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ABSTRACT

LPV CONTROLLER SYNTHESIS FOR THE ROTARY

INVERTED PENDULUM

Linear parameter varying (LPV) controller design for nonlinear systems is mostly

considered as challenging. Moreover, the available methods and tools suggested in

the literature are scarce and not well tested on physical systems. In this thesis, the

design of the LPV controller for the Rotary Inverted Pendulum (RIP) is presented.

Starting from a linear fractional transformation structure (LFT) of the LPV plant,

which is obtained by nonlinear dynamical equations of the RIP, controller synthesis

Linear Matrix Inequality (LMI) conditions are developed. By involving LMIs, based

on LPV synthesis theory, the controller design procedure is performed. Additionally,

the designed LPV controller performance is evaluated by the provided simulation and

experimental results for different conditions.
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ÖZET

DÖNER TERS SARKAÇ İÇİN DPD DENETİMCİ SENTEZİ

Doğrusal olmayan sistemler için Doğrusal Parametre Değişkenli (DPD) denetimci

tasarımı çoğunlukla sınayıcı olarak kabul edilir. Ayrıca, litaratürde önerilen mevcut

yöntem ve araçlar kolaylıkla bulunamamakta ve fiziksel sistemler üzerinde iyi bir şekilde

test edilememektedir. Bu tezde, Döner Ters Sarkaç (DTS) için DPD denetimci tasarımı

takdim edilmiştir. DTS’nin doğrusal olmayan dinamik denklemlerinden elde edilmiş

olan DPD sistemin Dorusal Kesirli Dönüşüm (DKD) yapısından başlayarak, denetimci

sentezi için gereken Doğrusal Matris Eşitsizliği (DME) şartları oluşturuldu. Denetimci

tasarım prosedürü DME’ni içeren DPD sentezi teorisi temel alınarak gerçekleştirildi.

Ayrıca, tasarlanan DPD denetimci performansı simülasyon ve deneysel sonuçlar ile

farklı durumlar için değerlendirildi.
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1. INTRODUCTION

1.1. Rotary Inverted Pendulum System

Control of Inverted Pendulum (IP) is one of the most classical and interesting

application of control engineering. Many different types of IP systems, mainly includ-

ing linear, rotary, double and triple versions, have been derived and several control

algorithms have been implementing on these systems [2], [4], [9].

In aerospace industry the inverted pendulum model can be used as a benchmark

tool for several algorithms in a way that it represents yaw and pitch of a rocket in flight

[1].

Rotary Inverted Pendulum (RIP) is one of the member of IP family which was

first developed at Tokyo Institute of Technology by Dr. Katsuhisa Furuta under the

name of “Furuta Pendulum”. The RIP employed in this thesis is produced by Quanser

Inc. as a laboratory experiment tool [1].

Figure 1.1. Overview of RIP developed by Quanser Inc.

As shown in the Figure 1.1 [1], RIP system consists of three main components which
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are the pendulum, the pendulum arm and the DC motor. Pendulum and arm are

connected with a ball bearing and they are perpendicular to each other. The arm is

fixed to the rotor of the DC motor. While the pendulum can freely rotates in the

vertical plane, the pendulum arm rotate in the horizontal plane in conjunction with

the rotor angle of the DC motor. DC motor has permanent magnets and no brushes.

It is directly driven by applying DC voltage between 0 and 15 volts.

The nonlinear characteristics of the RIP makes it one of the challenging control

engineering problems. Most commonly, stabilization problems in robotics can be given

as a real life application of the RIP [18].

1.1.1. RIP Components

RIP consists of the following mechanical and electrical units which are shown in

the next figure, Figure 1.2 [1] :

1. Base unit (Including DC motor, motor encoder and gears)

2. Thumbscrews

3. Coupling arm

4. Pendulum sensor (Pendulum encoder)

5. Shaft (Connects pendulum and encoder)

6. Fixture

7. Pendulum

The RIP has gears, thumbscrews, coupling arm, shaft, fixture and pendulum as me-

chanical units. The inverted pendulum plant without actuation and sensing units can

be formed from the mechanical components listed previously. However, in order to

design a proper feedback control system, the actuation and sensing units must be

incorporated to the plant, which operate with electricity. Hence, the electrical compo-

nents play a key role in RIP. The RIP basically comprises 4 main electrical components

which are:
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Figure 1.2. RIP components.

• Sensing and Actuating Units (Encoders and DC motor)

• Control Signal Interface Card (Transfers and smooths (digital to analog converter)

the control signal sent by computer to amplifier)

• Amplifier (Amplifies the control signal and sends to the DC motor)

• PC and the control algorithm

A general control system block diagram structure is shown in Figure 1.3 [2]. In

this diagram, measurement and actuator block represents the encoders and the DC

motor; DAC block represents the control signal interface card; the digital controller

block is also represents the PC and control algorithm.

Figure 1.3. Digital control system block diagram.
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The algorithm utilized in this thesis is based on Linear Matrix Inequalities (LMI).

LMIs are a convex optimization method for the controller synthesis. LMIs and LMI

techniques have emerged as a powerful design tools for system and control engineering.

The following two elements make LMI techniques advantageous:

• A variety of design specifications and constraints can be expressed through LMIs.

• A problem can be solved exactly by efficient convex optimization algorithms with

solvers [19], once formulated in terms of LMIs.

A brief mathematical introduction to LMIs is presented in Chapter 4; “ANALYSIS

AND DESIGN: THEORETICAL BACKGROUND”

1.2. Problem Description

1.2.1. Problem Statement

In this thesis, linear parameter varying (LPV) controller design and synthesis

are made for the RIP. The nonlinear parameters (some states of the state space RIP

model) are supposed as time varying parameters in the mathematical model of the

RIP. By this approach, the uncertainty-like time varying parameters are taken out from

the nonlinear model to form a linear fractional representation (LFR) structure of the

model. Since the uncontrolled parameter-dependent system stability can be expressed

through LMIs [6], the stabilizing controllers are synthesized subject to some stability

conditions for the closed loop system with control inputs and measured outputs [3],

[8]. Eventually, the resulting feasible LMI conditions synthesize the controller.

1.2.2. Related Work

Both RIP and IP has been implemented with many different control algorithms

so far. Linear and nonlinear controllers are designed for the stabilization of the RIP.

Some of these papers are given in this section.
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One of the papers that presents the design of a linear controller is “Gain-Scheduling

Control of a Rotary Inverted Pendulum by Weight Optimization and H∞ Loop Shap-

ing Procedure [4]”. In this paper, a gain-scheduling control method proposed by Hyde

and Glover is applied. H∞ loop shaping procedure is adopted as a controller synthesis

method at each operating point. Moreover, the optimum weights required for the con-

troller synthesis are found by the formulation of the weight optimization problem as a

generalized eigenvalue minimization problem.

“Robust Predictive Control of the Furuta Pendulum [2]”, is another paper that

deals with the control of the LPV model of the Furuta Pendulum. Based on this

model, a balancing gain-scheduling controller is designed using robust predictive control

techniques. Also, the speed of the rotating arm is chosen as gain scheduling variable.

Methods based on polytope geometric techniques are used for stabilization of the

rotary inverted pendulum are given in “Research on Control of Rotary Inverted Pen-

dulum via Polytope Techniques Rotary Inverted Pendulum [9]”. Polytope techniques

are demonstrated for the controller synthesis in the paper.

A nonlinear controller design for the rotary inverted pendulum system using the

input-state linearization method is provided in “Input-State Linearization of a Rotary

Inverted Pendulum [21]”. The RIP is linearized, and the conditions necessary for the

system to be linearizable are discussed in the paper. Once the system is linearized, the

linear servo controllers are designed based on the pole-placement method.

Additionally, mathematical modeling of IP has also been published as journal

and conference papers. “Modeling of the Rotary Inverted Pendulum System [10]”

titled paper models the RIP with Bond Graph method which consists of subsystems

linked together by lines representing the bonds.

Another paper for the modeling of LPV systems is “Identification of Linear Pa-

rameter Varying Models [11]”. In this paper the identification of a certain class of

discrete-time nonlinear systems is handled. It is provided that the identification prob-
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lem can be reduced to a linear regression, and provide compact formulae for the corre-

sponding least mean square and recursive least-squares algorithms.

In addition to the articles related to the controller design and system modeling,

the use of LMIs in control is presented in “Linear Matrix Inequalities in System and

Control Theory [6]” comprehensively. This book solve problems from system and con-

trol theory using convex optimization methods. The book provides numerical solution

methods for most LMIs and gives analytical solutions for a few special cases.

