literature proves that it is beneficial to restart the whole method (in the second phase)

from the solution obtained in the first phase.

To emphasize the improvement achieved by applying three phases concept in the

45

Table 5.4. The results of MS-RSS and PGS to small-sized problem instances based on

low level budget with K = 6

Instance etot OVMS−RSS CPUMS−RSS OVPGS CPUPGS OV Gap CPU Gap

No (TL) (TL) (sec) (TL) (sec) (%) (%)

4-1 23,400 133,817 69 130,912 3 2.22 2200.00

4-2 28,800 95,897 68 93,591 4 2.46 1600.00

4-3 21,900 95,760 68 92,501 4 3.52 1600.00

5-1 36,900 151,820 148 150,402 15 0.94 886.67

5-2 34,500 105,359 104 104,077 14 1.23 642.86

5-3 36,300 122,576 290 122,075 29 0.41 900.00

6-1 43,500 141,597 225 142,090 71 -0.35 216.90

6-2 40,800 123,886 413 122,557 142 1.08 190.85

6-3 38,700 132,308 306 132,185 98 0.09 212.24

7-1 45,300 173,537 721 172,133 570 0.82 26.49

7-2 47,100 172,353 641 171,586 754 0.45 -14.99

7-3 48,300 161,550 1,425 159,226 1,144 1.46 24.56

8-1 48,900 192,478 2,012 190,492 5,710 1.04 -64.76

8-2 54,900 187,248 587 184,337 2,056 1.58 -71.45

8-3 53,100 196,436 3,216 195,543 6,959 0.46 -53.79

9-1 48,900 220,231 3,104 220,723 37,287 -0.22 -91.68

9-2 56,400 191,439 5,594 189,298 18,806 1.13 -70.25

9-3 55,200 221,309 1,723 223,521 31,017 -0.99 -94.44

10-1 56,400 236,522 5,354 236,703 272,156 -0.08 -98.03

10-2 59,700 232,791 3,922 232,957 296,563 -0.07 -98.68

10-3 68,700 241,720 4,385 242,122 211,694 -0.17 -97.93

MS-RSS algorithm, we compare the performance of a three-phase runs with that of

single phase runs. We examine nine instances of our data configuration with m =

5, 10, 15. Table 5.6 illustrates the results of this experimentation for K = 6 and

high level budgets. OVMS−RSS−1 refers to the objective value of MS-RSS with single

phase and OVMS−RSS−3 is that of MS-RSS with three phases. CPUMS−RSS−1 denotes

the running times value of the former and CPUMS−RSS−3 that of the latter. “OV

46

Table 5.5. The average results of MS-RSS and PGS to small-sized problem instances

based on low level budget with K = 6

Instance OVMS−RSS CPUMS−RSS OVPGS CPUPGS OV Gap CPU Gap

Group (TL) (sec) (TL) (sec) (%) (%)

4 108,491 68 105,668 4 94.63 2.66

5 126,585 181 125,518 19 88.80 0.85

6 132,597 315 132,277 104 67.35 0.27

7 169,147 929 167,648 823 7.68 0.90

8 192,054 1,938 190,124 4,908 -183.48 1.01

9 210,993 3,474 211,181 29,037 -1012.54 -0.03

10 237,011 4,554 237,261 260,138 -7461.52 -0.07

Gap(%)” and “CPU Gap (%)” are the percentage of the gap between the objective

function values and the solution times of the algorithm with single phase and our

proposed algorithm with three phases, respectively. “OV Gap(%)” is obtained by the

formula 100 ×(OVMS−RSS−1 − OVMS−RSS−3)/OVMS−RSS−3 whereas “CPU Gap (%)” is

calculated as 100 × (CPUMS−RSS−1 − CPUMS−RSS−3)/CPUMS−RSS−3 .

The maximum gap is found to be 2.23%. It can be seen that the ratios between the

attacker’s objective values obtained from single phase application and those obtained

from three phases application provide concrete evidence that a three-phase approach

incorporated into MS-RSS is a key improvement in the solution quality.

When the computing times are taken into consideration, the total CPU times

decrease drastically in the case that single phase is applied individually to MS-RSS. In

a three-phase application, the search procedure is started from the simplex generated

via our initial simplex generation methods in the first phase, and from the solution

obtained in the previous phase in both the second and third phases. Therefore, one

single RSS run with three phases is similar to three restarts with single phase. For

example, when K is 6 for MS-RSS with three phases, we actually restart the search

procedure from 18 different points, which are selected as a result of the previous phase,

from the solution space. It can be argued that comparing the results of a three-phase

47

Table 5.6. The results of MS-RSS with single phase and three phases based on high

level budget with K = 6

Instance OVMS−RSS−1 CPUMS−RSS−1 OVMS−RSS−3 CPUMS−RSS−3 OV Gap CPU Gap

No (TL) (sec) (TL) (sec) (%) (%)

5-1 208,490 20 213,249 67 -2.23 -70.15

5-2 166,777 16 167,760 48 -0.59 -66.67

5-3 181,342 26 183,783 91 -1.33 -71.43

10-1 353,490 288 360,567 1,105 -1.96 -73.94

10-2 347,231 267 348,330 859 -0.32 -68.92

10-3 357,524 139 357,653 470 -0.04 -70.43

15-1 503,668 613 513,205 1,793 -1.86 -65.81

15-2 514,052 2,525 520,933 7,733 -1.32 -67.35

15-3 511,517 1,368 515,655 3,153 -0.80 -56.61

runs of MS-RSS with K = 6 to the results of MS-RSS with single phase runs with K

= 18 is much more rational means of measuring the performance of multi-phase policy.

Based on this motivation, we run the following test in order to observe the effects of

phase concept.

