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ABSTRACT

ASSESSING DT-MRI TRACTOGRAPHY RESULTS VIA

SAMPLING THE FIBER TRACT SPACE

Complex neural processes in human brain are realized through a huge number of

connections between neural cells. White matter tractography is the only available tool

to reconstruct these anatomical connectivities non-invasively and in vivo. Following the

emergence of diffusion imaging, several tractography algorithms have been proposed,

where the local direction of white matter fiber bundles is estimated from measurements

of water diffusion in human brain.

The goal of this thesis is to introduce a generic tractography assessment and

improvement method for diffusion tensor imaging (DTI) data. The proposed method

takes a set of fiber tracts that are generated with any tractography algorithm as the

input, and allow the user to interactively assess tractography results by identifying

the erroneous or indefinite regions in the DTI data along input tracts and highlighting

possible branching patterns of fiber bundles. By introducing alternative pathways that

might have been missed by the initial tractography, given tractography results can also

be improved.

The technique relies on splitting the input tracts into shorter segments to pre-

vent error accumulation, followed by sampling from the space of short tract clusters

to estimate the connectivities between these short fiber segments. After the connec-

tivity values are computed, given a set of seed tracts and a connectivity threshold, the

method displays the short tracts that are connected to the seed tracts with a probabil-

ity higher than the given threshold in an interactive environment. Thus, the possible

pathways can be investigated as a function of the connectivity threshold, highlighting

the uncertainty in DTI data.



v

ÖZET

FİBER YOLAK UZAYININ ÖRNEKLENMESİ İLE FİBER

TRAKTOGRAFİ SONUÇLARININ

DEĞERLENDİRİLMESİ

Beyindeki karmaşık sinirsel süreçler, sinir hücreleri arasındaki çok sayıdaki

bağlantı sayesinde mümkün olmaktadır. Beyaz cevher traktografisi, beyindeki bu

anatomik bağlantıların canlı içinde müdahalesiz bulunmasında kullanılabilecek tek

yöntemdir. Difüzyon görüntülemenin ortaya çıkışını takiben, birçok traktografi

yöntemi önerilmiştir. Bu yöntemler, beyaz cevher yolaklarının yönlerini, beyindeki

su moleküllerinin difüzyonunun ölçülmesine dayanarak bulmaktadırlar.

Bu tezin amacı, difüzyon tensör görüntüleme verisi üzerinde traktografi

sonuçlarının değerlendirilmesi ve geliştirilmesinde kullanılabilecek jenerik bir yöntem

ortaya koymaktır. Bu tezde önerilen yöntem, herhangi bir traktografi metodu ile elde

edilmiş bir yolak kümesini girdi olarak alır. Bu yolak kümesi içindeki hatalı veya belir-

siz bölgeleri teşhis ederek ve yolakların olası dallanmalarını öne çıkararak kullanıcıya

sonuçları etkileşimli olarak irdeleme imkanı sunar. Ayrıca, alternatif yolaklar ortaya

koyarak traktografi sonuçlarında bulunamamış olan bağlantıları tespit etmek suretiyle

verili traktografi sonuçlarını geliştirme olanağı sağlar.

Önerilen teknikte, öncelikle, hata birikimini önlemek amacıyla verili yolaklar kısa

parçalara bölünür. Daha sonra, kısa yolak kümelerinin uzayında örnekleme yapılarak

kısa yolak çiftlerinin birbirlerine bağlı olma ihtimalleri hesaplanır. Bu ihtimaller hesap-

landıktan sonra kullanıcı tarafından belirlenen kısa yolaklara, yine kullanıcı tarafından

belirlenen güvenilirlik eşiğinin üzerinde bir olasılıkla bağlı diğer kısa yolaklar etkileşimli

bir arayüzle görüntülenir. Böylelikle kullanıcı, verideki belirsizlikler vurgulanacak

şekilde, olası yolakları güvenilirlik eşiğinin bir fonksiyonu olarak inceleyebilir.
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1. INTRODUCTION

Diffusion tensor magnetic resonance imaging (DT-MRI or DTI) is widely used to

study white matter architecture since its introduction in 1994 [1]. Broadly speaking,

diffusion MRI measures the translational displacement of water molecules. It was

shown that the water diffusion along white matter fibers are much faster compared

to the diffusion perpendicular to them [1–3]. Having this difference between diffusion

rates along different directions (i.e., diffusion anisotropy) as a basis, DTI is able to

quantitatively describe white matter connectivity in human brain without the use of

contrast agents [4].

Tractography is a method to localize the anatomical connections in human brain

in vivo using diffusion imaging. The major clinical application of tractography is

presurgical planning. In most of the patients with brain tumors or lesions, white

matter tracts are displaced or distorted. Using tractography, the fiber tracts that are

related to vital neural connections can be identified and hence can be preserved during

surgical procedures. DTI is also explored as a research tool to study white matter

abnormalities in neurological, developmental and psychiatric disorders [4–8], especially

in multiple sclerosis, amyotrophic lateral sclerosis, stroke, schizophrenia and reading

disability [9].

The proposed method in this thesis provides a user interactive framework for

the assessment and improvement of given tractography results based on short tract

clustering, which is initially proposed in [10]. The method relies on splitting given fiber

tracts to generate shorter and more reliable (less error accumulating) tract segments

throughout the brain, followed by an estimation of pairwise connectivities of these short

tracts by sampling from the space of short tract clusters. The estimated connectivities

(i.e., the probability that two short tracts are on the same long tract bundle) are used to

select and display the short tracts that are connected to a given set of seed tracts with a

probability higher than the user set threshold in an interactive environment. Thus, the

user can identify the unreliable segments/regions in the DTI data along given tracts,
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see possible branching patterns of fiber bundles, assess the branching probabilities

(as determined by the DTI tensor data) via setting the connectivity threshold and

interactively construct new tract bundles that might have been missed by the initial

tractography. The ultimate goal is to present the connectivity information embedded

in DTI data without bias and in an interactive framework.

This thesis is organized as follows. In Chapter 2, the background information

on the anatomy of human brain and DTI are provided. Chapter 3 is reserved for the

theoretical details of the proposed tractography assessment method. Chapter 4 presents

the evaluation methodology, experimental results and the significance of the findings.

In Chapter 5, conclusions of the thesis are drawn and future research directions are

proposed.
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2. BACKGROUND

2.1. Anatomy of Neural White Matter

Human brain consists of billions of neurons. Each neuron has a cell body, with

axon and dendrites extending from it, as shown in Figure 2.1. While the function of

axons is to transmit signals among neurons, dendrites receive signals from other axons.

