
ANALOG CELL SIZING USING ENHANCED MULTI-OBJECTIVE

EVOLUTIONARY ALGORITHM (MOEA/D-DE) AND FORMING A FEEDBACK

LOOP INTERFACE BETWEEN SACSES AND TOLAS

by

Süha Sipahi

BS, Electrical and Electronics Engineering, Yeditepe University, 2008

Submitted to the Institute for Graduate Studies in

Science and Engineering in partial fulfillment of

the requirements for the degree of

Master of Science

Graduate Program in Electrical and Electronics Engineering

Boğaziçi University

2011

ii

ANALOG CELL SIZING USING ENHANCED MULTI-OBJECTIVE

EVOLUTIONARY ALGORITHM (MOEA/D-DE) AND FORMING A FEEDBACK

LOOP INTERFACE BETWEEN SACSES AND TOLAS

APPROVED BY:

Prof. Günhan Dündar

(Thesis Supervisor)

Prof. A. C. Cem Say

Assoc. Prof. Arda D.Yalcinkaya

DATE OF APPROVAL:

iii

ACKNOWLEDGEMENTS

First and foremost I offer my sincerest gratitude to my supervisor, Prof. Günhan

Dündar, who has supported me throughout my thesis with his patience and knowledge

whilst allowing me the office to work in my own way. One simply could not wish for a

better or friendlier supervisor.

I would like to thank my family members, especially my mother, and my fa-

ther for supporting and encouraging me to pursue this degree.

I warmly thank Prof. Georges Gielen, for his valuable advice and friendly help.

His extensive discussions around my work and interesting explorations in operations

have been very helpful for this study.

During this work I have collaborated with many colleagues for whom I have

great regard, and I wish to extend my warmest thanks to Bou Liu and Murat Pak who

have helped me with my work in the Department of Electrotechnical Engineering at

the Katholieke Universiteit Leuven, Belgium.

I would also like to thank Utku Kuscu ,my house mate, with whom I lived through-

out the undergraduate and graduate degree and who took on my chores when I was

immersed with my thesis work.

The financial support of TUBITAK is gratefully acknowledged.

iv

ABSTRACT

ANALOG CELL SIZING USING ENHANCED

MULTI-OBJECTIVE EVOLUTIONARY ALGORITHM

(MOEA/D-DE) AND FORMING A FEEDBACK LOOP

INTERFACE BETWEEN SACSES AND TOLAS

This thesis investigates an evolutionary-based design system for automated sizing

of analog integrated circuits(ICs). A new algorithm, called multi-objective evolutionary

algorithm based on decomposition using enhanced differential evolution (MOEAD/D-

DE), is proposed to design analog ICs with practical user-defined specifications. On

the basis of the combination of HSPICE and MATLAB, the system links circuit per-

formances, evaluated through electrical simulation, to the optimization system in the

MATLAB environment, once a circuit topology is selected. The method has been tested

through the sizing of several analog circuits and benchmark problems. The results show

that design specifications are met and objective functions are highly optimized. Com-

parisons with available methods like NSGA-II, are also carried out, showing that the

proposed algorithm has important advantages in terms of diversity and optimization

quality. As a final work, an interface environment is created to link another optimiza-

tion system (SACSES) to layout generator. This feedback loop lets the optimization

to take into account the parasitic effects after the layout is drawn by TOLAS.

Keywords: Evolutionary algorithms, multiobjective optimization problems, pareto

optimality.

v

ÖZET

GELİŞTİRİLMİS ÇOK OBJEKTİFLİ EVRİMSEL

ALGORİTMA İLE SERİM ETKİLERİNİ DAHİL EDEREK

ANALOG DEVRE SENTEZİ

Günümüz teknolojisinin geldiği nokta, büyük oranda tümdevre tasarımında geli-

nen seviyeyle paralellik göstermektedir. Eğilim daha cok çip üstü sistemler yönünde

ilerlerken, bunların sayısal devre kısımları gelişmiş bilgisayar destekli tasarım aracları

yardımıyla sentezlenebilmektedir. Analog devre tasarımının insan gücüne olan bagım-

lılığının daha yüksek oluşu, bilgisayar desteğinin bu alanda kullanımının gecikmesine

neden olmustur. Fakat son zamanlarda evrimsel algoritmaların, yüksek güclü bilgisa-

yarla olan isbirliği neticesinde istenilen performanstaki analog devrelerin transistör

boyutları rahatlıkla elde edilebilmektedir. Tez calısması özetle analog devrelerdeki

transiztör boyutlarının, evrimsel algoritmalar yardımıyla eniyilenerek elde edilmesine

dayanmaktadır. Tercihen çoklu-performans fonksiyonlarının eniyilenmesinin daha alt

problemlere ayrıştırılmasına dayanan yöntem kullanılmıştır. Daha sonra evrimsel algo-

ritmanın arama ve yer değiştirme kısımlarında gerekli değişiklikler yapılarak gerek hız

gerek çözüm çeşitliği açısından daha başarılı sonuçlar elde edildi. Bu amaçla katlan-

mıs kaskod devresi ve kazancı arttırılmıs kuvvetlendirici tasarımları test sonucu olarak

sunulmustur. Elde edilen boyutlar serim üreten programa girilerek tasarımların serim-

leri otomatik olarak alınmıstır. Sonraki asama olarak serimler parazitik elemanlarına

ayrıstırılarak, diğer bir eniyileme algoritmasına geri beslenmiştir. Amaç eniyilemeye

parazitik etkileride dahil etmektir.

Anahtar Sözcükler: Evrimsel algoritma, çoklu hedefli optimizasyon, pareto opti-

mizasyon kriteri

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iii

ABSTRACT . iv

ÖZET . v

LIST OF FIGURES . viii

LIST OF TABLES . x

LIST OF SYMBOLS . xii

LIST OF ACRONYMS/ABBREVIATIONS . xiii

1. INTRODUCTION . 1

2. BACKGROUND . 5

2.1. Multi-objective Optimization Problems 5

2.2. Evolutionary Algorithms . 7

2.2.1. Evolutionary Operators . 8

2.3. Pareto Optimality . 8

2.4. Multi-objective Evolutionary Algorithm 10

2.5. Differential Evolution . 13

2.5.1. Scheme DE/rand/1 . 13

2.5.2. Scheme DE/best/1 . 15

2.6. Decomposition Methods . 15

2.6.1. Weighted Sum Approach . 16

2.6.2. Tchebycheff Approach . 17

2.6.3. Boundary Intersection (BI) Approach 17

3. PERFORMANCE METRICS REGARDING PARETO FRONTS 21

3.1. Schott’s Spacing Metric . 21

3.2. IGD Metric . 22

4. MULTI-OBJECTIVE OPTIMIZATION BASED ON DECOMPOSITION

(MOEA/D) . 24

4.1. General MOEA/D Framework . 25

4.2. Pros and Cons of MOEA/D . 28

4.3. Critics on MOEA/D . 28

vii

4.3.1. Why a Finite Number of Subproblems? 29

4.3.2. How Diversity is Maintained in MOEA/D 29

4.3.3. The Role of T in MOEA/D . 29

4.3.4. Complexity Computation of MOEA/D 30

5. ENHANCING MOEA/D BY USING SOME NOVEL TECHNIQUES . . . 31

5.1. Enhanced Parts of MOEA/D . 32

5.1.1. Boosted MOEA/D . 32

5.1.2. Novel Method to Generate Weight Vector 33

5.2. Comparison of Different Decomposition Methods 37

5.3. Genetic Algorithms and Enhancing Searching Ability 39

5.3.1. Genetic Operators . 39

5.3.2. Gaussian Mutation . 40

5.3.3. Crossover Operator . 40

5.3.4. DE Mechanism and Its Contribution to Searching 41

6. IMPLEMENTATION OF ALGORITHMS ON BENCHMARK AND ANA-

LOG CIRCUIT PROBLEMS . 49

6.1. Folded Cascode Amplifier Design . 51

7. CIRCUIT OPTIMIZATION BY CONSIDERING LAYOUT PARASITICS . 57

7.1. Creating Circuit Design Loop . 57

7.2. BTS OPAMP . 57

7.3. Time Constant Equilibration Reduction (TICER) 58

7.4. Template Based Layout Generation . 61

7.5. Flattening Extraction Output Files . 62

7.6. Batch Mode Execution of Calibre . 64

7.7. Layout Aware Circuit Optimization Test Results 65

8. CONCLUSION FUTURE WORK . 68

8.1. Future Work . 68

REFERENCES . 70

viii

LIST OF FIGURES

Figure 2.1. An example of a problem with two objective functions. 9

Figure 2.2. MOEA Description [1]. 11

Figure 2.3. DE’s main procedure [2]. 14

Figure 2.4. The process for generating vi,G+1 in scheme DE/rand/1 [2]. 14

Figure 2.5. Boundary intersection approach [1]. 18

Figure 2.6. Illustration of penalty-based boundary intersection approach [1]. . 19

Figure 3.1. Inverted Generational Distance Metric. 23

Figure 5.1. Orthogonality of the orthogonal array L4(2
3) [3]. 34

Figure 5.2. Latin Hypercube Sampling Weights. 36

Figure 5.3. Comparisons of PBI with different TE methods. 38

Figure 5.4. Gaussian Mutation of Parent a to form Offspring b. 40

Figure 5.5. DE/best/1/bin graphical example [4]. 42

Figure 5.6. Difference vectors and their distribution for a population of six points. 43

Figure 5.7. The scheme uses the best performance as the base point. 44

Figure 6.1. Schematic of CMOS Folded Cascode Amplifier. 52

ix

Figure 6.2. PF with the smallest IGD values by different methods. 54

Figure 6.3. PF with the smallest IGD values by different methods. 55

Figure 6.4. PF with the smallest IGD values by different methods. 56

Figure 7.1. Schematic of a basic two stage CMOS operational amplifier. . . . 58

Figure 7.2. TICER with 500kHz. 59

Figure 7.3. TICER with 100mHz. 60

Figure 7.4. Block Diagram of the Synthesizer [5]. 61

Figure 7.5. A subcircuit in .pex file. 62

Figure 7.6. Subcircuit call in .pxi file. 62

Figure 7.7. Block diagram of automated design loop [6]. 64

Figure 7.8. Runset File. 65

Figure 7.9. Post Optimization Transient Analysis. 67

x

LIST OF TABLES

Table 5.1. Speed Test of enhanced and original MOEA/D code. 33

Table 5.2. Orthogonal Array L4(2
3) for 3 factors at 2 levels; there are 4 com-

binations of factor levels. 34

Table 5.3. Illustration of the weight matrix for the 4 objective case. 46

Table 5.4. Max value comparison of LHS and Orthogonal Weight Initilization. 47

Table 5.5. Orthogonal vs LHS methods. 47

Table 5.6. IGD comparison of different methods. 48

Table 6.1. The IGD statistics based in 20 runs. 50

Table 6.2. Ranking of the IGD Values. 51

Table 6.3. Ranking of the IGD Values. 52

Table 6.4. IGD Values of Folded Cascode. 53

Table 6.5. W and L limits for Optimization. 53

Table 6.6. Objective Function Ranges. 53

Table 7.1. Specifications of the synthesized BTS OPAMP. 58

Table 7.2. Reduction of Parasitic Elements by TICER. 59

xi

Table 7.3. TICER Effect on Performance. 60

Table 7.4. Post Optimization Results with HSPICE. 66

Table 7.5. Pre and Post Optimization Results with SPASE. 66

xii

LIST OF SYMBOLS

d Distance between the objective functions

P Population

N Population size

F Scaling factor for DE

Z∗ True pareto set

m Dimension of the objective Functions

f Fitness function

T Number of the individuals in the neighborhood

B The neighborhood space

g Optimization Problem

α Description of α

λ Weight Vector Matrix

Ω Solution Space for the optimization variables

γ Greediness of the DE

xiii

LIST OF ACRONYMS/ABBREVIATIONS

CAD Computer Aided Design

CR Crossover Rate

DE Differential Evolution

DM Decision Maker

EA Evalutionary Algorithm

EP External Population

GBW Gain Bandwidth Product

IGD Inverted Generational Distance

LUT Look-up Table

MODE Multi-objective Differential Evolution

MOEA Multi-objective Evolutionary Algorithm

MOP Multi-Objective Problem

NSGA Non-dominated Sorting Genetic Algorithm

PF Pareto Front

PM Phase Margin

PS Pareto Set

TICER Time Constant Equilibration Reduction

1

1. INTRODUCTION

In recent years, there has been an increasing tendency in the electronics market to

integrate complete systems, which before occupied one or more boards, onto a single-

chip or multichip module. This is the evolution toward systems on a chip (SoC) or

systems on a package. Technologically, this integration has been made possible because

of the increasing miniaturization of very large scale integration technology. Most of

the functions in such an integrated system are performed with digital circuitry, which

perform digital signal processing. Analog circuits, however, are always needed at the

interface between the electronic system and the outer world. Nature is analog and inter-

action with nature or transportation of signals is, therefore, inevitable through analog

interface circuits. Although the analog circuits occupy only a small part of the area

in these mixed-signal ICs, they require an inversely large part of the design time and

cost and are often responsible for design errors and expensive redesign iterations. Most

steps in an analog design are basically still handcrafted, ranging from extensive and

repeated SPICE simulation runs through manual place and route with the assistance

of parameterized device generators. All this does not fit well with the short design

cycles of time-to-market critical applications. Clearly, there is an industrial need to

increase analog design productivity and to lower the design risk. The key to managing

this increased design complexity while meeting the shortening time-to-market factor

is the use of computer-aided design (CAD) and verification tools. Todays high-speed

computers provide more than enough power to make large and detailed computations

possible. What is needed to expedite the analog and mixed-signal design process is a

structured methodology and supporting CAD tools to manage the entire design process

and design complexity. CAD tools are also needed to assist or automate many of the

routine and repetitive design tasks, taking away the tedium of manually designing these

sections and providing the designer with more time to focus on the creative aspects

of design. In addition, CAD tools can increase the productivity of designers, even for

nonrepeatitive analog blocks.[7] Therefore, analog CAD and circuit design automation

are likely to play a key role in the design process of the next generation of mixed-signal

ICs and ASICs. And although the design of mixed-signal ASICs served as the initial

2

impetus for stepping up the efforts in research and development of analog design au-

tomation tools, the technology trend toward integrating complete systems on a chip in

recent years has provided yet another driving force to support analog CAD efforts.

