
SECURITY ANALYSIS OF ULTRALIGHTWEIGHT RFID PROTOCOLS

by

Serdar AKTAŞ

B.S., Electronics Engineering, Gebze Institute of Technology, 2008

Submitted to the Institute for Graduate Studies in

Science and Engineering in partial fulfillment of

the requirements for the degree of

Master of Science

Graduate Program in Electrical and Electronics Engineering

Boğaziçi University

2011

ii

SECURITY ANALYSIS OF ULTRALIGHTWEIGHT RFID PROTOCOLS

APPROVED BY:

Prof. Emin Anarım

(Thesis Supervisor)

Prof. Kemal Cılız

Assist. Prof. Gökay Saldamlı

DATE OF APPROVAL: 17.08.2011

iii

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to Prof. Emin Anarım for his invaluable

guidance and help during the preparation of this dissertation. I would like to mention his

patience, giving me inspiration and hope when I was stuck at dead-ends.

I am heartily thankful to Assist. Prof. Gökay Saldamlı and Dr. İmran Ergüler whose

encouragement, guidance and support from the initial to the final level enabled me to develop

an understanding of the subject.

I would like to thank all the authors in the references list for making all the data

available.

I also thank Tübitak Bilim İnsanı Destekleme Daire Başkanlığı for supporting this

thesis with BİDEB 2210 programme.

iv

ABSTRACT

SECURITY ANALYSIS OF ULTRALIGHTWEIGHT RFID

PROTOCOLS

RFID (Radio Frequency Identification) is a technology that uses radio waves as a

medium to exchange data between a reader and an electronic tag for the purpose of object

identification and tracking. RFID tags are considered as a replacement technology for bar-

codes and other means of traditional identification tools which traditionally find applications

in manufacturing, supply chain management and inventory control. Security and privacy as-

pects of RFID are becoming more important as RFID technology continues to flourish as

an inherent part of virtually every ubiquitous environment. As the nodes of RFID systems

mostly suffer from low computational power and small memory size, strong cryptographic

protocols are not appropriate for low-cost RFID tags. Therefore, designing security mecha-

nisms for RFID systems turn out to be very challenging that many authentication protocols

have been proposed recently by an increasing number of researchers. Nevertheless, it is

shown that majority of these proposals do not provide security and privacy. The work done

in this M.S. thesis is to analyze the privacy and security aspects of ultralightweight RFID

protocols defined in the previous literature and outline the weaknesses in these protocols.

Also in a new ultralightweight RFID protocol we manage to attain a total breakdown by

compromising the secret key information by revealing each bit using the weakness of XOR

operation. Other weaknesses, we report for this ultralightweight RFID protocol include

desynchronization, replay and traceability flaws.

v

ÖZET

HAFİF AĞIRLIKLI RFID PROTOKOLLERİNİN GÜVENLİK

ANALİZİ

RFID (Radyo Frekansı ile Tanımlama), nesnelerin tanımlanması ve izlenmesi amacıyla,

radyo dalgaları kullanarak bir okuyucu ve bir elektronik etiket arasında veri alışverişini

sağlayan bir teknolojidir. RFID etiketleri, barkod gibi üretim, tedarik zinciri yönetimi ve

stok kontrolünde kendine uygulama bulan diğer geleneksel tanımlama araçları yerine teknolo-

jik bir değişim olarak düşünülmektedir. RFID teknolojisi hemen hemen tüm çevrelerin hazır

ve olağan bir parçası olarak gelişmesine devam ederken, RFID’ nin güvenlik ve gizlilik yönleri

daha da önemli bir hale gelmektedir. RFID sisteminin bileşenleri çoğunlukla düşük işlem

gücü ve küçük hafıza boyutlarından sıkıntı çektiği için, güçlü şifreleme protokolleri RFID

etiketleri için uygun değildirler. Buna bağlı olarak, artan sayıda araştırmacı tarafından

birçok doğrulama protokolünün yakın zamanda önerilmiş olması RFID için güvenlik ve giz-

lilik mekanizmaları tasarımının çok zorlu olduğunu ortaya çıkarmaktadır. Ancak yinede,

bu önerilerin çoğunun güvenliği ve gizliliği sağlayamadığı gösterilmiştir. Bu yüksek lisans

tezinde önceki literatürde tanımlanan hafif ağırlıklı RFID protokollerinin güvenlik ve gizlilik

analizleri yapılmıştır ve bu protokollerdeki zayıflıkların anahatları çıkarılmıştır. Ayrıca yeni

bir hafif ağırlıklı RFID protokolünde XOR işleminin zayıflığından yararlanılarak her bitin

tanımlanması ile gizli anahtar ele geçirilip, tüm sistemin bozulabilmesi sağlanmıştır. Bu hafif

ağırlıklı RFID protokolü için elde edilen diğer zayıflıklar ise eşzamansız olma, izlenebilirlik

ve tekrarlama kusurlarıdır.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iii

ABSTRACT . iv

ÖZET . v

LIST OF FIGURES . viii

LIST OF TABLES . x

LIST OF SYMBOLS . xi

LIST OF ACRONYMS/ABBREVIATIONS . xii

1. INTRODUCTION . 1

1.1. RFID System Overview . 1

1.2. Security Requirements for RFID Protocols 4

2. REVIEW OF ULTRALIGHTWEIGHT RFID PROTOCOLS AND THEIR SECU-

RITY ANALYSES . 8

2.1. LMAP Protocol . 8

2.2. M2AP Protocol . 12

2.3. EMAP Protocol . 15

2.4. SASI Protocol . 20

2.5. Gossamer Protocol . 26

2.6. Lee Protocol . 29

2.7. SLMAP∗ Protocol . 33

2.8. LMAP++ Protocol . 36

2.9. David-Prasad Protocol . 38

3. A RECENT ULTRALIGHTWEIGHT PROTOCOL 44

3.1. Spacing Based Authentication Protocol (SBAP) 44

3.2. Attacks . 47

3.2.1. Full Disclosure . 47

3.2.2. Location Privacy and Untraceability 51

3.2.3. Desynchronization . 51

3.2.4. Replay Attack . 52

4. RESULTS . 53

5. CONCLUSION . 60

vii

REFERENCES . 62

viii

LIST OF FIGURES

Figure 1.1. Example of passive and active tag. 2

Figure 1.2. A simple RFID reader. 3

Figure 2.1. LMAP protocol flow. 8

Figure 2.2. M2AP protocol flow. 12

Figure 2.3. EMAP protocol flow. 16

Figure 2.4. SASI protocol flow. 20

Figure 2.5. Gossamer protocol flow. 26

Figure 2.6. Algorithm of MIXBITS function. 27

Figure 2.7. Lee protocol flow. 30

Figure 2.8. SLMAP∗ protocol flow. 33

Figure 2.9. LMAP++ protocol flow. 37

Figure 2.10. David-Prasad protocol flow. 39

Figure 2.11. Approximation matrice structure. 43

Figure 3.1. An example for the spacing algorithm. 45

Figure 3.2. Protocol flow for regular method in SBAP. 45

ix

Figure 3.3. Protocol flow for enhanced method in SBAP. 46

Figure 3.4. Desynchronization attack scenario for SBAP. 52

Figure 4.1. Most secure way to use XOR operation. 55

Figure 4.2. Attack by replacing AND operation with XOR operation. 57

Figure 4.3. Relation between addition and XOR operation. 58

x

LIST OF TABLES

Table 1.1. Comparing the primary auto-ID technologies. 5

Table 2.1. Truth table of result1 and result2. 17

Table 2.2. Truth table of k-th bit value of result1 and result2. 19

Table 2.3. The MSB of each variable. 25

Table 2.4. Truth table of the MSB values of messages. 35

Table 2.5. Truth table of XOR and AND operation. 41

Table 2.6. Best approximations for secret values. 42

Table 4.1. Number of gates for cryptographic functions. 54

Table 4.2. Comparison of protocol parameters. 54

Table 4.3. Truth table of AND, XOR and OR operation. 56

xi

LIST OF SYMBOLS

DB Database

HW Hamming Weight

R Reader

T Tag

xii

LIST OF ACRONYMS/ABBREVIATIONS

EMAP An Efficient Mutual-Authentication Protocol for Low-cost

RFID Tags

GA Good Approximation

IC Integrated Circuit

ID Identification

IDS Index Pseudonym

IDT Dynamic Temporary Identification

LMAP A Real Lightweight Mutual Authentication Protocol for Low-

cost RFID Tags

LSB Least Significant Bit

M2AP A Minimalist Mutual Authentication Protocol for Low-cost

RFID Tags

MSB Most Significant Bit

RF Radio Frequency

RFID Radio Frequency Identification

P Partial ID

SASI A New Ultralightweight RFID Authentication Protocol Pro-

viding Strong Authentication and Strong Integrity

SBAP Spacing Based Authentication Protocols for Low-Cost RFID

SLMAP A Secure Ultralightweight RFID Mutual Authentication Pro-

tocol

XOR Exclusive OR

1

1. INTRODUCTION

In this chapter we will give a brief information about the RFID system.

1.1. RFID System Overview

Nowadays, many traditional identification tools are being replaced with RFID tags

in various applications including manufacturing, supply chain management and inventory

control. This imminent trend is mostly because of the recent advances in the IC technology

meeting the costs and size sensitivities of such applications. Comparison of RFID technology

and other traditional identification tools are given in Table 1.1 [1]. RFID technology also

has the following advantages:

• RFID tags do not require direct line of sight therefore they can be hidden within the

item.

• Active RFID tags have greater operation ranges than other traditional identification

tools.

• Reading data from RFID tags are less time consuming than barcodes.

• It is possible to modify the data within an RFID tag, whereas it is not possible for

barcodes.

• Batch mode is available for RFID tags where large number of items can be read at

once.

• Memory size of RFID tags can reach up to order of kB, whereas barcodes can read just

a few digits.

• It is much harder for RFID tags to be replicated than barcodes.

These advantages give RFID technology an opportunity to find many application areas

in everyday life such as:

• Human Identification: E-passport is one of the RFID applications that aims human

identification.

• Transportation payments : Many countries use RFID gadgets to collect payments for

2

toll roads and public transportation.

• Touch-free credit cards : Some credit card companies have developed special credit cards

that enable users to do the payment without handing over the credit card.

• Product tracking : Products with planted RFID tags enables tracking of the assets.

• Logistics : Yard management, shipping and distribution centers are some areas where

RFID technology is used.

• Animal Identification: Especially for large ranches and rough terrain, RFID has become

important in animal identification management.

• Inventory Tracking : RFID system is used for managing inventory in public and private

foundations such as libraries, museums and theaters.

• Access Management : Many foundations use RFID gadgets to manage access of infor-

mation and locations that needs to be protected from unauthorized usage.

A typical RFID system consists of tags, one or more readers, and a back-end server

described with the following roles:

• Tag : A tag T is equipped with an antenna for receiving and transmitting radio-

frequency (RF) signal. Tags are mostly classified as active and passive according to

their source of energy; active tags have on-board batteries whereas passive tags use

only the electromagnetic waves emitted from the reader. Since passive tags have no

battery this allows them to be smaller than active tags and their lifespan is theoretically

indefinite. But they generally lack strong cryptographic operations and their opera-

tion distance is limited whereas active tags have the advantage of high computational

capabilities and long operation distance. Therefore, in active tags more complicated

protocols can be implemented to reduce the possibility of any unathorized interactions.

Figure 1.1. Example of passive and active tag.

3

• Reader : A reader R has the privilege to read or write data to the tag and interrogates

tags within its range. The readers are just simple tranceivers that have the ability

to transmit and receive signal through their antenna. They may have one or more

antennas to do their task. However, reader’s role in RFID systems is quite limited.

In general, it bridges the tag and server and just forwards messages to each other.

The communication between the reader and the database is generally considered to be

secure.

Figure 1.2. A simple RFID reader.

• Back-end server/database: A database is denoted by DB and contains all the relevant

information about the RFID system. The server is responsible for the security and

operability of the whole system and controls all the processes including authentication

and identification.

Despite their advantages, RFID system has weaknesses that can be summarized as:

• When RFID tag is implemented under liquid or metal product, it is not possible for

the reader to read the tag since metalic surfaces and liquids reflect and attenuate the

4

radio waves. Therefore, for these kind of products, careful locations must be selected

for the tags.

• Since RFID tags use radio waves, it is possible for an adversary to execute denial of

service attack by generating noise at the same frequency that the RFID tags use.

• Many countries use different range of frequencies for same RFID applications. These

differences make RFID technology hard to use for international markets.

These weaknesses are the simplest ones when compared to the threats for user privacy

and counterfeiting. For instance, in a system without any security measure, a tag holder

can easily be tracked by any adversary with simple low-cost devices. Although it is possible

to raise a similar concern that the same tag holder could also be traced by tracking his/her

mobile phone through a carrier, such a track is impossible once the phone is completely

turned off. However, this countermeasure is not applicable for someone carrying a RFID

gadget since in general a tag could not be turned off, and worse, it automatically responds to

queries via radio signals. Therefore, in RFID systems, the attack scenarios and accompanying

countermeasures are quite different than the typical wired or wireless systems.

Without any doubt, cryptographic challenge-response protocols address the authentica-

tion problems in distributed systems. However, utilizations of these protocols requires inten-

sive computational power that most low-cost constraint device/tag does not have. Therefore,

the interest for building security mechanisms for such limited devices has recently arouse in

the security community. However, most of early studies are analyzed later that they do not

fulfill the basic security and privacy measures [2]. In fact, active RFID security research

exhibits how deep the authentication/identification problem in these systems and address

the need for more efficient protocols.

1.2. Security Requirements for RFID Protocols

For a secure RFID protocol, various requirements are needed to provide privacy and

security issues as reported in previous literature [3–6]. In this context, a secure protocol

should satisfy the following security parameters to deal with several privacy issues in RFID

systems:

5

Table 1.1. Comparing the primary auto-ID technologies.

Barcodes Contact Passive Active

memory RFID RFID

Modification Unmodifiable Modifiable Modifiable Modifiable

of data

Security of Minimal Highly Ranges from Highly

data security secure minimal to secure

highly secure

Amount of Linear (8-30 Up to 8 MB Up to 64 kB Up to 8 MB

data characters)

2D (7200

numbers)

Costs Low High Medium Very high

Standards Stable and Proprietary; Evolving Proprietary;

agreed no standard to an agreed evolving open

standard standards

Lifespan Short unless Long Indefinite 3-5 year

laser-etched battery life

into metal

Reading Line of sight Contact Distance up Distance up

distance (3-5 feet) required to 50 feet to 100 meters

and beyond

Potential Optical barri- Contact Environments Limited barri-

interference ers such as blockage or fields that ers since the

dirt effect trans- broadcast sig-

mission of nal from the

radio waves tag is strong

6

• Location privacy / untraceability : The transmitted messages should not leak any in-

formation that allows an adversary to trace the tag. Most obvious traceable tags are

the ones transmitting fixed responses, hence, at each query, the tag should reply with

a different message.