The organization of the thesis proceeds as follows: Mathematical modeling and

the derivation of the LPV model are presented in Chapter 2. In Chapter 3, linear frac-

tional representation (LFR) and linear fractional transformation (LFT) of uncertain

systems are described. LPV controller synthesis discussed in Chapter 4. Implemen-

tation of the controller in MATLAB environment and simulation set-up are given in

Chapter 5. Simulation results for different configurations are found in Chapter 6. In

the final chapter, evaluation of the results and future studies are mentioned.
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2. MATHEMATICAL MODELING OF THE RIP

In this chapter both nonlinear and linearized mathematical models of the RIP are

derived. In mathematical modeling, a system model is represented by a set of ordinary

differential equations in terms of state variables and a set of algebraic equations that

relate the state variable to other system variables.

There are two main coordinates α and θ by which the displacement of the pen-

dulum and the arm angles are defined respectively. These coordinates are shown in the

figures 2.1 and 2.2 in detail and the angles are illustrated in a free body diagram and

a simplified physical model drawings. In Section 2.3 the derived nonlinear linearized

models are compared to the physical RIP to verify and validate the model accuracy.

2.1. Nonlinear Model of the RIP

Table 2.1. Symbols and descriptions.

Symbol Description

L Length to pendulum’s center of mass

h Distance of pendulum center of mass from ground

m Mass of pendulum

JCoM Pendulum inertia about its center of mass

r Rotating arm length

Vx Velocity of pendulum center of mass in the x-axis

Vy Velocity of pendulum center of mass in the y-axis

θ Rotating arm angle

α Pendulum deflection

A Fixing point of pendulum

B Center of mass of pendulum (CoM)
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The nomenclature used in the derivation of the equations are listed in Table 2.1. For

complete list of symbols, refer to “LIST OF SYMBOLS” section.

Simplified physical model of the RIP is shown in Figure 2.1 [17] below in which

the geometry of RIP is depicted. Taking into consideration of the directions of both

rotating arm and pendulum in motion the pendulum is displaced with α while the arm

rotates an angle of θ.

Figure 2.1. Simplified physical model of RIP.

Referring to Figure 2.1, the velocity of the pendulum at point B with respect to

A has two components:

VPendulumCoM = −L cos(α)α̇x̂− L sin(α)α̇ŷ (2.1)

The rotating arm is also moving with the pendulum at a rate of rθ̇. Hence, the absolute

velocity for the x and y velocity components of the pendulum mass at the point B can

be expressed using equation (2.1) as

Vx = rθ̇ − L cos(α)α̇ (2.2a)

Vy = −L sin(α)α̇ (2.2b)

With equations (2.2a) and (2.2b) the complete velocity of the pendulum is obtained.

After this point, dynamical equation of motions of the RIP will be derived.
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2.1.1. Derivation of the Dynamic Equations of the RIP

The dynamic equations of the system can be obtained through using Newtonian

method. Figure 2.2 [17] illustrates free body diagram of both the rotating arm and the

pendulum for which the dynamic equations are obtained.

Figure 2.2. Free body diagram of the rotating arm and the pendulum.

The acceleration of the point B is obtained in X and Y directions by differentiating the

equations (2.2a) and (2.2b) with respect to time as shown in the equations (2.3a) and

(2.3b)

V̇x = rθ̈ + L sin(α)α̇2 − L cos(α)α̈ (2.3a)

V̇y = −L cos(α)α̇2 − L sin(α)α̈ (2.3b)

Applying Newton’s Second Law to the pendulum in x direction at point A, we get

∑
Fx = mV̇x ⇒ mrθ̈ +mL sin(α)α̇2 −mL cos(α)α̈ = FAx (2.4)

And also in y direction at point A, we obtain

∑
Fy = mV̇y ⇒ mg −mL cos(α)α̇2 −mL sin(α)α̈ = FAy (2.5)

The moment of inertia of the pendulum about its center of mass is obtained by taking

the distance between axis and rotation mass, R, as 2L, since L is defined as to be half

the pendulum length. Therefore the moment of inertia of the pendulum is
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JCoM =
1

12
M(R)2 =

1

12
m(2L)2 =

1

3
m(L)2 (2.6)

Utilizing Euler’s Equation to the rotational motion of the pendulum at point B, we get

JCoM α̈ =
∑
MB ⇒

1

12
m(2L)2α̈ = FAx L cos(α) + FAy L sin(α)

⇒ 1

3
m(L)2α̈ = FAx L cos(α) + FAy L sin(α) (2.7)

If we apply the same formula for the rotating arm about point O it yields

JOθ̈ =
∑
MO ⇒ Jeqθ̈ = T −Beqθ̇ − FAxr (2.8)

where Beq is the viscous damping coefficient and T is the torque produced by the DC

motor. The DC motor dynamics is provided in Subsection 2.1.2.

Taking equations (2.4) and (2.5) into equation (2.7), we get

1

3
mL2α̈ = (mrθ̈ +mL sin(α)α̇2 −mL cos(α)α̈)L cos(α)

+(mg −mL cos(α)α̇2 −mL sin(α)α̈)L sin(α) (2.9a)

⇒ 1

3
mL2α̈ = (mLr cos(α)θ̈ +mL2 sin(α) cos(α)α̇2 −mL2 cos2(α)α̈)

+(mgL sin(α)−mL2 sin(α) cos(α)α̇2 −mL2 sin2(α)α̈) (2.9b)

⇒ 4

3
mL2α̈−mLr cos(α)θ̈ −mgL sin(α) = 0 (2.9c)

If equation (2.4) is substituted into (2.8) it yields



11

Jeqθ̈ = T −Beqθ̇ − (mrθ̈ +mL sin(α)α̇2 −mL cos(α)α̈)r (2.10a)

Jeqθ̈ = T −Beqθ̇ − (mr2θ̈ + rmL sin(α)α̇2 − rmL cos(α)α̈) (2.10b)

T −Beq = θ̇(mr2 + Jeq)θ̈ + rmL sin(α)α̇2 − rmL cos(α)α̈ (2.10c)

Finally, putting equations (2.9c) and (2.10c) together, the system’s motion of equations

would be obtained as follows

4

3
mL2α̈− rmL cos(α)θ̈ −mgL sin(α) = 0 (2.11a)

(mr2 + Jeq)θ̈ + rmL sin(α)α̇2 − rmL cos(α)α̈ = T −Beqθ̇ (2.11b)

2.1.2. The Complete Nonlinear and Linearized Models of the RIP

The mechanical system dynamic equations are obtained so far. However actuator

dynamics, in our case the actuator is a dc motor, must be accurately taken into account

in order to get a complete nonlinear system model. A simplified circuit diagram of a

dc motor is demonstrated in the figure below

Figure 2.3. Simplified circuit diagram of DC motor.

The output torque applied by the dc motor to the load shaft is [1]
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Toutput = ηgηmKgKtIm (2.12a)

= ηgηmKgKt
Vm −KgKtθ̇

Rm

(2.12b)

=
ηgηmKgKt

Rm

Vm −
ηgηmK

2
gKtKm

Rm

θ̇ (2.12c)

=
ηgηmKgKt(Vm −KgKm)θ̇

Rm

(2.12d)

where ηg, ηm are the efficiency coefficients; Kg, Km, Kt are some dc motor constants; Vm

is the applied voltage; and Rm is the armature resistance. Thus, the complete nonlinear

model of the system including actuator dynamics is obtained by taking equation (2.12d)

into equation (2.11b) which are [1]

cα̈− b cos(α)θ̈ − d sin(α) = 0 (2.13a)

aθ̈ − b cos(α)α̈ + b sin(α)α̇2 + Uθ̇ =
ηgηmKgKt

Rm

Vm (2.13b)

where

a = mr2 + Jeq U =
ηgηmK

2
gKtKm

Rm

+Beq

b = rmL W =
ηgηmKgKt

Rm

c =
4

3
mr2

d = mgL

For the two accelerations α̈ and θ̈, solving equations (2.13) yield the nonlinear model

below in equations (2.14).
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θ̈ =
1

ac− b2 cos2(α)

[
bd sin(α) cos(α)− bc sin(α)α̇2 − cUθ̇ + cWVm

]
(2.14a)

α̈ =
1

ac− b2 cos2(α)

[
ad sin(α)− bU cos(α)θ̇ − b2 sin(α) cos(α)α̇2 + bW cos(α)Vm

]
(2.14b)

Hence, the nonlinear state space representation of the RIP is

ẋ =A(x)x+B(x)u (2.15a)

y =Cx+Du (2.15b)

where x ∈ Rn is the state vector, u ∈ Rm is the control input, y ∈ Rp is the measured

output; the system state and input vectors are now chosen as

x =


θ

θ̇

α

α̇

 and, u =
(
Vm

)
respectively.