Unfortunately, the story is quite different on the analog side. There are not yet any

robust commercial CAD tools to support or automate analog circuit design apart from

circuit simulators and layout editing environments and their accompanying tools. Some

of the main reasons for this lack of automation are that analog design in general is per-

ceived as less systematic and more heuristic and knowledge-intensive in nature than

digital design, and that it has not yet been possible for analog designers to establish

a higher level of abstraction that shields all the device-level and process-level details

from the higher level design. Analog IC design is more sensitive to nonidealities and

all kinds of higher order effects and parasitic disturbances.

Research in analog design automation (DA) has been relatively slow. By the year 1985

only a handful of analog DA systems were reported and only few institutions worldwide

demonstrated interest in analog design automation. Basically these can be classified

into three main group.

(i) Optimization-Based Design Approach: Historically, the first attempts to-

wards design automation were optimization-based. They consider the sizing

of transistors of a user-given circuit topology as an optimization problem.

Typically, these systems employ optimization algorithms to iteratively ad-

just transistor sizes in order to meet user input constraints and objectives.A

simulator is used within the optimization loop to assess the performance of

the circuit at each iteration.

(ii) Layout-Based Design Approach: Several systems have been developed that

follow a layout-based design approach. In essence, this approach is an adap-

tation of the extensively used standard cell, gate-array,and parameterized

cell methods found in the digital domain. Because with this approach de-

signs are controlled to a large extent by the layout, it is also referred to

as semi-custom bottom-up approach. Analog arrays are pre-designed and

layed-out blocks of different sizes, configurations and levels of complexity,

varying from single-component arrays to circuit arrays. The required func-

3

tions are designed by appropriately programming one or more levels of in-

terconnect. Designing with analog arrays has several serious drawbacks.

First of all, they do not provide the necessary design flexibility required for

high performance analog circuits. Not only do they restrict the designer to

the limited range of available active and passive components, but also to a

limited range of component values.

(iii) Knowledge -Based Design Approach: Knowledge-based systems exploit do-

main knowledge to design analog ICs, and they address the design task in a

full-custom way, thereby allowing for maximum flexibility and a potentially

better coverage of the circuit’s performance space.

• Hierarchical Approach: The underlying idea involves the breaking of

the required circuit (or system) into smaller distinct parts or blocks.

Each of these parts is assigned a set of specifications so that, if met,

the combination of the performance of these parts will yield the de-

sired circuit performance. The same procedure is repeated in a similar

manner for the smaller blocks at lower hierarchical levels. The number

of hierarchical levels depends upon the complexity of the circuit as well

as the sophistication of the design system.

• Fixed Topology Approach: The fixed topology approach is the sec-

ond knowledge-based design philosophy that has emerged and differs

widely from the first one. At their most fundamental level, systems fol-

lowing this approach employ a sizing method to compute appropriate

sizes for the devices within a given fixed circuit topology. These fixed,

unsized, device level circuit topologies are stored in a knowledge base

together with the necessary domain knowledge for dimensioning the

devices. The nature of this domain knowledge depends on the method

of computing the device sizes.

• Combined Hierarchical and Fixed Topology Approach: This is a system

that fits into this class of design systems, since it puts together a circuit

topology in a hierarchical manner whereas the design (i.e., sizing) of

the topology is performed in a manner that resembles fixed topology

systems. Systems that combine features from the hierarchical and fixed

4

topology approach provide an additional degree of design flexibility-

topology modification. This can lead to a smaller circuit library and

a wider coverage of circuit performances. However, they are not as

flexible as fully hierarchical systems [8].

The CAD tool realized for the thesis work is based on optimization-based design

approach. The aim of the thesis work is finding optimal dimensions for the transistors of

an user-given topology in order to get the pareto optimal performance points in terms of

gain, gain-bandwidth, offset, phase margin etc. The computation of these performance

metrics are done by evaluation of performance function which corresponds to HSpice

in the thesis work. After required performance values have been reached, the transistor

sizes at hand are sent to layout-generation tool. As next step the layout parasitics are

extracted by Calibre and post layout spice files are fed back to the optimizer to redesign

the circuit by considering parasitic effects. The details of the optimization tool will be

given in following chapters. Basically it exploits evolutionary algorithms because of its

powerful capability for rapid convergence after enough number of iterations.

5

2. BACKGROUND

2.1. Multi-objective Optimization Problems

The Multiobjective Optimization Problem can be defined as a vector of decision

variables which satisfies constraints and optimizes a vector function whose elements

represent the objective functions. These functions form a mathematical description of

performance criteria which are usually a part of a trade-off. Hence, the term optimize

means finding such a solution which would give the values of all the objective functions

acceptable to the decision maker.

Typically, at the beginning of a design process, it is impossible to specify the relative

importance of each objective function until the best capabilities are determined (e.g

circuit capability). Thus the design process is necessarily an interactive one. The area

of multiple objective optimization attempts to provide some results and geometrical

interpretations which can server the designer as a guide in this process.

(i) Decision Variables

The decision variables are the numerical quantities for which values are to

be chosen in an optimization problem. These quantities are denoted as xj ,

j = 1, 2, ..., n. The vector x of n decision variables is represented by:

x(n)=



x1

x2

.

.

xn


(ii) Constraints

In most optimization problems, there are always restrictions imposed by

the particular characteristics of the environment or available resources (e.g.

technological constrains for our case). These restrictions must be satisfied

in order to consider a certain solution acceptable. All these restrictions in

6

general are called constraints, and they describe dependences among deci-

sion variables and parameters involved in the problem. These constraints

are expressed in form of mathematical inequalities:

gi(x) ≤ 0 i = 1, . . . ,m

(iii) Criteria, Objectives, and Goals

Criteria generally denote evaluative measures, dimensions or scales against

which alternatives may be gauged in a value or worth sense. Objectives

are sometimes viewed in the same way, but may also denote specific de-

sired levels of attainment or vague ideals. Goals usually indicate either of

the latter notions. A distinction commonly made in OR is to use the term

goal to designate potentially attainable levels, and objective to designate

unattainable ideals. The convention used in the thesis is using the terms

objective, criteria, and attribute interchangeably to represent an MOP’ s

(multiobjective optimization problem) goals or objectives to be achieved.

The terms objective space or objective function space are also used to de-

note the coordinate space within which vectors resulting from evaluating an

MOP’ s solutions are plotted.

The objective functions are designated:f1(x), f2(x), ..., fk(x), where k is the

number of objective functions in the MOP being solved. Therefore, the

objective functions form a vector function f(x) which is defined by:

f(x) = [f1(x), f2(x), ..., fk(x)]T (2.1)

(iv) Multiobjective Optimization

The single objective formulation is extended to reflect the nature of multiob-

jective problems where there is not one objective function to optimize, but

many. Thus, there is not one unique solution but a set of solutions. This set

of solutions are found through the use of Pareto Optimality Theory which is

explained in following sections. Note that multiobjective problems require

7

a decision maker to make a choice of xi values. The selection is essentially

a tradeoff of one complete solution x over another in multiobjective space.

More precisely, multiobjective problems (MOPs) are those problems where

the goal is to optimize k objective functions simultaneously. This may in-

volve the maximization of all k functions, the minimization of all k functions

or a combination of maximization and minimization of these k functions.

A general MOP is defined as minimizing (or maximizing) F (x) = (f1(x), ..., fk(x))

subject to gi(x) ≤ 0, i = 1, ...,m, and hj(x) = 0, j = 1, ..., p x ∈ Ω

An MOP solution minimizes (or maximizes) the components of a vector

F (x) where x is a n -dimensional decision variable vector x = (x1, ..., xn)

from some universe Ω.

It is noted that gi(x) ≤ 0 and hj(x) = 0 represent constraints that must be

fulfilled while minimizing (or maximizing) F (x) and Ω contains all possible

x that can be used to satisfy an evaluation of F (x).

2.2. Evolutionary Algorithms

Evolutionary algorithms (EAs) are based on the Darwinian theory that de- scribes

the evolution of nature. The Darwinian theory of evolution explains the adaptive

change of species by the principle of natural selection, which favors those species for

survival and further evolution that are most suitable to their environmental conditions.

However, modern biochemistry and genetics have extended the Darwinian theory by

microscopic findings concerning the mechanisms of heredity. The major applications

of evolutionary algorithms are in optimization, although they have also been used to

build classifier systems and finite-state machines. In comparison with traditional opti-

mization techniques, such as calculus-based methods, evolutionary algorithms are more

robust and can obtain a better balance between efficiency and efficacy for many dif-

ferent real-world problems. Evolutionary algorithms are usually applied to solve those

problems that are characterized by chaos, chance, and nonlinear interactivity which

tend to be intractable to traditional methods. In the thesis, the problem in question

is quite nonlinear and suitable for evolutinary algorithms [9].

8

2.2.1. Evolutionary Operators

The majority of the current implementations of evolutionary algorithms de- scend

from three strongly related but independently developed approaches, namely, Genetic

Algorithms (GAs), Evolutionary Programming (EP), and Evolution Strategies (ESs).

Genetic programming is particularly developed to deal with tree structures such as

artificial logic and biological computing. The main streams of evolutionary algorithms

have been developed independently over the past thirty years, although they are closely

related with each other in terms of their underlying principles. The operators of one

evolutionary approach are often different from those of another. Thus, for example, ge-

netic algorithms usually strongly emphasize recombination. Evolution strategies and

evolutionary programming, however, concentrate on mutation, although sometimes

evolution strategies also incorporate recombination as an operator.Although these dif-

ferences exist among the different forms of evolutionary algorithm, they all rely on the

concept of a population of individuals, which undergoes the actions of probabilistic

operators such as mutation, selection, and recombination to evolve toward better fit-

ness values of individuals. The fitness of an individual rejects its objective function

value with respect to a particular objective function to be optimized. The mutation

operator introduces new information into the population by randomly generating vari-

ations to individuals; and the recombination operator, if there is such operation in the

evolutionary algorithm, typically performs an information exchange between different

individuals from a population. The selection operator imposes a driving force on the

process of evolution by preferring individuals with high fitness values. There is usually

a main loop in evolutionary algorithms, which consists of such evolutionary operators

as recombination, mutation, fitness evaluation, and selection. This loop is iterated for

a number of generations until the computing time is exhausted, a sufficiently good

solution is found, or some other termination criterion is fulfilled.

2.3. Pareto Optimality

A solution x ∈ Ω is said to be Pareto Optimal with respect to Ω if and only if

there is no x′ ∈ Ω for which v = F (x′) = (f1(x
′), ..., fk(x′)) dominates u = F (x) =

9

(f1(x), ..., fk(x)) The phrase Pareto Optimal is taken to mean with respect to the entire

decision variable space unless otherwise specified.

Figure 2.1. An example of a problem with two objective functions.

In words, this definition says that x∗ is Pareto optimal if there exists no feasible

vector x which would decrease some criterion without causing a simultaneous increase

in at least one other criterion (assuming minimization).

