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ABSTRACT

THROUGHPUT AND INVENTORY ANALYSIS OF A

FLEXIBLE MACHINE FOR DIFFERENT MAINTENANCE

POLICIES

In this study, a manufacturing shop floor with two part types is examined and the

impacts of different production and maintenance policies on the average throughput

and average buffer levels are compared. Basically the comparisons are between a flex-

ible machine with two different maintenance strategies and two independent ordinary

machines, which are capable of producing only one type of product. A two-machine-

one-buffer(2M1B) line is modelled as a Discrete State Continuous Time Markov Chain

for two different layouts. First layout includes a flexible machine which is followed by

a reliable assembly machine. Two types of parts, produced by the flexible machine,

are assembled at the second workstation. In this layout, two different maintenance

policies will be applied. First one is called Repair Together Policy; when a tool breaks

down, the machine is not stopped and production goes on with the other part type

until both tools are down. At that point, both tools are repaired together. Second

maintenance policy is called Stop and Repair Policy; whenever a tool breaks down,

the machine is stopped and that tool is repaired. Production goes on from the same

point after the repair. The other layout to be used includes two independent/ordinary

machines that are followed by a reliable assembly machine. After Markov anlaysis of

the single machine cases for each system and maintenance policy, 2M1B lines are ex-

amined. Exact solutions are found by a software program using balance equations and

used for comparison of the systems and maintenance policies. Results are investigated

from a managerial point of view trying to decide which system and maintenance policy

is better in which parameter set of the machines.
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ÖZET

ESNEK BİR MAKİNEDE DEĞİŞİK ONARIM

STRATEJİLERİ İÇİN ÜRETİM VE ENVANTER ANALİZİ

Bu çalışmada iki farklı parçanın üretilip bir araya getirildiği bir üretim atölyesi

incelenmekte, farklı üretim ve onarım stratejilerinin üretimdeki verim ve envanter

üzerindeki etkileri karşılaştırılmaktadır. Temel olarak karşılaştırmalar iki farklı onarım

stratejisi uygulanan bir esnek makine ve sadece tek parça tipi üretebilen iki tane sıradan

makineler arasındadır. iki makine bir arastok hattı, kesikli durumlu sürekli zamanlı bir

Markov Zinciri olarak iki farklı makine yerleşim şekli için modellenmiştir. İlk yerleşim

şekli bir esnek makine ve onu takip eden hatasız bir montaj makinesinden oluşmaktadır.

İlk istasyonda esnek makine tarafından işlenen iki tip parça daha sonra ikinci istasyonda

montaj makinesi tarafından birleştirilmektedir. Bu yerleşim şekli için iki farklı onarım

stratejisi uygulanmıştır. Birincisi, Birlikte Tamir Et stratejisidir; makinenin iki farklı

kesici ucundan biri bozulduğunda makine durdurulmaz ve üretime diğer parçayla de-

vam edilir. Bu, iki kesici uç da bozulana kadar devam eder, ve sonunda ikisi birlikte

tamir edilir. İkinci onarım stratejisi ise Dur ve Tamir Et uygulamasıdır; kesici uçlardan

biri bozulduğunda makine durdurulur, o uç tamir edilir ve üretime kaldığı yerden de-

vam edilir. Diğer yerleşim şekli ise iki bağımsız sıradan makineyi yine bir hatasız

montaj makinesinin takip etmesiyle oluşmaktadır. Her sistem ve onarım stratejisinin

tek makine halleri için Markov analizleri yapıldıktan sonra iki makine bir arastok hat-

ları incelenir. Kesin çözümler geçiş denklemleri kullanılarak bir yazılım aracılığıyla elde

edilir ve karşılaştırmalar için kullanılırlar. Sonuçlar yönetimsel bir bakış açısıyla ince-

lenir ve hangi sistemin ve onarım stratejisinin hangi parametre setlerinde diğerlerinden

daha iyi olduğu konusunda kararlara varılır.
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1. INTRODUCTION

Need for product variety is getting stronger in manufacturing systems with the

increasing demands of customers. Simple machines that can produce one type of prod-

ucts only, are falling behind at satisfying this need. Therefore flexible machines are

becoming more and more important for manufacturing lines.

Performance measures of manufacturing lines are mostly analyzed by using stochas-

tic models or simulations in the literature. However, flexible machines add some com-

plexity to these analysis by nature, since the number of product types increases. Having

flexible machines at hand, we have a wide variety of policy options, especially about the

maintenance regime of the tools. Let’s say we have a flexible machine that is capable

of producing ten different products using seperate tools and one of the tools breaks

down during production. What should be the decision at that moment? Should we

stop the machine and replace that tool or should we go on producing other types using

the remaining tools? If we go on producing with the remaining tools, when should we

stop? Is it better to wait until all tools are broken or should we repair when a certain

amount of tools are broken?

These are common questions to be faced in a flexible manufacturing environment.

Answering these questions gets harder with increasing number of product types. In

this study, we will be investigating a manufacturing system with two types of products,

which can be used as a basis for other multi-product systems. Our main goal will be

to understand the effects of flexible machines and different maintenance policies in

manufacturing systems. We will be searching for their effects on average throughput

and average buffer levels in a two Machine one Buffer (2M1B) assembly line by using

two different maintenance strategies for the flexible machine and also by replacing

the flexible machine with two independent ordinary machines. We know that average

throughput and average buffer levels are considered to be the two most important

performance measures in a manufacturing system. So, checking these outputs will give

us an idea of the effectivenes of each system and policy. First and second workstations
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in the 2M1B systems to be investigated will be as follows:

• One Flexible Machine - One Assembly Machine.

• Two Independent Ordinary Machines - One Assembly Machine.

The rest of the study will be in the following order. Literature review and back-

ground information will be given in the next chapter. Objectives of the study will be

stated in Chapter 3. In Chapter 4, problem definition and models for each case will be

introduced starting with the single machine cases. Assumptions for the models will be

stated and Markov Analysis will be made so that steady-state solutions of each case

can be reached. In the following chapter, exact solutions will be used to compare each

of the three cases and to have insights about which system and maintenance policy is

more effective in which scenario. That will be followed by the conclusions and future

research directions in Chapter 6.
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2. LITERATURE REVIEW AND BACKGROUND

INFORMATION

There is a vast literature on transfer lines of manufacturing systems starting from

early 50’s. Since production is a key economic indicator all over the world, it is quite

understandable that there have been serious amount of studies on the performance

measures of production systems.

This study is based on a Markovian modelling approach which was popularised

and mostly used after Buzacott uses a Markov process in his model (Buzacott, 1967).

Some other approaches, used in performance evaluation of manufacturing systems, are

Petri Net models, Bernoulli models using Queuing networks and brute force simula-

tions.

Petri Nets are directed bipartite graph consisting of places, transitions and di-

rected arcs. Arcs run from places to transitions or vice versa. Petri Net models are

hierarchical models with well-developed mathematical and practical foundation. Bruno

and Biglia were among the pioneers who used Generalized Stochastic Petri Nets for

evaluating the performance of manufacturing systems (Bruno and Biglia, 1985).

In Bernoulli models, the state of the machine in each cycle time is determined

by the process of Bernoulli trials. In other words, it is assumed that during each slot

machine mi, i = 1,...,M is up with probability pi and down with probability 1-pi. The

state of the machine is determined at the beginning of each cycle, independent of the

state of this machine in the previous cycle (Li and Meerkov, 2000).

In order to analyze production lines with a Markovian model, firstly two-machine-

one-buffer (2M1B) systems need to be examined, because they are the building blocks

for longer lines. Many different kinds of analytical models have been developed and

exactly solved for (2M1B) lines (Dallery and Gershwin, 1992; Kim, 2004; Kim and

Gershwin, 2005). These models can be divided into three main categories according to
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the state and time definition:

• Discrete State - Discrete Time

• Discrete State - Continuous Time

• Mixed State - Continuous Time.

The difference between a discrete and mixed state can be explained by the parts

in the buffers. If these parts are discrete i.e. countable, then the model is called a

discrete state model. If the buffer level is continuous on the other hand (e.g. fluid) it

is called a mixed state model. It is called “mixed” and not “continuous” because in

all models the state of the machines are represented discretely. State of the machines

shows if the machine is in working condition (operational) or failed or in working

condition but producing failed parts (for the models including quality aspect, as in

Kim and Gershwin, 2005). In a discrete time model, time is divided into equal length

periods which is usually picked as the production time of one part. In that case, events

such as beginning and ending of a task are synchronised with the boundaries of these

periods of time. In continuous time models on the other hand, stochastic processing

times can be used for the machines. So the machines do not have to be synchronised

in a continuous time model. (Bergeron et al., 2010)

Another aspect that is used variably in manufacturing models is the failure types.

The failures for unreliable machines are either Time-Dependant (they may fail after a

certain amount of time) or Operation-Dependant (they may only fail after a certain

amount of operation). In Operation-Dependant Failure models there is the assumption

that a machine cannot fail while it is idle i.e. starved or blocked.

Most of the studies in this area are on single product type manufacturing lines.

Although multi-product lines are commonly used in production plants, there are very

few studies in the literature regarding the analysis of their performances. The paper

of Colledani et al. is one of them, which presents an approximate analytical method

for performance evaluation of a multi-product manifacturing system (Colledani et al.,

2007). Also in the study of (Nufer, 2006), 2M1B line is examined in a hybrid man-
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ufacturing environment with two part types. New and remanufactured products are

processed together in the line and the study focuses more on the quality aspect.

In the literature of manufacturing systems, there exist many kinds of stochastic

models such as two machines models, three or more machines (K machines) models,

parallel machines and flow lines, assembly and disassembly models, complex manu-

facturing systems with rework loops, etc. These are dealing with the performance

measures of the systems like the throughput and work-in-process (WIP) inventory.

There is also another branch of the manufacturing systems literature, which is focus-

ing on the maintenance and reliability concepts. The aim of maintenance optimization

is to achieve a proper balance between maintenance costs and the benefit of increased

process/tool availability (Van Rijn, 1987). In the review paper of Bergeron et al., it is

stated that almost any configuration of manufacturing systems can be modelled today

with recent developments (Bergeron et al., 2010). But, no consideration is made con-

cerning maintenance strategies in a production model. What we will do in this study

falls into that area. We will be investigating the effects of maintenance strategies on

the main performance measures (throughput and WIP) of a manufacturing system.