Also, A(x), B(x), C and D are determined from equations (2.14) as follows
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A(x) =


0 1 0 0

0 − cU
ac−b2 cos2(α)

(
bd sin(α) cos(α)
ac−b2 cos2(α)

)
1
α
− bc sin(α)α̇
ac−b2 cos2(α)

0 0 0 1

0 − bU cos(α)
ac−b2 cos2(α)

(
ad sin(α)

ac−b2 cos2(α)

)
1
α
− b2 cos(α) sin(α)α̇

ac−b2 cos2(α)

 (2.16a)

B(x) =


0

cW
ac−b2 cos2(α)

0

bW cos(α)
ac−b2 cos2(α)

 (2.16b)

C =

1 0 0 0

0 0 1 0

 (2.16c)

D =

0

0

 (2.16d)

Assuming α ≈ 0 and α̇ ≈ 0, the linearized model can be obtained by equations (2.13)

as follows:

cα̈− bθ̈ − dα = 0 (2.17a)

−bα̈ + aθ̈ + Uθ̇ = WVm (2.17b)

Again, solving equations (2.16) for the two accelerations α̈ and θ̈, yields the linearized

model below.

θ̈ =
1

ac− b2
(bdα− cUθ̇ + cWVm) (2.18a)

α̈ =
1

ac− b2
(adα− bUθ̇ + bWVm) (2.18b)
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The linearized state space representation of the RIP model, which will be utilized to

demonstrate the model accuracy, is obtained as follows:

ẋ =Ax+Bu (2.19a)

y =Cx+Du (2.19b)

where

A =


0 1 0 0

0 − cU
ac−b2

bd
ac−b2 0

0 0 0 1

0 − bU
ac−b2

ad
ac−b2 0

 (2.20a)

B =


0

cW
ac−b2

0

bW
ac−b2

 (2.20b)

C =

1 0 0 0

0 0 1 0

 (2.20c)

D =

0

0

 (2.20d)
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2.2. Derivation of Quasi-LPV RIP Model

Linear Parameter Varying (LPV) modeling is a modeling method that handles

time varying parameters as constants in a nonlinear model. If the time varying pa-

rameters contain some of the system states, then this type of LPV modeling would be

Quasi-LPV modeling. The plant description of an Quasi-LPV Model is:

ẋ =A(p)x+B(p)u (2.21a)

y =C(p)x+D(p)u (2.21b)

where p is the parameter vector and p ∈ Rl. Emphasizing the definition again, if

the parameter vector (scheduling vector) is a true exogenous signal, the system (2.21)

is referred to as a LPV system and, if the parameter vector contains the states or

the output the system (2.21) is called as a quasi-LPV system. LPV systems might be

accepted as extension of linear time varying systems (LTV systems) when the parameter

vector is determined.

In the RIP model the parameter or scheduling vector is defined as

p =


p1

p2

p3

p4

 :=


cos(α)

sin(α)

sin(α)
α

α̇

 (2.22)

The system matrices A(p), B(p), C,D can be also written as
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A(p) =


0 1 0 0

0 − cU
z

bd p1p3
z

− bc p2p4
z

0 0 0 1

0 − bU p1
z

ad p3
z

− b2 p1p2p4
z

 (2.23a)

B(p) =


0

cW
z

0

bW p1
z

 (2.23b)

C =

1 0 0 0

0 0 1 0

 (2.23c)

D =

0

0

 (2.23d)

where, parameter z is defined as z := ac−b2 cos2(α). Since ac−b2 cos2(α) denominator

parameter causes some problems in controller design and it has no significant effect

on the nonlinear model’s accuracy, cos2(α) in the parameter is taken as its nominal

value:“1”, ( cos2(0) ). Therefore parameter z would be z := ac − b2. The nonlinear

system in equations (2.15) now becomes a parameter dependent system.

2.3. The RIP Model Verification

In this section, the question of how adequately the nonlinear model represents

the physical system is answered. Both the linear and nonlinear models are simulated

and their simulation outputs are compared. The simulation results show that how the

linear and nonlinear models are distinguished [1]. After the simulation results, the

nonlinear RIP model is compared to the physical RIP system.
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The following figures illustrate the nonlinear and linearized Simulink models of

the RIP.

2

Alpha (rd)

1

Theta (rd)

c*f

sin

cos

cos

sin

1

s

1

s

1

s

1

s

a*c-(b*u)ˆ2

a*d

-c*e

-b*e

-bˆ2

-b*c

b*d

b*f

1

Vm(V)

Figure 2.4. Nonlinear RIP simulink model.

2

Alpha (rd)

1

Theta (rd)

b*d

-c*e

a*d

-b*e

1/(a*c-bˆ2)

1/(a*c-bˆ2)

b*f

c*f

1

s

1

s

1

s

1

s

1

Vm(V)

Figure 2.5. Linearized RIP simulink model.

The two models are compared (Figure 2.6) so that the initial pendulum angle, α, is

set to a very small value (0.00001 rad). Therefore, the hanging pendulum is allowed

to fall. As can be seen by the simulation results shown in Figure 2.7, the linear model
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correctly depicts the motion of the pendulum until the first 1.4 seconds or it accurately

describes the system for the first 15 degrees and then begins to diverge from the actual

motion [1].

Nonlinear RIP Model

Theta

Vm(V)

Theta (rd)

Alpha (rd)

R2D

R2D

R2D

R2D

Vm(V)

Theta (rd)

Alpha (rd)

Linearized RIP Model

0

0

Alpha

Figure 2.6. Nonlinear and linearized simulink model comparison.

Figure 2.7. Pendulum angle α and arm angle θ values of linearized and nonlinear

models.
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To compare the models with the physical RIP system, the pendulum models are

converted to hanging down position by taking α as π+α. The nonlinear and linearized

RIP system equations in (2.14) are now turn into

θ̈ =
1

ac− b2 cos2(α)

[
bd sin(α) cos(α) + bc sin(α)α̇2 − cUθ̇ + cWVm

]
(2.24a)

α̈ =
1

ac− b2 cos2(α)

[
− ad sin(α) + bU cos(α)θ̇ − b2 sin(α) cos(α)α̇2 − bW cos(α)Vm

]
(2.24b)

And the equations of the linearized RIP system in (2.18) would be

θ̈ =
1

ac− b2
(bdα− cUθ̇ + cWVm) (2.25a)

α̈ =
1

ac− b2
(−adα + bUθ̇ − bWVm) (2.25b)

Moreover, for the comparison of the two model with the physical system [17], below

model in Figure 2.8 is denoted.

Nonlinear RIP Model

Theta

Vm(V)

Theta (rd)

Alpha (rd)

Ramp Voltage

R2D

R2D

Vm(V)

Theta (rd)

Alpha (rd)

Physical RIP Interface

Manual Switch

Vm(V)

Theta (rd)

Alpha (rd)

Linear RIP Model

Input Voltage

2

Constant Voltage

Alpha

Figure 2.8. Comparison of three RIP models with simulink blocks.
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After running the physical system with the created models in Figure 2.8, it yielded

the following results for the ramp input voltage with slope 2 [17].

Figure 2.9. Input voltage.

Figure 2.10. Pendulum angle α of the compared models.

Figure 2.11. Arm angle θ of the compared models.
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Figure 2.12. Pendulum angle α of the closed-loop system with LQR controller.

Figure 2.13. Arm angle θ of the closed-loop system with LQR controller.

It can be observed that the responses of the models are similar to the physical

RIP system. They are almost in the same shape. However, since the model have some

unmodeled dynamics such as friction, the physical RIP system has some delay which

is illustrated in the Figures 2.10 and 2.11.

So far, the Quasi-LPV model has been obtained and verified with the physical

RIP. It is observed that the Quasi-LPV RIP model (2.23) is in the form of ratios

of polynomials which is called as ”Linear Fractional Systems”. This topic will be

discussed further in the next chapter: “Linear Fractional Representation (LFR) and

Uncertainty”.
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3. LINEAR FRACTIONAL REPRESENTATION AND

UNCERTAINTY

There are many types of uncertainties in a real system with which a good control

system should readily deal. To obtain satisfactory performance and stabilization, a

controller should be designed to compensate for perturbations, model uncertainties

and unmodeled dynamics. Some of these uncertainties may be known, partially known

or completely unknown.

Most real physical systems do not preserve their parameters for a certain time

interval. For example, resistivity of a circuit changes under different environmental

conditions (temperature or pressure) or mass of an aircraft cannot be considered as

constant due to the change in passenger or fuel loads. At this point, LPV systems

would be a promising approach when modeling a system with known or partially known

uncertainties.

