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I am very thankful to Serhat Keçici for his true friendship and helps. He, from

my graduate year and on, helped me to adapt the department of industrial engineering

and engineering education after my mathematics education. His point of view as an

engineer is reference for me.
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ABSTRACT

RANDOM NUMBER GENERATION USING CHAOTIC

DYNAMICAL MAPS

Random numbers are necessary basic ingredients for simulation and modeling.

Currently, linear congruential generators (LCGs) are typically used as random number

generators (RNGs), which generate pseudorandom numbers (PRNs) by using linear

functions and modulus. In this study, we propose some chaotic functions to generate

PRNs, using the unpredictability property of dynamical chaotic maps. We suggest

five different RNGs that are derived from three different chaotic maps: tent map,

logistic map, and family of connecting maps. The uniformity and independence of the

numbers generated through the five suggested RNGs are checked in three steps. Firstly,

the histograms and serial plots are visually checked. Secondly, chi-square and

Kolmogorov-Smirnov tests are applied to statistically test the uniformity of the

generated numbers. Finally, runs tests and autocorrelation test are applied in

order to check the independence of the numbers. The same tests are applied to

compare the five suggested chaotic generators with some well-known conventionally

used LCGs. It is concluded that the suggested generators perform nearly as well as

LCGs and can lead to an alternative way of generating random numbers. More detailed

mathematical, statistical, and numerical properties of the suggested generators

constitute useful further research topics.
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ÖZET

KAOS ÖZELLİĞİ OLAN FONKSİYONLARLA RASTGELE

SAYI ÜRETMEK

Rastgele sayılar, simülasyon ve modellemede kullanılan en gerekli

unsurlardandır. Rastgele sayıları üretmek için en güncel ve yaygın yöntem doğrusal

eşleşiksel üreteçlerdir. Bu üreteçler, doğrusal bir fonksiyon ve mod alma işlemini

kullanarak sayıları üretir. Bu çalışmada ise, kaotik özelliği olan fonksiyonları

kullanarak rastgele sayılar üretilebilmesi araştırılmaktadır. Kaotik özellikteki

fonksiyonların tahmin edilemezlik özelliğine dayandırılarak; çadır fonksiyonu,

lojistik fonksiyonu ve birleştirme fonksiyonundan üretilmiş beş farklı rastgele sayı üreteci

önerilmektedir. Bu üreteçlerin ürettiği sayıların, [0, 1] aralığında düzgün dağıldığı

ve bağımsız sayılar ürettiği üç aşamada test edilmiştir. Öncelikle, üretilen sayıların

histogramları ve dizisel grafikleri görsel olarak incelenmiştir. İkinci olarak, üretilen

sayıların istatistiksel olarak düzgün dağıldıkları Ki-kare testi ve Kolmogorov-Smirnov

testi kullanılarak test edilmiştir. Son olarak, “Run” testi ve otokorelasyon testi ile

üretilen sayıların bağımsızlığı test edilmiştir. Ayrıca bu testler; önerilen beş üretecin,

çok iyi bilinen ve sıklıkla kullanılan doğrusal eşleşiksel üreteçlerle kıyaslanırken de

kullanılmıştır. Sonuç olarak, önerilen rastgele sayı üreteçlerinin görsel ve istatistiksel

testlerde doğrusal eşleşiksel üreteçler kadar başarılı oldukları ve bu üreteçlerin rastgele

sayı üretmek için kullanılabilecekleri ortaya çıkmıştır. Önerilen bu üreteçlerin; daha

detaylı matematiksel, istatistiksel ve işlemsel özelliklerinin araştırılması ve incelenmesi

gelecekte yapılacak yararlı araştırma konuları oluşturmaktadır.
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1. INTRODUCTION

A sequence of numbers that are chosen at random is a necessary basic ingredient in

simulation, modeling and analysis in general. There are two types of random numbers:

The true random numbers are completely unpredictable, and irreproducible. This

kind of sequence can only be generated by a physical process, for instance, by electrical

circuits or physical experiments like dice rolling. The pseudorandom numbers (PRNs)

are on the other hand computed by numerical algorithms. They are supposed to appear

random to someone who does not know the algorithm, and also pass the relevant

statistical tests. Therefore these numbers are reproducible by the numerical algorithm,

and they are most commonly used in simulations. In this work, the generation of the

PRNs by constructing algorithms based on chaotic dynamical maps will be studied.

There is an enormous amount of scientific literature on random number

generation. A short historical overview is presented by Law and Kelton [1]. The

introduction to the properties of random numbers and the generation methods of

random number are covered by Banks [2], and they are particularized by Knuth

[3]. The random number generators (RNGs) have to generate nicely distributed ran-

dom numbers. Nicely distributed means that the sequence of the generated random

numbers is uniformly distributed between zero and one, and dense in this interval.

Secondly, random numbers must be serially independent of each other. Good RNGs

have also the following properties: long periodicity, repeatability, long disjoint

sequences, portability, and efficiency [4].

Over the years, various linear PRN generators have been developed. They are

classified into three categories. Linear congruential generator (LCG) and multiplicative

linear congruential generator (MLCG) are famous and the most widely used techniques

for generating random numbers. MLCG, first used by D.H. Lehmer in 1948, has a

period of about approximately 109 on a 32-bit machine. Fibonacci random number

generator and Tausworthe generators are the other two well-known generators that

are based on computation of each number by performing some usual operations being
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addition, subtraction, and the ‘exclusive-or’ operation on the two preceding numbers.

These generators have a period of about approximately 10170 on a 32-bit machine [4].

Besides such well-known linear PRN generators, three relatively new RNGs

exist: Generalized feedback shift register (GFSR), twisted generalized feedback shift

register (TGFSR), and Mersenne Twister (MT). GFSR is suggested in 1973 by Lewis

and Payne [13]; and statistically analyzed in 1987 by H. Niederreiter [6]. TGFSR,

a modified version of GFSR, is suggested in 1992 by Matsumoto and Kurita [7] and

improved in 1994 by them [8]. These two generators have a period of about 10200 on a

32-bit machine. MT is developed in 1998 by Matsumoto and Nishimura [9]. It has a

very long period of about 106000 on a 32-bit machine.

The main goal of RNG research is to design robust generators without

having to pay too much in terms of portability, flexibility, and efficiency. A good RNG

should possess long period, high speed, and reliability. Moreover, generated random

numbers have to be independent and uniformly distributed between 0 and 1. In

order to check independency and uniformity of them, serial (dependence) tests and

uniformity tests can be performed [2]. If the sequence of generated numbers passes

these tests satisfactorily, it is considered to be random.

In this thesis we will construct PRN generators based on chaotic dynamical maps

and analyze their statistical properties. We have considered tent map, logistic map and

family of connecting maps as potential RNGs. These maps are very simple and they

may generate random numbers faster than well-known linear RNGs. Also they provide

entirely different methods of producing PRNs. There have been earlier attempts to

use the logistic map as a random number generator [5]. But the chaotic maps that we

consider and complete statistical analysis of results have not been previously published

in the literature.
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2. CHAOTIC DYNAMICAL MAPS

The motion of anything or the change in a situation implies dynamics in general.

The swinging of a clock pendulum, the insulin level of blood, the flow of water in a

pipe, the number of fish each spring time in a lake, and the human population of earth

are basic examples of systems containing dynamics. A dynamical map encodes the law

of change. It is simply defined as a map f : V → V where V represents the set of all

possible states of the map. The sequence (x, f(x), f(f(x)), f(f(f(x))), ...) is the orbit

of dynamical map for the seed x ∈ V . The orbit is called a periodic orbit if there exists

n ∈ N such that x = fn(x), an eventually periodic orbit if there exist n,m ∈ N such

that fm(x) = fn(x), and a dense orbit in V if there exist a point x ∈ V such that the

orbit is dense in V .

Dynamical maps can exhibit chaotic behavior. Sometimes the orbits starting at

two initial states x0 and x1 eventually get far apart no matter how close two states x0

and x1 are. This makes predicting the long term future of the map very difficult if the

initial state x0 is not known exactly. Such maps are called chaotic, (see Figure 2.1). A

chaotic dynamical map is generally characterized by three properties: Being sensitive to

the initial states (butterfly effect), being topologically transitive, and having a dense

collection of points with periodic orbits. These properties can be translated to the

mathematical language. Devaney defines them as follows [14, 15]:

Definition 2.1 Let V be a set. The dynamical map defined by f : V → V is chaotic

on V if

(i) f has sensitive dependence on initial conditions:

There exists δ > 0 such that, for any x ∈ V and any neighborhood X ⊂ V around

x, there exists y ∈ X and n ∈ N such that |fn(x)− fn(y)| > δ. The number δ is

called a sensitivity constant at x for the map f .

(ii) f is topologically transitive:

For any pair of open sets X, Y ⊂ V , there exists k ∈ N such that fk(X)∩Y �= ∅.
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(iii) Periodic points of f is dense in V :

For any open subset X of V X ∩ P �= ∅, where P is the set of periodic points of

f in V .

Figure 2.1: The orbit of the seed x = 0.3 under logistic map (ν = 4).

The first condition of Devaney’s definition is related with the future of the states.

According to the first condition, It is not predictable how much the distance of two

different close states will be after some iterations. For instance, logistic map with

parameter ν = 4 generates unpredictable numbers starting from the closest seeds 0.3,

and 0.31. As seen in Figure 2.2, the numbers generated starting from seeds 0.3 and

0.31 get apart from each other after the 5th iteration. In other words, small change in

the initial states causes huge change in the following states.

Figure 2.2: The orbit of the seeds x = 0.3 and x = 0.31 under logistic map (ν = 4) are

represented by asterix and squares respectively.

The second and third conditions of Devaney’s definition are topological

conditions. Transitivity controls whether any sequence of generated numbers contains
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an element, which is the element of the arbitrarily small set determined before, or not.

Namely, an arbitrarily small set is first determined in the range of chaotic map, and

then it is controlled that the map generates a number that is the element of the set

determined. The last ingredient related with the denseness of the periodic orbits of

map. It guarantees that a periodic orbit is always in any subset of the range of map.

These subsets can be arbitrarily small sets.

In general, it is hard to check the chaotic behavior of dynamical maps by showing

three properties directly. There are some methods to prove the chaotic behaviour of

dynamical maps. One of the methods is to observe the natural behavior of map. For

instance, having the wiggly iterates of a map is a way to prove the chaotic behavior of

it. Before defining the wiggly iterates, we consider the definition of a one-hump map

(see Figure 2.3), the definition of a m-hump map (see Figure 2.4), and a lemma related

with a one-hump map which are defined by Banks [16].

Definition 2.2 A continuous map f : [a, c] → [0, 1] is a one-hump map if strictly

increases from f(a) = 0 to f(b) = 1, and then strictly decreases to f(c) = 0.

Figure 2.3: An example for a one-hump map.

Definition 2.3 fn is an n-hump map on [0, 1] if there are n+ 1 points,

0 = x0 < x1 < ... < xn = 1,
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such that fn is a one-hump map on each interval [xi−1, xi]. This interval is called the

base of the ith hump of fn.

Figure 2.4: An example for an 8-hump map.

Lemma 2.1 If f is a one-hump map on [0, 1] then fn is a 2n−1- hump map on [0, 1].

Definition 2.3 and Lemma 2.1 are two ingredients of the definition of wiggly

iterates [16]. A map f has wiggly iterates if fn is a 2n−1- hump map on for each

positive integer n, and the length of the largest base of the humps of fn tends to zero

as n tends to infinity, (see Figure 2.5).

Figure 2.5: An example for wiggly iterates.

If a map f : [0, 1] → [0, 1] has wiggly iterates, then f is chaotic on the interval

[0, 1] [16]. The proof of the statement is easy when the following lemmas and Devaney’s

definition (Definition 2.1) are taken into account.

Lemma 2.2 If f : [0, 1] → [0, 1] has wiggly iterates, then
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• f has sensitive dependence everywhere with sensitivity constant 1
2
,

• f is transitive,

• the set of periodic points of f is dense in [0, 1].

