LOCATION-ALLOCATION PROBLEMS WITH MULTI-COMMODITY FLOWS:
EXACT AND APPROXIMATE SOLUTION METHODS

by
Mehmet Hakan Akytiz
B.S., Industrial Engineering, Istanbul Technical University, 2002
M.S., Industrial Engineering, Galatasaray University, 2005

Submitted to the Institute for Graduate Studies in
Science and Engineering in partial fulfillment of
the requirements for the degree of

Doctor of Philosophy

Graduate Program in Industrial Engineering
Bogazici University

2011



LOCATION-ALLOCATION PROBLEMS WITH MULTI-COMMODITY FLOWS:
EXACT AND APPROXIMATE SOLUTION METHODS

APPROVED BY:

Prof. I. Kuban Altmel ... ...

(Thesis Supervisor)

Assoc. Prof. Temel Oncan ..o,

(Thesis Co-supervisor)

Assoc. Prof. Necati Aras ... ... . .. ...

Assist. Prof. Tinaz Ekim Agict  ...................

Assoc. Prof. Orhan Feyzioglu  ...................

DATE OF APPROVAL: 4.11.2011

11



“Whatever you do or dream you can, begin it!
Boldness has genius, power and magic in it.
Begin it now.”

Goethe.
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ABSTRACT

LOCATION-ALLOCATION PROBLEMS WITH
MULTI-COMMODITY FLOWS: EXACT AND APPROXIMATE
SOLUTION METHODS

A multi-commodity and capacitated extension of the Multi-facility Location-Allocation
Problem, namely the Multi-commodity Capacitated Multi-facility Weber Problem (MCMWP)
is considered, and exact and approximate solution methods are proposed. The MCMWP
is new in the literature and aims to locate new facilities on the plane in order to meet the
demand of customers for multiple types of products. The objective is to minimize total
transportation costs, which are proportional to the distances measured with ¢,-norm for
1 < r < oo between the facilities and customers, while satisfying the demand and capacity
restrictions. The MCMWP has a non-convex objective function and it is difficult to solve.
In the first part of this work, approximate solution methods are suggested. The first one of
them is based on the Cooper’s alternate location-allocation (ALA) heuristic and both contin-
uous and discrete variants of the ALA heuristics are developed for the MCMWP. The second
approximate solution method employs Discrete Approximation (DA) strategies. When the
location of facilities are selected from a finite set of candidate sites it is possible to obtain
approximate solutions of the MCMWP. The proposed DA strategies enable to obtain not
only upper bounds but also lower bounds on the MCMWP. The third approximate solution
method employs a Lagrangean Relaxation (LR) scheme. The MCMWP is relaxed such that
the LR subproblems are variants of Multi-facility Weber Problems (MWP) with no capacity
restrictions. The last approximate solution method produces confidence intervals for the
optimal solution of the MCMWP using the Fisher-Tippett’s theorem. In the second part of
this work, exact solution methods are developed for both the Capacitated MWP (CMWP)
and MCMWP. In particular, two different branch-and-bound (BB) algorithms, which parti-
tion allocation and location spaces, are suggested to exactly solve the CMWP and MCMWP.

Lastly, a beam search heuristic using the location space based BB algorithm is implemented.
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OZET

COK MALLI YERLESIM-DAGITIM PROBLEMLERI: KESIN
VE YAKLASIK COZUM YONTEMLERI

Tesis yer secimi, ya da kisaca yerlesim problemleri fabrika, depo, bakkal, aligveris
merkezi gibi tesisleri eniyi yerlere yerlegtirmeyi amaglar. Bir yandan eniyi yerleri bul-
maya calisgirken diger yandan da miigterilerden elde edilecek kazanci enbiiyliklemek veya
tesis agmaktan ve miisterilere hizmet etmekten kaynaklanan giderleri enkiiciiklemek gibi
iki temel amaci gergeklestirmeye caligir. Dagitim problemleri genel olarak, tesislerin yerleri
yerine trettikleri mallarin tiiketicilere dagitilmasiyla ilgilenirler. Amaclar1 alici istemlerini
doyuran, tesis sigalarini agmayan ve dagitim agindan kaynakl kisitlari saglayan enkiigiik
toplam giderli dagitim planini belirlemektir. Bu ailenin bir bireyi olan tagima proble-
minde tesisler ile tiiketiciler, tesislerden tiiketicilere dogru yonlenen oklarla baglh yonlii
¢ift kiimeli aglar tizerindedir ve tesislerde tek bir iirtin tiirtiniin tretildigini varsayarlar.
Problemin ¢ok malli siirtimii ise biraz daha geneldir ve bu varsayimi gevsetir: tesislerin
iretimi degigik triin tiirlerini igerir ve tagima agindaki akig ¢cok mallidir. Bu durum tek
malli problemin olagan kisitlarina demetleme kisitlarini ekleyerek matematiksel eniyileme
gosterimine yansitilir ve cok malli tagima problemi gosterimi elde edilir. Caligmada asil olarak
bu iki problemi biitiinleyen Simirh sigali Cok malli Cok tesisli Weber Problemi (SCCWP)
ele alinmakta, yaklagik ve kesin ¢oztim algoritmalar1 geligtirilmektedir. Yapilanlar: iki ana
kitmede 6zetlemek olanakhidir. Ilk kiime SCCWP icin yaklasik ¢6ziim yontemleri icermektedir.
Bu amacla etkinlik ve dogruluk bagarimlar: yiiksek sezgiseller onerilmistir. Ayrica, Fisher-
Tippet teoreminden yararlanilarak eniyi amac degeri iizerinde giiven araliklar: iiretilmistir.
Ikinci kiimede hem Simirh Sigali QWP (SCWP), hem de SCCWP i¢in kesin ¢oziim yontemleri
onerilmektedir. Ozel olarak SCWP ve SCCWP’yi kesin olarak ¢ozen birisi tagima digeri tesis
yeri degigkenleri uzayin parcalayan iki degigik dal-sinir (DS) dizgi iglemi geligtirilmektedir.
Degisik dallanma kurallar1 denenmekte ve tesis yeri degiskenleri uzayini parcalayan DS dizgi

islemini kullanan bir 1g51n arama sezgiseli de onerilmektedir.
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1. INTRODUCTION

Location-allocation problems (LAPs) address locating new facilities (service or pro-
duction centers i.e., warehouses, supermarkets, distribution centers, factories, etc.) to serve
existing facilities (customers) in order to meet their demand for services or products. The
objective is to minimize total transportation costs which are proportional to the distances
between new and existing facilities while satisfying the demand requirements. The founda-
tions of the LAP dates back to early 17" century. (Kuhn, 1967) attributes the following
problem to Pierre de Fermat (1601-1665) “let he who does not approve of my method attempt
the solution of the following problem: given three points in the plane, find a fourth point such
that the sum of its distances to the three given points is a minimum”. Although there is no
agreement in the literature that who has first proposed the Fermat’s problem, its solution
is on the intersection of three circles circumscribing three equilateral triangles which are
drawn on the sides of the triangle constructed by those “three given points”. The solution
to Fermat’s problem is often called as “Toricelli point” crediting to Evangelista Toricelli
(1609-1647). Toricelli point makes a 120° angle with the outer points of the equilateral tri-
angles constructed to find it. The solution of the problem becomes one of the “three given
points” (the point at the largest angle corner of the triangle) when the triangle formed by
“three given points” has an angle greater than 120°. In 1909, Alfred Weber has described
figures for the theory of locations of industries and considered the Fermat’s problem with
unequal weights on the three points. Actually, Weber has made a distinction between the
consumption (or demand) centers and raw material (supply) centers which feed the produc-
tion facility to be located. However, the consumption and supply centers can be interpreted
as existing facilities. Weber has also addressed the general case for more than three market
locations. The name Weber Problem (WP) and many others are then used to describe the
single facility location problems in which a new facility is located so as to minimize the sum
of transportation costs of serving several existing facilities (customers). More discussions
on the history of Fermat’s problem, as well as the WP and its synonyms used in different
domains of scientific areas can be found in (Wesolowsky, 1993) and (Drezner et al., 2002).
(Weiszfeld, 1937)’s iterative method is the first solution procedure for the WP when J > 3
with unequal weights where J is the number of customers. Several independent discoveries of
the Weiszfeld’s algorithm are made two decades later by (Miehle, 1958), (Kuhn and Kuenne,
1962) and (Cooper, 1963).



When there are more than one facility to be opened, the multi-facility location problem
arises. In this case, there are two decisions to be made: finding the locations of facilities and
deciding on the amount of shipment (allocation quantities) from a facility to a customer.
Multi-facility LAP (MLAP) is first introduced by (Cooper, 1963, 1964) and its objective
function is shown to be neither convex nor concave. For the MLAP, facilities are assumed to
have an unlimited capacity and the customers are served by the supplier with the smallest
transportation cost. However, when the facilities have capacity restrictions a customer can be
supplied by more than one facility (Cooper, 1972) which results in Capacitated MLAP (CM-
LAP). CMLAP is often called as the Capacitated Multi-facility Weber Problem (CMWP).
Actually, WP is the single facility location problem when the distances between facilities and
customers are measured using Fuclidean distances on the plane. Without loss of generality,
in the sequel we refer to the location problem in which the sum of the transportation costs
is minimized as the WP regardless of the distance measure used. Generally speaking, we
distinguish the problems according to the particular distance measure used. Most of the

distance measures satisfy the following norm properties:

(i) d(x,0) > 0,vx € RY (positivity)  (1.1)
(i) d(x,00=0&x=0 (definiteness)  (1.2)
(i)  d(cx,0) = cd(x,0)¥x € RN ¢ >0 (homogeneity)  (1.3)
(iv)  d(x+a,0) <d(x,0)+d(a,0),vx,acRY (triangle inequality)  (1.4)
(v) d(x,0) = d(—x,0),vx € RN (symmetry)  (1.5)

where 0 is N dimensional zero vector and d(.,.) is the distance function measuring the
distance between two given points (i.e., x and a). Symmetry property stated by Equation 1.5
need not be satisfied by all distance measures. However, its lack harms the norm property and
the distance measures are generally taken as (symmetric) norms in location problems. For
instance, ¢,-norm in the plane, is defined as d(x,0) = (Zizl |£L’n|T)1/r, and its special cases
rectilinear (for » = 1) and Euclidean (for » = 2) distances, squared Euclidean (i.e., (¢3)?)
distances are mostly used for location problems. Several methods and functions to model
the distances have been analyzed in the literature. (Brimberg and Love, 1995), (Alpaydin
et al., 1996) and (Brimberg et al., 2007) are examples which also include concise surveys on

distance measures.



When the facilities are to be located on a finite set of given points, discrete version
of LAPs, namely DLAPs arise. On the other hand, the LAPs can be named as continuous
LAPs when the location space is continuous. The location space is generally taken as the
two-dimensional space (i.e., Euclidean space). However, there are several studies considering
the case of more than two-dimensions (Plastria, 1995). DLAPs can be modeled using Mixed
Integer Linear Programming (MILP) formulations and facilities can have fixed opening costs
for some particular cases. Nevertheless, continuous LAPs consist of nonlinear terms (i.e.,
objective function and/or constraints) which result in non-convex optimization problems.
Therefore, it is frequently assumed that the number of facilities to be opened is known and

fixed costs are embedded in transportation costs for continuous LAPs.

In this thesis, we consider a multi-commodity (multiple types of products or services)
and capacitated extension of the continuous LAP with multiple facilities. Namely, we deal
with the “Multi-commodity Capacitated Multi-facility Weber Problem” (MCMWP). Given
the locations of J customers and their demands, the MCMWP is concerned with locating I
capacitated facilities in the Euclidean space in order to satisfy the demands of J customers
for K types of commodities so that the total transportation cost is minimized. Customer
locations, demands and capacities for each commodity, and bundle restrictions are known
a priori and thus, deterministic. The transportation costs, which are proportional to the
distance between customers and facilities, depend on the commodity type. We consider
{,-norm with 1 < r < oo or its weighted form obtained by multiplying with a nonnegative

coefficient as the distance measure used within this work.

When there is only single commodity type (K = 1) and there is no bundle restrictions,
limiting the total flow quantity between each facility and customer, the MCMWP reduces
to the CMWP which is shown to be NP-hard even if the customer locations constitute a
straight line (Sherali and Nordai, 1988). The MCMWP is more realistic than the CMWP
since the number of product types produced in a facility is generally more than one. There
exist a few studies considering MLAPs with multiple commodities (Pirkul and Jayaraman,
1998; Gendron et al., 2003) where all of these are examples of DLAPs. For all we know,
there does not exist a continuous MLAP which consider multiple commodities. One of the
motivations of this work is to fill this gap in the literature by introducing heuristic algorithms
and exact solution procedures for the MCMWP. The outline of the thesis can be summarized

as follows. In the next chapter, we introduce two equivalent mathematical formulations for



the MCMWP. The first formulation is the original MCMWP formulation. The second one
is equivalent to the first formulation but it includes redundant constraints which are useful
for relaxation techniques and decomposition. Chapter 3 presents a critical literature survey
on WP, multi-facility WP (MWP) and CMWP. Moreover, several extensions of the LAPs
and multi-commodity DLAPs are mentioned. This chapter also describes the motivation of

our research direction in the light of the existing techniques developed for the MWP and
CMWP.

Chapter 4 is dedicated to Alternate Location-Allocation (ALA) heuristics implemented
for the MCMWP. The MCMWP reduces to a multi-commodity transportation problem
(MTP) when the location of the facilities are known. Furthermore, when a feasible allocation
plan is given, the MCMWP decomposes into pure single facility location problems, namely
the WPs, which can be easily solved. ALA heuristics, first introduced by (Cooper, 1964),
sequentially solve the location and allocation problems by fixing locations or allocations

each time. We present both continuous and discrete variants of the ALA heuristics for the

MCMWP.

In Chapter 5, we present some discretization strategies resulting in heuristics which
are also capable to produce lower bounds for the MCMWP. Discretization strategies reduce
the continuous location space, which consists of the convex hull of customer locations, into
a finite set of candidate facility locations. Discretization results in a DLAP which can be
modeled as a MILP problem. We implement two Discrete Approximation (DA) formulations
to obtain approximate solutions of the MCMWP. These DA formulations are also combined
with a lower bounding norm function to produce lower bounds. Using the DA formulations
we also propose several DA heuristics. The efficiency of the DA heuristics are improved with

Lagrangean Relaxation (LR) schemes.

In Chapter 6, we give a LR scheme whose subproblems are variants of the MWP and
propose a Modified Subgradient (MS) algorithm. The Lagrangean subproblems are formu-
lated as equivalent Set Covering (SC) problems and a Column Generation (CG) procedure
is applied to solve them. Several strategies are combined with the MS algorithm to improve

the efficiency of the suggested LR scheme.



Point and interval estimates on the objective value of the MCMWP are presented in
Chapter 7. The calculation of these estimates are based on using the famous (Fisher and
Tippett, 1928)’s theorem for the distribution of the extreme (i.e., minimum and maximum)
values of samples. Some of the heuristics implemented in Chapter 4 and Chapter 5 are

devised. A brief literature survey on the estimation methods suggested is also presented.

We implement two branch-and-bound (BB) exact solution algorithms and a Beam
Search (BS) heuristic for the CMWP and MCMWP. One of the BB algorithm considers
partitioning of the allocation space while the other one considers partitioning of the location
space. In Chapter 8, we present allocation space based BB (ABB) algorithms for both
CMWP and MCMWP. Several lower bounding procedures are embedded within the ABB
algorithm and various branching variable selection strategies are tested. In Chapter 9, a
brand new BB algorithm, namely location space based BB (LBB) algorithm, is proposed
for both CMWP and MCMWP. We devise two lower bounding schemes for LBB algorithm
together with a specially tailored branching strategy. The LBB algorithm is later used to
develop a BS heuristic for both problems. Our test bed and computational results are given
in Chapter 10. Finally, we conclude with Chapter 11 where future research directions are

discussed.



2. PROBLEM FORMULATION

Given fixed customer demands and their locations, the MCMWP consists of locating I
capacitated facilities in the Euclidean plane to satisfy the demand of J customers for K types
of commodities with minimum transportation cost under capacity restrictions on the total
quantity of commodities shipped from facilities to customers. The objective is to determine
the locations of the facilities and to determine how to allocate the capacity of facilities to
customers while minimizing the sum of total transportation costs. This chapter is devoted to
present two equivalent mathematical formulations for the MCMWP. The first formulation
is directly based on the given definition of the MCMWP. The second formulation uses a
different point of view than the first one and replicates each facility for each commodity.