Generally, the signal transmission distance is long, hence the axons are myelinated to

speed up the signal transmission process. The abundance of myelinated axons in white

matter is what gives its white color. To transmit information from one part of the

brain to another, hundreds of axons within white matter group together in parallel,

thereby forming fiber bundles [11]. Figure 2.2 shows the dissection of white matter,

where the fibrous nature of white matter is clearly visible.

Dendrites

Terminal buttons

Cell nucleus

Axon Myelin
Cell body

Myelin sheath

Axon

Figure 2.1. A typical myelinated neuron [12].

2.2. Diffusion Tensor Imaging

The rate of diffusion within brain varies with direction due to the presence of

physical constraints that obstruct diffusion. It is assumed that, in human brain, main

constraint of diffusion is the myelin sheath that surrounds the axons. DTI data describe
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Figure 2.2. Brain dissection showing the structure of white matter [13].

the diffusion profile of water within every voxel in brain using a diffusion tensor, which

indirectly provides information about fiber tract orientation. Visually, these tensors can

be modeled as diffusion ellipsoids with the diffusion tensor eigenvectors corresponding

to the principal axes and the eigenvalues to the size in the relevant direction. A diffusion

ellipsoid is actually an isoprobability surface that summarizes the mean distance from

the ellipsoid center that a water molecule will travel in a certain diffusion time. In

regions of brain exhibiting isotropic diffusion, the diffusion profiles result in spherical

ellipsoids. Conversely, when anisotropic diffusion is present, more eccentric ellipsoids

are observed.

A tensor of order n in 3D space is a mathematical object which is described by 3n

numbers in any given three dimensional coordinate system [14]. A diffusion tensor is a

second order tensor in 3D space that represents the macro view of the diffusion process

within the corresponding voxel. It corresponds to the inverse covariance matrix of the

zero mean 3D Gaussian distribution of the positions of diffusing particles as

P (r) =
1√

|D|(4πτ)3
exp

(
−rTD−1r

4τ

)
(2.1)

where D is the diffusion tensor, τ is the effective diffusion time, and r is the displace-
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ment vector [15]. The diffusion tensor is a 3 × 3 symmetric, positive semi-definite,

second-order tensor.

D =


Dxx Dxy Dxz

Dxy Dyy Dyz

Dxz Dyz Dzz

 (2.2)

The diffusion tensors are constructed from diffusion weighted imaging (DWI)

data of the same volume captured using at least six linearly independent diffusion

sensitizing gradient B-fields and one reference non-diffusion sensitized image obtained

in the absence of gradient B-fields. DWI data acquired for a specific direction provide

information regarding the magnitude of diffusion in the corresponding direction through

MR signal attenuation due to out-of-phase spins within a voxel. The amount of signal

attenuation depends on the strength and duration of the magnetic field gradient, b, and

the diffusion coefficient, D. Signal intensity (SI1) in homogeneous, systems decreases

exponentially as b increases:

SI1 = SI0 exp(−bD) (2.3)

where SI0 is the signal intensity without the diffusion sensitizing gradients. b value

given above is for a gradient B-field in a single direction. In DTI, gradient fields in

several directions are applied simultaneously. In this case, b value is replaced by a

3 × 3 b matrix, consisting of 6 distinct terms: bxx, byy, bzz, bxy = byx, bxz = bzx, and

byz = bzy [16]. As stated above, the diffusion tensors can be calculated from DWI data

collected with diffusion sensitizing gradient B-fields in six or more directions and one

or more reference images. Assume that there are a total of N measurements. Then,

6 distinct elements of the diffusion tensor at a given voxel can be calculated from the

DWI intensity values and the elements of the b matrices by solving the following linear
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system of equations [17]:


ln(S1)

...

ln(SN)

 =


A1

...

AN

 (2.4)

where Ai, i = 1, . . . , N is defined as

Ai = −bxxiDxx − byyiDyy − bzziDzz − 2bxyiDxy − 2bxziDxz − 2byziDyz + ln(S0). (2.5)

Diagonalizing the diffusion tensor results in a set of three eigenvectors v̂1, v̂2, v̂3

with associated eigenvalues λ1, λ2, λ3 listed in decreasing order.

D =


Dxx Dxy Dxz

Dxy Dyy Dyz

Dxz Dyz Dzz

 =
[
v̂1 v̂2 v̂3

]
λ1 0 0

0 λ2 0

0 0 λ3



v̂T
1

v̂T
2

v̂T
3

 (2.6)

v̂1, which is the eigenvector corresponding to the largest eigenvalue is called

the principal diffusion direction (PDD). As the tensor is positive semi-definite, the

eigenvalues are non-negative, which allows the ellipsoid to be physically realizable [18].

The analogy between the diffusion tensor and the diffusion ellipsoid becomes evident

when viewed graphically as in Figure 2.3.

For many applications, the diffusion tensor D contains too much information,

and only a rough estimate of the amount of anisotropy is sufficient. Extracting such

an anisotropy index from the diffusion tensor is also very beneficial for comparing

different subjects and for monitoring changes over time [16]. As the parameters of

the diffusion tensor are sensitive to changes in the orientation of the object that is

being scanned, clinical studies tend to use orientation-invariant statistics extracted

from diffusion tensors. Such statistics are calculated using combinations of the terms

of the diagonalized diffusion tensor, i.e., λ1, λ2 and λ3. The most commonly used

anisotropy indices are fractional anisotropy (FA), relative anisotropy (RA) and volume
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Figure 2.3. The diffusion ellipsoid characterized by 3 eigenvectors and 3

eigenvalues [19].

ratio (VR), defined respectively as

FA =

√
3√
2

√(
λ1 − λ̄

)2
+
(
λ2 − λ̄

)2
+
(
λ3 − λ̄

)2√
λ2
1 + λ2

2 + λ2
3

(2.7)

RA =

√(
λ1 − λ̄

)2
+
(
λ2 − λ̄

)2
+
(
λ3 − λ̄

)2
√
3λ̄2

(2.8)

VR =
λ1λ2λ3

λ̄3
(2.9)

where

λ̄ =
λ1 + λ2 + λ3

3
. (2.10)

FA is the “magnitude” of D that can be ascribed to anisotropic diffusion, and

it varies between zero (perfectly isotropic diffusion) to one (perfectly anisotropic diffu-

sion). RA is the ratio of the anisotropic part of D to its isotropic part, and it varies

between zero (perfectly isotropic diffusion) to
√
2 (perfectly anisotropic diffusion). Fi-
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nally, VR is the ratio of the ellipsoid volume to the volume of a sphere of radius λ̄,

and it varies between one (perfectly isotropic diffusion) to zero (perfectly anisotropic

diffusion) [20]. Among these anisotropy indices, FA is the most popular, as some people

have a sense of the expected FA values in different brain regions and as they wish to be

consistent with older published data for comparative purposes [16]. It is known that,

if the FA value is sufficiently high, which implies highly anisotropic diffusion, PDD is

a good estimate of the local fiber orientation [21].