• Forward security : When the secret key within the tag is compromised by an adversary,

the adversary must be unable to get any information about the tag owner’s previous

actions.

• Key secrecy / anti-cloning : The adversary should not be able to get the key or any

other tag specific data without tampering. Without the key, no one could clone a tag.

• Synchronization: A very important measure for RFID protocols where any key update

mechanisms are used. If the security protocol has a weakness that allows an adversary

to set different keys for the database and tag, the tag would not be identified, hence,

it would be useless for the present and forthcoming sessions.

• Authentication: The protocol has to ensure that the communicating parties are legit-

imate. Moreover, any information from the previous messages or any modification of

the old messages should not give an advantage to an adversary.

Another important aspect in security analysis is the adversarial model. For analysis

of the protocols, we assume that the attacker has full control over the communication line,

i.e. he/she is able to intercept, modify and insert messages as well as eavesdrop the com-

munication channel. Moreover, the attacker could instantiate new communication channels

and directly interact with honest parties. Nevertheless, he/she is not able to compromise a

target tag, i.e. cannot obtain the secrets of the tag by tampering. Hence, the attacker can be

classified as a weak attacker as described in [7] and on duty he could perform the following

types of attacks. We refer the reader to [7–11] for further discussions on the attacks.

• Replay attack : Adversary records the communication messages between the tag and

the reader/server and afterwards he tries to realize a successful authentication between

these entities by replaying the messages [8].

• Tag impersonation attack : In this type of attack, an adversary attempts to impersonate

a tag to the reader/server. Thus, the adversary convinces the reader/server to believe

the fake tags are legitimate [9].

• Man-in-the-middle attacks : In this type of attack the adversary intrudes into a com-

7

munication channel to intercept the exchanged data and inject false information. It

involves eavesdropping on a connection, intruding into a connection, intercepting mes-

sages, and selectively modifying data [10].

• Denial of service attack : The adversary disturbs the communication channel between

the tag and the reader by intercepting or blocking the communication messages to

prevent the tag authentication. In some cases, the attacker tries to set different keys

for the database and tag. So, the tag is desynchronized with the server and they would

no longer be able to authenticate each other [9, 11].

In this study, we analyze the privacy and security aspects of ultralightweight RFID

protocols in the previous literature and a recently proposed ultralightweight security method

[12] named as the spacing based authentication protocol (SBAP). Although SBAP claims to

provide both security and privacy in its design objectives, we outline very efficient attacks

that SBAP fails to fulfill its claims. To be specific, we manage to attain a total breakdown

by compromising the secret key information.

After briefly reviewing previous ultralightweight RFID protocols in the following chap-

ter, a formal presentation of SBAP and its weaknesses are given in Chapter 3. Chapter 4

summarizes the weaknesses and main reasons for these vulnerabilities within these protocols.

We close our study by some final notes in the last chapter.

8

2. REVIEW OF ULTRALIGHTWEIGHT RFID PROTOCOLS

AND THEIR SECURITY ANALYSES

In this chapter, we make a survey over the previous ultralightweight RFID protocols.

2.1. LMAP Protocol

LMAP [13] is one of the first ultralightweight protocols. LMAP uses index pseudonyms

(IDSs) with 96-bit length that shows the index of a table where all information about a tag

is stored. Each tag is associated with a key, which is divided into four parts of 96 bits

(K = K1 ∥ K2 ∥ K3 ∥ K4). The protocol can be defined in three steps:

Database Reader Tag

hello

IDS
IDS

- Find IDS

- Generate n1 and n2

- Calculate A||B||C A||B||C

A = IDS K1 n1

B = (IDS ˅ K2) + n1

C = IDS + K3 + n2

M = (IDS + ID) n1 n2

A||B||C - Authenticate reader

with A and B message

- Get n2 using C message

- Update keys

- Generate M messageM
M

- Update keys

Figure 2.1. LMAP protocol flow.

• Tag identification: The reader sends a hello message to the tag and tag will answer

with its current index pseudonym. By using the IDS, the legitimate reader will be

able to access the tag secret key K.

• Mutual authentication: Upon receiving the IDS, the reader generates two random

9

numbers n1 and n2. By using these random numbers and K1, K2 and K3 subkeys,

the reader generates A = IDS⊕K1⊕n1, B = (IDS∨K2)+n1 and C = IDS+K3+n2

messages. When the tag receives these messages, it authenticates the reader with A

and B message and gets the random number n1. In order to get the random number

n2, C message is used. After succesfully completing these steps, the tag generates the

message D = (IDS + ID)⊕ n1⊕ n2 and sends it to the reader.

• Index-pseudonym and key update: After succesfully completing the mutual authenti-

cation step, index-pseudonym and key of the tag must be updated using the functions

below:

IDSnew = (IDS + (n2⊕K4))⊕ ID (2.1)

K1new = K1⊕ n2⊕ (K3 + ID) (2.2)

K2new = K2⊕ n2⊕ (K4 + ID) (2.3)

K3new = (K3⊕ n1) + (K1⊕ ID) (2.4)

K4new = (K4⊕ n1) + (K2⊕ ID) (2.5)

As stated in [14], LMAP suffers from desynchronization and full disclosure attacks.

Desynchronization attack is applied by two methods:

• Modifying C message: The adversary intercepts the message C and toggles any bit of

it to get a new C ′ message as C ′ = C ⊕ [I]j (0 ≤ j ≤ 95). When the tag receives the

modified message, it can still authenticate the reader but it will get a wrong random

number n2′. If this modification is applied, number of bit differences between n2 and

newly created n2′ can be calculated by using hamming weight:

If [C]j = 1; [C ′]j = 0; → If [n2]j = 0, HW (n2⊕ n2′) ≥ 2 (2.6)

If [C]j = 1; [C ′]j = 0; → If [n2]j = 1, n2′ = n2⊕ [I]j (2.7)

If [C]j = 0; [C ′]j = 1; → If [n2]j = 0, n2′ = n2⊕ [I]j (2.8)

If [C]j = 0; [C ′]j = 1; → If [n2]j = 1, HW (n2⊕ n2′) ≥ 2 (2.9)

For the cases n2′ = n2 ⊕ [I]j, the reader will accept the new D′ message created by

the tag since D′ = D⊕ [I]j = (IDS + ID)⊕ n1⊕ n2′ ⊕ [I]j = (IDS + ID)⊕ n1⊕ n2.

10

For the other cases, since the number of bit differences are more than one, this attack

is not applicable. Suppose that n2 is randomly generated, there is probability of 50%

success rate of desynchronization since the tag will update itself with (n1, n2′) and the

reader will update itself with (n1, n2).

• Modifying A and B messages : The adversary intercepts the A and B messages and

modifies any bit of them to get new A′ and B′ messages as A′ = A ⊕ [I]j and B′ =

B ⊕ [I]j. Since A = IDS ⊕K1 ⊕ n1, n1 is set as n1′ = n1 ⊕ [I]j. In this case for B,

the adversary obtains:

If [B]j = 1; [B′]j = 0; → If [n1]j = 0, HW (n1⊕ n1′) ≥ 2 (2.10)

If [B]j = 1; [B′]j = 0; → If [n1]j = 1, n1′ = n1⊕ [I]j (2.11)

If [B]j = 0; [B′]j = 1; → If [n1]j = 0, n1′ = n1⊕ [I]j (2.12)

If [B]j = 0; [B′]j = 1; → If [n1]j = 1, HW (n1⊕ n1′) ≥ 2 (2.13)

For the cases n1′ = n1 ⊕ [I]j, the reader will accept the new D′ message created by

the tag since D′ = D⊕ [I]j = (IDS + ID)⊕ n1⊕ n2′ ⊕ [I]j = (IDS + ID)⊕ n1⊕ n2.

For the other cases, since the number of bit differences are more than one, this attack

is not applicable. Suppose that n1 is randomly generated, there is probability of 50%

success rate of desynchronization since the tag will update itself with (n1′, n2) and the

reader will update itself with (n1, n2).

For full disclosure attack of LMAP protocol, the adversary disguises as a legitimate

reader and gets the current IDS of a tag. By using this valid IDS, the adversary queries

the reader to get a valid A ∥ B ∥ C message. Later, the adversary modifies j-th bit of A and

B messages repeatedly and sends the modified messages to the tag. According to proper D

or an error message is received from the tag, the adversary concludes that j-th bit of n1 is

equal to j-th bit of B or not equal to j-th bit of B. In 96 trials, adversary can decide the

whole bit values of n1. Then, from A,B, IDS and n1, the adversary can now calculate K1

and K2.

After this point the unknown parameters are n2, K3, K4 and ID. Obviously, one can

use the method above to obtain the value of n2, but to interact with the reader m times.

11

But many readers limits the number of interactions by a constant times. To avoid from

reaching maximum reader interaction limit, adversary tries another method to find out the

remaining parameters. Firstly, adversary disguises as a legitimate tag and sends the IDS

to the reader again. The reader will response with the message Anew ∥ Bnew ∥ Cnew. Since

the adversary knows the K1, K2 and IDS, he can set the n1new = 0. After modifying the

reader’s message, the adversary sends the modified Anew′ ∥ Bnew′ ∥ Cnew message to the

tag. Then the tag responses with Dnew. From these interactions the adversary generates the

following equations:

C = (IDS +K3) + n2 (2.14)

D = (IDS + ID)⊕ n1⊕ n2 (2.15)

Cnew = (IDS +K3) + n2new (2.16)

Dnew = (IDS + ID)⊕ n2new (2.17)

The following equation is generated by combining the equations:

Cnew − C = (IDS + ID)⊕Dnew − (IDS + ID)⊕ n1⊕D (2.18)

which is equal to

x⊕ a = x⊕ b+ c mod 296 (2.19)

where a = Dnew, b = n1 ⊕ D, c = Cnew − C mod 296 and x = (IDS + ID) mod 296.

To solve the x in the Equation 2.19, one must note that x’s most significant bits do not

effect the computation involving its less significant bits. So, adversary can divide the 96 bits

into several parts and try to find all possible solutions for each part. Note that one given

triple (a, b, c) may not be enough to determine the value of x. In this scenario, adversary

can interact with the reader several times to attain a few more instances of equations. By

intersecting these equations, the value range of the x can be significantly narrowed down.

After x is solved other unknown parameters ID, K3 and K4 can be derived since the IDS

is already known.

12

2.2. M2AP Protocol

M2AP is proposed in [15] and it is the modified version of LMAP protocol. M2AP uses

the same parameters as LMAP: an index pseudonym (IDS) and a key which is divided into

four parts of 96 bits (K = K1 ∥ K2 ∥ K3 ∥ K4). The protocol can be defined in three steps:

Database Reader Tag

hello

IDS
IDS

- Find IDS

- Generate n1 and n2

- Calculate A||B||C A||B||C

A||B||C - Authenticate reader

with A and B message

- Get n2 using C message

- Update keys

- Generate M messageM
M

- Update keys

A = IDS K1 n1

B = (IDS ˄ K2) ˅ n1

C = IDS + K3 + n2

D = (IDS ˅ K4) ˄ n2

E = (IDS + ID) n1

M = D || E

Figure 2.2. M2AP protocol flow.

• Tag identification: The reader sends a hello message to the tag and tag will answer

with its current index pseudonym. By using the IDS, the legitimate reader will be

able to access the tag secret key K.

• Mutual authentication: Upon receiving the IDS, the reader generates two random

numbers n1 and n2. By using these random numbers and K1, K2 and K3 subkeys,

the reader generates A = IDS⊕K1⊕n1, B = (IDS∧K2)∨n1 and C = IDS+K3+n2

messages. When the tag receives these messages, it authenticates the reader with A

and B message and gets the random number n1. In order to get the random number

n2, C message is used. After succesfully completing these steps, the tag generates two

messages:

D = (IDS ∨K4) ∧ n2 (2.20)

E = (IDS + ID)⊕ n1 (2.21)

13

and sends them to the reader.

• Index-pseudonym and key update: After succesfully completing the mutual authenti-

cation step, index-pseudonym and key of the tag must be updated using the functions

below:

IDSnew = (IDS + (n2⊕ n1))⊕ ID (2.22)

K1new = K1⊕ n2⊕ (K3 + ID) (2.23)

K2new = K2⊕ n2⊕ (K4 + ID) (2.24)

K3new = (K3⊕ n1) + (K1⊕ ID) (2.25)

K4new = (K4⊕ n1) + (K2⊕ ID) (2.26)

Full disclosure attack can also be applied to M2AP protocol as defined in [16]. Ad-

versary has the advantage to reveal the tag ID, secrets keys K1, K3 and random numbers

n1, n2 by simply eavesdropping two consecutive sessions. To recover K2 and K4, some other

techniques are required. For the clarity of expression, we will denote the k-th bit of M in

round n by Mn
k and when k = 96 it represents the LSB of M. Mk will represent the k-th bit

of M in all sessions.

After eavesdropping two session, the adversary computes the LSB of n2 message:

[n2n]96 = [En]96 ⊕ [IDSn+1]96 (2.27)

Since [n2n]96 is known, next thing adversary computes is:

[K3n]96 = [Cn]96 ⊕ [IDSn]96 ⊕ [n2n]96 (2.28)

Using the updating formula of K1n+1, the adversary can calculate the LSB of ID, since:

[ID]96 = ([K1n]96 ⊕ [ID]96)⊕ ([K1n+1]96 ⊕ [ID]96)⊕ [K3n]96 ⊕ [n2n]96 (2.29)

= ([An]96 ⊕ [En]96)⊕ ([An+1]96 ⊕ [En+1]96)⊕ [K3n]96 ⊕ [n2n]96 (2.30)

14

Adversary also computes the LSB of K1n and n1n:

[n1n]96 = [En]96 ⊕ [IDSn]96 ⊕ [IDn]96 (2.31)

[K1n]96 = [An]96 ⊕ [IDSn]96 ⊕ [n1n]96 (2.32)

Adversary also computes [K1n+1]96 and [K3n+1]96 by using their update formulas. After that,

he/she computes [n1n+1]96 from [En+1]96. Finally, adversary calculates [n2n+1]96, [IDSn+2]96,

[K1n+2]96, [K3n+2]96 respectively.

After computing the LSBs of the secret values, adversary tries to set up equations

handling the addition modulo 296 for the other 95 bits knowing the addends. After this step

adversary obtains K1, K3, n1, n2 and ID.

The only unknown parameters in this step are K2 and K4. These parameters are

captured in three different ways.