The other method is to find a topologically conjugate between a chaotic

dynamical map and an unknown dynamical map. In this method, two dynamical

maps are connected to each other via a homeomorphism. Homeomorphism carries

all properties of one map to other one. By this way, the chaotic behavior of an

unknown dynamical map is ensured with homeomorphism. The definition of

topologically conjugate, and the theorem related with topologically conjugate and chaos

are included in Banks [16].

Definition 2.4 A map f : V → V is topologically conjugate to a map g : W → W if

there is homeomorphism h : V → W such that h ◦ f = g ◦ h.

Theorem 2.1 Let f and g be topologically conjugate via a homeomorphism h. If f is

chaotic, then so is g.

There is also a useful theorem to detect the chaotic behavior of a map. In fact,

the theorem consists of a kind of simple computation [16].

Theorem 2.2 Let f : [0, 1] → [0, 1] be a three times differentiable and symmetric one-

hump map. If f ′(0) > 1 and if f has a negative Schwarzian derivative except at x = 1
2

(Schwarzianderivative : S(f)(x) = 2f ′(x)f ′′′(x) − 3(f ′′(x))2 for all x ∈ [0, 1]), then

the restriction of f to its Cantor set 1 has chaotic behavior.

Lastly, we accompany a useful theorem to establish relations with topologically

transitivity of a dynamical map and a dense orbit. This theorem is important since it

1Cantor set is constructed by the iterations of the map f , see [16]



8

connects two ingredients of the definition of chaos: topologically transitivity, and

denseness of periodic points. The proof of lemmas and theorems can be found in

Banks [16].

Theorem 2.3 If V is a compact metric space, then f is topologically transitive if and

only if there exists a point x ∈ V such that {fn(x) : n ∈ N} is dense in V .

The chaotic features of maps: tent map, logistic map, and the family of

connecting maps can be analyzed with the theorems and the lemmas. We will

follow the specified order to show the chaotic behaviour of the maps. It is hard to

show the chaotic behaviour of tent map directly. We will try to find topologically

conjugacy between a chaotic dynamical map, which is shift map, and tent map. Firstly,

we will consider shift map and investigate its chaotic behavior. Then, we will

define tent map and determine topologically conjugate between tent map and itself.

Secondly, we will examine logistic map. The chaotic behaviour of it will be shown by

two ways: determining topologically conjugacy between tent map and logistic map,

and computing Schwarzian derivative to apply Theorem 2.2. Lastly, we will examine

the family of two connecting maps, and investigate their chaotic behaviour by using

Lemma 2.2.

2.1. Shift Map

Let Σ2 be the space of the infinite sequences on an alphabet of two symbols,

denoted by 0 and 1 (i.e. Σ2 = {(s0s1s2...) : sj ∈ {0, 1}}). Define the metric between

two elements s = (s0s1s2...) and t = (t0t1t2...) of Σ2 by:

d (s, t) =
∞∑
i=0

|si − ti|
2i

Now, we can determine the most useful property of the metric d:
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Proposition 2.1 Let s, t ∈ Σ2 and suppose si = ti for i = 1, 2, ..., n. Then d (s, t) ≤
1/2n. Conversely, if d (s, t) < 1/2n, then si = ti for i ≤ n.

Let s, t ∈ Σ2 and suppose si = ti for i = 1, 2, ..., n. Consider d (s, t):

d (s, t) =
∞∑
i=0

|si − ti|
2i

=
∞∑

i=n+1

|si − ti|
2i

≤
∞∑

i=n+1

1

2i
=

1

2n
.

Conversely; assume sk �= tk for some k ≤ n. Then,

d (s, t) =
∞∑
i=0

|si − ti|
2i

=
1

2k
+

∞∑
i=n+1

|si − ti|
2i

=
1

2k
+

1

2n
≥ 1

2n
.

Definition 2.5 Shift Map σ : Σ2 → Σ2 is defined by

σ(s0s1s2s3...) = (s1s2s3s4...)

where (s0s1s2...) ∈ Σ2.

In other words, when the shift map is applied to a sequence s ∈ Σ2, the first

entry s0 of s is deleted to produce σ(s). The fact that the shift map σ is continuous

and chaotic:

Proposition 2.2 The shift map σ is continuous on Σ2 with respect to metric d.

Let ε > 0 be given and s, t ∈ Σ2. We can find n ∈ N such that 1
2n

< ε. Take

δ = 1
2n+1 such that d (s, t) < δ. By Proposition 2.1, si = ti for i ≤ n + 1, then

d (σ(s), σ(t)) ≤ 1
2n+1 < 1

2n
< ε.
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Proposition 2.3 The shift map σ is chaotic on Σ2.

(i) The sensitive dependence property of the shift map σ:

Let s = (s0s1s2 . . . ) be in Σ2 and define ε − ball around s such that Bε(s) =

{t ∈ Σ2 : d (s, t) < ε}. Let ε > 0 be given and there exists k ∈ N such that

1
2k

< ε < 1
2k−1 . Consider t = (t0t1t2 . . . ) where ti �= si if i = k + 1, k + 2 and

ti = si otherwise. t ∈ Bε(s), since

d (s, t) =
∞∑
i=0

|si − ti|
2i

=
1

2k+1
+

1

2k+2
< 2

1

2k+1
=

1

2k
< ε.

Take δ = ε
23

and n = k + 2, then

d (σn(s), σn(t)) =
∞∑

i=k+2

|si − ti|
2i

=
1

2k+2
>

ε

23
= δ.

(ii) The transitivity of the shift map σ:

Consider the sequence s∗:

s∗ = ( 0 1︸︷︷︸
1st block

| 00 01 10 11︸ ︷︷ ︸
2nd block

| 000 001 010 011 100 101 110 111︸ ︷︷ ︸
3rd block

| . . .︸︷︷︸
4th block

)

nth block of s∗ is constructed by successive listing all possible combinations of

0’s and 1’s of length n, and nth block consists of n2n elements. Some iterations

of σ applied to s∗ yields a sequence which agrees with any given sequence in an

arbitrarily large number of places. So, s∗ is a dense orbit in Σ2. Let ε > 0 be given

and define S = {s : s = (s0s1s2 . . . sn00000 . . . )} where n ∈ N . The cardinality

of S is 2n+1, and finite. For any sequence t ∈ Σ2, there exists s ∈ S such that

si = ti for all i = 0, 1, . . . , n. Take n ∈ N such that 1
2n

< ε, then, by Proposition

2.1, d (s, t) ≤ 1
2n

< ε. This implies that Σ2 is totally bounded, thus Σ2 is compact

metric space. By Theorem 2.3, the shift map is topologically transitive.

(iii) Cper is dense in Σ2:

Let s = (s0s1s2 . . . ) ∈ Σ2. Take sn ∈ Cper such that sn = (s0s1 . . . sn) is an
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n-periodic sequence in Σ2. By Proposition 2.1, d (sn, s) ≤ 1
2n
. Consider the

sequence S = (snsnsn . . . ). As n tends to infinity, the sequence S converges to s.

Therefore, the shift map σ is a chaotic dynamical map.

2.2. Tent Map

Definition 2.6 Let denote I := [0, 1] and Tent Map is defined by Tμ : I → R where

0 < μ < ∞

Tμ(x) = μ

(
1

2
−
∣∣∣∣12 − x

∣∣∣∣
)
.

Tent map is a piecewise linear, one-dimensional map on the interval [0, 1]. The

natural invariant density of tent map is 1 [0]. The tent map is a one hump map on the

interval [0, 1], (see Figure 2.6).

Figure 2.6: The graph of tent map.

First of all, we are interested in the tent map with parameter μ = 2 on the

interval [0, 1]. The range of this tent map is [0, 1]. It is a one hump map, and the

number of humps doubles at each iteration of the tent map. As seen in Figure 2.7,

there are 32 humps in the 6th iteration of the tent map, and the largest base length of

the humps gets smaller from 1 to 1
32
. Hence the nth iterate of the tent map consists

of 2n−1 humps. The largest base length of the humps gets smaller and tends to zero

as n tends to infinity. Therefore, the tent map has wiggly iterates, and it has chaotic
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behavior by Lemma 2.2.

Figure 2.7: 6th iteration of tent map (μ = 2).

Secondly, we consider the tent map with the parameter μ is larger than 2 on

the interval [0, 1]. The range of the tent map becomes R since the parameter μ is

larger than 2. In order to show the chaotic behaviour of the tent map we will find

topologically conjugate between the shift map, which is a chaotic dynamical map, and

the tent map.

Proposition 2.4 The Tent Map Tμ is chaotic when μ > 2.

To prove proposition 2.4, we will use theorem 2.1. We need to define a

homeomorphism H between the shift map σ and the tent map Tμ when μ > 2.

If μ > 2, Tμ(x) /∈ I whenever x belongs to the open interval A0 = (a0, b0) of I

where Tμ(a0) = Tμ(b0) = 1. The set I \A0 is the union of two closed intervals I1,1 and

I1,2. Each I1,k contains an open interval A1,k with the following property: if x belongs

to A1 = A1,1∪A1,2, then Tμ(x) is in A0, whence T
2
μ(x) /∈ I. The set I \(⋃1

k=0 Ak

)
is the

union of four closed intervals I2,i for i = 1, 2, 3, 4 by means of which we construct a set

A2 whose points are mapped out of I by T 2
μ . Now each I2,k contains an open interval

A2,k with the following property: if x ∈ A2 = A2,1 ∪A2,2 ∪A2,3 ∪A2,4, then T 2
μ(x) ∈ A1

whence T 3
μ(x) /∈ I. The set I \ (⋃2

k=0 Ak

)
is the union of eight closed intervals I3,j for

j = 1, 2, . . . , 8 by means of which we construct a set A3 whose points are mapped out

of I by T 3
μ .
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In the limit, by discarding the open sets Ak for which T n
μ (x) /∈ I for some n, we

arrive at the uncountable set Λ,

Λ = I \
( ∞⋃

k=0

Ak

)

which is invariant under Tμ and a Cantor Set [14].

Consider the map H : Λ → Σ2 such that H(x) = (s0s1s2 . . . ) where sj = 0 if

T j
μ(x) ∈ I1,1 and sj = 1 if T j

μ(x) ∈ I1,2. The fact that the map H is a homeomorphism:

(i) H is injective:

Suppose x, y ∈ Λ , x �= y and H(x) = H(y). Then for each n, T n
μ (x) and T n

μ (y)

are always located in the same intervals I1,1 and I1,2. Without loss of generality,

T n
μ (x) and T n

μ (y) are in the intervals I1,1 and T n
μ (x) ≤ T n

μ (y). Denote xn := T n
μ (x)

and yn := T n
μ (y). Consider Tμ(xn) and Tμ(yn):

Tμ(xn) ≤ μxn ≤ μyn ≤ Tμ(yn).

This implies that the tent map Tμ is monotonic in the interval between T n
μ (x)

and T n
μ (y). By definition of H and assumption, for any n ∈ N , T n

μ (x) and T n
μ (y)

lie on the same side of 1
2
; I1,1 or I1,2. Since Tμ monotonic and the Cantor Set Λ is

totally disconnected, x and y are equal (If not, there exists totally disconnected

intervals Ik,n 
 x and Ik,n+1 
 y for some k, n ∈ N such that Tμ(x) ∈ I1,1 and

Tμ(y) ∈ I1,2). Hence, H is injective.

(ii) H is surjective:

Let J ⊂ I be a closed interval. Denote T−n
μ (J) =

{
x ∈ I : T n

μ (x) ∈ J
}

where

T−n
μ (J) denotes the preimage of J . The first important result is that if J ⊂ I is

a closed interval, then T−1
μ (J) consists of two subintervals.
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Now, let s = (s0s1s2 . . . ) be given and define

Is0s1s2...sn =
{
x ∈ I : x ∈ Is0 , . . . , T

n
μ (x) ∈ Isn

}
= Is0 ∩ T−1

μ (Is1) ∩ · · · ∩ T−n
μ (Isn).