3.1. Linear Fractional Transformation (LFT)

Consider the uncertain autonomous system below [13]

ẋ = G(p)x (3.1)

where p = (p1, . . . , pl)
T ∈ ∆ is l-dimensional parameter vector which is included in a

real matrix-valued function G(p) and x(t) ∈ Rn is the state vector.
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G(p)

ẋ = Ax + Bw
z = Cx + Dwx ẋ

∆(p)

w zx ẋ ⇔

Figure 3.1. Linear fractional representation of (3.1).

Writing equation (3.1) into canonical LFR form [13]:

ẋ
z

 =

H︷ ︸︸ ︷A B

C D

x
w

 , w = ∆(p)z (3.2)

This from, changing the equation(3.1) to equation (3.2) will be referred to as Linear

Fractional Transformation where ∆ linearly depends on p. Figure 3.1 depicts the block

diagrams of the equations.

Definition 3.1.1. A Linear Fractional Representation of G(p) is a pair (H,∆(p))

where

H =

A B

C D



is a constant partitioned matrix and ∆ is a linear function of p such that ∀p for which

I−D∆(p) is invertible and for all (η, ξ) there holds ξ = G(p)η if and only if there exist

vectors w and z such that:

ξ
z

 =

H︷ ︸︸ ︷A B

C D

η
w

 , w = ∆(p)z [13]. (3.3)
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A rational parameter dependent uncertain system is composed of two intercon-

nected blocks; nominal Linear Time Invariant (LTI) system and uncertainties by which

an LFT representation of the system is formed. The nominal LTI part is obtained

through taking the varying parameters or uncertainties out. Consequently, putting

these parameters into a ∆ block yields the uncertainty block structure. Figure 3.2

shows a non-autonomous state space representation of an uncertain plant [3].

A(∆)

D(∆)

B(∆)

C(∆)

u y

Figure 3.2. State-space representation of an uncertain plant.

If the parameter variation is pulled out from the non-autonomous system in Figure 3.2,

the LFT representation is obtained as follows:

u y

∆

w z

A B1 B2

C1 D11 D12

C2 D21 D22

Figure 3.3. LFT representation of an uncertain plant.

where A, B1, B2, C1, C2, D11, D12, D21, D22 are defined in the equations below.

ẋ =Ax+B1w +B2u (3.4a)

z =C1x+D11w +D12u (3.4b)

y =C2x+D21w +D22u (3.4c)

The relation between w and z is given as

w = ∆(p)z (3.5)
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The uncertainty or scheduling matrix ∆(p) is assumed to be an affine function of the

real scalar time-varying parameters p = (p1, p2 . . . , pt) ∈ Rt which means that for some

fixed matrices N1, N2 . . . , Nt; ∆(p) = p1N1 +p2N2 + · · ·+ptNt. Moreover, the matrices

N1, N2 . . . , Nt are not required to be square.

In a real vector space V with a set of points X, the minimal convex set containing

X is defined as a convex hull. The convex hull Π, in which the parameter vector p varies,

is given as Π = co{p1, p2, . . . , pi}, where pj = p1
1, p

2
2, . . . , p

j
t for j = 1, 2, . . . , i ; and zero

is presumably contained in the convex hull Π.[14]

When the state-space matrices have rational dependence on the parameters p1, p2,

. . . , pt then the LFT formulation will come out a scheduling or parameter variation

matrix ∆ of the following special structure:

∆ =


p1In1 0 . . . 0

0 p2In2 . . . 0
...

...
. . .

...

0 0 . . . ptInt

 (3.6)

In this structure, the indices n1, n2, . . . , nt denote the repetitiveness of the correspond-

ing parameter variations p1, p2, . . . , pt in the uncertain plant. These variations are

bounded with finite numbers that could be normalized to some desired bounds.

The LFT structure can be obtained in two ways, both of them are similar.

• Upper LFT Form

• Lower LFT Form
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u y

∆

w z

Mu

Figure 3.4. Upper LFT structure.

Definition 3.1.2. In an M − ∆ structure as shown in Figure 3.4 above, an upper

LFT: Fu(Mu,∆) is form that transfers u to y after closing the loop ∆.

Fu(Mu,∆) =M21u∆(I −M11u∆)−1M12u +M22u (3.7)

where

Mu :=

M11u M12u

M21u M22u

 [15].

Definition 3.1.3. In an M −∆ structure as shown in Figure 3.5 below, a lower LFT:

Fl(Ml,∆) is a form that transfers u to y after closing the loop ∆.

Fl(Ml,∆) =M12l∆(I −M22l∆)−1M21l +M11l (3.8)

where

Ml :=

M11l M12l

M21l M22l

 [15].
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u y

∆

w z

Ml

Figure 3.5. Lower LFT structure.

The matrix (I−M11u∆)−1 in equation (3.7) cannot be inverted for all values of ∆

unless M11u = 0. It is a requirement that invertibility is feasible for all corresponding

values of ∆. For instance if the parameter variations are normalized between -1 and

+1, it is expected to be invertible in the unit ball.

More comprehensively, the LFT structure can be denoted in a simple example. In

this example, a simple series RLC circuit is given. Resistance “R” and capacitance “C”

constants are the varying parameters of the circuit. Beginning with the mathematical

model of the circuit that depends on the parameters including “R” and “C”, the varying

parameters are taken out from the system and put into a scheduling block. Therefore,

the nominal system without considering the parameter variations is derived. At the

end of the example, the obtained ∆ block is connected to the nominal system to form

an LFT structure.

Example 3.1.1. In the following figure a series RLC circuit with varying parameters

resistance “R” and capacitance “C” is given. These parameters are varying between

R =[R,R], (3.9a)

C =[C,C]. (3.9b)

The mesh equation of the system is
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Lq̈ +Rq̇ +
1

C
q = V (3.10)

+

-

+
-V C

RL

i

Figure 3.6. Series RLC circuit.

where i = dq
dt , q denotes electric charge. The arithmetic means of the bounds give

the nominal values of the varying parameters “R” and “C”.

R0 =
R +R

2
, (3.11a)

C0 =
C + C

2
. (3.11b)

The variation of the parameters can be written as

Rv =R−R0, (3.12a)

Cv =C − C0. (3.12b)

The nominal values of the varying parameters are obtained. The mesh equation of the

system is re-written by the separate incorporation of both the nominal and varying

part of the parameters.
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Lq̈ +R0q̇ +
1

C0

q︸ ︷︷ ︸
Nominal System

=V +Rv q̇ + Cvq, ZR := q̇ and ZC := q (3.13a)

=V +RvZR + CvZC , WR = RvZR and WC = CvZC (3.13b)

=V +WR +WC (3.13c)

The equations can be put into the following form

q̇
q̈

 =

 0 1

− 1
LC0

− 1
LR0

q
q̇

+

0 0

1
L

1
L

WC

WR

+

0

1
L

V (3.14a)

ZC
ZR

 =

1 0

0 1

q
q̇

 (3.14b)

WC

WR

 =

Cv 0

0 Rv

ZC
ZR

 (3.14c)

The block diagram structure can be obtained as



q̇

q̈

ZC

ZR

y


=



0 1 0 0 0

− 1
LC0

− 1
LR0

1
L

1
L

1
L

1 0 0 0 0

0 1 0 0 0

1 0 0 0 0


︸ ︷︷ ︸

M



q

q̇

WC

WR

V


(3.15a)

WC

WR

 =

Cv 0

0 Rv


︸ ︷︷ ︸

∆

ZC
ZR

 (3.15b)
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Fu(Mu,∆) =


1 0

0 1

1 0


︸ ︷︷ ︸

Mu21

Cv 0

0 Rv


︸ ︷︷ ︸

∆

I −
 0 1

1
LC0

1
LR0


︸ ︷︷ ︸

Mu11

Cv 0

0 Rv


︸ ︷︷ ︸

∆



−1 0 0 0

1
L

1
L

1
L


︸ ︷︷ ︸

Mu12

+


0 0 0

0 0 0

0 0 0


︸ ︷︷ ︸

Mu22

[3]. (3.16)

3.2. Normalization

Normalization of the parameter variations between −1 and +1 is a better way

to analyze uncertain systems. The problem of “inverting” a non-invertible system can

also be covered under the normalization topic to some extent.A parameter dependent

system, which depends on the varying parameters σ1 ∈ [σ1, σ1] and σ2 ∈ [σ2, σ2], can

be given as an example. Normalization consists of replacing σ1, σ2 by σ̃1, σ̃2 where

σ1 =
σ1 + σ1

2
+
σ1 − σ1

2
σ̃1 (3.17a)

σ2 =
σ2 + σ2

2
+
σ2 − σ2

2
σ̃2 (3.17b)

The parameters σ̃1, σ̃2 vary between -1 and +1 that is, σ̃1, σ̃2 ∈ [−1,+1].