In the first method, adversary obtains K2 and K4 in 192 protocol runs. The updating

formula for the round (n+2) for K2 and K4:

[K2n+2]96 = [n1n]96 ⊕ [n2n]96 ⊕ [n2n+1]96 ⊕ [ID]96 (2.33)

[K4n+2]96 = [n1n]96 ⊕ [n2n]96 ⊕ [n1n+1]96 ⊕ [ID]96 (2.34)

As the number of eavesdropped session increases, adversary computes the nonces at each

session as it is described above and calculates the LSB of K2 and K4 at each session. Then,

adversary computes the other bits by handling the addition modulo 296 in the updating

formulas of K2 and K4. Each bit is computed in two sessions, and after 192 protocol runs

the whole K2n+192 and K4n+192 will be captured. In the other methods, adversary uses the

fact that one fourth of K2 and K4 if the following implications are hold:

([IDSi]k = 1) ∧ ([n1i]k = 0) → [Bi]k = [K2i]k (2.35)

([IDSi]k = 0) ∧ ([n2i]k = 1) → [Di]k = [K4i]k (2.36)

15

In the second method, adversary uses the above information to calculate the whole K2

and K4 and it is shown that adversary can calculate them in nearly 120 protocol runs.

In the third method, adversary splits 96-bit long K2 and K4 into 8-bit blocks and for

each block tests all the 296 possible K2n −K4n. After fixing a pair, adversary can generate

the updated blocks by using the updating formula of K2 and K4. It is shown that after

six eavesdropped sessions, there is only one possible K2n+6 −K4n+6 with probability of 0.9.

The expected value for having a unique K2n − K4n is 4.5 and since there are 12 blocks,

adversary can calculate K2 and K4 after 54 protocol runs.

2.3. EMAP Protocol

EMAP [17] is proposed by Peris-Lopez and it is the modified version of the legacy

M2AP protocol. EMAP uses index pseudonyms (IDSs) with 96-bit length that shows the

index of a table where all information about a tag is stored. Each tag is associated with a

key, which is divided into four parts of 96 bits (K = K1 ∥ K2 ∥ K3 ∥ K4). The protocol

can be defined in three steps:

• Tag identification: The reader sends a hello message to the tag and tag will answer

with its current index pseudonym. By using the IDS, the legitimate reader will be

able to access the tag secret key K.

• Mutual authentication: Upon receiving the IDS, the reader generates two random

numbers n1 and n2. By using these random numbers and K1, K2 and K3 subkeys,

the reader generates A = IDS⊕K1⊕n1, B = (IDS∨K2)⊕n1 and C = IDS⊕K3⊕n2

messages. When the tag receives these messages, it authenticates the reader with A

and B message and gets the random number n1. In order to get the random number

n2, C message is used. After succesfully completing these steps, the tag generates the

messages D = (IDS ∧K4)⊕ n2, E = (IDS ∧ n1 ∨ n2)⊕ ID ⊕K1⊕K2⊕K3⊕K4

and sends them to the reader.

• Index-pseudonym and key update: After succesfully completing the mutual authenti-

cation step, index-pseudonym and key of the tag must be updated using the functions

16

below:

IDSnew = IDS ⊕ n2⊕K1 (2.37)

K1new = K1⊕ n2⊕ ([ID][1:48] ∥ Fp(K4) ∥ Fp(K3)) (2.38)

K2new = K2⊕ n2⊕ (Fp(K1) ∥ Fp(K4) ∥ [ID][49:96]) (2.39)

K3new = K3⊕ n1⊕ ([ID][1:48] ∥ Fp(K4) ∥ Fp(K2)) (2.40)

K4new = K4⊕ n1⊕ (Fp(K3) ∥ Fp(K1) ∥ [ID][49:96]) (2.41)

where Fp(X) is a parity function: the 96-bit number X is divided into 24 4-bit blocks. A

parity is generated for each block, with a total of 24 parity bits. [ID][j:k] represents the bit

sequence from j-th to the k-th positions of ID.

Database Reader Tag

hello

IDS
IDS

- Find IDS

- Generate n1 and n2

- Calculate A||B||C A||B||C

A||B||C - Authenticate reader

with A and B message

- Get n2 using C message

- Update keys

- Generate M messageM
M

- Update keys

A = IDS K1 n1

B = (IDS ˅ K2) n1

C = IDS K3 n2

D = (IDS ˄ K4) n2

E = (IDS ˄ n1 ˅ n2) ID K1 K2 K3 K4

M = D || E

Figure 2.3. EMAP protocol flow.

EMAP suffers from desynchronization and full disclosure attacks [18]. Desynchroniza-

tion attack is applied by two methods:

• Modifying C message: The adversary intercepts the message C and toggles any bit

17

of it to get a new C ′ message as C ′ = C ⊕ [I]j (0 ≤ j ≤ 95). Then he/she sends

the new message A ∥ B ∥ C ′ to the tag. When the tag receives these messages,

it can still authenticate the reader as A and B are not modified. However, the tag

will get a wrong random number n2′ since C message is modified. Tag will reply

with D = (IDS ∧ K4) ⊕ n2′ message calculated with this wrong random number.

Adversary captures this message and modifies it as D′ = D⊕ [I]j = (IDS ∧K4)⊕ n2

which is accepted by the reader. Also, E message will be modified as E ′ = E ⊕ [I]j =

(IDS∧n1∨n2′)⊕ [I]j⊕ID⊕K1⊕K2⊕K3⊕K4. The reader will accept the message

if result1 = (IDS ∧ n1 ∨ n2) equals to result2 = (IDS ∧ n1 ∨ n2′) ⊕ [I]j. The truth

table of result1 and result2 is given in Table 2.1.

Table 2.1. Truth table of result1 and result2.

[IDS]j [n1]j [n2]j [n2′]j result1 result2

0 0 0 1 0 0

0 0 1 0 1 1

0 1 0 1 0 0

0 1 1 0 1 1

1 0 0 1 0 0

1 0 1 0 1 1

1 1 0 1 1 0

1 1 1 0 1 0

Table 2.1 shows that for [IDS]j = 0 the success rate is 100% whereas for [IDS]j = 1

the success rate drops to 50%. Given that IDS is known, an adversary can choose to

change any bit of C to achieve 100% success rate.

• Modifying A and B messages : The adversary intercepts the A and B messages and

modifies any bit of them to get new A′ and B′ messages as A′ = A ⊕ [I]j and B′ =

B ⊕ [I]j. Since A = IDS ⊕ K1 ⊕ n1 and B = (IDS ∨ K2) ⊕ n1, the tag will

get n1′ = n1 ⊕ [I]j from both A′ and B′. When the tag receives these messages, it

authenticates the reader and generates the reply messages D and E. As it is shown

on Table 2.1, for [IDS]j = 0 the adversary only forwards them to the reader and the

reader will accept them with 100%. For the case [IDS]j = 1, the success rate drops

down to 50%.

18

Full disclosure attack for EMAP protocol consists of four stages. In stage one, the

adversary derives some bit values of random number n2 and derives the other half of n2 in

stage two. In stage three, based on n2 he/she derives as much as possible the tag’s secret

information in a single protocol run and in the last stage all secret information including the

ID of the tag is derived.

• Stage one: The adversary impersonates a legitimate reader and gets the current IDS

of a tag. Using this valid IDS, the adversary impersonates the tag to get a valid

A ∥ B ∥ C from a legitimate reader. The attacker then intercepts the reply messages

D ∥ E. Since D = (IDS ∧ K4) ⊕ n2 and IDS is known, some bit values of n2 can

derived from bitwise expression. If we let ϕ be the set of bit positions in which the

corresponding bit values in IDS are zero and τ be the set of bit positions in which the

corresponding bit values in IDS are one, we can derive the bitwise expression of D as:

Dj = [n2]j (∀j ∈ ϕ) (2.42)

Dk = [K4]k ⊕ [n2]k (∀k ∈ τ) (2.43)

From Equation 2.42 half of n2 is derived. The other half of n2 can not be derived

since K4 is unknown. Following the same approach, we can derive the half of n1, since

[B]k = [n1]k, (∀k ∈ τ).

• Stage two: Firstly, the adversary launches the desynchronization attack by modifying

A and B messages and sending A′ ∥ B′ ∥ C where A′ is set as [A′]τ = [A]τ ⊕ [I]τ ,

or equivalently toggling all the bit values at positions of τ on A. B′ is set as [B′]τ =

[B]τ ⊕ [I]τ and n1′ is set as [n1′]τ = [n1]τ ⊕ [A]τ . After receiving these values, the tag

obtains n1′ and n2 and replies with D and E ′. Since E ′ is calculated from n1′ and n2,

it is different from the message in stage one. If we set result1 = (IDS ∧ n1 ∨ n2) and

result2 = (IDS ∧ n1′ ∨ n2), Table 2.2 is created.

From Table 2.2, Equation 2.44 can be derived for (∀k ∈ τ) and n2 is fully disclosed:

[n2]k =

 0, if [E]k ̸= [E ′]k

1, if [E]k = [E ′]k
(2.44)

Since n2 is disclosed, other unknown parameters K3 and [K4]τ are derived by solving

19

Table 2.2. Truth table of k-th bit value of result1 and result2.

[IDS]k [n1]k [n1′]k [n2]k result1 result2

1 0 1 0 0 1

1 0 1 1 1 1

1 1 0 0 1 0

1 1 0 1 1 1

the expressions of C and Equation 2.43.

Secondly, the adversary launches the desynchronization attack by modifying C message

and obtains [n1]τ . By solving the expression of A, the adversary also derives [K1]τ .

• Stage three: In this stage, the known parameters are [n1]τ , n2, [K1]τ , K3, [K4]τ

whereas the unknown parameters are [n1]ϕ, [K1]ϕ, K2, [K4]ϕ. The adversary expresses

the E message in the following forms:

Ej = [n2]j ⊕ [ID]j ⊕ [K1]j ⊕ [K2]j ⊕ [K3]j ⊕ [K4]j (2.45)

Ek = ([n1]k ∨ [n2]k)⊕ [ID]k ⊕ [K1]k ⊕ [K2]k ⊕ [K3]k ⊕ [K4]k (2.46)

where (∀k ∈ τ) and (∀j ∈ ϕ). By using A and B, the equations are transformed into:

[ID]ϕ ⊕ [K4]ϕ = [n2]ϕ ⊕ [E]ϕ ⊕ [A]ϕ ⊕ [B]ϕ ⊕ [K3]ϕ (2.47)

[ID]τ ⊕ [K2]τ = ([n1]τ ∨ [n2]τ)⊕ [E]τ ⊕ [K1]τ ⊕ [K3]τ ⊕ [K4]τ (2.48)

Since [K4]ϕ and [K2]τ are still unknown, the adversary can not derive the ID. It is

obvious that the adversary needs more protocols runs to capture the ID.

• Stage four : In this stage the adversary eavesdrops a valid IDSn+1 knowing that the

formula for updating IDS is IDSn+1 = IDS ⊕ n2⊕K1. Given that n2 is known, K1

is derived. By using A and B messages, n1 and [K2]ϕ are obtained. At this point, the

only unknown parameters are [K4]ϕ, [K2]τ and ID. By using the updating algorithm

of K1 and the known parameters, the adversary can derive the most significant 48 bits

of ID denoted as L.

[ID]L = [K1n+1]L ⊕ [K1]L ⊕ [n2]L (2.49)

20

By using the updating algorithm of K2n+1, K4n+1 and the known parameters, the

following parameters are derived:

[ID]R∩ϕ = [K2n+1]R∩ϕ′ ⊕ [K2]R∩ϕ ⊕ [n2]R∩ϕ (2.50)

[ID]R∩τ = [K4n+1]R∩τ ′ ⊕ [K4]R∩τ ⊕ [n1]R∩τ (2.51)

It is calculated that in one protocol run, approximately 24 bits can be derived using

the Equation 2.50 and Equation 2.51. It is assumed that nearly in six protocol runs,

the whole ID can be captured.

2.4. SASI Protocol

In 2007, Hung-Yu Chien proposed an ultralightweight protocol with rotations named

shortly as SASI [19]. In SASI protocol tag shares four varibles with the database as one

static identification ID, a pseudonym IDS, and two keys named K1 and K2. The length

of these variables are 96 bits. The protocol can be defined in three steps:

Database Reader Tag

hello

IDS
IDS

- Find IDS

- Generate n1 and n2

- Calculate A||B||C A||B||C

A||B||C
- Extract n1 and n2

- Verify C message

- Update keys

- Generate M messageM
M

- Update keys

A = IDS K1 n1

B = (IDS ˅ K2) + n2

K1 = Rot(K1 n2, K1)

K2 = Rot(K2 n1, K2)

C = (K1 K2)+(K1 K2)

M = (K2 + ID) ((K1 K2) ˅ K1)

- IDS, if necessary old IDS

~

~

~ ~

~ ~

Figure 2.4. SASI protocol flow.

21

• Tag identification: The reader sends a hello message to the tag and tag will answer

with its current index pseudonym. By using the IDS, the legitimate reader will be able

to access the tag secret key K. If the tag is re-queried without completing a session

successfully, the tag sends its old IDS to the reader.

• Mutual authentication: Upon receiving the IDS, the reader generates two random

numbers n1 and n2. By using these random numbers and K1, K2 subkeys, the reader

generates A = IDS⊕K1⊕n1 and B = (IDS∨K2)+n2 messages. After that the reader

generates two new subkeys as K̃1 = Rot(K1 ⊕ n2, K1) and K̃2 = Rot(K2 ⊕ n1, K2)

where Rot(x, y) means left rotation of x with y bits. Lastly, reader generates C =

(K1 ⊕ K̃2) + (K̃1 ⊕K2). From A ∥ B ∥ C, the tag extracts n1 from A, extracts n2

from B. With these random numbers it generates K̃1 and K̃2 to verify the value of C.

If the messages are authentic, the tag generates D = (K̃2 + ID)⊕ ((K1⊕K2) ∨ K̃1)

and sends it to the reader.