We will use a two-part-type product-assembly system for this study.
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3. OBJECTIVES OF THE STUDY

The main objective of this study is to investigate the importance and effects

of maintenance strategies on the throughput and work-in-process (WIP) inventory in

manufacturing systems. For that purpose, a two-part-type Two Machine One Buffer

(2M1B) production-assembly line is modelled as a Discrete State Continuous Time

Markov Chain for two different layouts:

• One Flexible Machine - One Assembly Machine. At the first workstation there

is one flexible machine which produces two types of products. Machine will be

either producing A parts using its tool A or B parts using its tool B. So, there is

no simultaneous production of parts A and B. These dedicated tools can break

down with exponential failure rates. Two maintenance policies will be examined

for these tools: First maintenance policy -Stop and Repair Policy- will be to stop

the machine, repair the broken tool immediately and go on with the same part’s

production. Second policy - Repair Together Policy- will be to wait until both

tools are broken and repair them together. So, when the first tool is broken,

machine leaves that part and goes on production with the other part type until

that tool is also broken. These two types of parts, leaving first workstation, go to

their dedicated buffers: Buffer A and Buffer B. Later these parts are assembled

in the second workstation, which consists of a reliable assembly machine, to have

the final product.

• Two Independent Ordinary Machines - One Assembly Machine. At the first work-

station there is no flexible machine this time. Instead of the flexible machine,

there are two independent ordinary machines. One of the machines produces A

parts only and the other one produces B parts only. Since each machine has only

one tool, there is no special maintenance policy to consider here. Whenever the

tool of a machine is broken, machine stops until that tool is repaired. So, each

failure is immediately followed by repair. Then same as in the previous case; parts

go to their dedicated buffers: Buffer A and Buffer B. Then they are assembled at

the assembly machine to reach the final product.
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In order to make comparisons, steady-state solutions will be found for each case.

While comparing above systems with the defined policies, performance measures to be

considered will be average throughput and average inventory. With those comparisons

we will have a chance to understand the impacts of flexible machines and different

maintenance policies in a manufacturing line.

One contribution of this study will be to create managerial insights for a manu-

facturing system with two part types, where different production layouts and policies

can be applied. One will have an idea about which layout and policy is more efficient in

which parameter set (production rates, failure rates, repair rates, buffer sizes). Even if

this manufacturing system is a longer transfer line, 2M1B case constitutes the basis for

that. So, one needs to study the 2M1B case first and later a decomposition technique

can be used for longer lines as Gershwin states (Gershwin, 2002).
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4. PROBLEM DEFINITION AND MODELS

In a Two Machine One Buffer (2M1B) manufacturing line, two types of parts

are produced in the first workstation: A parts and B parts. Depending on the chosen

layout, first workstation consists of either one flexible machine or two ordinary inde-

pendent machines. Flexible machine has two seperate tools for producing these two

different types of parts. The machine cannot use both tools at the same time. Thus

the flexible machine either produces A parts or B parts at a given time. Ordinary

machines on the other hand, have one tool each and they work independent of each

other. One of them produces A parts only and the other one produces B parts only. In

both cases, the first workstation is picking parts from the infinite pool of parts A and

B. The flexible machine picks parts A and B from the infinite pool of parts after each

production, with probabilities PrA and PrB. These probabilities should be balancing

the throughput with respect to the assembly procedure. In our case one A and one B

are assembled to reach the final product. So these probabilities should be such that:

THA

THA + THB

=
1

2

Three policies could be in effect for such a case:

(i) Process A parts only for a while and then process B parts only.

(ii) Process one A and one B in turns.

(iii) Pick parts A and B with certain probabilities and proceed accordingly.

(i) and (ii) are more meaningful in terms of real applications where (i) is better

for systems with setup times and (ii) is better for systems without setup times. Justifi-

cation of (iii), which is the policy that will be used in this study, is to find the average

behaviour of the system using Markov Chains. So there will be certain probabilities

PrA and PrB, both of which are equal to 0.5 in order to satisfy the assembly procedure.
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After first workstation, these A and B parts leave for their dedicated finite buffers,

waiting to be processed by the second workstation. Second workstation is a reliable

assembly machine for all cases. So we will have one final product in the end by the

assembly of parts A and B. The assembly machine needs to have non-zero levels of

Buffer A and Buffer B to be able to start producing one final product, otherwise it will

stay idle.

As mentioned above, flexible machine is capable of processing two different types

of parts; A and B. After producing one unit of part A, it will continue producing

the same part with probability PrA or switch to the other part type with probability

1−PrA, as long as both tools are in working condition. When a tool breaks down, we

have two different maintenance policies to be applied. First one is to stop the machine

and repair that broken tool immediately. The other policy is not to stop the machine

and switch to produce the other part type until the other tool is also broken. This

way, tools will be repaired together and the machine will be stopped less frequently.

However, this policy might cause higher inventory and fluctuations in the buffer levels

of type A and type B parts. For the ordinary machines, there is no need for a special

maintenance policy. Whenever one of the tools fails, the machine has to stop and the

tool needs to be repaired since there is no other tool to be used. Each flexible and

ordinary machine has a parameter set of exponential rates. These are the production

rates of parts A and B, failure rates of the tools and repair rates of the tools.

These different systems and policies will be investigated in detail and their effi-

ciencies will be compared in the next chapters. Performance measures to be considered

will be average throughput and average buffer levels. The comparisons will give us

ideas about the impacts of flexible machines and different maintenance policies in a

manufacturing line.

For the above systems and maintenance policies we will examine:

• Markov Analysis of Single Machine Cases.

• Markov Analysis of the Overall 2M1B Systems.
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• Exact Numerical Solutions for 2M1B Cases.

It is interesting to investigate the performances of these cases and to observe

which one is more efficient in which set up. For various repair, failure and production

rates of the tools and for different buffer sizes, one can decide which case is preferable.

4.1. Fundamental Models and Assumptions

The processes in all models that will be investigated will consist of Discrete States,

Continuous Time Markov Chains. States will be keeping the information given below:

• Number of parts in buffer A.

• Number of parts in buffer B.

• State of tool A: In working condition or broken.

• State of tool B: In working condition or broken.

Main assumptions that are used throughout this study are listed below:

• Dedicated tools and dedicated finite buffers for part types A and B.

• A machine is either producing good quality parts or not producing anything at

all.

• There is one failure type: tool break down.

• Tool failures are independent of types. Failure of tool A does not effect the failure

of tool B and vice versa.

• Operation Dependent Failures. A tool can only fail while working on a part.

• Assembly machine and its tools are completely reliable. Since the assembly ma-

chine is included in all cases that will be compared, this will not effect the results.

• We know beforehand the constant picking probability of part A and Part B for a

flexible machine in the first workstation. If the machine is in working condition,

it will start producing part A with PrA and part B with PrB.

• First Machine cannot be starved and last machine cannot be blocked.
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We can now have a closer look at the systems that will be investigated.

4.1.1. Flexible Machine - Assembly Machine Case

As observed in Figure 4.1, A and B parts are picked by the first machine from

an infinite pool of parts A and B with certain probabilities. These parts are processed

by the flexible machine one by one and sent to their dedicated buffers afterwards.

Unless one of the buffers is empty, assembly machine takes 1 piece from each buffer

and produces one final product.

There are two maintenance policies for the flexible machine case. When one of

the tools are broken, we either stop the machine immediately, repair and go on with

the same part or we remove the part that we were working on, switch to the other part

type and do not repair either until both tools are broken or starvation and blocking

effect stops the production. This might happen in such a case: Say, tool A breaks

down and flexible machine is producing B parts for a long time without failure. After

a while, we may come up with a situation where Buffer A is depleted and Buffer B is

full. Hence flexible machine cannot go on producing B parts because it is blocked and

assembly machine cannot go on either, since it is starved due to depleted Buffer A. In

such a case, system is stuck and we need to repair tool A alone.

Infinite Pool of 
Parts A and B

   

  

Flexible Machine

Buffer     
A

Buffer    
B

Dedicated Finite 
Buffers  A and B

Parts A and B are 
picked  by the flexible 
machine with certain 

probabilities.

Assembly 
Machine Final Product

Figure 4.1. Flexible Machine Scheme.
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4.1.2. Two Equivalent Independent Machines - Assembly Machine Case

Instead of using one flexible machine to produce two different products, one can

also use two independent ordinary machines. One of the machines produces A parts

and the other produces B parts. The rest is the same with the flexible machine case;

assembly machine takes one piece from each buffer and produces one final product.

The situation can be observed in Figure 4.2.

The advantage of having two independent machines is of course being able to

produce two parts at the same time. Also whenever the tool of a machine is broken,

we can repair it without interrupting the other machine’s production.

Infinite Pool of 
Parts A and B

   

  

Buffer     
A

Buffer    
B

Dedicated Finite 
Buffers  A and B

Parts A are picked by 
M1 and Parts B are 

picked by M2 directly.

Assembly Machine Final Product

M1

M2

Figure 4.2. Two Machines Scheme.

4.2. Markov Analysis

As mentioned before, all cases are modeled as Continuous Time Markov Chains.

Now let’s examine the state spaces and transitions for each case seperately.

4.2.1. Single Machine CTMC Models

First we will start with single machine state spaces and transitions for both

flexible and ordinary machines. Later the 2M1B model will be examined as a whole.

In the single machine Markov Analysis, the given exponential rates and parameters are

used as:
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• pA and pB for the failure rates of tool A and B, respectively,

• rA, rB and rboth for the repair rate of tool A, repair rate of tool B and rate of

repairing both tools together.

4.2.1.1. Single Flexible Machine with “Stop and Repair” Policy. States are represented

by a two dimensional vector for the single machine cases: P(αA, αB), where αA and

αB represent the conditions of tools A and B (1: up, 0: down). The flexible machine

is capable of producing both A and B parts. Using Stop and Repair Policy, the system

can be in three different states:

• αA = 1, αB = 1 : In working condition,

• αA = 1, αB = 0 : Tool B is broken down,

• αA = 0, αB = 1 : Tool A is broken down.

Transitions between the states can be observed in Figure 4.3.

(αA=1,αB=1)

(αA=1,αB=0)(αA=0,αB=1)

PrA*pA
PrB*pB

rBrA

Figure 4.3. Single Flexible Machine States - Stop and Repair.

As observed in the state transitions, if one of the tools is broken the machine is

stopped and that tool is repaired immediately. We can never observe the machine to

have both tools broken. So we do not have the state [αA = 0, αB = 0].
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The other policy is to wait until both tools are broken before any repair. Then

the state space will of course change.

4.2.1.2. Single Flexible Machine with ”Repair Together” Policy. The states for this

policy will be as follows:

• αA = 1, αB = 1 : Both tools are in working condition,

• αA = 1, αB = 0 : Tool B is broken, tool A is producing part A,

• αA = 0, αB = 1 : Tool A is broken, tool B is producing part B,

• αA = 0, αB = 0 : Both tools are broken.

Transitions between these states are shown in Figure 4.4.

(αA=1,αB=1)

(αA=1,αB=0)(αA=0,αB=1)

PrA*pA
PrB*pB

(αA=0,αB=0)

pB pA

rboth

Figure 4.4. Single Flexible Machine States Repair Together.