These two formulations are presented in the following.

2.1. First Formulation

Let I, J and K denote respectively the number of facilities, the number of customers
and the number of commodities that each facility can ship. a; = (a;; an)T and gj;, represent
the coordinates of customer 7 and its demand for commodity k. The capacity of facility ¢ for
commodity k is given by s;x. x; = (xa azig)T and w;jj, are the unknown coordinates of facility
¢ and the unknown amount of commodity & shipped from facility ¢ to customer 5 with the
unit shipment cost ¢;;; per unit distance, respectively. The distance between facility ¢ and

customer j is measured by ¢,-norm with 1 < r < oo given as follows.

d(xi,2;) = (|zin — aj|" + zn — ajp|)"" (2.1)

where d(x;,a;) denotes the function measuring the distance. Then, the first formulation of

the MCMWP can be stated as follows.



MCMWP1:

I J K

i=1 j=1k=1
s.t. > wijk = sik i=1,....;k=1,... K, (2.3)
D Wik = g j=1 k=10 K, (24)
K
> wije < uy i=1,....L;j=1,...,J (2.5)

The objective function given by Equation 2.2 is the sum of total transportation costs.
Constraints given by Equation 2.3 make sure that the total amount of commodity & produced
by facility ¢ should be exactly shipped. Constraints given by Equation 2.4 state that the
total amount of commodity k required by customer j should be exactly satisfied. We assume
that, according to regulations, total amount of allocations on a road connecting facility ¢
with customer j should not be larger than the given upper bound wu;;. These regulations
may be legislative stipulations such as narrow straits which have limitations on the size of
ships that can pass, the restrictions on the total amount of hazardous materials that can be
shipped, etc. For instance, there may be capacity and cost restrictions on the transportation
fleet of companies. What is more, business contracts between suppliers and customers may
also impose some upper bounds. These situations can be formulated with the flow capacity
constraints or the bundle constraints given by Equation 2.5. In this formulation we assume
that the problem is balanced, i.e., quk = Zslk holds for £ =1, ..., K, and the equalities
in Equation 2.3 and 2.4 can be replaced Wlth “<” and “>7, respectively without changing
the optimal solution. In anyway, in case the problem is not balanced, say the total capacity
of facilities is larger than or equal to the demand of customers then the problem can be
transformed into a balanced form by using dummy customers with zero transportation costs.
Moreover, note also that, whenever bundle constraints given by Equation 2.5 are relaxed the
remaining problem can not be decomposed into K subproblems because the facility location

variables x; are common for the subproblems.



It can be observed that, in the MCMWP formulation, the transportation costs are
directly proportional to the quantity of commodities sent from facilities to customers and
the distance between facilities and customers. The MCMWP has always an optimum solution
which occurs at one of the extreme points of the polyhedron defined by multi-commodity
transportation constraints given by Equation 2.3 — 2.6. This is guaranteed as long as the
transportation cost is a function of only location variables without additional conditions on

its structure such as convexity of the distance function d(x;, a;).

2.2. Second Formulation

In developing the second formulation a different strategy has been followed. The first
formulation assumes that each facility ¢ produce all its K commodities at the same location.
On the other hand, it is possible that facility ¢ produces each commodity at different produc-
tion centers somewhere in the plane. The second formulation initially relaxes this restriction
and then enforces all K production centers of a facility ¢ to be opened at the same location.
Hence, each production center producing commodity k for facility ¢ has its own location
variable but they are restricted to be equal for each facility i. Let x¥ = (2% 2%)T denote

the unknown location of the production center of a facility ¢ producing commodity k. Then

the second formulation as follows.

MCMWP2:
I J K
min 7 :ZZZwijkcijkd(xf, a;) (2.7)
i=1 j=1k=1
J
s.t. > “wijp = s, i=1,....Lk=1,...,K, (2.8)
j=1
I
Zwijk:qjk jzl,...,J;kzl,...,K, (29)
=1
K
> wij < uy i=1,...,L;j=1,...,J (2.10)
k=1
xl —xK=0 v=1,...,1
(2.11)
xt—xtlt=0 i=1,...Lk=1,. K

wije > 0 i=1,...,Lj=1,... Jik=1. K  (212)



Constraints given by Equation 2.11 guarantee that each production center k of facility
¢ is opened at the same location and the rest of the MCMWP2 formulation is the same as
MCMWP1. In other words, each facility has K copies that must be located at the same point.
Actually, constraints given by Equation 2.11 are redundant for MCMWP1 and add additional
location variables to MCMWP2. In particular, we can directly discard these constraints when
K = 1. However, their relaxation enables the decomposition of the MCMWP2 into smaller
subproblems for each commodity &, which is not the case for the MCMWP1. An alternative
representation of the MCMWP2 for the discrete LAP case is given in Chapter 5 and we

explain details on how the problem is decomposed into subproblems within the DA context.
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3. LITERATURE SURVEY

3.1. The Weber Problem

The Weber Problem (WP) tackles with locating single facility in the plane to satisfy
demand of J customers with known locations at a minimum total transportation cost. Let
x = (z1 w9)" denotes the unknown location of a facility to be located, then the WP can be

stated as

WP:

J
min Zywp = Y _cjd(x, ), (3.1)

J=1

where ¢; = ¢;q; and g; is the known demand of customer j with a unit transportation cost of
¢;. The WP is a pure location problem and one may think that the optimum facility location
occurs in the weighted average of the customer locations at the first glance. However, this
intuitive argument is valid for the case where the distances are measured with the squared
Euclidean norm and can be misleading with other norms. As a reminder, the WP is the
problem where the distances are measured with the Fuclidean norm. Yet, we use the name
WP with any distance function and make a distinction of the WP according to the particular

distance measure (i.e., norms) used.

The solution of the WP when J > 3 with unequal weights is accomplished by (Weiszfeld,
1937). The Weiszfeld’s algorithm is an iterative procedure which employs the derivative of
the distance function. In the late 50’s and early 60’s, three studies by (Miehle, 1958), (Kuhn
and Kuenne, 1962) and (Cooper, 1963) independently rediscover the Weiszfeld’s algorithm.
The iterative method updates the facility location using its previous iteration value (namely,
an iterate) within the first derivative of the distance function. However, the derivative is not
defined on the customer coordinates and the algorithm may fail when such a case occurs.
In particular, (Wesolowsky, 1993) states that the convergence of the algorithm is slow when

the facility location falls in the close vicinity of the customer locations at an iteration.
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Initial convergence results for the Weiszfeld’s algorithm are given in the studies by
(Kuhn, 1973) and (Ostresh, 1977). (Brimberg and Love, 1993) show the global convergence
of the algorithm under the assumption that an iterate does not coincide with the coordinates
of customer locations. Their proof holds for ¢, distances with 1 < r < 2 while the global
convergence is not guaranteed when r > 2. These results are all generalizations of the (Kuhn,
1973)’s results for the Euclidean distance (i.e., r = 2). (Rosen and Xue, 1993) argue that
a hyperboloid approximation procedure is always convergent for the Euclidean distance and
their approach eliminates the problem with the derivatives which are not defined on customer
locations. (Frenk et al., 1994) extend the results by (Brimberg and Love, 1993). (Frenk et al.,
1994) also use a hyperbolic approximation of the WP and work on a perturbed problem to
show the convergence of the Weiszfeld’s algorithm again for 1 < r < 2. (Brimberg et al.,
1998) propose a scheme to accelerate the convergence of the Weiszfeld’s algorithm with
(, distance by using a step size factor. When r > 2 the WP can be solved by classical
unconstrained minimization techniques (Bazaraa et al., 1993). (Love et al., 1988) assert the
necessary and sufficient optimality conditions of the WP when optimal facility location is
on any customer locations. Briefly, the WP can be solved without much difficulty using
the convexity of the distance measure. A more detailed survey on the WP can be found in

(Wesolowsky, 1993) and (Drezner et al., 2002).

3.2. The Multi-facility Weber Problem

The Multi-facility Weber Problem (MWP) is concerned with locating I uncapacitated
facilities in the plane and allocating them to J customers with known locations in order to
satisfy their demand. Let wj; € {0,1} for i = 1,...,[;j = 1,...,J be the binary decision
variables indicating whether customer j is served from facility ¢« or not with an associated
unit transportation cost ¢;;. Then, the MWP formulation which is introduced by (Cooper,

1963, 1964) is as follows.

MWP: I J
min  Zywp :Zngjqjcijd(xi,aj) (3.2)
i—1 j=1
I
5.t dwi=1 j=1,...J (3.3)
i=1

U);JE{O71} 22177[7j:17ﬂ’]7 (34)
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where the rest of the notation is the same as in the WP and MCMWP. The objective
function of the MWP is shown to be neither convex nor concave by (Cooper, 1972). An
equivalent formulation of the MWP can be obtained by substituting binary variables w;; =
l;—ij where w;; > 0 and g; > 0 hold, which makes the constraint set linear. Nevertheless, this
transformed formulation does not make the solution of the MWP easier. Thus, we prefer to
represent the MWP by Equation 3.2 — 3.4. Each customer is served from a single facility
which has the smallest weighted transportation cost in the MWP. Hence, in an optimal
solution of the MWP, the demand of each customer is satisfied by exactly one facility. This
is also indicated by constraints given by Equation 3.3. Actually, a feasible solution of the
MWP can be obtained by partitioning the set of customers into I distinct subsets and finding
optimal facility locations for the resulting allocations of customers to facilities. Once all such
I distinct subsets of customers are generated, an optimal solution of the MWP can be found
by selecting the minimum cost solution among them. However, the number of such subsets

is given by the Stirling number of second type as
1<~ (1 o
S (C) -y, (35
=0

which makes the solution of the MWP difficult even for small numbers of facilities and
customers. Indeed, the MWP is shown to be NP-hard by (Megiddo and Supowit, 1984) and
heuristics take place an important part of the research to on the MWP. ALA heuristic is still
one of the most used algorithm to produce feasible solutions for the MWP (Cooper, 1964).
It consists of two phases: allocation and location phases. In the allocation phase, facility
locations are assumed given and it remains to allocate each customer to the least weighted
transportation cost facility. Note that when all transportation costs between each customer
and facility are equal, the assignment of a customer is made to the nearest facility. In the
location phase, it is assumed that customers are already allocated to facilities and optimal
facility locations are calculated. In this case, the problem decomposes into pure location
problems as given in Equation 3.1. Each one of them is a single facility problem and can be

solved by one of the methods developed for the WP.

(Cooper, 1963) suggests a heuristic for small problems. This heuristic is later enhanced
by (Cooper, 1964) where its randomized version is also proposed. These heuristics consider

generating subsets of customers on which the facilities is to be opened. However, the number
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of combinations grow rapidly and the optimum facility locations are not guaranteed to be
on customer locations, which deteriorates the performance of these heuristics. (Eilon et al.,
1971) perform a series of experiments on the ALA heuristic and observed that a multi-start
ALA can yield 40.9% deviation on a 50 customers 5 facilities instance. (Brandeau and Chiu,
1993) apply Fisher and Tippett’s theorem and made a worst case performance analysis on
the ALA heuristic. The authors observe a maximum deviation varying from 8.4% to 73%
corresponding to the best and worst performance of the ALA heuristic on the instances

having facilities from 3 to 7 and customers from 50 to 75.

(Love and Juel, 1982) propose five heuristics based on ALA heuristic where they define
a neighborhood structure. The neighborhood structure starts from a solution and exchanges
the assignment of customers to facilities accordingly until no further improvement is possible.
Their algorithm moves from one solution to its adjacent solutions by exchanging only single
assignment of a customer to a facility. The authors also test exchanging the pair of customers
assigned to a facility in order to increase the chance of finding an improved solution. (Chen,
1983) employs an everywhere differentiable approximation of the objective function given
by Equation 3.2 in order to apply a quasi-Newton method. The author states that this
algorithm produces slightly better results than the ones reported by (Eilon et al., 1971) who
apply a multi-start ALA heuristic. (Bongartz et al., 1994) use a projection method after
relaxing the binary restrictions on the allocation variables. They employ the second-order
information of location and first-order information of allocation variables to determine the
descent direction and, propose an iterative algorithm to find a local minima. Their results
are better than the ones multi-start ALA heuristic finds, but the method is slower than the
multi-start ALA heuristic.

(Hansen et al., 1998) benefit from the idea of selecting facility locations on customer
locations introduced previously by (Cooper, 1963, 1964). First of all, the authors offer
to solve a p-median problem which uses the customer locations as candidate facility sites.
Then, an improvement step namely an ALA heuristic, which is initialized with the locations
obtained from the solution of the p-median problem, is applied. The p-median problem

based heuristic is shown to have an outstanding performance on their test instances.

(Gamal and Salhi, 2001) put forward two constructive heuristics where they apply
Cooper’s ALA heuristic whose initial facility locations are constructed by preprocessing pro-

cedures rather than a random initialization. The first constructive procedure tries to locate
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facilities as far as possible on the customer locations. The second constructive procedure
finds a feasible solution for the p-median problem by a heuristic procedure to initialize the
facility locations. Note that in the second constructive heuristic the p-median problem is
not solved exactly as it is done in (Hansen et al., 1998). These heuristics are efficient in par-
ticular on large MWP instances. Later, (Gamal and Salhi, 2003) suggest a cellular heuristic
in which the customer plane is divided into grids and a random multi-start ALA heuristic
is run. The cells containing facility locations, which come from multi-start ALA heuristic,
are merged or divided such that their number equals to the number of facilities. Then, the
center of facility locations in each cell is found to initialize an ALA heuristic. The results
obtained by cellular heuristic are not better than the ones of the constructive heuristic by

(Gamal and Salhi, 2001).

The performance of the p-median problem based heuristic by (Hansen et al., 1998)
deteriorates on large instances in spite of its excellent accuracy. (Brimberg et al., 2000) report
improvements on the existing metaheuristic approaches which includes Genetic Algorithm
(GA), Tabu Search (TS) and Variable Neighborhood Search (VNS) for the MWP where
they outperform the p-median problem based heuristic. (Salhi and Gamal, 2003) explain a
GA based heuristic which performs better than GA approach but worse than the TS and
VNS approaches by (Brimberg et al., 2000). Recently, (Brimberg et al., 2006) associate a
decomposition strategy with the VNS approach for large-scale problems, which outperforms

the results by (Brimberg et al., 2000) on a set of instances with 1060 customers.

Exact methods for the MWP are considered in several studies. The first exact method
is a BB algorithm developed on the allocation space by (Kuenne and Soland, 1972). This BB
algorithm is limited to only small instances and halts quickly. The size of instances changes
between (I = 2, J =20) and (I =4, J = 15), which are solved within 0.5% of the optimal

value.

(Ostresh, 1975) and (Drezner, 1984) consider the special case where there are only
two facilities with unit transportation costs. The optimal partitioning of customers can be
done by a straight line when I = 2 since each customer is served from the nearest facility
and both studies employ this argument. Then, they generate all possible lines separating
the customers into two distinct sets where there are at most J(J — 1)/2 such partitions.

(Drezner, 1984) analyzes instances up to 100 customers (i.e., J = 100).
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(Rosing, 1992) develops a modified SC problem formulation to exactly solve the MWP.
This method first generates all distinct nonintersecting convex hulls of customers and then
each convex hull, which is interpreted as a column, is added to the SC problem formulation.
However, this approach halts quickly on medium instances since the number of convex hulls
grows exponentially. (Rosing, 1992) reports optimal partitions for instances of sizes up to

(I=5,.J=230)and (I =6, J = 25).

(Chen et al., 1998) express the MWP as the Difference of Convex (D.C.) functions.
The minimization of D.C. functions can be transformed into a concave minimization problem
and then this problem can be solved by an outer approximation procedure (Horst and Tuy,
1996). However, this method is not applicable for instances with I > 3. (Chen et al., 1998)
obtain very efficient solutions on instances with two facilities and 1000 customers. The D.C.
programming based approach can not solve problems having larger than 3 facilities and 30

customers in reasonable CPU times.