• Index-pseudonym and key update: After sending D message to the reader, the tag

updates its keys and pseudonym. The tag also stores its old keys and pseudonym to

avoid desynchronization attacks. As soon as the reader verifies D message, tag specific

data is updated using the functions below:

IDSnew = (IDS + ID)⊕ (n2⊕ K̃1) (2.52)

K1new = K̃1 (2.53)

K2new = K̃2 (2.54)

The natural way of attacking this protocol is to consider what happens when modular

rotations are not performed, that is, when amount of rotation is zero modulo 96 [20]. In this

case, the update functions of K1, K2 and IDS are defined as:

K̃1 = Rot(K1⊕ n2, K1 mod 96) = Rot(K1⊕ n2, 0) = K1⊕ n2 (2.55)

K̃2 = Rot(K2⊕ n1, K2) = K2⊕ n1 (2.56)

IDSnew = (IDS + ID)⊕K1 (2.57)

22

To recover the ID of the tag, the adversary now has the function:

ID = IDSnew ⊕K1− IDS (2.58)

By taking the advantage of K1 = K2 = 0mod 96 and snooping two consecutive authentica-

tion sessions, few least significant bits of the secret ID are recovered since with a probability

of 33% it can be written as:

ID mod 96 ≈ (IDSnew − IDS) mod 96 (2.59)

which allows an adversary to trace the tag. Since the attack uses the case K1 = K2 =

0 mod 96, it is important for an adversary to recognize it. Assume thatK1 = K2 = 0 mod 96

then:

K̃1 = K1⊕ n2 (2.60)

K̃2 = K2⊕ n1 (2.61)

So

C = (K1⊕ K̃2) + (K2⊕ K̃1) (2.62)

= K1⊕K2⊕ n1 +K2⊕K1⊕ n2 (2.63)

which implies that

C mod 96 ≈ n1 + n2 mod 96 (2.64)

The value of n1 and n2 can be captured by using the messages A, B and IDS, that is,

A = IDS ⊕K1⊕ n1 → n1 = A⊕ IDS ⊕K1 (2.65)

B = (IDS ∨K2) + n2 → n2 = B − (IDS ∨K2) (2.66)

23

and since K1 = K2 = 0mod 96 these equations lead to

n1 mod 96 ≈ (A⊕ IDS) mod 96 (2.67)

n2 mod 96 ≈ (B − IDS) mod 96 (2.68)

C mod 96 ≈ (A⊕ IDS) + (B − IDS)mod 96 (2.69)

If Equation 2.69 holds, the K1 = K2 = 0mod 96 condition is satisfied. The adversary can

eavesdrop authentication sessions to check if Equation 2.69 holds, and it is satisfied he/she

can calculate the approximate ID using Equation 2.59. As the adversary observes many

consecutive sessions, success probability of the attack will increase.

SASI protocol also lacks the untraceability property [21]. For the traceability attack,

the adversary uses the case that addition (+) equals to XOR(⊕) for the least significant bit.

This leads to:

CLSB = K1LSB ⊕ K̃2LSB ⊕ K̃1LSB ⊕K2LSB (2.70)

DLSB = K̃2LSB ⊕ IDLSB ⊕ ((K1LSB ⊕K2LSB) ∨ K̃1LSB) (2.71)

XOR and OR operation results the same with a probability of p = 0.75. Depending on the

probability p = 0.75, Equation 2.71 can be rewritten as:

DLSB = K̃2LSB ⊕ IDLSB ⊕K1LSB ⊕K2LSB ⊕ K̃1LSB (2.72)

Combining Equation 2.70 and Equation 2.72 gives:

CLSB ⊕DLSB = IDLSB (2.73)

Using the relations above, the adversary launches the untraceability attack:

• Adversary eavesdrops on a protocol session between reader and a tag T0, to obtain C

and D.

• Adversary chooses two fresh tags T0, T1 with identifiers ID0, ID1, where ID0 =

24

0 mod 2, ID1 = 1 mod 2.

• Adversary is then given a candidate tag T∗ among T0 and T1. By using Equation 2.73,

adversary guesses T∗ with a probability of 25% which is not negligible.

In [22], it is shown that SASI protocol suffers from desynchronization attack with two

different methods. The first method uses the steps below:

• Adversary denotes the variables of a tag in the database as IDS1, K11, K21.

• When a legitimate reader queries the tag, the adversary records the messages A, B, C

as A′, B′, C ′ and interrupts the D message. This causes the tag to update its variables

as:

(IDSold, K1old, K2old) = (IDS1, K11, K21) (2.74)

(IDSnew, K1new, K2new) = (IDS2, K12, K22) (2.75)

whereas the reader will not update its variables.

• Next, the adversary allows the tag and the reader to run a protocol without interrupting

them. Thus, the database will update its variables as IDS3, K13, K23. In the tag, the

values are now:

(IDSold, K1old, K2old) = (IDS1, K11, K21) (2.76)

(IDSnew, K1new, K2new) = (IDS3, K13, K23) (2.77)

• In the final step, the adversary queries the tag as a valid reader, and the tag replies

as IDSnew, which is IDS3. The adversary pretends that he can not find the IDSnew

and queries the tag again. The tag will response with IDSold, which is IDS1, and the

adversary now replies with the recorded A′, B′, C ′ messages. Using these values the

tag will update its values as:

(IDSold, K1old, K2old) = (IDS1, K11, K21) (2.78)

(IDSnew, K1new, K2new) = (IDS2, K12, K22) (2.79)

25

which causes a desynchronization betweeen reader and the tag.

Table 2.3. The MSB of each variable.

K1⊕ K̃2 K2⊕ K̃1 carry CR K1⊕ K̃2∗ CT C∗
1

0 0 0 0 1 1 1

0 0 1 1 1 0 0

0 1 1 0 1 0 0

0 1 0 1 1 1 1

1 0 1 0 0 0 0

1 0 0 1 0 1 1

1 1 0 0 0 1 1

1 1 1 1 0 0 0

The second method uses man-in-the-middle attack to cause desynchronization.

• When a legitimate reader queries the tag, the adversary records the messages A, B, C

as A1, B1, C1. This causes the tag to update its variables as:

(IDSold, K1old, K2old) = (IDS1, K11, K21) (2.80)

(IDSnew, K1new, K2new) = (IDS2, K12, K22) (2.81)

and the database updates its variables as (IDS2, K12, K22).

• Next, the adversary queries the tag until it replies with IDS1. The adversary tries to

forge a tuple (A′
1, B

′
1, C

′
1) that is acceptable by the tag. The adversary makes A′

1 = A∗
1,

where A∗
1 is to flip k-th bit in A1, B

′
1 = B1 and C ′

1 = C∗
1 where C∗

1 is to flip the most

significant bit of C1, considering that flipping k-th bit in A1 will flip the k-th bit in n1,

therefore k-th bit of K21 ⊕ n11 will flip and if the flipped bit is rotated to the MSB in

K̃2, then C message will be changed in the MSB. The adversary replies the tag with

(A′
1, B

′
1, C

′
1).

• When tag tries to verify message C, it is actually using C∗
1 , K̃2

∗
and K1, where K̃2

∗

differs from K̃2 in the MSB. Table 2.3 shows that in all cases the value computed by

the reader CR and the value computed by the tag CT are equal.

26

The adversary can obtain an authenticated tuple (A′
1, B

′
1, C

′
1) by at most 96 trials for

all possible values of k. Once an authenticated tuple (A′
1, B

′
1, C

′
1) is accepted by the tag,

the tag will update its variables as:

(IDSnew, K1new, K2new) = (IDS2, K12, K2∗2) (2.82)

where K2∗2 has the k-th bit flipped in K22. When the tag queried by the reader, the tag

will reply with IDS2. IDS2 will be found in the database, but the tag will reject the reader

since the K2new stored in the tag is no longer synchronized with the database.

2.5. Gossamer Protocol

Gossamer protocol [23] is proposed by Peris-Lopez and it is inspired by the SASI

scheme. In Gossamer protocol, tag shares four varibles with the database as one static

identification ID, a pseudonym IDS, and two keys named K1 and K2. The length of these

variables are 96 bits. The protocol can be defined in three steps:

Database Reader Tag

hello

IDS
IDS

- Find IDS

- Generate n1 and n2

- Calculate A||B||C A||B||C

A||B||C
- Extract n1 and n2

- Verify C message

- Update keys

- Generate M messageM
M

- Update keys

A = Rot(Rot(IDS+K1+Π+n1, K2)+K1, K1)

B = Rot(Rot(IDS+K2+Π+n2, K1)+K2, K2)

n3 = MIXBITS(n1, n2)

K1* = Rot(Rot(n2+K1+Π+n3, n2)+K2 n3, n1) n3

K2* = Rot(Rot(n1+K2+Π+n3, n1)+K1+n3, n2)+n3

n1* = MIXBITS(n3,n2)

C = Rot(Rot(n3+K1*+Π+n1*, n3)+K2* n1* , n2) n1*

M = Rot(Rot(n2+K2*+ID+n1*, n2)+K1*+n1*, n3)+n1*

- IDS, if necessary old IDS

Figure 2.5. Gossamer protocol flow.

27

• Tag identification: The reader sends a hello message to the tag and tag will answer

with its current index pseudonym. By using the IDS, the legitimate reader will be able

to access the tag secret key K. If the tag is re-queried without completing a session

successfully, the tag sends its old IDS to the reader.

• Mutual authentication: Upon receiving the IDS, the reader generates two random

numbers n1 and n2. By using these random numbers, K1 and K2 subkeys the reader

generates A, B and C messages using the functions below:

A = Rot(Rot(IDS +K1 + π + n1, K2) +K1, K1) (2.83)

B = Rot(Rot(IDS +K2 + π + n2, K1) +K2, K2) (2.84)

n3 = MIXBITS(n1, n2) (2.85)

K1∗ = Rot(Rot(n2 +K1 + π + n3, n2) +K2⊕ n3, n1)⊕ n3 (2.86)

K2∗ = Rot(Rot(n1 +K2 + π + n3, n1) +K1 + n3, n2) + n3 (2.87)

n1∗ = MIXBITS(n3, n2) (2.88)

C = Rot(Rot(n3 +K1∗ + π + n1∗, n3) +K2∗ ⊕ n1∗, n2)⊕ n1∗ (2.89)

where π = 0x3243F6A8885A308D313198A2. In this protocol Rot(x, y) means a circu-

lar shift on the value of x, (y mod 96) positions to the left. In order to obtain highly

non-linear functions, MIXBITS function is created and it is presented in Figure 2.6:

Require X, Y

Z = Y;

for k = 0 to 32 do

Z = (Z>>1) + Z + Z + Y ;

end for

return Z;

Figure 2.6. Algorithm of MIXBITS function.

When the tag receives these messages, it extracts the nonces n1 and n2. Then the

tag computes a local version of submessage C. If it is verified, the tag sends D =

Rot(Rot(n2 +K2∗ + ID + n1∗, n2) +K1∗ + n1∗, n3) + n1∗ to the reader.

• Index-pseudonym and key update: After sending D message to the reader, the tag

28

updates its keys and pseudonym. The tag also stores its old keys and pseudonym to

avoid desynchronization attacks. As soon as the reader verifies D message, tag specific

data is updated using the functions below:

n2∗ = MIXBITS(n1∗, n3) (2.90)

IDS ′ = Rot(Rot(n1∗ +K1∗ + IDS + n2∗, n1∗) +K2∗ ⊕ n2∗, n3)⊕ n2∗ (2.91)

K1′ = Rot(Rot(n3 +K2∗ + π + n2∗, n3) +K1∗ + n2∗, n1∗) + n2∗ (2.92)

K2′ = Rot(Rot(IDS ′ +K2∗ + π +K1′, IDS ′) +K1∗ +K1′, n2∗) +K1′ (2.93)

where IDS ′, K1′ and K2′ shows the updated values.

Later it is shown that Gossamer protocol suffers from desynchronization attack [24].

This attack is applied in three steps:

• The values stored in the database are named as IDS1, K11, K21. When the tag is

queried by the reader, the adversary stores the A ∥ B ∥ C message, but the adversary

does not allow D message to reach the reader. Tag updates its keys without verifying

whether D message has reached the reader or not. The values in the tag are:

(IDSold, K1old, K2old) = (IDS1, K11, K21) (2.94)

(IDSnew, K1new, K2new) = (IDS2, K12, K22) (2.95)

• The adversary allows the reader and the tag to run a successfull protocol. Since the

IDS2 is not recognized by the reader, reader asks for the older values. When the tag

sends IDS1, they complete the protocol. The values in the tag are now:

(IDSold, K1old, K2old) = (IDS1, K11, K21) (2.96)

(IDSnew, K1new, K2new) = (IDS3, K13, K23) (2.97)

• The adversary sends hello message to the tag. Tag responds with IDS3 and the ad-

versary pretends that he/she can not identify IDS3 and asks for IDS1. Since the

adversary has stored A ∥ B ∥ C message in the first step, he/she sends it to the tag.

29

The tag updates its keys as:

(IDSold, K1old, K2old) = (IDS1, K11, K21) (2.98)

(IDSnew, K1new, K2new) = (IDS2, K12, K22) (2.99)

whereas the keys in the database are IDS3, K13, K23.

In the forthcoming sessions, the reader and the tag will not be able to communicate since

their keys are different.

In [25], a possible weakness of the protocol is identified. If the nonces n1 and n2

satisfies the condition that n1, n2 mod 96 = 0, then adversary can rewrite the equations as:

C = K1∗ + π +K2∗ (2.100)

D = K1∗ + ID +K2∗ (2.101)

IDSnew = K1∗ + IDS +K2∗ (2.102)

since n1, n2, n3, n1∗ mod 96 are all zeros. Then, the adversary computes:

ID = D − C + π (2.103)

ID = D − IDSnew + IDS (2.104)

C − π = IDSnew − IDS (2.105)

It is obvious that if Equation 2.105 is satisfied between two session, adversary can calculate

ID from the exchanged messages using Equation 2.103 or Equation 2.104.

2.6. Lee Protocol

Lee protocol [26] uses three parameters; a dynamic temporary identification IDT , a

secret key K, and a static identification ID. Their length are all 128 bits. The protocol

mainly consists of three stages:

30

Database Reader Tag

hello

IDT

IDT
- Find IDT

- Generate N

- Calculate A||B A||B

A||B
- Extract N

- Verify B message

- Update keys

- Generate M messageM
M

- Update keys

A = K N

B = Rot(K, K) Rot(N, N)

M = (K ˅ Rot(N, N)) (Rot(K,K) ˄ N)

- IDT

Figure 2.7. Lee protocol flow.

• Tag identification: The reader sends a inquire message to the tag and tag will answer

with its dynamic temporary identification. By using the IDT , the legitimate reader

will be able to access the tag secret key K.

• Mutual authentication: Upon receiving the IDT , the reader generates a random num-

ber N and computes A and B messages as follows:

A = K ⊕N (2.106)

B = Rot(K,K)⊕Rot(N,N) (2.107)

where Rot(x, y) means left rotate of x with the number of one in y. The reader sends

A and B messages to the tag. Upon receiving the messages, tag obtains the random

number N from A, and computes a new B′ message to check if it is equal to the one

received from the reader. If the message is authentic, the tag generates

C = (K ∨Rot(N,N))⊕ (Rot(K,K) ∧N) (2.108)

and sends it to the reader.