This is the set of all the points in I, whose first n iterations have the same place,

and it is easily observed that Is0 is either I1,1 or I1,2 which is closed. Suppose

that Is1s2...sn is a nonempty closed interval so that T−1
μ (Is1s2...sn) consists of two

closed intervals: one in I1,1 and the other in I1,2. Hence,

Is0s1s2...sn = Is0 ∩ T−1
μ (Is1s2...sn)

is closed. Since,

Is0s1s2...sn = Is0s1s2...sn−1 ∩ T−1
μ (Isn) ⊂ Is0s1s2...sn−1

these sets are nested. This implies that

Is0s1s2... =
⋂
n≥0

Is0s1s2...sn

is non-empty. Hence, there is an x ∈ Is0s1s2... such that H(x) = s where s =

(s0s1s2 . . . ).

(iii) H is continuous:

Let x ∈ Λ such that H(x) = (s0s1s2 . . . ) and ε > 0 be given. Choose a value

n such that 1
2n

< ε. Consider the closed interval Is0s1s2...sn . Since Is0s1s2...sn

has a finite length, we can take the length of Is0s1s2...sn as δ > 0. For such

δ > 0, if |x− y| < δ and y ∈ Λ, then y ∈ Is0s1s2...sn . This implies that H(y) =

(s0s1 . . . sntn+1tn+2 . . . ) for some sequence (s0s1 . . . sntn+1tn+2 . . . ) ∈ Σ2.

By Proposition 2.1,

d (H(x), H(y)) =
∞∑
i=0

|si − ti|
2i

=
∞∑

i=n+1

|si − ti|
2i

≤ 1

2n
< ε.
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(iv) H−1 is continuous:

Let s = (s0s1s2 . . . ) ∈ Σ2 such that H−1(s) = x where x ∈ Λ and ε > 0 be

given. Choose a value n ∈ N so that 1
2n

< ε. Take δ = 1
2n

< ε and define

Bδ(s) = {t ∈ Σ2 : t = (s0s1 . . . sntn+1tn+2 . . . ), d (t, s) ≤ δ}. Take t ∈ Bδ(s) where

H−1(t) = y. Since the first n terms of s and t are equal, x, y ∈ Is0s1s2...sn . By

construction, {Is0s1s2...sn}n≥0 is a decreasing sequence. Moreover, the length of

Is0s1s2...sn for any n ∈ N is: Is0s1s2...sn < 1
2n+1 for any n. So for any x, y ∈ Is0s1s2...sn ,

|x− y| < 1
2n+1 .

Hence, for any ε > 0, choose n ∈ N such that 1
2n+1 < ε and take δ = 1

2n+1 < ε

such that for all s, t ∈ Σ2 where d (s, t) < δ implies |H−1(s)−H−1(t)| = |x− y| <
1

2n+1 < ε.

The homeomorphism H connects the shift map σ and the tent map Tμ with the

parameter μ > 2. By Theorem 2.1, the tent map Tμ with the parameter μ > 2 is a

chaotic dynamical map.

2.3. Logistic Map

Definition 2.7 Let denote I := [0, 1] and define Logistic Map: Lν : I → R where

0 < ν < ∞

Lν(x) = νx(1− x).

We are related with the logistic map with parameter ν = 4. It is a

polynomial map of degree 2 on the interval [0, 1] exhibiting chaotic dynamics. There is a

homeomorphism between the tent map Tμ and the logistic map Lν for μ = 2 and ν = 4

respectively. A homeomorphism h : Λμ → Λν is defined by h(x) = sin2(x) if x ∈ [0, 1
2

]
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and h(x) = sin2(1− x) if x ∈ [1
2
, 1
]
. Consider L4 ◦ h, for x ∈ [0, 1

2

]
:

(L4 ◦ h)(x) = 4 sin2(x)(1− sin2(x))

= (2 sin2(x) cos2(x))2 = sin(2x) = (h ◦ T2)(x).

Similarly for x ∈ [1
2
, 1
]
, L4 ◦ h becomes:

(L4 ◦ h)(x) = 4 sin2(1− x)(1− sin2(1− x))

= (2 sin2(1− x) cos2(1− x))2 = sin(2− 2x) = (h ◦ T2)(x).

We also directly prove the chaotic behavior of the logistic map with parameter ν = 4

by using Theorem 2.2:

When ν = 4, Lν maps [0, 1] onto [0, 1]. Since the logistic map Lν is a symmetric

one-hump map with negative Schwarzian (S(L4)(x) = −3(−8)2 = −192 < 0).

Hence the logistic map with parameter ν = 4 has chaotic behaviour by Theorem

2.1, and Theorem 2.2.

2.4. Connecting Maps

Definition 2.8 Let denote I := [0, 1] and define Connecting Map: Cα : I → I where

0 < α < ∞

Cα(x) = 1− |2x− 1|α.

In this study, we consider two connecting maps with parameters α = 0.999, and

α = 1.01. They are both symmetric one-hump maps from [0, 1] to [0, 1], and their

iterations doubles humps, as seen in Figure 2.8 and Figure 2.9. The nth iterates of

them consist of 2n−1 humps. The largest bases, length of the humps, get smaller and
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smaller. As n tends to infinity, the largest bases lengths of the humps tend to zero.

Since two conditions are satisfied, they have wiggly iterates. So they are chaotic maps

by Lemma 2.2.

(a) C0.999 (b) C2
0.999

(c) C3
0.999 (d) C4

0.999

Figure 2.8: 4th iteration of connecting map (α = 0.999).



18

(a) C0.101 (b) C2
0.101

(c) C3
0.101 (d) C4

0.101

Figure 2.9: 4th iteration of connecting map (α = 1.01).
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We have shown the chaotic behaviour of maps: tent map, logistic map, and the

family of connecting maps. In the next part of study, the nature of chaotic maps will

be exhibited in the generation of PRNs. We will be interested in exploring the random

like behaviors of the chaotic maps itemized below. We claim that these five chaotic

maps are applied to generate PRNs as RNGs. These five chaotic maps have three

equilibrium points: 0, 0.5, 1. When one of the maps generates one of them, it stabilizes

immediately. Here, we subtract these points from the domains of maps since we do not

want to choose one of them as a seed.

• T2(x) = 2
(
1
2
− ∣∣1

2
− x
∣∣) where x ∈ [0, 1],

• T2.00005(x) = 2.00005
(
1
2
− ∣∣1

2
− x
∣∣) where x ∈ [0, 1],

• L4(x) = 4x(1− x) where x ∈ [0, 1],

• C0.999(x) = 1− |2x− 1|0.999 where x ∈ [0, 1],

• C0.01(x) = 1− |2x− 1|0.01 where x ∈ [0, 1].
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3. ANALYSIS OF CHAOTIC MAPS AS RNGs

We choose five types of chaotic maps as RNGs. These maps need to be examined

and tested to detect any problem with randomness and uniformity. That’s why, we

generate a variety of sequences of numbers by using these maps, and then uniformity

tests and dependence tests are applied.

We run Matlab software in order to produce the sequences of numbers. The

program starts with a seed, which is chosen randomly. In this process there exist two

termination criteria. Firstly, the program stops when it comes up with the same three

successive iterated numbers that are already produced before. For instance, suppose

that the group of numbers (1, 5, 6) is produced before. The program runs until it

produces the group of same numbers (1, 5, 6). i.e. The sequence of generated numbers

can be (1, 5, 6, 10, 12, 1, 9, 6, ..., 7, 11, 102, 201, 20, 130, 1, 5, 6). In fact, producing one

number that is generated before is enough to stop the iteration. But all computer

calculations have numerical errors approximation, and we almost guarantee that it

generates exactly equal successive numbers by checking the equality of not just one,

but three numbers.

Secondly, termination occurs when the iteration number reaches the iteration

limit set by the user. In other words, users can determine maximum number of

iterations. In this study, we set the iteration numbers as 1000 and 10000 so we call

the sequences as 1000-number-sequence, and 10000-number-sequence respectively. As

a result, the program stops either when it generates the sequence of numbers that

contains two groups of same three consecutive numbers or when it generates the

specified number of numbers.

In the testing procedure, we firstly observe histograms and serial plots for the

sequences of generated numbers. Because it is well known that human eye is the

most powerful tester to detect patterns of non-uniformity on a sequence of numbers.

Histograms illustrate the frequencies of numbers in the subintervals of maps’ domain.
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The domain of five maps is the interval [0, 1] except three points (0, 0.5, 1). Here, the

interval is divided into 50 equal-subintervals. The number of subinterval is randomly

determined as 50. We observe the histograms of samples for four different numbers of

subintervals: 30, 50, 80, and 100. The histograms only show the general behavior of

the generated numbers for the uniformity test. For each case, there is no significant

information found about the distribution of the generated numbers, (see Appendix L).

In Serial plots, we detect the relation between the iteration number and the generated

numbers (n, xn) as a point in xy-plane.

After eye control, we apply Kolmogorov-Smirnov test, and chi-square test to

generated numbers. Both of the tests are conventional for testing the uniformity of

a data sample, provided that the sample size is large. Kolmogorov-Smirnov test is a

nonparametric test to compare a sample, that is the set of generated numbers, with a

reference probability distribution, that is uniform distribution between 0 and 1 in our

case. The null hypothesis is that the sample has a uniform distribution between 0 and

1, and the test rejects the null hypothesis at the 5% significance level.

The second uniformity test is chi-square test. This test allows us to observe

whether the frequency distribution of generated numbers that are observed is consistent

with uniform distribution between 0 and 1 or not. The null hypothesis is that the set

of generated numbers is a random sample from uniform distribution between 0 and 1,

and the test rejects the null hypothesis at the 5% significance level. Chi-square test

requires setting the number of classes. This number is taken close to square root of

the sample size. Since the sample sizes we consider are 1000 and 10000, the number of

classes for chi-square test are 30 and 100. In this study, we will also use the number

of classes 50 and 80 in addition to the number of classes 30 and 100 for chi-square test

in order to examine uniformity property of the samples. Matlab software computes

p-values of the sequences of generated numbers for two uniformity tests. The generated

numbers pass the uniformity tests if p-values are larger than 0.05.

Dependency of the generated numbers is tested by runs above and below mean

test, runs up and down test, and tests for autocorrelation. The runs tests examine
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the arrangement of the generated numbers in a sequence to test the hypothesis of

independence. The runs above and below mean test is based on the number of

runs of consecutive values above or below the mean of generated numbers. The null

hypothesis is that generated numbers come in random order, and the test rejects the

null hypothesis at the 5% significance level. The runs up and down test are based

on a comparison of the expected and actual numbers of runs of various lengths. The

null hypothesis and the significance level are same as used in the runs above and

below mean test. Matlab program also computes p-values of the sequences of

generated numbers for the runs tests. They pass the runs tests if p-values are larger

than 0.05.

The tests for autocorrelation examine the dependence between numbers in a

sequence. The test requires the computation of autocorrelation between every m

numbers starting with the ith number in the sequence of generated numbers. The

program computes autocorrelation coefficients between every m numbers. It also

computes the confidence bounds in which the autocorrelation coefficients are

statistically zero. These confidence bounds are ±0.0632 and ±0.02 at approximate 95%

confidence level for the sample sizes 1000 and 10000 respectively. (They are ±0.0948

and ±0.03 at approximate 99% confidence level for the sample sizes 1000 and 10000

respectively.) If all coefficients of the autocorrelation test are between the boundaries

of the related sample size, then map passes the test.

3.1. Tent Map (μ = 2)

The tent map with parameter μ = 2 is defined as an operation that multiplies

any number by 2. If we do not consider the numbers whose last digits are 5, as 0.125,

the range of the tent map consists of the numbers whose last digits are even except

zero. The only case that the last digit becomes zero is the case where the last digit of

the previous number is 5. For the case that last digit is 5, tent map generates numbers

whose last digits become any numbers.

Furthermore, tent map generates a number whose number of significant figures
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is same as those of the previously generated numbers. We deduce that the number

of significant digits of generated numbers does not increase. Because of this fact the

number of iterations cannot be infinite for tent map. Now we try to presume the lower

and upper values of the period of tent map.