It is of utmost importance to understand the limitations and content of DTI

data in order to develop adequate analysis and visualization methods. DTI tensor field

is a second-order approximation to the underlying diffusion process that is estimated

through MR signal attenuation due to out-of-phase spins within a voxel. The size

of the voxels cannot be made arbitrarily small because i) we need to observe the

signal attenuation, ii) the anisotropic diffusion pattern in restricted media (fibers) is

observable only if the voxel size is larger than the fiber cross section. This imposes a

fundamental limitation on the spatial resolution of DTI, prohibiting reconstruction of

single fibers. This limitation is most critical at problematic regions such as crossing,

kissing fibers (bundles) where the anisotropy of the diffusion tensors are degraded due

to (within voxel) averaging [13,22].

2.3. Literature Review of DTI Tractography

In DTI data, there is uncertainty caused both by the noise and artifacts present

in any MR scan, and also by the incomplete modeling of the diffusion signal by a

second order tensor. The deterministic tractography methods disregard this inherent

uncertainty in the data, and reconstruct fiber tracts by generally drawing paths in

vector fields primarily based on PDDs. The probabilistic methods, on the other hand,

attempt to take uncertainty stemming from noise and diffusion model imperfections

into account. The following subsections elaborate on these two main approaches.
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2.3.1. Deterministic Tractography

Deterministic tractography methods compute a single fiber trajectory for every

seed point. Result of tractography for a given seed point is a tract connecting two

discrete regions of the brain. Among these methods, streamline techniques rely on

bidirectionally following the PDD at every point in the brain [22–26]. In these methods,

a white matter fiber tract trajectory is represented as a 3D space curve, i.e., r(s),

parameterized by the arc length, s, of the trajectory. Following the assumption that

the principal eigenvector, v1, lies parallel to the local fiber tract direction, the fiber

trajectory is reconstructed by solving the implicit differential equation

dr(s)

ds
= v1(r(s)) (2.11)

using a numerical integration scheme such as the Euler’s method or the Runge-Kutta

method. These methods do not exploit the whole information in the diffusion tensor.

Tensorline methods, on the other hand, use the entire diffusion tensor to deflect

the incoming vector direction to determine the direction of the new step [27,28] as

vout = D · vin (2.12)

where vin represents the propagation direction from the previous integration step and

vout is the direction of the next step. This limits the curvature of the deflection, thereby

smoothing the reconstructed fiber trajectories. The reader is referred to [27] for a quan-

titative evaluation of the performance of streamline and tensorline methods. Figure

2.4 shows a comparison of streamline (the Euler’s method) and tensorline techniques

for fibers of the internal capsule.

The deterministic approaches have the advantages of speed and simplicity. How-

ever, they also have severe limitations. As the decisions are made on local scales, entire

space of possible fiber tract trajectories may not be fully explored. Moreover, there

is an inherent uncertainty in diffusion tensor elements due to the nature of DTI (note
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(a) (b)

Figure 2.4. Comparison of deterministic techniques for tracking fibers of the internal

capsule within human brain (a) Streamline tracking (b) Tensorline tracking [27].

that the data represent a 3D zero mean Gaussian distribution). Hence, algorithms that

rely on stepwise propagation, like streamline and tensorline methods, accumulate error

along the fiber paths.

To account for the noise and uncertainty in DTI data, explicit and implicit reg-

ularization methods are widely being employed. In [29], a nonlinear diffusion filter to

regularize the PDD vector field is proposed. This filter uses an anisotropic diffusion

model, modulated by a PDD vector field regularity map. In [30], Rician statistics are

used to improve fiber orientation estimation. Anisotropic filtering to filter DWI data

prior to DTI tensor field computation is introduced in [31]. B-spline functions are also

used as a regularizing basis [22].

Despite their disadvantages, deterministic algorithms remain as the most com-

monly used methods in clinical applications [32].

2.3.2. Probabilistic Tractography

The probabilistic tractography methods basically aim at characterizing the un-

certainty in the fiber tract trajectory estimates. In these methods, for every seed point,

a set of possible fiber tracts are computed. In reconstructing each of these tracts, at
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each step, instead of progressing along the PDD, a sample is drawn from the proba-

bility distribution function (PDF) for the fiber orientations at the corresponding point

and a step is taken in this direction. Proceeding likewise, a fiber tract trajectory is

reconstructed, which becomes a sample from the global connectivity distribution. A

large number of samples are drawn, and the probability that given two regions are

connected is computed by counting the number of tracts that passed through both

regions divided by the number of samples drawn.

The main difference between the methods in this class is the modeling of the

fiber orientation PDF. In [33], the direction of propagation is perturbed at each step

proportional to the anisotropy of the diffusion tensor at the corresponding point. In

[34], the uncertainty of the fiber orientations is modeled using the normal distribution,

where the parameters were set heuristically. In [35], the PDF for local fiber orientations

is rigorously formalized in a Bayesian framework instead of heuristically perturbing

the direction of progress. An alternative Bayesian method is presented in [36], where

unlike [35], Markov Chain Monte Carlo technique is avoided by a simpler parameter

modeling. An extension of [35] is presented in [37], for the case of multiple fiber

orientations. In [38], replacing the ad hoc PDF models with the Watson distribution

is proposed. Similarly, in [39], the step direction is chosen from either a Watson

distribution or a Bingham distribution according to the fiber direction uncertainty.

A random walk model to find the connectivities between the brain regions is pre-

sented in [40], where only voxel-to-voxel jumps are allowed. This study is based on the

idea of a particle that performs a macroscopic random walk through the set of voxels.

The probability of a jump in a given direction was chosen to depend monotonously on

the diffusion coefficient along the jump direction in the start and target voxel of the

jump. The particle then moves with a higher probability along the fiber direction than

perpendicular to it. This work is extended to the case where jumps are continuous

in [41].