(Krau, 1997) considers the SC problem formulation and focuses on a CG procedure
combined with a Branch-and-Price (BP) algorithm to exactly solve the MWP. This method is
based on generating customer subsets rather than their convex hulls as suggested by (Rosing,
1992). Krau’s approach increased the size of instances that can be solved up to 50 facilities

and 287 customers.

(Righini and Zaniboni, 2007) prefer to replace the solution approach used by (Krau,
1997) for the Pricing Subproblem (PS) with a polynomial time algorithm developed by
(Drezner et al., 1991) for the solution of the facility location problem with limited distances.
The authors solve instances with hundreds of facilities (i.e., I = 800) and thousands of
customers (i.e., J = 2000). (Righini and Zaniboni, 2007) claim that their approach performs
better than the Krau’s approach in particular when I/J ratio is relatively high. As a recent
and brief survey on the MWP including exact, heuristic and metaheuristic methods, we refer
to the work of (Brimberg et al., 2008). The Lagrangean heuristic, which will be presented in
Chapter 6, benefits from the strengths of both exact methods by (Krau, 1997) and (Righini
and Zaniboni, 2007) on the MWP.
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3.3. The Capacitated Multi-facility Weber Problem

The CMWP deals with locating I capacitated facilities in the plane to satisfy the
demand of J customers with the minimum total transportation cost of a single commodity.
The CMWP is introduced by (Cooper, 1972) and also known as the transportation-location
problem. Let the decision variable w;; stands for the unknown allocation quantity sent from
facility 7 to customer j and consider the decision variable x; denoting the unknown location

of facility ¢ with a given capacity of s; for ¢ = 1,...,I. Then, the mathematical formulation

of the CMWP can be stated as

CMWP:
I J
min ZCMWP :ZZwijcijd(xi,aj) (36)
i=1 j=1
J
s.t. ZU}” = S; 1= 1,...,], (37)
j=1
I
i=1
wy >0 di=1,...1j=1,...J (3.9)

Notice that the rest of the notation is as defined for the MWP. This formulation assumes
that the CMWP is balanced, i.e., the total demand and total supply are equal, namely
23'121 q; = Zle s; holds. When the total supply is larger than the total capacity the problem
is unbalanced and it can be transformed into a balanced one by adding artificial customers
to the formulation. However, the problem is infeasible when the total demand is larger than
the total capacity. The objective function given by Equation 3.6 is the total transportation
cost. Constraints given by Equation 3.7 ensure that the total amount produced by facility ¢
should be completely shipped. Constraints given by Equation 3.8 enforce that the demand

of customer j should be met.

The transportation cost is usually assumed to be proportional to both the amount
shipped and the distance between the facilities and customers. In the CMWP customers

can be served from more than one facility and these facilities need not be the closest ones
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as in the MWP case. Moreover, the allocation quantities w;; can take a value within the
interval [0, ¢;]. For the MWP w;; values are equal to either 0 or ¢;. The CMWP with unit
transportation costs (i.e., ¢;; = 1 for all facility and customer pairs) is defined by (Cooper,
1967) as a preliminary formulation given by (Cooper, 1972). The CMWP is shown to be
NP-hard by (Sherali and Nordai, 1988) even if the customers are located on a straight line.

(Cooper, 1967) implements a heuristic which produces solutions for the CMWP with
unit transportation costs. The heuristic algorithm locates facilities on a selected subset of
customer locations and initially treats the CMWP as a MWP to determine the allocation
quantities by assigning each customer to its closest facility. Then, the initial solution (feasible
for the MWP but probably infeasible for the CMWP) is improved by reallocating surplus or
deficit in facility capacities among customers. This may occur since the allocations are made
according to the nearest facility regardless of the capacity of the facilities. (Cooper, 1972)
generalizes this algorithm and earlier ALA heuristic by replacing the usual allocation phase
with the solution of the Transportation Problem (TP) with constraints given by Equation
3.7 — 3.9 of the CMWP. We call this version of the ALA heuristic as the Capacitated ALA
(CALA) heuristic in the sequel.

(Cooper, 1976) introduces a neighboring structure defined on the allocation quantity
assignments of the TP. The author initializes a feasible allocation plan with the classical
northwest corner rule for the TP and find a local optimum with the CALA heuristic. A local
optimum is a feasible solution at which neither facility locations nor allocation quantities
change when one of them is fixed within the allocation and location phases, respectively.
Then, the local optimum solution is subjected to one, two and three-variable exchanges
respectively until no further improvement is possible in each case. The variable exchanges
starts from scratch and a CALA heuristic is applied to find another local optimum as long as
an improvement is obtained. This work produces superior results than the CALA heuristic
with multi-start initializations. In addition, this algorithm can be regarded as an early VNS

procedure presented by (Hansen and Mladenovié, 2001).

(Zainuddin and Salhi, 2007) modify Cooper’s heuristic by combining with a perturbation-
based procedure. The modified Cooper’s heuristic alternates the transportation-location-
allo- cation-location phases, respectively. The location and the transportation phases are

the same with the CALA heuristic. However, in the additional allocation phase the cus-
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tomers are assigned to their nearest facilities as in the MWP. This phase may play a role for
shaking the facility locations towards other local optima and may increase the chance to find
better solutions. Once the alternating steps are finished, current solution is improved by a
perturbation-based procedure. The perturbation procedure enforces some customers to be
served from their nearest facility in case they are (fully or partially) served from their second
nearest facility. Lastly, a reduced neighborhood is also scanned to obtain improved solu-
tions when possible. The reduced neighborhood exchanges allocation of customers among a

smaller subset of selected facilities.

(Aras et al., 2007) present a MILP formulation which approximates the CMWP. The
authors consider a finite set of candidate facility locations which transform the CMWP into
a DLAP to obtain approximate solutions. Their work is concerned with the £,-norm CMWP
(LCMWP) with 1 < r < 2 and they offer three heuristic procedures. First heuristic employs
a LR scheme on the approximating MILP formulation which uses a candidate location set
defined on the intersection points of a predefined grid structure by dividing the customer
plane into uniform rectangular areas. The second heuristic uses the p-median problem based
heuristic idea of (Hansen et al., 1998), which employs the customer locations as candidate
sites. The third heuristic is an adaptation of the cellular heuristic by (Gamal and Salhi,
2003) to determine the candidate facility sites. The second and third heuristics solve the
MILP with suggested candidate facility locations and apply the CALA heuristic to obtain
better feasible solutions. (Aras et al., 2007) observe that the second heuristic, which uses
the customer locations, produce results with excellent accuracy. Their second heuristic finds

almost all best known solution values on standard test instances.

Rectilinear distance (¢;-norm) CMWP (RCMWP) is addressed in the study by (Aras
et al., 2008) which is an earlier version of the DA heuristics designed by (Aras et al., 2007).
Actually, the publication years of these two studies may mislead the reader that the work by
(Aras et al., 2007) is prior to (Aras et al., 2008). The MILP formulation proposed by (Aras
et al., 2008) gives the exact solution of the RCMWP where the optimum facility locations
occur on a finite set of points defined by the intersection points of the horizontal and vertical
lines drawn on customer locations (Wendell and Hurter, 1973). (Aras et al., 2008) provide
also similar DA heuristics to the ones presented in (Aras et al., 2007) but in this case, the

suggested DA heuristics are for the more general ¢, distance CMWP (i.e., for 1 <r < 00).
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In their recent work, (Luis et al., 2009) come up with Region-Rejection (RR) heuristics
for the CMWP. Their heuristics gradually initialize facility locations within the smallest
rectangle covering customer locations. Once a set of facilities are randomly located, the
regions that are close to these already located facilities are forbidden for a new facility
to be located. Actually, a new facility can not be located within the circles centered at
previously located facilities. Furthermore, the radius of these circles are iteratively adjusted
until all facilities are initially located. With this initialization of facilities a CALA heuristic
is followed to produce heuristic solutions. RR heuristic is similar to the first constructive
heuristic by (Gamal and Salhi, 2001) for the MWP. The computational results indicate that
the constructive heuristic is more efficient but more inaccurate than the DA heuristic of

(Aras et al., 2007) which uses customer locations as candidate facility sites.

(Aras et al., 2006) put forward several metaheuristic approaches including Simulated
Annealing (SA), Threshold Accepting (TA) and GA on the LCMWP. One and two-variable
exchange neighborhood structure is devised for the SA and TA methods. The SA method
with two-variable exchange outperforms the other metaheuristics in their study. However,

these results are also slightly inferior to the ones obtained in the study by (Aras et al., 2007).

Recently, (Luis et al., 2011) examine a Greedy Randomized Adaptive Search Procedure
(GRASP), which is a two-phase metaheuristic method using a randomized multi-start local
search technique, for both MWP and CMWP. In the first phase a feasible initial solution
is constructed from a candidate list of the facility locations defined over a selected subset
of customer locations. The second phase consists of the CALA heuristic as the local search
procedure. These two phases are repeated several times and the best feasible solution found
is reported as the final outcome. This metaheuristic approach does not perform better than
the DA heuristic results by (Aras et al., 2007) on standard test instances. A comparative
analysis is not reported on additional data sets which are larger than the standard instances
in (Luis et al., 2011). However, the standard MWP instance results indicate that GRASP

has lower accuracy than the heuristic by (Brimberg et al., 2006).

Since its introduction by (Cooper, 1972), several researchers address exact solution pro-
cedures on the CMWP. The first exact algorithm attempt to solve the Euclidean distance
CMWP (ECMWP) is performed by (Cooper, 1972) where the author proposes a complete

enumeration strategy of generating all extreme points of the transportation polyhedron. An-
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other exact solution procedure is proposed in the unpublished dissertation by (Selim, 1979)
in which a biconvex programming cutting plane procedure has been devised. Unfortunately,
both of these exact procedures can only solve ECMWP instances with few facilities and cus-
tomers. (Cooper, 1972) solves instances with sizes up to (I,J) = (2,4) while (Selim, 1979)

considers instances with sizes up to (1,J) = (5,5).

For different types of distance functions used for the CMWP, different BB algorithms
are developed. For the squared-Euclidean distance CMWP (SECMWP), (Sherali and Tungbilek,
1992) propose a BB algorithm which employs (Sherali and Adams, 1999)’s Reformulation-
Linearization Technique (RLT). The authors transform the SECMWP into an equivalent
convex maximization problem. Then, they develop three closed form upper bounding func-
tions of allocation variables that require the solution of several Linear Programming (LP)
problems. These three upper bounds and the RLT bound is employed together within the
BB algorithm. (Sherali and Tungbilek, 1992) can find solutions of the SECMWP test in-
stances with sizes up to (I,J) = (4,20) — (6,14) within 1% to optimality. Another exact
solution algorithm is suggested by (Sherali et al., 1994) for the RCMWP. The authors apply
the RLT to an equivalent RCMWP formulation with bilinear objective function. They im-
plement a BB algorithm which works in a partial location space consisting of the customer
coordinates in each of the z-axis and the y-axis. (Sherali et al., 1994) can solve test instances
with sizes up to (1,J) = (4,20) — (5,12) within 1% to optimality. In their excellent study,
(Sherali et al., 2002) propose a BB algorithm for the LCMWP with 1 < r < co. This BB
algorithm employs the RLT based lower bounds and the authors have noted that they can
solve instances with sizes up to (/,J) = (5,10) within 0.1% to optimality.

3.4. Other Variants and Extensions

In a variant of the multi-facility location problem, there are interactions among the new
facilities to be opened without making the allocation decisions (Miehle, 1958). This problem
is an unconstrained convex minimization problem, which is not everywhere differentiable,
and several solution techniques exist for it (see (Rosen and Xue, 1993; Al-Loughani, 1997)).
There are also several extensions of the location problems in which the location space is
continuous but restricted to lie within some specified regions and/or barriers limiting the
passage (Aneja and Parlar, 1994; Fliege and Nickel, 2000). The WP transforms to the

Obnoxious Facility Problem (OFP) when the facility to be opened is desired to be as far
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as possible by the customers (Hansen et al., 1981). Similar to the OFP, in some cases
customer weights may be negative which implies that the facility is unwanted resulting in
Weber problem with Attraction and Repulsion (WAR) (Chen et al., 1992; Plastria, 1995).
When the objective is to minimize the maximum distance between facilities and customers,
the problem is called a minimax problem introduced by (Rawls, 1971) in a totally different
context: theory of justice in a social framework (Plastria, 1995). Another variant of the WP
may arise when the customer locations are not known exactly i.e., when customer locations
are scattered on the Euclidean space according to a probability density function (Altmnel
et al., 2009). Surveys and more details on WP and LAPs can be found in (Drezner et al.,
2002), (Plastria, 1995), (Wesolowsky, 1993), (Love et al., 1988) and (Francis et al., 1992).
Moreover, (Hamacher and Nickel, 1998) present a 5-position classification scheme by which
all location problems can be described. (Nickel and Puerto, 2005) implement a unifying

approach to construct a standard framework for the location theory.

3.5. The Multi-commodity Location-Allocation Problems

For all we know, the multi-commodity LAPs are limited to DLAPs having fixed costs.
In DLAPs, facilities can be located on the points which are selected from a predefined candi-
date location set resulting in MILP formulations. Then, the problem reduces to finding the
minimal cost location for each facility within the candidate location set and to determining
the allocations. The evolution of the multi-commodity location problems is parallel to their
continuous counterparts, MLAPs. Initial models consider facilities without capacity limi-
tations (Neebe and Khumawala, 1981; Karkazis and Boffey, 1981) while later formulations
integrate facility capacities, multiple production stages (i.e., multiple types of facilities) and

periods into the model (Pirkul and Jayaraman, 1998; Canel et al., 2001).

We can site the early studies by (Neebe and Khumawala, 1981) and (Karkazis and
Boffey, 1981) as two examples for the uncapacitated muti-commodity LAPs. Both stud-
ies address the multi-commodity extension of the classical Uncapacitated Facility Location
(UFL) problem (Wolsey, 1998) with fixed costs. In both studies BB algorithms are devel-
oped. (Neebe and Khumawala, 1981) modify the first UFL formulation by (Wolsey, 1998)
and use three lower bounding schemes for their BB algorithm. (Karkazis and Boffey, 1981)
adapt the alternative (stronger) UFL formulation by (Wolsey, 1998). They suggest a dual-
based approach and Lagrangean dual-based approach with hill-climbing.
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(Pirkul and Jayaraman, 1998) consider a two-stage distribution network with multiple
commodities subject to capacity limitations of both production plants and warehouses which
are to be located with fixed opening costs. They use an efficient LR scheme to solve the
resulting DLAP. (Canel et al., 2001) take into account not only multi-stage (three level)
distribution networks but also multiple production periods. Their sophisticated algorithm
consists of two parts including BB and Dynamic Programming algorithms. (Gendron et al.,
2003) formulate a multi-commodity capacitated DLAP with balancing requirements which
incorporates the conservation of flow constraints in their formulation. The authors implement
a parallel heuristic in which an iterative and a neighborhood heuristic are simultaneously
applied such that each heuristic exchanges their outcomes during the run of the proposed

method.
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4. ALTERNATE LOCATION-ALLOCATION HEURISTICS

LAPs aim to determine the optimal locations of a set of facilities and optimal allocations
of customer demands to the facilities subject to the capacity and demand restrictions at
minimum total transportation cost. Clearly, any LAP becomes a pure multi-facility location
problem when an allocation scheme is given. On the other hand, a LAP becomes a pure
allocation problem when facility locations are known. First, (Cooper, 1964) observes this
property and proposes ALA heuristic for the MWP, which simply consists of the solution
of the location and allocation problems alternately, starting with an initial set of facility
locations until no further improvement is possible. ALA heuristic ends up with a local
optima. Namely, no better locations can be found given the current allocations and no
better allocations can be found given the current locations. The author also implements the
capacitated version of ALA (i.e., CALA) heuristic in his subsequent work on the CMWP
(Cooper, 1972).