Pareto optimal solutions are those solutions within the decision space whose corre-

sponding objective vector components cannot be all simultaneously improved. These

solutions are also termed non-inferior or efficient solutions, with the entire set repre-

sented by P ∗. Their corresponding vectors are termed nondominated; selecting a vec-

tor(s) from this vector set (the Pareto front set PF ∗) implicitly indicates acceptable

Pareto optimal solutions or decision variables. These solutions may have no apparent

relationship besides their membership in the Pareto optimal set. They form the set of

all solutions whose associated vectors are nondominated; Pareto optimal solutions are

classified as such based on their evaluated functional values.

When plotted in objective space, the nondominated vectors are collectively known as

the Pareto front. Again, P ∗ is a subset of some solution set. Its evaluated objective

vectors form PF ∗, of which each is nondominated with respect to all objective vectors

produced by evaluating every possible solution in Ω. In general, it is not easy to find

an analytical expression of the line or surface that contains these points and in most

cases, it turns out to be impossible. The normal procedure to generate the Pareto

front is to compute many points in Ω and their corresponding f(Ω). When there is a

10

sufficient number of these, it is then possible to determine the nondominated points

and to produce the Pareto front. A sample Pareto front is shown in Figure 2.1 is an

example of a problem with two objective functions: cost and efficiency. The Pareto

front or trade-off surface is delineated by a curved line [10].

2.4. Multi-objective Evolutionary Algorithm

The exploration of Evolutionary Multi-Objective Optimization to solve the class

of multi-objective problems has increased in recent years. The ideal solution for a

multi-objective problem is the one that optimizes all criteria simultaneously. However,

such an ideal solution can never be obtained in practical applications where outcome

criteria may be fundamentally inconsistent. Optimal performance according to a single

objective, if such an optimum exists, often implies unacceptably low performance in

one or more of the other objective dimensions, creating the need for compromise to be

reached. As mentioned above, it is advantageous to obtain the Pareto optimal set before

evoking the preferences of DM(decision maker). Evolutionary algorithms inherently

explore a set of possible solutions simultaneously. This characteristic enables the search

for an entire set of Pareto optimal solutions, at least approximately, in a single run

of the algorithm, instead of having to perform a series of separate runs as in the

case of traditional mathematical programming techniques. Additionally, evolutionary

algorithms are less susceptible to problem dependent characteristics, such as the shape

of the Pareto front (convex, concave, or even discontinuous).

The first actual implementation of what it is now called a multi-objective evolutionary

algorithm (or MOEA, for short) is credited to David Schaffer, who proposed the Vector

Evaluation Genetic Algorithm (VEGA), in 1984.

Definition Given a function f : Ω ⊆ Rn → Rk, Ω 6= φ, k ≥ 2, for x ∈ Ω the set

PF ∗ , f(x∗i) > (-∞,, -∞) is called global minimum if and only if

∀ x ∈ Ω : f(x∗i) ≤ f(x)

11

Then, x∗i , i = 1, . . . , n is the global minimum solution set (i.e., P ∗), f is the multiple

objective function, and the set Ω is the feasible region.

Let φ : I →<k , (k ≥ 2, a multiobjective fitness function). If this multiobjective fitness

function is substituted for the fitness function in above definition then the algorithm

shown in 2.2 is called a Multiobjective Evolutionary Algorithm.

Figure 2.2. MOEA Description [1].

By definition, Task 2 in the MOEA computes k (where k ≥ 2) fitness functions.

In addition, because MOEAs expect a single fitness value with which to perform selec-

tion, additional processing is sometimes required to transform MOEA solutions’ fitness

vectors into a scalar (Task 2a). The major difference of MOEAs from single-objective

EAs lies in the evaluation procedure that assigns fitness values to each individual based

on Pareto dominance. The dominant solutions are given more credits to reflect their

closeness to the ultimate Pareto optimal set. Most MOEA implementations consider

the situation that no preference information is given by the DM a priori. The fitness

assignment in these algorithms is based purely on Pareto dominance. Others consider

to incorporate preference information from DM into fitness assignment.

The idea of using Pareto-based fitness assignment was first proposed by Goldberg [11].

He suggested the use of nondominated ranking and selection to move a population

toward the Pareto front in a multiobjective optimization problem. The basic idea is

to find the set of strings in the population that are Pareto nondominated by the rest

of the population. These strings are then assigned the highest rank and eliminated

from further contention. Another set of Pareto nondominated strings are determined

from the remaining population and are assigned the next highest rank. This process

continues until the population is suitably ranked. Goldberg also suggested the use of

some kind of niching technique to keep the GA from converging to a single point on

the front. A niching mechanism such as sharing would allow the GA to maintain indi-

12

viduals all along the nondominated frontier. In order to preserve population diversity

within each rank, the fitness sharing techniques can be naturally applied. Fonseca and

Fleming [11] implemented fitness sharing in the objective space and provided theory

for estimating the necessary niche size with consideration of the Pareto properties in

MOEA. The NSGA performed sharing in the decision variable space. Other than the

major stream of fitness sharing in order to ensure variability in the population, mating

restriction has been considered based on certain distance metric between individuals

in objective space by Fonseca and Fleming [11].

MOEA approaches have been classified into three major categories. These categories

are:

• Priori Techniques: By definition, these a priori techniques require a decision

maker (DM) to define the MOP objective relative importance prior to search.

• Progressive Techniques: In this technique the DM normally has to define goals

to bias the search, and this requires an interactive work that may be difficult and

inefficient when nothing about the problem is known. This technique basically

based on that the decision maker is unable to indicate preference information

a priori because of the complexity of t he problem. Thus, the decision maker

specifies and adjusts his or her preferences at the same time as he or she is

learning more about the problem. But a high effort is required from the decision-

maker during the whole search process. So that as a rule these methods are not

used [12].

• Posteriori Techniques: A posteriori techniques are explicitly seeking P(true) and

PF(true) . Thus, the emphasis is now to perform a search as widespread as possible,

as to generate as many different elements of the Pareto optimal set as possible.

The decision making process will now take place after completing the search.

The algorithm which is used throughout the thesis is a population based posteriori

method. As mentioned above, DM makes its preference right after the searching part

is over.

13

2.5. Differential Evolution

Differential Evolution (DE) has recently proven to be an efficient method for opti-

mizing real-valued multi-modal objective functions. Besides its good convergence prop-

erties and suitability for parallelization, DE’s main assets are its conceptual simplicity

and ease of use, having only a few control variables which remain fixed throughout the

entire minimization procedure. DE is a simple yet powerful evolutionary algorithm by

Price and Storn [13] that has been successfully used in solving single-objective opti-

mization problems. Hence, several researchers have tried to extend it to handle MOPs.

DE is a simple evolutionary algorithm that creates new candidate solutions by com-

bining the parent individual and several other individuals of the same population. A

candidate replaces the parent only if it has better fitness. This is a rather greedy se-

lection scheme that often outperforms traditional EAs. Basically, DE generates new

parameter vectors by adding the weighted difference between two population vectors to

a third vector. If the resulting vector yields a lower objective function value than a pre-

determined population member, the newly generated vector replaces the vector, with

which it was compared, in the next generation; otherwise, the old vector is retained.

This basic principle, however, is extended when it comes to the practical variants of DE.

For example an existing vector can be perturbed by adding more than one weighted

difference vector to it. In most cases, it is also worth to mix the parameters of the old

vector with those of the perturbed one before comparing the objective function values.

There exists several variants of DE which will explained in the following sections. The

pseudocode of the DE algorithm can be seen Figure 2.3

2.5.1. Scheme DE/rand/1

For each vector xi,G , i = 0, 1, 2,, NP−1, a perturbed vector vi,G+1 is generated

according to Equation 2.2

vi,G+1 = xr1,G + F (xr2,G − xr3,G) (2.2)

14

Figure 2.3. DE’s main procedure [2].

with r1, r2,r3 ∈ [0, NP − 1], integer and mutually different and F > 0.

The randomly chosen integers r1, r2,r3 are also chosen to be different from the running

index i. F is a real and constant factor ∈ [0, 2] which controls the amplification of the

differential variation (xr2,G - xr3,G). Figure 2.4 shows a two- dimensional example that

illustrates the different vectors which play a part in the vector-generation scheme. The

notation: DE/rand/1 specifies that the vector to be perturbed is randomly chosen,

and that the perturbation consists of one weighted difference vector.

Figure 2.4. The process for generating vi,G+1 in scheme DE/rand/1 [2].

15

2.5.2. Scheme DE/best/1

Basically, this scheme works the same way as DE/rand/1 except that it generates

the vector vi,G+1 according to Equation 2.3 :

pi = λ.pbest + (1− λ).pi + F.
K∑
k=1

(pika − pikb) (2.3)

where pbest is the best individual in the parent population, λ represents greediness of

the operator, and K is the number of perturbation vectors, F is the scale factor of the

perturbation, pika and pikb are randomly selected mutually distinct individual pairs in

the parent population, and p′i is the offspring that is generated; λ, K, and F are the

parameters associated with the algorithm. This time, the vector to be perturbed is

the best performing vector of the current generation. In order to increase the potential

diversity, crossover is introduced. In the thesis work this version of DE is exploited

instead of using the simulated binary crossover (SBX) method of the MOEAD/D.

2.6. Decomposition Methods

There is no decomposition involved in the majority of the current state-of-the-art

multiobjective evolutionary algorithms. These algorithms treat a MOP as a whole.

They do not associate each individual solution with any particular scalar optimization

problem. In a scalar objective optimization problem, all the solutions can be compared

based on their objective function values and the goal of a scalar objective evolutionary

algorithm (EA) is often to find a single optimal solution. In MOPs, however, domi-

nation does not define a complete ordering among the solutions in the objective space

and MOEAs aim at producing a number of Pareto optimal solutions as diverse as pos-

sible for representing the whole PF. Therefore, conventional selection operators, which

were originally designed for scalar optimization, cannot be directly used in nondecom-

position MOEAs. If there is a fitness assignment scheme for assigning an individual

solution a relative fitness value to reflect its utility for selection, then scalar optimiza-

tion EAs can be readily extended for dealing with MOPs. The idea of decomposition

16

has been used to a certain extent for MOPs. For example, the two-phase local search

(TPLS) [14] considers a set of scalar optimization problems, in which the objectives

are aggregations of the objectives in the MOP under consideration, a scalar optimiza-

tion algorithm is applied to these scalar optimization problems in a sequence based on

aggregation coefficients, a solution obtained in the previous problem is set as a start-

ing point for solving the next problem since its aggregation objective is just slightly

different from that in the previous one. The multiobjective genetic local search aims

at simultaneous optimization of all aggregations constructed by the weighted sum ap-

proach or Tchebycheff approach. At each iteration, it optimizes a randomly generated

aggregation objective.

2.6.1. Weighted Sum Approach

In the weighting method, the idea is to associate each objective function with

a weighting coefficient and minimize the weighted sum of the objective functions are

transformed into a single objective function. We suppose that the weighting coefficients

wi are real numbers such that wi ≥ 0 for all i = 1,2,...,k. It is also usually supposed that

the weights are normalized that is,
∑k

i=1 λi = 1. To be more exact, the multiobjective

optimization problem is modified into the following problem [15]:

minimize gws(xλ) =
∑k

i=1 λi · fi
subject to x ∈ S,

.

where λi ≥ 1 for all i = 1,..., k and
∑k

i=1 λi = 1.

where we use gws(xλ) to emphasize that λi is a coefficient vector in this objective

function, while x is the variables to be optimized. To generate a set of different Pareto

optimal vectors, one can use different weight vectors λi in the above scalar optimization

problem. If the PF is concave (convex in the case of minimization), this approach could

work well. However, not every Pareto optimal vector can be obtained by this approach

in the case of nonconcave PFs.

17

2.6.2. Tchebycheff Approach

In this approach, the scalar optimization problem is in the form:

minimize gte(x|λ,z∗) = max(λifi(x) - z∗)

x ∈ Ω (2.4)

where z∗ = (z∗1 ,...,z∗m)T is the reference point i.e z∗i = max(fi(x) | x ∈ Ω) for each i =

1,...,m. For each pareto optimal point x∗ there exists a weight vector λ such that x∗

is the optimal solution of Equation 2.4 is a pareto optimal solution. Therefore, one is

able to obtain different Pareto optimal solutions by altering the weight vector.

In the thesis work performances of both methods will be presented by revealing the

result of real-world problem optimization.