Let us take seed as 0.273 that has three significant figures. After the first iteration,

the last digits of iterated numbers always become even numbers except zero. All

generated numbers have three significant digits since the last digits of them are not

5. The sequence of the iterated numbers as follows (0.273, 0.546, 0.908, 0.184, 0.368,

0.736, 0.528, 0.944, 0.112,...).

If the last digit of seed or a generated number is 5, then the number of significance

figures of the iterated numbers decreases. This decline depends on the power of 5 in

the prime multiples of the iterated numbers. For instance, let seed be taken as 0.195

whose significant figures are 195. The prime multiples of 195 are 2, 3, 52, 13. Tent map

reduces the significant digits of the seed as follows (0.195, 0.39, 0.78, ...). For another

example 0.015625, the prime multiples of 15625 are 56. The significant digits of the

seed decrease six times as follows (0.015625, 0.03125, 0.0625, 0.125, 0.25, 0.5, 1, 0,...).

We have an upper bound for the period of the tent map. Tent map only generates

even numbers if the last digit of a seed is not taken as 5, and it does not increase the

number of digits of generated numbers. When a seed is given, where the number of

its significant digits is a, then tent map generates 4
10

× 10a + 1 numbers at most. +1

represents the given seed. For a lower value of the period of tent map, we cover the

sequences of generated numbers.

We analyze the relationship between the number of elements in the sequence

of generated numbers, and the number of significant figures of seeds. First of all,

we take a seed that has one significant figure such as 0.3. Tent map generates four

different numbers: (0.3, 0.6, 0.8, 0.4, 0.8). For seed 0.4, the sequence has two generated

numbers: (0.4, 0.8, 0.4). For the other seeds that have one significant figure, the period

of generated numbers cannot be smaller than 2.
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Secondly, we are interested in seeds that have two significant figures such as

0.12. There is an irreducible part in the sequence that starts from 0.24 as follows

(0.12, 0.24, 0.48, 0.96, 0.08, 0.16, 0.32, 0.64, 0.72, 0.56, 0.88, 0.24). For all 2-significant-

figure seeds, tent map generate this irreducible part of the sequence. So the minimum

period of the iterations that are started with 2-significant-figure seeds is 10.

Thirdly, we are interested in seeds that have three significant figures such as 0.124.

The number of elements in the sequence is 52. The irreducible part starts from 0.496

and tent map generate this part for all 3-significant-figure seeds. The minimum period

of the iterations that are started with 3-significant-figure seeds is 50 as follows (0.124,

0.248, 0.496, 0.992, 0.016, 0.032, 0.064, 0.128, 0.256, 0.512, 0.976, 0.048, 0.096, 0.192,

0.384, 0.768, 0.464, 0.928, 0.144, 0.288, 0.576, 0.848, 0.304, 0.608, 0.784, 0.432, 0.864,

0.272, 0.544, 0.912, 0.176, 0.352, 0.704, 0.592, 0.816, 0.368, 0.736, 0.528, 0.944, 0.112,

0.448, 0.896, 0.208, 0.416, 0.832, 0.336, 0.672, 0.656, 0.688, 0.624, 0.752, 0.496).

Inductively, we reach a fact that the minimum period of iterations depends on

the number of significant figures of seeds. The number of elements in the irreducible

part of the sequences determines the minimum period of tent map. When a seed is

given, where the number of its significant digits is a, then the minimum period of tent

map is 2× 5a−1.

Tent map with parameter μ = 2 has chaotic nature. Although it is expected that

the period of chaotic map is high, the period of tent map with the parameter μ = 2

can be small depending on seeds. In order to use tent map as a RNG, the period of it

becomes 1000000 at least. It occurs when 8-significant-digit seeds are chosen at least.

In the thesis, we consider seeds that have 8 significant digits at least for tent map with

parameter μ = 2. Also the last digits of them are not equal to 5.

We examine tent map with randomly chosen seeds from the set [0, 1] - {0, 0.5, 1}
that have 8 significant digits at least. For each seed, we generate 1000-number-

sequences and 10000-number-sequences to test tent map. In general, the histograms

for them are acceptable for a uniformly distributed map, and the serial plots for all
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sequences show that they are neatly spread on the xy-plane without any dependence.

The results of the histograms of the numbers are also confirmed by Kolmogorov

Smirnov and chi-square statistical tests. Almost all tests reject the null hypothesis at

the 5% significance level. In the dependence case, nearly all p-values of runs tests are

not less than 0.05. All results are nearly acceptable.

We randomly choose 10 different seeds in order to represent the performance of

tent map in randomness tests. We illustrate histograms, and serial plots, and statistical

test results. 1000-number-sequences and 10000-number-sequences are generated for 10

different seeds separately. The histograms and the serial plots for two different seeds

under the tent map are shown in Figure 3.1-4. The rest of histograms and serial plots

can be found in Appendix A.

(a) Histogram with 50 subintervals (b) Serial plot

Figure 3.1: Tent map (μ = 2): Seed = 0.010666884564, Iteration no = 1000.
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(a) Histogram with 50 subintervals (b) Serial plot

Figure 3.2: Tent map (μ = 2): Seed = 0.010666884564, Iteration no = 10000.

(a) Histogram with 50 subintervals (b) Serial plot

Figure 3.3: Tent map (μ = 2): Seed = 0.472433844224, Iteration no = 1000.

(a) Histogram with 50 subintervals (b) Serial plot

Figure 3.4: Tent map (μ = 2): Seed = 0.472433844224, Iteration no = 10000.
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The results of the statistical tests for 10 different seeds under the tent map with

parameter μ = 2 can be seen in the Table 3.1, and Table 3.2. The first two columns

of the tables are the statistical test results for two different seeds whose histograms,

and serial plots are seen above. As observed in the tables, almost all p-values of tests

are larger than 0.05. All correlation coefficients are in the interval [−0.635, 0.635] for

iteration no = 1000, (see Table 3.1), and the half of the correlation coefficients are in

the interval [−0.2, 0.2] for iteration no = 10000, (see Table 3.2).

Table 3.1: The statistical test results for 10 different seeds under tent map (μ = 2):

Iteration no = 1000.
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Table 3.2: The statistical test results for 10 different seeds under tent map (μ = 2):

Iteration no = 10000.

3.2. Tent Map (μ = 2.00005)

The second suggested RNG, tent map with parameter μ = 2.00005, generates

more than 1000000 numbers for any given seed. But there is a problem about the

range of the map. The tent map with the parameter μ goes from its domain [0, 1] to

the range
[
0, μ

2

]
. Rarely, taking the parameter μ = 2.00005 results in the generated

numbers that are larger than 1 whereas they have to be in the interval [0, 1]. In order

to overcome this problem, we offer IF method. It is a simple IF statement that asks

if tent map produces a number either larger than 1 or not. When tent map generates

a number that is larger than 1, IF statement converts it to a number which is the

symmetric to the generated number based on 1. For instance, if tent map produce

xn = 1.000021, then it is converted to x∗
n = 0.999979. This operation does not harm

uniformity since the probability of the generation of numbers larger than 1 is equal to

0.000025
1.000025

.

The period of the map does not depend on seeds, and it is 1000000 at least.

Since there is no constraint on seeds, any seed works for the generation of numbers.
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We use many seeds to test the map statistically. For each seed, we generate 1000-

number-sequences and 10000-number-sequences. The histograms and serial plots of

them are observed, and the acceptance of them are confirmed. Then we consider the

statistical tests. The performance of the sequences in the statistical tests is considerably

high. Almost all p-values are in the acceptance region of the tests, and the correlation

coefficients are sufficient.

We represent the test performance of tent map with parameter μ = 2.00005 by

using 10 randomly selected different seeds. For each 10 different seeds, 1000-number-

sequences and 10000-number-sequences are generated. The histograms and the se-

rial plots of 2 out of 10 sequences from each group are shown below in Figure 3.5-8.

Histograms and serial plots of other sequences of generated numbers can be found in

Appendix B.

(a) Histogram with 50 subintervals (b) Serial plot

Figure 3.5: Tent map (μ = 2.00005): Seed = 0.819, Iteration no = 1000.



30

(a) Histogram with 50 subintervals (b) Serial plot

Figure 3.6: Tent map (μ = 2.00005): Seed = 0.819, Iteration no = 10000.

(a) Histogram with 50 subintervals (b) Serial plot

Figure 3.7: Tent map (μ = 2.00005): Seed = 0.07, Iteration no = 1000.

(a) Histogram with 50 subintervals (b) Serial plot

Figure 3.8: Tent map (μ = 2.00005): Seed = 0.07, Iteration no = 10000.
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The results of the statistical tests of 20 sequences of numbers can be seen in the

Table 3.3 and Table 3.4. The first two columns of the tables are the statistical test

results of the sequences of numbers which have histograms, and serial plots above. As

shown in the tables, almost all p-values of tests are larger than 0.05. More than half

of the correlation coefficients are in the acceptable region for autocorrelation test.

Table 3.3: The statistical test results for 10 different seeds under tent map (μ =

2.00005): Iteration no = 1000.
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Table 3.4: The statistical test results for 10 different seeds under tent map (μ =

2.00005): Iteration no = 10000.

3.3. Logistic Map (ν = 4)

Logistic map with parameter ν = 4 is the third suggested RNG. It is not

only a chaotic dynamical system but also a high-periodic map. It generates 1000000

numbers and more. We generate hundreds of sequences of 1000 and 10000 numbers

to understand the properties of logistic map. An interesting point for the histograms

of them is that they look like U-shape. In other words, the sequences of generated

numbers are not uniformly distributed, (see Figure 3.9). We need to transform the

sequences of generated numbers to the sequences of uniformly distributed numbers.

We obtain the natural invariant density of the logistic map by the derivation of

the transformation [0]. For x in the interval Λμ = [0, 1], define y, in Λν = [0, 1], by

x = sin2(
πy

2
) =

1

2
[1− cos(πy)]. (3.1)
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Figure 3.9: Histogram for logistic map.

The natural invariant density of the logistic map is derived easily

ρ(x) =

∣∣∣∣dydx
∣∣∣∣ ρ(y)

where ρ(y) = 1. Since under Equation 3.1 y is shown to have uniform invariant density

[0]. One can easily compute that

ρ(x) =
π−1

[x(1− x)]
1
2

. (3.2)

The graph of Equation 3.2 can be seen in Figure 3.10. This graph and Figure 3.9

are very similar. This result implies that the logistic map does not uniformly distributed

on the interval [0, 1], and the transformation is necessary to have a uniformly distributed

function.

After the transformation, we get the sequences of numbers that are uniformly

distributed. The sequence of numbers used in Figure 3.9 transforms to the sequence of

numbers that is uniformly distributed, as seen in Figure 3.11. Now, we can take into

consideration the transformed sequences of numbers for logistic map. In the thesis,

we apply the transformation on the sequences of the numbers that are generated by

logistic map, and we call transformed logistic map as T-logistic map.
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Figure 3.10: The graph of invariant density of logistic map

Figure 3.11: Histogram for transformed logistic map (T-logistic map).
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The period of T-logistic map does not depend on seeds, and it can be more

than 1000000 numbers. The hundreds of seeds from [0, 1] are used in the randomness

tests of T-logistic map. For each seed, the sequences of 1000 and 10000 numbers

are produced, and transformed. The histograms of the sequences of the numbers are

acceptable to pass the uniformity tests. The serial plots of them imply the independence

of the numbers. They are also tested statistically. According to the tests results,

T-logistic map produces the sequences of random numbers.

We randomly select 10 different seeds. Ten of 1000-number-sequences and ten

of 10000-number-sequences are computed and transformed. The histograms and the

serial plots of 2 out of 10 sequences from each group are shown below in Figure 3.12-15.

The histograms and the serial plots of 16 sequences can be found in Appendix C.

(a) Histogram with 50 subintervals (b) Serial plot

Figure 3.12: T-logistic map (ν = 4): Seed = 0.774, Iteration no = 1000.