To characterize the uncertainty in fiber tract trajectory estimates without using

a PDF model, bootstrap tractography was proposed in [42]. The bootstrap method
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is a nonparametric procedure for estimating the statistical properties of a population

from a limited number of measurement samples, without prior assumptions about the

population distribution. It uses repeated random sampling with replacement from a

set of measurements to generate estimates of the underlying statistical distributions of

the measurements [43]. In [42], the bootstrap method is used to generate a reliable

DTI dataset. To use bootstrap tractography, however, several DTI datasets must

be acquired, which considerably increases the imaging time. Number of bootstrap

samples to obtain reliable DTI parameters is investigated in [44]. Two alternative

bootstrap methods have been proposed to solve the problem of increased imaging time,

which are not based on repeated data acquisition: wild bootstrap [45] and residual

bootstrap [46]. Yet, concerns have been raised about the applicability of bootstrap to

quantify uncertainty in DTI parameters in [47], where it is shown that appropriate use

of the wild and repetition bootstrap methods critically depends on the shape of the

tensor that is being estimated.

In general, probabilistic methods give a more comprehensive picture of connec-

tivities in the brain and they are also noted to behave more robustly in case of complex

intravoxel fiber configurations [35]. However, they are computationally much more de-

manding compared to the deterministic methods. Moreover, they fail to describe the

fiber orientation correctly when the assumed models do not fit the data. They also

show a decrease in connection probability with increasing distance from seed point due

to the progressive dispersion of streamlines [48]. The outputs of probabilistic methods

are generally presented as connectivity maps, which are harder to interpret compared

to individual streamlines of deterministic tractography. Figure 2.5 shows typical exam-

ples of color coded connectivity maps that shows the frequency of connection to seed

points marked with white arrows.
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Figure 2.5. Examples of connectivity maps for seed regions marked with arrows [48].
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3. FIBER TRACTOGRAPHY ASSESSMENT

3.1. Notation

The proposed method takes a set of long fiber tracts as its input and splits them

into shorter tracts, {Si}. The subscripts refer to short tract indices. For the sake of

simpler notation, the two end-points of a short tract are not explicitly discriminated.

The algorithm is based on sampling the space of short fiber tract clusters. The cluster

sampling strategy is based on connectivities (bridge weights, Jij) between neighbouring

short tracts’ (Si and Sj) closest end-points and respective neighbourhoods (Ni and Nj)

are also defined likewise. The associated diffusion tensors (Di and Dj) are the ones at

the connected end-points of a short tract pair. Figure 3.1 depicts sample short tracts

in a small neighbourhood with definitions of terms used in the rest of this thesis. Table

3.1 provides a summary of the notation used in Chapter 3.

3.2. Generating the Short Fiber Tracts

The proposed method is a generic algorithm that is applicable to any given set

of fiber tracts. We have chosen to use the streamline algorithm with 4th order Runge-

Kutta (RK4) integration to compute the long input fiber tracts [25]. The Log-Euclidean

framework is used for diffusion tensor interpolation at non-integer grid points during

tracking [49]. The step size of streamline tractography is half of the length of a voxel’s

smallest dimension, maximum curvature threshold is 20◦ and minimum FA threshold

is 0.2. Tract computation is initiated from all high FA voxels (FA > 0.2) throughout

the volume. The computed long tracts are recursively split into short tracts (Si , i =

1, ...,M) starting from the lowest FA point along each long tract with the constraint

of a minimum short tract length of four times the length a voxel’s largest dimension.

The total number of short tracts, M , is not fixed and is determined by the splitting

constraints mentioned above. The rest of the algorithm is based on sampling from the

space of clusters of Si’s and estimating pairwise short tract connectivity probabilities

(Pij , i 6= j , (i, j) = 1, ...,M).



15

Figure 3.1. Demonstration of the terminology used in Chapter 3.

3.3. Pairwise Short Tract Connectivity Estimation

The principal goal of the proposed algorithm is to estimate the pairwise short

tract connectivity probabilities, namely Pij’s. The pursued approach is to sample from

the space of short tract clusters and use this sample set to approximate Pij’s as

Pij = P (Si, Sj) =
M∑

m=1

K∑
k=1

P (Si, Sj|Ck
m)P (Ck

m) (3.1)

P (Si, Sj|Ck
m) =

 1, Si, Sj ∈ Ck
m

0, o.w.
(3.2)

Z × P (Ck
m) = min

i,j
{Jij|Si, Sj ∈ Ck

m} = wk
m (3.3)

where P (Si, Sj|Ck
m) represents the connectivity of Si and Sj given the cluster Ck

m, and

P (Ck
m) represents the probability of cluster Ck

m, which is the kth cluster sample for the

mth seed short tract. The former probability is modeled based on the membership of the

short tracts to the given cluster. The latter probability is modeled to be proportional

to the weakest bridge’s weight (wk
m) in a given cluster. Z is the unknown scaling factor.

Note that Jij is not defined for Si, Sj ∈ Ck
m∧ (Si /∈ Nj ∨Sj /∈ Ni), hence not considered
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Table 3.1. Summary of notation accompanying Figure 3.1.

Notation Definition

Si ith short tract, i = 1, ...,M

vi ith short tract’s 3D orientation vector

Di The diffusion tensor at the connected end-point of the ith short

tract

Ni ith short tract’s connected end-point neighbourhood

r Neighbourhood radius

Jij Weight of the bridge connecting neighbouring short tracts Si and

Sj

dij Bridge vector connecting neighbouring short tracts Si and Sj

Ck
i kth short tract cluster with Si being the seed short tract, i = 1, ..., K

Pij Probability that Si and Sj are connected

in the minimum operator in Equation 3.3. Combining Equations 3.1-3.3, we get

Z × Pij =

(M,K)∑
(m, k) = (1, 1)

Si, Sj ∈ Ck
m

wk
m = H(i, j) (3.4)

whereH ∈ <M×M is 2D weighted histogram of short tract co-occurences in the sampled

cluster set, M is the total number of short tracts (seed tracts) and K is the number of

cluster samples per seed short tract. H is sparse and symmetric.