In this chapter! we suggest several ALA heuristics for the MCMWP. We first present
the multi-commodity extension of the ALA heuristic. Namely, we introduce the Multi-
commodity Capacitated Alternate Location-Allocation (MCALA) heuristic. Then, we focus
on multi-commodity extensions of two Region Rejection (RR) heuristics which are originally
devised for the CMWP by (Luis et al., 2009). RR heuristics are extensions of the CALA
heuristic with sophisticated initialization procedures. We should note that there are several
ALA heuristics that can be adapted for the MCMWP. However, RR heuristics are more
efficient and more accurate than other ALA heuristics such as the cellular heuristics by
(Gamal and Salhi, 2003) and (Aras et al., 2007) for the MWP and CMWP, respectively. (Luis
et al., 2009) also reports that RR heuristics are superior than the perturbation based heuristic
by (Zainuddin and Salhi, 2007) for the CMWP. Encouraged by their superior performance,
we adapt the RR heuristics for the MCMWP. Lastly, we propose discrete enhancements of
the MCALA and RR heuristics resulting in totally six ALA heuristics for the MCMWP.

!The article by (Akyiiz et al., 2012), and the technical report (Akyiiz et al., 2010a) are partially based on
this chapter.
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4.1. Multi-commodity Capacitated Alternate Location Allocation Heuristic

The MCMWP is also a LAP, and given a feasible transportation plan, it reduces to

solving I WPs which can be given as

J
n)l(iin Zwp = Zc;jd(xi, a;), (4.1)
=1
K
where ¢j; is defined as ¢j; = > wijpcy for each facility i = 1,..., 1. Note that Equation 4.1
k=1

is the same as Equation 3.1, which can be solved by Weiszfeld’s algorithm (Weiszfeld, 1937)
and one of its generalizations (Brimberg and Love, 1993; Frenk et al., 1994; Brimberg et al.,
1998). Although the summation is taken over all customers, it only considers |Z;| of them,
which is the size of the set Z; = {(j, k) : wi;z > 0}. Clearly, 3.7_, |I;] > J x K holds since
a customer can be served by more than one facility. In short, when a feasible assignment of
w;ji, variables is given, the problem reduces to the determination of the optimal locations of

single facilities with respect to |I;| customers.

The MWP, CMWP and MCMWP consist of similar location components. However,
their allocation problems differ. For the MWP, the allocation problem consists of the assign-
ment of each customer to the least weighted cost facility. The allocation problem becomes
the solution of an ordinary transportation problem for the CMWP and the solution of the
Multi-commodity Transportation Problem (MTP) for the MCMWP which is as follows.

MTP:
I J K
min ZMTP ZZZ /c\ijkwijk (42)
i=1 j=1k=1
s.t. Equation 2.3 — 2.6. (4.3)

Here, given the current facility locations, unit transportation costs are defined as ¢;j; =
¢ijkd(x;, a;). In short, the MCALA heuristic uses the alternate solutions of the I WPs given
by Equation 4.1 and a MTP given by Equation 4.2 — 4.3 until a local optima is obtained. A
formal outline of the MCALA heuristic is given in Figure 4.1.

In their work on the dominance and convexity in location theory, (Hansen et al., 1980)

prove that for ¢,-norm with r > 1 the optimal facility locations of a multi-facility location
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1. Locate the facilities at arbitrarily selected points x; = (x; xiz)T
i=1,...,1.

2. For each facility ¢ and customer j calculate the distance d(x;,a;) between
them, and set the new unit transportation cost as ¢ = ¢;rd(x;, a;).

3. Determine feasible allocations w;;;, by solving the MTP with costs ¢;jy.

4. Solve I Weber problems given by Equation 4.1 to relocate I facilities.

5. Repeat Step 2— Step 4 until either facility locations x; = (z; a:ig)T for

t=1,...,1 or allocations w;j; fori =1,...,1,7=1,...,J, and

k=1,..., K remain unchanged.

Figure 4.1. The MCALA heuristic.

problem lie within the convex hull of customers. Taking into consideration this result, the
MCALA heuristic is initialized by randomly choosing the facility locations within the convex
hull of customer locations. We refer to this version of the MCALA as the continuous MCALA
(C-MCALA) where in Step 1 of MCALA heuristic presented in Figure 4.1, the initial facility

locations are randomly selected within the convex hull of customers.

4.2. Region Rejection Heuristics

In a recent work (Luis et al., 2009) claim that if the initial facility locations are well
separated the accuracy of both Cooper’s ALA and CALA increase. They propose the basic
RR heuristic which accomplishes this task by randomly locating facilities one by one. The
RR heuristic checks each time whether or not there is an already placed facility that remains
within the circle of a given radius centered at the newly initialized facility. In case there
is at least one circle, a new random location is selected within the convex hull of customer
locations for the new facility. The initialization becomes complete when all the facilities are
placed. Then a solution is computed by running the usual alternating location and allocation
steps, i.e., CALA. According to their results a variant of RR performs better. In this one
the radius is not fixed but dynamically calculated according to the capacity of the facility
and the demands of the customers around the newly initialized facility. More precisely, in
this Dynamic radius enhancement (DRR) the rejection circle of a facility contains the set
of customers whose total demand is approximately equal to the facility capacity at which it

is centered. As can be noticed it is not difficult to adapt these two initialization strategies
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for the MCMWP. We call these multi-commodity extensions of RR and DRR, as MRR and
MDRR, respectively.

4.2.1. The Multi-commodity Region Rejection Heuristic

MRR heuristic gradually initializes facility locations within the convex hull of customer
locations. Once a set of facilities are randomly located, the regions that are close to those
already opened facilities are forbidden for a new facility to be located. Actually, a new
facility can not be located within the circles centered at the previously located facilities. In
addition, the radius of these circles are iteratively adjusted until all facilities are located.
The heuristic initially selects a predefined radius length which is the same for all facilities.
If it is not possible to generate locations (i.e., existing circles cover the entire convex hull
of the customers) for uninitialized facilities, all radii of the existing circles are shrunk with
an adjustment factor until all facilities are initialized. Then given these facility locations
a MCALA heuristic is run in order to produce the final solution. The outline of the fixed
radius MRR heuristic algorithm is given in Figure 4.2.

1. Choose a random point within the convex hull of customers and set
Ay = (Ijnea} {a;} —min {ajl}) Ay = <1;ﬂ§;< {aj2} —min {ajz})- Draw a
circle with radius 7 = min(p5L, n42).

2. Choose another random point. If the point is outside of existing circle(s)
fix this point and draw a circle with radius t. Otherwise repeat Step 2
until a fixed number of times.

3. In case no point found outside the existing circle(s) and the iteration limit
is exceeded, decrease the radii of all circles (e.g., by 10%) and start from
the beginning.

4. Run the MCALA heuristic with the facilities located on the centers of the

circles.

Figure 4.2. The MRR heuristic (fixed circle radius).

In the original version of the MRR heuristic, 7 is a parameter which is chosen from
the interval (0,1) and used to control the radius 7 = min(n5t,n32). (Luis et al., 2009)
state that for the CMWP setting n = 0.5 seems to be a reasonable choice. We keep their

setting and use the suggested parameters for the MCMWP as well. In Step 1, the selection
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of facility locations are random within the convex hull of customers and we refer to this

continuous version as C-MRR heuristic.

4.2.2. The Multi-commodity Dynamic Region Rejection Heuristic

(Luis et al., 2009) put forward two versions of the RR. In the first one circle radius
is fixed, and in the second one circle radius is adjusted dynamically. The authors observe
that the dynamic radius version of the algorithm performs better than the fixed radius
version for the CMWP case. Now, we present the MDRR heuristic (RR with dynamic circle
radius adjustment) for the MCMWP. Recall that in Step 3 and Step 4 of MRR heuristic,
when the iteration limit is exceeded and there are still facilities to be initialized, the MRR
heuristic adjusts the radii of all circles together with an adjustment factor. On the other
hand, adjusting all circles together may be disadvantageous for some facilities. In order to
overcome this issue the MDRR heuristic takes into account the ratio of a facility’s capacity
to meet the demand of customers within its forbidden circle. Then the MDRR dynamically
adjusts only the radius of the corresponding facility while keeping others as they are. The
formal outline of the MDRR heuristic is presented in Figure 4.3.

We use the same parameter setting suggested by (Luis et al., 2009) for the CMWP.
Notice that the dynamic adjustment of circle radii may end up with a covering of the convex
hull of the customers. Then, there is no room to locate uninitialized facilities. In this case,
the MDRR heuristic pursues a random initialization for the remaining facilities and stops
adjusting circle radii of already located facilities. As the facility locations are initialized
within a continuous space defined by the convex hull of the customer locations, we refer to

this version as C-MDRR heuristic.

4.3. Discrete Enhancements of the Alternate Location-Allocation Heuristics

ALA, CALA and MCALA are all simple and efficient; but the quality of the final solu-
tion they compute depends very much on the initial solution. One quick remedy is to benefit
from its efficiency and to repeat this heuristic many times starting at random locations. We
also apply a multi-start strategy for C-MCALA, C-MRR and C-MDRR heuristics and select
random initialization within the convex hull of customers. Although a rigorous theoretical re-

sult does not exist, it is observed that optimal facility locations are usually either on customer



. Let enty and enty denote the number of iterations and the number of trials

for radius adjustments, respectively. Set A; = <m%x {a1} — Hll}l {aﬂ}),
je je

Ay = 2} — mi ; t; = 0 and cnty = 0.

2 (rjnee}}( {a;2} min {aﬂ}), enty and cnts

. Choose a random point within the convex hull of customers and draw a
circle with a radius 7 = min(n%, n%). Increase cnt; by one.

. if cnty does not exceed J, then set cnty = 0 and go to Step 4.

else go to Step 6.

. In case the total demand of the customers within the corresponding circle
is between 70% and 100% of the total capacity of the corresponding
facility fix this facility’s location and go to Step 5. The ratio used is

I = Total demand within the corresponding circle

Total capacity of the corresponding facility -~ For the other case 8o to Step 2

and consider the next facility. if there are no more facilities, then go to
Step 7.

. Adjust the radius with an adjustment factor of v/T', increase cnty by one.
if cnty does not exceed (ﬂ, then go to Step 4. else apply the bisection
method between the previous and current circles in order to adjust their
radii.

. if there are still facilities not yet randomly located, then open them

within the convex hull of customers.

7. Apply the MCALA heuristic initialized with the current facility locations.

Figure 4.3. The MDRR heuristic (dynamic adjustment of circle radii).

28
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locations or very close to them. This is exploited first by (Hansen et al., 1998) for the MWP,
then by (Aras et al., 2007) for the CMWP to propose very accurate Discrete Approximation
(DA) heuristics. We also exploit this observation and modify location-allocation heuristics
described above in order to obtain their discrete versions, Discrete MCALA (D-MCALA),
Discrete MRR (D-MRR) and Discrete MDRR (D-MDRR) which work over customer loca-
tions instead of their entire convex hull. Actually, the idea to initialize the ALA heuristic
randomly over customer locations and to work on such a discrete location space is first tested
by (Cooper, 1964) in his random destination algorithm for which the author reports more
accurate results than the classical ALA algorithm does. This result has also motivated us

to implement a discrete version of our ALA heuristics.

In the discrete enhancements of ALA heuristics, only a countable number of candidate
points are chosen within the convex hull. We locate I facilities on the minimum cost customer
locations instead of running Weiszfeld’s algorithm. Therefore, for each facility ¢ we first sort
the costs of customer locations and then we assign the location of each facility ¢ to the
minimum cost customer location. In other words, the location phase of the ALA heuristics

replaces the WP given by Equation 4.1 with the following 7-median problem

J
argmin{ E cgljd(aj/,aj)} (4.4)
JEST AN

7j=1

Here c;./j = fcijkwijkd(aj/, a;) fori =1,..., I with given allocation quantities w; ;. Besides,
once a facili]fc?is opened on a candidate point, the rest of the facilities are randomly located
one by one on the customer locations that are not covered by the circles centered at the
previously located facilities, during the initialization of the RR heuristics MRR and MDRR.
As a remark, the discretization need not be limited to the customer locations. The candidate
point set can be selected in a different way but we prefer to use customer locations as
explained. We should also point out that both continuous and discrete versions of the
MCALA heuristic are employed within the LR schemes implemented for the DA heuristics

which are explained in the next chapter.
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5. DISCRETE APPROXIMATION HEURISTICS

(Hansen et al., 1980) generalize the dominance properties obtained for the rectilinear
distance WP by (Wendell and Hurter, 1973) to show that optimal solutions of the two-
dimensional location problems with the rectilinear distance function (i.e., the multiplication
of the rectilinear norm of the difference of customer and facility location vectors by a non-
negative coefficient) always occur within the convex hull of the customer locations and at
the intersection of the vertical and horizontal lines drawn through them. In the same work
(Hansen et al., 1980) also show that optimal location of the two-dimensional location prob-
lems remain within the convex hull of customer locations for all distance functions that
are {,-norms. (Aras et al., 2008) take advantage of these properties and reformulated the
RCMWP equivalently as a MILP problem, by restricting optimal facility locations to belong
to a candidate location set. This set is constructed by intersecting horizontal and vertical
lines drawn through the customer locations and considering the intersection points remain-
ing within their convex hull. They also suggest to use these properties to approximate the
CMWP with a norm distance function by a MILP problem formulated over a set of candidate
points selected within the convex hull of the customer locations (Aras et al., 2007). Thus, it
becomes also possible to formulate approximating MILP problems over the points selected
from the convex hull of customer locations for the MCMWP when more general norms are

used as distance functions.

This chapter? is devoted to multi-commodity extensions of the Discrete Approximation
(DA) heuristics and our improvements on them to produce both lower and upper bounds.
We first present two approximating MILP formulations for the MCMWP. The first formu-
lation is the discrete version of the original MCMWP formulation given by Equation 2.2
— 2.6. The second MILP formulation is the discrete counterpart of the second MCMWP
formulation given by Equation 2.7 — 2.12. Then, we propose LR schemes for both of these
MILP formulations. Afterwards, we put forward two discretization strategies together with
the selection of candidate points. For that purpose, we first introduce the block norms which
have the potential to produce both lower and upper bounding candidate point sets for the

MILPs. The second discretization strategy takes into account only the customer locations

2The article by (Akyiiz et al., 2012), the technical report by (Akyiiz et al., 2010a) and the conference
proceeding by (Akyliz et al., 2009a) are partially based on this chapter.
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as the candidate points set. Last part is dedicated to the formal description of the Multi-
commodity Discrete Approximation (MDA) heuristics which are capable to produce both
tight lower and upper bounds for the MCMWP. Our approach can also be extended for both
MWP and CMWP cases.

5.1. Approximating Mixed Integer Linear Programming Formulations

Let ¢ = 1,...,G label the given set of candidate facility locations (approximating
points) remaining within the convex hull of customer locations and define the variables
Yijkg as the amount of commodity & shipped from facility ¢ located at candidate point g to
customer j. Binary variables v;, are set to 1 if facility 7 is located at point g and 0 otherwise.
Cijkg is the cost of transporting one unit of commodity £ from facility ¢ located at candidate
point ¢ with known coordinates a, = (@, b\gg)T to customer j. It is obtained by multiplying
the unit shipment cost of commodity k& per unit distance from facility ¢ to customer j,
namely c;;;, with the distance d (a,,a;) between point g and customer j. In other words
Ciikg = Cijnd (8, a;) where d (A, a;) = [[dg — aj|” + [dg — aj|]"" with 1 < r < co. Then,
the first formulation of the Multi-commodity Discrete Approximation Problem (MDAP) can

be given as

MDAP1:

I J K G

min  Zypapr = Zzzzcijkgyijkg (5.1)
i=1 j=1 k=1 g=1
J
St Y Wikg =savig  i=1,... Lk=1..Kg=1..G, (5.2)
=1

I G

i=1 g=1

G

D vg=1 i=1,...,1, (5.4)
g=1

K G

S kg Suyy di=1,..,Lj=1,...J (5.5)
k=1g=1

Yijkg > 0 i=1,....L;j=1,....J;k=1,.... K;g=1,...,G, (5.6)

vy € {0,1} i=1,...,1;,9g=1,...,G. (5.7)
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Here, constraints given by Equation 5.2 — 5.5 and 5.6 are the discrete equivalent of the
multi-commodity transportation constraints given by Equation 2.3 — 2.6. Constraints given
by Equation 5.2 ensure that the total amount of commodity & shipped from facility 7 located
at point ¢ is equal to its capacity. Binary variables v;, guarantee that whenever a facility
i is opened at a candidate point g* then y;ji, are set to 0 for j = 1,..., J;k =1,... | K
and g € {¢':¢'=1,...,G and ¢’ # ¢g*}. Clearly, when there is no open facility at point g
then no shipment can originate from there. Constraints given by Equation 5.3 state that
the demand of each customer j for each commodity type k is satisfied. Constraints given
by Equation 5.4 enforce that each facility ¢ is located at exactly one of the candidate points
g=1,....G.