With ”Repair Together” policy, repairs will be done when both tools are broken.

This repair rate is called rboth. Repair time for both tools together is slower than one

tool’s repair time alone but faster than the sum of two tools’ individual repair times.

This fact is a small advantage of this policy. However, there is also a down side of

this policy: having unbalanced buffer levels depending on the initial parameters such
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as unbalanced tool failure rates.

In ”Stop and Repair” policy, we have balanced flow of parts A and B since the

first machine picks the parts with a certain probability and this order of the parts is

never changed later due to break downs. In this case however, when a tool is broken

we go on working with the other tool. This might create fluctuations in the buffer

levels especially when parameters such as p (rate of break down) and r (repair rate)

are different for each tool.

4.2.1.3. Two Equivalent Independent Machines. In the second system, there are two

independent ordinary machines that are capable of producing one type of product only.

For each of these two machines we have the below simple state space:

• α = 1: In working condition.

• α = 0: Broken.

When we consider two machines together, we come up with the following state

space:

• αA = 1, αB = 1 : Both tools (machines) are in working condition,

• αA = 1, αB = 0 : Tool of Machine B is broken, Machine A is producing part A,

• αA = 0, αB = 1 : Tool of Machine A is broken, Machine B is producing part B,

• αA = 0, αB = 0 : Both Machines have broken tools.

Having two independent machines in the first workstation leaves us with a more

straight-forward transition diagram as seen in Figure 4.5.

We have examined the state spaces of single machines for the first workstation.

Now let’s have a quick look at their throughput performances before examining the

overall 2M1B system.
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(αA=1, αB=1) 

(αA=1, αB=0) (αA=0, αB=1) 

pA
pB

(αA=0, αB=0) 

pB
pA

rA

rA rB

rB

Figure 4.5. Two Independent Machines States.

4.2.2. Comparison of Single Machine Models

In order to compare these cases, we will first solve for each case, the balance

equations, that we find using state transitions. For the parameter set in Table 4.1, we

will see the throughput performances of each case.

As noticed in the parameter set, production rates of each independent machines

are 0.5, while the rate for flexible machine is 1. This is simply to have a fair comparison

between the cases since two independent machines are working at the same time.

Resulting from this working speed difference, failure rates of the machines are also

selected at the same ratio. Also please note that the rate for repairing both tools at

the same time is selected in such a way, that it will not be faster than repairing only

one tool and it will not be slower than repairing both tools at different times.

We can have a look at the steady state solutions and throughput results of each

case in Table 4.2.
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Table 4.1. Parameter Set.

Repair Together Stop and Repair 2 Ind. Machs

PrA 0.5 0.5 N/A

µA 1 1 0.5

µB 1 1 0.5

pA 0.01 0.01 0.005

pB 0.01 0.01 0.005

rA 0.05 0.05 0.05

rB 0.05 0.05 0.05

rboth 0.04 N/A N/A

Table 4.2. Single Machine Performances.

Stop and Repair - Throughput = 0,833333

P(1,1) = 0.833333 P(1,0) = 0.0833333 P(0,1) = 0.0833333 P(0,0) = 0

Repair Together - Throughput = 0.888889

P(1,1) = 0.444444 P(1,0) = 0.222222 P(0,1) = 0.222222 P(0,0) = 0.111111

Two Independent Machines - Throughput = 0.909091

P(1,1) = 0.826446 P(1,0) = 0.082645 P(0,1) = 0.082645 P(0,0) = 0.0082645
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The outputs show us that with this specific parameter set, Two Independent

Machines case is giving the best and Stop and Repair Policy gives the worst throughput

results. This might also be explained by looking at the percentage of time when there

is production for each case. Note that in Stop and Repair Policy, production is done

only at the state P (1, 1).

For further comparison, we have obtained parametric solutions for each case.

Throughput levels of each case, for part types A and B were found as in the following

equations.

Stop And Repair Case:

THA = µA

(
rArB

pBrA + pArB + 2rArB

)
(4.2.1)

THB = µB

(
rArB

pBrA + pArB + 2rArB

)
(4.2.2)

2 Independent Machines Case:

THA = µA

(
rA

pA + rA

)
(4.2.3)

THB = µB

(
rB

pB + rB

)
(4.2.4)

Repair Together Case:

THA = µA

(
pBrboth

pApB + pArboth + pBrboth

)
(4.2.5)



19

THB = µB

(
pArboth

pApB + pArboth + pBrboth

)
(4.2.6)

Using these equations, we can make the following comparisons between the cases:

Stop And Repair vs 2 Independent Machines:

Considering that the production rate of the flexible machine is two times faster

than each of the independent machines, average throughput of parts A is higher for

2IM case if the following condition holds and vice versa:

pBrA > pArB (4.2.7)

For comparison of part type B, we can use the equation 4.2.8. If it holds, 2IM case

achieves higher throughput levels than SR case.

pArB > pBrA (4.2.8)

Stop And Repair vs Repair Together: The following condition will let us know which

case is giving better throughput A results. If the equation holds, SR case is giving

better throughput A results and vice versa.

pA
rboth

+
pA
pB

− pB
rB

− pA
rA

> 1 (4.2.9)

We observe from this equation that as pB increases Repair Together policy is performing

better than Stop and Repair policy for production of A parts. This makes sense.

Whenever tool B fails, RT case switches to produce A parts. However, at each failure

with SR policy, machine stops and waits until tool B is repaired. Equation 4.2.10 tells

us about the throughput performances for B parts. If the equation holds, SR is giving
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better results than the RT policy.

pB
rboth

+
pB
pA

− pB
rB

− pA
rA

> 1 (4.2.10)

Repair Together vs 2 Independent Machines: Following equation is for the throughput

performances of each case for part type A. If that equation holds, 2IM case is giving

better results than the RT case and vice versa.

pA
rboth

+
pA
pB

− 2pA
rA

> 1 (4.2.11)

Throughput performances for part type B can be observed looking at the equation

4.2.12. If that equation holds, 2IM is giving better throuhput values compared to RT

case.

pB
rboth

+
pB
pA

− 2pB
rB

> 1 (4.2.12)

After investigating the single machine models and comparing the three cases, we

can now go on with the overall 2M1B system.

4.2.3. Markov Analysis of 2M1B System

In 2M1B cases we have an assembly machine at the second workstation for each

system. The state space representation is the same for all cases. States are represented

by a four dimensional vector P(nA, nB, αA, αB) where,

• nA: Current level in buffer A. [0 to NA]

• nB: Current level in buffer B. [0 to NB]

• αA: Working condition of tool A. [0 or 1]

• αB: Working condition of tool B. [0 or 1]
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Compared to the Single Machine cases, State Space is now enlarged by the addi-

tional information of Buffer Levels. Number of states for 2M1B cases will be 4xNAxNB.

Representative state space transition diagrams for each case can be seen in Figure 4.6,

4.7 and 4.8.

In order to make comparisons between these cases, it is necessary to obtain math-

ematical outputs such as Average Throughput and Average Buffer Levels. For this pur-

pose, equation sets, which are basically consisting of balance equations, will be solved

and steady state probabilities will be calculated. After that, performance measures like

Average Throughput and Average Buffer levels will be at hand for all cases. We can

see the equations that will be used to find exact solutions of each case in the following

subsections. The parameters and exponential transition rates that will be seen in the

balance equations are listed below:

• µA, µB and nu are the production rates of parts A, B and assembly operation,

respectively.

• NA and NB are buffer sizes for parts A and B.

• nA and nB are the current buffer levels for parts A and B.

• pA and pB are the failure rates of tools A and B.

• rA, rB and rboth are the repair rates of tool A, repair rate of tool B and rate of

repairing both tools together.

• PrA is the probability of flexible machine picking a part A from the infinite pool

after finishing a part.

• PrB is the probability of flexible machine picking a part B from the infinite pool

after finishing a part.

4.2.3.1. Steady-State Solution for Stop and Repair Policy. For the Stop and Repair

Policy, there are three sets of balance equations which are arranged according to the

different situations of tool A and tool B (αA and αB). With this policy, we can never

have both tools of the flexible machine broken since after each break down the machine

is stopped and the broken tool is repaired. Therefore there are three different situations
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for αA and αB:

• αA = 1, αB = 1

• αA = 1, αB = 0

• αA = 0, αB = 1

Our balance equations will be shaped around these three sets. First let’s have

a look at the parameters that will be used in the equations: PrA and PrB are the

constant probabilities of parts A and B entering the system. Production rates of the

tools for part A and B (µA and µB), failure and repair rates of the tools (pA, pB ;

rA, rB), production rate of the assembly machine(nu) are all exponential rates. Buffer

Sizes for both parts(NA and NB) are the parameters which determine the number of

equations since the number of unknowns increases with increasing buffer sizes.

Some of the transient states are due to the policy we are using here. For the Stop

and Repair Policy, in the steady state, we cannot observe both tools to be broken at

the same time. This is because, whenever a tool breaks down, the machine is stopped

for repair and the other tool cannot break down while it is idle. Therefore, the steady

state probabilities of such will be equal to 0: P(nA, nB, αA=0, αB= 0). These are not

transient states for the other two cases. A more general thing, which is valid also for

the other cases is that, if one of the buffers is full, corresponding tool cannot be broken.

This is due to the assumption of “operational failures only”. If a tool is blocked due

to corresponding buffer being full, it cannot go on working and cannot break down.

Hence, steady-state probabilities of such will also be 0: P(nA, NB, αA, αB= 0) or

P(NA, nB, αA=0, αB).

We can write down the equations that will be used for exactly solving Stop and

Repair case starting with the equations that steady-state probabilities of transient

states are equal to zero. The equations to be solved are basically the collection of

balance equations. These equations are divided into groups according to possible values

of αA and αB. After adding our normalizing equation to this set of equations, we will

be able to solve our problem using a software program to reach outputs like average
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Figure 4.6. Representative State Transitions 2M1B - Stop and Repair.

throughput and average inventory levels. In Figure 4.6, a representative state transition

diagram is given. We can observe that production and break down rates are multiplied

by the picking probabilities, PrA and PrB, in the transitions. At any instant, the

flexible machine starts working on one of the parts randomly. This picking probability

is reflected in the transitions that way. But when a tool is broken, the next transiton is

obvious in Stop and Repair case: rA or rB. Hence these rates are not multiplied with

the picking up probabilities.