More generally, replacing ∆ by P∆′Q+R yields normalization. The expressions

of P,Q and R in the above example are

P =

In1 0

0 In2

 ; Q =

In1
σ1−σ1

2
0

0 In2
σ2−σ2

2

 ; R =

In1
σ1+σ1

2
0

0 In2
σ2+σ2

2
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The new equivalent of the uncertain system in which ∆ is replaced by ∆′ is

computed by the following lemma.

Lemma 3.2.1. If the scheduling matrix ∆ is replaced by P∆′Q + R the upper LFT

structures will be equivalent

Fu

M11 M12

M21 M22

 ,∆
 = Fu

M ′
11 M ′

12

M ′
21 M ′

22

 ,∆′
 (3.18)

where

M ′
11 =Q(I −M11R)−1M11P (3.19a)

M ′
12 =Q(I −M11R)−1M12 (3.19b)

M ′
21 =M21P +M21R(I −M11R)−1M11P (3.19c)

M ′
22 =M22 +M21R(I −M11R)−1M12 [15]. (3.19d)

In this step, the implementation of this normalization methodology is applied to Ex-

ample 3.1.1.

Example 3.2.1. The varying parameters: resistance “R” and capacitance “C” given

in Example 3.1.1 can be normalized as follows

C =C0 − C ′σC , σC = [−1,+1] where C0 :=
C + C

2
and C ′ := −C − C

2
(3.20a)

R =R0 −R′σR, σR = [−1,+1] where R0 :=
R +R

2
and R′ := −R−R

2
(3.20b)

The mesh equation of the system can be re-written as
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Lq̈ +R0q̇ +
1

C0

q︸ ︷︷ ︸
Nominal System

=V +R′σRq̇ + C ′σCq, ZR := R′q̇ and ZC := C ′q (3.21a)

=V + σRZR + σCZC , WR = σRZR and WC = σCZC (3.21b)

=V +WR +WC (3.21c)

The equations can be put into the following form again as

q̇
q̈

 =

 0 1

− 1
LC0

− 1
LR0

q
q̇

+

0 0

1
L

1
L

WC

WR

+

0

1
L

V (3.22a)

ZC
ZR

 =

C ′ 0

0 R′

q
q̇

 (3.22b)

WC

WR

 =

σC 0

0 σR

ZC
ZR

 (3.22c)

The block diagram structure can be obtained as



q̇

q̈

ZC

ZR

y


=



0 1 0 0 0

− 1
LC0

− 1
LR0

1
L

1
L

1
L

C ′ 0 0 0 0

0 R′ 0 0 0

1 0 0 0 0


︸ ︷︷ ︸

M



q

q̇

WC

WR

V


(3.23a)

WC

WR

 =

σC 0

0 σR


︸ ︷︷ ︸

∆

ZC
ZR

 (3.23b)
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Fu(Mu,∆) =
C ′ 0

0 R′

1 0


︸ ︷︷ ︸

Mu21

σC 0

0 σR


︸ ︷︷ ︸

∆

I −
 0 1

1
LC0

1
LR0


︸ ︷︷ ︸

Mu11

σC 0

0 σR


︸ ︷︷ ︸

∆



−1 0 0 0

1
L

1
L

1
L


︸ ︷︷ ︸

Mu12

+


0 0 0

0 0 0

0 0 0


︸ ︷︷ ︸

Mu22

[3]. (3.24)

It must be again stated that uncertain systems can be represented in LFT struc-

ture if the time varying parameters are in the rational polynomial form in the equations.

For the LFR representation, LFR Toolbox [15] is employed which provides a number of

useful processes including obtaining the LFT structure and normalization of the RIP

quasi-LPV model. This toolbox and RIP model in LFT structure will be explained

in detail in Chapter 5. Additionally, LFT structure of an uncertain system can also

be used in the design of the controller. In the next chapter, performance and stability

analysis and controller design methodology will be presented.
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4. ANALYSIS AND DESIGN: THEORETICAL

BACKGROUND

This chapter explains stability, performance analysis and the controller design of

an LFT structured LPV system. Some basic definitions of matrix analysis and a brief

introduction to Linear Matrix Inequalities (LMIs) are presented in the first section.

The stability and performance conditions of a parameter dependent system will be

presented in terms of LMIs in the second section. In the third section, a controller

design methodology will be presented.

4.1. Linear Matrix Inequalities

An n× n real symmetric matrix M = MT is said to be [7], [12]

• Positive Definite if xTMx > 0, ∀x ∈ Rn, x 6= 0

• Positive Semi-Definite if xTMx ≥ 0, ∀x ∈ Rn, x 6= 0

• Negative Definite if xTMx < 0, ∀x ∈ Rn, x 6= 0

• Negative Semi-Definite if xTMx ≤ 0, ∀x ∈ Rn, x 6= 0

Additionally, sign definiteness of a matrix can be determined by its eigenvalues(λ). A

n× n real symmetric matrix M = MT is said to be [7], [12]

• Positive Definite if and only if λi > 0, ∀i = 1 : n

• Positive Semi-Definite if and only if λi ≥ 0, ∀i = 1 : n

• Negative Definite if and only if λi < 0, ∀i = 1 : n

• Negative Semi-Definite if and only if λi ≤ 0, ∀i = 1 : n

Let A1, A2, · · · , An = ATn ∈ Rn×n be real symmetric matrices and y1, y2, · · · , yn ∈ Rn

be variables, a linear matrix inequality has the form [6]:

A0 + y1A1 + y2A2 + · · ·+ ynAn � 0
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The symbols ≺,�,�,� are used to describe the sign of a matrix. A system of k

individual LMIs [13] :

F 1
0 + x1F

1
1 + x2F

1
2 + · · ·+ xnF

1
n ≺ 0

...

Fm
0 + x1F

m
1 + x2F

m
2 + · · ·+ xnF

m
n ≺ 0

is equivalent to the following single LMI.


F 1

0 0
. . .

0 Fm
0

+
n∑
k=1

xk


F 1
k 0

. . .

0 Fm
k

 ≺ 0

which is very advantageous in a way that it yields simplicity and reduces computational

complexity for the solution.

Generally, it is very hard to find analytical solutions to LMIs. However, thanks

to today’s powerful computers, numerical solutions by employing convex optimization

techniques can be obtained. There are many ways to solve LMIs numerically. One

of the most popular and efficient ways is solving them in the MATLAB environment.

Several MATLAB based solvers are developed for the numerical solution such as: LMI-

LAB, SEDUMI SDPT3 and many more [19] . In this thesis, LMILAB [20] based IQC

Synthesis Toolbox [14] is used for parsing and the solution and the details of the solver

is given in Chapter 5. For more applications, see [5], [6]

4.2. Stability and Performance Analysis

The quadratic stability of an uncertain autonomous system is given in the fol-

lowing LMI form which is called as Lyapunov Inequality.
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Theorem 4.1.1. The uncertain autonomous system ẋ = A(p)x with p ∈ p is said to

be quadratically stable if there exists X � 0 with

A(p)TX +XA(p) ≺ 0, ∀p ∈ p

provided that V (x) = xTXx is defined as quadratic Lyapunov function.

Consider the uncertain autonomous system illustrated in Figure 3.1 where

wu := w,

zu := z

and

ẋ = Ax+Bwu (4.1a)

zu = Cx+Dwu, wu = ∆(zu) [6]. (4.1b)

In this representation, A is assumed to be Hurwitz and ∆ is in the block diagonal form.

Moreover, the following theorem with the LMI conditions give the robust stability LMI

conditions.

Theorem 4.1.2. Assume that F (p) = A+B∆(p)(I−D∆(p))−1C. Recall the definition

of quadratic stability: There exists X � 0 with

F (p)TX +XF (p) ≺ 0, ∀p ∈ p (4.2)

LFR is well-posed, (4.2) holds, if there exists a multiplier P with

∆(p)

I

T

P

∆(p)

I

 � 0, ∀p ∈ p (4.3)
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that also satisfies

I 0

A B

T  0 X

X 0

I 0

A B

+

0 I

C D

T

P

0 I

C D

 ≺ 0 [13]. (4.4)

Exogenous input called as disturbance can be added to uncertain autonomous system

in (4.1). In this case, the system can remain still stable with the incorporation of the

disturbances. Thus, an extra channel is required to include the effect of disturbance

on the system. This channel is called as Performance Channel and the system is now

turn into the following structure.