The results are summarized in Table 5.7. The column OVMS−RSS−1 reports the ob-

jective values of MS-RSS with single phase for K = 18 while the column CPUMS−RSS−1

lists accordingly the solution times. Similarly, the column OVMS−RSS−3 represents

the objective values of MS-RSS with three phases for K = 6 whereas the column

CPUMS−RSS−3 displays the related solution times. The last two columns of Table 5.7

are “OV Gap (%)” and “CPU Gap (%)”. They refer to the gap between the values of

the column OVMS−RSS−1 and those of the column OVMS−RSS−3, and the computational

time gap between the values of column CPUMS−RSS−1 and the column CPUMS−RSS−3,

respectively. “OV Gap (%)” is computed by the formula 100 × (OVMS−RSS−1 −

OVMS−RSS−3)/OVMS−RSS−3. Also, “CPU Gap” is calculated as 100 × (CPUMS−RSS−1

− CPUMS−RSS−3)/CPUMS−RSS−3.

The results demonstrate that the computational times are increased considerably

48

Table 5.7. The results of MS-RSS with single phase for K = 18 and three phases for

K = 6

Instance OVMS−RSS−1 CPUMS−RSS−1 OVMS−RSS−3 CPUMS−RSS−3 OV Gap CPU Gap

No (TL) (sec) (TL) (sec) (%) (%)

5-1 210,885 59 213,249 67 -1.11 -11.94

5-2 167,474 53 167,760 48 -0.17 10.42

5-3 183,447 87 183,783 91 -0.18 -4.40

10-1 359,891 836 360,567 1,105 -0.19 -24.34

10-2 347,231 685 348,330 859 -0.32 -20.26

10-3 357,524 618 357,653 470 -0.04 31.49

15-1 503,668 1,821 506,205 1,793 -0.50 1.56

15-2 514,052 6,523 520,933 7,733 -1.32 -15.65

15-3 511,517 3,862 515,655 3,153 -0.80 22.49

when K is set to 18 for single phase application. On the other hand, even increasing

the number of multi-start, a single phase application cannot outperform a three phase

application in any instances.

We conclude here that neither single phase application with K = 6 nor that with

K = 18 provides good solutions to the BPIP problem, and that the phase concept in

our proposed solution methodology plays an important role in the solution quality.

5.3.2. Contribution of Plateau Counter in MS-RSS

As we mentioned before, a plateau problem occurs when the objective value of

the simplex vertices have the same value. We add plateau counter ω into our MS-RSS

algorithm to overcome unnecessary iterations performed until the maximum iteration

number is reached.

With an effort to understand the contribution of the plateau check, we eliminate

the plateau counter ω from the algorithm by assigning a very high value to the maxi-

mum number of iterations performed without an improvement in the objective value.

49

Table 5.8. The effect of plateau check in MS-RSS

Instance OVwithout−ω CPUwithout−ω OVwith−ω CPUwith−ω

No (TL) (sec) (TL) (sec)

5-1 211,082 100 213,249 67

5-2 167,686 62 167,760 48

5-3 183,783 126 183,783 91

10-1 356,050 1,211 360,567 1,105

10-2 348,330 864 348,330 859

10-3 357,653 478 357,653 470

15-1 501,704 1,827 513,205 1,793

15-2 520,933 7,681 520,933 7,733

15-3 515,655 3,177 515,655 3,153

Using these settings, we take three problem instances for each of m = 5, 10, 15. K is

set to 6 and the high level budget is chosen.

The results of this analysis for each problem instances are demonstrated in Ta-

ble 5.8, where OVwithout−ω is the objective value of MS-RSS without plateau counter,

and OVwith−ω that with plateau counter. CPUwithout−ω and CPUwith−ω represent the

solution time of the former and the latter, respectively.

In all but one of the problems, MS-RSS without plateau check spends more

time than that with plateau check and results with no improvement in the objective

function value of the instances. This behavior shows that when the objective values of

the vertices are the same, MS-RSS without plateau check fail to stop the current phase

and/or a single RSS run until the maximum number of iteration is satisfied. Since the

algorithm is trapped in the plateau, it cannot traverse the solution space, which has

an adverse effect on the solution quality.

As can be seen in Table 5.8, only the CPU time of instance 15-2 to MS-RSS

without check is less than that to our MS-RSS. It is obvious that if the plateau check

is omitted, the search procedure will continue iterate with reflection steps without an

50

improvement in the objective value but with the change in the vertices of the simplex.

Reaching the maximum iteration number, the vertex obtained from the last reflection

step will be selected as a starting vertex of the initial simplex in the new phase. In other

words, a single RSS run of MS-RSS without plateau check will start from a different

point where the other algorithm starts, and there is a possibility of finding different

objective values. By chance, instance 15-2 is terminated with a higher value when the

check is not appointed. If the maximum number of the iterations of the phases are

changed, this value has a possibility of decreasing adversely.

Considering the facts mentioned above, incorporating plateau check into the MS-

RSS algorithm is a significant factor that especially gains importance in the large-sized

problems as each iteration requires much more computation time compared to the

small-sized ones.

5.3.3. Contribution of Cycling Check in MS-RSS

Recall that after a sequence of reflection operations, MS-RSS may fail to replace

the worst vertex in the current simplex, which brings the search back to the simplex

from which this sequence started. To prevent this phenomenon, we adjust our proce-

dure to reflect the second worst point rather than the point reflected in the previous

iteration.

To highlight the impacts of the cycling check upon MS-RSS performance, we allow

the algorithm to reflect the worst point. Then, we analyze the degree of the decrease

in the computational times along with the increase in the objective function values

via comparing the solutions of the instances with m = 5, 10, 15 for K = 6 and high

level budget. In all instances, the results, which are summarized in Appendix C, verify

that when the cycling check is not used, the CPU times are increasing 62.08% on the

average whereas the objective values are worsening 1.15% on the average. Therefore,

it can be concluded that cycling check used in our propose algorithm has a key role on

the algorithm performance.

51

K=1 K=6 K=10

0

100

200

300

400

500

600

CPU time

of

Multi-start

Figure 5.1. The average CPU times to small-sized problems for different number of

multi-starts

5.3.4. The Effect of the Number of Multi-starts on MS-RSS

To overcome premature convergence to a non-maximum solution in BPIP, an

efficient method is to restart the search procedure as many time as the predetermined

number of the multi-start K. This provide us to explore different parts of the solution

space. In each restart, MS-RSS is initialized from dissimilar points which are generated

via our deterministic and double randomization vertex generation methods.