Equations for Transient States:

P(nA, nB, αA = 0, αB = 0) = 0 for nA: [0 , NA] and nB: [0 , NB]

P(nA, NB, αA = 1, αB = 0) = 0 for nA: [0 , NA]

P(NA, nB, αA = 0, αB = 1) = 0 for nB: [0 , NB]

Balance Equations for αA = 1 and αB = 0:

P(nA, nB, 1, 0)(nu + rB) = P(nA, nB, 1, 1)pBPrB + P(nA+1, nB+1, 1, 0)nu, for

nA:[1,NA-1], nB:[1,NB-1]

P(NA, nB, 1, 0)(nu + rB) = P(NA, nB, 1, 1)pB, for nB:[1,NB-1]
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P(0, nB, 1, 0)rB = P(0, nB, 1, 1)pBPrB + P(1, nB+1, 1, 0)nu, for nB:[0,NB-1]

P(nA, 0, 1, 0)rB = P(nA, 0, 1, 1)pBPrB + P(nA+1, 1, 1, 0)nu, for nA:[1,NA-1]

P(NA, 0, 1, 0)rB = P(NA, 0, 1, 1)pB

Balance Equations for αA = 0 and αB = 1:

P(nA, nB, 0, 1)(nu + rA) = P(nA, nB, 1, 1)pAPrA + P(nA+1, nB+1, 0, 1)nu, for

nA:[1,NA-1], nB:[1,NB-1]

P(nA, NB, 0, 1)(nu + rA) = P(nA, NB, 1, 1)pA, for nA:[1,NA-1]

P(nA, 0, 0, 1)rA = P(nA, 0, 1, 1)pAPrA + P(nA+1, 1, 0, 1)nu, for nA:[0,NA-1]

P(0, nB, 0, 1)rA = P(0, nB, 1, 1)pAPrA + P(1, nB+1, 0, 1)nu, for nB:[1,NB-1]

P(0, NB, 0, 1)rA = P(0, NB, 1, 1)pA

Balance Equations for αA = 1 and αB = 1:

P(nA, nB, 1, 1)(PrA(µA+pA)+PrB(µB+pB) + nu) = P(nA-1, nB, 1, 1)µAPrA + P(nA,

nB-1, 1, 1)µBPrB + P(nA, nB, 1, 0)rB + P(nA, nB, 0, 1)rA + P(nA+1, nB+1, 1, 1)nu,

for nA:[1,NA-1], nB:[1,NB-1]

P(NA, nB, 1, 1)(µB+pB+nu) = P(NA-1, nB, 1, 1)µAPrA + P(NA, nB-1, 1, 1)µB +

P(NA, nB, 1, 0)rB, for nB:[1,NB-1]

P(nA, NB, 1, 1)(µA+pA+nu) = P(nA, NB-1, 1, 1)µBPrB + P(nA-1, NB, 1, 1)µA +

P(nA, NB, 0, 1)rA, for nA:[1,NA-1]

P(0, nB, 1, 1)(PrA(µA+pA)+PrB(µB+pB)) = P(0, nB-1, 1, 1)µBPrB + P(1, nB+1, 1,

1)nu + P(0, nB, 1, 0)rB + P(0, nB, 0, 1)rA, for nB:[1,NB-1]

P(nA, 0, 1, 1)(PrA(µA+pA)+PrB(µB+pB)) = P(nA-1,0, 1, 1)µAPrA + P(nA+1, 1, 1,

1)nu + P(nA, 0, 1, 0)rB +P(nA, 0, 0, 1)rA, for nA:[1,NA-1]

P(NA, NB, 1, 1)nu = P(NA, NB-1, 1, 1)µB + P(NA-1, NB, 1, 1)µA

P(0, 0, 1, 1)(PrA(µA+pA)+PrB(µB+pB)) = P(1, 1, 1, 1)nu + P(0, 0, 1, 0)rB + P(0,

0, 0, 1)rA

P(0, NB, 1, 1)(µA+pA) = P(0, NB-1, 1, 1)µBPrB + P(0, NB, 0, 1)rA

P(NA, 0, 1, 1)(µB+pB) = P(NA-1, 0, 1, 1)µAPrA + P(NA, 0, 1, 0)rB
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Normalizing Equation:∑1
αA=0

∑1
αB=0

∑NA

nA=0

∑NB

nB=0[P (nA, nB, αA, αB)] = 1

4.2.3.2. Steady-State Solution for Repair Together Policy. In the Repair Together Pol-

icy case, the parameters are not much different than the Stop and Repair policy case.

There is an additional parameter rboth which is the rate of repairing both tools together.

It makes sense that this rate is slightly slower than repairing only one tool, but a bit

faster than repairing two tools individually at different times.

We need to mention here, the effect of buffer states on this policy. Eventhough

the aim of this policy is to wait until both tools are broken, this might not be possible in

some cases. For example, when tool A fails, B parts start to be produced immediately.

However, at some point, if tool B does not fail soon afterwards, Buffer B will be full

and Buffer A will be depleted. At that moment the system is stuck - assembly machine

cannot produce anything because Buffer A is depleted and flexible machine cannot go

on production since Buffer B is full. In that case, we need to repair the A tool alone

without waiting for the B tool to be broken. So, we will have to use rA and rB when the

first workstation is blocked and the assembly machine is starved at the same time. We

can see this in Figure 4.7, representative state transition diagram. When we arrive at

the state (NA, 0, 1, 0) there is only one transition out of that state; rB. Also note that,

when both tools are up, production and break down transition rates are multiplied

with the picking probabilities. However, when one of the tools is down, our policy tells

us to use the other tool for sure. Therefore this time the rates are not multiplied with

the picking probabilities.

There are no special transient states due to using this policy, only the general

transient states that we have in all cases due to Operation Dependent Failures assump-

tion. States of tools can be in four different situations, so the balance equations will

be seperated into four groups:

• αA = 1, αB = 1
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• αA = 1, αB = 0

• αA = 0, αB = 1

• αA = 0, αB = 0

NA-1, 0, 1, 1NA-1, 1, 1, 1

NA, 1, 1, 1
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….….
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Figure 4.7. Representative State Transitions 2M1B - Repair Together.

Equations for Transient States:

P(NA, nB, αA = 0, αB = 0) = 0, for nB: [0 , NB]

P(nA, NB, αA = 0, αB = 0) = 0, for nA: [0 , NA-1]

P(nA, NB, αA = 1, αB = 0) = 0, for nA: [0 , NA]

P(NA, nB, αA = 0, αB = 1) = 0, for nB: [0 , NB]

Balance Equations for αA = 0 and αB = 0:

P(nA, nB, 0, 0)(nu + rboth) = P(nA, nB, 1, 0)pA + P(nA, nB, 0, 1)pB + P(nA+1,

nB+1, 0, 0)nu, for nA:[1,NA-1], nB:[1,NB-1]

P(0, nB, 0, 0)rboth = P(0, nB, 1, 0)pA + P(0, nB, 0, 1)pB + P(1, nB+1, 0, 0)nu, for

nB:[0,NB-1]

P(nA, 0, 0, 0)rboth = P(nA, 0, 1, 0)pA + P(nA, 0, 0, 1)pB + P(nA+1, 1, 0, 0)nu, for

nA:[1,NA-1]
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Balance Equations for αA = 1 and αB = 0:

P(nA, nB, 1, 0)(nu + µA + pA ) = P(nA, nB, 1, 1)pBPrB + P(nA-1, nB, 1, 0)µA +

P(nA+1, nB+1, 1, 0)nu, for nA:[1,NA-1], nB:[1,NB-1]

P(NA, nB, 1, 0)nu = P(NA, nB, 1, 1)pB + P(NA-1, nB, 1, 0)µA, for nB:[1,NB-1]

P(0, nB, 1, 0)(µA + pA ) = P(0, nB, 1, 1)pBPrB + P(1, nB+1, 1, 0)nu, for nB:[0,NB-1]

P(nA, 0, 1, 0)(µA + pA ) = P(nA, 0, 1, 1)pBPrB + P(nA-1, 0, 1, 0)µA + P(nA+1, 1,

1, 0)nu, for nA:[1,NA-1]

P(NA, 0, 1, 0)rB = P(NA, 0, 1, 1)pB + P(NA-1, 0, 1, 0)µA Note here that tool B has

to be repaired alone or the sytem would be in deadlock

Balance Equations for αA = 0 and αB = 1: are symmetric with the previous case...

Balance Equations for αA = 1 and αB = 1:

P(nA, nB, 1, 1)(PrA(µA+pA)+PrB(µB+pB) + nu) = P(nA-1, nB, 1, 1)µAPrA + P(nA,

nB-1, 1, 1)µBPrB + P(nA, nB, 0, 0)rboth + P(nA+1, nB+1, 1, 1)nu, for nA:[1,NA-1],

nB:[1,NB-1]

P(NA, nB, 1, 1)(µB+pB+nu) = P(NA-1, nB, 1, 1)µAPrA + P(NA, nB-1, 1, 1)µB, for

nB:[1,NB-1]

P(nA, NB, 1, 1)(µA+pA+nu) = P(nA, NB-1, 1, 1)µBPrB + P(nA-1, NB, 1, 1)µA, for

nA:[1,NA-1]

P(0, nB, 1, 1)(PrA(µA+pA)+PrB(µB+pB)) = P(0, nB-1, 1, 1)µBPrB + P(1, nB+1, 1,

1)nu + P(0, nB, 0, 0)rboth, for nB:[1,NB-1]

P(nA, 0, 1, 1)(PrA(µA+pA)+PrB(µB+pB)) = P(nA-1,0, 1, 1)µAPrA + P(nA+1, 1, 1,

1)nu + P(nA, 0, 0, 0)rboth, for nA:[1,NA-1]

P(NA, NB, 1, 1)nu = P(NA, NB-1, 1, 1)µB + P(NA-1, NB, 1, 1)µA

P(0, 0, 1, 1)(PrA(µA+pA)+PrB(µB+pB)) = P(1, 1, 1, 1)nu + P(0, 0, 0, 0)rboth

P(0, NB, 1, 1)(µA+pA) = P(0, NB-1, 1, 1)µBPrB + P(0, NB, 0, 1)rA

P(NA, 0, 1, 1)(µB+pB) = P(NA-1, 0, 1, 1)µAPrA + P(NA, 0, 1, 0)rB
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Normalizing Equation:∑1
αA=0

∑1
αB=0

∑NA

nA=0

∑NB

nB=0[P (nA, nB, αA, αB)] = 1

4.2.3.3. Steady-State Solution for Two Independent Machines. Parameters for the Two

Independent Machines case are as in the Stop and Repair policy case of the flexible

machine. This time there is no probability of parts A and B being picked by the first

workstation. There are two machines working independently, they pick their parts

from the infinite pool of parts A and B. Again there are four different situations for

the tool states of Machine A and B.

• αA = 1, αB = 1

• αA = 1, αB = 0

• αA = 0, αB = 1

• αA = 0, αB = 0
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….