ẋ = Ax+B1wu +Bpwp (4.5a)

zu = C1x+D11wu +D1pwp and, wu = ∆(zu) (4.5b)

zp = Cpx+D1pwu +Dppwp (4.5c)

Figure 4.1 illustrates an uncertain system with performance channel.

wp zp

∆

wu zu

A B1 Bp

C1 D11 D1p

Cp Dp1 Dpp

Figure 4.1. Uncertain system with performance channel.

Consider the following manners of an LTI system with state space description

ẋ = Ax+Bw, x(0) = 0

z = Cx+Dw

or input-output description z = Tw and transfer matrix T (s) = C(sI − A)−1B + D,

which are used to quantify the effect of w (disturbance) onto z (measured output).
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• wp and zp are deterministic signals: system gain

• wp white noise: asymptotic output variance

• wp impulses: energy of outputs

In our case, the system gain or L2 norm is mostly used for analysis.

Definition 4.1.1. The L2 norm of a vector is defined as

‖x‖2 :=

√∫ ∞
0

‖x(t)‖2 d(t) (4.6)

If the norms for wp and zp are chosen to quantify the size of the signals then the worst

system amplification would be system or L2 gain which will be formulated rigorously as

follows

‖T ‖i2 := sup
0<‖wp‖<∞

‖Twp‖
‖wp‖

[3]. (4.7)

The following theorem gives the stability conditions for the system in (4.5) regarding

the L2 norm below γ.

Theorem 4.1.3. Consider the LPV system with performance channel in (4.5). Let

γ > 0 and A is Hurwitz, then the LPV system in (4.5) remains stable with L2 norm

below γ if there exists X = XT � 0 and matrices Q = QT , S and R = RT such that
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I 0 0

A B1 Bp

0 I 0

C1 D11 D1p

0 0 I

Cp Dp1 Dpp



T 

0 X 0 0 0 0

X 0 0 0 0 0

0 0 Q S 0 0

0 0 ST R 0 0

0 0 0 0 −γI 0

0 0 0 0 0 I
γ





I 0 0

A B1 Bp

0 I 0

C1 D11 D1p

0 0 I

Cp Dp1 Dpp


≺ 0 (4.8)

and

∆(p)

I

T Q S

ST R

∆(p)

I

 � 0, ∀p ∈ p [3]. (4.9)

4.3. Controller Synthesis

Throughout this section, controller synthesis procedure is explained. The LMI

conditons required for controller synthesis tht guarantee robust stability and perfor-

mance are also provided.

In the next figure, it is illustrated that a control channel is added to Figure

4.1. Hence, a control input and output is incorporated in the uncertain system. The

equations for Figure 4.2 are

ẋ = Ax+B1wu +Bpwp +B2u (4.10a)

zu = C1x+D11wu +D1pwp +D12u wu = ∆(zu) (4.10b)

zp = Cpx+D1pzu +Dppzp +Dp2u (4.10c)

y = C2x+D21wu +D2pwp (4.10d)



41

wp
zp

∆

wu zu

A B1 Bp B2

C1 D11 D1p D12

Cp Dp1 Dpp Dp2

C2 D21 D2p D22
u y

Figure 4.2. Uncertain system with control and performance channel.

Our aim is to design a controller with the following structure.

ẋK = AKxK +BK2y +BK1wKu (4.11a)

u = CK2xK +DK22y +DK21wKu (4.11b)

zKu = CK1xK +DK12y +DK11wKu , wKu = ∆(zKu). (4.11c)

The controller block is also illustrated in Figure 4.3 below.

u y

∆

wKuzKu

AK BK2 BK1

CK2
DK22

DK21

CK1
DK12

DK11

Figure 4.3. Controller block of the uncertain system.
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∆

wu zu

u y

wKuzKu

K

G

0

0

∆(p)

∆(p)T

wp zp

LPV Plant

LPV Controller

Figure 4.4. Closed-loop structure of LPV plant with LPV controller.

The closed-loop LPV system can be expressed in the following form [3]

GCl =

 ACl BCl

CCl DCl

 (4.12a)

ACl = Al +Bl
2KC

l
2, BCl = B̂l

1 +Bl
2KD21 (4.12b)

CCl = Ĉ l
1 +Dl

12KC
l
2, DCl = D̂l

11 + D̂l
2KD

l
21 (4.12c)

where
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B̂l
1 :=

(
Bl

1 Bl
1

)
, Ĉ l

1 :=

C l
1

C l
p

 , D̂l
11 :=

Dl
11 Dl

1p

Dl
p1 Dl

pp

 , D̂l
12 :=

Dl
12

Dl
p2

 (4.13)

and

Al :=

A 0

0 0

 , C l
2 :=


C2 0

0 0

0 In

 , Bl
2 :=

B2 0 0

0 0 In

 , Dl
p2 :=

(
Dp2 0 0

)
(4.14)

C l
p :=

(
Cp 0

)
, Dl

1p :=

D1p

0

 , Dl
p1 :=

(
Dp1 0

)
, Dl

pp := Dpp (4.15)

C l
1 :=

C1 0

0 0m×n

 , Dl
12 :=


D21 0 D2p

0 Im 0

0 0 0

 , Bl
1 :=

B1 0

0 0n×m

 (4.16)

Dl
11 :=

D11 0

0 0m×n

 , K :=


DK22 DK21 CK2

DK12 DK11 CK1

BK2 BK1 AK

 , Dl
12 :=

D12 0 0

0 In×m 0

 (4.17)

Additionally, n and m denotes the number of states and repeated parameters respec-

tively.

The aim is to design a controller that would guarantee the asymptotic stability

of the closed-loop system in Figure 4.4 and to ensure that the performance inequality

‖wp → zp‖i2 < γ is satisfied for all permissible parameter trajectories and some scalar

γ. Therefore, the following theorem is used in the controller design.
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Theorem 4.2.1. There exists a controller (4.11) for LPV plant (4.10) such that

the closed-loop system in Figure 4.4 is asymptotically stable and satisfies the per-

formance inequality ‖wp → zp‖i2 < γ for some γ and all time varying matrices

∆ ∈ co{∆(p1), . . .∆(pm)} if there exist matrices X, Y, Q, R, S, Q̃, R̃, S̃ such that

X I

I Y

 � 0 (4.18)

ΨT



∗

∗

∗

∗

∗

∗



T 

0 X 0 0 0 0

X 0 0 0 0 0

0 0 Q S 0 0

0 0 ST R 0 0

0 0 0 0 −γI 0

0 0 0 0 0 1
γ
I





I 0 0

A B1 Bp

0 I 0

C1 D11 D1p

0 0 I

Cp Dp1 Dpp


Ψ ≺ 0 (4.19)

ΦT



∗

∗

∗

∗

∗

∗



T 

0 Y 0 0 0 0

Y 0 0 0 0 0

0 0 Q̃ S̃ 0 0

0 0 S̃T R̃ 0 0

0 0 0 0 −γI 0

0 0 0 0 0 1
γ
I





−AT −CT
1 −CT

p

I 0 0

−BT
1 DT

11 DT
p1

0 I 0

−BT
p −DT

1p −DT
pp

0 0 I


Φ � 0 (4.20)

Q ≺ 0,

∆(pj)

I

T Q S

ST R


︸ ︷︷ ︸

P

∆(p)j

I

 � 0, j = 1, . . . ,m (4.21)

R̃ � 0,

 I

−∆(pj)T

T  Q̃ S̃

S̃T R̃


︸ ︷︷ ︸

P̃

 I

−∆(pj)T

 ≺ 0, j = 1, . . . ,m (4.22)
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where Ψ denotes a basis matrix of ker [C2 D21 D2p] and Φ denotes a basis matrix of

ker [BT
2 DT

12 D
T
p2] [13].

After finding the multipliers and the Lyapunov matrix, controller K can be ob-

tained through the following procedure. First, state space equations of the closed-loop

system can be written as [15]


ξ̇

zd

zc

zp

 =


A Bd Bc Bp

Cd Ddd Ddc Ddp

Cc Dcd Dcc Dcp

Cp Dpd Dpc Dpp




ξ

wd

wc

wp

 , wd = ∆(p)zd, wc = ∆c(p)zc. (4.23)

The performance level γ∗ for the closed-loop is achieved if there exists

X � 0, P =


Q S Q12 S12

ST R ST12 R12

Q21 S21 Q22 S22

ST21 R21 ST22 R22

 (4.24)

that satisfy


∆(p) 0

I 0

0 ∆c(p)

0 I



T

P


∆(p) 0

I 0

0 ∆c(p)

0 I

 � 0, ∀p ∈ Π (4.25)

and
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∗

∗

∗

∗

∗

∗

∗

∗



T 

0 X 0 0 0 0 0 0

X 0 0 0 0 0 0 0

0 0 Q S Q12 S12 0 0

0 0 ST R ST12 R12 0 0

0 0 Q21 S21 Q22 S22 0 0

0 0 ST21 R21 ST22 R22 0 0

0 0 0 0 0 0 −γ∗I 0

0 0 0 0 0 0 0 1
γ∗
I





I 0 0 0

A Bd Bc Bp

0 I 0 0

Cd Ddd Ddc Ddp

0 0 I 0

Cc Dcd Dcc Dcp

0 0 0 I

Cp Dpd Dpc Dpp



≺ 0

(4.26)

After that point the steps are given to construct the LPV controller based on full block

scalings [15].