Indeed, constraints given by Equation 5.4 become redundant when MDAP1 is balanced.

To see this, aggregate constraints given by Equation 5.2 and 5.3 which result in

J K G

izzzyijkg = iisikivm (5.8)

i=1 j=1k=1g=1 i=1 k=1 g=

and
I J K G

S e = 33 59)

1=1 j=1k=1g=1 j=1k=1

respectively. Since the left-hand sides of both equalities in Equation 5.8 and 5.9 are the
same, it follows that S27_, S8 sy Zle Vg = S0 Z}]=1 G = S 3L si because
MDAPI1 is balanced. The last equality is clearly satisfied if and only if 2521 vig = 1 holds
for i = 1,...,1. Without loss of generality MDAP1 can be transformed into a balanced
form by using dummy facilities or customers with zero transportation cost. On the other
hand, constraints given by Equation 5.4 are valid equalities for MDAP1 and according to
our observations their existence considerably improves the LP relaxation bounds. Therefore,

we keep constraints given by Equation 5.4 which makes the MDAP1 formulation stronger.

It is also possible to model a discrete approximation as a bilinear programming problem
by using the approach proposed for the RCMWP by (Sherali et al., 1994). This will require
an additional linearization effort resulting in an increase in the number of variables and
constraints. Although MDAP1 can be optimally solved by a general-purpose MILP solver,

the required CPU time exponentially increases with the increasing instance size. When we
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consider a problem with I facilities, J customers, K commodities and G candidate points,
this results in a MILP formulation with I x G binary variables v;; and I x J x K x G

continuous variables ;-

The formulation of MDAP1 allows locating more than one facility at a candidate point
g. Moreover, the unit shipment cost does not only depend on the location of a facility, but
also on the facility itself. This means that transporting the same amount of commodity k
to customer j from two different facilities located at point ¢ may incur different costs. The
formulation becomes more compact when these facilities are uniform and the unit shipment
cost depends on both location and commodity. In this case, we redefine flow variables y,, as
the amount of commodity % shipped to customer j from point g, and cost coefficients cj, as
the unit shipment cost of commodity & from point g to customer j. The latter is obtained by
multiplying the unit shipment cost per unit distance of commodity £, that is independent of
facility ¢, with the distance between point g and customer j. In fact, the second formulation
can be directly obtained from MDAP1 by setting c;jrg = cjiy for all i = 1,..., 1 and using
the aggregated flow variables y;r, = i%’jky in the objective function as well as constraints

i=1
given by Equation 5.2 and 5.3.

In the second MDAP formulation, namely in MDAP2, we split location variable v;q
over the commodities using K binary variables (one for each commodity to represent a
production center of facility ¢ producing commodity k) vjz,. In other words, v;, is split to
Uskg Which is set to 1 when production center k of facility ¢ is located at candidate point g,
and 0 otherwise. We define new constraints to force production centers behave unanimously.
When U5y = 1 (Vs = 0) holds for one of the production centers of facility i, say center k*,
then v, = 1 (Viky = 0) also holds for all production centers, for k¥ # k* and k =1,..., K,

of facility 7. This is an “all or none” type behavior.

MDAP2:
J K G

I
min  Zypapz = Zzzzcijkgyijkg (5.10)

i=1 j=1 k=1 g=1

J
s.t. Zyijkgzsik@kg i=1,....;k=1,.... K;g=1,...,G, (5.11)
j=1

G
> kg =1 i=1,....Lk=1,...,K, (5.12)
=1
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I G

Zzyzﬂcg:qﬂc ]:1,,J,k:1,,K, (513)
i=1 g=1

K G

S Wi <wy i=1,...Lj=1..1 (5.14)
k=1g=1

Dikg < Vig i=1,....,:k=1,....K;g=1,...,G, (5.15)
K

> ik = Kvyy  i=1,....I;ig=1,...,G, (5.16)
k=1

G

D vy =1 i=1,....1, (5.17)
g=1

vy € {0,1} i=1,....,1;9g=1,...,G, (5.18)
Vg € {0,1} i=1,....,I;k=1,...,K;g=1,...,G, (5.19)
Yijkg > 0 i=1,....Lj=1,....;k=1,....K;g=1,...,G. (5.20)

In this formulation, constraints given by Equation 5.15 ensure that none of the K
production centers of facility ¢ can be opened at candidate point g unless the original facility
i is located there. Furthermore, when facility ¢ is not located on candidate point g then no
production center of that facility is allowed to be opened on candidate point g. Constraints
given by Equation 5.16 together with Equation 5.15 enforce that whenever facility ¢ is opened
at candidate point g then all production centers of facility 7 must also be located on candidate
point g. Additionally, constraints given by Equation 5.17 guarantee that a facility must be

located at exactly one candidate point.

Also, it is possible to replace constraints given by Equation 5.15 and 5.16 with the

equalities

K
Uikg = Kujg i=1,....1;,9g=1,...,G (5.21)

k=1
to obtain a more compact formulation. Unfortunately, it is weaker and produces a loser
LP relaxation lower bound, which makes MDAP2’s exact solution computationally more

challenging.
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5.2. Lagrangean Relaxation and Discrete Approximations

For some instances, the sizes of the MDAP1 and MDAP2 formulations can be quite
huge and their exact solution can be computationally intractable. Hence, it may sound
wiser to solve them approximately. Since both MDAP1 and MDAP2 belong to the family of
discrete location problems, LR approach can successfully be applied for their solution. We

devise a LR scheme and Subgradient Optimization (SO) to compute lower bounds and good

feasible solutions for both MDAP1 and MDAP?2.

5.2.1. Lagrangean Relaxation for the First Approximation

We can relax demand constraints given by Equation 5.3 and bundle constraints given
by Equation 5.5 with Lagrangean multipliers (3}, and pu;; respectively and we obtain the

Lagrangean subproblem

RMDAP1(B", pu'):

I J K G J K
min Zop (B0 =D Y > N (Cing = Bjx + 1i)¥ing + > Binde
i=1 j=1k=1g=1 =1 k=1
I
S 52
i=1 j=1
s.t. Equation 5.2, 5.4, 5.6 and 5.7, (5.23)

Notice that simple upper bounds given by Equation 5.24 are added to the formula-
tion, where w;j, = min{s;, ¢k, u;; }. Although they are redundant for the original problem
MDAPI, they improve optimal value Z; (8", u') of the relaxed problem. The last two
terms in the objective function given by Equation 5.22 are constants and RMDAP1(3*, u')
decomposes over the facilities. Although it seems possible to decompose also with respect
to the commodities at the first look, this is not possible because of constraints given by
Equation 5.4. The solution of RMDAP1(3", u!) becomes equivalent to the solution of the

following I subproblems
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RMDAP1,(3", u'):

J K G
min ZLRIZ 16 /J/ Zzzczjkgyzykg (525)
j=1k=1g=1
J
s.t. Zyijkg = SikVig k=1,....K;9=1,...,G, (5.26)

<.
Il
—

G
D vy =1 i=1,...,1, (5.27)

g=1
Yijkg > 0 j=1....J;k=1,....K;g=1,...,G, (5.29)
vy € {0,1} g=1,...,G. (5.30)

Here Cijrg = (Cijrg — Bji + p4;) is the new unit cost obtained for the given multiplier
vectors B' and p!. The solution of subproblem RMDAP1;(3", u') is not difficult. We can use
a “greedy” inspection procedure where, for each point g, we determine those customers that
are supplied from facility i when located at point g so that the shipment cost Z; piis (8, ') =
Z}]=1 Zle CijkgYijkg 15 minimized subject to Z 1 Yijkg = SikVig, k =1,..., K with v;; =1
and 0 < yijrg < wijk, 7 =1,...,J; k=1,..., K. Observe that this LP problem decomposes
further over the commodities resulting in K bounded Continuous Knapsack Problem (CKP)
each of which can be solved in O(J) times in the worst case (Martello and Toth, 1990). The
solution approach we adopt in this work is conceptually simpler, but computationally less
efficient. It can be found in any standard textbook on the LP (Bazaraa et al. 2010). A

sorting effort is required at the beginning, which results in O(Jlog J) time complexity.

When we repeat this procedure K times for each candidate point g = 1,...,G a good
optimal location for facility ¢ can be determined; this is the point where Zp, Rli(ﬂl p') is min-
imized. As a result, the optimal value Z7 (B', u') is determined by setting LRN(,B ph) =
ming {Z}:Rlig (B, 1 )} and v;; = 1 for only one of the candidate points, and vy, = 0
for the others satisfying constraints given by Equation 5.27. Clearly, Z} ., (8", p') =
Zszl Z% ine (B, 1*) holds where Z¥ ... (8", p') denotes the optimal value of the bounded
CKP which is separately solved for each commodity k.

As soon as we solve all subproblems RMDAPL-(B1 pl), we can calculate the optimal
value of the RMDAPI(Bl, p') as ZZRl(:Bla p') = Zilzl LRI (6 p') + Z] 1 Zk‘ 1 ﬁgk%k
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ST Z}]:1 piius; for given multiplier vectors ' and p'. Zj 5, (8", ') is a lower bound on
the optimal value of MDAP1 for any Lagrange multiplier vectors 3 and p'. To find the
best lower bound, we have to solve the Lagrangean dual problem, i.e., maxg: ;1 Zj g (Bl, ),

which can be achieved by performing the SO algorithm (Held et al., 1974).

5.2.2. Lagrangean Relaxation for the Second Approximation
It is also possible to apply Lagrangean relaxation on MDAP2. For this purpose we

relax constraints given by Equation 5.13, 5.14, 5.15 and 5.16 with multipliers ]Zk, ,u?j, ikg
and ;5\1-9 to obtain the subproblem

RMDAP2(3%,u2,8,8):

I J K G
min ZLR2</827 [1;2, 573> = ZZZZ(Q]M] ﬁ]k + MU Yijkg + ZZZ ikg — 'Lg Uzkg
i=1 j=1 k=1 g= i=1 k= lg 1
I K G
+ ZZZ(‘S%‘Q — Oikg)Vig + ZZﬁgk%k ZZNUUU (5.31)
i=1 k=1g=1 j=1k=1 =1 j=1
s.t.  Equation 5.11, 5.12, 5.17 — 5.20 and 5.24. (5.32)

The last two terms of the relaxed objective function given by Equation 5.31 are con-
stant and can be disregarded during the solution. Again, we add simple redundant upper
bounds given by Equation 5.24 to strengthen the Lagrangean lower bound. Observe that
RMDAP2(52,M2,6 ,3) can be separated into two subproblems one with both variables y;;x,
and Vjy,, and the other with variables v;, variables. In addition, the former problem decom-
poses further over the customers and facilities. In other words RMDAP2(8% u? .6 ,3) can be

solved by solving the following I x K + 1 subproblems

RMDAP2;,(8,142,6,6):

J G
min Zppo (8%, p%,8,8) = > [(Cijkg — B3 4 13 Yijkg + (Oing — 519)@@] (5.33)

j=1lg=1

Zyz’jkg = SiUikg  g=1,...,G (5.34)
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G
> kg =1 i=1,....Lk=1,...,K, (5.35)
g=1
Uikg € {0,1} 1=1,....k=1,.... K;g=1,...,G. (5.38)
and
RMDAP2,(6,6):
R I K G
min ZLRQ“ (5, 6) 2222(529 — 5Z-kg)vl-g (539)
i=1 k=1g=1
s.t. Equation 5.17 and 5.18.

Notice that for vy, = 1, RMDAPQik(B2,u2,5,3) can be solved using the optimal solu-
tions of G CKPs in y;ji,. Each of them takes O(Jlog.J) times if the ordering procedure
mentioned in Section 5.2.1 is used. This gives the optimal value of Z7 ... (B, 1, 5,5) =
min, {Z}:R?kg (,62,/,1,2,5,3)} where Z7 poi (52,,&,5,3) is the optimal value of the CKPs.
Then, the optimal value of the Lagrangean subproblem RMDAP2(3% 2,6 ,3) can be calcu-
lated 2 7}y (8% 12, 8,8) = 3 5° 7 (%, 1%, 8, 8) Zi (8,804 32 5 Py 30 Sy

i=1k=1 j=1k=1 i=1j=1
Here, Z;} py0 (6, 6) is the optimal value of RMDAP2,(d ,8), which can be easily obtained, since
the subproblem decomposes over all facilities into I subproblems each of which can be solved

by inspection. In order to find the best lower bound, we solve the Lagrangean dual problem

max; , 55 7t mo (8%, 12, 6,3) by employing the SO algorithm (Held et al., 1974).
5.3. The Determination of Candidate Locations

The solutions of the approximating MILP formulations MDAP1 and MDAP2 do not
guarantee an optimal solution for the MCMWP unless the set of candidate points includes
the set of optimal locations as a subset. Actually, we try to solve a continuous nonconvex

problem approximately by restricting optimal locations to be within a set of points rather
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than within the entire convex hull of customer locations. As the number of candidate points
increases, we expect that the objective value of MDAP becomes closer to the optimal value of
the original MCMWP. Hence, we experience a trade-off between the quality of the solutions
provided by MDAP1 and MDAP2 and the required computational effort. Even a small MILP
problem may yield high-quality or optimal solutions by selecting a small but promising set
of points as candidate facility locations. Now, we give two discretization strategies for the
selection of candidate facility locations. The first strategy uses the block norms and the

second one chooses customer locations for that purpose.

5.3.1. Discrete Approximation Using Block Norms

Theorem 15.2 of (Rockafellar, 1970) states that there is a one-to-one correspondence
between the set of norms and the set of closed, bounded and convex sets which are symmetric
and their interior contains the origin. Let B be such a set and then its corresponding norm
|||z is defined as ||x||z; = inf {w : x € WB,w > 0} with wB = {&x : Vx € B,V < w}. Bis
called the unit ball when B = {x : ||x||; < 1}. (Witzgall, 1964) defines a family of norms with
polyhedral contours, called polyhedral norms, that generalize ¢1-norm (rectilinear norm), and
recognizes their potential capability to model a wide variety of road travel distances. (Ward
and Wendell, 1980) follow this research avenue and investigate a family of norms, called
one-infinity norms, generalizing again the ¢;-norm and yielding distance approximations
comparable to £,-norm. A one-infinity norm (¢;,,-norm) is obtained by taking a nonnegative
weighted sum of the ¢; and /., (Tchebycheff) norms. In their succeeding work (Ward and
Wendell, 1985) discuss the class of block norms and emphasize their generalization of the
properties of the ¢;-norm. They define a block norm as a norm whose unit ball B is a
polytope. In fact, any block norm can be represented by a symmetric polyhedral cone pointed
at the origin whose extreme directions are the so-called fundamental directions of the block
norm ||.||;. Alternatively, the block norm can be viewed as a union of cones generated by
the facets of B and the origin (Durier and Michelot, 1994). This interpretation includes the
use of polar set B” of B which is defined by B = {x° : ¥x € B,x"x? < 1}. For more details
on polar sets and their norms we refer to (Rockafellar, 1970), (Ward and Wendell, 1985) and
(Durier and Michelot, 1994). ¢; and /-norms are two well known examples of the block
norms. They include the ¢;,-norm and provide distance approximations almost as good as

the round norms, which have round and smooth contours like the ¢,-norm for 1 < r < oo.
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(Ward and Wendell, 1985) give a characterization of the block norms as the minimum
distance to a point along the prescribed fundamental directions and it is possible to observe
that this is equivalent to the characterization of the polyhedral norms by (Witzgall, 1964).

Mathematically, the block norms can be characterized as

G G
x| 5 = min Zwﬂ X = ngﬁwwg >0 (5.40)
g=1 g=1

where 6, are the fundamental directions of ||.|| ;. The extreme points of the block norms also

define a unit travel length in that direction.