It is obvious that starting the search from dissimilar points in the search space

increases the solution quality but causing the growth in the running time of the algo-

rtihm. Therefore, the determination of parameter K is of utmost important from the

view of the efficiency of the MS-RSS algorithm. To overcome this challenge, we con-

duct the following test. We take one instance with high level budget for each number

of facilities in our test bed, in other words, m varies from 4 to 17. Then, we restart

the MS-RSS algorithm one (K = 1), six (K = 6), and ten (K = 10) times.

Clearly, the total time spend to finish the algorithm is increases as the number

of starts increases. The detailed results of this analysis for each problem instance are

52

K=1 K=6 K=10

238,500

239,000

239,500

240,000

240,500

Attacker's Obj. Val.

of

Multi-start

Figure 5.2. The average attacker’s objective value to small-sized problems for

different number of multi-starts

K=1 K=6 K=10

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

CPU time

of

Multi-start

Figure 5.3. The average CPU times to large-sized problems for different number of

multi-starts

53

K=1 K=6 K=10

467,000

468,000

469,000

470,000

471,000

472,000

473,000

474,000

475,000

Attacker's Obj. Val.

of

Multi-start

Figure 5.4. The average attacker’s objective value to large-sized problems for different

number of multi-starts

provided in Appendix D. The summarized illustrations for the average results to 7

small-sized problem instances are given in Figure 5.1 and 5.2 while those to 7 large-

sized problem instances are provided in Figure 5.3, and 5.4, respectively. In all figures,

the horizontal axis displays the K values. The vertical axis in Figure 5.1 and 5.3 show

the average CPU times while that in Figure 5.2 and 5.4 demonstrate the attacker’s

objective values.

An interesting finding is that the increase in the computational times are not

proportional to the number of starts. When K is increased from 1 to 6, the CPU

times of the latter are higher about 7.2 times for small-sized problems and 5.8 times

for large ones than that of the former. These increases are about 1.73 and 1.26 times

after K is raised from 6 to 10. This circumtance is due to the termination criterion of

MS-RSS. The time spend to complete a single RSS run cannot be known a priori as

it heavily relies on the iteration numbers performed until optimum solution is found.

For example, MS-RSS may converge to an optimum solution in 25 iterations or in 300

iterations. To reach a solution, RSS may iterate many times until it reaches maximum

iteration number or the simplex has to be small enough.

54

Considering the increases in the objective values, if K is increased from 1 to 6,

the increase is 0.64% on average for all instances. On the other hand, when it is set

from 6 to 10, the same objective values are obtained in the nine out of the fourteen

instances. Therefore, we end up with a conclusion that it would be adequate to set K

to 6 in order to obtain reasonable solution quality.

5.3.5. Partial Interdiction Problems versus Full Interdiction Problems

Recall that our problem permits the attacker to interdict facilities partially. As

BPIP was not addressed before in the literature, we devise an exhaustive search method

with the aim of evaluating the value of the partial interdiction models. Our exhaustive

search algorithm (ES) inspects, indeed, all combinations of the full interdiction of

facilities as long as the attacker’s budget allows. In this search, if a facility is attacked,

it will become totally inoperative so that it could not provide service to its customers.

To highlight the utility of the partial interdiction concept, we perform an exper-

iment so as to compare the results of our two solution algorithms (PGS and MS-RSS)

with the ES algorithm. Our test bed consists of 72 BPIP instances in which three

problem instances are taken with m = 4, 5,...,15 for two different budget levels. The

detailed computational times and the objective values of partial and full interdiction

problems are given in Appendix E. The summary of the this experiment for high level

budget is presented in Table 5.9 and Table 5.10. In these tables, “OV Gap ” denotes

the average gap between the objective values of partial interdiction obtained via MS-

RSS or PGS and that of full interdiction calculated via ES for each instance group that

has the same facility number in the test bed. The improvement by partial interdiction

is computed by the formula provided in Section 5.3 for the values obtained from the

MS-RSS, PGS and ES algorithms. Additionally, the average of the running times are

mentioned for each instance group.

Due to the exponential time increase in the PGS algorithm, the problem instances

whose facility number are greater than 10 cannot be solved by PGS and therefore we

compare the MS-RSS solutions of large-sized problem instances with their ES solutions.

55

Table 5.9. Partial interdiction vs. full interdiction (high level budget)

Partial Interdiction Full Interdiction

MS-RSS or PGS ES

Instance OV CPU OV CPU OV Gap

Group (TL) (sec) (TL) (sec) (%)

4 151,811 30 141,101 1 7.71

5 188,264 69 180,797 2 4.08

6 203,184 109 197,205 6 3.10

7 249,565 260 242,503 28 2.93

8 283,261 3,966 274,145 59 3.33

9 321,773 29,585 310,508 219 3.62

10 356,165 149,925 349,477 693 1.92

11 378,681 1,127 375,288 3,682 0.91

12 403,795 1,193 401,755 4,541 0.50

13 449,585 4,110 447,871 46,740 0.40

14 476,630 6,543 475,423 39,623 0.25

15 514,264 4,226 522,947 88,294 -1.66

Comparing the results of partial interdiction with those of full interdiction, it is

observed that the CPU times of the latter is smaller than those of the former in small-

sized instances while the reverse is true for the large ones because of the exponential

increase in the number of combinations to be evaluated. For instance, at the time

the number of the existing facilities is 15, the average running times of ES is 21 times

higher than that of MS-RSS. On contrary, the benefit of the partial interdiction lessens

gradually as the number of facilities enlarges. The maximum gap between the partial

and the full interdiction problems is recorded as 15.41%. The results displays that our

two solution algorithms have lower objective value only in eight out of 72 instances. In

fact, in five out of these seven instances, m is equal to 15. This explains the situation

that when the dimension of the simplex, that is to say, the parameter m, is high,

the simplex-search based procedures tend to perform poorly. The literature signifies

that they can perform well when the dimension is less than or equal to 10 (Nelder

and Mead, 1965; Barton and Ivey, 1996; Humphrey and Wilson 2000). The high level

56

Table 5.10. Partial interdiction vs. full interdiction (low level budget)