The results of eye test are also confirmed by statistical tests. We apply the

statistical tests into 20 sequences of numbers. Almost in all tests the null hypothesis is

rejected at the 5% significance level. The test results are affirmative. The results of the

statistical tests of 20 sequences can be seen in the Table 3.5, and Table 3.6. The first

two columns of the tables are the statistical test results of the sequences of numbers

which have histograms, and serial plots above. The test results show that T-logistic

map with parameter ν = 4 can be used as a RNG.
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(a) Histogram with 50 subintervals (b) Serial plot

Figure 3.13: T-logistic map (ν = 4): Seed = 0.774, Iteration no = 10000.

(a) Histogram with 50 subintervals (b) Serial plot

Figure 3.14: T-logistic map (ν = 4): Seed = 0.174, Iteration no = 1000.

(a) Histogram with 50 subintervals (b) Serial plot

Figure 3.15: T-logistic map (ν = 4): Seed = 0.174, Iteration no = 10000.



37

Table 3.5: The statistical test results for 10 different seeds under T-logistic map (ν = 4):

Iteration no = 1000.

Table 3.6: The statistical test results for 10 different seeds under T-logistic map (ν = 4):

Iteration no = 10000.
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3.4. Connecting Family of Maps (α = 0.999 and α = 1.01)

The last suggested RNGs are connecting family of mappings with parameters

α = 0.999 and α = 1.01. The first observation about the maps is the graphs of them.

They are similar to the graphs of the tent map with parameter μ = 2, as shown

in Figure 3.16. They have same properties as the tent map, except the relationship

between seed and period of the tent map. The periods of connecting maps are not

sensitive on seeds. Moreover, the periods of them become more than 1000000.

(a) C0.999 (b) C1.01

Figure 3.16: The graph of connecting maps (α = 0.999 and α = 1.01).

We generate hundreds of sequences of numbers, and observe histograms and serial

plots. All histograms confirm uniformity of the sequences of the numbers. Serial plots

illustrate that the numbers are independently spread on the xy-plane. The sequences

of numbers also pass the statistical tests. Almost all p-values of uniformity tests and

dependence tests are adequate that the connecting maps have random behavior.

We select 10 different seeds randomly and generate 20 sequences of numbers for

each parameter α = 0.999 and α = 1.01. The histograms and the serial plots of 2

out of 10 sequences from each group for α = 0.999 and α = 1.01 are shown in Figure

3.17-20 and Figure 3.21-24 respectively. The rest of histograms and serial plots of two

maps can be found in Appendix D and Appendix E.
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(a) Histogram with 50 subintervals (b) Serial plot

Figure 3.17: Connecting map (α = 0.999): Seed = 0.727, Iteration no = 1000.

(a) Histogram with 50 subintervals (b) Serial plot

Figure 3.18: Connecting map (α = 0.999): Seed = 0.727, Iteration no = 10000.

(a) Histogram with 50 subintervals (b) Serial plot

Figure 3.19: Connecting map (α = 0.999): Seed = 0.819, Iteration no = 1000.
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(a) Histogram with 50 subintervals (b) Serial plot

Figure 3.20: Connecting map (α = 0.999): Seed = 0.819, Iteration no = 10000.

(a) Histogram with 50 subintervals (b) Serial plot

Figure 3.21: Connecting map (α = 1.01): Seed = 0.0006, Iteration no = 1000.

(a) Histogram with 50 subintervals (b) Serial plot

Figure 3.22: Connecting map (α = 1.01): Seed = 0.0006, Iteration no = 10000.
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(a) Histogram with 50 subintervals (b) Serial plot

Figure 3.23: Connecting map (α = 1.01): Seed = 0.8066, Iteration no = 1000.

(a) Histogram with 50 subintervals (b) Serial plot

Figure 3.24: Connecting map (α = 1.01): Seed = 0.8066, Iteration no = 10000.
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We apply the statistical tests to 20 sequences of generated numbers. The results

of the statistical tests of 20 sequences can be seen in the Table 3.7, Table 3.8, Table 3.9,

and Table 3.10. The first two columns of the tables are the statistical test results of the

sequences of numbers which have histograms, and serial plots above. The connecting

family of mappings with parameters α = 0.999 and α = 1.01 pass randomness tests,

and uniformity tests.

Table 3.7: The statistical test results for 10 different seeds under connecting map

(α = 0.999): Iteration no = 1000.
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Table 3.8: The statistical test results for 10 different seeds under connecting map

(α = 0.999): Iteration no = 10000.

Table 3.9: The statistical test results for 10 different seeds under connecting map

(α = 1.01): Iteration no = 1000.
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Table 3.10: The statistical test results for 10 different seeds under connecting map

(α = 1.01): Iteration no = 10000.

3.5. Lyapunov Exponents Of The Suggested Maps

The Lyapunov exponent measures the rate of exponential divergence of nearby

points. In practice, it gives an idea about how fast a chaotic map becomes

unpredictable. If the Lyapunov exponent is ln(c) then we can expect an error

between two corresponding final points cnε after n iterations where ε was the initial

error between two starting points.

The computation of the Lyapunov exponent varies depending on the type of

the map: discrete maps and continuous maps. Since the suggested chaotic maps are

continuous functions on the interval [0, 1], Equation 3.3 is used in order to compute

the Lyapunov exponents (Λ) of the maps. The integral equation consists of two parts,

invariant density of map (ρ(x)) and logarithm of the derivative of map.

Λ =

∫ 1

0

ρ(x)ln
∣∣∣f ′

(x)
∣∣∣ dx (3.3)
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For the Tent map f(x) = 1− |1− 2x|, the natural invariant density (ρ(x)) of the

map is known to be 1, [0]. The derivative of tent map (f
′
(x)) is equal to 2 if x < 1

2

and −2 otherwise. Therefore, the Lyapunov exponent of the tent map with parameter

μ = 2 is ln2 (∼= 0.69314).

For the tent map f(x) = 1 − |1− μx| with μ = 2.00005, we need to find the

invariant density of the map after applied IF method. This tent map consists of four

subintervals after IF method was applied, which are listed below.

f(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

2.00005x , 0 < x < 1
2.00005

−2.00005x+ 2 , 1
2.00005

< x < 1
2

2.00005x− 0.00005 , 1
2
< x < 1.00005

2.00005

−2.00005x+ 2.00005 , 1.00005
2.00005

< x < 1

The stationary probabilities of each part are calculated in order to compute the

invariant density of the tent map. They are 0.499975001, 0.000012499, 0.000012499,

0.5 respectively for each interval. The natural invariant density of the tent map is:

ρ(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.499975001
0.4999875

, 0 < x < 1
2.00005

0.000012499
0.0000125

, 1
2.00005

< x < 1
2

0.000012499
0.0000125

, 1
2
< x < 1.00005

2.00005

0.5
0.4999875

, 1.00005
2.00005

< x < 1

The above function is thus very close to 1.

The derivative of this tent map is equal to 2.00005 if x < 1
2
and −2.00005

otherwise. So the integral equation becomes the multiplication of ln(2.00005) and

the integral of the invariant density. Since the integral of the density function is 1,

the Lyapunov exponent of the tent map with parameter μ = 2.00005 is ln(2.00005)

(∼= 0.69317).
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For transformed logistic map (T-logistic map) f(x) = 1−|1− 2x|, it is equivalent
to the tent map with parameter μ = 2. That’s why the natural invariant density

of the T-logistic map is 1, and the Lyapunov exponent of the T-logistic map is ln2

(∼= 0.69314).

For the connecting maps f(x) = 1 − |1− 2x|α, the Lyapunov exponents of the

connecting maps with parameters α = 0.999 and α = 1.01 are not easily computed

due to the fact that there is no explicit function to represent the invariant densities of

the connecting maps. To determine the invariant densities of the connecting maps we

consider the histograms of the numbers that are generated by the connecting maps,

since the invariant density of a map is a function that fits to the histograms of the

numbers generated by map.

Firstly, we observe histograms of the generated numbers for two connecting maps.

As can be seen in the frequency histograms in Section 3.4, the invariant densities of

two connecting maps have uniformly distributed shapes, (also see Appendix D and E).

Secondly, we apply the statistical chi-square tests to the numbers generated by

these connecting maps. As can be seen in Section 3.4, ten 1000-number-sequences

and ten 10000-number-sequences for 10 different seeds are generated and chi-square

tests are applied to analyze the property of uniformity of the connecting maps. The

performances of the maps for chi-square tests are summarized in Table 3.11. The

table shows the number of chi-square tests passed with 10 different seeds under two

connecting maps where p-values of 0.05 is used as the test criteria.

Table 3.11: Number of chi-square tests passed with 10 different seeds for two connecting

maps (p-values of 0.05 is used as the test criteria).

Iteration no = 1000 Iteration no = 10000

Statistical Tests α = 0.999 α = 1.01 α = 0.999 α = 1.01

Total # of passes in

10 Chisquare Tests
8 10 8 9

Passing Success 80.0% 100.0% 80.0% 90.0%
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In Section 4.2, more test results comparing the uniformities of connecting maps

versus linear congruential generators are provided. In conclusion, we can assume that

invariant density of these connecting maps is approximately 1.

The Lyapunov exponent of the connecting maps with parameter α = 1.01 is next

computed:

Λ =

∫ 1

0

ρ(x)ln
∣∣∣f ′

(x)
∣∣∣ dx

=

∫ 1

0

ln
∣∣2(1.01)(1− 2x)0.01

∣∣ dx
= ln(2.02) +

∫ 1

0

ln
∣∣(1− 2x)0.01

∣∣ dx
= ln(2.02) +

∫ 1
2

0

ln((1− 2x)0.01)dx+

∫ 1

1
2

ln((2x− 1)0.01)dx

= ln(2.02) + (0.01)

∫ 1
2

0

ln(1− 2x)dx+ (0.01)

∫ 1

1
2

ln(2x− 1)dx

= ln(2.02) + (0.01)
1

2

∫ 1

0

ln(u)du+ (0.01)
1

2

∫ 1

0

ln(u)du

= ln(2.02) + (0.01) [uln(u)− u]10

= ln(2.02)− (0.01) ∼= 0.69309.
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The Lyapunov exponent of the connecting maps with parameter α = 0.999 is

computed:

Λ =

∫ 1

0

ρ(x)ln
∣∣∣f ′

(x)
∣∣∣ dx

=

∫ 1

0

ln
∣∣2(0.999)(1− 2x)−0.001

∣∣ dx
= ln(1.998) +

∫ 1

0

ln
∣∣(1− 2x)−0.001

∣∣ dx
= ln(1.998) +

∫ 1
2

0

ln((1− 2x)−0.001)dx+

∫ 1

1
2

ln((2x− 1)−0.001)dx

= ln(1.998)− (0.001)

∫ 1
2

0

ln(1− 2x)dx− (0.001)

∫ 1

1
2

ln(2x− 1)dx

= ln(1.998)− (0.001)
1

2

∫ 1

0

ln(u)du− (0.001)
1

2

∫ 1

0

ln(u)du

= ln(1.998)− (0.001) [uln(u)− u]10

= ln(1.998) + (0.001) ∼= 0.69314.

To conclude, the Lyapunov exponents of all suggested maps are exactly or

approximately 0.6931 ( ∼= ln2). If the initial error between two points is ε = 10−16,

then the error 2nε is approximately equal to 1 after n = 53 iterations.
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4. COMPARISON BETWEEN FIVE SUGGESTED

CHAOTIC MAPS AND SOME WELL-KNOWN LINEAR

CONGRUENTIAL GENERATORS (LCGs)

4.1. Linear Congruential Generators (LCGs)

In this part of the thesis, we will compare our five suggested chaotic maps with

some well-known linear congruential generators (LCGs). We would like to choose LCGs

that are conventionally used in many areas. Five different LCGs are selected for the

comparison. Two of them are multiplicative linear congruential generators (MLCGs),

and the other ones are linear congruential generators (LCGs), as listed in Table 4.1.

These generators are actively used in Borland C/C++, CodeWarrior, IBM VisualAge

C/C++, Apple CarbonLib, Borland Delphi, and Virtual Pascal. It is necessary to

compare five suggested chaotic maps with the well-known LCGs to understand whether

they are successful in generating of random numbers or not. If they are as successful

as LCGs, then we can approve the actual use of them as RNGs.