Furthermore, (Ward and Wendell, 1985) also claim that block norms are dense in the
set of all norms that every norm is either a block norm or a sequence of block norms can
be found where their limit converges to that norm. It is shown by (Thisse et al., 1984) that
the block norms are linear over the cones generated by each facet of B and the origin. Any
block norm can be represented by a symmetric polyhedral cone pointed at the origin whose
extreme directions and their negatives are the so-called fundamental directions of the block
norm. For example, the contours of the ¢;-norm are 45° rotated squares centered at the origin
and the four fundamental directions are the unit vectors and their negatives. The extreme
rays can be represented by horizontal and vertical lines (i.e., x and y-axis) intersecting at the
origin. The /,-norm has also four fundamental directions but they are 45° rotated because
the contours are regular squares centered at the origin and the two extreme rays overlaps

with the diagonals of the squares. As a consequence the fundamental directions are the

1 -1 1 -1
vectors <1>, ( 1), < 1) and ( 1); the 45° rotated unit vectors and their negatives. As

for the contours of the ¢1,,-norm, they are octagons centered at the origin. There are four

extreme rays which can be represented by four lines making respectively 0°, 45, 90° and 135°
angles with the z-axis and intersecting at the origin. They can be obtained by superposing
the ones of the /1 and /.-norms. Hence, there are eight fundamental directions, each defined
by one of the extreme points of the polyhedral contours. Unit contours of /1, /., {15 and

¢,-norms including the Euclidean norm (i.e., f;-norm) are illustrated with Figure 5.1.

Theorem 6 of (Thisse et al., 1984) implies that for a block norm ||. || ; an optimal solution

to the planar WP
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j=1

(5.41)

occurs at one of the intersection points of the extreme rays of the block norm ||-||5 passing

through the customer locations and remaining within the convex hull of these locations.

Here the functions C} () are nondecreasing and concave. Stronger results on the local op-

tima of Equation 5.41 are also derived in the more recent work of (Idrissi et al., 1988).

They are all generalizations of (Wendell and Hurter, 1973)’s early dominance results on the

planar WP with /;-norm. According to this result, the set of points that include an op-

timal solution consists of the intersection points of the vertical and horizontal lines drawn

through the customer locations and remaining within their convex hull. For the ¢, ,-norm
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these are the intersection points of the lines making 45° and 135° angles with the x-axis
and passing through the customer locations where the extreme directions are (v/2/2,1/2/2),
(v/2/2,—+/2/2) and their negatives. Similar results can be obtained by rotating the unit ball
corresponding to the ¢;-norm around the origin by an angle ¢ < 45° (for ¥ > 45° one starts
to obtain the same balls as in the case ¥ < 45°). The corresponding block norm distance
equals ¢, /(cos v + sind) on the ¥ rotated axis. The candidate location sets for the weighted
(1 and {,-norms are illustrated with Figure 5.2. The lines originating from customer loca-
tions (i.e., bold points with square frames) are the extreme rays of the ¢; and ¢ -norms.
One can obtain the candidate location set for the ¢;,.-norm by simply superposing these
two figures. As a verdict, it is possible to say that the higher is the number of fundamental
vectors (which means a higher number of extreme points of the polyhedral contours and a

higher number of extreme rays and directions), the larger is the set of candidate locations.

> > > > *
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Figure 5.2. The candidate location sets for the WP with ¢; and /,.-norms.

Observe that given a feasible set of allocations the MCMWP decomposes into I WPs
with C; (||x — a,||) where, given allocation quantities w;;;, for facility i, C; = Zszl Cijk Wik
is a nonnegative constant. In particular, this observation enables the application of (Thisse
et al., 1984)’s results also for the MCMWP. In short, when the distance function is obtained
by multiplying a block norm with a nonnegative weight, solving the approximations MDAP1
and MDAP?2 over the intersection of the extreme rays passing through the customer locations
and remaining within their convex hull, becomes equivalent to solving the MCMWP with
that weighted block norm exactly. What is more, by the solution of MDAP1 and MDAP2,
it is also possible to obtain approximate solutions of the MCMWP when the distances are

measured with a weighted £,-norm, since it can be approximated by a block norm. Notice
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that better approximations of the /,-norm require the use of block norms with more extreme
rays, which increase the number of intersection points in the candidate set, and thus the
size of MDAP1 and MDAP2. It should be pointed out that the approximating problems
MDAP1 and MDAP2 enable also the computation of weaker lower bounds using their LP

and Lagrangean relaxations.

As an additional property of the /1, ., and ¢1,.-norms we can list the inequalities

loo </, (5.42)
20, <, (5.43)
! (oo < 0y, (5.44)

2%1721 —|—w2\/§

for 1 < r < oo, and (1o = wily + V2wals with nonnegative constants w; and ws. The
first one of them follows directly from the definition of ¢, and ¢,.-norms. The second one is

a consequence of the well known mathematical inequality

N T N
(Z an) < N (Z a;;> (5.45)
n=1 n=1
where o, is a positive constant and r > 1, which particularly implies

(Jza| + l22])” < 277 (Jan]" + |22 (5.46)

for N =2 and r > 1 (Korovkin, 1986). Finally, the last inequality can be directly obtained
using the first two inequalities (i.e., Equation 5.42 and 5.43) and the definition of the #1..-

norm.
5.3.2. Discrete Approximation Using Customer Locations

(Hansen et al., 1998) take into account the observation that optimal facility locations
are usually either on customer locations or very close to them in developing their accurate
p-median heuristic for the MWP. Benefiting from this observation, namely by choosing the
set of candidate facility locations as the set of customer locations, (Aras et al., 2007) have

designed a very accurate heuristic for the CMWP. Consequently, we are encouraged to use
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the discrete approximations MDAP1 and MDAP2 over the customer locations in order to

compute good upper bounds on the optimal value of the MCMWP.

5.4. Heuristics Using Discrete Approximations

Optimal values of an approximating MILP problem is clearly an upper bound on the
optimal value of the MCMWP since it is a restriction of the original problem. The MDA
heuristic is developed based on the desire of improving further this upper bound using an
improvement heuristic. In short, MDA consists of the exact solution of an approximating
MILP problem (i.e., MDAP1 and MDAP2) and a run of an improvement heuristic initialized
at one of the optimal or good feasible solutions obtained with the approximating MILP
problem. As the improvement heuristic, we prefer to use MCALA starting at the facility
locations obtained with the optimal solution of MDAP1 or MDAP2.

The implication of the inequalities given by Equation 5.42 — 5.44 on the optimal value
of the MCMWP can be summarized by the inequalities

25 < Z, (5.47)
2 7 < 7 (5.48)

1
Ziso < 247, (5.49)

2%1131 +w2\/§

where Z is the optimal value of the /,-norm MCMWP for 1 < r < oo, Z7, Z% and Z7
stand for the optimal value of the ¢;, ¢, and ¢;,-norm MCMWPs, respectively. Since
MDAP1 and MDAP2 are equivalent to MCMWP when distance d(x;, a;) is modeled by the
l1, U+ and fi,-norms, and the candidate locations are the set of the intersection points
determined as explained in Section 5.3.1, the optimal value can be obtained by solving
MDAP1 or MDAP2 formulations. Hence, for these three particular norms, the optimal
values of MDAP1 and MDAP2 can also be used to obtain lower bounds on Z for 1 < r < oo
using inequalities given by Equation 5.47 — 5.49. These lower bounds become weaker if LP
and Lagrangean relaxations of MDAP1 or MDAP2 are solved and the relaxed optimal value
is used to determine the lower bounds. However, we can not repeat the same property
for the situation where the customer locations are used as the candidate locations. The

lower bounds computed by a relaxation strategy on the optimal value of MDAP1 or MDAP2
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can not be used to determine a lower bound on Z, since there is no Equation 5.47 — 5.49
type obvious relations between the optimal values of MDAP1, MDAP2, and Z, when the

customer locations are selected as the candidate facility sites.

The way we use MCALA in the relaxed version of the MDA heuristic is different than
the one of its use in MDA. At every step of the SO algorithm, prior to the multiplier updates,
C-MCALA is run as a feasibility heuristic to obtain a good feasible solution of the MCMWP
(not the approximating MILP problem), in order to update the upper bound on the optimal
value of MCMWP: the upper bound is set to the minimum of the new and existing ones.
The upper bound used in the SO algorithm for updating the Lagrange multipliers (i.e., the
upper bound on the optimal value of the approximating MILP problem) is computed by
means of the D-MCALA: the single facility location problems are simply 1-median problems

solved over the candidate points.

We should remind that the Lagrangean lower bound SO algorithm computes, is a lower
bound on the optimal value of the approximating MILP problem, but not necessarily a lower
bound on the optimal value of the MCMWP. This is only true for the approximating MILP
formulations which are equivalent to the MCMWP. Therefore, discrete approximation heuris-
tics using MDAP1 and MDAP2 based on {1, o, and ¢1,,-norms (£1-MDAT1, {,.-MDA1, {14
MDA1, ¢,-MDAZ2, ¢,.-MDA2 and ¢,,,-MDA?2), and their relaxed versions obtained through
the Lagrangean relaxations of MDAP1 and MDAP2 (¢,-RMDA1, ¢,.-RMDAL, ¢,,,-RMDAT,
¢,-RMDA2, (.-RMDA2 and ¢;,,-RMDAZ2) can be used to compute both lower and upper
bounds on Z* for 1 < r < oo. However, this is not true for the DA heuristics based on
customer locations (CL-MDA1, CL-MDA2) and their relaxed versions (CL-RMDA1, CL-
RMDAZ2). They can only be used to compute upper bounds.

Finally, we should point out that the MILP formulations used in a MDA heuristic
affects only its efficiency. In other words, two versions of the approximating heuristics using
the exact solutions of MDAP1 and MDAP2 have the same accuracy since both of them are
equivalent formulations. However, this is not necessarily true for the relaxed versions of the
DA heuristics since MDAP1 and MDAP2 have different Lagrangean subproblems resulting
in different Lagrangean lower bounds and different initial facility locations for the MCALA

heuristic.
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6. USING LAGRANGEAN RELAXATION AND A MODIFIED
SUBGRADIENT ALGORITHM

In this chapter® a Lagrangean Relaxation (LR) scheme is proposed for the MCMWP
together with novel acceleration strategies which can also be applied to many other opti-
mization problems with intractable Lagrangean subproblems. For that purpose, we relax
both constraints given by Equation 2.3 and 2.5 which results in a variant of the MWP with
multiple commodities. In the MWP, each customer is served only from the least weighted
cost facility. Thus, the set of customers can be separated into I distinct nonempty subsets
each of which is assigned to a single facility. Indeed, it is possible to find the optimal solution
by generating all such partitions of the customer set. As discussed in Chapter 3, (Rosing,
1992) considers the MWP with unit transportation costs and developed a modified Set Cov-
ering (SC) problem formulation to solve it. The method suggested by (Rosing, 1992) consists
of generating all customer subsets with non-intersecting convex hulls and then each convex
hull, which is interpreted as a column, is added to the SC problem formulation. Although
Rosing’s method halts quickly, (Krau, 1997) uses this SC formulation and develops a CG
procedure combined with a Branch-and-Price (BP) algorithm to solve the MWP exactly.
The method by (Krau, 1997) generates customer subsets instead of their convex hulls as the
method by (Rosing, 1992) does. (Krau, 1997) solves a Concave Minimization (CM) problem
for the Pricing Subproblem (PS). Later, (Righini and Zaniboni, 2007) replace the solution
method of the PS by a polynomial time algorithm developed in the study by (Drezner et al.,
1991) for the solution of WP with limited distances (WPLD). Both approaches by (Krau,
1997) and (Righini and Zaniboni, 2007) are efficient methods for the exact solution of the
MWP. In short, existing exact methods for the MWP can be adapted for the MWP variant
which arises when constraints given by Equation 2.3 and 2.5 of the MCMWP are relaxed.
We should note that it may seem interesting to relax only constraints given by Equation
2.5 from the MCMWP with the purpose to obtain K CMWP variants for each commod-
ity. However, the facility location variables x; in d(x;,a;), are common for all commodities.
Therefore, relaxing only constraints given by Equation 2.5 does not yield a decomposition
over the commodities and the resulting LR subproblem is not easier to solve than the origi-

nal MCMWP. Let ¢;, and /ﬁ’j be the Lagrangean multipliers associated with constraint sets

3The article by (Akyiiz et al., 2011) and the conference proceeding by (Akyiiz et al., 2010b) are partially
based on this chapter.
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given by Equation 2.3 and 2.5, respectively. Then we obtain the following LR subproblem:

LR3(¢, p°):
min ZLR3 907 Zzzwwk cz]kd X, a]) + Pik + Mz]) 5 (61)
=1 j=1k=1
s.t. Equation 2.4 and 2.6 (6.2)

where £ = Z nglkszk + Z Z ,uzjuzj is a constant term which can be ignored from the LR
subproblernZ alrllcd added to Ztilrlejzioptlmal value afterwards. Let the binary variable wij be equal
to 1 if and only if the demand of customer j for commodity % is met by facility ¢. When
we substitute w;j, with ngkqjk and define di(x;,a;) = (c;rd(x;,a;) + ik —I—,uf’j), the LR

subproblem given by Equation 6.1 — 6.2 reduces to

LR3(ep, p?):

1
min  Zpps(e, 1) Zzzw@]kq]kdk (xi;a;) — & (6.3)

=1 j=1k=1
Sulp=1 j=1...Jk=1. K (6.4)

ngkE{O,l} i=1,....;j=1,...,J;k=1,... K. (6.5)

Notice that LR3(¢, #?) given by Equation 6.3 — 6.5 is a variant of the MWP where the
distance between facility + and customer j is calculated with a particular distance function
dy(x;,a;) for each commodity type k. Best lower bounds can be found by solving LR3(¢, u*)
multiple times with different Lagrange multiplier values which are adjusted within a SO al-
gorithm (Held et al., 1974). In fact, we suggest a Modified Subgradient (MS) algorithm
which differs from the classical SO algorithm in the computation of lower bounds and mul-
tiplier updates. We discuss the MS algorithm in detail in the following sections including its
convergence properties. Now, we give a brief summary for it. Its formal outline is presented
at the end of this chapter. In the initialization step of the MS algorithm the Lagrangean
multipliers ¢;;, and ,u%- are set to 0. At the beginning, the best lower bound value Z%! is set

to —oc and the best upper bound value Z¥s! is set to co. Then a lower bound Z 5 is found
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on the optimum value Z*, by solving the LR subproblem with current Lagrange multipliers
@i and g In case Zpp > Z7%' holds we set Z}%' = Zpp. Next, an upper bound Zyp
on Z* is found. When Zyp < Z¥ holds we set Z%! = Zyp. Given the current lower
and upper bound values we update Lagrange multipliers ;. and ,u?j. The MS algorithm
stops when a predetermined number of iterations is performed or the step size parameter 7
becomes sufficiently small. Finally, the MS algorithm outputs Z" and Z¥sf. We should
also point out that a similar MS algorithm is previously suggested by (Boyaci, 2009) for the
CMWP. The upper bounds are determined by the MCALA heuristic. In order to produce
upper bounds on the optimal value of MCMWP, we first modify the initialization of the
MCALA. That is to say, we solve I WPs to obtain initial facility location values x; by using
the optimal assignment obtained from the solution of the subproblem LR3(p,u?). Each
initial x; is computed with respect to customer set assigned to facility ¢ obtained from the
optimal assignment LR3(p, u?) determines. Then, the MCALA heuristic solves alternately
the allocation (i.e., the MTP) and location (i.e., I WPs) problems until no improvement is
possible. It is clear that the final locations and allocations form a feasible solution for the

MCMWP and thus their value is an upper bound on the optimal value of the MCMWP.