• Based on X and Y , the matrix X is constructed such that

X =

X ∗

∗ ∗

 , and X−1 =

Y ∗

∗ ∗

 (4.27)

Therefore the matrix X is extended by suitable blocks such that X is positive

definite and the inverse has Y as its left-upper block. Generally, Cholesky fac-

torizations of X and Y are used for the extension algorithm.

• The already computed multipliers P and P̃ which are

P =

Q S

ST R

 , and P̃ =

 Q̃ S̃

S̃T R̃

 (4.28)

are similarly extended to
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P =


Q S Q12 S12

ST R ST12 R12

Q21 S21 Q22 S22

ST21 R21 ST22 R22

 , and P−1 =


Q̃ S̃ ∗ ∗

S̃T R̃ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

 (4.29)

Moreover, the size of ∆c(p) can also be obtained by the number of positive and

negative eigenvalues of the matrix P − P−1.

• The parameters describing the controller is computed based on Projection Lemma

after having determined the matrices P and X.

The details of the derivation of the extension matrices and the computation of

controller can be found in reference [16].
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5. DESIGN AND IMPLEMENTATION OF THE LPV

CONTROLLER

This chapter deals with the implementation of the theoretical results to the RIP

system and it consists of four main sections; Defining system parameters, construction

of LFT structure, controller design and simulation configuration. First, LFT represen-

tation of the RIP system is developed via LFR toolbox which can be founded in detail

in reference [15]. Second, the LMIs (4.18), (4.19), (4.20), (4.21), (4.22) in Theorem

4.2.1, which are key to controller design, are solved using IQC Synthesis Toolbox [15] to

obtain the matrix variables X, Y,Q,R, Q̃, R̃ and scalar variable γ. IQC Synthesis Tool-

box utilizes LMILAB, a MATLAB toolbox created for the numerical solution of LMIs,

is known to be slower when compared to some other LMI solvers such as SeDuMi. The

details of each process will be given in advance.

5.1. LFT Structure of the RIP

LFT form of the RIP is derived by LFR Toolbox [15] developed by J.F. Magni.

With this toolbox modeling, manipulation, order reduction and approximation of un-

certain systems in LFT form can be made. The toolbox works in the MATLAB en-

vironment and it contains Simulink patch for simulation of uncertain systems in LFT

structure as well.

To define the varying parameters, lfrs function is used. Varying parameters

in (2.26) is defined as p1, p2, p3, and p4 in the toolbox environment. ∆ matrix is

constructed in alphabetical order according to LFR Toolbox’s internal procedures.

A, B, C, D corresponds to the system matrices A(p), B(p), C,D in (2.27), and

defined by putting the parameters p1, p2, p3, and p4 into the equation.

After constructing the LFR system, the parameters should be normalized be-

tween [-1 1] to get better results in the design process. Thanks to LFR toolbox, the
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normalization procedure is facilitated by a single function named normalizelfr.

However, before applying normalization procedure, minimizing the RIP LFR

structure with minlfr yields n-D order reduction. This function takes the full or-

der LFR structure as an input variable and minimize the order of repetitive varying

parameters. For instance, Sysmin=minlfr(sys).

After the order reduction procedure, normalizelfr can be used as Minnormsys=

normalizelfr(Sysmin,parname,dmin,dmax,dnom). The inputs of the function are

the system to be normalized: Sysmin, string array for parameter names: parname, other

three row vectors: dmin, dmax, dnom which contains the maximum, the minimum and

the nominal values of the parameters respectively.

The maximum and the minimum bounds for the varying parameters are chosen

such that the performance of the controller cannot be degraded by the range of large

bounds. These bounds are given in the following table.

Table 5.1. Bounds of the parameter variations.

p1 := cos(α) p2 := sin(α) p3 := sin(α)
α

p4 := α̇

Max 1.01 0.5 1.01 1

Min 0.86 -0.5 0.95 -1

After the normalization procedure, input-output LFR form of the RIP is obtained

by abcd2lfr function as sysio=abcd2lfr([A B;C D],4), where [A B;C D] denotes

minimized and normalized system matrices and 4 denotes the number of states of the

system. The output sysio of abcd2lfr function defined as an LFR object in the

MATLAB workspace where the system matrices and scheduling matrix ∆ are
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A B1

C1 D11

 := sysio.a,

B2

D12

 := sysio.b,
(
C2 D21

)
:= sysio.c,

D22 := sysio.d, ∆ := sysio.e

Hence, the LFT structure of the RIP is obtained as in Figure 3.3.

5.2. System Set-Up

This section explains the system set-up of the RIP LFT structure illustrated in

Figure 4.2. Control input and performance weights are chosen and added to the LFT

representation of the RIP with performance channel as in Figure 5.1. There are two

different types of weights used in the RIP system. They are added to the control input

and performance channels.

The performance shaping weights, We are an important component of the de-

sign. They are to be chosen typically in the form of low order band-pass filters. The

performance shaping weights are chosen as the following form to minimize the area of

the output signals by putting an integrator 1/s after the output channels. Since these

integrators lead the system to be unstable, a small value is added to the denominators.

We =

 1
s+10−4 0

0 1
s+10−4
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Figure 5.1. Bode plot of the performance weight, We.

The constraint on the control input signals are to be taken into account to reflect

magnitude and rate constraints by appropriate choices of the actuator output weighting

filter, Wu. After numerous trials the particular choice for this weight was set to

Wu(s) =
s+ 0.4

s+ 14.22
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Figure 5.2. Bode plot of the actuator output weight, Wu.
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Simulink interconnection of Figure 4.2 is shown in Figure 5.1.

Zp

3

y

2

1

Zu

x’ = Ax+Bu

y = Cx+Du

Nominal RIP sys
3

u

2

Wp

1

Wu

Figure 5.3. Simulink system set-up of the RIP without weights.

However, these weighting filters are not added directly to the input and output channels

of the RIP system. After using linmod function of MATLAB, which creates a new

system with new A,B,C,D matrices by adding new input and output channels to the

nominal system, the weights will be incorporated to the system. The linmod MATLAB

function is used as [Al,Bl,Cl,Dl]= linmod(’systemsetup’), where systemsetup is

the name of the Simulink file, Al, Bl, Cl, Dl are the new system matrices that are

Al :=A (5.1a)

Bl :=
(
B1 Bp B2

)
(5.1b)

Cl :=


C1

Cp

C2

 (5.1c)

Dl :=


D11 D1p D12

Dp1 Dpp Dp2

D21 D2p D22

 (5.1d)

Using linmod function, the new system matrices of Figure 5.1 were obtained.

In the next section weight incorporation and LMI solutions required by the controller

design procedure are explained.
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5.3. Controller Synthesis

This section mainly deals with the solutions of the synthesis inequalities in Theo-

rem 4.2.1 and the controller design for the RIP. For all these procedures IQC Synthesis

Toolbox is employed which provides a user-friendly approach in synthesizing the con-

troller.

In this toolbox, to initialize an LPV synthesis problem, the user has to invoke

the function lpvpb, which will contain all the data pertinent to the problem. This

data will include the LTI part of the plant, weighting filters, scheduling matrix blocks,

solutions of the synthesis conditions, controller, etc.

Once lpvpb object is created, the system is defined with lpvsys function as prob

= lpvsys(lpvpb,GG,[5 2 1;5 2 2]), where GG is the the LTI part of the RIP, [5 2

1;5 2 2] defines the uncertainty, performance, input-output channels with quantities

respectively.

The maximum and the minimum bounds of the parameter variations are included

in the RIP lpvpb object with lpvdel function as prob = lpvdel(prob,2,[0.86;1.01]

,’s’).