2.6.3. Boundary Intersection (BI) Approach

The PF of a continuous MOP is part of the most top right boundary of its

attainable objective set under some conditions. Geometrically, these BI approaches

aim to find intersection points of the most top boundary and a set of lines. If these

lines are evenly distributed, it can be expected that the resultant intersection points

provide a good approximation to the whole PF. These approaches are able to deal with

nonconcave PFs. In this work, a set of lines emanating from the reference point are

used. As a result, the following scalar optimization subproblem is considered [14]:

minimize gbi(x|λ, z∗) = d

subject to z∗ − F (x) = d · λ

As shown in Figure 2.5, the constraint z∗ − F (x) = d · λ guarantees that F (x) is

always in line L, the line with direction λ and passing through z∗. The goal is to push

18

F (x) as high as possible so that it reaches the boundary of the attainable objective

set. One of the drawbacks of the above approach is that it has to handle the equality

constraint. To cope with the constraint handling problem, using a penalty factor can

be considered as a good method.

Figure 2.5. Boundary intersection approach [1].

19

minimize gbi(x|λ, z∗) = d1 + θ · d2
subject to x ∈ Ω where

d1 =
||(z∗ − F (x))T · λ||

||λ||
(2.5)

z∗ − F (x) = d · λ (2.6)

θ is an previously set penalty parameter. If y is the projection of F (x) on the line

L, as shown in figure 2.5, d1 will be the distance between z∗ and y. d2 is the distance

between F (x) and L. If θ is set set appropriately, the solutions to equation 2.5 and

2.6 should be very close. Hereafter, this method is called the penalty-based boundary

intersection (PBI) approach [1].

The advantages of the PBI approach (or general BI approaches) comparing to the

Tchebycheff approach are as follows:

Figure 2.6. Illustration of penalty-based boundary intersection approach [1].

• In the case of more than two objectives, let both the PBI approach and the

Tchebycheff approach use the same set of evenly distributed weight vectors, the

20

resultant optimal solutions in the PBI should be much more uniformly distributed

than those obtained by the Tchebycheff approach, particularly when the number

of weight vectors is not large.

• If x dominates y, it is still possible that gte(x|λ,z∗) = gte(y|λ,z∗), while it is rare

for gbip and other BI aggregation functions [1].

However, these benefits of course have a price which is that, one has to set the value

of the penalty factor. It is well-known that a too large or too small penalty factor will

even decrease the quality of the method [14]. It has also been experimented that best

penalty factor is problem dependent.

21

3. PERFORMANCE METRICS REGARDING PARETO

FRONTS

Comparing two evolutionary multiobjective algorithms hence requires comparing

the nondominated sets they produce. If we call the true pareto front Z∗, then how

do we compare a result which produces a single point a ∈ Z∗ with another result

which yields a widespread set of nondominated points B, none of which dominates the

discovered solution. But in the latter case, although every discovered point can be

dominated, we have perhaps a very wide representation of the shape of the trade-off

surface absent in the former case and perhaps some of the points are not very far from

true Pareto optimal. Until recently, it has been popular to be indicated simply by

graphic plot. Results are compared clearly in this form revealing which algorithm is

better. Lately, several metrics have been proposed for comparing non-dominated sets,

each of which attempts to represent the quality of such a set by a single number. Such

a measure can then allow statistical comparison between different algorithms in terms

of diversity, convergence, etc.

3.1. Schott’s Spacing Metric

This metric uses the following formula to measure how evenly the points are

distributed. It is an independent metric, gives rise a complete ordering and is very fun-

damental. It exhibits neither monotony nor relativity, since Z∗ may be non-uniform.

As an advantages, first it can be used in conjunction with other metrics, it provides in-

formation about the distribution of vectors obtained. Second, it has low computational

overhead. Third, it can be generalized to more than two dimensions by extending the

definition of di. However it has a couple of disadvantages such as di does not specify

the use of normalized distances, which may be problematic.

22

√
1

n− 1
·
∑
i+1

n · (d− − di)2 (3.1)

where di = minj(|f i
1(~x)− f j

1 (~x)|+ |f i
2(~x)− f j

2 (~x)|), i, j = 1...n, d− is the mean of all di

and n = |Z|

This metric is designed to measure the distribution of the computed non-dominated

front. All of them involve calculating a certain form of distance among the solutions

in the computed non-dominated front.

3.2. IGD Metric

The inverted generational distance (IGD) is also used to evaluate the performance

of the algorithms. To quantify this information, a large set of evenly spaced points on

the Pareto-optimal front is generated. Let the size of this set be H. The minimum

Euclidean distance of each point in this set from the obtained solution set is computed.

Let this distance be li for the ith element of the Pareto-optimal set. Then the IGD

metric is given by

IGDmetric =

∑H
i=1 li
H

(3.2)

This measure of convergence indicated how far is the true Pareto-optimal front from

the obtained front by each of the algorithms. Algorithm A is better than algorithm B

in terms of convergence (diversity) if IGD of algorithm A is less than algorithm B. The

IGD metric for the case of two objectives is pictorially depicted in Figure 3.1 [16]. The

IGD metric measures both the convergence and the spread of the obtained solutions.

23

Figure 3.1. Inverted Generational Distance Metric.

24

4. MULTI-OBJECTIVE OPTIMIZATION BASED ON

DECOMPOSITION

(MOEA/D)

A multiobjective optimization problem (MOP) can be stated as follows:

maximize F (x) = (f1(x), ..., fm(x))T

subject to x ∈ Ω

Ω is the decision space where F : Ω → Rm consists of m real-valued objective func-

tions and Rm is called objective space. Very often, since the objectives in the function

above contradict each other, no point in Ω maximizes all the objectives simultaneously.

One has to balance them. The best tradeoffs among the objectives can be defined in

terms of Pareto optimality. Analog cell sizing problem is a great example of MOP

whose objective functions are the performance metrics of the circuit such as power,

gain, area etc. and each of these objective functions could be an optimal solution of

a scalar optimization problem. In other words PF approximation can be decomposed

into a number of a scalar objective optimization subproblems. Several methods serve

a purpose for constructing aggregation functions. The most popular ones among them

include the weighted sum approach and Tchebycheff approach and both are explained

in Chapter 2. Majority of the multiobjective evolutionary algorithms do not exploit

this concept of decomposition. These algorithms treat a MOP as a whole. However

in a scalar objective optimization problem, all the solutions can be compared based

on their objective function values and a scalar objective evolutionary algorithm (EA)

often tries to find one single optimal solution. In MOPs domination does not define a

complete ordering among the solutions in the objective space and MOEAs aim at pro-

ducing a number of Pareto optimal solutions as diverse as possible for representing the

whole PF. Therefore, conventional selection operators, which were originally designed

for scalar optimization, cannot be directly used in nondecomposition MOEAs. If there

is a fitness assignment scheme for assigning an individual solution a relative fitness value

25

to reflect its utility for selection, then scalar optimization EAs can be readily extended

for dealing with MOPs. The popular fitness assignment strategies include alternat-

ing objectives-based fitness assignment such as the vector evaluation genetic algorithm

(VEGA) [17], and domination-based fitness assignment such as Pareto archived evo-

lutionary strategy (PAES) [18], strength Pareto evolutionary algorithm II (SPEA-II)

[15], and nondominated sorting genetic algorithm II (NSGA-II) [19].

4.1. General MOEA/D Framework

MOEA/D explicitly decomposes the MOP into N scalar optimization subprob-

lems. It solves these subproblems simultaneously by evolving a population of solutions.

At each generation, the population is composed of the best solution found so far (i.e.

since the start of the run of the algorithm) for each subproblem. The neighborhood

relations among these subproblems are defined based on the distances between their

aggregation coefficient vectors.The optimal solutions to two neighboring subproblems

should be very similar. Each subproblem is optimized in MOEA/D by using informa-

tion only from its neighboring subproblems. Any decomposition approaches can serve

this purpose. In the following description, we suppose that the Tchebycheff approach

is employed.

Let λ1, ..., λN be a be a set of even spread weight vectors and z∗ be the reference point.

As mentioned above the problem of approximation of the PF of following equation

F (x) = (f1(x), ..., fm(x))T (4.1)

can be decomposed into N scalar optimization subproblems by using the Tchebycheff

approach and the objective function of the jth subproblem is :

gte(xλj, z∗) = max1≤i≤m(λi|fi(x)− z∗i |) (4.2)

26

for λk = (λk1, ..., λ
k
m)T . In a single run, the algorithm minimizes all these objective

functions simultaneously.

Note that gte is continuous of λ , and the optimized solution of gte(x|λi, z∗) should be

close to that of gte(x|λj, z∗) if λi and λj are close to each other. In other words, any

weight vector can help out optimizing gte(x|λi, z∗) as long as it is close to λi. This is

the major motivation behind the neighborhood concept.

In MOEA/D, a neighborhood of weight vector λi is defined as a set of its several

closest weight vectors in λ1, ..., λN . The neighborhood of the ith subproblem consists

of all the subproblems with the weight vectors from the neighborhood of λi. The best

solution of any subproblem composes of the population. Only the current solutions to

its neighboring subproblems are used for optimizing a subproblem in MOEA/D.

At each run t of MOEAD/D with Tchebycheff method, it comes up with:

(i) A population N points x1, ..., xN ∈ Ω, where xi is the current solution to

the ith subproblem.

(ii) z = (z1, ..., zm)T where zi is the best value found so far for objective fi.

(iii) FV 1, ..., FV N , since FV i is the fitness value for xi, i.e., FV i = F (xi) for all

i = 1, ..., N ;

(iv) Storing the non-dominated individuals to an external population which is

called as EP .

Briefly the algorithm works regarding to following order:

Inputs:

(i) MOP is defined as in Equation 4.1

(ii) A stopping criterion;

(iii) N : the number of the subproblems considered in MOEA/D;

(iv) a uniform spread of N weight vectors λ1, ..., λN ;

(v) T : the number of the weight vectors in the neighborhood of each weight

vector.

27

Output: External Population (EP)

The algorithm can decomposed into 3 main steps which are :

(i) Initialization: In this step, first, the external population is set to zero. Later,

the Euclidean distances between weight vectors are calculated in order to

find the T closest weight vectors to each weight vector and the neighbor-

hood B(i) = i1, ..., iT is set for the T closest weight vectors λi. Second

an initial population, which is the set of solutions, is randomly generated

and the objective functions are evaluated for these individuals. As third,

z = (z1, ..., zm)T is initialized by a problem specific method. The minimum

and maximum values of z = (z1, ..., zm)T for each objective function is set

to ∞ and −∞.

(ii) Update: The algorithm starts to iterate N times in a loop structure to

update. Initially randomly selected two indexes of B(i) are used to gener-

ate a new solution by the help of genetic operators. Then an improvement

mechanism runs and outputs a new solution which is used to calculate the

objective function in order to update the z values. Later on, the following

inequality is checked whether it is satisfied or not. If it is satisfied, the

solution set and the fitness values are updated.

gte(y′|λj, z) ≤ gte(xj|λj, z)

After that, EP is updated by removing all the dominated vectors by F (y′)

and including F (y′) to the external population if no vectors in EP can

dominate F (y′).

(iii) Stopping Criteria: Finally, if the termination condition is satisfied, the al-

gorithm stops and outputs the EP.

During initialization step, B(i) contains the indexes of the T closest vectors

of λi. Euclidean distance measurement methods is employed in order to

compute the closeness between any two weigth vectors. As a result the

index i will be the first index of B(i). The following T − 1 indexes are

determined by the Euclidean distance to ith vector and if an index j is a

member of B(i) then it can be told that j is a neighbor of i [1].

28

4.2. Pros and Cons of MOEA/D

• MOEA/D provides a simple yet efficient way of introducing decomposition ap-

proaches into multiobjective evolutionary computation.

• Since MOEA/D optimizes scalar optimization problems rather than directly solv-

ing a MOP as a whole, issues such as fitness assignment and diversity mainte-

nance that cause difficulties for nondecomposition MOEAS could become easier

to handle in the framework of MOEA/D.

• MOEA/D has lower computational complexity at each generation than NSGA-II

[19] and MOGLS. Overall, MOEA/D outperforms, in terms of solution quality,

MOGLS on 0-1 multiobjective knapsack test instances when both algorithms use

the same decomposition approach. MOEA/D with the Tchebycheff decomposi-

tion approach performs similarly to NSGA-II on a set of continuous MOP test

instances. MOEA/D with an advanced decomposition approach performs much

better than NSGA-II on 3-objective continuous test instances. MOEA/D using

a small population is able to produce a small number of very evenly distributed

solutions.

• Objective normalization techniques can be incorporated into MOEA/D for deal-

ing with disparately scaled objectives.

• It is very natural to use scalar optimization methods in MOEA/D since each

solution is associated with a scalar optimization problem. In contrast, one of the

major shortcomings of nondecomposition MOEAs is that there is no easy way for

them to take the advantage of scalar optimization methods.

4.3. Critics on MOEA/D

The algorithm employed in the thesis work is based on MOEA/D. So all of its

either strong or weak features directly pass to MOEA/D-DE algorithm. That is why

it is quite important to discuss some properties of MOEA/D regarding its diversity,

complexity or solution range issue.