Recall that the lower bound value Z; 5 computed during the run of the MS algorithm
can be either the optimal value of the LR subproblem Z} . (¢, pu?) or a lower bound satisfy-
ing Zrp < Zj ps(e, p?) for any choice of multiplier vectors ¢ and p®. In order to solve the
Lagrangean subproblem given by Equation 6.3 — 6.5, we first give its equivalent SC problem
formulation which is obtained by partitioning the customer set into subsets for each facility.
Then, the LP relaxation of the SC formulation (namely, SCLP) is solved by a CG procedure
for this SC problem formulation. We also sketch a BP approach that can be used to solve
the SC formulation exactly. Note that the solution of the SCLP yields a lower bound on
Z3 pa(, 1) and we suggest two different solution procedures for solving the PSs to generate
the columns. We also devise an approximating MILP formulation for the LR subproblem
and use two more lower bounds which employ block norm based approximations. These are
/1 and /.-norms to determine lower bounds as discussed in Chapter 5 for the DA heuristics.
The only difference is the solution of an approximating MILP formulation for the MWP
variant which substitutes the solution of the MDAP. In short, there are basically four lower
bounding approaches for the Lagrangean subproblem. All of them require excessive CPU
times and they are executed only once at the end or when necessary. This is accomplished

by using heuristic solutions, which are treated as if they are lower bounds on the LR sub-
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problem within the MS algorithm in order to increase the efficiency of the overall algorithm.
Actually, heuristic solution of the LR subproblem is only an upper bound on it. As a result,
our algorithm turns into a modified subgradient heuristic search procedure in the dual space
of the Lagrangean multipliers. When the MS algorithm converges, the best Lagrange mul-
tipliers are used to compute a lower bound on the MCMWP. Furthermore, the efficiency of

the MS algorithm increases by accelerating the solution procedures of the PS.

6.1. Equivalent Set Covering Formulation for the Lagrangean Subproblem

In an optimal solution of the MWP variant given by Equation 6.3 — 6.5, each cus-
tomer of a commodity is served by exactly one facility which has the minimum weighted
cost. Note that as there are no capacity restrictions left on the facilities, each commodity
k of a customer j can be treated as one of the K distinct customers each having identical
locations. We call them as customer-commodity pairs (j, k) to indicate customer j of com-
modity k. Hence, it is required to divide the customer-commodity pair set into I subsets
such that each subset is covered by exactly one facility. Keeping this in mind, we define the
following binary decision variables. Let o, be equal to 1 if and only if subset p is selected.
Let b2 = {W, U W, By B B U W e B D Uy b
denote column p where each entry takes 0 or 1 values. The first J x K entries of b? denote
the customer-commodity pairs and the last I entries stand for the corresponding facility of
column p. If a customer j of commodity k is served from a subset denoted by 7, then the
corresponding element bfk is set to 1, otherwise it is set to 0. Similarly, when 7, is a subset
of facility ¢*, then 0%, . =1 and 0%, = 0 hold for i = 1,..., I with i # ¢*. An equivalent

SC problem formulation of the MWP variant given by Equation 6.3 — 6.5 is as follows.

SC(ep, 1°):
P
min  Zsc (e, p’) = Zcpop —¢ (6.6)
p=1
P
s.t. Vo, > 1 j=1,..J;k=1,.. K, (6.7)
p=1
P
> Wop <1 i=1,.1 (6.8)
p=1

0p € {0,1} p=1,..,P, (6.9)



20

where P = I x (27X — 1) denotes the number of all possible subsets. The cost coefficient
J K

¢ = n}{inZZb?kqjkdk(xi, a;) of each customer subset 7, for a given facility ¢ is computed
by Solvilné:;:\il\/P via Weiszfeld’s algorithm or its generalizations. We should note that the
applicability of the Weiszfeld’s algorithm for the ¢, distance WP with 1 < r < 2 is shown
by (Brimberg and Love, 1993). Fortunately, the modified distance function dj(x;,a;) =
(Cijed(xi, ;) + Yik +,u§’j) does not change the derivative information of the ¢, distance. As
a result, the constant Lagrange multiplier terms do not effect the formula on which the

Weiszfeld’s algorithm is based.

Constraints given by Equation 6.7 guarantee that each customer j of commodity k is
covered by (served from) at least one subset (facility). Constraints given by Equation 6.8
state that the number of subsets served from a facility 7 is at most 1. This implies that each
facility can be opened at most once. Hence, the total number of customer-commodity pair
subsets are enforced to be at most the total number of facilities I. Note that an equivalent set
partitioning problem formulation can also be proposed by replacing inequalities in Equation
6.7 and 6.8 with equalities. However, inequalities in Equation 6.7 and 6.8 do not harm the
optimality since each customer-commodity pair should be served by exactly one facility and
exactly [ facilities should be opened at optimality when J > I holds which follows as a

generalization of a result by (Drezner, 1984).
6.1.1. Column Generation Procedure

We consider the SCLP, which is obtained by replacing integrality constraints given by
Equation 6.9 with o, > 0 for p = 1,..., P. The CG procedure employs the dual variable
information to generate necessary columns which solves the PS. At each step of the CG
procedure, an optimal dual solution is employed to solve a PS and to generate additional
columns with negative reduced cost. Initialized with a feasible set of columns, the relaxed
problem is iteratively solved until it is not possible to find a column with negative reduced
cost. Considering the MWP variant given by Equation 6.3 — 6.5, let \;; and w; be the dual
variables associated with constraints given by Equation 6.7 and 6.8, respectively. Then, the

dual problem DP of the SCLP can be given as the following.
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DP:

max Zpp = ZZM - sz (6.10)

j=1k=1
s.t. Zijk/\]k z:bﬂ(ﬂwZ <c¢, p=1,...,P (6.11)
j=1k=1
A > 0, j=1,..  Jk=1.. K, (6.12)
w; >0, i=1,...,1. (6.13)

We should mention that the initial column set is constructed by generating all columns
where a facility serves only a single customer-commodity pair for each facility. This makes
a total of I x J x K columns which are added to the SCLP and the corresponding dual
variables are calculated. Let ¢ (i) denote the minimum reduced cost which corresponds to

facility ¢. Then, the PS is as follows.

PS:
J K
/C;(z) mLI},ZPS Y, Zk b A rdr (X, a5) — Ajr} + w (6.14)
5.t v, € {0,1} j=1,. k=1, K (6.15)

At each step of the CG procedure, we solve the PS for each facility ¢ and select the
columns which yield the negative reduced cost. All columns generated by using the solution
of the PS are added to the column set of SCLP. We now present two alternative approaches

for the solution of the PS.

6.1.1.1. Pricing by D.C. Programming. The reduced cost expression given by Equation 6.14

—6.15 can be transformed into a D.C. (i.e., difference of two convex functions) form as follows.

J K
Cp() = min {ZZbﬁk {gjrdr(xi,a;) — Njp } + w; ¢ bgk e{0,1},5=1,.... ; k=1, ...,K}

x;,bP -
j=1k=1

K
= mm {ZZ min {ijdk(xi, aj) — )\jk; 0} + wl}

Jj=1k=1



o2

= H)lcm {{ZZ (qndi(x;, a)) ZZ max {¢jrdr(Xi, a;) — \ji, O}} + wl} (6.16)

Then, the problem given by Equation 6.16 can be reduced to a CM problem by using

the additional variable A as

CM:

mlIIll Zay (Xi,h) =h — ZZ max {q;rdr (X, a;) — \ji, 0} — ZZ)\Jk + w; (6.17)

Jj=1k=1 j=1k=1

J K
s.t. S awdi(xi ;) < h. (6.18)

j=1k=1

The CM problem given by Equation 6.17 — 6.18 can be solved by an Outer Approxi-
mation (OA) algorithm (Chen et al., 1998), which is run as long as it outputs columns with
negative reduced cost. A similar approach is also proposed by (Krau, 1997) to solve the PS
arising for the MWP case.

6.1.1.2. Pricing by Solving the Weber Problem with Limited Distances. The PS given by

Equation 6.14 — 6.15 can be considered as WPLD. In this variant of the WP, facilities are
located within a threshold distance from the customers. Solving the WPLD is equivalent
to producing all columns explicitly. Column p of facility ¢ is generated by setting b?k =1
when g¢;rdi(x;,a5) — A\jk = @i (Cl'jkd(Xi,aj> + Yk + ,u?j) — Ajr < 0 holds, otherwise we set
O =0forj=1,....J;k=1,...,K. Also, we set b/}, . = 1 by which the correspond-
ing facility of column p is determined and b, , = 0 for ¢ = 1,...,I and i # i*. Note
that the PS can be geometrically interpreted as finding the location of facility ¢, which
lies on the intersection of circles whose centers are customer locations with a radius of
Tijk = max{(;‘—k — ik — M?j)/cijk,()} for j =1,...,J;k = 1,..., K. When the location of
facility 7 is in the intersection of the circles, we can get a solution with negative reduced cost
value for the PS. Therefore, it suffices to consider only the intersection points of the circles

to find a negative reduced cost column which corresponds to an intersecting region.
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(Drezner et al., 1991) show that the number of distinct intersecting regions are bounded
by 2JK(JK — 1) for the WPLD and propose a polynomial time algorithm to optimally solve
it. This polynomial time algorithm, which we term as the Feasible Subset Generation (FSG)
algorithm, is employed by (Righini and Zaniboni, 2007) within a CG procedure developed
for the MWP. We also use the FSG algorithm as a subroutine to solve the PS given by
Equation 6.14 — 6.15.

The FSG algorithm is run for each facility ¢ and outputs a feasible subset (column)
list P; for @ = 1,..., 1. It is initialized with parameters \ji, g;i, Pir, ,u?j and c;;. As the first
step, radii 7;;; drawn on the customer locations are calculated. Then, the FSG algorithm
performs the following steps for all customer pairs j* and j” and commodity pairs &’ and
k' for jy =1,....J—-1,4" =47 +1,...,J; K, k" =1,..., K. The FSG algorithm fixes
a point a which lies on the intersection of two circles whose centers are located on the
customers 7' and j” for commodities k' and k", respectively. Without loss of generality,
we can denote the centers of these circles as (j', k") and (5”7, k"”). All circles covering the
intersection point a other than the circles whose center are located on (j', k') and (5", k")
are used to construct a subset J. In other words, the subset 7 is constructed of all circles
covering a whose centers are located on the point (j”, k) such that (5", k") # (', k") and
G" K™Y £ (G K" for ' = 1,..., J—1; j" = §'+1,..., J " =1,..., J K k" k" =1... K.
Given the feasible subset J, additional subsets J; = {J U (7/,K)}, Jo = {T U (J", K"}
and J3 ={J U (5, K)U (57, k") } are generated as well. Then, subsets J, Ji, Jo and J3 are
added to the feasible subset list P;. Finally, the FSG algorithm outputs P; and stops. For
each facility ¢, the FSG algorithm generates all possible subsets with negative reduced cost.
Consequently, we run the FSG algorithm I times and select subsets with negative reduced
costs among the elements of P = iélpi and we add them to the column set of SCLP. The

formal outline of the FSG algorithm is given in Figure 6.1.

6.1.2. Branch-and-Price Procedure

The optimum solution of the SCLP can be an integer or a fractional solution. In the
former case, we can deduce that the solution is also optimal for the SC problem. Otherwise,
a fractional solution to the SCLP implies that an optimal solution of the SC problem has not

been reached yet. One can resort to a BP algorithm to obtain the exact solution of the SC
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1. Set 7,5 := max { <% — ik — N?j) /cijk,O}, j=1,.,J;k=1,...,K and
P, — 0.
2. For each pair (j',k'), j/=1,....,J =1,k =1,...,K; and (j", k"),
jJ "=7+1,..., K" =1,... K, set J « 0,
if d(a;,a;») < T4 + 0, then construct a set F of intersection points
a, ie., F ={a;,ax} by using a;, 7, aj» and 7m0
For each point a € F and each pair (7, k"), 7" =1,...,J;
E"=1,...,K,
if (), k") # (3", k") # (", k") and d(a,a;») < 7, then set
J = Tu(G" k).
Set Py — P, UJU{T U K} u{TuU(" k"}.
3. Report feasible subset (column) list P; for facility 7.

Figure 6.1. The FSG algorithm.

problem by using a fractional solution of the SCLP. For that purpose, a branching scheme
developed by (Ryan and Foster, 1981) for the crew scheduling problem can be applied within
the BP algorithm for the MWP variant.

Let 5/ and j” be two customers and £’ and k” be two commodities. The branching
scheme devised by (Ryan and Foster, 1981) is based on partitioning the customer subsets
into two branches which are denoted by #° and #'. In £, two customer-commodity pairs
{(J', k'), (§",k")} are either included in a subset or none of them are included in this subset,
i.e., the customer-commodity pairs which satisfy t%,, = 05, € {0,1}. In &', only one
or none of the customer-commodity pair {(j’, k'), (57, k")} is included in a subset, i.e., the
customer-commodity pairs which satisfy b7, + 7., < 1. The fractional columns can have
several customer-commodity pairs either in common or not. The customer-commodity pairs

which are not covered by all fractional columns are subject to branching.

In order to select the branching customer-commodity pair, the set of fractional columns
is divided into two subsets. In one subset, each column covers both or none of the customer-
commodity pairs. In the other subset, each column covers exactly one of the customer-
commodity pairs. The branching customer-commodity pair can then be selected by con-

sidering the smallest difference between the sum of these two subsets of fractional solution
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values for all pairs as mentioned in (Righini and Zaniboni, 2007).

During the run of the BP algorithm we have to solve a modified PS considering the
customer-commodity pairs within the subsets. The FSG algorithm can be easily adapted
for the BP. However, the reduction of the PS into a CM problem requires additional efforts.
In practice, one should also penalize the columns which do not satisfy current branchings
of the customer-commodity pairs. The BP algorithm that we have sketched out requires
excessive CPU times. Even for the CMWP, namely for the single commodity case, the
BP algorithm by (Boyaci, 2009) is unable to solve large instances. We skip the details of its
implementation here. In order to produce a lower bound on the MCMWP, the exact solution
of the LR subproblem is not absolutely required. Indeed, any lower bound Z g which satisfies
Z1p < Z; pa(e, 1) can also be employed within the SO algorithm. Therefore, we prefer to

solve the SCLP since the lower bound obtained with its solution, say Z%,; p(®, u*), satisfies

Zsorp(p. ) < Zso(p, ) = Z gy, p) < Z*.

6.2. Using Discrete Approximations for the Lagrangean Subproblem

The LR subproblem given by Equation 6.3 — 6.5 can also be approximated by a MILP
formulation, namely the UDAP (i.e., the Uncapacitated DAP) which can be solved to opti-
mality with the purpose of producing lower bounds on the objective value of the LR subprob-
lem. This can be achieved when a lower bounding norm function is used instead of d(ay, a;)
where @, is the two dimensional location vector of a given candidate point g. The idea is the
same as discussed in Chapter 5 where DA lower bounds are given on the MCMWP. Here,
the MDAP is replaced with UDAP; it is the approximation of the LR subproblem that is
a MWP variant. These lower bounds are also lower bounds on the optimal value of the
MCMWP. Let the binary variable y;;x, be equal to 1 if and only if the demand of customer j
for commodity type k is met by facility ¢ located at candidate location ¢ and let the binary
variable v;, be equal to 1 if and only if a facility ¢ is opened at candidate location g. Then,
the UDAP formulation which can be used to produce lower bound on the LR subproblem

can be stated as follows.
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UDAP:

I J K G

min  Zypap(ep, N Zzzz%kcwkgywka § (6.19)

i=1 j=1k=1g=1

I G
S kg =1 j=1..,Jk=1 K (6.20)

i=1 g=1

D Ty =1 i=1,..1, (6.21)
g=1

Yijkg < Vig i=1,...I;5=1,..J;k=1,...,.K;9g=1,...,G, (6.22)
Uik €{0.1}  i=1,..Lj=1,..Jik=1,.,Kg=1,,.0G, (6.23)
Ty € 10,1} i=1,..Lg=1,..G, (6.24)

where Cijrg = cijrd(ay, ;) + pix + ,u%. Besides, constraints given by Equation 6.21 ensure
that a facility ¢ is opened only on one candidate point g and constraints given by Equation
6.22 enforce that facility ¢ located on a candidate point g could serve a customer only if it

is opened on the corresponding candidate point.