The bridge weights, Jij’s, are defined as

Kij =
1√

(2πτ)3|Di +Dj|
exp

{−1
2τ

dT
ij(Di +Dj)

−1dij

}
(3.5)

Lij =
∣∣ cos(∠(vi,vj))

∣∣ (3.6)

Jij = Kij × u
(
Lij −

√
3

2

)
× Lij (3.7)
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where Lij measures the collinearity of Si and Sj via the angle between their major

orientations (See Figure 3.1), u(·) is the unit step function acting as a threshold on

collinearity (connected short tracts’ orientations are not allowed to deviate more than

30◦), Kij is the collision probability of two diffusing particles initially at neighbour-

ing short tract end-points and τ is the diffusion time scaling factor set such that

exp
{−(10∆)2

2τλmax

}
= 0.01 to ensure that the computed Kij’s do not die prohibitively fast

within the short tract end-point neighbourhood, determined by r. ∆ is the voxel size,

λmax is the maximum diffusion tensor eigenvalue in the dataset. The exact value of τ

is not critical because Jij’s relative values are used, as will be explained below.

3.4. Short Tract Cluster Sampling and Histogram Generation

Sampling the short tract cluster space, that includes all sub-sets ofM short tracts,

plays a key role in the proposed algorithm. The sampling should concentrate on the

high probability regions of the cluster space so that the 2D histogram H provides a

good estimation of pairwise short tract connectivities. The cluster sampling strategy

for a given short seed tract Si is to take K cluster samples from the neighbourhood of

the corresponding base cluster (C0
i ). C0

i is the cluster that corresponds to the input

long tract (See Section 3.2) which includes the seed tract Si as one of its segments.

This is repeated for all short tracts taken as the seed tract, generating K ×M clusters

(with repetitions).

Figure 3.2 summarizes the cluster sampling in the neighbourhood of C0
i that is

done by repeatedly breaking C0
i into two segments at a randomly selected bridge along

C0
i , random re-building of the broken bridge based on DTI data and completing the

rest of the cluster (beyond the re-built bridge) deterministically. The bridge to break

is selected among the bridges along C0
i with a probability inversely proportional to the

bridge weights, {Juv|Su, Sv ∈ C0
i }1 . Thus, the weaker bridges (i.e., more unreliable

points along C0
i ) have higher probability of being broken. Among the two segments

of C0
i formed, the one which includes the seed tract Si is retained. A new bridge is

formed from the end-point of the retained segment, in place of the broken bridge, to a

1Note that Juv is not defined for Su, Sv ∈ C0
i ∧ (Su /∈ Nv ∨ Sv /∈ Nu)
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Figure 3.2. Demonstration of the cluster sampling process.

neighbouring short tract end-point with a probability proportional to the corresponding

bridge weights. Thus, the stronger bridges (i.e., bridges to the neighbours that are more

likely to get connected to the retained cluster segment) have higher probability of being

built. The rest of the cluster is formed deterministically by choosing the strongest

bridge (i.e., the bridge with the highest weight) among the ones to neighbouring short

tracts from the open end of the cluster being built, until an empty short tract end-point

neighbourhood is reached.

Figure 3.2 shows an example of the short tract cluster sampling process. In

this figure, S1 is the seed cluster with base cluster C0
1 = {S1, S2, S3, S4}. The bridge

between S2 and S3 was chosen at random to be broken, with probability equal to

J−1
23 /(J

−1
12 + J−1

23 + J−1
34 ). The segment {S1, S2} is retained. The bridge between S2 and

S6 was chosen at random to be built, with probability equal to J26/(J26 + J25 + J23).

The bridge between S6 and S7 was chosen to be built deterministically to complete

the new cluster. J67 is the maximum among the weights of the bridges connecting the

open end of S6 to its neighbours.

After each new cluster (where cluster repetitions are allowed) Ck
i is created, H is
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updated following Equation 3.4, as

H(u, v)← H(u, v) + wk
i , ∀(u, v) s.t. Su, Sv ∈ Ck

i . (3.8)

Approximating any distribution by accumulating samples drawn from that distri-

bution requires that the number of samples is large. Hence, to model the distribution

of pairwise connectivities between short tracts accurately, the number of short tract

clusters created should be large. However, this operation may be prohibitive in terms

of computational cost. For this purpose, we propose to use bootstrap sampling on short

tract clusters prior to accumulating the connectivity histogram. Using the bootstrap

procedure, a large number of bootstrap clusters can be generated with replacement

from a limited set of clusters. A bootstrap cluster is shown as Br
i ∈ {C0

i , C
1
i , . . . , C

K
i },

where r = 1, 2, . . . , R and R > K.

Using bootstrap method will obviously introduce a computational advantage as

the initial set of clusters may be smaller. However, it should be noted that, boot-

strapping will not allow us to explore the whole cluster space beyond the subspace

represented by the set of the clusters that are initially generated. It will only allow

us to infer more accurate results from that set. In other words, even if the bootstrap

method acts like repeating the experiments, one should be aware that the experiments

are not actually repeated, but the results of the experiments are more thoroughly

assessed.

Depending on the requirements of the application, bootstrap sampling may or

may not be used under the light of the discussion above. Alternatively, accumulating

the histogram directly without bootstrapping, weighted histogram sampling can be

employed. The pseudo-code in Figure 3.3 summarizes the proposed algorithm using

weighted histogram sampling, given a set of long fiber tracts. The algorithm that uses

bootstrap sampling is similar, except that, instead of updating the histogram for each

Ck
i , B

r
i ’s are drawn from the set of Ck

i ’s first, and the histogram is updated using these

bootstrap clusters. Bootstrap sampling is unweighted, i.e., probability of drawing a

cluster among {C0
i , · · · , Ck

i } as a bootstrap cluster is the same.
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1

for all LongTract ∈ InputLongTractSet do

{S} ← {S} ∪ {Split LongTract into short tracts}

end for

M ← # of Si’s

for i = 1→M do

for Both end points of Si do

Find neighbouring short tract end points

{J} ← {J} ∪ {Compute jump weights Ji−}

end for

end for

for i = 1→M do

Get C0
i for the seed tract Si

Set {J}i ⊂ {J} s.t. Juv ∈ {J}i ⇔ Su, Sv ∈ C0
i

for k = 1→ K do

{See Figure 3.2}

Randomly select JtoBreak ∈ {J}i
Retain the segment of C0

i that includes Si

Determine potential bridges to be built, {J}pot
Randomly select JtoBuild ∈ {J}pot
Connect JtoBuild and complete Ck

i

H(u, v)← H(u, v) + wk
i ∀(u, v) s.t. Su, Sv ∈ Ck

i

end for

end for

Figure 3.3. The proposed algorithm for a given long fiber tract set.