29

4.3.1. Why a Finite Number of Subproblems?

Since the computational resource is always limited, optimizing all the possible

aggregation functions would not be very practical. MOEA/D spends about the same

amount of effort on each of the N aggregation functions. Thus, the weight vector used

in MOEA/D is N preselected vector.

4.3.2. How Diversity is Maintained in MOEA/D

Without decomposition, algorithms like NSGA-II use crowding distances among

the solutions in their selection to maintain diversity. But it is not always easy to gen-

erate a uniform distribution of Pareto optimal objective vectors in these algorithms. In

MOEA/D, a MOP is decomposed into a number of scalar optimization subproblems.

Different solutions in the current population are associated with different subproblems.

The "diversity" among these subproblems will naturally lead to diversity in the popu-

lation. When the decomposition method and the weight vectors are properly chosen,

and thus the optimal solutions to the resultant subproblems are evenly distributed

along the PF.

4.3.3. The Role of T in MOEA/D

T is the size of the neighborhood. Only current solutions to the T closest neigh-

bors of a subproblem are used for optimizing it in MOEA/D. In a sense, two solutions

have a chance to mate only when they are for two neighboring subproblems. So extra

attention should be paid by setting T . If T is too small, the chosen parent solutions

may be very similar subproblems, consequently, generated child solution could be very

close to their parents. Therefore, the algorithm lacks the ability to explore new areas in

the search space. On the other hand, if T is too large, the chosen parents may be poor

for the subproblem and so is their child solution. Beside, a too large T will increase

the computational overhead.

30

4.3.4. Complexity Computation of MOEA/D

The major computational costs are in MOEA/D generates N trial solutions.

Updating mechanism performs O(m) comparisons and assignments, and updating the

neighboring solutions need O(mT) basic operations since its major costs are to compute

the values of gte for T solutions since the computation of one such a value requires

O(m) basic operations. Therefore, the computational complexity of Step 2 in the

above variant of MOEA/D is O(mNT) since it has N passes [1].

31

5. ENHANCING MOEA/D BY USING SOME NOVEL

TECHNIQUES

The thesis works basically employs a multiobjective evolutionary algorithm based

on decomposition (MOEA/D) and its extended version by using differential evolution

(DE) as the main search engine (MOEA/D-DE) which outperform several widely used

multiobjective evolutionary algorithms. MOEA/D decomposes a multiobjective prob-

lem into a number of scalar optimization sub-problems with a neighborhood structure

and optimizes them simultaneously to approximate the Pareto-optimal set. In this the-

sis work, two mechanisms are investigated to enhance the performance of MOEA/D-

DE. Firstly MOEA/D algorithm code has been modified and simplified in order to

make it work faster. Secondly, a new replacement mechanism is proposed to call for a

balance between the diversity of the population and the employment of good informa-

tion from neighbors. Thirdly, the scaling factor in DE is randomized to enhance the

search ability. Later on, a novel method for generating the weight vectors has been

proposed and it has been observed that it enhances the overall quality of the Pareto

fronts. Beside that, different normalization methods for the objective functions have

been implemented and the best one has been chosen. Then, different decomposition

techniques have been performed to find the best one. Moreover, DE search algorithm

has been included instead of polynomial mutation of the MOEA/D and the scaling

factor in DE is randomly picked to enhance the search ability.

Comparisons are carried out with MOEA/D-DE on ten benchmark problems,

showing that the proposed method exhibits significant improvements. Finally, the en-

hanced MOEA/D-DE is applied to a real world problem, the sizing of a folded-cascode

amplifier with four performance objectives.

Most MOEAs compare solutions based on dominance. However, domination cannot

provide a full ranking among all the solutions. Therefore, these MOEAs need some

other techniques for ranking solutions (e.g. crowding distances, fitness sharing, nich-

ing). Among these algorithms, non-dominated sorting genetic algorithm II (NSGA-II)

32

[19] and strength Pareto evolutionary algorithm 2 (SPEA2) [20] have received much

attention in real world applications. However, it is shown that these methods can-

not always provide good results, especially when the MOP is complicated. Recently, a

new MOEA framework, multiobjective evolutionary algorithm based on decomposition

(MOEA/D) [1], was proposed. It decomposes a MOP into a set of scalar optimization

sub-problems with neighborhood relations. The first version of MOEA/D uses simu-

lated binary crossover (SBX) and polynomial mutation as the search engines. Later, a

new version using the mutation (DE/best/1/bin [13]) in differential evolution (DE) as

the main search engine was proposed and shown to outperform MOEA/D and NSGA-

II, especially for complex problems.

There are several possibilities to enhance the performance of the MOEA/D-DE frame-

work. The first one is the population replacement. The goal is to call for a balance

between information sharing and diversity maintenance. In the proposed method, when

the number of parent solutions that can be replaced by a high quality child solution

exceeds the maximum number, we rank the parent solutions and first replace those

that are closer to the child solution. The second one is to enhance the search ability.

We randomize the scaling factor in the DE mutation to achieve this.

5.1. Enhanced Parts of MOEA/D

5.1.1. Boosted MOEA/D

As initial work, the MOEA/D code has been boosted by modifying its code struc-

ture. First of all, it has been realized that the code was composed of lots of structs that

slows down it seriously. Therefore, all structs have been eliminated and all parameters

were taken out of the structs. Another improvement was that overall algorithm has

been transformed into a script file instead of keeping it work with functions. After all,

these improvements enhanced the performance of the code. The result is summarized

in the Table 5.1.

33

Table 5.1. Speed Test of enhanced and original MOEA/D code.

Codes Time(sec)

Nonenhanced 0.41

Enhanced 0.26

5.1.2. Novel Method to Generate Weight Vector

Weight initialization has the foremost importance in terms of solution range.

By assigning fairly spread weights to each objective makes the solution space span

towards both extreme points. Otherwise the solution might get stuck around a limited

solution space. Search in different directions according to different weight vectors

can naturally help the diversity. For this purpose novel weigth matrix initialization

method has been proposed. Weight vectors are used as a method of decomposition

of different subproblems into a single subproblem. Let λ = (λ1, ..., λm)T be a weight

vector providing λi ≥ 0 and m keeps the index of the objective functions. In order to

initialize the weight matrix properly, equation 5.1 must be satisfied.

m∑
i=1

λi = 1 (5.1)

By assigning these weights makes the objective functions have either lower or higher

possibility to be optimized. In [1] weight initialization is just done for 2 objective op-

timization problems. The rule behind the initialization method for N objectives is :

λa = [1− (a− 1)/(N − 1), (a− 1)/(N − 1)] (5.2)

where 1 ≤ a ≤ N . By applying the above formula, the extreme points get the the

following values.

λ1 = [1, 0]

λN = [0, 1]

34

Since this method provides the best distribution quality, it is employed in the proposed

work for 2 objectives case. When it comes to the matter of multi-objective case,

orthogonal genetic algorithm is implemented [3].

Figure 5.1. Orthogonality of the orthogonal array L4(2
3) [3].

Table 5.2. Orthogonal Array L4(2
3) for 3 factors at 2 levels; there are 4 combinations

of factor levels.

Combination Factor1 Factor2 Factor3

1st 1 1 1

2nd 1 2 2

3rd 2 1 2

4th 2 2 1

Figure 5.1 illustrates the meaning of orthogonality for L4(2
3). The orthogonal

array tries to generate fairly distributed vectors in the whole space. In the table 5.2,

each row represents a combination of levels. The orthogonality of an array means

that for the factor in any column, every level occurs the same number of times and

for the two factors in any two columns, every combination of two levels occurs the

same number of times and the selected combinations are uniformly distributed over

the whole space of all the possible combinations.

The level number represents the degree of importance on each objectives. The

bigger number corresponds that it has more chance to be optimized. The 2nd row of

the Table 5.2 has 1, 2, 2. Referring to equation 5.1, the sum must be equal to 1. So

35

it must be normalized as 0.2, 0.4, 0.4. This indicates us that 2nd and 3rd objectives

have relatively higher chance to be optimized. The basic idea behind the orthogonal

array is selecting a level limit and distributing these levels between objective functions

with a method which decreases the number of the overall possibilities. In Figure 5.1

the combinations are decreased to 4, which means with a level of 2 and 4 objective

functions, a solution is offered with 4 weight vectors, making the population size 4.

Increasing the level number to 10 will increase the population size to 100 and it will

create a larger search space and better distribution.

However, this random process does not concern the trade-offs very well. In other words,

by unfair distribution, some significant objectives might be overlooked and its search

space might be limited. Let the number of levels be 9. Under these circumstances, an

objective might have the vector which is [1 1 1 2 2 2 3 3 3]. This objective will get

its highest weight value at 7th and 8th combination which is 3/9 = 0.33. This is not

enough for the optimization range of the objective in question since the average weight

value it has is already 0.25. Thus, even if the number of the levels is increased, it is

clear that the limit conditions of the Pareto optimal solutions will get stuck due to the

weak weight matrix initialization.

In order to avoid this situation, in problems with more than two objectives, their

weights are initialized manually and saved in the look-up tables. This manual method

is created by concerning both fair distribution of the weights and the three rules men-

tioned for orthogonal array which leads to good distribution. The weight initialization

part of the final algorithm first checks the number of the objectives. If there are just two

objectives, the orthogonal array algorithm is employed. For the remaining cases, the

manually initialized weight matrix which supports up to seven objectives are exploited.

If it is more than seven objectives, the rest are created by the orthogonal array method.

Beside, the look-up table is for the population sizes up to 150. For the cases more than

150, the weight matrix is filled with an orthogonal array initialization. As a result the

final version of the weight initialization might be a combination of a look-up table and

orthogonal array method. In Table 5.3, four objectives optimization case is illustrated.

Since the population size is less than 150, the values are merely from look-up table.

If it is carefully examined, some significant rules can be seen easily. First of all, the

first four rows indicate that each objective will be optimized as a single optimization

36

problems once. Since it has the highest weight value in the vector. Second, the fifth

row tells that all objectives are weighted equally once. The rest of the rows are written

by changing the significance level of the objectives by making sure that almost every

possible value is assigned.

As an alternative way, the weight initialization is created by using Latin Hyper-

cube Sampling (LHS) method which takes place in Matlab function library. LHSDE-

SIGN generates a latin hypercube sampleX containing N values on each of P variables.

For each column, the N values are randomly distributed with one from each interval

(0,1/N), (1/N ,2/N), ..., (1-1/N ,1), and they are randomly permuted.

X = lhsdesign(N,P)

Table 5.4 shows the distribution quality of the both methods. In other words, how

far LHS’s or orthogonal’s extreme weights spanning corresponds directly to distribution

range of the pareto front.

Figure 5.2. Latin Hypercube Sampling Weights.

37

Latin hypercube designs are useful when you need a sample that is random but

that is guaranteed to be relatively uniformly distributed over each dimension.

For the sake of comparison, 10 tests with 500 iteration and 300 population size

are done. Benchmark problems UF8, UF9 and UF10 are run twice for both methods.

Then the three objective values are compared to find out how well one method is better

for finding minimum value. Table 5.5 reveals us how many times each method performs

better. For instance, for UF8 problem, LHS methods finds minimum 6 times out of 30

and the remaining 24 values are minimized by orthogonal array method. It is clearly

seen that orthogonal method’s solutions are better.

5.2. Comparison of Different Decomposition Methods

In chapter 2, details of both decomposition methods are presented. This section

is dedicated to their performance comparison in terms of range, distribution and domi-

nance. If we look at the weighted sum approach closer, it is seen that the optimization

function gws will focus on optimizing the fi with highest value.

minimize gws(xλ) =
∑k

i=1 λi · fi
subject to x ∈ S,

.

There is no minimum/maximum reference for the optimization algorithm to converge

so lots of efforts have not been shown for this approach. In Tchebycheff Approach,

one is able to obtain different Pareto optimal solutions by changing the weight vector.

One weakness with this approach is that its aggregation function is not smooth for a

continuous MOP. However, it can be used in the EA framework proposed since the

algorithm does not need to compute the derivative of the aggregation function [1].

minimize gte(x|λ,z∗) = max(λifi(x)- z∗)

38

The tests have been realized with two objectives of folded cascode analog ampli-

fier, 100 population size, 40 niche and 100 generations. Tchebycheff approach has been

implemented with both local and global normalization. The results of TE (Tchebycheff

Approach) and PBI (Penalty-Based Boundary Intersection Point Approach) have also

been compared with NSGAII algorithm. Before that, for PBI approach, proper θ value

was determined. To do so, schotts metric has been used to compare the quality of

the pareto front obtained by different θ penalty parameters. The θ values have been

searched in a space 0-10. For the gain-gbw trade-off the best θ has been found to be

3,2.