Partial Interdiction Full Interdiction

MS-RSS or PGS ES

Instance OV CPU OV CPU OV Gap

Group (TL) (sec) (TL) (sec) (%)

4 108,491 68 101,007 1 7.52

5 126,585 181 114,040 1 11.41

6 132,761 263 125,016 3 6.82

7 169,147 929 166,411 14 1.66

8 192,054 1,938 180,216 24 6.67

9 211,894 24,633 206,130 101 2.88

10 237,261 260,058 230,223 329 3.06

11 244,048 9,678 240,314 2,107 1.57

12 254,246 6,677 250,849 1,964 1.30

13 295,190 25,745 291,039 31,991 1.46

14 294,241 18,566 293,250 14,269 0.34

15 344,333 28,121 345,653 51,335 -0.38

dimensionality is defined as 18 for their unconstrained test problems (Humphrey and

Wilson, 2000).

When the results of PGS and ES are taken into consideration, the computational

time of the latter is less than the former in all instances even though both algorithms

are exponential time algorithms. On the other hand, with respect to their objective

values, PGS outperforms ES in all instances. The attacker’s objective value calculated

via PGS is higher 2.82% on average.

To summarize, both the objective values of the MS-RSS and the PGS algorithms

are higher than those of the ES algorithm. This provides evidence that choosing an

interdiction strategy in which the facilities are attacked at some fraction rather than

policy where the facilities are rendered totally is worthwhile from the view of both our

actors.

57

0

50,000

100,000

150,000

200,000

250,000

300,000

350,000

400,000

1 2 3 4 5 6

Obj.Val. Marginal cont.

Attacker's Obj. Val.

etot#

Figure 5.5. The objective values and the marginal contributions of instance 7-1

5.3.6. The Effect of the Budget in Attacker’s Strategies

With the aim of understanding the value of interdiction budget from the attacker’s

viewpoint, we conduct analysis on the parameter etot. We obtain six different budget

levels which are increased by 20% from 0 to the amount required for interdicting all

facilities in the network completely. Instance 7-1 with m=7 and 14-1 with m=14 are

investigated for the sake of drawing a conclusion about the behavior of the attacker.

Evidently, the final objective values increase as the budget levels increase. We

call the increase in the objective value due to addition of new budget resources as

the marginal contribution of these resources. The results of this analysis for different

etot values are shown in Appendix F. In Figure 5.5 and Figure 5.6, the objective

values for each etot are displayed for instance 7-1 and 14-1. It can be seen that the

marginal contributions are close to each other in both instances. This circumstances

can be enlightened such that etot’s are computed from the certain percentage of the full

interdiction cost of the whole system. That is, we tolerate attacker to cause damage

58

0

100,000

200,000

300,000

400,000

500,000

600,000

700,000

800,000

1 2 3 4 5 6

Obj.Val. Marginal cont.

Attacker's Obj. Val.

etot#

Figure 5.6. The objective values and the marginal contributions of instance 14-1

in the system with an assured level, as he would deplete his all budget in the optimal

interdiction scenarios. For that reason, examining carefully how the Sj values alternate

at the time etot is amplified can give us an evidence of the attacker’s interdiction actions.

The Sj values of instance 7-1 for different budget levels are reviewed in Table

5.11. The visualization of instance 7-1 in which customer nodes and the facility sites

are plotted in a two-dimensional Cartesian space can be seen in Figure 5.7.

When the budget is increased from 0 to 30,200, the interdictor prefers to interdict

facility 6 with the highest fraction of his budget as this facility is the nearest one to the

customer crowded areas, furthermore, depletes the remaining budget on other facilities.

After etot is enlarged to 60,400; most disruptive fractions are due to facility 6 and facility

5. As can be seen in Figure 5.7, facility 5 is the nearest facility to facility 6 and the

second closest one to the centralization of the customers. The attacker increases the

disruption levels of facility 3 and facility 2 as the budget increases to 90,600. The

results indicates that the Sj values of facility 7 are the smallest ones in each budget

59

1

2

3

4

5

6

7

Customer Nodes Existing Facilities

Figure 5.7. The visualization of the instance 7-1

Table 5.11. The facility interdiction fractions of Problem instance 7-1 for different

interdiction budget

FN1 etot1= 0 etot2= 30,200 etot3= 60,400 etot4= 90,600 etot5= 120,800 etot6= 151,000

1 0% 2.07% 3.12% 50.97% 89.96% 100.00%

2 0% 6.04% 49.20% 95.33% 86.42% 100.00%

3 0% 3.45% 10.43% 98.03% 63.34% 100.00%

4 0% 3.23% 17.63% 2.02% 96.03% 100.00%

5 0% 42.47% 99.43% 97.33% 91.72% 100.00%

6 0% 97.32% 91.94% 93.43% 95.13% 100.00%

7 0% 0.16% 7.58% 3.39% 45.66% 100.00%

level since the average distance from customers to this facility is the highest of all

facilities. It is trivial that when etot is greater than or equal to 151,000 all facilities are

rendered wholly.

1Facility Number

60

At the end of these analysis, it can be concluded that the attacker follows the pol-

icy that he starts an interdiction from the facility that has the smallest average distance

to the customers towards the ones that are distant from the customer concentration

by reducing the degree of harmful actions as long as his budget permits.

61

6. CONCLUSION

In this thesis, we studied the bilevel partial interdiction problem with capacitated

facilities and demand outsourcing (BPIP) for the planning of critical facilities. The

problem is actually a static Stackelberg game between two actors: a system planner

and an intelligent attacker. The system planer takes the role of the system defender

who is responsible for servicing to customers residing at a number of demand nodes

under the interdictor’s attacks. On contrary, the attacker, who acts as a leader in BPIP,

attempts to cause the maximum possible disruption in the service level. Therefore, the

defender has to take the attacks into consideration while serving customer in order to

minimize the worst-case disruption cost that can possibly be inflicted by the attacker.