21

3.5. Interactive Presentation of the Results

The objective of the proposed algorithm is to answer the following question:

Given a seed short tract, what are the other short tracts that are connected to it with

a probability higher than a given threshold? Specifically, given Si as the seed tract,

we seek the set of short tracts {Sj}i, such that P (Sj|Si) > T where T is the user

determined threshold. Following Equation 3.4, P (Sj|Si) can be estimated as

P (Sj|Si) =
P (Si, Sj)

P (Si)
=

H(i, j)∑M
j=1 H(i, j)

. (3.9)

Consequently, the set of short tracts {Sj}i is determined by thresholding the ith

row of H(i, j) after row-wise normalization. The column indices above the threshold T

mark the short tracts connected to the seed short tract. Displaying {Sj}i∪Si provides

an intuitive way to visualize the pathways with branching at uncertain locations. User

interaction is achieved via selecting the seed short tracts (all short tracts intersecting

a user specified region of interest (ROI) are marked as seed short tracts) and setting

T .

Row normalized H(i, j) is computed once for each data set and saved with the

set of short tracts. Setting the seed ROI, the threshold T and marking the short tracts

connected to the seed short tracts with a probability above T is performed in real time.
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4. EVALUATION AND RESULTS

4.1. Datasets

The algorithm is evaluated quantitatively on phantom DTI data simulating kiss-

ing and crossing fibers at different SNR levels, as well as qualitatively on in vivo DTI

data acquired from a healthy individual.

The phantom DTI data were generated for two geometries, kissing and crossing

[50]. The resolution is 0.1 × 0.1 × 0.1 units while the ground truth fibers’ diameters

are one unit. The noise-free tensors are aligned with the fiber orientation (principal

diffusion directions are tangent to the fiber centerline) inside the fibers and have FA

= 0.82 with λmax = 0.0016, λmed = λmin = 0.00025. The noise-free tensors outside the

fibers are randomly oriented and have FA = 0.13 with λmax = 0.001, λmed = λmin =

0.0008. Six diffusion weighted MR signals (DWIi’s) are computed by assuming unit

base MR signal (non-diffusion sensitized) with a b-value of 1200 and decimated to the

desired resolution. Rician noise is added as

D̂WIi = ||(DWIi + nR) + j(nI)||2 (4.1)

nR, nI ∈ N (0, σ = 1/SNR) (4.2)

to get noisy D̂WIi from which the noisy diffusion tensors are computed. The geometries

of phantom data are given in Figure 4.1.

For in vivo experiments, a diffusion weighted data set consisting of 17 volumes

acquired with different gradient B-field directions (b = 800 s/mm2), and one baseline

volume acquired with no diffusion weighting (b = 0 s/mm2) is used. The data were

acquired using a Philips 3T whole-body scanner and a dual spin echo EPI imaging

sequence. The images cover a field of view of 22.2 cm using a 128×128 grid. 60 image

slices were acquired, with a slice thickness of 2 mm.
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(a) (b)

Figure 4.1. The two phantom geometries with the ROIs added on figures with yellow

circles (a) Kissing (b) Crossing.

4.2. Evaluation Methodology

The quantitative evaluation is based on sensitivity (SN) and false positive (FP)

rate measurements. Four cubic ROIs are chosen along the ground truth fibers. Figure

4.1 depicts the ground truth fibers used in phantom experiments and the ROIs. The

selected (connected to the ones in the ROI) short tracts, that are determined with

respect to the threshold T , are divided into two groups as inside and outside the

ground truth fiber. The tracts that are partially inside the ground truth fibers are

further divided into two. The insiders are projected onto the centerline of the ground

truth fiber. SN is defined as the percentage of the ground truth centerline that is

covered by the projected insiders, while FP rate is defined as the total length of the

outsiders. Hence 1 > SN > 0, and FP ≥ 0. SN and FP rates are averaged over all ROIs

for a single phantom. SN and FP rate are defined likewise for the standard long fiber

tracts (streamline tracts), where each fiber is divided into two as inside and outside

segment groups. The experiments are repeated for SNR = {8, 16, 24} and resolutions

{0.23, 0.43} unit3. As given above, resolution of the ground truth data is 0.13 unit3,

hence partial volume effect will be observed at resolutions 0.23 and 0.43 unit3.

The qualitative evaluation is done by assessing the results for known fiber tract

bundles at different thresholds (T ). The ROIs were chosen on corpus callosum and
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internal capsule. Resulting fiber tracts for the chosen ROIs are interpreted qualitatively

based on known anatomical connections.

4.3. Experiments with Phantom DTI Data

As shown in Figure 4.1, each phantom geometry consists of two fibers. In kissing

geometry, two fibers get close to each other in the middle without touching. However,

due to partial volume effect, voxels at the center will be affected by both fibers in DTI

data. In crossing geometry, two fibers cross in the middle, which will cause the tensors

at the center to have ambiguous PDDs. The angle between the fibers is 60°.

In this section, figures from the tracking results for all SNR levels, all geometries

and all resolutions will be given, for a single seed region. Following these figures, in

Tables 4.1-4.4, numerical results are provided that are averaged over four ROIs as

shown in Figure 4.1.

Figures 4.2-4.13 show the results of streamline tracking and the proposed ap-

proach for a single ROI. Tracts shown in red are the long fiber tracts that are gener-

ated using streamline tractography by taking every grid point within the ROI as a seed

point. Tracts shown in green are the results of the proposed approach, and they form

the set of short fiber tracts that are connected to the seed short tracts passing through

the ROI, which is shown with a yellow circle, with a connectivity value higher than T .

Two images are provided for each case, one for low T , and one for high T .
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(a) (b) (c)

Figure 4.2. Outputs for kissing geometry at resolution 0.23 unit3 and SNR = 8 (a)

Streamline tracking (b) Proposed method at T = 0 (low) (c) Proposed method at

T = 5 (high).

(a) (b) (c)

Figure 4.3. Outputs for kissing geometry at resolution 0.23 unit3 and SNR = 16 (a)

Streamline tracking (b) Proposed method at T = 0 (low) (c) Proposed method at

T = 5 (high).
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(a) (b) (c)

Figure 4.4. Outputs for kissing geometry at resolution 0.23 unit3 and SNR = 24 (a)

Streamline tracking (b) Proposed method at T = 0 (low) (c) Proposed method at

T = 5 (high).