• Temporary identification and key update: After sending C message to the reader, the

tag updates its key and temporary identification. The tag also stores its old key and

31

temporary identification to avoid desynchronization attacks. The server also updates

its key and stores the old key and temporary identification as well. The key and

temporary identification is updated using the functions below:

IDTnew = K ⊕Rot(N,N) (2.109)

Knew = Rot(K,K)⊕N (2.110)

Also, this protocol does not fullfill its security claims including synchronization and key

secrecy [27]. For full-disclosure attack, the adversary eavesdrops two consecutive sessions to

acquire the following equations:

• The adversary eavesdrops the first authentication session between an authentic tag and

a genuine reader to acquire the following equations:

A = K ⊕N (2.111)

B = Rot(K,K)⊕Rot(N,N) (2.112)

• In the following authentication session, the adversary also eavesdrops the following

equations:

IDTn+1 = K ⊕Rot(N,N) (2.113)

An+1 = Kn+1 ⊕Nn+1 (2.114)

Bn+1 = Rot(Kn+1, Kn+1)⊕Rot(Nn+1, Nn+1) (2.115)

Cn+1 = (Kn+1 ∨Rot(Nn+1, Nn+1))⊕ (Rot(Kn+1, Kn+1) ∧Nn+1) (2.116)

The secret key in session n+1 is Kn+1 = Rot(K,K) ⊕ N . By using these equations,

the adversary can now write:

A⊕B ⊕ IDTn+1 = K ⊕N ⊕Rot(K,K)⊕Rot(N,N)⊕K ⊕Rot(N,N) (2.117)

= Rot(K,K)⊕N ⊕ (K ⊕K)⊕ (Rot(N,N)⊕Rot(N,N)) (2.118)

= Rot(K,K)⊕N (2.119)

= Kn+1 (2.120)

32

By using this equation, the adversary obtains the current key of the tag easily. Therefore,

Lee protocol fails to hold key secrecy and since the secret key is revealed, the adversary can

now reveal random number N and clone the whole tag data. After capturing the secret key,

the adversary can desynchronize the database and the tag as:

• During an authentication session, the adversary intercepts the A and B messages cal-

culated with the random number N . Since the secret key and random number N is

known, he/she calculates new messages with a random value N∗.

A = K ⊕N∗ (2.121)

B = Rot(K,K)⊕Rot(N∗, N∗) (2.122)

• The tag updates its values with the random number N∗, and calculates C message

with N∗. The adversary intercepts this message and calculates the C message with the

random number N .

C = (K ∨Rot(N,N))⊕ (Rot(K,K) ∧N) (2.123)

Since the tag and the server is updated with different random numbers, they are out of

synchronization in the forthcoming sessions. In the second desynchronization method the

adversary can use older messages and the non-resistance of the bitwise operations to create

new valid messages:

• The adversary eavesdrops an authentication session and captures the messages IDT ,

A, B, C. After authentication the secret values are IDTn+1, Kn+1.

• Adversary selects a C1 value with the restriction that its hamming weight is 2.

• Adversary selects a C2 value from the subset of x ∈ {0, 1, ..., 2128} that has hamming

weight of 2.

• Adversary computes the values:

An+1 = A⊕ C1 = K ⊕N ⊕ C1 (2.124)

Bn+1 = B ⊕ C2 = Rot(K,K)⊕Rot(N,N)⊕ C2 (2.125)

33

• If the tag accepts An+1 and Bn+1 and replies with Cn+1 to the adversary, the attack is

successfull. Otherwise, starting from C2 selection, adversary repeats the steps.

• If the whole step completely fails, the adversary repeats the steps from the beginning.

It is calculated that the average number of trials until desynchronization is 8128 which is

feasible to implement.

2.7. SLMAP∗ Protocol

In 2007, Li and Wang [28] introduced an ultralightweight RFID protocol denoted as

SLMAP that is mainly based on LMAP protocol. In [29], it is shown that this protocol has

some security flaws and later an improved version, SLMAP∗ , is proposed by Li, Deng and

Wang [30]. SLMAP∗ protocol uses five parameters; an index pseudonym IDS, three secret

Database Reader Tag

hello

IDS

IDS
- Find IDS

- Generate r

- Calculate A||B A||B

A||B

- Extract r1 from A

- Extract r2 from B

- if(r1 = r2)

Generate C message

Set protocol status to 1

otherwise

Generate random C message

C
C

- Verify C message

- Calculate D message

- Update keys and IDS

A = IDS K1 + r

B = (IDS + K2) r

C = (IDS + ID r) (K1 + r) (K2 + r) (K3 + r)

D = (IDS + K1 + K2) r + (ID + K3) r

- IDS

D

D - Verify D message

- Update keys and IDS

- Set protocol status to 0

Figure 2.8. SLMAP∗ protocol flow.

keys K1, K2, K3, and a static identification ID. The protocol consists of three stages:

• Tag identification: The reader sends a hello message to the tag and tag will answer

with its current index pseudonym. By using the IDS, the legitimate reader will be

34

able to access the tag secret key K.

• Mutual authentication: Upon receiving the IDS, the reader generates a random num-

ber r. With this random number, reader generates A = IDS ⊕ K1 + r and B =

(IDS +K2)⊕ r messages and sends them to the tag. From A ∥ B, the tag computes

r1 and r2 values:

r1 = A− (IDS ⊕K1) (2.126)

r2 = B ⊕ (IDS +K2) (2.127)

If r1 = r2, tag sets the protocol status bit to one. Later, the tag prepares an answer

message C = (IDS + ID ⊕ r) ⊕ (K1 + r)⊕ (K2 + r)⊕ (K3 + r) and sends it to the

reader.

• Index-pseudonym and key update: When the message is received by the reader, it

computes a local C message. If it is equal with the one received from the tag, the

reader computes:

D = IDSnew (2.128)

= (IDS +K1 +K2)⊕ r + (ID +K3)⊕ r (2.129)

After updating IDS,K1, K2 and K3, the reader sends D message to the tag. When

the tag receives D message, the tag also updates its secret values and sets the protocol

status bit to zero.

The protocol status bit is set to zero if protocol is completed succesfully and set to one

otherwise. If protocol status is one, the tag will expect D message from the reader. If no

valid D message arrives for a maximum number of trials, for example c, tag resets its state

and returns its status to the beginning of the session without changing the secrets.

In [31], authors have shown a way to desynchronize the tag and the server in two phases.

The authors note that key update function is not defined in the protocol description, but they

assume that the random number r is used in update function since most similar protocols,

including SLMAP, use the random nonces in their update functions.

35

Table 2.4. Truth table of the MSB values of messages.

XMSB YMSB rMSB/r̂MSB DMSB/D̂MSB

0 0 0/1 0/0

0 0 1/0 0/0

0 1 0/1 1/1

0 1 1/0 1/1

1 0 0/1 1/1

1 0 1/0 1/1

1 1 0/1 0/0

1 1 1/0 0/0

• In phase one, the adversary eavesdrops a session between the tag and the reader but

stops D message from reaching the tag. The reader will update its keys whereas the

tag will not update its keys since D message is blocked. At the end of the session,

adversary obtains the tuple A ∥ B ∥ D.

• In phase two adversary queries the tag until it reaches maximum number of trials to

force the tag to reset the status bit to zero without changing any secret value. After

the tag resets its state, the adversary initiates a session between the tag and tries to

change the random number r as r̂ = r ⊕ I where I = [100 . . . 000]. Then adversary

modifies A and B messages as Â = A + I and B̂ = B ⊕ I. After these modifications,

the tag obtains

r1 = Â− (IDS ⊕K1) (2.130)

= A+ I − (IDS ⊕K1) (2.131)

= r + I (2.132)

r2 = B̂ ⊕ (IDS +K2) (2.133)

= B ⊕ I ⊕ (IDS +K2) (2.134)

= r ⊕ I (2.135)

Since r1 = r2 = r̂, the tag accepts A and B messages and sends the C message.

36

Adversary ignores this message and sends the old D message to the tag. Tag computes

D̂ = (IDS +K1 +K2)⊕ r̂ + (IDS +K3)⊕ r̂. Tag updates its keys since it is equal

to the D message as proven below:

The two messages can be written as:

D = (X ⊕ r) + (Y ⊕ r) (2.136)

D̂ = (X ⊕ r̂) + (Y ⊕ r̂) (2.137)

Two messages only differ in their MSB and Table 2.4 shows that they are equal in all cases.

After the session, tag updates its keys with r̂ whereas the server updates its values with r.

Therefore, tag and the reader will not be able to authenticate each other in the forthcoming

sessions.

2.8. LMAP++ Protocol

LMAP++ is proposed by Li in [32], and it is a modified version of SLMAP protocol.

LMAP++ uses four variables: a static identifier ID, a dynamic pseudonym PID, and two

keys K1 and K2. All parameters are 96-bit. PID shows the index of the tag specific data

in the database. The protocol steps are as follows:

• Tag identification: The reader sends a hello message to the tag and tag will answer

with its current index pseudonym. By using the PID, the legitimate reader will be

able to access the tag specific data.

• Mutual authentication: Upon receiving the PID, the reader generates a random num-

ber r. With this random number, reader generates A = PID ⊕ K1 + r and B =

(PID +K2)⊕ r messages and sends them to the tag. From A ∥ B, the tag computes

r1 and r2 values:

r1 = A− (PID ⊕K1) (2.138)

r2 = B ⊕ (PID +K2) (2.139)

If r1 = r2, tag prepares an answer message C = (PID+ ID⊕ r)⊕ (K1+K2+ r) and

37

Database Reader Tag

hello

PID

PID
- Find PID

- Generate r

- Calculate A||B A||B

A||B
- Extract r1 from A

- Extract r2 from B

- if(r1 = r2)

Generate C message

Update keys and PID

otherwise

Generate random C message

C
C

- Verify C message

- Update keys and PID

A = PID K1 + r

B = PID + K2 r

C = (PID + ID r) (K1 + K2 + r)

- PID

Figure 2.9. LMAP++ protocol flow.

sends it to the reader. If r1 ̸= r2, a random C message is created.

• Index-pseudonym and key update: After sending the C message, tag updates its vari-

ables. When C message is received by the reader, it computes another local C message.

If it is equal with the one received from the tag, the reader updates PID, K1, and

K2:

PIDnew = (PID +K1)⊕ r + (ID +K2)⊕ r (2.140)

K1new = K1⊕ r + (PIDnew +K2 + ID) (2.141)

K2new = K2⊕ r + (PIDnew +K1 + ID) (2.142)

In [33], authors presented a way to desynchronize the tag and the server. To mount

the attack, authors assumes that the LSBs of PID, K1, K2 and ID are zero. Based on this

assumption, the adversary eavesdrops a legitimate session and modifies A and B messages

as A′ = A ⊕ I and B′ = B ⊕ I where I = [000 . . . 0001]. Based on the fact that, modular

addition for LSBs can be replaced by XOR, the tag authenticates the reader but calculates

a wrong random number r′ = r ⊕ I.

38

After authenticating the reader, tag generates C message with r′:

C = (PID + ID ⊕ r′)⊕ (K1 +K2 + r′) (2.143)

Since LSBs of PID, K1, K2 and ID are zero, replacing r by r′ will have no effect on the

computation of C message, and the reader will authenticate the tag. At the end of the

protocol, the tag will update its variables with r′, whereas the reader will update its keys

with r. Therefore, the synchronization between the reader and the tag exists no more.

The success probability depends on the assumption that LSBs of PID, K1, K2 and

ID are zero, and it has a success probability of 0.0625.

Traceability attack against LMAP++ also uses the fact that modular addition for LSBs

can be replaced by XOR operation. For LSBs the message equations can be rewritten as:

ALSB = PIDLSB ⊕K1LSB ⊕ rLSB (2.144)

BLSB = PIDLSB ⊕K2LSB ⊕ rLSB (2.145)

CLSB = PIDLSB ⊕ IDLSB ⊕ rLSB ⊕K1LSB ⊕K2LSB ⊕ rLSB (2.146)

Using these equations the adversary can detect the LSB of its ID by calculating:

IDLSB = ALSB ⊕BLSB ⊕ CLSB ⊕ PIDLSB ⊕ PIDLSB ⊕ PIDLSB (2.147)

Keeping this equation in mind, if an adversary takes two tags with ID0
LSB = 1 and ID1

LSB =

1, he can distinguish these tags with a probability of one.

2.9. David-Prasad Protocol

In MobiSec’09, David and Prasad proposed a new ultralightweight mutual authenti-

cation protocol [34] for low-cost RFID tags. This protocol uses five parameters: an old

pseudonym PID, a potential pseudonym PID2, two secret keys K1, K2 and a static identifier

ID with all 96-bit length. The protocol flow can be summarized as:

39

Database Reader Tag

Request

PID2

PID2||Certificateif(Certificate = valid)

Send K1 and K2

else

Notify reader
K1||K2

A||B||D
- Extract n1 and n2

- Calculate local D message

- if(D = D’)

Calculate E and F message

Update tag values

otherwise

Abort protocol

E||FPID2||PID||Certificate

if(Certificate = valid)

Update tag values

A = (PID2 ˄ K1 ˄ K2) n1

B = (PID2 ˄ K2 ˄ K1) n2

D = (K1 ˄ n2) (K2 ˄ n1)

E = (K1 n1 ID) (K2˄n2)

F = (K1˄n1) (K2˄n2)

- PID2, or PID if necessary

Figure 2.10. David-Prasad protocol flow.

• The reader sends a Crequest message to the server. If server authenticates the reader,

the server sends certificate C that is valid for one day.

• If the reader has a valid certificate, the reader sends a request message to the tag, and

tag replies with its pseudonym PID2.

• The reader sends the tuple PID2 ∥ C to the server to get the tag specific data. If the

certificate is valid and PID2 matches the one in the database, the server sends secret

keys K1 and K2 to the reader. If PID2 is not found, server informs the reader and the

reader sends another request to get the old pseudonym PID of the tag.

• After getting the tag specific data, reader generates two random numbers n1, n2 and

computes:

A = (PID2 ∧K1 ∧K2)⊕ n1 (2.148)

B = (PID2 ∧K2 ∧K1)⊕ n2 (2.149)

D = (K1 ∧ n2)⊕ (K2 ∧ n1) (2.150)

where X represents the bitwise NOT of X. Later, the reader sends these messages to

the tag.

• From A and B messages, the tag gets the random numbers n1 and n2. Then, it

40

computes a local version of D message to check if the reader is authentic. If the reader

is not authentic, protocol is aborted. After authenticating the reader, tag computes:

E = (K1⊕ n1⊕ ID)⊕ (K2 ∧ n2) (2.151)

F = (K1 ∧ n1)⊕ (K2 ∧ n2) (2.152)

Finally, the tag updates its values:

PID = PID2 (2.153)

PID2 = PID2 ⊕ n1⊕ n2 (2.154)

• When the reader gets E and F messages, the reader computes a local version of F

message and checks if it is equal to the received one. If they are equal, the reader can

obtain static identifier of the tag as:

ID = E ⊕ (K2 ∧ n2)⊕K1⊕ n1 (2.155)

Then, the reader updates the tag specific data and sends the updated pair {PID, PID2}

and its certificate C to the server. If the certificate is valid, server updates the tag

specific data.