We relax the common assumption made in interdiction problems that a facility is

rendered completely if it is attacked. That is, the facilities will persist to provide

service at a lower level which will depend on the extent of the interdiction.

To our knowledge, this study is the first attempt for the partial interdiction of

the facilities in the same leader-follower game. The problem is modeled as a bilevel

mixed integer programming formulation, where the leader is the interdictor and the

follower is the system planner. Two solution methods are proposed for BPIP. First,

we develop a progressive grid search (PGS) in which the search is applied on the

predetermined values, i.e., support points, within the solution space corresponding to

the attacker, while the CPLEX is employed so as to optimize the follower’s problem.

Secondly, we devise a simplex-based search algorithm which is called as MS-RSS. Our

proposed algorithm is a variant of the Revised Simplex Search (RSS) of Humphrey

and Wilson (2000) which includes three phase application of the NM method. As

we have encountered many obstacles that the simplex-based algorithms tend to, we

alter RSS by additionally including some inner algorithms such as plateau and cycling

checks, multi-start applications, and so forth. They are designed to tackle with some

of the critical weaknesses of NM. In the MS-RSS algorithm, performing initial vertex

generation methods, the initial point used in the construction of the initial simplex of

single RSS run is found. The ULP, namely, the attacker’s interdiction policy problem, is

62

solved with the help of the search procedure. In each iteration, vertices of the simplex,

which correspond to the Sj variables of the ULP, are generated via move operations

of the search procedure. These values are then used as an input for the second level

problem which is solved to optimality by CPLEX 11.0.

The performance of the PGS and MS-RSS procedures are tested on 42 and 84

randomly generated test instances, respectively. The small-sized instances are solved

by both methods. The results of the instances point out that the MS-RSS algorithm

works quite well in a wide spectrum of various problem sizes and yields high quality

solutions to BPIP problem. The solution times of PGS increases exponentially with

the number of the existing facilities while that of MS-RSS depends on the number of

starts and the budget level of the attacker.

We perform computational experiments to find out the strengths and the sensi-

tivities of the algorithms that affect the computational performance. Phase concept,

plateau checks, cycling checks, and the number of the multi-starts are identified as

important factors that play critical role on the solution performance of the MS-RSS

algorithm.

We develop an exhaustive search algorithm (ES) to solve our problem instances

for impartial interdictions with the aim of assessing the benefit of following a strategy

in which the facility capacities are reduced at some fraction and are not diminished

completely from the view of the attacker. We solve our small-sized instances with

PGS, MS-RSS, and ES and our large-sized instances with MS-RSS and ES. Then, our

two proposed optimization procedures are compared against ES with respect to the

running times and the objective values. On the basis of the comparisons, we conclude

that interdicting to facilities partially is a rational act for the attacker as it causes a

higher operational cost to the system planner.

Another key finding of this study is that regardless of the number of the facilities

and their capacities as well as the budget level, the attacker prefers to reduce the

capacity of the facilities, as much as possible, that are close the customer crowded

63

areas. Beginning from the facility that has the smallest average distance to customers,

he proceeds with the ones that are away from the customers by reducing the extent of

the attack.

In the lights of these findings, we sincerely believe that the further effort of

research on the bilevel partial interdiction problems will provide additional insights

about the defensive endeavors in the network design to the system planners. Based on

this motivation, the promising area for the future work might be the extension of the

problem studied in this thesis that considers partial protection for a better allocation of

limited protection resources among the opened facilities. In other word, the protection

resources are allocated by the system planner in such a way that only the critical

capacity of the facilities is protected.

64

APPENDIX A: CUSTOMER AND FACILITY

CONFIGURATIONS

Customer Nodes Existing Facilities

Figure A.1. Customer and facility configuration of instance 5-1

Customer Nodes Existing Facilities

Figure A.2. Customer and facility configuration of instance 5-2

65

Customer Nodes Existing Facilities

Figure A.3. Customer and facility configuration of instance 5-3

Customer Nodes Existing Facilities

Figure A.4. Customer and facility configuration of instance 15-1

66

Customer Nodes Existing Facilities

Figure A.5. Customer and facility configuration of instance 15-2

Customer Nodes Existing Facilities

Figure A.6. Customer and facility configuration of instance 15-3

67

APPENDIX B: OVERALL RESULTS TO MS-RSS AND

PGS

Table B.1. MS-RSS solutions to large-sized problem in-

stances based on high level budget with K = 6

Instance etot OVMS−RSS
1 CPUMS−RSS

2

No (TL) (TL) (sec)

11-1 136,800 380,498 999

11-2 139,200 375,081 1,272

11-3 150,600 380,463 1,109

12-1 159,600 403,593 1,629

12-2 151,200 418,656 890

12-3 165,000 388,935 1,061

13-1 165,000 450,275 1,535

13-2 164,400 443,106 6,918

13-3 173,400 455,373 3,877

14-1 180,600 478,885 5,214

14-2 184,800 475,530 2,709

14-3 181,800 475,474 11,705

15-1 199,200 513,205 1,793

15-2 195,000 520,933 7,733

15-3 204,000 515,655 3,153

16-1 210,000 513,711 4,085

16-2 213,000 525,476 10,625

16-3 216,000 540,552 8,321

17-1 226,800 552,209 4,821

17-2 229,800 554,290 6,513

17-3 229,800 582,223 7,610

1Attacker’s objective value calculated via MS-RSS
2The solution time of MS-RSS

68

Table B.2. MS-RSS solutions to large-sized problem in-

stances based on low level budget with K = 6

Instance etot OVMS−RSS
1 CPUMS−RSS

2

No (TL) (TL) (sec)