….….
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Figure 4.8. Representative State Transitions 2M1B - 2 Independent Machines.
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Equations for Transient States:

P(NA, nB, αA = 0, αB = 0) = 0, for nB: [0 , NB]

P(nA, NB, αA = 0, αB = 0) = 0, for nA: [0 , NA-1]

P(nA, NB, αA = 1, αB = 0) = 0, for nA: [0 , NA]

P(NA, nB, αA = 0, αB = 1) = 0, for nB: [0 , NB]

Remaining equations are consisting of 4 sets, according to the states of tool A

and tool B (αA and αB).

Balance Equations for αA = 0 and αB = 0:

P(nA, nB, 0, 0)(nu + rA + rB) = P(nA, nB, 1, 0)pA + P(nA, nB, 0, 1)pB + P(nA+1,

nB+1, 0, 0)nu, for nA:[1,NA-1], nB:[1,NB-1]

P(0, nB, 0, 0)(rA + rB) = P(0, nB, 1, 0)pA + P(0, nB, 0, 1)pB + P(1, nB+1, 0, 0)nu,

for nB:[0,NB-1]

P(nA, 0, 0, 0)(rA + rB) = P(nA, 0, 1, 0)pA + P(nA, 0, 0, 1)pB + P(nA+1, 1, 0, 0)nu,

for nA:[1,NA-1]

Balance Equations for αA = 1 and αB = 0:

P(nA, nB, 1, 0)(µA + nu + pA + rB) = P(nA, nB, 1, 1)pB + P(nA-1, nB, 1, 0)µA +

P(nA+1, nB+1, 1, 0)nu + P(nA, nB, 0, 0)rA, for nA:[1,NA-1], nB:[1,NB-1]

P(NA, nB, 1, 0)(nu + rB) = P(NA-1, nB, 1, 0)µA + P(NA, nB, 1, 1)pB, for nB:[1,NB-1]

P(0, nB, 1, 0)(µA + pA + rB) = P(0, nB, 1, 1)pB + P(1, nB+1, 1, 0)nu + P(0, nB, 0,

0)rA, for nB:[0,NB-1]

P(nA, 0, 1, 0)(µA + pA + rB) = P(nA, 0, 1, 1)pB + P(nA+1, 1, 1, 0)nu + P(nA, 0, 0,

0)rA + P(nA-1, 0, 1, 0)µA, for nA:[0,NA-1]

P(NA, 0, 1, 0)rB = P(NA, 0, 1, 1)pB + P(NA-1, 0, 1, 0)µA

Balance Equations for αA = 0 and αB = 1: are symmetric with the previous case...

Balance Equations for αA = 1 and αB = 1:

P(nA, nB, 1, 1)(µA + pA + µB + pB + nu) = P(nA-1, nB, 1, 1)µA + P(nA, nB-1,
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1, 1)µB + P(nA, nB, 1, 0)rB + P(nA, nB, 0, 1)rA + P(nA+1, nB+1, 1, 1)nu, for

nA:[1,NA-1], nB:[1,NB-1]

P(NA, nB, 1, 1)(µB + pB + nu) = P(NA-1, nB, 1, 1)µA + P(NA, nB-1, 1, 1)µB +

P(NA, nB, 1, 0)rB, for nB:[1,NB-1]

P(nA, NB, 1, 1)(µA + pA + nu) = P(nA, NB-1, 1, 1)µB + P(nA-1, NB, 1, 1)µA +

P(nA, NB, 0, 1)rA, for nA:[1,NA-1]

P(NA, NB, 1, 1)nu = P(NA, NB-1, 1, 1)µB + P(NA-1, NB, 1, 1)µA

P(0, nB, 1, 1)(µA + pA + µB + pB) = P(0, nB-1, 1, 1)µB + P(1, nB+1, 1, 1)nu +

P(0, nB, 1, 0)rB + P(0, nB, 0, 1)rA, for nB:[1,NB-1]

P(nA, 0, 1, 1)(µA + pA + µB + pB ) = P(nA-1, 0, 1, 1)µA + P(nA+1,1, 1, 1)nu +

P(nA, 0, 1, 0)rB + P(nA, 0, 0, 1)rA, for nA:[1,NA-1]

P(0, 0, 1, 1)(µA + pA + µB + pB ) = P(1, 1, 1, 1)nu + P(0, 0, 1, 0)rB + P(0, 0, 0,

1)rA

P(0, NB, 1, 1)(µA + pA) = P(0, NB-1, 1, 1)µB + P(0, NB, 0, 1)rA

P(NA, 0, 1, 1)(µB + pB) = P(NA-1, 0, 1, 1)µA + P(NA, 0, 1, 0)rB

Normalizing Equation:∑1
αA=0

∑1
αB=0

∑NA

nA=0

∑NB

nB=0[P (nA, nB, αA, αB)] = 1

Outputs for all these cases will be compared in the Numerical Analysis. We will

be investigating the performance measures of these systems and will be able to decide

which system is preferable in which parameter set.
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5. NUMERICAL ANALYSIS AND COMPARISONS

We will first have a look at the performance measures of three different cases under

some initial parameter sets with changing buffer sizes. After that we will compare these

systems and policies with each other for varying parameters such as; failure and repair

rates. To start with, in Table 5.1, we have the first parameter set. The parameters in

the table are respectively: Probability of an A part to arrive rather than a B part for

the Flexible Machine cases, production rates of tools A and B for each case, production

rate of the assembly machine, failure rates of tools A and B for each case, repair rates

of tools A and B for each case and rate of repairing both tools for the Repair Together

policy.

We should keep in mind that the rate of repairing both tools together is selected

in such a way that it will not be faster than repairing only one tool and it will not be

slower than repairing two individual tools seperately at different times. This is because

the time lost for stopping and restarting the system is shared by two tools when we

repair them together. Hence, we do gain some time by repairing the tools together.

Also, production and failure rates of the Two Independent Machine(2IM) case

are taken as half the rates of flexible machine cases in order to make a fair comparison.

A flexible machine operates at twice the speed of each independent machines since it

can produce only one part at a time. Therefore, failure rates of the flexible machine

are two times the failure rates of the independent machines.

Our performance measures for each case are average throughput and average

inventory levels. We can see the results reached with the first parameter set we have

chosen for different buffer sizes in Table 5.2. Also in Figure 5.1, we have the graph of

Average Throughput levels with changing buffer sizes.

The results with this specific parameter set shows us first of all, that as the buffer

sizes increase, average throughput and inventory levels tend to increase for all cases.
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Table 5.1. Parameter Set No 1.

Repair Together Stop and Repair 2 Ind. Machs

PrA 0.5 0.5 N/A

µA 1 1 0.5

µB 1 1 0.5

nu 1 1 1

pA 0.01 0.01 0.005

pB 0.01 0.01 0.005

rA 0.05 0.05 0.05

rB 0.05 0.05 0.05

rboth 0.04 N/A N/A

Considering the average throughput values, 2IM case stays behind for relatively small

buffer sizes. However, after buffer sizes of 15, it gets ahead of the flexible machine cases.

Repair Together(RT) policy gives better throughput results compared to Stop and

Repair(SR) policy for mid and high buffer sizes. However, the advantage of repairing

both tools together diminishes when the buffer size is small. We can see that for small

buffer sizes, RT policy and SR policy give very close TH values. While observing the TH

performances, we should also keep the bound values in mind. Maximum throughput

values, that can possibly be achieved for each case, can be found by the equation

coming from isolated efficiency formula (the prodcution rate of a machine when there

is no blocking or starvation):

MaximumThroughput = µ

(
r

r + p

)

Here, the TH values reached with buffer size of 70 are 0.43 for RT, 0.42 for SR and

0.44 for 2IM and the bound levels for them respectively are 0.44, 0.42, 0.45. Meaning

that SR case converges to its upper bound more quickly (it converges with buffer size

25). This makes sense, since with this policy there is no imbalance at the buffer levels,

which minimizes the blocking effect of the flexible machine. Therefore after a while,

increasing the buffer size doesn’t have any positive effect on the performance. When
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Table 5.2. Outputs for Set 1.

Repair Together Stopping Policy 2 Ind. Machs

N(A) = N(B) = 1 TH 0.294245 0.294118 0.227786

Avg. Buffer A 0.499639 0.470588 0.498871

Avg. Buffer B 0.499639 0.470588 0.498871

N(A) = N(B) = 2 TH 0.365700 0.366135 0.310371

Avg. Buffer A 0.938700 0.854008 0.923719

Avg. Buffer B 0.938700 0.854008 0.923719

N(A) = N(B) = 5 TH 0.411577 0.410984 0.384120

Avg. Buffer A 2.016350 1.747700 1.978050

Avg. Buffer B 2.016350 1.747700 1.978050

N(A) = N(B) = 10 TH 0.419793 0.416432 0.412501

Avg. Buffer A 3.634940 2.978620 3.480050

Avg. Buffer B 3.634940 2.978620 3.480050

N(A) = N(B) = 15 TH 0.422015 0.416654 0.423575

Avg. Buffer A 5.371770 4.185830 4.907110

Avg. Buffer B 5.371770 4.185830 4.907110

N(A) = N(B) = 20 TH 0.423610 0.416666 0.429925

Avg. Buffer A 7.229690 5.408960 6.297560

Avg. Buffer B 7.229690 5.408960 6.297560

N(A) = N(B) = 25 TH 0.424956 0.416667 0.434102

Avg. Buffer A 9.135510 6.642530 7.656750

Avg. Buffer B 9.135510 6.642530 7.656750

N(A) = N(B) = 30 TH 0.426129 0.416667 0.437066

Avg. Buffer A 11.034500 7.881780 8.990980

Avg. Buffer B 11.034500 7.881780 8.990980

N(A) = N(B) = 70 TH 0.432066 0.416667 0.446452

Avg. Buffer A 24.791800 17.852500 19.275600

Avg. Buffer B 24.791800 17.852500 19.275600
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Figure 5.1. TH-Buffer Size Set1.

we look at the average inventory levels, as mentioned before, SR policy gives the best

results since the order of parts never changes in this policy. When a part is picked by

the flexible machine, that part is finished for sure and then another picking is made.

Since the probability of picking each part is given as 0.5, it is understandable to have

more balanced buffer levels with this policy, especially when compared to RT case,

which gives the worst results. Order of parts doesn’t change for 2IM case either, but

in that case while one of the tools is repaired the other machine goes on producing the

other part. Therefore, there is no such buffer balance as in SR case.

Now let’s try another parameter set (Table 5.3). This time the failure rates are

5 times faster than the previous case. Outputs of Parameter Set 2 can be observed in

Table 5.4 and Figure 5.2.

Some points that we reach from the outputs of set 2 can be stated as such: With

increasing failure rates, TH levels of RT policy is outperforming SR policy. This is

understandable since in this policy machine is not stopped for each failure. However,

after buffer levels of 10, we see that 2IM case is again the best in TH performance.

The TH values at buffer size of 50 and the bound values of each case are such: RT =

0.29/ 0.31, SR = 0.25/0.25, 2IM = 0.32/0.33. About inventory levels, again SR policy

gives the best values and RT the worst.
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Table 5.3. Parameter Set No 2.