(a) (b) (c)

Figure 4.5. Outputs for kissing geometry at resolution 0.43 unit3 and SNR = 8 (a)

Streamline tracking (b) Proposed method at T = 0 (low) (c) Proposed method at

T = 5 (high).
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(a) (b) (c)

Figure 4.6. Outputs for kissing geometry at resolution 0.43 unit3 and SNR = 16 (a)

Streamline tracking (b) Proposed method at T = 0 (low) (c) Proposed method at

T = 5 (high).

(a) (b) (c)

Figure 4.7. Outputs for kissing geometry at resolution 0.43 unit3 and SNR = 24 (a)

Streamline tracking (b) Proposed method at T = 0 (low) (c) Proposed method at

T = 5 (high).
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Figures 4.2-4.4 display the results for the kissing geometry for different SNR levels

at resolution 0.23 unit3. For SNR = {16, 24}, initial streamline tractography results

are already true. Our approach fills in the fibers more solidly for low T , and show

the more confident parts (fibers around the centerline) at high T . At SNR = 8, initial

streamline tractography fails to follow the whole fiber. By creating bridges to the short

fiber tracts that are close to the stopping point, our method is able to track the whole

fiber successfully.

In Figures 4.5-4.7, results for kissing geometry at resolution 0.43 unit3 are de-

picted. When compared to Figures 4.2-4.4, these figures are much more blurred due

to a stronger partial volume effect. It can be also observed that, the fibers touch each

other in the middle, even if the ground truth fibers do not. In all these SNR levels,

streamline tracking ended prematurely without being able to track the whole fiber. In

all cases, our method is able to force these results to track the whole fiber, without

introducing any erroneous tracts.

Tables 4.1 and 4.2 give the quantitative evaluation results for kissing geometry at

resolutions 0.23 unit3 and 0.43 unit3, using the methodology described in Section 4.2.

First row in each table shows the performance (SN and FP rates) of streamline trac-

tography with 4th order Runge-Kutta integration. Second row gives the performance

of our method at the FP rate of streamline tractography, i.e., with no additional erro-

neous tracts. Last row shows the highest SN our method can achieve (low T ), and the

corresponding FP rate. From these tables, it can be seen that the proposed method

improves the tracking results for all SNR and resolution levels. At resolution 0.23

unit3 and SNR = {16, 24}, our method’s tracking results are perfect, i.e., SN = 1 and

FP = 0. For these cases, due to low noise and low partial volume effect, no ambiguity

in DTI data is detected at the kissing point. This means, no single cluster starting

from given seed ROIs has followed the wrong fiber. As expected, when voxel size is

increased, performances of both streamline tracking and our method decrease. Still,

our method has a marked advantage over streamline tracking.
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(a) (b) (c)

Figure 4.8. Outputs for crossing geometry at resolution 0.23 unit3 and SNR = 8 (a)

Streamline tracking (b) Proposed method at T = 0 (low) (c) Proposed method at

T = 5 (high).

(a) (b) (c)

Figure 4.9. Outputs for crossing geometry at resolution 0.23 unit3 and SNR = 16 (a)

Streamline tracking (b) Proposed method at T = 0 (low) (c) Proposed method at

T = 5 (high).



32

(a) (b) (c)

Figure 4.10. Outputs for crossing geometry at resolution 0.23 unit3 and SNR = 24 (a)

Streamline tracking (b) Proposed method at T = 0 (low) (c) Proposed method at

T = 5 (high).

(a) (b) (c)

Figure 4.11. Outputs for crossing geometry at resolution 0.43 unit3 and SNR = 8 (a)

Streamline tracking (b) Proposed method at T = 0 (low) (c) Proposed method at

T = 5 (high).
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(a) (b) (c)

Figure 4.12. Outputs for crossing geometry at resolution 0.43 unit3 and SNR = 16 (a)

Streamline tracking (b) Proposed method at T = 0 (low) (c) Proposed method at

T = 5 (high).

(a) (b) (c)

Figure 4.13. Outputs for crossing geometry at resolution 0.43 unit3 and SNR = 24 (a)

Streamline tracking (b) Proposed method at T = 0 (low) (c) Proposed method at

T = 5 (high).
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Figures 4.8-4.10 illustrate the tracking results for the crossing geometry at reso-

lution 0.23 unit3. Initial tractography fails to pass through the crossing point due to

ambiguous PDD information for SNR = 8. Our method, on the other hand, completes

most of the fiber via generating short tract clusters beyond the crossing point. For

SNR = {16, 24}, the results demonstrate the proposed method’s ability to highlight

the problematic regions that correspond to high uncertainty in DTI data. For SNR

= 24, all of the initial fibers (hence the base clusters) that are seeded from the points

within the ROI follow the wrong direction at the crossing point. As stated in Chapter

1, our method is able to display the possible branching patterns of the fiber bundles.

Figure 4.10 validates this statement, where the alternative path (which is actually true)

is displayed along with the direction of initial tractography result, which is erroneous.

However, Figures 4.9 and 4.10 also show that, when T is increased, our method has

a tendency to favor the wrong direction, like streamline tractography. This is in line

with the fact that, streamline tractography follows the most probable path, ignoring

uncertainty in the data.

Example tracking results for the crossing geometry at resolution 0.43 unit3 are

provided in Figures 4.11-4.13. In all of these results, streamline tractography fails at

the crossing point, and follows the wrong fiber. Our method is shown to highlight the

possible branching pattern. At SNR = {8, 16}, when T is increased, proposed method

chooses the wrong direction, following the discussion above. At SNR = 24, even if T

is increased, both directions are displayed.

Tables 4.3-4.4 give the numerical results for the crossing geometry. From these

tables, FP rate of streamline tractography increases as SNR increases (See Figures

4.8-4.10). In this case, although our method is able to propose alternative paths (as

observed from increased SN values), the FP rate of our method increases drastically.

One reason for this is always sampling from the neighbourhood of base clusters. An-

other reason is that, FP rate is not normalized. Hence, populating this data with denser

short tracts would result in an increased FP rate. The FP rates, however, should be

interpreted conservatively as the total length of all outsider short tract segments con-

tribute to it, even if they follow a single wrong path as in Figure 4.10.
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The connectivity threshold T should be interpreted as a relative measure, which

shows the confidence of the fiber tracts in a comparative manner. Hence, trying to

find a global T value that would work for all cases is not sensible. Use of such a

threshold provides user interactivity and it is the key to many of the virtues of the

algorithm. If we see a significant change in the resulting short tract set by changing T ,

one should suspect about the reliability of the results of the initial tractography at the

corresponding region. On the other hand, if T has no significant effect on the results,

one can be confident about results of the initial tractography. Decreasing T will either

increase the number of selected short tracts or will have no effect. At T = 0, all of

the short tract clusters sampled from the set of base clusters will be displayed. All

branching patterns, if any, will be observed at T = 0, and with increasing T , persistent

branchings can be assessed.