The weighting functions We, Wu previously defined in Section 5.2 are added

to the system at this step. Figure 5.2 illustrates the weights. With the function

lpvwt, the weights are configured and connected to the RIP system object. prob =

lpvwt(prob,iostr,indices,wt) is the general expression for the function. iostr

parameter can be in or out by which the weights are determined whether to be placed

at input or output channels of the RIP system. Additionally, indices parameter

determines the order of the channel. And finally, the weigting functions are given in

wt parameter. The following figure illustrates the interconnected RIP system with

weights.

The most important part of this chapter is the solution of the synthesis inequalities.
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RIPPlantK

zpWe Wu
u

y

Figure 5.4. The RIP system with weights.

To solve them lpvsyn function of IQC Synthesis Toolbox is utilized. The function

lpvsyn is ultimately aims to solve the aforesaid optimization problem and append-

ing the solutions to the lpvpb object prob. With this function the matrix variables

X, Y,Q,R, Q̃, R̃ and scalar variable γ are readily obtained. prob = lpvsyn(prob) is

the general expression of this function where prob is the previously defined system

object. The function lpvsyn utilizes MATLAB’s Robust Control and LMI toolboxes.

After the optimization process with lpvsyn function, scalar variable γ is obtained as

5.34.

After finding the matrix variables X, Y,Q,R, Q̃, R̃ and scalar variable γ by solving

Theorem 4.2.1, the next step is find the extension and augmented matrices to guarantee

the stability condition for closed-loop. For this step prob = lpvcon(prob,dis) func-

tion is used both finding the extension, augmented matrices and computing the con-

troller matrices. The dimensions of the controller matrices are: A5x5
K , B5x12

K , C11x5
K , D11x12

K .

More information about IQC Synthesis Toolbox can be found in reference [15] in

detail.

5.4. Simulation Configuration

Configured simulation set-up is shown in Figure 5.5. The nonlinear model of the

RIP is used in the simulation to demonstrate the designed controller performance.
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1

Theta

Setpoint (rad)

Vm(V)

Theta (rd)

Theta dot

Alpha (rd)

Alpha dot

Signal

Generator

Saturation -10V +10v

x’ = Ax+Bu

y = Cx+Du

LPV Controller

Zu

alp

alp(dot)

Wu

Delta

Figure 5.5. Simulation environment.

In this environment, a saturation block is added after the control signal to take the

DC motor’s voltage limits into consideration. However for the implementation of the

the controller on the physical RIP model, the following Simulink file in Figure 5.4 is

developed.

Setpoint

Pot = 1 / Enc =2

Vm (V)

Signal

Generator

X˙d

Vm

X

Scopes

srv02 pos src

Vi

Y

Vm (V)

RIP Interface

2

Pos Src

Xd

X

Vi

LPV Controller

Y Xe

High-Gain Observer

D2R

Degrees to

Radians

(1 0 0 0)

Convert to

Vector State

0

Amplitude

(deg)

Figure 5.6. Physical RIP simulink environment.

In the model above, RIP interface block transmits the control signal via an interface

card to the amplifier, hence to the dc motor. It also receives encoder signals or position

information for the controller. High gain observer block smooths the encoder signals

and eliminates high frequency encoder data. More details about Quanser RIP system

can be found in reference [1].
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Simulation results of the model and implementation of the controller to the phys-

ical RIP system is given in the next chapter.
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6. SIMULATION AND EXPERIMENTAL RESULTS

6.1. LPV Controller Implementation on the Simulated RIP System

In this chapter, the performance of the designed LPV controller is demonstrated.

In the first section, the designed LPV controller is compared to that of LQR controller

which are simulated in three different operation conditions by giving an initial angles

to the pendulum.

Table 6.1. Simulation conditions for α.

Condition Initial Pendulum Uncertainty (% of nominal value)

Angle α (Degree) Length of Pendulum

1 5 ◦ 0

2 12 ◦ 0

3 4 ◦ 15

In the second scenario, reference tracking performance of the pendulum arm is

tested for three different conditions with two distinct arm angles. Then, the comparison

between physical and simulated RIP system in two different operation conditions is

presented in the second section of this chapter.

Table 6.2. Simulation conditions for θ.

Condition Arm Angle θ Uncertainty (% of nominal value)

(Degree) Length of Pendulum

1 28.5 ◦(0.5 Rad) 0

2 57.3 ◦(1 Rad) 0

3 22.9 ◦(0.4 Rad) 15
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• Condition 1 (Simulation)

Figure 6.1. Pendulum angles α and control signals in condition 1.

Figure 6.2. Arm angles θ in condition 1.
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• Condition 2 (Simulation)

Figure 6.3. Pendulum angles α and control signals in condition 2.

Figure 6.4. Arm angles θ in condition 2.
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• Condition 3 (Simulation)

Figure 6.5. Pendulum angles α and control signals in condition 3.

Figure 6.6. Arm angles θ in condition 3.
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Pendulum Arm Reference Tracking

• Condition 1 (Simulation)

Figure 6.7. Pendulum angles α and arm angles θ in condition 1.

Figure 6.8. Control signal in condition 1.



62

• Condition 2 (Simulation)

Figure 6.9. Pendulum angles α and arm angles θ in condition 2.

Figure 6.10. Control signal in condition 2.
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• Condition 3 (Simulation)

Figure 6.11. Pendulum angles α and arm angles θ in condition 3.

Figure 6.12. Control signal in condition 3.
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6.2. LPV Controller Implementation on the Physical RIP System

Initially, when the designed LPV controller was applied on the experimental

system, it was seen that the arm angle θ drifted. Therefore, the simulation results

were contradicted by the initial experimental results. Each step in the controller design

process has been checked to resolve the problem and it has been noticed that some

entries in the LPV controller matrices C and D were found to be smaller than 1e-6.

When these entries were rounded to zero, no θ drift occurred and the problem in the

experiment was solved.

The designed LPV controller is implemented on the physical RIP system with 2

different conditions. Below table summarizes the conditions that the system tested in.

Table 6.3. Physical RIP system conditions for α.

Condition Initial Pendulum Angle α

(Degree)

1 5 ◦

2 12 ◦
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• Condition 1 (Experiment)
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Figure 6.13. LPV and LQR controller results for the pendulum angle α.
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Figure 6.14. LPV and LQR controller results for the arm angle θ.
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Figure 6.15. LPV and LQR control signals.
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• Condition 2 (Experiment)
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Figure 6.16. LPV and LQR controller results for the pendulum angle α.
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Figure 6.17. LPV and LQR controller results for the arm angle θ.
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Figure 6.18. LPV and LQR control signals.



67

The designed LPV controller yields better results in simulation conditions 1, 2

and 3 about settling time and percent overshoot as compared to the LQR controller.

However, the peak value of the control signal of the LPV controller is more than

the peak value of control signal of the LQR controller in the simulation conditions 1,

2 and 3. Additionally, the LPV controller demonstrates a good performance in the

experiment. In the experimental conditions 1,2; both the amount of control signal and

the transient response characteristics of the LPV controller yields better results.



68

7. CONCLUSION

In this thesis, an LPV controller design is proposed for the Rotary Inverted

Pendulum system, starting from the nonlinear equations. The LPV controller scheme

is designed and illustrated both in the nonlinear simulation and the physical system

environments. The LFR Toolbox [15] also made easier to build an LFT representation

of the RIP model and minimized the model with its model reduction feature. For

the existence of the controller, stability and performance LMI conditions of the desired

closed loop system are developed and solved by IQC Synthesis Toolbox [14]. The closed

control loop is asymptotically stable in the Lyapunov sense and guarantees the stability.

Combining LFR Toolbox with IQC Synthesis Toolbox facilitated the controller design

process. It is also observed from the simulation and the experimental results that

the synthesized LPV controller gives better results in different operation conditions

regarding the performance.

For the improvement of the results, the selected weighting functions can be more

optimized. Hence, the LPV controller may produce smoother control signal and present

better transient response. Also, increasing the model accuracy may improve the per-

formance of the designed LPV controller especially in the experimental environment.
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APPENDIX A: CONSTANTS IN MATHEMATICAL

MODEL OF RIP

Constant Parameter Value

Beq (Ns/m) 4.0e-3

ηg 0.9

ηm 0.69

g (m/s2) 9.8

h (m) 0.215

Jeq (kg m2) 3.584e-3

Jm (kg m2) 3.87e-7

Kg 70

Km (V s/rad) 7.67e-3

Kt (N m/A) 7.67e-3

L (m) 0.1675

m (kg) 0.128

r (m) 0.215

Rm (ohm) 2.6
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