LCGs produces a sequence of integers, X1, X2, ... between 0 andm−1 by following

a recursive relation:

Xn+1 = (aXn + c) modm, i = 0, 1, 2, ...

They are defined from the set of integers {0, 1, 2, ...,m− 1} to the set of integers

{0, 1, 2, ...,m− 1}, but the five suggested RNGs are defined from [0, 1] to [0, 1]. For

meaningful results, we convert the chosen integer seeds for LCGs to real numbers in

[0, 1]. For the conversion, the chosen integer seeds for LCGs are divided by multiples

of 10. For instance, X0 = 123, 457 converts to X0 = 0.00123457 for tent map with

parameter μ = 2, and X0 = 0.123457 for the other four maps. (The reason of keeping

tent map with parameter μ = 2 separate are explained in the previous chapter.) The
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largest possible periods (P ) of LCGs can be calculated by the choice of a, c, m and

X0, [2].

Table 4.1: List of some well-known linear congruential generators (LCGs).

Source a m c P

MLCG 1 - 742938285 231 − 1 0 231 − 2

MLCG 2 Apple CarbonLib 16807 231 − 1 0 231 − 2

LCG 3 Borland C/C++ 22695477 232 1 232

LCG 4 CodeWarrior, 1103515245 232 12345 232

IBM VisualAge C/C++

LCG 5 Microsoft Visual, 214013 232 2531011 232

Quick C/C++

Before starting the comparison, we observe the histograms and serial plots of

the sequences of numbers generated by LCGs. We take two randomly selected seeds

for each LCG, and generate ten of 1000-number-sequences and ten of 10000-number-

sequences. The histograms and serial plots for LCGs are shown in Figure 4.1-20.

(a) Histogram with 50 subintervals (b) Serial plot

Figure 4.1: MLCG 1: Seed = 931, Iteration no = 1000.
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(a) Histogram with 50 subintervals (b) Serial plot

Figure 4.2: MLCG 1: Seed = 931, Iteration no = 10000.

(a) Histogram with 50 subintervals (b) Serial plot

Figure 4.3: MLCG 1: Seed = 6647, Iteration no = 1000.

(a) Histogram with 50 subintervals (b) Serial plot

Figure 4.4: MLCG 1: Seed = 6647, Iteration no = 10000.
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Table 4.2: The statistical test results for two different seeds under MLCG 1.

(a) Histogram with 50 subintervals (b) Serial plot

Figure 4.5: MLCG 2: Seed = 13, Iteration no = 1000.

(a) Histogram with 50 subintervals (b) Serial plot

Figure 4.6: MLCG 2: Seed = 13, Iteration no = 10000.
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(a) Histogram with 50 subintervals (b) Serial plot

Figure 4.7: MLCG 2: Seed = 36509, Iteration no = 1000.

(a) Histogram with 50 subintervals (b) Serial plot

Figure 4.8: MLCG 2: Seed = 36509, Iteration no = 10000.

Table 4.3: The statistical test results for two different seeds under MLCG 2.
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(a) Histogram with 50 subintervals (b) Serial plot

Figure 4.9: LCG 3: Seed = 1637, Iteration no = 1000.

(a) Histogram with 50 subintervals (b) Serial plot

Figure 4.10: LCG 3: Seed = 1637, Iteration no = 10000.

(a) Histogram with 50 subintervals (b) Serial plot

Figure 4.11: LCG 3: Seed = 5161, Iteration no = 1000.
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(a) Histogram with 50 subintervals (b) Serial plot

Figure 4.12: LCG 3: Seed = 5161, Iteration no = 10000.

Table 4.4: The statistical test results for two different seeds under LCG 3.
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The histograms and serial plots seem to be acceptable to pass the eye randomness

test. The test results of LCGs are similar with those of five suggested chaotic maps as

seen in Table 4.2-6.

(a) Histogram with 50 subintervals (b) Serial plot

Figure 4.13: LCG 4: Seed = 42807, Iteration no = 1000.

(a) Histogram with 50 subintervals (b) Serial plot

Figure 4.14: LCG 4: Seed = 42807, Iteration no = 10000.
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(a) Histogram with 50 subintervals (b) Serial plot

Figure 4.15: LCG 4: Seed = 11, Iteration no = 1000.

(a) Histogram with 50 subintervals (b) Serial plot

Figure 4.16: LCG 4: Seed = 11, Iteration no = 10000.

Table 4.5: The statistical test results for two different seeds under LCG 4.
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(a) Histogram with 50 subintervals (b) Serial plot

Figure 4.17: LCG 5: Seed = 6625, Iteration no = 1000.

(a) Histogram with 50 subintervals (b) Serial plot

Figure 4.18: LCG 5: Seed = 6625, Iteration no = 10000.

(a) Histogram with 50 subintervals (b) Serial plot

Figure 4.19: LCG 5: Seed = 87, Iteration no = 1000.



59

(a) Histogram with 50 subintervals (b) Serial plot

Figure 4.20: LCG 5: Seed = 87, Iteration no = 10000.

Table 4.6: The statistical test results for two different seeds under LCG 5.
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4.2. Basic Comparison of Five Suggested Chaotic Maps and LCGs

We test the performance of five suggested chaotic maps and LCGs. We use

the seeds which are suggested by developers and actual users of LCGs. 20 suggested

different seeds are selected. Using these seeds, we run LCGs and the five suggested maps

to generate 1000-number-sequences and 10000-number-sequences. For each seed, there

are 20 different 1000-number-sequences and 10000-number-sequences

individually, generated by 10 different maps.

The first step is to observe histograms and serial plots of the sequences of numbers.

We scan 400 different histograms and serial plots, and all of them are good enough to

pass the eye test. Furthermore there is no significant difference between histograms

and serial plots of the sequences of numbers. Twenty of 400 figures are provided in

Appendix F and G.

The second step is the statistical tests. Kolmogorov Smirnov test and chi square

test are applied to compare the property of uniformity of the maps with each other.

Runs tests and autocorrelation test are taken into account to examine independence

property in each sequence of generated numbers. The test results of the sequences of

numbers for one of 20 seeds is listed below, (see Table 4.7 and Table 4.8). Although

the numbers of tests passed by LCGs are larger than ones by the five suggested chaotic

maps, there is no significant difference between the test results. When these results

are taken into account for the usability of the five chaotic maps as RNGs, they are as

successful as LCGs. The test results of the sequences of numbers for 19 seeds can be

found in Appendix H, I, J and K.

The overall performances of the tests are summarized in Table 4.9. The table

shows the number of tests passed with 20 different seeds under LGCs and five suggested

maps where p-values of 0.05 and the related confidence bounds, which are ±0.0632 and

±0.02 for the sample sizes 1000 and 10000 respectively, are used as the test criteria.

We consider Kolmogorov-Smirnov test and chi-square test for uniformity tests, and

autocorrelation test for serial test for each map. Test results are over 20 for each test,
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Table 4.7: The statistical test results for LGCs and five suggested maps: Seed =

3316779, Iteration no = 1000.

Table 4.8: The statistical test results for LGCs and five suggested maps: Seed =

3316779, Iteration no = 10000.
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and the sum of these results can be 60 at most.

LCGs seem to be somewhat more successful than the chaotic RNGs in statistical

tests. Tent map with parameter μ = 2.00005 and MLCG 2 reach success ratios of 90%

and 95% respectively, which are the highest ratios of the tests, when the number of

iterations is 1000. The minimum ratios are observed for T-logistic map and MLCG 1,

which are 75% and 85%. Overall average success rate of five suggested maps in tests

is 81%, and it is observed for LCGs as 90.3%.

When the number of iterations is 10000, the five suggested chaotic maps reach the

highest ratio at 85%. The highest ratio for LCGs is 86.7% in this case. The minimum

ratios of five suggested maps and LCGs are seen as 80% and 83.3% for connecting map

with the parameter α = 1.01 and LCG 5 respectively. Overall average success rate of

five suggested chaotic maps in tests is 83.3%, whereas it is 87.7% for LCGs, (see Table

4.9).

Table 4.9: Number of tests passed with 20 different seeds under LGCs and five sug-

gested maps (p-values of 0.05 is used as the test criteria).

These test ratios increase when p-values of 0.01 and the related confidence bounds,

which are ±0.0948 and ±0.03 for the sample sizes 1000 and 10000 respectively, are used

as the test criteria. The highest success ratios of 100% and of 98.3% are observed for

five suggested maps and LCGs respectively when the number of iterations is taken as

1000. The minimum ratios become 90% for five suggested maps, and 96.7% for LCGs.
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Overall average success rate of five suggested chaotic maps in tests is 96.7%, and it is

observed for LCGs as 97.7%.

When iteration number is 10000, a decrement is observed in the highest ratio for

five suggested chaotic maps. It decreases to 98.3%. However there is an increment

in the lowest ratio for them. It is observed as 93.3% for them. The highest ratio of

LCGs increases to 100%, and the lowest ratio of them reach to 98.3% in this situation.

Overall average success rate of five suggested chaotic maps and LCGs in tests become

95.7% and 99.7% respectively, (see Table 4.10).

Table 4.10: Number of tests passed with 20 different seeds under LGCs and five sug-

gested maps (p-values of 0.01 is used as the test criteria).
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4.3. Further Analysis and Comparisons of the Suggested Chaotic Maps

We consider five suggested chaotic maps and LCGs. The five chaotic maps pass

statistical tests satisfactorily, (see Table 4.9 and Table 4.10). These results support the

idea that the chaotic maps can generate random numbers like LCGs.

In the empirical tests, we consider histograms and serial plots for the generated

numbers for each map. Histograms show the frequencies of the generated numbers,

and serial plots illustrate the relations between the iteration number and the generated

numbers (n, xn).

For further analysis of the generated random numbers, we plot the graphs of

two consecutive iterated numbers (xn, xn+1). We take a seed, which is used in the

comparison section 4.2, and generate 1000 numbers to plot (xn, xn+1) graph of each

map. The graphs can be seen in Figure 4.21 and Figure 4.22 for chaotic maps and

LCGs respectively, and the statistical test results of the generated numbers can be

seen in Table 4.11.
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(a) Tent Map (μ = 2) (b) Tent Map (μ = 2.00005)

(c) T-logistic Map (ν = 4)

(d) Connecting Map (α = 0.999) (e) Connecting Map (α = 1.01)

Figure 4.21: The (xn, xn+1) graphs of chaotic maps.
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(a) MLCM1 (b) MLCM2

(c) LCM3 (d) LCM4

(e) LCM5

Figure 4.22: The (xn, xn+1) graph of LCGs.
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The figures show that the numbers generated by LCGs diffuse randomly in

(xn, xn+1) plane. This situation results from the modulus operation inside LCGs.

When chaotic maps are examined, the generated numbers draw the graphs of related

equations, which are obviously not random. Although the generated numbers are not

randomly distributed in (xn, xn+1) plane, the nature of chaotic dynamical maps do

contain strong unpredictability. Due to the property of chaotic maps, the generated

numbers are randomly distributed in (n, xn) plane and pass the related randomness

tests (as already seen in Section 4.2).

Table 4.11: The statistical test results for LCGs and five suggested maps: Seed =

915612027, Iteration no = 1000.

The unpredictability property of chaotic maps is so strong that they generate

randomly distributed numbers in (n, xn) plane. In order to obtain randomness in

(xn, xn+1) plane as well, using modulus operation with chaotic maps to generate random

numbers will probably produce better results. Such generated numbers may produce

independence test results as those of LCGs. The use of such chaotic maps with modulus

operations as RNGs can be a further research topic.
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5. CONCLUSION

This thesis deals with the generation of pseudo random numbers (PRNs) by

means of chaotic dynamical maps. The nature of a chaotic dynamical map contains

unpredictability itself, a motivation behind our thesis study. The research question is:

to what extent some chaotic dynamical maps can be used in the generation of random

numbers.

We develop five different random number generators (RNGs) that are based on

five different chaotic dynamical maps. In three steps, we check the performances of five

suggested chaotic maps as RNGs.