It is later analyzed that this protocol suffers from traceability and full-disclosure attacks

[35]. For traceability attack adversary eavesdrops a session between a legitimate reader and

a tag. During the session, adversary captures and stores PID2 and A, B, C, D, E, F . By

computing XOR between E and F, adversary obtains:

E ⊕ F = (K1⊕ n1)⊕ (K1 ∧ n1)⊕ ID (2.156)

Table 2.5 shows that for a probability of 0.75, XOR operation is the complement of AND

operation for any bit position, so XOR of K1⊕ n1 and K1 ∧ n1 is equal to one. This gives

41

Table 2.5. Truth table of XOR and AND operation.

K1 n1 K1⊕ n1 K1 ∧ n1

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

adversary an opportunity to compute complement of ID for each bit:

E ⊕ F = ID (2.157)

Keeping this equation in mind, adversary takes two tags T0 and T1. Using the method above,

adversary computes the approximate value of these tags as IDT0 and IDT1. Then, he takes

a candidate tag T ∗, and computes approximate value of its ID∗. Finally, by looking at the

bits of candidate tag, the adversary decides the tag as T0 or T1 with a probability of 0.125

for each bit.

Full-disclosure attack can be made by two different methods. In the first method,

adversary eavesdrops two consecutive sessions to obtain two pseudonyms PID2(i−1), PID2(i)

and messages {Ai−1, Bi−1, Ci−1, Di−1, Ei−1, Fi−1}, {Ai, Bi, Ci, Di, Ei, Fi}. By using these

values, adversary computes:

Y = PID2(i− 1)⊕ PID2(i) = n1⊕ n2 (2.158)

Z = Ai ⊕Bi = (K1 ∧K2)⊕ n1⊕ n2 (2.159)

Thus, XOR between Y and Z gives:

Y ⊕ Z = K1 ∧K2 (2.160)

So, where Y ⊕Z is one, this implies that both K1 and K2 are equal to one for that position.

Eventually, after two consecutive sessions on average k/4 bits of both keys will be revealed.

42

The second method is named as Passive Tango Cryptanalysis by the authors. This

attack consists of two phases: selection of good approximations and combination of these

good approximations.

• Diffusion properties of triangular functions are known as very poor. Thus, adversary

uses {A, B, C, D, E, F} messages to create good approximations (GA) for secret

values of the tag. The adversary selects a set of approximations for which hamming

distance between an approximation and the secret value deviates from the expected

value, 48. After that, adversary lists the approximations in Table 2.6 as the best for

each secret value.

Table 2.6. Best approximations for secret values.

Target Good Approximation

K1 GA−K1 = {D,F, (A⊕D), (A⊕ F), (B ⊕D),

(B ⊕ F), (A⊕B ⊕D), (A⊕B ⊕ F)}

K2 GA−K2 = {D,F, (A⊕D), (A⊕ F), (B ⊕D),

(B ⊕ F), (A⊕B ⊕D), (A⊕B ⊕ F)}

ID GA− ID = {(E ⊕ F), (A⊕B ⊕ E), (A⊕D ⊕ E),

(A⊕ E ⊕ F), (B ⊕D ⊕ E), (D ⊕ E ⊕ F),

(A⊕B ⊕D ⊕ E), (A⊕D ⊕ E ⊕ F), (B ⊕D ⊕ E ⊕ F)

• In this phase, adversary tries to combine different approximations obtained in different

sessions to construct a global approximation which is highly correlated with the secret

value. This is done by eavesdropping authentication sessions between legitimate par-

ties. For each session, adversary computes and stores the approximations as rows of

three (NSNA)xL matrices, namely GK1, GK2 and GID, (one for each K1, K2 and ID)

where NA is the number of approximations for each secret value, NS is the number of

eavesdropped sessions and L is the bitwise length of the secret value. The matrice is

built as shown in Figure 2.11 where GAj
i represents the i-th good approximation in the

j-th session. Then, adversary builds three 1xL matrices in which each column shows

the total number of ones in each column of the corresponding G matrice. These ma-

trices, which we can call as approximation matrices, represent the approximate value

of the corresponding secret value. Finally, adversary replaces each column of the ap-

43

GA
1

1

GA
1

2

GA
1

NA

.

.

.

GA
2

1

GA
2

2

GA
2

NA

.

.

.

.

.

.

GA
NS

1

GA
NS

2

GA
NS

NA

.

.

.

Figure 2.11. Approximation matrice structure.

proximation matrices with zero if the value in the column is below a given threshold

γ, or one in any other case. The value of the γ is calculated by:

γ = 0.5NANS (2.161)

These final matrices show the value of the corresponding secret value. As the number of

eavesdropped sessions increase, more bits are revealed accurately. It is shown that after five

or 10 sessions, more than 90 bits of each secret value is revealed with this attack.

44

3. A RECENT ULTRALIGHTWEIGHT PROTOCOL

A new type of attack for a recent ultralightweight protocol is defined in this chapter.

3.1. Spacing Based Authentication Protocol (SBAP)

SBAP is an ultra lightweight protocol that uses an XOR operation and a spacing

algorithm to generate a new secret ID for each session [12]. SBAP proposes two authenti-

cation methods for the same protocol where the second method is an enhanced version of

the first one that reduces server time complexity by saving the key that will be used in the

forthcoming sessions.

Assume that each tag keeps its own secret S and a tag ID, and the reader stores a list

of secret IDs. For tag authentication, SBAP uses a partial ID which is denoted by P and

generated as follows:

P = Podd ⊕ Peven (3.1)

where Podd := f(S, u, odd) and Peven := f(S, u, even) for an ultralightweight extracting

function f(S, u, b) having three inputs: bit string S, random spacing factor u and a Boolean

variable b.

Generation of the f function is quite simple: let L be the length of the bit stream

S, u be a positive integer dividing L. Thus, we may write S = s0s1 . . . sL−1, and partition

S to get smaller bit streams qi = (siusiu+1 . . . siu+u−1) for i = 0, 1, . . . , L/u − 1. Once S is

partitioned into qi values, Podd := f(S, u, 1) and Peven := f(S, u, 0) are simply calculated by

concatenating the odd and even indexed qi digits respectively.

For instance, in Figure 3.1, we illustrate how the spacing process works for a secret S

having L = 16 bits long, and the spacing factor u = 2.

45

s0 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15

{ { { { { { { {q1 q2 q3 q4 q5 q6 q7 q8

Figure 3.1. An example for the spacing algorithm.

Note that after the partitioning, one computes Podd and Peven values as follows:

Podd = q1 ∥ q3 ∥ q5 ∥ q7 (3.2)

Peven = q0 ∥ q2 ∥ q4 ∥ q6 (3.3)

Database Reader Tag

Query || u

a = u (mod R)

Podd = f (S, u, 1)

Peven = f (S, u, 0)

P1 = Podd Peven
P1u, P1

Compute P1' with

a = u (mod R)

Verify P1 = P1'

Select random v

P2 = Podd Peven
v, P2 v, P2

OK / Reject
OK / Reject

S

Compute P2'

Verify P2= P2'

Figure 3.2. Protocol flow for regular method in SBAP.

Our next step is to describe SBAP with its regular and enhanced methods. The en-

hanced SBAP is proposed to reduce the searching/authentication time in the server if there

is a fair amount of tags in the system. The main difference between two protocols is that

in the enhanced method, both tag and server generate and save a Pn value for the next sec-

tion’s use. In other words, the tag always responses with Pn and the server initially performs

a quick search for Pn in its saved Pn database. If a match exist, the server authenticates

the tag otherwise it goes through the regular process. Such an approach surely reduces the

server load as enhanced SBAP performs less spacing operations.

46

Database Reader Tag

Query || u

P1u, P1

v, P2 v, P2

OK / Reject

OK

S

Update

Pn1 = f (S, a+v, 1)

Pn2 = f (S, a+v, 0)

Pn = Pn1 Pn2
S′ = Pn1 || Pn2

If (Pn = 0) then

a = u (mod R)

Podd = f (S, u, 1)

Peven = f (S, u, 0)

P1 = Podd Peven
else

P1 = Pn

Find Pn in DB

If (not found) then

compute P1′ with

a = u (mod R)

verify P1 = P1′

select random v

P2 = Podd Peven Compute P2′

Verify P2= P2′

Update

Pn1 = f (S, a+v, 1)

Pn2 = f (S, a+v, 0)

Pn = Pn1 Pn2
S′ = Pn1 || Pn2

Figure 3.3. Protocol flow for enhanced method in SBAP.

With these remarks in mind, the details of both regular and enhanced SBAP are de-

scribed in the following paragraphs and further illustrated in Figure 3.2 and 3.3 respectively.

(i) Step one: Partial ID generation

• The reader generates a random nonce, and sends a request along with this nonce

to the tag.

• The first method reduces the range of this random nonce and generates a new

partial ID using the calculations above, and responses with it. But the second

method only computes a new partial ID if it does not have any Pn computed in the

previous successful session. After a successful session, the second method always

responses with the last computed Pn value.

(ii) Step two: Authentication

• Upon receiving partial ID P1, the reader forwards it to the database.

• The server looks for a match for P1 in the Pn database, if no such P1 exists, it

47

calculates P1 with the random nonce u and secret key S

• After verification database generates a random nonce v, and calculates a message

P2 with this nonce using the same spacing algorithm. The reader then forwards

(P2, v) pair to the tag.

(iii) Step three: Verification & Key Update

• Upon receiving verification message P2, the tag verifies its correctness.

• After checking P2 value, in both methods, the tag simply sends OK/Reject re-

sponse to the reader, and the reader forwards it to the database.

• However, the enhanced SBAP performs an additional key update session. After

verification, it updates the secret key by using the following two values:

Pn1 = f(S, a+ v, odd) (3.4)

Pn2 = f(S, a+ v, even) (3.5)

The Pn value for the coming session is calculated as Pn = Pn1 ⊕Pn2 and the secret

key S is updated as S = Pn1 ∥ Pn2 .

• On the other hand, once the database receives the last OK message it performs

the same update to calculate the fresh Pn and S values.

3.2. Attacks

Although SBAP claims to provide both security and privacy in its design objectives,

we outline very strong attacks that SBAP failed to fulfill its claims. We manage to perform a

total breakdown by compromizing the secret key information. Other weaknesses, we report

for SBAP includes the strong attacks such as traceability, replay and desynchronization

attacks.

3.2.1. Full Disclosure

We claim that SBAP does not hold the key secrecy. In order to prove this this claim,

we exhibit an attack for the enhanced method that captures the secret key of the tag without

48

an exhaustive search.

Assume that Pn is not assigned (means it is equivalent to zero). In this phase any

request to the tag would be replied back with a fresh P1. Notice that the adversary could

get the length information of the secret key S by simply sending the nonce Nr = 1 to the

tag since the tag would response such a message with P1 having a length equals to the half

of the secret key length.

Remark 3.1. The authors in [12] did not explicitly discuss the relation of the secret length L

with the spacing factor u. However, according to our analysis the protocol would be extremely

weak if

• spacing factor u does not divide L

• u divides L but L/u is odd

Notice that, in both cases the secret S needs a padding in order to generate P1 value. Since

XOR of the padding and the secret key bits are open the adversary would extract the secret

key bits from P1.

Next proposition shows that even if the assumptions in Remark 3.1 are satisfied, the

key space for S can be shrunk.

Proposition 3.2. Let S be a secret having a length L; the spacing factor u = 2 divide L

and L/2 be even, then the bit search space for S can be shrunk to L/4.

Proof. Since L/u is even for u = 1 and u = 2, the adversary may send the nonces one and

two without completing a session successfully. If P1 and P ′
1 are the respective responses of

the tag and S = s0s1 . . . sL−1 represents the secret bit stream, P1 and P ′
1 can be given as

follows:

P1 = (s0 ⊕ s1)(s2 ⊕ s3) . . . (sL−2 ⊕ sL−1) (3.6)

P ′
1 = (s0 ⊕ s2)(s1 ⊕ s2) . . . (sL−3 ⊕ sL−1) (3.7)

49

From these values, the following linear equations could be written for i = 0, 1, . . . , L/4− 1:

P1[2i] = Podd[2i]⊕ Peven[2i] = s4i ⊕ s4i+1 (3.8)

P ′
1[2i] = P ′

odd[2i]⊕ P ′
even[2i] = s4i ⊕ s4i+2 (3.9)

P1[2i+ 1] = Podd[2i+ 1]⊕ Peven[2i+ 1] = s4i+1 ⊕ s4i+3 (3.10)

but these leads to

s4i+1 = P1[2i]⊕ s4i (3.11)

s4i+2 = P ′
1[2i]⊕ s4i (3.12)

s4i+3 = P1[2i+ 1]⊕ s4i+1 = P1[2i+ 1]⊕ P1[2i]⊕ s4i (3.13)

which means that the bit search space for S can be shrunk to L/4 since s4i+1, s4i+2 and s4i+3

can be written as a sum of s4i for i = 0, 1, . . . , L/4− 1.

In fact the choice of L shrinks the bit search space of S even further, in particular, if

L is a power of two, S can be compromised with a single bit search. We give this result as

a corollary for the following theorem.

Theorem 3.3. Let L = k2m for some positive integer m and odd k, then the bit search space

for S can be shrunk to L/2m.

Proof. Since L/u is even for 2i for i = 0, 1, . . . ,m− 1, assume that the adversary sends the

nonces 1, 21, 22, . . . , 2m−1 without completing a session successfully, and gets the following

respective responses from the tag:

P 0
1 = (s0 ⊕ s1)(s2 ⊕ s3) . . . (sL−2 ⊕ sL−1) (3.14)

P 1
1 = (s0 ⊕ s2)(s1 ⊕ s3) . . . (sL−3 ⊕ sL−1) (3.15)

P 2
1 = (s0 ⊕ s4)(s1 ⊕ s5) . . . (sL−5 ⊕ sL−1) (3.16)

...
... (3.17)

Pm
1 = (s0 ⊕ s2m)(s2 ⊕ s2m+1) . . . (sL−2m−1−1 ⊕ sL−1) (3.18)

50

Notice that for i = 0, 1, 2, . . . , 2m − 1, any si could be written as a combination of the bits

of P 0
1 , P

1
1 , . . . , P

m
1 and s0. Since L = k2m, a similar analysis could be done for each adjacent

disjoint subset of S having 2m bits. In other words, any si in S could be written as a

combination of the bits of P 0
1 , P

1
1 , . . . , P

m
1 and s0, s2m , s2·2m , . . . , s(k−1)2m . Since there are k

such base elements and P i
1 for i = 0, 1, 2, . . . ,m are known, it suffices to search the bit space

k = L/2m instead of searching L.

Corollary 3.4. Let L = 2m for some positive integers m then the bit search space for S in

SBAP shrinks to a single bit search.

Proof. The length of S is L = 2m implies k = 1, hence, the bit search space is single bit

search by Theorem 3.3. In other words, S can be written as a linear combination of s0.

We give the following toy example in order to present the power of the described attack.