For θ = 3,2 the PBI decomposition method has been implemented. The algorithm has

also been run for TE approach with local and global normalization. NSGAII has also

been performed. To make the comparison fair same number of population size and

generations has been chosen.

Figure 5.3. Comparisons of PBI with different TE methods.

Figure 5.3 shows that the TE method with local normalization performs the

best in terms of dominance and range of the pareto optimal solutions. TE with global

normalization performs as good as NSGAII method; however PBI method has a smaller

range than the other ones, also the distribution quality it has seems to be worse than

the other methods.

Weighted-Sum approach is not recommended for the optimization problems with very

different ranged objective functions (For example, phase margin can vary between 0

39

to 180 degrees while power can just change from 0 to 6,9 mW). PBI approach has

the disadvantage of obtaining a penalty factor which changes for every optimization

problem. It is hard to obtain this value. Also, it has been observed that, the range

and distribution of the functions to be optimized are not as good as other methods.

TE approach seems like the best method for MOEA-D algorithm. It has no range,

distribution or dominance problem, and no parameters need to be tuned prior to run.

5.3. Genetic Algorithms and Enhancing Searching Ability

Genetic algorithms are suitable for a wide variety of optimization problems. They

present artificial implementations of the natural evolution of species. The optimization

problem is described as a set of candidate solutions and an objective function that has

to be maximized/minimized. The fitness function assigns a value to each candidate

solution. The candidate with the highest fitness is the global optimum of the optimiza-

tion problem. In order to find such a solution, a genetic algorithm produces a sequence

of populations of candidate solutions. The generation of each successive population is

a random process, guided by the fitness of the members of the previous population.

5.3.1. Genetic Operators

• Generate an initial population of candidate solutions, represented by chromo-

somes. This population is often generated at random, but it is also possible to

include candidate solutions that are likely to have a high fitness.

• Evaluate each member of the initial population by means of the fitness function.

• Select one or more sets of parents (two population members) based on the fitness

of the members of the population. The fitter members will have more chance to

be selected than lesser fit members. For this selection, the fitnesses are scaled

linearly, in a way that the lowest fitness equals to zero. The chance of a member

to be selected as parent is than proportional to the scaled fitness of that member.

The genetic operator cross-over is applied on the sets of parents in order to gen-

erate new candidate solutions. The ratio between the number of new candidates

solution and the population size is called the cross-over rate. In order to keep

40

the population size constant when we insert the newly generated solutions in the

population, an equal number of existing members is removed from the popula-

tion. The filter members have more chance to be selected for the next generation

than the lesser fit members. The newly generated candidate solutions fill in the

empty places in the population.

5.3.2. Gaussian Mutation

The main reproduction operator in evolutionary strategies is Gaussian mutation,

in which a random value from a Gaussian distribution is added to each element of

an individual’s vector to create a new offspring. In thesis work, two individuals are

randomly selected from neighborhood set T and these two values are subjected to

recombination. Then the created individual is sent to the Gaussian mutation operator.

Mechanism works as seen in 5.4 and new individual is created. Mutation shows its

main advantageous on diversity which is quite important parameter.

f(x) =

∑N
i−1 x

2
i

N
(5.3)

Figure 5.4. Gaussian Mutation of Parent a to form Offspring b.

5.3.3. Crossover Operator

In genetic algorithms, the most popular searching operator is crossover operator.

The background work, MOEA/D, uses simulated binary crossover (SBX) and polyno-

mial mutation as the search engines. Later, in the thesis work, a new version using the

mutation (DE/best/1/bin) in differential evolution (DE) as the main search engine was

proposed and shown to outperform MOEA/D. The search power of a crossover opera-

41

tor is defined here as a measure of how flexible the operator is to create an arbitrary

point in the search space. The action of crossover is to create two new children strings

from two parent strings. For instance, in a single-point crossover, a random cross site

along the length of the string is chosen and the bits on one side of the cross site are

swapped between two parent strings. Further, it is observed that the children points

may lie inside or outside the region bounded by the parent strings depending on the

strings and the location of the cross site. In order to define the spread of the children

points with respect to that of the parents strings, we define a spread facto β as the

ratio of the spread of children points to that of the parents points as seen in Equation

5.4.

β = | c1 − c2
p1 − p2

| (5.4)

Another self-adaptive crossover is the Simulated Binary Crossover (SBX). The SBX

crossover puts the stress on generating offspring near the parents. So, the crossover

guarantees that the extent of the children is proportional to the extent of the parents,

and also favors that near parent individuals are more likely to be chosen as children

than individuals distant from the parents [21].

5.3.4. DE Mechanism and Its Contribution to Searching

DE is a simple, but powerful algorithm that simulates natural evolution combined

with a mechanism to generate multiple search directions based on the distribution of

solutions (vectors) in the current population. Each vector i, i = 1, ..., NP in the pop-

ulation at generation g, xi,g = [x1,i,g, ..., xn,i,g]
T , called at the moment of reproduction

as the target vector, will be able to generate one offspring, called trial vector ui,g.

This trial vector is generated as follows: First of all, a search direction is defined by

calculating a difference vector between a pair of vectors xr1 and xr2, both of them

chosen at random from the population. This difference vector is also scaled by using a

user-defined parameter called scale factor F > 0. This scaled difference vector is then

added to a third vector xr0,g, called base vector. As a result, a new vector is obtained,

known as the mutant vector. After that, this mutant vector is recombined, based on

42

a user-defined parameter, called crossover probability 0 ≤ CR ≤ 1, with the target

vector (also called parent vector) by using discrete recombination, usually uniform, i.e.

binomial crossover, to generate a trial (child) vector. The CR value determines how

similar the trial vector will be with respect to the mutant vector [4].

Figure 5.5. DE/best/1/bin graphical example [4].

In Figure 5.5, ~xi is the target vector, ~xbest is the base vector (the best vector so

far in the population), ~xr1 and ~xr2 (also chosen at random) are used to generate the

difference vector as to define a second search direction. The black square represents the

mutant vector, which can be the location of the trial vector generated after performing

recombination. The two filled squares represent the other two possible locations for

the trial vector after recombination. [4].

MOEA/D-DE uses the DE/best/1/bin mutation, which is as follows:

yi = xi(t) + F (~xr1(t)− ~xr2(t)) (5.5)

The general convention used above is DE/x/y/z. DE stands for Differential Evolution,

x represents a string denoting the vector to be perturbed, y is the number of difference

vectors considered for perturbation of x, and z stands for the type of crossover being

used (exp: exponential; bin: binomial). the vector to be perturbed is the best per-

43

forming vector of the current generation. In order to increase the potential diversity,

crossover is introduced. In the thesis work this version of DE is exploited instead of

using the mutation method of the MOEAD/D.

In equation 5.5, r1 and r2 (r1 and r2 ∈ P) are randomly chosen and mutually different,

and also different from the current index i. F ∈ (0, 1] is a constant called the scal-

ing factor, which controls the amplification of the differential variation ~xr1(t)− ~xr2(t).

Most of the population-based search algorithms try to balance between two contradic-

tory aspects of their performance: exploration and exploitation. The first one means

the ability of the algorithm to "explore" or search every region of the feasible search

space while the second denotes the ability to converge to the near-optimal solutions as

quickly as possible.

Figure 5.6. Difference vectors and their distribution for a population of six points.

Figure 5.6 shows the distribution of difference vectors that can be constructed

from a population of six points. The vectors have all been re-arranged around one

point for a clearer view of the points that can potentially be reached when applying a

difference vector to one point. An important fact that can be discovered by examining

Figure 5.6b is that for every point in the population, there is only a limited number of

points from the search space that can be reached by applying such a mutation scheme.

The DE variant known as DE/best/1/bin uses the best vector of the population to

generate donor vectors. By "best" we mean the vector that corresponds to the best

fitness (e.g., the lowest objective function value for a minimization problem) in the

entire population at a particular generation. The scheme promotes exploitation since

44

all the vectors/genomes are attracted towards the same best position (pointed to by

the best vector) on the fitness landscape through iterations, thereby converging faster

to that point. In addition, DE employs a greedy selection strategy (the better between

the target and the trial vectors is selected) and uses a fixed scale factor F . Thus if

the difference vector xr1(t)− xr2(t), used for perturbation is small (this is usually the

case when the vectors come very close to each other and the population converges to a

small domain), the vectors may not be able to explore any better region of the search

space, thereby finding it difficult to escape large plateaus or suboptimal peaks/valleys.

In this scheme the weight factor of each vector is made to vary as a uniformly distributed

random number from 0.5 to 1 is shown to have higher successful rate to reach the global

optimization point in single objective problems. In thesis work, Gaussian distributed

random scaling factor with mean value µ and variance σ : Fi,k = norm(µ, σ), i =

1, ..., N and k = 1, ..., n. For each variable in the search space, the scaling factor Fi,k

of each differential variation xr1(t) − xr2(t) is different. F is continuously generated

randomly in each iteration.

Figure 5.7. The scheme uses the best performance as the base point.

Figure 5.7 illustrates where offsprings are generated in the search space. The

scheme using the individual presenting the best performance as the base point, such as

DE/best/1/bin. These scheme tend to generate the provisional offsprings around the

best individuals, which is also one characteristic of Swarm Intelligence algorithms.

45

F = (f1(x, y), f2(x, y), f3(x, y), f4(x, y))

f1(x, y) =
(x− 2)2

2
+

(y + 1)2

13
+ 3

f2(x, y) =
(x+ y − 3)2

175
+

(2 · y − x)2

17
− 13

f3(x, y) =
(3 · x− 2 · y + 4)2

8
+

(x− y + 1)2

27
+ 15

f4(x, y) =
(y − x− 3)2

16
+

(x− y + 2)2

8
+ 5

(5.6)

46

Table 5.3. Illustration of the weight matrix for the 4 objective case.

Objective1 Objective2 Objective3 Objective4

1.00 0.00 0.00 0.00

0.00 1.00 0.00 0.00

0.00 0.00 1.00 0.00

0.00 0.00 0.00 1.00

0.25 0.25 0.25 0.25

0.70 0.10 0.10 0.10

0.10 0.70 0.10 0.10

0.10 0.10 0.70 0.10

0.10 0.10 0.10 0.70

0.30 0.30 0.30 0.10

0.10 0.30 0.30 0.30

0.30 0.10 0.30 0.30

0.30 0.30 0.10 0.30

0.40 0.40 0.10 0.10

0.40 0.10 0.40 0.10

0.40 0.10 0.10 0.40

0.10 0.40 0.10 0.40

0.10 0.40 0.40 0.10

0.10 0.10 0.40 0.40

0.30 0.30 0.20 0.20

47

Table 5.4. Max value comparison of LHS and Orthogonal Weight Initilization.

Obj No Obj1 Obj2 Obj3 Obj4 Obj5

LHS 3obj 0.7579 0.7983 0.7663 - -

LHS 4obj 0.6242 0.6775 0.7228 0.7179 -

LHS 5obj 0.4267 0.4649 0.5774 0.4749 0.4875

Orthogonal 4obj 0.6667 0.5833 0.5625 0.6429 -

Orthogonal 5obj 0.4615 0.4545 0.5263 0.5625 0.4545

Table 5.5. Orthogonal vs LHS methods.

Problem LHS Orthogonal Array

UF8 6 24

UF9 17 13

UF10 15 15

Ta
bl
e
5.
6.

IG
D

co
m
pa

ri
so
n
of

di
ffe

re
nt

m
et
ho

ds
.

M
ut

Te
st
1

Te
st
2

Te
st
3

Te
st
4

Te
st
5

Te
st
6

Te
st
7

Te
st
8

Te
st
9

Te
st
10

Av
er
ag

e

D
E
1

0.
00

17
0.
00

18
0.
00

29
0.
00

13
0.
00
29

0.
00

20
0.
00

17
0.
00

39
0.
00

15
0.
00

17
0.
00

21

D
E
2.
1

0.
00
17

0.
00

18
0.
00

16
0.
00

24
0.
00

17
0.
00

17
0.
00

14
0.
00

14
0.
00

15
0.
00

15
0.
00

17

D
E
2.
2

0.
00
17

0.
00

18
0.
00

12
0.
00

20
0.
00

18
0.
00

21
0.
00
13

0.
00

17
0.
00

14
0.
00

17
0
.0
0
1
6

D
E
3.
1

0.
00

18
0.
00

11
0.
00

36
0.
00

17
0.
00

11
0.
00

21
0.
00
22

0.
00

16
0.
00

16
0.
00

20
0.
00

19

D
E
3.
2

0.
00

18
0.
00

12
0.
00

31
0.
00

20
0.
00

17
0.
00

19
0.
00
18

0.
00

17
0.
00

15
0.
00

17
0.
00

18

P
ol
y
M
ut
.