11-1 68,400 244,826 10,920

11-2 69,600 242,505 8,997

11-3 75,300 244,814 9,116

12-1 79,800 253,023 9,174

12-2 75,600 277,464 5,601

12-3 82,500 232,252 5,256

13-1 82,500 291,288 5,666

13-2 82,200 283,359 36,702

13-3 86,700 310,922 34,866

14-1 86,400 288,379 17,073

14-2 92,400 291,356 13,583

14-3 90,900 302,989 25,042

15-1 99,600 329,193 12,666

15-2 97,500 352,567 43,341

15-3 102,000 351,240 28,357

16-1 105,000 303,939 20,680

16-2 106,500 315,863 32,583

16-3 108,000 354,373 98,176

17-1 113,400 339,718 52,329

17-2 114,900 344,157 73,914

17-3 114,900 381,281 58,124

1Attacker’s objective value calculated via MS-RSS
2The solution time of MS-RSS

69

APPENDIX C: EFFECT OF CYCLING CHECK IN

MS-RSS

Table C.1. The results of MS-RSS and MS-RSS without

cycling check to instances based on high level budget with

K = 6

Instance OVno−cycling
1 CPUno−cycling

2 OVwith−cycling
3 CPUwith−cycling

4 OV Gap CPU Gap

No (TL) (sec) (TL) (sec) (%) (%)

5-1 208,219 109 213,249 67 2.36 -62.69

5-2 166,765 91 167,760 48 0.59 -89.58

5-3 180,521 101 183,783 91 1.77 -10.99

10-1 351,133 1,896 360,567 1,105 2.62 -71.58

10-2 347,724 1,379 348,330 859 0.17 -60.54

10-3 355,242 782 357,653 470 0.67 -66.38

15-1 503,668 2,118 513,205 1,793 1.18 -18.13

15-2 515,576 9,768 520,933 7,733 1.03 -26.32

15-3 512,642 7,961 515,655 3,153 0.58 -152.49

1Attacker’s objective value calculated via MS-RSS without cycling check
2The solution time of MS-RSS without cycling check
3Attacker’s objective value calculated via MS-RSS
4The solution time of MS-RSS

70

APPENDIX D: EFFECT OF THE MULTI-START

NUMBER IN MS-RSS

Table D.1. MS-RSS solutions problem instances based

on high level budget with K = 1 and K = 6

Instance OVK=1
1 CPUK=1

2 OVK=6
3 CPUK=6

4 OV Gap CPU Gap

No (TL) (sec) (TL) (sec) (%) (%)

4-2 138,445 7 140,902 29 1.74 75.86

5-2 164,511 7 167,760 48 1.94 85.42

6-2 202,609 18 202,636 131 0.01 86.26

7-2 248,512 24 248,815 191 0.12 87.43

8-2 276,822 45 276,822 352 0.00 87.22

9-2 295,546 40 296,831 540 0.43 92.59

10-2 348,076 157 348,330 859 0.07 81.72

11-2 373,776 194 375,081 1,272 0.35 84.75

12-2 415,226 128 418,656 890 0.82 85.62

13-2 442,249 1,259 443,106 6,918 0.19 81.80

14-2 473,180 749 475,530 2,709 0.49 72.35

15-2 516,896 1,432 520,933 7,733 0.77 81.48

16-2 520,560 1,654 525,476 10,625 0.94 84.43

17-2 548,529 876 554,290 6,513 1.04 86.55

1Attacker’s objective value calculated via MS-RSS for single restart
2The solution time of MS-RSS with single restart
3Attacker’s objective value calculated via MS-RSS for K = 6
4The solution time of MS-RSS with K = 6

71

Table D.2. MS-RSS solutions to problem instances based

on high level budget with K = 6 and K = 10

Instance OVK=6
1 CPUK=6

2 OVK=10
3 CPUK=10

4 OV Gap CPU Gap

No (TL) (sec) (TL) (sec) (%) (%)

4-2 140,902 29 141,240 47 0.24 62.07

5-2 167,760 48 167,953 82 0.11 70.83

6-2 202,636 131 202,636 214 0.00 63.36

7-2 248,815 191 248,815 412 0.00 115.71

8-2 276,822 352 276,822 537 0.00 52.56

9-2 296,831 540 296,831 1,110 0.00 105.56

10-2 348,330 859 348,330 1,337 0.00 55.65

11-2 375,081 1,272 378,769 2,098 0.97 64.94

12-2 418,656 890 418,656 1,459 0.00 63.93

13-2 443,106 6,918 443,106 8,784 0.00 26.97

14-2 475,530 2,709 475,530 3,698 0.00 36.51

15-2 520,933 7,733 526,452 10,799 1.05 39.65

16-2 525,476 10,625 525,476 11,713 0.00 10.24

17-2 554,290 6,513 560,009 7,846 1.02 20.47

1Attacker’s objective value calculated via MS-RSS for K = 6
2The solution time of MS-RSS with K = 6
3Attacker’s objective value calculated via MS-RSS for K = 10
4The solution time of MS-RSS with K = 10

72

APPENDIX E: PARTIAL INTERDICTION vs. FULL

INTERDICTION

Table E.1. Partial interdiction versus full interdiction

based on high level budget with K = 6

Partial Interdiction Full Interdiction

MS-RSS or PGS ES

Instance #EF1 OV2 CPU3 OV4 CPU 5 OV Gap CPU Gap

No (TL) (sec) (TL) (sec) (%) (%)

4-1 4 168,174 29 154,864 0 8.59 0

4-2 4 140,902 29 126,343 1 11.52 2800.00

4-3 4 146,357 33 142,095 1 3.00 3200.00

5-1 5 213,249 67 200,510 2 6.35 3250.00

5-2 5 167,760 48 159,977 2 4.87 2300.00

5-3 5 183,783 91 181,904 2 1.03 4450.00

6-1 6 201,362 90 198,816 4 1.28 2150.00

6-2 6 202,636 131 189,731 8 6.80 1537.50

6-3 6 205,554 105 203,067 7 1.22 1400.00

7-1 7 251,692 164 246,842 16 1.96 925.00

7-2 7 248,815 191 243,036 19 2.38 905.26

7-3 7 248,187 426 237,630 50 4.44 752.00

8-1 8 287,7326 3,953 273,713 55 5.12 7087.27

8-2 8 277,0846 2,923 270,847 53 2.30 5415.09

8-3 8 284,9666 5,023 277,874 69 2.55 7179.71

9-1 9 334,3866 27,415 310,419 211 7.72 12892.89

9-2 9 304,1146 33,085 300,805 222 1.10 14803.15

1The number of the facilities in the system
2Attacker’s partial interdiction objective value calculated via MS-RSS or PGS
3The solution time of MS-RSS or PGS with the related m value
4Attacker’s full interdiction objective value calculated via ES
5The solution time of ES with the related m value
6The solution obtained from PGS

73

Table E.1. Partial interdiction versus full interdiction

based on high level budget with K = 6 (Contd.)