Example 3.5. Assume that secret ID S is a 8 bit key where S = s0s1 . . . s7. Let the adversary

send three nonces one, two and four without completing a session succesfully, then the tag

responses with P 0
1 , P

1
1 and P 2

1 messages calculated as follows:

P 0
1 = (s0 ⊕ s1)(s2 ⊕ s3)(s4 ⊕ s5)(s6 ⊕ s7) (3.19)

P 1
1 = (s0 ⊕ s2)(s1 ⊕ s3)(s4 ⊕ s6)(s5 ⊕ s7) (3.20)

P 2
1 = (s0 ⊕ s4)(s1 ⊕ s5)(s2 ⊕ s6)(s3 ⊕ s7) (3.21)

Lets say that P 0
1 = 1010, P 1

1 = 0110 and P 2
1 = 0011 are recorded responses by the adversary.

Using these values, the following linear equations can be written using the bits of the secret

key S.

s0 = s0 (3.22)

s1 = P 0
1 [0]⊕ s0 = s0 (3.23)

s2 = P 1
1 [0]⊕ s0 = s0 (3.24)

s3 = P 0
1 [1]⊕ s2 = P 0

1 [1]⊕ P 1
1 [0]⊕ s0 = s̄0 (3.25)

51

s4 = P 2
1 [0]⊕ s0 = s̄0 (3.26)

s5 = P 2
1 [1]⊕ s1 = P 2

1 [1]⊕ P 0
1 [0]⊕ s0 = s̄0 (3.27)

s6 = P 1
1 [2]⊕ s4 = P 1

1 [2]⊕ P 2
1 [0]⊕ s0 = s̄0 (3.28)

s7 = P 0
1 [3]⊕ s6 = P 0

1 [3]⊕ P 1
1 [2]⊕ P 2

1 [0]⊕ s0 = s0 (3.29)

Note that using a spacing parameter which is close to the range R is subject to even

simpler key recovery attack. In fact, this is the case where a padding is necessary to either

Podd or Peven to generate a legitimate P1. Although the authors did not mention the padding

scheme explicitly, any padding which does not involve random bits would face SBAP to

simpler attacks.

3.2.2. Location Privacy and Untraceability

Observe that the first method of SBAP protocol does not use any update mechanisms.

If the adversary always queries the tag with the same nonce, the output will always be

the same therefore making the tag traceable. This method is also applicable to the second

method of SBAP when Pn is equal to zero.

When Pn is not equal to zero, the second method sends the same Pn value until next

successful session. If the adversary queries the tag without completing a session, the tag will

always respond with the same value which makes the tag an easy target for tracking.

3.2.3. Desynchronization

Desynchronization attack is only applicable to the second method of SBAP protocol

since the first method does not update the keys. At the end of the second method if the tag

updates its key, it sends OK response to the reader. Upon receiving this reply, the database

also updates its key. If the adversary intercepts this message from reaching to the reader,

the tag will update its key whereas the key in the database will not be updated. This will

render the tag useless for further interactions.

52

Database Reader Tag

Query || u

P1u, P1

v, P2 v, P2

OK

If (Pn = 0) then

a = u (mod R)

Podd = f (S, u, 1)

Peven = f (S, u, 0)

P1 = Podd Peven
else

P1 = Pn

Find Pn in DB

If (not found) then

compute P1′ with

a = u (mod R)

verify P1 = P1′

select random v

P2 = Podd Peven
Compute P2′

Verify P2= P2′

Update

Pn1 = f (S, a+v, 1)

Pn2 = f (S, a+v, 0)

Pn = Pn1 Pn2
S′ = Pn1 || Pn2

Adversary prevents the OK

message from reaching the

reader. Tag updates itself

whereas the database is not

updated.

Figure 3.4. Desynchronization attack scenario for SBAP.

3.2.4. Replay Attack

In the enhanced method of SBAP protocol when Pn is not equal to zero, the tag does

not use the nonce generated by the server. Adversary can obtain access, by simply forwarding

one of the tag’s Pn message to the reader, and send OK when he receives P2 message from

the reader.

This attack will also make the legitimate tag to be desynchronized with the server. It

is obvious that the protocol lacks the mutual authentication property.

53

4. RESULTS

In the RFID protocol analysis, following parameters should be considered:

• Number of exchanged messages

• Number of protocol steps

• Number of gates

• Storage size (EEPROM or FLASH memory)

• Functions used in the protocol

According to the functions used in the protocol, RFID protocols can be classified into

four categories [19]:

• Full-fledged : These are the strongest protocols [36,37] since they can use cryptographic

one-way functions and even public key algorithms in their implementation. But, as a

result they require larger memory size than other types of protocols.

• Simple: Random number generators and one-way hash functions are available for this

kind of protocols [38–40].

• Lightweight : They include random number generators like simple protocols but instead

of one-way hash functions they use simpler functions like CRC [41–44].

• Ultralightweight : This kind of protocols are implemented on RFID tags with small

computational size and therefore they can only support bitwise operations to encrypt

the exchanged messages.

In this context, protocols that are analyzed in this thesis are ultralightweight protocols,

and therefore they have limited number of gates less than 1K. Because of limited number

gates, extensive cryptographic functions can not be implemented on ultralightweight RFID

tags. As seen on Table 4.1, all of the existing cryptographic functions are over 1K.

Parameters of the analyzed protocols are given in Table 4.2 where L1 = 96 bits, L2 =

128 bits and L3 is not defined in the protocol description.

54

Table 4.1. Number of gates for cryptographic functions.

Function Number of gates

Amphion [45] 25K

Fast SHA-256 Helion [46] 23K

Fast SHA-1 Helion [46] 20K

MD5 Helion [46] 16K

Feldhofer [6] 3595

JungFL [47] 3089

Universal Hash Yksel [48] 1.7 K

Table 4.2. Comparison of protocol parameters.

Protocol Number of Number of Used Storage

exc. messages auth. steps functions size

LMAP 4 4 ⊕,+,∨ 6L1 bits

M2AP 5 4 ⊕,+,∨,∧ 6L1 bits

EMAP 5 4 ⊕,∨,∧ 6L1 bits

SASI 4 4 ⊕,∨,∧,+, Rot 7L1 bits

Gossamer 4 4 ⊕,+, Rot,Mixbits 7L1 bits

Lee 4 4 ⊕, Rot,∨,∧ 5L2 bits

SLMAP∗ 4 5 ⊕,+,− (5L1+1) bits

LMAP++ 3 4 ⊕,+ (4L1+1) bits

David-Prasad 5 4 ⊕, NOT,∧ 5L1 bits

SBAP 2 4 ⊕, Spacing 2L3 bits

SBAP is the simplest protocol among other protocols in terms of used functions and

storage size. All of the proposed protocols use simple operations like XOR to hide sensitive

information but none of them are fully secure, and worse all protocols except LMAP++ and

SLMAP∗ are proved to be insecure in terms of key-secrecy which makes them vulnerable to

other kind of attacks.

55

Ultralightweight functions used in the protocols suffer mainly from the following weak-

nesses:

• XOR: All of the protocols use XOR operation in their implementation, but it lacks the

avalanche effect to hide all secret data and gives an advantage to define bits by simple

operations. The most obvious secure way to hide data with XOR operation is to use

a random value. For example, if A is the data to hide then it must be XOR-ed with a

random value B that is unknown to the adversary.

A = Data B = random number

M = A B
Output is totally random to

the adversary

Figure 4.1. Most secure way to use XOR operation.

But if the same data A or random number B is used within other messages, the

adversary can try to calculate approximate functions as in the passive tango analysis of

David-Prasad protocol or use any weakness in the other messages to reveal information.

That is why, same data must be handled carefully in other messages.

Although this is the most secure way to hide data, many protocols use the random

values in the update sessions to update their hidden values. For example, if a protocol

sends:

M = (A⊕B) (4.1)

to tag or reader. Adversary captures this message and modifies any bit of the message

as:

M ′ = M ⊕ [I]j = A⊕B ⊕ [I]j (0 ≤ j ≤ 95) (4.2)

When the legitimate party receives the modified message, it extracts a wrong random

number B ⊕ [I]j. If this wrong random number is used in update session, legitimate

party may be useless for forthcoming sessions. That’s why consistency of the random

number must be assured with other messages if the random number is used in the

56

update session or in the computation of any other crucial step.

• OR & AND operation: The truth table of simple bitwise operations are given in Table

4.3.

Table 4.3. Truth table of AND, XOR and OR operation.

A B A ∧B A⊕B A ∨B

0 0 0 0 0

0 1 0 1 1

1 0 0 1 1

1 1 1 0 1

The following statements can be derived from Table 4.3:

(i) The output of AND operation is equal to the complement of XOR operation for

the 0.75 of the time.

(ii) The output of OR operation is equal to XOR operation for the 0.75 of the time.

(iii) When A and B are equal to zero, the output of all three operations are zero.

(iv) The output of AND operation is equal to the OR operation for the 0.5 of the time.

(v) The output of AND operation is equal to the complement of OR operation for

the 0.5 of the time.

These relations give adversary an opportunity to replace operators with a probability

and if the probability is not negligible then the security of the protocol can be breached.

For example, as depicted in Figure 4.2, if the adversary eavesdrops two messages in a

session as:

M1 = A ∧B (4.3)

M2 = (A⊕B)⊕ C (4.4)

where A and B represents any data and C is the data to hide. Adversary writes M1

as the complement of XOR operation, M1 = A⊕B with a probability of 0.75. Then

adversary computes:

M1 ⊕M2 = (A⊕B)⊕ (A⊕B)⊕ C (4.5)

57

A = Data 1 B = Data 2

M = (A B) (A B) C

C = Hidden Data

M1 = (A ˄ B)

M2 = (A B) C

Adversary writes M1 = (A ˄ B)

as M1 = (A B)

For any bit position where M is equal to one,

adversary writes:

M = C

Figure 4.2. Attack by replacing AND operation with XOR operation.

If the j-th bit of M1 ⊕M2 is equal to one, j-th bit of hidden data C is the complement

of M1 ⊕M2:

M1 ⊕M2 = C (4.6)

This method is used in the David-Prasad protocol to breach the security of the sys-

tem. Therefore, precautions must be taken to avoid for any other bitwise operation

replacement attacks.

• Addition: Addition operation is actually XOR operation with carry bits. Assume that;

A = 10100110 (4.7)

B = 01110101 (4.8)

Then

A⊕B = 11010011 (4.9)

A+B = 100011011 (4.10)

One must notice the overflow bit in the addition operation and this bit is omitted. In

58

the addition operation, carry bit array is captured as:

Carry = 11100100 (4.11)

Later, adversary pads the carry bit array with a zero since the carry bit array is

calculated for the second bit where first bit represents the LSB. Finally, the adversary

computes A⊕B and the carry bit array as:

Carry ⊕ (A⊕B) = 11100100⊕ 11010011 = 100011011 (4.12)

which is equal to A+B. This example is depicted in Figure 4.3.

B = 01110101

A = 10100110

11010011

B = 01110101

A = 10100110

100011011

+

A B = 11010011

Carry = 11100100

Carry = 111001000

100011011

No carry bit in the LSB

Figure 4.3. Relation between addition and XOR operation.

When XOR operation is used with addition, for the LSB, addition can be replaced

with XOR operation. This case can be used as an analysis tool by the adversary to

perform various attacks. Traceability attack of SASI and LMAP++ protocol uses this

weakness.

Furthermore, after revealing the LSB, adversary can handle the carry bit to reveal

other bits as it is done in the M2AP protocol. Therefore, addition operation must be

handled carefully within the protocols.

• Rotation functions : Rotation function is firstly used in the SASI protocol. When

rotation functions are used in the protocols, it is much harder to do the cryptanalysis.

Nevertheless, when the output of rotation functions are predictable (same as input,

equal to one or zero, ...), the algorithms are simplified to bitwise operations which is

much easier to analyze. For example, if a protocol hides the sensitive information by

59

calculating the message:

M = Rot(A,B)⊕ C +D (4.13)

where Rot(x, y) is a rotation function. If there is a case that Rot(A,B) = 0, the

message can be simplified as:

M = C +D (4.14)

which is much more easier to analyze. The attacks against the key secrecy property

of SASI and Gossamer protocols use this weakness. Note that MIXBITS function of

the Gossamer protocol is also a rotation function and it suffers from the case that its

output is equal to zero if n1, n2 mod 96 = 0 condition is satisfied.

• Spacing function: Spacing function is brand new in the ultralightweight protocol de-

signs. It is actually some kind of remapping function that changes the position of bits

in data. But it suffers from the case that if the spacing parameter is too big, then the

data must be padded with a row of ones or zeros. This weakness reveals the bits of

hidden data and the key secrecy fails to hold.

In the analyses of previous literature, the most outstanding attack is the Passive Tango

defined for the cryptanalysis of David-Prasad protocol. In this attack, the adversary tries to

create approximate functions to reveal the secret data and by eavesdropping the consecutive

sessions he/she computes the secret information.

Although it is not mentioned in the analyses, all of the protocols are k − th traceable

that until next succesfull authentication they always reply with the same PID or IDS.

60

5. CONCLUSION

In this thesis work, the security analyses of previous ultralightweight RFID protocols

are summarized and a new ultralightweight RFID protocol is examined in terms of security

and privacy.

The severity of attacks for previous protocols show that these protocols are insecure.

Two main reasons for these weaknesses are:

• Simple bitwise operations are not sufficient to provide secure RFID authentication

against powerfull adversarial models since the resulting messages are strongly biased.

Designers must handle these operators carefully within the public messages.

• Rotation functions are necessary for RFID protocol designs. Nevertheless, it is also

important to select right type of rotation function and rotation functions, alone, are

not sufficient to provide security in ultralightweight protocols.

A new type of attack is defined for SBAP protocol to reveal secret ID of the tag. Full-

disclosure attack for SBAP protocol is based on the property of XOR operation. Although

the protocol uses a spacing algorithm, it still gives adversary an opportunity to define the

bits of secret key in terms of other bits. As the adversary eavesdrops consecutive sessions,

the number of unknown bits decreases dramatically. Also if the spacing parameter is chosen

close to the range, because of the padding the secret key is revealed much more easier.

Location privacy is not achieved since the tag always responses with the same reply to the

same nonce. Also replay attack is applicable to the enhanced SBAP, since the tag does not

use the nonce generated by the reader.

Analyses show that there is still a need for a secure ultralightweight protocol. Some

candidate protocols are proposed recently by various researchers [49, 50]. But it is later

analyzed that [49] also suffers from full-disclosure and desynchronization attacks in [51]. To

the best of our knowledge [50] has not received any attack yet.

61

Nevertheless, the security of candidate ultralightweight protocols must be proved with

elaborated crypt-analysis to avoid vulnerabilities that are defined in this work and other

literature.