0.
00

28
0.
00

17
0.
00

21
0.
00

34
0.
00

45
0.
00

22
0.
00

38
0.
00

31
0.
00

25
0.
00

24
0.
00

29

N
SG

A
II

0.
00

53
0.
01

22
0.
00

89
0.
00

35
0.
00

89
0.
00

56
0.
00

81
0.
00

68
0.
00

70
0.
00

95
0.
00

76

49

6. IMPLEMENTATION OF ALGORITHMS ON

BENCHMARK AND ANALOG CIRCUIT PROBLEMS

So far, it as been mentioned that, DE is a good method to enhance the search

ability comparing to the previous mutation. Also with an empirical method, nr =

0.10 ∗ niche has been decided. To see the effects of randomizing F scaling factor and

adding new replacement rules, MOEA/D-DE (OD) which is using DE2.1 mutation

(F has already been set to 0.5, no new replacement methods), MOEA/D-DE with

new replacement rules (RD), MOEA/D-DE with stochastic scaling factor (FD) and

MOEA/D-DE with both new replacement rules and stochastic scaling factor (FRD)

have been compared. The test problem instances are UF1 to UF10 in CEC 2009

competition (2-3 objectives) [22] and a real world problem, sizing of folded-cascode

amplifier (4 objectives) are performed and the performance metric is again IGD.

The test problems include benchmark problems and a four objective analog sizing

problem. The benchmark problems are UF1 to UF10. The multiobjective analog sizing

is optimization of a folded-cascode amplifier, where the DC gain, GBW, phase margin

and power are the 4 objectives. In the analog sizing problem, there is no analytical

formulation of the optimization goals. They are based on the SPICE simulation. There

are 11 design variables, 5 of which For UF1 to UF10 in [22], the number of decision

variables is 30. For the analog sizing problem, the number of design variables is 11. The

number of sub-problems (population size), N, is 300 for 2 objective problems, 500 for

three objective problems and 148 for the analog sizing problem (though 4 objectives,

considering the computational effort, N is reduced to 148) . T is set to 0.1N, , δ

is set to 0.9. In DE operators, CR is set to 1, F is a Gaussian distributed vector

with a mean of 0.5 and a variance of 0.15. In GA operators, η and pm are the same

as MOEA/D-DE. For benchmark problems, the algorithm stops after 1000 generations

for 2 objective problems, and 1200 generations for 3 objective problems. For the analog

sizing problem, the algorithm stops after 200 iterations.

50

Table 6.1. The IGD statistics based in 20 runs.

Tests FRD FD RD OD

UF1 0.0096 0.0064 0.0025 0.0027

UF2 0.0084 0.0072 0.0094 0.0098

UF3 0.0472 0.0311 0.0093 0.0105

UF4 0.0592 0.0788 0.0881 0.0858

UF5 0.5577 0.7650 0.8476 0.9247

UF6 0.1795 0.2726 0.2381 0.2665

UF7 0.0056 0.0063 0.0054 0.0032

UF8 0.0660 0.0611 0.0569 0.0562

UF9 0.1304 0.1299 0.1170 0.1501

UF10 0.4035 0.4370 0.4119 0.4781

Analog 9.4572 9.5344 9.5199 9.6079

For UF1 to UF10, the set P ∗ ∈ PF is available. (P ∗ is the true Pareto Front

to converge). For the analog sizing problem, 30 runs are first performed using each

method, whose results are combined to approximate the P ∗ the true PF. Table 6.1

shows the mean values of IGD results for each problem in 20 runs. The runs with

smallest IGD values are drawn in Figure 6.2 and 6.3.

It can be seen that the improvement of the new replacement mechanism is obvious.

In 7 cases out of 11, the RD (MOEA/D-DE with new replacement) method ranks 1

or 2, FRD (RD plus random scaling factor) method has 6 cases with rank 1 or 2, FD

(MOEA/DDE with random-scale F) have 5 cases with rank 1 or 2 and the original

MOEA/D-DE has 4 cases. If only considering the rank 1 column, it can be seen that

RD and FRD have more distinct advantages. If only adding a random scaling factor,

slight improvements have been observed in high rank region (rank 1 or 2). But it

is obvious that the FD method ranks 3 in 4 cases and ranks 4 in 2 case, while the

original MOEA/D-DE (OD) ranks 3 in 2 cases, and ranks 4 in 5 cases. When the two

mechanisms are combined together, it can be seen that FRD have 5 cases with rank

1, which has distinct advantage compared with other methods. On the other hand, it

51

Table 6.2. Ranking of the IGD Values.

Tests FRD FD RD OD

UF1 Rank4 Rank3 Rank1 Rank2

UF2 Rank2 Rank1 Rank3 Rank4

UF3 Rank4 Rank3 Rank1 Rank2

UF4 Rank1 Rank2 Rank4 Rank3

UF5 Rank1 Rank2 Rank3 Rank4

UF6 Rank1 Rank4 Rank2 Rank3

UF7 Rank3 Rank4 Rank2 Rank1

UF8 Rank4 Rank3 Rank2 Rank1

UF9 Rank3 Rank2 Rank1 Rank4

UF10 Rank1 Rank3 Rank2 Rank4

Analog Rank1 Rank2 Rank3 Rank4

has 3 cases with rank 4. Therefore, it can be concluded as FRD is a method which can

obtain very good result, and RD method is more stable.

6.1. Folded Cascode Amplifier Design

The multiobjective analog sizing is optimization of a folded-cascode amplifier in

Figure 6.1, where the DC gain, GBW, phase margin and power are the 4 objectives. In

the analog sizing problem, there is no analytical formulation of the optimization goals.

They are based on the SPICE simulation. There are 11 design variables, 5 of which

have a range of 0.24µm to 100µm , 5 of which have a range of 0.18µm to 10µm and 1

of which has a range of 1µA to 2.5µA.

For folded cascode sizing problem, the number of design variables is 11. The number

of sub-problems is (population size) 148 (though 4 objectives, considering the compu-

tational effort, N is reduced to 148). T is set to 0.1N , nr is set to 0.01N , δ is set to 0.9.

In DE operators, CR is set to 1, F is a Gaussian distributed vector with a mean of 0.5

and a varience of 0.15. In GA operators, η and pm are the same as MOEA/D-DE. The

52

Table 6.3. Ranking of the IGD Values.

Methods Rank1 Rank2 Rank3 Rank4

FRD 5 1 2 3

FD 1 4 4 2

RD 3 4 3 1

OD 2 2 2 5

Figure 6.1. Schematic of CMOS Folded Cascode Amplifier.

algorithm stops after 200 iterations.

During the W-L optimization of the folded cascode amplifier there are 11 values

to be optimized. W1, W3, W5, W8, W10, L1, L3, L5, L8, L10 and Ib. The Ib value has

been searched in a range 0.5µA to 2.5mA. The W and L values are searched in the

range according to Table 6.5.

After the optimization has reached the iteration limit, it terminates. Two opti-

mizations have been run using both orthogonal array based method and look-up table

53

Table 6.4. IGD Values of Folded Cascode.

Test FRD FD RD OD

Folded 9.4572 9.5344 9.5199 9.6079

Table 6.5. W and L limits for Optimization.

Process 90nm CMOS 0.18µm CMOS 0.25µm CMOS

Wmin 120nm 0.24µm 0.36µm

Wmax 200µm 800µm 800µm

Lmin 90nm 0.18µm 0.25µm

Lmax 5µm 10µm 20µm

based (LUT) method. The results with LUT based method dominates the ones with

orthogonal array method since all of the objective functions have been optimized much

better, like higher gain value reached for the same gain-bandwidth product. Table 6.6

summarizes the performances of both methods.

Table 6.6. Objective Function Ranges.

Obj. Func LUT based Ort. Array Based

Gain 0.211 -91.001 3.0879 - 75.197

GBW 0.0588 - 318.12 0.267 - 292.85

PM 25.518 - 167.41 70.005 - 134.4

AREA 5.5275 - 64.145 7.845 - 57.757

54

Figure 6.2. PF with the smallest IGD values by different methods.

55

Figure 6.3. PF with the smallest IGD values by different methods.

56

Figure 6.4. PF with the smallest IGD values by different methods.

57

7. CIRCUIT OPTIMIZATION BY CONSIDERING

LAYOUT PARASITICS

7.1. Creating Circuit Design Loop

Another optimization algorithm called SACSES [6] is also quite successful regard-

ing speed of convergence and solution range. Especially, adaptive weight mechanism of

the objective functions makes this algorithm unique. Beside, its cost function outputs

a single optimal solution instead of pareto optimal set. Hence, it is easier to link it

to layout generator [5]. But there is a need for interface for communication between

them. TOLAS creates .gds file which is recognized by Calibre to extract. After ex-

traction, 3 types of files come out which are .netlist, .pex, .pxi. These have transistors

and parasitic RC elements and compatible with HSPICE. But SACSES uses its own

simulator SPASE and it requires numerically named nodes contrary to alphanumeric

ones. So, a source code is created to combine all three files into one by renaming all

nodes. Also, SACSES requires specific file that includes input parameters. This file

is also created inside the source code. Finally, the automized feedback loop is created

between three program, SACSES, TOLAS and Calibre.

7.2. BTS OPAMP

The circuit schematic of the synthesized BTS OPAMP is given in figure 7.1.

Since this is an IC implementation, the first stage biases the second stage in addition

to providing some gain. Also, there is no common-mode feedback to adjust the output

offset voltage. These limitations make the design of a BTS OPAMP with low output

offset voltage, high gain and low output impedance more difficult than it may seem.

The number of independent variables is 22.

Table 7.1 shows the performance of hand designed BTS circuit, without parasitic

effects. The main goal is to get the similar results after the layout parasitics are in-

58

Figure 7.1. Schematic of a basic two stage CMOS operational amplifier.

cluded.

Table 7.1. Specifications of the synthesized BTS OPAMP.

Specifications HSPICE

A0(dB) 88

BW(kHz) 5.64

Rout(kΩ) 9.95

Vos(mV) 19.91

PM(deg) 54.8

Power(mW) 13.5

7.3. Time Constant Equilibration Reduction (TICER)

Time Constant Equilibration Reduction (TICER) is a RC reduction method for

extraction tools. The time-constant of a node is the total capacitance from the node to

other nodes and to ground divided by the sum of conductances from the node to other

nodes and ground. Let’s consider a RC network for reduction by preserving its behavior

within a certain frequency range. To do so, each node of a circuit needs to be classified

into one of three categories. This classification depends upon the node’s time-constants.

59

Nodes are referred as quick, slow or normal by defining the frequency range of interest

[23]. This classification makes it possible to eliminate quick and slow nodes from the

network without significantly altering its behavior at least not in the frequency range

of interest. This is so called "Time Constant Equilibration Reduction" abbreviated as

TICER. After reduction, the remaining circuit is realizable. That makes TICER pretty

desirable. In contrast to alternative methods, TICER focuses on a particular node

and its neighbors, temporarily regards these as an multiport, eliminates the internal

node, then returns to a flattened view of the circuit before selecting another node for

elimination.

Calibre xRC has its own reduction method inside. It can be enabled either from

options menu or directly by modifying xRC runset file. For the thesis work, two

reduction at 100 and 500 kHz are tried and compared according to their parasitic

elements numbers. Table 7.2 reveals the number of parasitics after reduction and

without reduction. When the circuit is simulated around the frequency of interest, the

parasitic elements decreases.

Table 7.2. Reduction of Parasitic Elements by TICER.

Reduction Type Number of parasitics

Original 2214

500 kHz 1283

100 kHz 741

Figure 7.2. TICER with 500kHz.

60

Figure 7.3. TICER with 100mHz.

The Table 7.3 summarizes how TICER affects performance of a circuit. Most

of the objective functions get better. These objectives will be fed into SACSES for

optimization and all performances will be drawn to the point as targeted. The SACSES’

output results will be presented in following chapters.

Table 7.3. TICER Effect on Performance.

Performance Metrics w/o TICER 500mhz 100mhz

Gain(dB) 87.4 88.17 88.17

PM(deg) 46.8 43.5 42.8

Unity Gain(mHz) 46.8 53.45 55.83

BW(kHz) 5.37 5.26 5.53

Vos(mV) 147 -33.8 -33.8

Power(mW) 13.57 13.46 13.46

61

7.4. Template Based Layout Generation

After circuit optimization, netlist file is created. Then the netlist taken from

SACSES is used by layout level DA tool, TOLAS (Tool Oriented Layout Automation

System), which generates layout using the netlist. TOLAS is coded in JAVA and it

consists of tools and databases. The block diagram as seen in figure 7.4 shows the tem-

plate based layout generation. In this kind of implementation, layout database deals

with the layout in a hierarchical structure, device database keeps track of the devices

and their ports, and process rules are stored in design and electrical rule databases.