Partial Interdiction Full Interdiction

MS-RSS or PGS ES

Instance #EF1 OV2 CPU3 OV4 CPU 5 OV Gap CPU Gap

No (TL) (sec) (TL) (sec) (%) (%)

9-3 9 326,8186 28,254 320,299 224 2.04 12513.39

10-1 10 360,567 1,105 356,161 665 1.24 66.17

10-2 10 349,4066 221,395 343,840 885 1.62 24916.38

10-3 10 358,5216 227,275 348,431 529 2.90 42863.14

11-1 11 380,498 999 378,304 2,136 0.58 -53.23

11-2 11 375,081 1,272 374,132 4,678 0.25 -72.81

11-3 11 380,463 1,109 373,427 4,231 1.88 -73.79

12-1 12 403,793 1,629 403,762 5,213 0.01 -68.75

12-2 12 418,656 890 412,966 3,716 1.38 -76.05

12-3 12 388,935 1,061 388,538 4,695 0.10 -77.40

13-1 13 450,275 1,535 446,797 9,833 0.78 -84.39

13-2 13 443,106 6,918 438,432 62,147 1.07 -88.87

13-3 13 455,373 3,877 458,384 68,239 -0.66 -94.32

14-1 14 478,885 5,214 477,390 66,026 0.31 -92.10

14-2 14 475,530 2,709 474,687 40,200 0.18 -93.26

14-3 14 475,474 11,705 474,193 12,644 0.27 -7.43

15-1 15 506,205 1,793 514,147 57,793 -1.54 -96.90

15-2 15 520,933 7,733 530,109 82,811 -1.73 -90.66

15-3 15 515,655 3,153 524,585 124,278 -1.70 -97.46

74

Table E.2. Partial interdiction versus full interdiction

based on low level budget with K = 6

Partial Interdiction Full Interdiction

MS-RSS or PGS ES

Instance #EF1 OV2 CPU3 OV4 CPU 5 OV Gap CPU Gap

No (TL) (sec) (TL) (sec) (%) (%)

4-1 4 133,817 69 125,372 0 6.74 0

4-2 4 95,897 68 90,141 1 6.39 6700.00

4-3 4 95,760 68 87,508 1 9.43 6700.00

5-1 5 151,820 148 139,848 1 8.56 14700.00

5-2 5 105,359 104 92,051 1 14.46 10300.00

5-3 5 122,576 290 110,220 1 11.21 28900.00

6-1 6 142,0906 71 139,208 2 2.07 3450.00

6-2 6 123,886 413 107,340 5 15.41 8160.00

6-3 6 132,308 306 128,499 3 2.96 10100.00

7-1 7 173,537 721 171,619 7 1.12 10200.00

7-2 7 172,353 641 169,774 9 1.52 7022.22

7-3 7 161,550 1425 157,841 26 2.35 5380.77

8-1 8 192,478 2012 188,557 21 2.08 9480.95

8-2 8 187,248 587 175,145 25 6.91 2248.00

8-3 8 196,436 3216 176,945 27 11.02 11811.11

9-1 9 220,7236 37,287 216,747 90 1.83 41330.00

9-2 9 191,439 5594 183,252 108 4.47 5079.63

9-3 9 223,5216 31,017 218,391 106 2.35 29161.32

10-1 10 236,7036 272,156 233,596 291 1.33 93424.40

10-2 10 232,9576 296,563 227,334 458 2.47 64651.75

1The number of the facilities in the system
2Attacker’s partial interdiction objective value calculated via MS-RSS or PGS
3The solution time of MS-RSS or PGS with the related m value
4Attacker’s full interdiction objective value calculated via ES
5The solution time of ES with the related m value
6The solution obtained from PGS

75

Table E.2. Partial interdiction versus full interdiction

based on low level budget with K = 6 (Contd.)

Partial Interdiction Full Interdiction

MS-RSS or PGS ES

Instance #EF1 OV2 CPU3 OV4 CPU 5 OV Gap CPU Gap

No (TL) (sec) (TL) (sec) (%) (%)

10-3 10 242,1226 211,454 229,739 238 5.39 88746.22

11-1 11 244,826 10,920 243,585 900 0.51 1113.33

11-2 11 242,505 8,997 240,670 2,981 0.76 201.81

11-3 11 244,814 9,116 236,688 2,439 3.43 273.76

12-1 12 253,023 9,174 247,633 2,327 2.18 294.24

12-2 12 277,464 5,601 272,005 1,663 2.01 236.80

12-3 12 232,252 5,256 232,908 1,902 -0.28 176.34

13-1 13 291,288 5,666 288,988 2,506 0.80 126.10

13-2 13 283,359 36,702 275,493 38,686 2.86 -5.13

13-3 13 310,922 34,866 308,637 54,780 0.74 -36.35

14-1 14 288,379 17,073 290,485 11,482 -0.72 48.69

14-2 14 291,356 13,583 287,979 20,699 1.17 -34.38

14-3 14 302,989 25,042 301,285 10,626 0.57 135.67

15-1 15 329,193 12,666 331,430 28,593 -0.67 -55.70

15-2 15 352,567 43,341 356,932 63,971 -1.22 -32.25

15-3 15 351,240 28,357 348,596 61,442 0.76 -53.85

76

APPENDIX F: BUDGET EFFECT IN INTERDICTION

STRATEGIES

Table F.1. MS-RSS solutions to instance 7-1 based on

different budget levels

Instance etot OV1 CPU 2

No (TL) (TL) (sec)

7-1 0 84,596 971

7-1 30,200 143,959 2,222

7-1 60,400 197,449 756

7-1 90,600 255,063 385

7-1 120,800 306,122 208

7-1 151,000 361,500 41

1Attacker’s objective value calculated via MS-RSS
2The solution time of MS-RSS

77

Table F.2. MS-RSS solutions to instance 14-1 based on

different budget levels

Instance etot OV1 CPU 2

No (TL) (TL) (sec)

14-1 0 128,441 45,419

14-1 60,800 244,079 50,838

14-1 121,600 362,519 11,809

14-1 182,400 479,841 5,473

14-1 243,200 597,557 2,163

14-1 304,000 713,000 1,162

1Attacker’s objective value calculated via MS-RSS
2The solution time of MS-RSS

78

REFERENCES

1. Aksen, D., N. Piyade and N. Aras, “The Budget Constrained r-Interdiction Me-

dian Problem with Capacity Expansion”, Central European Journal of Operations

Research, Vol. 18, No. 3, pp. 269-291, 2010.