Firstly, the periods of five suggested maps are controlled. Conditions that

guarantee the generation of more than 1000000 numbers without any cycles are deter-

mined for each chaotic map. After it is confirmed that each map can generate 1000000

numbers at least, the sequences of 1000 and 10000 numbers are generated as samples

in order to test the uniformity and randomness of each map.

Secondly, the histograms and the serial plots of the sequences of generated

numbers are examined visually as a first test. Such graphs give an idea about the

randomness of the maps. We check uniformity of the generated numbers visually with

their histograms, and independence of the sequences of these numbers with serial plots.

It is observed that the suggested RNGs perform well according to visual tests.

Thirdly, the generated numbers are tested by Kolmogorov Smirnov test, and

chi-square test to assess their properties of uniformity. (Chi-square tests are run for

different numbers of classes: 30, 50, 80, and 100). Runs tests (runs up and down

test, and runs above and below mean test), and autocorrelation tests are next applied

to the sequences of generated numbers to test their independence property. The five

suggested maps performed well in all these tests, and uniformity and independence of

the sequences of the generated numbers are confirmed.
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We finally compare our suggested maps with some best known linear congruential

generators (LCGs). We select 20 different seeds that conform the desired properties of

LCGs for the comparison of LCGs and five suggested chaotic RNGs. The visual tests

and statistical tests are both taken into account. No undesirable patterns are observed

in visual tests for any of the generators. In statistical tests, we compare the test results

of LCGs and five suggested maps.

LCGs perform well since they are already suggested as some of the best generators

in the literature and the seeds satisfy some suggested specific conditions. (ie. the seeds

are all prime or odd numbers.) However, the five suggested chaotic dynamical maps

perform almost as well as LCGs. Similarly the performance of five suggested chaotic

RNGs can be improved through defining seeds that perform well for these five RNGs.

To sum up, we propose that our five chaotic dynamical maps can be potentially

used as random number generators. These suggested random number generators have

only one simple chaotic function each, so they are practical and efficient.

The use of such chaotic maps as RNGs can be further studied by investigating

the relation between seeds used and the resulting random number properties. More

detailed mathematical, statistical and numerical properties of the suggested generators

also constitute useful further research topics. As another further research topic in order

to improve performance of suggested chaotic generators, the use of modulus operations

with suggested chaotic generators can be analyzed.
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APPENDIX A: HISTOGRAMS FOR TENT MAP (μ = 2)

(a) Histogram with 50 subintervals (b) Serial plot

Figure A.1: Tent map (μ = 2): Seed = 0.197600506499, Iteration no = 1000.

(a) Histogram with 50 subintervals (b) Serial plot

Figure A.2: Tent map (μ = 2): Seed = 0.197600506499, Iteration no = 10000.
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(a) Histogram with 50 subintervals (b) Serial plot

Figure A.3: Tent map (μ = 2): Seed = 0.231069988461, Iteration no = 1000.

(a) Histogram with 50 subintervals (b) Serial plot

Figure A.4: Tent map (μ = 2): Seed = 0.231069988461, Iteration no = 10000.

(a) Histogram with 50 subintervals (b) Serial plot

Figure A.5: Tent map (μ = 2): Seed = 0.98388083416, Iteration no = 1000.
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(a) Histogram with 50 subintervals (b) Serial plot

Figure A.6: Tent map (μ = 2): Seed = 0.98388083416, Iteration no = 10000.

(a) Histogram with 50 subintervals (b) Serial plot

Figure A.7: Tent map (μ = 2): Seed = 0.389913876011, Iteration no = 1000.

(a) Histogram with 50 subintervals (b) Serial plot

Figure A.8: Tent map (μ = 2): Seed = 0.389913876011, Iteration no = 10000.



73

(a) Histogram with 50 subintervals (b) Serial plot

Figure A.9: Tent map (μ = 2): Seed = 0.455019664777, Iteration no = 1000.

(a) Histogram with 50 subintervals (b) Serial plot

Figure A.10: Tent map (μ = 2): Seed = 0.455019664777, Iteration no = 10000.

(a) Histogram with 50 subintervals (b) Serial plot

Figure A.11: Tent map (μ = 2): Seed = 0.490444465331, Iteration no = 1000.
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(a) Histogram with 50 subintervals (b) Serial plot

Figure A.12: Tent map (μ = 2): Seed = 0.490444465331, Iteration no = 10000.

(a) Histogram with 50 subintervals (b) Serial plot

Figure A.13: Tent map (μ = 2): Seed = 0.086948882143, Iteration no = 1000.

(a) Histogram with 50 subintervals (b) Serial plot

Figure A.14: Tent map (μ = 2): Seed = 0.086948882143, Iteration no = 10000.
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(a) Histogram with 50 subintervals (b) Serial plot

Figure A.15: Tent map (μ = 2): Seed = 0.686808244224, Iteration no = 1000.

(a) Histogram with 50 subintervals (b) Serial plot

Figure A.16: Tent map (μ = 2): Seed = 0.686808244224, Iteration no = 10000.
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APPENDIX B: HISTOGRAMS FOR TENT MAP

(μ = 2.00005)

(a) Histogram with 50 subintervals (b) Serial plot

Figure B.1: Tent map (μ = 2.00005): Seed = 0.945195357852, Iteration no = 1000.

(a) Histogram with 50 subintervals (b) Serial plot

Figure B.2: Tent map (μ = 2.00005): Seed = 0.945195357852, Iteration no = 10000.
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(a) Histogram with 50 subintervals (b) Serial plot

Figure B.3: Tent map (μ = 2.00005): Seed = 0.005382078128663, Iteration no = 1000.

(a) Histogram with 50 subintervals (b) Serial plot

Figure B.4: Tent map (μ = 2.00005): Seed = 0.005382078128663, Iteration no = 10000.

(a) Histogram with 50 subintervals (b) Serial plot

Figure B.5: Tent map (μ = 2.00005): Seed = 0.385874582044063, Iteration no = 1000.
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(a) Histogram with 50 subintervals (b) Serial plot

Figure B.6: Tent map (μ = 2.00005): Seed = 0.385874582044063, Iteration no = 10000.

(a) Histogram with 50 subintervals (b) Serial plot

Figure B.7: Tent map (μ = 2.00005): Seed = 0.991, Iteration no = 1000.

(a) Histogram with 50 subintervals (b) Serial plot

Figure B.8: Tent map (μ = 2.00005): Seed = 0.991, Iteration no = 10000.
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(a) Histogram with 50 subintervals (b) Serial plot

Figure B.9: Tent map (μ = 2.00005): Seed = 0.517, Iteration no = 1000.

(a) Histogram with 50 subintervals (b) Serial plot

Figure B.10: Tent map (μ = 2.00005): Seed = 0.517, Iteration no = 10000.

(a) Histogram with 50 subintervals (b) Serial plot

Figure B.11: Tent map (μ = 2.00005): Seed = 0.197600506499, Iteration no = 1000.



80

(a) Histogram with 50 subintervals (b) Serial plot

Figure B.12: Tent map (μ = 2.00005): Seed = 0.197600506499, Iteration no = 10000.

(a) Histogram with 50 subintervals (b) Serial plot

Figure B.13: Tent map (μ = 2.00005): Seed = 0.267781590398, Iteration no = 1000.

(a) Histogram with 50 subintervals (b) Serial plot

Figure B.14: Tent map (μ = 2.00005): Seed = 0.267781590398, Iteration no = 10000.
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(a) Histogram with 50 subintervals (b) Serial plot

Figure B.15: Tent map (μ = 2.00005): Seed = 0.897496645632, Iteration no = 1000.

(a) Histogram with 50 subintervals (b) Serial plot

Figure B.16: Tent map (μ = 2.00005): Seed = 0.897496645632, Iteration no = 10000.
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APPENDIX C: HISTOGRAMS FOR T-LOGISTIC MAP

(ν = 4)

(a) Histogram with 50 subintervals (b) Serial plot

Figure C.1: T-logistic map (ν = 4): Seed = 0.973, Iteration no = 1000.

(a) Histogram with 50 subintervals (b) Serial plot

Figure C.2: T-logistic map (ν = 4): Seed = 0.973, Iteration no = 10000.
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(a) Histogram with 50 subintervals (b) Serial plot

Figure C.3: T-logistic map (ν = 4): Seed = 0.912091805655299, Iteration no = 1000.

(a) Histogram with 50 subintervals (b) Serial plot

Figure C.4: T-logistic map (ν = 4): Seed = 0.912091805655299, Iteration no = 10000.

(a) Histogram with 50 subintervals (b) Serial plot

Figure C.5: T-logistic map (ν = 4): Seed = 0.68, Iteration no = 1000.
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(a) Histogram with 50 subintervals (b) Serial plot

Figure C.6: T-logistic map (ν = 4): Seed = 0.68, Iteration no = 10000.

(a) Histogram with 50 subintervals (b) Serial plot

Figure C.7: T-logistic map (ν = 4): Seed = 0.58, Iteration no = 1000.

(a) Histogram with 50 subintervals (b) Serial plot

Figure C.8: T-logistic map (ν = 4): Seed = 0.58, Iteration no = 10000.
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(a) Histogram with 50 subintervals (b) Serial plot

Figure C.9: T-logistic map (ν = 4): Seed = 0.282, Iteration no = 1000.

(a) Histogram with 50 subintervals (b) Serial plot

Figure C.10: T-logistic map (ν = 4): Seed = 0.282, Iteration no = 10000.

(a) Histogram with 50 subintervals (b) Serial plot

Figure C.11: T-logistic map (ν = 4): Seed = 0.4, Iteration no = 1000.
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(a) Histogram with 50 subintervals (b) Serial plot

Figure C.12: T-logistic map (ν = 4): Seed = 0.4, Iteration no = 10000.

(a) Histogram with 50 subintervals (b) Serial plot

Figure C.13: T-logistic map (ν = 4): Seed = 0.758167338031333, Iteration no = 1000.

(a) Histogram with 50 subintervals (b) Serial plot

Figure C.14: T-logistic map (ν = 4): Seed = 0.758167338031333, Iteration no = 10000.
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(a) Histogram with 50 subintervals (b) Serial plot

Figure C.15: T-logistic map (ν = 4): Seed = 0.809, Iteration no = 1000.

(a) Histogram with 50 subintervals (b) Serial plot

Figure C.16: T-logistic map (ν = 4): Seed = 0.809, Iteration no = 10000.
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APPENDIX D: HISTOGRAMS FOR CONNECTING MAP

(α = 0.999)

(a) Histogram with 50 subintervals (b) Serial plot

Figure D.1: Connecting map (α = 0.999): Seed = 0.1, Iteration no = 1000.

(a) Histogram with 50 subintervals (b) Serial plot

Figure D.2: Connecting map (α = 0.999): Seed = 0.1, Iteration no = 10000.
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(a) Histogram with 50 subintervals (b) Serial plot

Figure D.3: Connecting map (α = 0.999): Seed = 0.98, Iteration no = 1000.

(a) Histogram with 50 subintervals (b) Serial plot

Figure D.4: Connecting map (α = 0.999): Seed = 0.98, Iteration no = 10000.

(a) Histogram with 50 subintervals (b) Serial plot

Figure D.5: Connecting map (α = 0.999): Seed = 0.6811, Iteration no = 1000.
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(a) Histogram with 50 subintervals (b) Serial plot

Figure D.6: Connecting map (α = 0.999): Seed = 0.6811, Iteration no = 10000.

(a) Histogram with 50 subintervals (b) Serial plot

Figure D.7: Connecting map (α = 0.999): Seed = 0.002, Iteration no = 1000.

(a) Histogram with 50 subintervals (b) Serial plot

Figure D.8: Connecting map (α = 0.999): Seed = 0.002, Iteration no = 10000.
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(a) Histogram with 50 subintervals (b) Serial plot

Figure D.9: Connecting map (α = 0.999): Seed = 0.7, Iteration no = 1000.