The "device generator" constructs devices for the particular technology in our case

AMS 0.35µm technology. The "Advanced Transistor Generator" builds transistors and

handle the routing of fingered transistors. As final step, the GDSII Exporter writes the

layout database into a file. The main tool, Template Based Layout Synthesizer, con-

structs a layout based on an input template using linear programming. The template

file is written in Layout Description Script (LDS), which defines constraints between

devices as well as routing.

Figure 7.4. Block Diagram of the Synthesizer [5].

As seen in Figure 7.4, the tool needs three files which are spice, device descrip-

tion and LDS files. The "spice file" contains the netlist of the circuit and the "device

description file" contains the detailed device information such as: number of fingers

for the transistors, information about merged devices, etc. The template is stored in

the LDS file and it is composed of statements about placement and routing [5]. The

GDSII file is compatible with the commercial extractor Calibre. In the thesis work,

62

TOLAS’ layout is directly fed into Calibre and extracted netlist are taken as required

for the automation loop.

7.5. Flattening Extraction Output Files

The layout file created by TOLAS is fed to the extractor to get the parasitic

effects. Calibre is exploited for that purpose. It is adjusted to output extraction files

in accordance with Hspice. There are three kinds of circuit files that call for each other

nestedly. The parasitic resistors and capacitors are in the form of subcircuits. Also,

the transistors are fingered after extraction. The file extensions of the extraction files

are .pxi, .pex and .netlist. Pex files includes subcircuit definitions as seen in figure 7.5.

Figure 7.5. A subcircuit in .pex file.

These subcircuits are called in .pxi files in a way seen in figure 7.6

Figure 7.6. Subcircuit call in .pxi file.

The .netlist file includes fingered transistors and it calls .pxi file inside. If all

63

these files are examined, it will seen that names of the nodes include alphanumeric or

symbolic characters which are not easy to deal with. Beside the names are too long

and by considering the fingered transistors, there exists many of these nodes in the

netlist.

On top of that, the in-house circuit simulator SPASE requires flat netlist to run the

simulations. For all these reasons, a script code is created to remove all subcircuits,

rename the long node names and put three files together into one file. Then DC and

AC voltage and current sources, probes, parameters and some measurement commands

are included in this flat file. After all, the flat file is ready to be run by SPASE or

HSPICE.

The code firstly reads the .pxi file which includes subcircuit calls and coupling capac-

itors. The subcircuits starts with x are read one by one and copied into structures.

Structs keep the names and nodes of the subcircuits which are then substituted with

new ones by keeping the old names. Hence, the old names are then used to be searched

within netlist file to share the new names with transistor nodes. By the way, some

key words are searched in the alphanumeric node names to extract the voltage sup-

ply, ground and input nodes. Then fixed numbers are assigned to these fixed nodes

like 0 for ground, 1 for supply, 2 for input signal. Another need for the flat netlist is

the map showing which numbers corresponds to the original transistor nodes. This is

required because SACSES needs to know the meanings of the new node names to opti-

mize the right transistors. After optimization is done, the fingered transistors have to

be combined and served as one transistor to TOLAS regarding its working capability.

The following lines show the transistor name map. Right side of the arrows is the node

names coming out of Calibre and left side is the assigned names by the flattening script

code.

M3 → m0

M12 → m1

M4 → m2

M12@2 → m3

64

M4@2 → m4

M12@3 → m5

M3@2 → m6

M12@4 → m7

M12@5 → m8

M12@2 and M12@3 corresponds to two different fingers of the M12 transistor.

But the new names do not contain any information regarding which nodes belong to

particular transistors. Hence, this map is quite useful for the optimization side.

7.6. Batch Mode Execution of Calibre

The one of the aims of the thesis is creating an automated optimized circuit

design as in figure 7.7 considering parasitic effects. In order to run the system without

any interruption, batch mode execution must be used. Batch mode requires some files

prepared in advance. These are the circuit netlist whose extension is .src.net, GDSII

(Graphic Database System) file and runset file. Runset file is program specific file

that contains soma addresses and parameters. For instance the address of the GDSII

file and circuit netlist or the address of the design library for the particular technology

which is Austria Micro Systems (AMS) 0.35µm CMOS process for our case.

Figure 7.7. Block diagram of automated design loop [6].

The command to run the Calibre in batch mode is

65

calibre -gui -xrc [runsetaddress] -batch

The runset file is a key here because it has the significant information inside. The

Figure in 7.8 shows these parameters in runset file.

Figure 7.8. Runset File.

The main parameters to modify are rule files path, source path, netlist format,

circuit reduction threshold. The value 1 seen in the Figure 7.8 corresponds to bool

type. It means enabling the option.

7.7. Layout Aware Circuit Optimization Test Results

After all files are rearranged for SACSES, the optimization is run with PC with

3.1GHz processor and it just uses one core effectively. The optimization takes about

4 hours in average. The following table reveals that after optimization almost all

performance metrics have been improved.

SPASE results are different than the HSPICE depending on their capacitance

modelling difference. That is why both simulator’s results are given in the tables.

66

Table 7.4. Post Optimization Results with HSPICE.

Performance Metrics Pre. Opt Post Opt.

Gain(dB) 88.17 88.7

PM(deg) 42.8 47.1

Unity Gain(mHz) 55.83 56.12

BW(kHz) 5.53 5.07

Vos(mV) -33.8 7.9

Power(mW) 13.46 12.4

Table 7.5. Pre and Post Optimization Results with SPASE.

Performance Metrics Pre. Opt SPASE Post Opt. SPASE

Gain(dB) 88.16 88.7

PM(deg) 54.8 59.3

BW(kHz) 5.7 5.17

Vos(mV) -30.7 4.35

Power(mW) 13.6 12.7

Rout 9.43 9.7k

CMRR(dB) 8908 13969

After all, transient behaviour of the circuit is shown in Figure 7.9. All these

results indicate that the main goal of the project is accomplished.

67

Figure 7.9. Post Optimization Transient Analysis.

68

8. CONCLUSION FUTURE WORK

A simulation-based analog circuit synthesis methodology and its implementation,

MOEA/D-DE, was presented. With the use of simulation-based approach, MOEA/D-

DE is topology independent and requires minimal initial effort. The algorithm uses

HSPICE as simulator. During the thesis, several optimization methods have been

discussed and it was mentioned that the evolutionary algorithms are used so often for

analog sizing problem. The method takes advantage of the fast initial convergence of

the genetic algorithms. A background work based on the decomposition of the whole

problem into different scalar problems has been chosen and several enhancements have

been realized to improve that algorithm. First of all, some software enhancements have

been realized to make it work faster. Later, some new methods have been proposed in

order to increase the quality of the convergence, dominance and distribution on Pareto

Fronts etc. All these works leaded us to a new method called Enhanced MOEA/D-DE.

In the second part of the thesis work, the another analog circuit synthesizer (SACSES)

and the layout generator (TOLAS) are used to create a feedback loop aimed to minimize

the effects of inevitable layout parasitics was proposed and tested by synthesizing a

BTS OPAMP circuit. Calibre is used as extractor and the extracted files are rearranged

according to the needs of both SACSES and TOLAS. Because each program have their

own specific interface both for inputs and outputs. RCC type of extraction is chosen

to see the real effects of the parasitics. Also under Calibre options, TICER option is

enabled to eliminate unnecessary nodes whose time constants are out of our interest.

Two iterations through the loop were necessary in order to obtain a circuit within

acceptable performance criteria.

8.1. Future Work

As future work, adaptive iteration number mechanism can be added to MOEA/D-

DE algorithm for speeding up the whole process. Also, as in SACSES, the cost function

can be added in order to output single point solution and this solution can be integrated

with TOLAS again. Another point is better minimization of layout parasitics can help

69

decreasing the convergence time of the optimization algorithm.

Finally, it can be said that the MOEA/D-DE algorithm is an effective algorithm for

optimizing the dimensions of the transistors on analog circuits. The results are then

compared with the existing works present in the literature and sometimes it is observed

that significant improvements are obtained.

70

REFERENCES

1. Zhang, Q., and H. Li, “Moea/d: A multiobjective evolutionary algorithm based on

decomposition,” IEEE, Vol. 11, December 2007.

2. Robic, T., and B. Filipi, “Demo: Differential evolution for multiobjective optimiza-

tion,” Springer, Vol. 10, no. 3, pp. 520–533, 2005.

3. Zhang, Q., and Y.-W. Leung, “An orthogonal genetic algorithm for multimedia

multicast routing,” IEEE, Vol. 3, April 1999.

4. Mezura-Montes, E., M. E. Miranda-Varela, and R. del Carmen Gómez-Ramón,

“Differential evolution in constrained numerical optimization: An empirical study,”

IEEE Trans. on Computer Aided Design, Vol. 27, July 2010.

5. Unutulmaz, A., G.Dündar, and F.Fernandez, “A template description script for

layouts - lds,” tech. report, Bogazici University, 2009.

6. Sonmez, O., Circuit Level Analog Design Automation. PhD thesis, Bogazici Uni-

versity, 2010.

7. Debyser, G., F. Leyn, K. Lampaert, J. Vandenbussche, G. Gielen, W. Sansen,

P. Veselinovic, and D. Leenaerts, “Amgie- a synthesis environment for cmos analog

integrated circuits,” IEEE, Vol. 20, p. 1, September 2001.

8. Toumazou, C., and C. A. Makris, “Analog ic design automation: Part i-automated

circuit generation: New concepts and methods,” IEEE, Vol. 14, pp. 221–222, Febru-

ary 1995.

9. Xue, F., Multi-Objective Differential Evolution Theory and Applications. PhD

thesis, Rensselaer Polytechnic Institute, Troy,New York, September 2004.

10. Coello, C. A., G. B. Lamont, and D. A. V. Veldhuizen, Evolutionary Algorithms

71

for Solving Multi-Objective Problems, Springer, 2nd ed., 2007.

11. Fonseca, C. M., and P. J. Fleming, “Genetic algorithms for multiobjective opti-

mization: formulation, discussion, and generalization,” 1993.

12. Subbotin, S., and A. Oleynik, “The multi objective evolutionary feature selection,”

(Lviv-Slavsko, Ukraine), pp. 115–116, TCSET, February 2008.

13. Price, K., and R. Storn, “Differential evolution: A simple evolution strategy for

fast optimization,” Dr. Dobb’s Journal, pp. 18–24, 1997.

14. Paquete, L., and T. Stützle, “A two-phase local search for the biobjective traveling

salesman problem,” pp. 479–493, Proc. Evol. Multi-Criterion Optim, 2003.

15. Miettinen, K., Nonlinear Multiobjective Optimization, Norwell, MA: Kluwer:

Kluwer’s International Series, forth ed., 1999.

16. Tiwari, S., G. Fadel, P. Koch, and K. Deb, “Performance assessment of the hybrid

archive-based micro genetic algorithm (amga) on the cec09 test problems,” IEEE,

2009.

17. Schaffer, J. D., “Multiple objective optimization with vector evaluated genetic al-

gorithms,” pp. 93–100, Proc. 1st Int. Conf. Genetic Algorithms, 1985.

18. Knowles, J. D., and D. W. Corne, “The pareto archived evolution strategy: A new

baseline algorithm for multiobjective optimisation,” (Washington, D.C.), pp. 98–

105, in Proc. Congr. Evol. Comput, July 1999.

19. Deb, K., A. Pratap, S. Agarwal, and T. Meyarivan, “Fast and elitist multiobjective

genetic algorithm: Nsga-ii,” IEEE, Vol. 6, April 2002.

20. Zitzler, E., M. Laumanns, and L. Thiele, “Spea2: Improving the strength pareto

evolutionary algorithm,” Tech. Rep. 103, Computer Engineering and Networks

Laboratory (TIK) Department of Electrical Engineering Swiss Federal Institute

72

of Technology (ETH) Zurich, ETH Zentrum, Gloriastrasse 35, CH-8092 Zurich,

Switzerland, May 2001.

21. Kalyanmoy Deb, H.-G. B., “Self-adaptive genetic algorithms with simulated binary

crossover,” Tech. Rep. CI-61/99, Department of Computer Science/XI University

of Dortmund, 44221 Dortmund, Germany, March 1999.

22. Zhang, Q., A. Zhou, and S. Zhao, “Multiobjective optimization test instances for

the cec 2009 sepcial session and competition,” technical report ces-487, The Shool

of Computer Science and Electronic Engineering, University of Essex, 2009.

23. Sheehan, B. N., M. Graphics, and Wilsonville, “Ticer realizable reduction of ex-

tracted rc circuits,” IEEE, 1999.