Repair Together Stop and Repair 2 Ind. Machs

PrA 0.5 0.5 N/A

µA 1 1 0.5

µB 1 1 0.5

nu 1 1 1

pA 0.05 0.05 0.025

pB 0.05 0.05 0.025

rA 0.05 0.05 0.05

rB 0.05 0.05 0,05

rboth 0,04 N/A N/A

In the Parameter set 3 (Table 5.5), repair rates are increased by five times. Results

of parameter set 3 can be seen in Figure 5.3 and Table 5.6.

After observing the results of parameter set 3 we can say that, with increasing

repair rates, the average throughputs of the 3 cases reach very high values and become

very close to each other. All three cases go beyond the throughput rate of 0.48. SR

case reaches the max. throughput value it can reach at early buffer levels of 20-25.

The other two cases are also very close to their bound values at buffer levels of 45. For

some small buffer sizes, TH performance of SR policy is interestingly outperforming RT

policy. But in general, RT case is slightly better than the others, except for very high

buffer levels, where 2IM case gets slightly ahead. However, considering the inventory

levels, RT case is giving the worst results as observed in the previous parameter sets.

This is expected, since production can turn one sided for quite long times in that policy,

which causes fluctuations in the buffer levels.

In the next parameter set we will have unbalanced failure rates. Failure rate for

tool A is 5 times the failure rate of tool B in Parameter Set 4. (Table 5.7) Results of

parameter set 4 for different buffer sizes can be seen in Table 5.8 and Figure 5.4.
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Table 5.4. Outputs for Set 2.

Repair Together Stop and Repair 2 Ind. Machs

N(A) = N(B) = 1 TH 0.201373 0.200000 0.168498

Avg. Buffer A 0.494279 0.400000 0.494505

Avg. Buffer B 0.494279 0.400000 0.494505

N(A) = N(B) = 2 TH 0.234602 0.231317 0.213465

Avg. Buffer A 0.940244 0.693950 0.928879

Avg. Buffer B 0.940244 0.693950 0.928879

N(A) = N(B) = 5 TH 0.260298 0.248209 0.255785

Avg. Buffer A 2.115180 1.455940 2.062460

Avg. Buffer B 2.115180 1.455940 2.062460

N(A) = N(B) = 10 TH 0.272766 0.249940 0.279712

Avg. Buffer A 3.894830 2.647060 3.708340

Avg. Buffer B 3.894830 2.647060 3.708340

N(A) = N(B) = 15 TH 0.279326 0.249997 0.291961

Avg. Buffer A 5.571910 3.855750 5.210390

Avg. Buffer B 5.571910 3.855750 5.210390

N(A) = N(B) = 20 TH 0.283730 0.250000 0.299642

Avg. Buffer A 7.152650 5.083120 6.627500

Avg. Buffer B 7.152650 5.083120 6.627500

N(A) = N(B) = 25 TH 0.286934 0.250000 0.304917

Avg. Buffer A 8.658060 6.319780 7.993850

Avg. Buffer B 8.658060 6.319780 7.993850

N(A) = N(B) = 30 TH 0.289377 0.250000 0.308764

Avg. Buffer A 10.109500 7.561120 9.328960

Avg. Buffer B 10.109500 7.561120 9.328960

N(A) = N(B) = 50 TH 0.295236 0.250000 0.317395

Avg. Buffer A 15.613400 12.544400 14.520100

Avg. Buffer B 15.613400 12.544400 14.520100
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Figure 5.2. TH-Buffer Size Set2.
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Figure 5.3. TH-Buffer Size Set3.

Looking at outputs of parameter set 4, we see that: With unbalanced failure

rates, three cases give close throughput values. For small buffer sizes, 2IM case stays

behind the others and after buffer sizes of 10 it gets slightly ahead of them. With this

parameter set, SR policy is giving even better inventory results since it is not effected

by the unbalanced failure rates. In SR case, picking probabilities PrA and PrB are the

only factors effecting the buffer balance. For high buffer sizes of around 45, we observe

that the average inventory level of SR policy is almost half of the other cases.
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Table 5.5. Parameter Set No 3.

Repair Together Stop and Repair 2 Ind. Machs

PrA 0.5 0.5 N/A

µA 1 1 0.5

µB 1 1 0.5

nu 1 1 1

pA 0.01 0.01 0.005

pB 0.01 0.01 0.005

rA 0.25 0.25 0.25

rB 0.25 0.25 0.25

rboth 0.2 N/A N/A

5.1. Performance Measures Under Changing Failure Rates

In this part, we will observe the effects of changing failure rates while other

parameters are kept constant. In the following subsection, failure rates will be changed

in a balanced way, i.e. failure rates for tools A and B will be the same in all cases. In the

next subsection, results will be observed for unbalanced changes of failure rates. Failure

rates for 2IMs will be kept as half of the flexible machine cases in all experiments, since

they work at half speed.

5.1.1. Balanced Changes of Failure Rates

Figures 5.5 and 5.6 shows the effect of failure rate on average throughput and

average inventory respectively, for small buffer sizes (N = 2). As observed in the figures;

for small buffer sizes, RT policy and SR policy give very close TH results, whereas 2IM

case stays slightly behind the two, until we have very high failure rates. In the end,

when the failure rates become 0.1, TH value of each case is around 0.16. Results being

so close to each other means that, small buffer sizes restricts 2IM and RT cases from

showing their throughput superiority even at times of high failure rates. When we

compare the inventory levels, by far the best results are obtained by SR policy and the
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Table 5.6. Outputs for Set 3.

Repair Together Stop and Repair 2 Ind. Machs

N(A) = N(B) = 1 TH 0.324706 0.324675 0.245505

Avg. Buffer A 0.499920 0.493506 0.499171

Avg. Buffer B 0.499920 0.493506 0.499171

N(A) = N(B) = 2 TH 0.413647 0.414668 0.343485

Avg. Buffer A 0.932265 0.911919 0.917563

Avg. Buffer B 0.932265 0.911919 0.917563

N(A) = N(B) = 5 TH 0.471809 0.473167 0.432670

Avg. Buffer A 1.956310 1.859730 1.920430

Avg. Buffer B 1.956310 1.859730 1.920430

N(A) = N(B) = 10 TH 0.480509 0.480450 0.462893

Avg. Buffer A 3.477690 3.107710 3.291070

Avg. Buffer B 3.477690 3.107710 3.291070

N(A) = N(B) = 15 TH 0.481614 0.480752 0.472221

Avg. Buffer A 5.154960 4.316080 4.577390

Avg. Buffer B 5.154960 4.316080 4.577390

N(A) = N(B) = 20 TH 0.482139 0.480768 0.476788

Avg. Buffer A 6.985480 5.538800 5.844670

Avg. Buffer B 6.985480 5.538800 5.844670

N(A) = N(B) = 25 TH 0.482536 0.480769 0.479504

Avg. Buffer A 8.882050 6.771940 7.104910

Avg. Buffer B 8.882050 6.771940 7.104910

N(A) = N(B) = 30 TH 0.482869 0.480769 0.481305

Avg. Buffer A 10.780100 8.010860 8.361700

Avg. Buffer B 10.780100 8.010860 8.361700

N(A) = N(B) = 45 TH 0.483645 0.480769 0.484289

Avg. Buffer A 16.246700 11.743000 12.123000

Avg. Buffer B 16.246700 11.743000 12.123000
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Table 5.7. Parameter Set No 4.

Repair Together Stop and Repair 2 Ind. Machs

PrA 0.5 0.5 N/A

µA 1 1 0.5

µB 1 1 0.5

nu 1 1 1

pA 0.05 0.05 0.025

pB 0.01 0.01 0.005

rA 0.05 0.05 0.05

rA 0.05 0.05 0.05

rboth 0.04 N/A N/A

other two policies are giving very close results.

In Figures 5.7 and 5.8, buffer size is taken to be higher this time. We observe that

performance results are different for higher buffer sizes. Throughput results are quite

close for very small failure rates. However, as the failure rates increase, RT policy and

2IM give significantly better TH values than SR policy. (RT = 0.21, SR = 0.17, 2IM

= 0.22) It is logical to observe the advantage of RT policy and 2IM case for higher

failure rates, since in these policies production is stopped less frequently at failures. It

also makes sense to observe this difference only for higher buffer sizes and not for sizes

of around 1-5. For these buffer limits, in RT policy, the buffers are more quickly being

full and the system is stuck, so even though both tools are not broken we often need to

repair one of the tools seperately. 2IM case also cannot show its advantage for small

buffer sizes. When a tool is broken, the other buffer is getting full quickly blocking

that machine. Therefore, production needs to stop until failed tool starts production

again. When we look at the avg. inventory results, RT policy shows us that good TH

values are not achieved for free. RT policy gives the highest inventory values, while

SR policy gives the best results.
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Table 5.8. Outputs for Set 4.

Repair Together Stop and Repair 2 Ind. Machs

N(A) = N(B) = 1 TH 0.238497 0.238095 0.193460

Avg. Buffer A 0.400879 0.380952 0.419620

Avg. Buffer B 0.596308 0.476190 0.574388

N(A) = N(B) = 2 TH 0.283442 0.283517 0.251790

Avg. Buffer A 0.701387 0.697707 0.724790

Avg. Buffer B 1.197780 0.813914 1.135660

N(A) = N(B) = 5 TH 0.311899 0.309508 0.302256

Avg. Buffer A 1.292440 1.494700 1.317970

Avg. Buffer B 3.002840 1.634140 2.809300

N(A) = N(B) = 10 TH 0.319128 0.312389 0.321675

Avg. Buffer A 1.698860 2.689360 1.657610

Avg. Buffer B 6.494770 2.846880 6.034820

N(A) = N(B) = 15 TH 0.321722 0.312495 0.328047

Avg. Buffer A 1.880270 3.892900 1.664080

Avg. Buffer B 10.444600 4.057560 9.789140

N(A) = N(B) = 20 TH 0.323266 0.312500 0.330820

Avg. Buffer A 1.981300 5.116900 1.550600

Avg. Buffer B 14.607500 5.284130 13.905900

N(A) = N(B) = 25 TH 0.324266 0.312500 0.332120

Avg. Buffer A 2.010120 6.351550 1.394840

Avg. Buffer B 18.905700 6.519950 18.284000

N(A) = N(B) = 30 TH 0.324927 0.312500 0.332744

Avg. Buffer A 1.981600 7.591590 1.236920

Avg. Buffer B 23.313600 7.760690 22.851300

N(A) = N(B) = 45 TH 0.325865 0.312500 0.333265

Avg. Buffer A 1.727180 11.325500 0.890330

Avg. Buffer B 37.062500 11.495700 37.208500
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Figure 5.5. TH-Changing Failure Rate 1(Balanced).