(a) Histogram with 50 subintervals (b) Serial plot

Figure D.10: Connecting map (α = 0.999): Seed = 0.7, Iteration no = 10000.
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(a) Histogram with 50 subintervals (b) Serial plot

Figure D.11: Connecting map (α = 0.999): Seed = 0.298698545648568, Iteration no =

1000.

(a) Histogram with 50 subintervals (b) Serial plot

Figure D.12: Connecting map (α = 0.999): Seed = 0.298698545648568, Iteration no =

10000.
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(a) Histogram with 50 subintervals (b) Serial plot

Figure D.13: Connecting map (α = 0.999): Seed = 0.525620161505902, Iteration no =

1000.

(a) Histogram with 50 subintervals (b) Serial plot

Figure D.14: Connecting map (α = 0.999): Seed = 0.525620161505902, Iteration no =

10000.
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(a) Histogram with 50 subintervals (b) Serial plot

Figure D.15: Connecting map (α = 0.999): Seed = 0.333, Iteration no = 1000.

(a) Histogram with 50 subintervals (b) Serial plot

Figure D.16: Connecting map (α = 0.999): Seed = 0.333, Iteration no = 10000.
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APPENDIX E: HISTOGRAMS FOR CONNECTING MAP

(α = 1.01)

(a) Histogram with 50 subintervals (b) Serial plot

Figure E.1: Connecting map (α = 1.01): Seed = 0.672551918078352, Iteration no =

1000.

(a) Histogram with 50 subintervals (b) Serial plot

Figure E.2: Connecting map (α = 1.01): Seed = 0.672551918078352, Iteration no =

10000.
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(a) Histogram with 50 subintervals (b) Serial plot

Figure E.3: Connecting map (α = 1.01): Seed = 0.189, Iteration no = 1000.

(a) Histogram with 50 subintervals (b) Serial plot

Figure E.4: Connecting map (α = 1.01): Seed = 0.189, Iteration no = 10000.

(a) Histogram with 50 subintervals (b) Serial plot

Figure E.5: Connecting map (α = 1.01): Seed = 0.747, Iteration no = 1000.
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(a) Histogram with 50 subintervals (b) Serial plot

Figure E.6: Connecting map (α = 1.01): Seed = 0.747, Iteration no = 10000.

(a) Histogram with 50 subintervals (b) Serial plot

Figure E.7: Connecting map (α = 1.01): Seed = 0.880223477310122, Iteration no =

1000.
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(a) Histogram with 50 subintervals (b) Serial plot

Figure E.8: Connecting map (α = 1.01): Seed = 0.880223477310122, Iteration no =

10000.

(a) Histogram with 50 subintervals (b) Serial plot

Figure E.9: Connecting map (α = 1.01): Seed = 0.9, Iteration no = 1000.
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(a) Histogram with 50 subintervals (b) Serial plot

Figure E.10: Connecting map (α = 1.01): Seed = 0.9, Iteration no = 10000.

(a) Histogram with 50 subintervals (b) Serial plot

Figure E.11: Connecting map (α = 1.01): Seed = 0.361436078541452, Iteration no =

1000.
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(a) Histogram with 50 subintervals (b) Serial plot

Figure E.12: Connecting map (α = 1.01): Seed = 0.361436078541452, Iteration no =

10000.

(a) Histogram with 50 subintervals (b) Serial plot

Figure E.13: Connecting map (α = 1.01): Seed = 0.6001, Iteration no = 1000.
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(a) Histogram with 50 subintervals (b) Serial plot

Figure E.14: Connecting map (α = 1.01): Seed = 0.6001, Iteration no = 10000.

(a) Histogram with 50 subintervals (b) Serial plot

Figure E.15: Connecting map (α = 1.01): Seed = 0.24, Iteration no = 1000.

(a) Histogram with 50 subintervals (b) Serial plot

Figure E.16: Connecting map (α = 1.01): Seed = 0.24, Iteration no = 10000.
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APPENDIX F: HISTOGRAMS FOR LCGs

(a) Histogram with 50 subintervals (b) Serial plot

Figure F.1: MLCG 1: Seed = 3316779, Iteration no = 1000.

(a) Histogram with 50 subintervals (b) Serial plot

Figure F.2: MLCG 1: Seed = 3316779, Iteration no = 10000.
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(a) Histogram with 50 subintervals (b) Serial plot

Figure F.3: MLCG 2: Seed = 3316779, Iteration no = 1000.

(a) Histogram with 50 subintervals (b) Serial plot

Figure F.4: MLCG 2: Seed = 3316779, Iteration no = 10000.

(a) Histogram with 50 subintervals (b) Serial plot

Figure F.5: LCG 3: Seed = 3316779, Iteration no = 1000.
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(a) Histogram with 50 subintervals (b) Serial plot

Figure F.6: LCG 3: Seed = 3316779, Iteration no = 10000.

(a) Histogram with 50 subintervals (b) Serial plot

Figure F.7: LCG 4: Seed = 3316779, Iteration no = 1000.

(a) Histogram with 50 subintervals (b) Serial plot

Figure F.8: LCG 4: Seed = 3316779, Iteration no = 10000.
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(a) Histogram with 50 subintervals (b) Serial plot

Figure F.9: LCG 5: Seed = 3316779, Iteration no = 1000.

(a) Histogram with 50 subintervals (b) Serial plot

Figure F.10: LCG 5: Seed = 3316779, Iteration no = 10000.



106

APPENDIX G: HISTOGRAMS FOR FIVE SUGGESTED

MAPS

(a) Histogram with 50 subintervals (b) Serial plot

Figure G.1: Tent map (μ = 2): Seed = 0.03316779, Iteration no = 1000.

(a) Histogram with 50 subintervals (b) Serial plot

Figure G.2: Tent map (μ = 2): Seed = 0.03316779, Iteration no = 10000.
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(a) Histogram with 50 subintervals (b) Serial plot

Figure G.3: Tent map (μ = 2.00005): Seed = 0.3316779, Iteration no = 1000.

(a) Histogram with 50 subintervals (b) Serial plot

Figure G.4: Tent map (μ = 2.00005): Seed = 0.33167, Iteration no = 10000.

(a) Histogram with 50 subintervals (b) Serial plot

Figure G.5: T-logistic map (ν = 4): Seed = 0.33167, Iteration no = 1000.
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(a) Histogram with 50 subintervals (b) Serial plot

Figure G.6: T-logistic map (ν = 4): Seed = 0.3316779, Iteration no = 10000.

(a) Histogram with 50 subintervals (b) Serial plot

Figure G.7: Connecting map (α = 0.999): Seed = 0.3316779, Iteration no = 1000.

(a) Histogram with 50 subintervals (b) Serial plot

Figure G.8: Connecting map (α = 0.999): Seed = 0.3316779, Iteration no = 10000.
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(a) Histogram with 50 subintervals (b) Serial plot

Figure G.9: Connecting map (α = 1.01): Seed = 0.3316779, Iteration no = 1000.

(a) Histogram with 50 subintervals (b) Serial plot

Figure G.10: Connecting map (α = 1.01): Seed = 0.3316779, Iteration no = 10000.
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APPENDIX H: THE STATISTICAL TEST RESULTS - 1

Table H.1: The statistical test results: Seed = 449, Iteration no = 1000.

Table H.2: The statistical test results: Seed = 181081, Iteration no = 1000.
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Table H.3: The statistical test results: Seed = 890123, Iteration no = 1000.

Table H.4: The statistical test results: Seed = 1, Iteration no = 1000.
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Table H.5: The statistical test results: Seed = 9301, Iteration no = 1000.

Table H.6: The statistical test results: Seed = 56623185, Iteration no = 1000.
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Table H.7: The statistical test results: Seed = 27683, Iteration no = 1000.

Table H.8: The statistical test results: Seed = 77, Iteration no = 1000.
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Table H.9: The statistical test results: Seed = 74601189, Iteration no = 1000.
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APPENDIX I: THE STATISTICAL TEST RESULTS - 2

Table I.1: The statistical test results: Seed = 89, Iteration no = 1000.

Table I.2: The statistical test results: Seed = 590223, Iteration no = 1000.
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Table I.3: The statistical test results: Seed = 39818, Iteration no = 1000.

Table I.4: The statistical test results: Seed = 123, Iteration no = 1000.
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Table I.5: The statistical test results: Seed = 6979, Iteration no = 1000.

Table I.6: The statistical test results: Seed = 821129, Iteration no = 1000.
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Table I.7: The statistical test results: Seed = 91561202, Iteration no = 1000.

Table I.8: The statistical test results: Seed = 112319, Iteration no = 1000.
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Table I.9: The statistical test results: Seed = 277, Iteration no = 1000.

Table I.10: The statistical test results: Seed = 4612967, Iteration no = 1000.
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APPENDIX J: THE STATISTICAL TEST RESULTS - 3

Table J.1: The statistical test results: Seed = 449, Iteration no = 10000.

Table J.2: The statistical test results: Seed = 181081, Iteration no = 10000.
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Table J.3: The statistical test results: Seed = 890123, Iteration no = 10000.

Table J.4: The statistical test results: Seed = 1, Iteration no = 10000.
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Table J.5: The statistical test results: Seed = 9301, Iteration no = 10000.

Table J.6: The statistical test results: Seed = 566231, Iteration no = 10000.
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Table J.7: The statistical test results: Seed = 27683, Iteration no = 10000.

Table J.8: The statistical test results: Seed = 77, Iteration no = 10000.
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Table J.9: The statistical test results: Seed = 746011, Iteration no = 10000.
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APPENDIX K: THE STATISTICAL TEST RESULTS - 4

Table K.1: The statistical test results: Seed = 89, Iteration no = 10000.

Table K.2: The statistical test results: Seed = 590223, Iteration no = 10000.
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Table K.3: The statistical test results: Seed = 39818317, Iteration no = 10000.

Table K.4: The statistical test results: Seed = 123, Iteration no = 10000.
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Table K.5: The statistical test results: Seed = 6979, Iteration no = 10000.

Table K.6: The statistical test results: Seed = 821129, Iteration no = 10000.
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Table K.7: The statistical test results: Seed = 915612, Iteration no = 10000.

Table K.8: The statistical test results: Seed = 112319, Iteration no = 10000.
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Table K.9: The statistical test results: Seed = 277, Iteration no = 10000.

Table K.10: The statistical test results: Seed = 4612967, Iteration no = 10000.
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APPENDIX L: HISTOGRAMS WITH DIFFERENT

SUBINTERVALS

In this part, we show that the change in the number of subintervals does not

improve to determine the uniformity of the numbers. Three maps are selected to

represent the relations between the histograms of samples for four different numbers

of subintervals: 30, 50, 80, and 100. As seen in Table L.1, the first map passes the

half of the chi-square tests, the second one is successful for all tests, and the last one

is unsuccessful for all tests. Note that p-values of 0.05 is used as the test criteria.

Table L.1: The chi-square test results for MLCG 1, LCG 3, and connecting map

(α = 1.01): Seed = 566231857, Iteration no = 10000.

As can be observed in Figure L.1, Figure L.2, and Figure L.3, there is no relation

between the test results and the histograms of the numbers. The difference between

the histogram of the numbers that are passed chi-square test and the histogram of the

number that are not passed chi-square test cannot be detected easily. So the number

of subinterval is randomly selected as 50 to understand the general behavior of the

numbers for the uniformity test.
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(a) Histogram with 30 subintervals (b) Histogram with 50 subintervals

(c) Histogram with 80 subintervals (d) Histogram with 100 subintervals

Figure L.1: Histograms for MLCG 1: Seed = 566231857, Iteration no = 10000.
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(a) Histogram with 30 subintervals (b) Histogram with 50 subintervals

(c) Histogram with 80 subintervals (d) Histogram with 100 subintervals

Figure L.2: Histograms for LCG 3: Seed = 566231857, Iteration no = 10000.
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(a) Histogram with 30 subintervals (b) Histogram with 50 subintervals

(c) Histogram with 80 subintervals (d) Histogram with 100 subintervals

Figure L.3: Histogram for connecting map (α = 1.01): Seed = 0.566231857, Iteration

no = 10000.
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