62

REFERENCES

1. Sweeney, P. J., RFID for Dummies , Wiley Publishing Inc., New York, NY, USA, 2005.

2. Zhang, Y. and P. Kitsos, Security in RFID and Sensor Networks , Auerbach Publications,

New York, NY, USA, 2009.

3. Juels, A., “RFID Security and Privacy: A Research Survey”, IEEE Journal on Selected

Areas in Communications , Vol. 24, No. 2, pp. 381–394, February 2006.

4. Sarma, S., S. Weis and D. Engels, “Radio-Frequency Identification: Security Risks and

Challenges”, Cryptobytes, RSA Laboratories , Vol. 6, No. 1, pp. 2–9, Spring 2003.

5. Avoine, G., Cryptography in Radio Frequency Identification and Fair Exchange Proto-

cols , Ph.D. dissertation, Ecole Polytechnique Federale de Lausanne, December 2005.

6. Feldhofer, M., S. Dominikus and J. Wolkerstorfer, “Strong Authentication for RFID

Systems using the AES Algorithm”, M. Joye and J.-J. Quisquater (Editors), Workshop

on Cryptographic Hardware and Embedded Systems – CHES 2004 , Vol. 3156 of Lecture

Notes in Computer Science, pp. 357–370, IACR, Springer, Boston, Massachusetts, USA,

August 2004.

7. Song, B. and C. J. Mitchell, “RFID Authentication Protocol for Low-cost Tags”, V. D.

Gligor, J.-P. Hubaux and R. Poovendran (Editors), Proceedings of the 1st ACM Con-

ference on Wireless Network Security – WiSec’08 , pp. 140–147, ACM, ACM Press,

Alexandria, Virginia, USA, March–April 2008.

8. Dimitriou, T., “A Lightweight RFID Protocol to protect against Traceability and

Cloning attacks”, Conference on Security and Privacy for Emerging Areas in Com-

munication Networks – SecureComm 2005 , pp. 59–66, IEEE, IEEE Computer Society,

Athens, Greece, September 2005.

9. Weis, S., S. Sarma, R. Rivest and D. Engels, “Security and Privacy Aspects of Low-

Cost Radio Frequency Identification Systems”, D. Hutter, G. Müller, W. Stephan and

63

M. Ullmann (Editors), International Conference on Security in Pervasive Computing

– SPC 2003 , Vol. 2802 of Lecture Notes in Computer Science, pp. 454–469, Springer,

Boppard, Germany, March 2003.

10. Juels, A., “Minimalist Cryptography for Low-Cost RFID Tags”, C. Blundo and

S. Cimato (Editors), International Conference on Security in Communication Networks

– SCN 2004 , Vol. 3352 of Lecture Notes in Computer Science, pp. 149–164, Springer,

Amalfi, Italy, September 2004.

11. Song, B. and C. J. Mitchell, “Scalable RFID Authentication Protocol”, 3rd International

Conference on Network and System Security – NSS 2009 , pp. 216–224, IEEE, IEEE

Computer Society, Gold Coast, Australia, October 2009.

12. Jin, Z., Z. Cheng and K. Yoo, “Spacing Based Authentication Protocol for Low-Cost

RFID”, Future Generation Communication and Networking”,, Vol. 1, pp. 160–163,

Spring 2008.

13. Peris-Lopez, P., J. C. Hernandez-Castro, J. M. Estevez-Tapiador and A. Ribagorda,

“LMAP: A Real Lightweight Mutual Authentication Protocol for Low-cost RFID tags”,

Workshop on RFID Security – RFIDSec’06 , Ecrypt, Graz, Austria, July 2006.

14. Li, T. and G. Wang, “Security Analysis of Two Ultra-Lightweight RFID Authentication

Protocols”, H. Venter, M. Eloff, L. Labuschagne, J. Eloff and R. Von Solms (Editors),

IFIP TC-11 22nd International Information Security Conference – SEC 2007 , Vol. 232

of IFIP , pp. 109–120, IFIP, Springer, Sandton, Gauteng, South Africa, May 2007.

15. Peris-Lopez, P., J. C. Hernandez-Castro, J. M. Estevez-Tapiador and A. Ribagorda,

“M2AP: A Minimalist Mutual-Authentication Protocol for Low-cost RFID Tags”, J. Ma,

H. Jin, L. T. Yang and J. J. P. Tsai (Editors), International Conference on Ubiquitous

Intelligence and Computing – UIC’06 , Vol. 4159 of Lecture Notes in Computer Science,

pp. 912–923, Springer, Wuhan and Three Gorges, China, September 2006.

16. Bárász, M., B. Boros, P. Ligeti, K. Lója and D. Nagy, “Passive Attack Against the

M2AP Mutual Authentication Protocol for RFID Tags”, First International EURASIP

64

Workshop on RFID Technology , Vienna, Austria, September 2007.

17. Peris-Lopez, P., J. C. Hernandez-Castro, J. M. Estevez-Tapiador and A. Ribagorda,

“EMAP: An Efficient Mutual Authentication Protocol for Low-Cost RFID Tags”, OTM

Federated Conferences and Workshop: IS Workshop – IS’06 , Vol. 4277 of Lecture Notes

in Computer Science, pp. 352–361, Springer, Montpellier, France, November 2006.

18. Li, T. and R. H. Deng, “Vulnerability Analysis of EMAP - An Efficient RFID Mutual

Authentication Protocol”, Second International Conference on Availability, Reliability

and Security – AReS 2007 , Vienna, Austria, April 2007.

19. Chien, H.-Y., “SASI: A New Ultralightweight RFID Authentication Protocol Providing

Strong Authentication and Strong Integrity”, IEEE Transactions on Dependable and

Secure Computing , Vol. 4, No. 4, pp. 337–340, December 2007.

20. Hernandez-Castro, J. C., J. M. Estevez-Tapiador, P. Peris-Lopez and J.-J. Quisquater,

“Cryptanalysis of the SASI Ultralightweight RFID Authentication Protocol with Mod-

ular Rotations”, International Workshop on Coding and Cryptography – WCC’09 , pp.

286–296, Ullensvang, Norway, May 2009.

21. Phan, R. C.-W., “Cryptanalysis of a New Ultralightweight RFID Authentication Proto-

col - SASI”, IEEE Transactions on Dependable and Secure Computing , Vol. 99, No. 1,

p. 5555, 2008.

22. Sun, H., W. Ting and K. Wang, “On the Security of Chien’s Ultralightweight RFID

Authentication Protocol”, IEEE Transactions Dependable and Secure Computing , Vol. 8,

No. 2, pp. 315–317, April 2011.

23. Peris-Lopez, P., J. C. Hernandez-Castro, J. M. Estevez-Tapiador and A. Ribagorda,

“Advances in Ultralightweight Cryptography for Low-cost RFID Tags: Gossamer Pro-

tocol”, K.-I. Chung, K. Sohn and M. Yung (Editors), Workshop on Information Security

Applications – WISA’08 , Vol. 5379 of Lecture Notes in Computer Science, pp. 56–68,

Springer, Jeju Island, Korea, September 2008.

24. Zeeshan Bilal, A. M. and F. Kausar, “Security Analysis of Ultra-lightweight Crypto-

65

graphic Protocol for Low-cost RFID Tags: Gossamer Protocol”, International Con-

ference on Network-Based Information Systems – NBIS’09 , pp. 260–267, IEEE, IEEE

Computer Society, Indianapolis, Indiana, USA, August 2009.

25. Ahmed, E., E. Shaban and M. Hashem, “Lightweight Mutual Authentication Protocol

for Low Cost RFID Tags”, International Journal of Network Security and Its Applica-

tions , Vol. 2, No. 2, pp. 27–37, April 2010.

26. Lee, Y.-C., Y.-C. Hsieh, P.-S. You and T.-C. Chen, “A New Ultralightweight RFID

Protocol with Mutual Authentication”, WASE International Conference on Information

Engineering – ICIE ’09 , pp. 58–61, IEEE, IEEE Computer Society, Taiyuan, Shanxi,

August 2009.

27. Peris-Lopez, P., J. C. Hernandez-Castro, J. M. Estevez-Tapiador and J. C. A. van der

Lubbe, “Security Flaws in a Recent Ultralightweight RFID Protocol”, Workshop on

RFID Security – RFIDSec Asia’10 , Vol. 4 of Cryptology and Information Security , pp.

83–93, IOS Press, Singapore, Republic of Singapore, February 2010.

28. Li, T. and G. Wang, “SLMAP-A Secure Ultralightweight RFID Mutual Authentication

Protocol”, Proceedings of Chinacrypt 2007 , pp. 1–5, Cheng Du, China, October 2007.

29. Hernandez-Castro, J. C., J. E. Tapiador, P. Peris-Lopez, J. A. Clark and E.-G. Talbi,

“Metaheuristic Traceability Attack against SLMAP, an RFID Lightweight Authenti-

cation Protocol”, Proceedings of the 23rd IEEE International Parallel and Distributed

Processing Symposium – IPDPS 2009 , IEEE, IEEE Computer Society, Rome, Italy, May

2009.

30. Li, T., R. Deng and G. Wang, “The Security and Improvement of an Ultralightweight

RFID Authentication Protocol”, Journal of Security and Communication Networks

2008 , Vol. 1, No. 2, pp. 135–146, 2008.

31. Erguler, I., C. Unsal, E. Anarim and G. Saldamli, “Security Analysis of an Ultra-

lightweight RFID Authentication Protocol-SLMAP ∗”, Security and Communication

Networks 2011 , pp. 1–5, 2011.

66

32. Li, T., “Employing Lightweight Primitives on Low-cost RFID tags for Authentication”,

Vehicular Technology Conference 2008 , pp. 1–5, 2008.

33. Bagheri, N., M. Safkhani, M. Naderi and S. K. Sanadhya, “Security Analysis of

LMAP++, an RFID Authentication Protocol”, Cryptology ePrint Archive, Report

2011/193, 2011.

34. David, M. and N. Prasad, “Providing Strong Security and High Privacy in Low-Cost

RFID Networks”, Proceedings of Security and Privacy in Mobile Information and Com-

munication Systems , pp. 172–179, Springer, Heidelberg, Germany, 2009.

35. Hernandez-Castro, J. C., P. Peris-Lopez, R. C. Phan and J. M. Estevez-Tapiador,

“Cryptanalysis of the David-Prasad RFID Ultralightweight Authentication Protocol”,

S. O. Yalcin (Editor), Workshop on RFID Security – RFIDSec’10 , Vol. 6370 of Lecture

Notes in Computer Science, pp. 22–34, Springer, Istanbul, Turkey, June 2010.

36. Kinoshita, S., M. Ohkubo, F. Hoshino, G. Morohashi, O. Shionoiri and A. Kanai, “Pri-

vacy Enhanced Active RFID Tag”, International Workshop on Exploiting Context His-

tories in Smart Environments – ECHISE’05 , Munich, Germany, May 2005.

37. Kumar, S. and C. Paar, “Are Standards Compliant Elliptic Curve Cryptosystems Fea-

sible on RFID?”, Workshop on RFID Security – RFIDSec’06 , Ecrypt, Graz, Austria,

July 2006.

38. Ohkubo, M., K. Suzuki and S. Kinoshita, “Cryptographic Approach to “Privacy-

Friendly” Tags”, RFID Privacy Workshop, MIT, Massachusetts, USA, November 2003.

39. Rhee, K., J. Kwak, S. Kim and D. Won, “Challenge-Response based RFID Authen-

tication Protocol for Distributed Database Environment”, D. Hutter and M. Ullmann

(Editors), International Conference on Security in Pervasive Computing – SPC 2005 ,

Vol. 3450 of Lecture Notes in Computer Science, pp. 70–84, Springer, Boppard, Ger-

many, April 2005.

40. Fouladgar, S. and H. Afifi, “A Simple Privacy Protecting Scheme Enabling Delegation

and Ownership Transfer for RFID Tags”, Journal of Communications , Vol. 2, No. 6, pp.

67

6–13, 2007.

41. Bringer, J., H. Chabanne and D. Emmanuelle, “HB++: a Lightweight Authentication

Protocol Secure against Some Attacks”, IEEE International Conference on Pervasive

Services, Workshop on Security, Privacy and Trust in Pervasive and Ubiquitous Com-

puting – SecPerU 2006 , IEEE, IEEE Computer Society, Lyon, France, June 2006.

42. Piramuthu, S., “HB and Related Lightweight Authentication Protocols for Secure RFID

Tag/Reader Authentication”, Collaborative Electronic Commerce Technology and Re-

search – CollECTeR 2006 , Basel, Switzerland, June 2006.

43. Munilla, J. and A. Peinado, “HB-MP: A Further Step In The HB-family of Lightweight

Authentication Protocols”, Computer Networks , Vol. 51, pp. 2262–2267, June 2007,

http://dl.acm.org/citation.cfm?id=1241112.1241356.

44. Sadighian, A. and R. Jalili, “FLMAP: A Fast Lightweight Mutual Authentication Pro-

tocol for RFID Systems”, The 16th IEEE International Conference on Networks (ICON

2008), pp. 1–6, New Delhi, India, December 2008.

45. Amphion, CS5265/75 AES Simplex encryption/decryption, 2005,

http://www.amphion.com.

46. Datasheet, High Performance MD5. Fast SHA-1. Fast SHA-256. Hash core for ASIC ,

2005, http://www.heliontech.com/auth.htm.

47. Jung, M., H. Fiedler and R.Lerch, “8-bit microcontroller system with area efficient AES

coprocessor for transponder applications”, Workshop on RFID and Lightweight Crypto,

pp. 32–43, European Network of Excellence in Cryptology ECRYPT, Fraunhofer, Graz,

Austria, 2005.

48. Yuksel, K., J. Kaps and B. Sunar, “Universal hash functions for emerging ultralow-power

networks”, Proceedings of Communication Networks and Distributed Systems Modeling

and Simulation, pp. 32–43, The Society for Modeling and Simulation International, SCS,

San Diego, California, USA, January 2004.

68

49. Rama, N. and R. Suganya, “SSL-MAP: A More Secure Gossamer Based Mutual Authen-

tication Protocol for Passive RFID Tags”, International Journal on Computer Science

and Engineering , Vol. 2, pp. 363–367, 2010.

50. Kianersi, M., M. Gardeshi and M. Arjmand, “SULMA: A Secure Ultra Light-Weight

Mutual Authentication Protocol for Low Cost RFID Tags”, International Journal of

Ubicomp, Vol. 2, No. 2, pp. 17–24, April 2011.

51. Kianersi, M., M. Gardeshi and H. Yousefi, “Security Analysis of Ultra-lightweight Pro-

tocol for Low-Cost RFID Tags: SSL-MAP”, A. Ozcan, J. Zizka and D. Nagamalai

(Editors), Recent Trends in Wireless and Mobile Networks , Vol. 162 of Communications

in Computer and Information Science, pp. 236–245, Springer Berlin Heidelberg, June

2011.