5.1.2. Unbalanced Changes of Failure Rates

In this case, failure rates of the tools will not be identical. Our first results

shown in figures 5.9, 5.10 and 5.11 are TH values, avg. inventory level for buffer A

and avg. inventory level for buffer B respectively for changing failure rates, where the

ratio between the rates is kept as 3/4. So, tool B is facing failures with a higher rate

compared to tool A. When we check the TH results, we cannot see much of a different

outcome compared to the balanced p failures. As the failure rates get higher, 2IM and

RT cases are again giving better values then SR policy. This difference can be seen

after buffer sizes of around 5-10. With smaller buffer sizes, TH performances of the

cases are not much different. With increasing failure rates, for buffer size of 20, the
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Figure 5.6. Average Inventory-Changing Failure Rate 1 (Balanced).
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Figure 5.7. TH-Changing Failure Rate 2(Balanced).

TH values drop down to: RT = 0.19, SR = 0.15, 2IM = 0.20. Inventory levels can

be observed in two seperate figures as mentioned. With unbalanced failure rates, RT

policy and 2IM case cause higher buffer levels for part type A and much lower levels for

part type B. However, SR case is not effected by this unbalanced failure rates thanks

to the policy it uses. When we look at the overall inventory values, with unbalanced

failure rates, SR case is even better than the others.

5.1.3. Changes in Failure Rates with Unbalanced Ratio

In this case the failure rates of the two tools will again be unbalanced but the

ratio of the difference will not be kept at the same level. To do that, we keep pA as
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Figure 5.8. Average Inventory-Changing Failure Rate 2 (Balanced).
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Figure 5.9. TH-Changing Failure Rate (Unbalanced).

0.01 and change pB (For the 2IM case, half of these rates will be used). In figures

5.12, 5.13, 5.14 we can observe TH results, inventory of part A and inventory of part

B respectively, for buffer size 20. The only major difference we see here compared to

the constant ratio unbalanced failure case is, that SR policy is not falling behind at

high failure rates here. Only very little TH difference is observed (RT = 0.34, SR =

0.33, 2IM = 0.35). This is meaningful, since now there is a big imbalance in the failure

rates of the tools and SR is the most appropriate policy to deal with such imbalance.

Other than being at almost the same TH levels with the other cases, SR policy also

gives the best average inventory values as usual.



45

0 
2 
4 
6 
8 

10 
12 

0.
00

5 

0.
01

5 

0.
02

5 

0.
03

5 

0.
04

5 

0.
05

5 

0.
06

5 

0.
07

5 

0.
08

5 

0.
09

5 

B
uf

fe
r L

ev
el

 A
 

pA = 3/4 pB   
 (half rates used for 2 ind. machines) 

Avg. Inventory vs Failure Rate N=20 

Repair Together 

Stop & Repair 

2 Independent 
Machines 

Figure 5.10. Average Inventory A-Changing Failure Rate (Unbalanced).
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Figure 5.11. Average. Inventory B-Changing Failure Rate (Unbalanced).

5.2. Performance Measures Under Changing Repair Rates

In this part we will be investigating the effects of repair rates on the performance

measures. Firstly repair rates will be changed in a balanced way, i.e. the rates for two

tools will be the same. In the next part we will be changing them in an unbalanced

way.

5.2.1. Balanced Changes of Repair Rates

We can observe TH and Inventory situations of the cases under changing repair

rate parameters in Figures 5.15 and 5.16. Throughput behaviours of the three cases
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Figure 5.12. TH-Changing Failure Rate Ratio(Unbalanced).
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Figure 5.13. Average Inventory A-Changing Failure Rate Ratio (Unbalanced).

are quite similar. TH values increase for each of them together with higher repair rates

and almost converging at the same 0.46 value for high repair rates like 0.1. However, it

is interesting to note that for SR policy, average inventory level tends to increase with

increasing repair rates while for the other two cases that is the opposite. This might

be explained by the fact, that in SR policy an increase in TH can only be achieved

with an increase in the buffer levels because this policy already keeps the buffers at the

lowest levels possible. However in the other two cases, TH might also be increased by

having more balanced buffer levels (here, by increasing the repair rates), since in these

cases buffer levels might be quite high and that might not be effectively reflected to

TH values.
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Figure 5.14. Average Inventory B-Changing Failure Rate Ratio (Unbalanced).
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Figure 5.15. TH-Changing Repair Rate (Balanced).

5.2.2. Unbalanced Changes of Repair Rates

For this case, we will be changing repair rates, keeping a constant ratio between

the tools. While changing rA between (0.05 and 0.1), rB will be 4
3
rA and rboth will be

4
5
rA.
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Figure 5.16. Average Inventory-Changing Repair Rate (Balanced).
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Figure 5.17. TH-Changing Repair Rate (Unbalanced).

Looking at Figure 5.17, 5.18 and 5.19, we see that throughput performances of

the cases are very similar to each other. Especially as the repair rates increase, they

all converge at 0.46. Inventory graphs show us, that unbalanced repair rates does not

cause as much imbalance in the buffer levels as does the failure rates. Especially when

the repair rates get higher, there is almost no imbalance. SR case is of course not

effected from this unbalanced structure due to its policy, but the other cases are also

only slightly effected. Worst inventory levels are observed in RT policy and as usual

the best levels are observed in SR policy.
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Figure 5.18. Average Inventory A-Changing Repair Rate (Unbalanced).
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Figure 5.19. Average Inventory B-Changing Repair Rate (Unbalanced).

5.2.3. Changes in Repair Rates with Unbalanced Ratio

For this case we willl keep rA and rboth constant and increase rB alone. We can

see the outputs in Figures 5.20, 5.21 and 5.22.
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Figure 5.20. TH-Changing Repair Rate Ratio(Unbalanced).
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Figure 5.21. Average Inventory A-Changing Repair Rate Ratio (Unbalanced).

It is interesting to see that SR policy is ahead of RT policy in TH values after a

little increase in rB, even though the difference is rather small.(After rB is above 0.19,

SR gets slightly above RT and all three cases converge to very close values around 0.45

as rB gets higher.) This is because the advantage of repairing the tools together is

becoming ineffective in this case. We increase rB to quite high values but rboth cannot

be high because it has to be slower than repair rate of any individual tool. So it has

to be kept slower than rA. Therefore the difference between rB and rboth increases and

it looks like there is no point in not changing rB alone while its repair rate is so fast.

When we look at the inventory levels, the first thing to notice, is the terrible imbalance

of the 2IM case as rB increases. After a while buffer B is higher than three times

Buffer A levels. But when we check the overall inventory levels, RT case stays with
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Figure 5.22. Average Inventory B-Changing Repair Rate Ratio (Unbalanced).

the biggest inventory for all rB values. In this setup we can easily say that SR policy

dominates the other cases by inventory levels it reaches and by not staying behind in

the TH values immediately after rB gets a bit higher.

5.3. Performance Measures When The Bottleneck is The Assembly

Machine

In our analyses, the production rates of the assembly machine and the flexible

machine are assigned as 1. For the 2IM case, each machine has production rate of

0.5, since they work at the same time. With these production rates, the bottleneck

has always been the first workstation since the assembly machine doesn’t have any

failures and it can never be blocked. It is also interesting to investigate the results

when the bottleneck turns out to be the assembly machine. To do that, we need higher

production rates for the first workstation. Outputs of the three cases for relatively

low and high buffer sizes (2 and 20) are in the following figures starting with figure

5.23. While obtaining these outputs, production rates of the flexible machine tools are

increased from 1 to 10. (Half rates used for each of the independent machines) Failure

rates of the machines are also changed with the same ratio as production rates.

The most important result that we obtain is, that when the bottleneck is the

second workstation, SR policy gives better TH results compared to RT policy. This is
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Figure 5.23. TH-Changing Production Rate 1.
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Figure 5.24. Average Inventory - Changing Production Rate 1.

due to the buffer balance of SR case. Since the bottleneck is the assembly machine,

total TH can only be increased if we can increase the probability of having both buffers

non-zero. This probability is for sure much higher in SR case than RT case. When

we examine the figures for buffer sizes of 2, SR dominates the others in both TH and

inventory performance. With production rates of 10, SR reaches TH values of 0.70

and the others follow with 0.69. Inventory level of each buffer at the same point is

1.4 for SR, which is followed by 2IM and RT with 1.56 and 1.59 respectively. When

the buffer sizes increase to 20, TH performance of RT case stays far behind the others.

2IM leads with 0.85, SR follows with 0.84 and RT case stays behind with 0.74. There

are no surprising results in the inventory values: SR case has the lowest level with 14.8

for each buffer; RT has 15.9 and 2IM has the worst result with 17.2.
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Figure 5.25. TH-Changing Production Rate 2.
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Figure 5.26. Average Inventory - Changing Production Rate 2.

5.4. Performance Measures Under Changing Failure Rates of 2IM

In the previous analyses, we have always kept the failure rates of each independent

machine as half of the flexible machine rate. This is sensible since the production rate

of the machines were also half of the flexible machine rate and slower tools should

deteriorate more slowly compared to the faster ones. However, this rate of 2IM might

not always be exactly half of the flexible machine case. So, it might be useful to

investigate the results with changing failure rates of the independent machines. We

have used failure rates between 0.005 to 0.01 for the 2IM case. Applying these rates

to our common parameter set, we obtained the following TH results as seen in Table

5.10 and Figure 5.27.
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Table 5.9. Parameter Set For Changing Failure Rates of 2IM.

Repair Together Stop and Repair 2 Ind. Machs

PrA 0.5 0.5 N/A

µA 1 1 0.5

µB 1 1 0.5

nu 1 1 1

pA 0.01 0.01 changing

pB 0.01 0.01 changing

rA 0.05 0.05 0.05

rB 0.05 0.05 0.05

rboth 0.04 N/A N/A

Table 5.10. TH Results For Changing Failure Rates of 2IM.

Two Independent Machines

N RT SR p = 0.005 p = 0.006 p = 0.007 p = 0.008 p = 0.009 p = 0.01

N = 1 0.29425 0.29412 0.22779 0.22382 0.21999 0.21629 0.21272 0.20927

N = 2 0.36570 0.36614 0.31037 0.30334 0.29664 0.29025 0.28413 0.27828

N = 5 0.41158 0.41098 0.38412 0.37430 0.36501 0.35622 0.34788 0.33996

N = 10 0.41979 0.41643 0.41250 0.40237 0.39280 0.38373 0.37514 0.36697

N = 15 0.42202 0.41665 0.42358 0.41370 0.40435 0.39547 0.38703 0.37900

N = 20 0.42361 0.41667 0.42993 0.42030 0.41116 0.40246 0.39418 0.38628

N = 25 0.42496 0.41667 0.43410 0.42467 0.41570 0.40715 0.39899 0.39120

N = 30 0.42613 0.41667 0.43707 0.42779 0.41895 0.41052 0.40246 0.39475

N = 35 0.42717 0.41667 0.43928 0.43013 0.42139 0.41305 0.40507 0.39743

N = 40 0.42809 0.41667 0.44100 0.43194 0.42330 0.41503 0.40711 0.39952

N = 45 0.42892 0.41667 0.44236 0.43339 0.42482 0.41661 0.40875 0.40121

N = 50 0.42967 0.41667 0.44348 0.43458 0.42607 0.41791 0.41009 0.40259
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Figure 5.27. TH - Buffer Changing Failure Rates for 2IM.