2. Brooks, C., “The Introduction to Ameoba”, 1997, http://www.cs.usfca.edu

/ brooks/papers/amoeba.pdf, 10 October 2010.

3. Church, R. and C. ReVelle, “The Maximal Covering Location Problem”, Papers of

the Regional Science Association, Vol. 18, pp. 101-118, 1974.

4. Church, R. L., M. P. Scaparra, R. S. Middleton, “Identifying Critical Infrastructure:

The Median and Covering Facility Interdiction Problems”, Annals of the Association

of American Geographers, Vol. 94, No. 3, pp. 491-502, 2004.

5. Church, R. L. and M. P. Scaparra, “Protecting Critical Assets: The r-interdiction

Median Problem With Fortification”, Geographical Analysis, Vol. 39, No. 2, pp.

129-146, 2007.

6. Dempe, S., “Foundations of Bilevel Programming”, Kluwer Academic Publishers,

Dordrecht, The Netherlands, 2002.

7. Israeli, E. and Wood, R.K., “Shortest-path Network Interdiction”, Networks, Vol.

4, pp. 97-111, 2002.

8. Gurson, A. P., “Simplex Search Behavior in Nonlinear Optimization”, 2000,

http://www.cs.wm.edu/ va/CS495/gurson.pdf, 10 October 2010.

9. Gm, Z. H. and Floudas C.A., “Global Optimization of Mixed-Integer Bilevel Pro-

gramming Problems”, Computational Management Science, Vol. 2, No. 3, pp. 181-

212, 2005.

79

10. Humphrey, D.G. and Wilson, J.R. , “A Revised Simplex Search Procedure for the

Stochastic Simulation Response Surface Optimization”, Informs Journal on Com-

puting, Vol. 12, No. 4, Fall 2000.

11. H. von Stackelberg. The Theory of the Market Economy, William Hodge & Co.,

London, UK, 1952.

12. Luersen, M.A. and Riche, R., “Globalized Nelder-Mead Method for Engineering

Optimization”, Computers and Structures, Vol. 82, pp. 1251-1260, 2004.

13. Moore, J.T. and Bard, J.F., “The Mixed-Integer Linear Bilevel Programming Prob-

lem”, Operations Research, Vol. 38, No. 5, pp. 911-921, 1990.

14. Motto, A. L., J. M. Arroyo and F. D. Galiana, “MILP for the Analysis of Electric

Grid Security under Disruptive Threat” IEEE Trans. on Power Syst., Vol. 20, No.

3, pp. 1357-1365, 2005.

15. O’Hanley, J.R., R. L. Church, and J. K. Gilless, “Locating and Protecting Critical

Reserve Sites to Minimize Expected and Worst-Case Losses”, Biological Conserva-

tion, Vol. 34, pp. 130-141, 2007

16. Radio Free Europe - Radio Liberty: Afghanistan: Mobile-Phone Towers Are Tal-

iban’s New Target, 2008, http://www.rferl.org/content/ article/1347757.html, 10

October 2010.

17. Scaparra, M. P. and R. L. Church, “An Exact Solution Approach for The In-

terdiction Median Problem With Fortification”, European Journal of Operational

Research, Vol. 189, No. 1, pp. 76-92, August 2008.

18. Scaparra, M. P. and R. L. Church, “A Bilevel Mixed-integer Program for Critical

Infrastructure Protection Planning”, Computers and Operations Research, Vol. 35,

No. 6, pp. 1905-1923, June 2008.

19. Scaparra, M. P., Liberatore, F., and Daskin, M.S., “Analysis of Facility Protection

80

Strategies against Uncertain Numbers of Attacks: The Stochastic r-Interdiction

Median Problem with Fortification”, Kent Business School, University of Kent,

Working Paper No. 176, 2008.

20. Smith, J.C., “Basic interdiction models”, Wiley Encyclopedia of Operations Re-

search and Management Science, 2010, http://eu.wiley.com/WileyCDA/Section/id-

380764.html, 22 May 2010.

21. Spendley, W., Hext, G.R., Himsworth, F.R., “Sequential Application of Simplex

Design in Optimization and Evolutionary Operations”, Technometrics, Vol. 4, No.

4, pp. 441-461, 1962.

22. Walter, F.H., Parker, Jr. L.R., Morgan, S.L., and Deming,S.N. “Sequential Simplex

Optimization: a Technique for Improving the Quality and Productivity in Search,

Development, and Manufacturing”, CRC Press, 1991.

23. Wen, U.P., Yang, Y.H., “Algorithms for Solving the Mixed-Integer Two-Level Lin-

ear Programming Problem”, Computers and Operations Research, Vol. 17, No. 2,

pp. 133-142, 1990.

24. Wolff, S.,”A Local and Globalized, Constrained and Simple Bounded Nelder-Mead

Method”, 2004, http://webuser.uni-weimar.de/wolff3/software/BNM-GBNM.pdf,

15 June 2009.

25. Wollmer, R., “Removing Arcs from a Network”, Operations Research, No. 12, pp.

934-940, 1964.

26. Wood, R. K., “Deterministic Network Interdiction”, Mathematical and Computer

Modelling , Vol. 17, pp. 1-18, 1993.