From the results given in this section, the following facts can be inferred:

� With increasing SNR, performances of streamline tractography and the proposed

method increase.

� With decreasing resolution (increasing voxel size), performances of streamline

tractography and the proposed method decrease, as the partial volume effect

becomes more prevalent.

� In all cases, our method achieves a higher SN value at the FP rate of streamline

tractography.

� In most cases, weighted histogram sampling provides a slightly better perfor-

mance compared to bootstrap sampling as the space of short tract clusters can

be more thoroughly explored by generating a larger number of clusters. Yet, the

computational cost of weighted histogram sampling is much higher.

� In some cases, performance of weighted histogram sampling is equal to that of

bootstrap sampling. In such cases, no unseen cluster is present in the cluster set

from which bootstrap samples are drawn. Clearly, using bootstrap sampling is

advantageous in these cases due to its lower computational cost.



38

4.4. Experiments with Real DTI Data

As stated before, in addition to phantom experiments, the algorithm is tested on

a healthy subject. Two ROIs are manually placed on anatomically well-known parts

of the brain, namely, corpus callosum (colossal commissure) and internal capsule.

Firstly, a ROI is manually placed on corpus callosum on sagittal plane of the 3D

view.

(a)

(b) (c)

Figure 4.14. Outputs for a ROI placed on corpus callosum (a) Streamline tracking (b)

Proposed method at T = 0 (low) (c) Proposed method at T = 50 (high).
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Figure 4.14 (a) shows the result of streamline tracking for this region. From this

figure, we can see that the fibers of corpus callosum are successfully found, however,

parts of corticospinal tract, middle cerebellar peduncle and fornix are also erroneously

tracked. At T = 0 (See Figure 4.14 (b)), the proposed approach also locates these

incorrect tracts, along with fronto-occipital fascicle. However, it can be seen that in

our method, the number of tracts along fornix are much less than streamline method.

Figure 4.14 (c) shows the case where T is increased to 50. In this case, number of

tracts along corticospinal tract, middle cerebellar peduncle and fronto-occipital fascicle

considerably decreases, which shows that these tracts are not reliable.

Secondly, internal capsule, which consists of fiber bundles connecting the cerebral

cortex and the pyramids of the medulla, is inspected. A ROI is manually placed on

posterior segment of internal capsule on axial plane of the 3D view. From Figure

4.15 (a), we can see that streamline tractography has erroneous connections to middle

cerebellar peduncle and corpus callosum. Moreover, there are connections to the wrong

hemisphere of the brain. Result of the proposed method is similar to that of streamline

tractography at T = 0, as shown in Figure 4.15 (b). When T is increased to 100, we

see that almost all of these errors are successfully eliminated, which can be observed

in Figure 4.15 (c). The results given in Figures 4.14 and 4.15 confirm that our method

can correctly assign relative confidence to fibers in the given tractography results. By

changing T , erroneous tracts can be eliminated from given results.
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(a)

(b) (c)

Figure 4.15. Outputs for a ROI placed on internal capsule (a) Streamline tracking (b)

Proposed method at T = 0 (low) (c) Proposed method at T = 100 (high).
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5. CONCLUSION

In this thesis, a white matter tractography assessment and improvement method

that relies on sampling the short fiber clusters has been proposed. The proposed

method combines easy comprehensibility of deterministic tractography methods and

fidelity of probabilistic methods to DTI data. The method takes a set of tracts as its

input and assesses the given results via

� Assigning relative confidence to fibers

� Highlighting erroneous/uncertain regions

� Introducing alternative paths

where the input tracts may be generated with any tractography algorithm.

For a given seed region, the result of the technique is a set of short tracts, which

can be filtered interactively by changing the connectivity threshold to the selected set

of seed short tracts. This allows the user to inspect the unreliable regions in the initial

tractography results and to see possible branching patterns in real time.

The proposed method is evaluated quantitatively on phantom and qualitatively

on real DTI data. For both cases, input tracts are generated with streamline tractogra-

phy with 4th order Runge-Kutta numerical integration algorithm [25]. In quantitative

experiments, it is observed that, the proposed method successfully highlights the un-

certainties in the DTI data, and suggests alternative paths at such regions. Streamline

tracking, on the other hand, masks these regions by selecting a single direction. More-

over, quantitative experiments show that the proposed method consistently improves

tracking results in all cases (different fiber geometries, SNR values and resolutions)

compared to streamline tractography. It is also shown that, the method can solve the

kissing and crossing fiber problem.
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In qualitative experiments, two of the anatomically well-known regions of brain

are inspected, which are corpus callosum and internal capsule. It is observed, the

proposed method can successfully generate anatomically sound fiber tracts. It is also

shown that, the erroneous connections in input tracts can be eliminated by increasing

the connectivity threshold.

The major drawback of the method is its high computational cost, like all prob-

abilistic tractography methods. Using bootstrap sampling reduces the computation

time, at the expense of not being able to explore the short tract cluster fully. How-

ever the computations are done once for a dataset and interactive assessment can be

performed in real time.

Among future prospects, using multiple ROIs stands out as the first extension.

When multiple ROIs are defined, one can use boolean operators to display the fibers

that pass through all or at least one of these ROIs. When the fibers that pass through

all ROIs are displayed, the outlier tracts can be eliminated. When the fibers passing

through at least one of these ROIs are displayed, several regions of brain can be an-

alyzed simultaneously. More importantly, another extension is combining DTI with

functional magnetic resonance imaging (fMRI). fMRI represents the gray matter acti-

vation, which is the neuronal population response to a specific task. While DTI can

be used to study anatomical architecture of human brain, fMRI provides information

about functional architecture of the brain in vivo. As pointed out in Chapter 1, DTI is

widely used in presurgical planning. Combining fMRI data in the planning step, a sur-

geon can change or enhance the course of treatment. Ultimately, combining these two

types of information can allow us to better understand the organization and dynam-

ics of neural systems in human brain, and consequently neural functions and human

behavior.
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