The outputs of Table 5.10 proves the importance of failure rates of each inde-

pendent machine on TH performance. When it is 0.005 (half of the flexible machine

cases as we have used in the previous sections) 2IM case gives the best TH values after

buffer sizes of 15. However, if the failure rate is above 0.006, 2IM case never gives the

best TH values for any buffer size. This means that failure rates of the independent

machines can change the results upside down; 2IM case might as well be the worst

case considering the TH performances. We can also have a look at the inventory per-

formances for these rates in Table 5.11 and Figure 5.28. Changing the failure rates of

2IM does not cause much difference in terms of average inventory performance. 2IM

case remains in between RT and SR for all rates and buffer sizes.
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Figure 5.28. Average Inventory - Buffer Changing Failure Rates for 2IM.
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Table 5.11. Inventory Results For Changing Failure Rates of 2IM.

Two Independent Machines

N RT SR p = 0.005 p = 0.006 p = 0.007 p = 0.008 p = 0.009 p = 0.01

N = 1 0.49964 0.47059 0.49887 0.49865 0.49842 0.49820 0.49798 0.49776

N = 2 0.93870 0.85401 0.92372 0.92443 0.92507 0.92565 0.92617 0.92663

N = 5 2.01635 1.74770 1.97805 1.98682 1.99486 2.00222 2.00895 2.01512

N = 10 3.63494 2.97862 3.48005 3.50746 3.53199 3.55396 3.57364 3.59128

N = 15 5.37177 4.18583 4.90711 4.94993 4.98717 5.01961 5.04790 5.07259

N = 20 7.22969 5.40896 6.29756 6.35014 6.39476 6.43275 6.46519 6.49291

N = 25 9.13551 6.64253 7.65675 7.71506 7.76367 7.80442 7.83869 7.86758

N = 30 11.03450 7.88178 8.99098 9.05276 9.10366 9.14587 9.18104 9.21041

N = 35 12.89890 9.12424 10.30650 10.37060 10.42300 10.46610 10.50180 10.53140

N = 40 14.71880 10.36870 11.60830 11.67410 11.72750 11.77130 11.80740 11.83720

N = 45 16.49280 11.61440 12.90010 12.96710 13.02140 13.06570 13.10210 13.13210

N = 50 18.22350 12.86100 14.18430 14.25240 14.30740 14.35220 14.38890 14.41900
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6. CONCLUSIONS AND FUTURE RESEARCH

DIRECTIONS

In this study, the impact of maintenance policies on a 2M1B system has been

investigated using a Markovian model. After obtaining steady-state solutions, three

different cases were compared considering average throughput and average inventory

levels. Second workstation for all cases was composed of a totally reliable assembly

machine, whereas first workstation differed in these three cases as follows:

• 1 flexible machine with Stop and Repair(SR) maintenance policy,

• 1 flexible machine with Repair Together(RT) maintenance policy,

• 2 independent ordinary machines (2IM).

Before going into 2M1B system analyses, single machine systems were investigated. If

we had infinite buffer levels, the results obtained for the single machine systems could

also be used for the 2M1B system. However, this is not always the case in reality.

Having finite buffer capacities causes blockings and therefore it has a big influence on

the overall performance of the system. This blocking effect is especially important for

the RT policy because the production strategy is not well balanced as in the other

cases. Hence, the study on 2M1B system was essential to reach healthy results.

In the last chapter of the study, some numerical outputs were obtained, which

can be useful for a managerial decision maker and for future research in this area. Main

results that were obtained in the Numerical Analysis chapter can be stated as such:

• As expected, SR policy is dominating the other two, considering the average

inventory levels. Especially when the tools have unbalanced failure rates, the

buffer levels can be as low as half of the other cases.

• Except for small buffer sizes, 2IM case shows the advantage of being the simpler

model by outperforming the others in average throughput performance. However,

this superiority is diminished when very large repair rates are used, because that
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reduces the effect of failure.

• For small buffer sizes, SR policy can give very close average throughput results

compared to the RT policy. But for higher buffer sizes, RT policy achieves better

throughput results, although that results in high buffer levels. In general, RT

policy causes the worst inventory levels within the three.

• Increased failure rates create an advantage for RT and 2IM cases, because in SR

policy every failure causes the machine to stop. Therefore the TH performance

of SR is effected at a higher level, compared to the other cases.

• When we have high production rates for the first workstation which causes the

assembly machine to be the bottleneck, TH results of SR policy are better than

the RT policy. This means that SR policy totally dominates RT policy in both

of the performance measures if the bottleneck is the second workstation.

• The failure rates of the independent machines, which are working at half speed

of the flexible machine, is an important factor effecting the TH performance

results. It is sensible to think that a tool working at half speed will deteriorate

at half speed. However, this might not always be the case in practice and TH

performance of 2IM case higly depends on this rate.

After looking at these results, we can say that a preference between these cases can

only be made according to the facilities and primary needs of the decision maker and

rates of the machines available in the related market. A study with a cost function can

contribute for that kind of preference decisions. Also for future work, longer transfer

lines could be examined by a decomposition technique using our 2M1B models and

analysis. As we mentioned in the introduction, these types of maintenance strategy

problems arise quite often in multi-product manufacturing lines. However, our model

includes two-types of products only and specifically for a production-assembly line. In

order to contribute to a wider range of systems, further studies should be made with

higher number of products and for different manufacturing lines.
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APPENDIX A: CODE FOR THE SOLUTION OF SR

POLICY

A.1. A Set of Constants

Figure A.1. A Set of Constants For Stop and Repair Policy.
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A.2. Equations

Figure A.2. Equations For Stop and Repair Policy.
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APPENDIX B: CODE FOR THE SOLUTION OF RT

POLICY

B.1. A Set of Constants

Figure B.1. A Set of Constants For Repair Together Policy.
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B.2. Equations

Figure B.2. Equations For Repair Together Policy.
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APPENDIX C: CODE FOR THE SOLUTION OF 2IM

CASE

C.1. A Set of Constants

Figure C.1. A Set of Constants For Two Independent Machines.
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C.2. Equations

Figure C.2. Equations For Two Independent Machines.
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APPENDIX D: PERFORMANCE MEASURES

CALCULATIONS

Figure D.1. Performance Measures Calculations.
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Ateş, N.Y., 2006, “Interrelation of productions system design, quality and productivity

in hybrid manufacturing environments”, M.S. Thesis, Boğaziçi University.

Bergeron, D., M.A. Jamali, H. Yamamoto 2010, “Modelling and analysis of manu-

facturing systems: a review of existing models”, International Journal of Product

Development, Vol. 10, No.1-3, pp. 46-61.

Bruno, G., P. Biglia, 1985, “Performance evaluation and validation of tool handling

in flexible manufacturing systems using Petri nets”, Proceedings of IEEE Interna-

tional Workshop on Timed Petri Nets (Torino, Italy), Vol. 1-3, pp. 64-71.

Buzacott, J.A., 1967, “Markov Chain Analysis of Automatic Transfer Line with Buffer

Stock”, University of Birmingham, Birmingham.

Buzacott, J.A., J.G. Shantikumar, 1993, “Stochastic models of manufacturing sys-

tems”, Prentice-Hall, Englewood Cliffs.

Colledani, M., A. Matta, T. Tolio, 2005, “Performance evaluation of production lines

with finite bufer capacity producing two different products”, Operations Research

Spectrum , Vol. 27, pp. 243-263.

Colledani, M., T. Tolio, 2009, “Performance evaluation of production systems moni-

tored by statistical process control and off-line inspections”, International Journal

of Production Economics, Vol. 120, pp. 348-367.

Dallery, Y, S.B. Gershwin, 1992, “Manufacturing flow line systems: a review of models

and analytical results”, Queuing Systems Theory and Applications, Vol. 12, pp.

3-94.



67

Gershwin, S.B., 1994, “Manufacturing Systems Engineering”, Prentice-Hall, Engle-

wood Cliffs.

Kim, J. and S.B. Gershwin, 2005, “Integrated quality and quantity modeling of a

production line”, Operations Research Spectrum, Vol. 27, pp. 287-314.

Li, J. and S.M. Meerkov, 2000, “Production variability in manufacturing systems:

Bernoulli reliability case”, Annals of Operations Research, Vol. 93, pp. 299-324.

Van Rijn, C.F.H., 1987, “A systems engineering approach to reliability, availability and

maintenance”, Foundations of Computer Aided Process Operations. Proceedings of

the First International Conference, pp. 221-252.


	emrah tez deneme.pdf
	emrah tez referans
	ACKNOWLEDGEMENTS
	ABSTRACT
	ÖZET
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF SYMBOLS/ABBREVIATIONS
	INTRODUCTION
	LITERATURE REVIEW AND BACKGROUND INFORMATION
	OBJECTIVES OF THE STUDY
	PROBLEM DEFINITION AND MODELS
	 Fundamental Models and Assumptions
	 Flexible Machine - Assembly Machine Case
	 Two Equivalent Independent Machines - Assembly Machine Case

	 Markov Analysis
	 Single Machine CTMC Models
	 Single Flexible Machine with "Stop and Repair" Policy
	 Single Flexible Machine with "Repair Together" Policy
	 Two Equivalent Independent Machines

	 Comparison of Single Machine Models
	 Markov Analysis of 2M1B System
	 Steady-State Solution for Stop and Repair Policy
	 Steady-State Solution for Repair Together Policy
	 Steady-State Solution for Two Independent Machines



	NUMERICAL ANALYSIS AND COMPARISONS
	 Performance Measures Under Changing Failure Rates
	 Balanced Changes of Failure Rates
	 Unbalanced Changes of Failure Rates
	 Changes in Failure Rates with Unbalanced Ratio

	 Performance Measures Under Changing Repair Rates
	 Balanced Changes of Repair Rates
	 Unbalanced Changes of Repair Rates
	 Changes in Repair Rates with Unbalanced Ratio

	 Performance Measures When The Bottleneck is The Assembly Machine
	 Performance Measures Under Changing Failure Rates of 2IM

	CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS
	 A Set of Constants
	 Equations
	 A Set of Constants
	 Equations
	 A Set of Constants
	 Equations

	REFERENCES