Notice that the rectilinear distance MWP can be solved to optimality by UDAP when
the candidate facility locations are selected as the intersection points of vertical and hori-
zontal lines drawn on customer locations. Other block norms can also be employed within
the objective function of the UDAP in order to obtain an approximating solution of the
MWP with the ¢, distance function for 1 < r < co. However, a block norm ||.||; can only
guarantee a lower bound on the MWP when ||x||z; < ||x||, is satisfied for any vector x with
1 <r < oo for some 7. Given multiplier vectors ¢ and p?, let Z7 Aps (5 p?) be the opti-
mal value of the UDAP when a block norm B is used and let Zj p;(¢, #®) be the optimum
value of the MWP with ¢,-norm for 1 < r < oo. When |||z < |||, is satisfied for some
r with 1 < 7 < oo, then Zp,p, (¢, 0°) < Zfps(ep, u®) also holds. Consequently, we can
use the /,-norm and ¢;-norm within the objective function of the UDAP formulation. The

inequalities given by Equation 5.42 and 5.43 also hold for the UDAP formulation. Then,

*

Z} pan (P 1) < Zips(p, p?) and 25" Z;DAP (p, u?) < Z5 na(p, u?) are also satisfied. In

addition to the CG based lower bounds, we use the ¢; and /,.,-norms to produce two other

lower bounds on the LR subproblem within the MS algorithm.
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6.3. Increasing the Efficiency of the Lagrangean Relaxation Scheme

We present two acceleration strategies which increase the efficiency of the LR scheme.
The first strategy is the use of heuristic bounds within the MS algorithm. The second one
addresses the acceleration of the CG procedure which requires the solution of the PS. For that
purpose, we show two different schemes one of which can be used with the DC optimization
approach and the other one can be employed with the FSG algorithm when we generate the

columns.

6.3.1. Using Heuristic Upper Bounds within the Modified Subgradient Algo-

rithm

At each step of the MS algorithm, for fixed ¢ and p?, we solve the LR subproblem
and obtain the allocation quantities. These allocation values constitute the input of the
MCALA heuristic which gives valid Zyg values. In case Zyp value is better than deg; the
MS algorithm updates Z¢%! = Zyp. Notice that during the run of the MS algorithm it
is guaranteed that the relation Z* < ZP%f holds. On the other hand, the MS algorithm
also computes Zrp values and updates Z%, until the stopping condition is satisfied. The

relation Z%5¢ < Z* < Zk¢st also holds at each iteration of the MS algorithm.

The most painstaking part of the MS algorithm is the excessive CPU time requirement
for the solution of the lower bounding problem (i.e., LR subproblem). One approach to
produce lower bounds is to solve the equivalent SC problem given by Equation 6.6 — 6.9 via
a BP algorithm and obtain the Z¥. (¢, u*) values as the Z; g values. Note that Z%, (e, u®) =
Z% p3(, p?) holds. However, solving neither the Lagrangean subproblem given by Equation
6.3 — 6.5 nor its equivalent SC problem given by Equation 6.6 — 6.9 by running a BP algorithm
is tractable at each step of MS algorithm due to the excessive CPU time requirement. To
alleviate this drawback, one strategy may be to resort solving the SCLP via CG procedure
and to produce ZZq; p(p, p*) values which can be used as Z;p in MS algorithm rather than
solving the SC problem given by Equation 6.6 — 6.9 to optimality. Note that Z§,; p(¢, u?) <
Z5 p3(, p?) < Z* holds during the run of MS algorithm. However, to obtain Z%; p(@, 1?),
at each step of the CG procedure, either a DC algorithm or the FSG algorithm is run as a

subprocedure, which may also require drastic CPU times especially for large instances.
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As the above discussion attests, in practice we can make use of neither the BP algorithm
nor the CG procedure within the MS algorithm. Therefore, we suggest running a heuristic
algorithm to efficiently solve the LR subproblem, with the purpose to update faster the
Lagrangean multiplier vectors ¢ and p3. Although heuristic solution values Zy (¢, u?), need
not satisfy the relation Zg (¢, u?) < Z* < Zb%!, we can actually use Zg (¢, u?) as Zp g within
the MS algorithm as long as Zy (@, u®) < Z%5 is satisfied. When Zy (¢, u?) > 28! holds at
some step of the MS algorithm, we re-adjust the latest Lagrangean multiplier vectors ¢ and
3. For that purpose, we solve the SCLP via CG procedure and re-update the Lagrangean
multiplier vectors ¢ and p? such that the relation Zrp = Zsorp(p, u®) < Z* < 20t is
maintained. Then, we continue to run the heuristic algorithm as long as Zg(p, u?) < Zst
holds (otherwise we obtain Zi.;p(e, u®) to adjust ¢ and p?). When the MS algorithm
converges or the stopping condition is satisfied, we solve either the SCLP via CG procedure
or block norm based lower bounding MILP as the final step in order to make sure that
Zbest < Z* is satisfied. Notice that as a result of the foregoing discussion, the use of a
heuristic solution as Zjp, does not contradict with the theorems given by (Polyak, 1967,
1969) on the convergence of the MS algorithm. The convergence of the classical SO algorithm
is guaranteed as long as the sequence of step sizes and their summation converge to 0
and oo, respectively (Polyak, 1967, 1969). Indeed, the MS algorithm also has a step size
sequence satisfying these properties. Moreover, an upper bound Z¢%! satisfying Zb% > Z*
and current lower bound Zp satisfying Z;p < degf are used within the update step of
the MS algorithm. Here, Zp always satisfy Zpp < Z&s (i.e., when Zg(p, u®) > 255
holds, then Z;p is calculated by employing a valid lower bounding procedure such that
Zip < Zrrs(p, p3) < 7%l is satisfied). Note that this procedure still uses the negative of
the current subgradient to determine a descent direction and the norm of the subgradient.
Hence, lower and upper bounds on the objective value are used to calculate a step length
while updating the multiplier vector at every step. Clearly, the choice of an efficient heuristic
algorithm, which will be used within the MS algorithm to compute the Zy (¢, u?) value, is
a matter of utmost importance. For that purpose, we employ the Uncapacitated Discrete
Approximation Heuristic (UDAH) which is a variant of the MDAH. The UDAH also consists
of two phases. In the first phase, the UDAP which is the approximation of the MWP variant
given by Equation 6.3 — 6.5 is solved. In the second phase, given the optimal locations

obtained from the solution of UDAP, an ALA heuristic is run to obtain an improved solution.

In summary, to accelerate the MS algorithm the UDAH is run to solve the Lagrangean



99

subproblem at each step as long as Zypau(@, ) < Zst holds. In case Zypau (e, u?)
exceeds ZP%! at some step of the MS algorithm, a lower bounding subproblem (SCLP via
CG procedure or block norm based lower bounding approach) is solved in order to re-update
the Lagrangean multipliers ¢ and p?. At the final step of the MS algorithm the solution of
the SCLP or the approximating MILP is used to ensure that we have a valid lower bound on
the MWP variant, i.c., Z}%" = Zio, p(e, u*) < Z* is satisfied. The use of Zjp,p_ (¢, u?)
or 27" Zpap, (@, w?) which are calculated by solving the lower bounding block norm based
approximations may also substitute Z%,; p(@, u?). The strategy of using heuristic solutions
of the LR subproblem in order to accelerate the MS algorithm can also be adapted to other

optimization problems with intractable subproblems that can be solved by efficient heuristics.

Improving the Efficiency of Heuristic Upper Bounds: The efficiency of the UDAH can be
further improved by a suitable LR scheme. Although such a LR scheme can increase the
speed of obtaining heuristic upper bounds, it can also deteriorate the accuracy that will
be obtained from the UDAH. In case these upper bounds Zy (¢, u?) exceed the best upper
bound ZZ%, then the MS algorithm reduces to the classical SO algorithm resulting in a
very inefficient solution approach for the MCMWP. We suggest relaxing constraints given
by Equation 6.20 of the UDAP formulation associating Lagrangean multipliers 8* to obtain
the following LR subproblem

RUDAP:

1

J L J K
min Zpea(B8) =D > 3 > (@iwCim — Bi)Tigw + 3> B — & (6.25)

i=1 j=1 k=1 l=1 j=1 k=1

s.t. Equation 6.21 — 6.24. (6.26)

Notice that the Lagrangean subproblem given by Equation 6.25 and 6.26 can be de-
composed into I subproblems which can be solved similar to the LR schemes described for
MDAPI1. Unfortunately, we should state that the accuracy of the RUDAP is not quite sat-
isfactory. Actually, we try to avoid from a time-consuming SO algorithm and the RUDAP
becomes the classical SO algorithm when we use it to obtain heuristic upper bounds. In
short, we prefer to solve the UDAP exactly to find heuristic upper bounds by UDAH instead
of its relaxed version RUDAP.
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6.3.2. Improving the Efficiency of Column Generation Procedure within the

Modified Subgradient Algorithm

Two different acceleration strategies are used within the CG procedure. The first
acceleration strategy is an heuristic algorithm which is devised to generate additional columns
with negative reduced cost with D.C. programming approach. (Krau, 1997) examines this
algorithm for the MWP. Once the CM problem is solved, its outcome is the corresponding
facility location say x;. Then a column p, which consists of zero-one entries for each customer-
commodity pair, is constructed by using x;. Namely, given x;, the following formula is used

in order to set the values of column elements:

1, if gpdu(xi,a;) — Aip <0
v, = Ul 85) = Agn j=1,... J;k=1,... K. (6.27)
0, otherwise

Notice that for the remaining I entries of column p, we set b, = 1 and b5, = 0
for ¢ = 1,...,I with ¢* # 7. The column p is added to the current SCLP formulation
and facility 7 is relocated according to the assignments of column p. Afterwards, a new
column p’ is constructed with the latest facility location x; according to Equation 6.27. p’
is added to the current SCLP and we set p = p’. All these steps start from scratch until the
current p’ becomes stable and no changes occur on its elements. Each column p" added to the
SCLP has a negative reduced cost less than the ones of the previously added columns. With
this heuristic algorithm, the number of negative reduced cost columns to be added after
solving a PS increases and the convergence of the CG procedure with D.C. programming is
accelerated. Let J, be the set of customer-commodity pairs that belong to column p. We
provide a formal outline of the heuristic algorithm associated with D.C. programming in

Figure 6.2.

The other acceleration strategy, which increases the efficiency of the LR scheme, focuses
on the prevention of all possible columns within the CG procedure. Recall that the FSG

algorithm generates all possible subsets of customer-commodity pairs which have negative
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1. Construct column p using Equation 6.27 and set P; « P; U p.

2. Find current facility location x; using p such that

3. Set v = 0. For each pair (j,k),j=1,...,;k=1,..., K,
if ¢jpdi(xi,a;) — \j, > 0 and (j,k) € J,, then set J, — J, \ (j,k) and
v=v+41,
else if q;rdi(x;,a;) — \jp <0, then set J, < J,U (j, k) and v = v + 1.
4. if v > 0, then construct p’ by Equation 6.27, set P; « P; Up' and
p =1p, go toStep 2. else go to Step 5.
5. Add all columns p € P; to the current SCLP.

Figure 6.2. Heuristic algorithm for the CG with D.C. programming.

reduced costs in polynomial time. All columns corresponding to these subsets are candidates
to be added to the SCLP. Nevertheless, the number of columns which enter into the LP
model can be restricted by using some lower bounding schemes on a given subset. Let

Jp be a customer-commodity pair subset of facility 7 for column p, the reduced cost can

(4:k)ETp (4,k)ETp
first term of the reduced cost by a lower bound, we obtain a lower bound on the reduced

be restated as ¢,y = > qjdi(Xs,a;) — ( > Ak —wi>. When we substitute the

cost value ¢,(;). In case this lower bound on the reduced cost is negative, we can add the
corresponding column to the current SCLP. Otherwise, we neglect this column. (Righini and
Zaniboni, 2007) propose two such lower bounding schemes for the MWP case. We adapt
them within our CG procedure in order to eliminate some of the subsets generated with the
FSG algorithm before considering their addition to the SCLP. These two lower bounding

schemes are presented below.

The first one of the lower bounding scheme is originally devised by (Drezner, 1984) for
the WP. Let ay be the center of gravity of a given subset 7, for a facility . The following

constitutes a valid lower bound on ¢, ;).
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’Cl(n - aj1| |1Uz‘1 - Cljﬂ

LBlp(i) = min Z qjkCijk

Ti1 (j,k)EJp d(ao, aj)
+mine > gci |a02 — ajo| iz — ajo
Ti ) d(ao, aj)
(],k‘)EJp
+ Z Qi (Pik + pij) — Z Ak —wi | < Gy (6.28)
(jvk)ejp (j?k)ejp

In LB1,;) a sorting algorithm is run as a subroutine in order to solve one dimensional
WP with the rectilinear distance function and hence to optimally locate each facility . The
other lower bounding scheme is used by (Righini and Zaniboni, 2007) for the MWP case and

we adapt it to our case as follows:

1 > min {g;x (cijed(ay, a;) + @i + M?j) ;
LBQ}?(Z) pr—y m (j7k)1(jlvk,)e‘-7p
g (cijwd(ag, @) + pinr + pijr) }
| D v —wi ] <e (6.29)
(jak)EJP

6.4. The Modified Subgradient Algorithm

We present a formal outline of the MS algorithm in Figure 6.3 and explain some
technical details on the computation of the feasible solutions for the MCMWP. The upper
bounds are determined by the MCALA heuristic which is initialized with the allocation
values w;jr = wj;;,q;. obtained from the solution of the LR subproblem. The CG procedure
ends up with a solution in which some columns are assigned a positive weight. These are
denoted by o, which can take values between 0 and 1, i.e., 0 < 0, < 1, since we consider only
the SCLP. For each o, > 0, the corresponding column p is evaluated. It is already known
that column p belongs to facility 7. This is denoted by the last I entries of each column and
facility 4 has value 1 in its 7'" entry and 0 for the rest. Furthermore, the first J x K elements
of the column indicate whether customer j of commodity k is served by this column and

consequently by the corresponding facility i. Clearly, if customer j of commodity k is served
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or covered, a value of 1 appears on the corresponding entry of the column and 0 otherwise.
Now, we can set the allocation values of the current solution by using these columns and
their o, values. We set ww = opbﬁkbf},( +; and thus the corresponding allocation values can
be determined by w;j;, = wijkqjk. Note that in case the b?k values are fractional, then w;;;
values lie in the interval 0 < w;;, < g instead of taking either 0 or g;; values, as in the case
of the MWP. The corresponding allocation values need not be feasible for the MCMWP; it
is very likely that they violate both of the constraints given by Equation 2.3 and 2.5, which
have already been relaxed. The constraints that are not satisfied by this solution vector
(allocation vector) constitute the subgradients, which are used to update the multipliers ¢
and p3. Then the facility locations can be calculated by the Weiszfeld’s algorithm with
distance values multiplied by w;;;’s. Running MCALA initialized at these facility locations
gives an upper bound on the MCMWP, which is used to update the best upper bound Zg¢g!
within the MS algorithm. In addition, the initial Z%%! values need not be selected as oo.

Actually, these are the reasons why we have employed the CL-RMDAT1 in our calculations.

best

1. (Initialization) Set @i, = 0,u3; = 0 for all i,j and k, 7 = 2, Z}%' = —o0,
Zhest = oo

2. Repeat Step 3 to Step 6 until the algorithm converges.

3. Find heuristic bound Zp (¢, u*) with Lagrange multipliers ¢, and ;.
if Zp(p,w®) > Z{7F, then find a valid lower bound Z,5 with ¢y and g,
on the optimum Z* and update Z%%! if necessary (i.e., Z%%! = max{ 73,
Z%est1). Otherwise, set Zpp = Zy (@, 1?).

4. Find an upper bound Zyp on Z* if Zyp < Z(b]?]gt, then set 2% = Zyp,

5. Update multipliers by setting i, = @i, + T1(>_wi;qjx — sar) and
i=1
K
gy = max{0, p; + To( 3 wi;pqe — uiz)} where
k L

T = n(ZiE — ZLB)/ZZ(wak%k sir)” and

= lk 1 j

Ty = n(Z5 - ZLB)/ZZ(szJkQJk uij)?.
i=1j=
6. if Z;p did not improve w1th1n the last 30 iterations, then set m = 7/2.
7. Find a final valid lower bound Zyp with the best @, and p; on Z*,

update Z%! as necessary and output Z%5' and ZP¢s!.

Figure 6.3. The Modified Subgradient (MS) algorithm.
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7. ESTIMATING STATISTICAL BOUNDS ON THE
OPTIMAL OBJECTIVE VALUE

Heuristics are systematic procedures which look for feasible solutions of optimization
problems at reasonable computational times. Hence, it becomes possible to generate a ran-
dom sample of objective values by running a randomly initialized heuristic. Presumably,
objective values are independent of each others and distributed according to the same prob-
ability distribution. Then, an immediate question is how to take advantage of this random
sample of objective values to estimate the optimal value Z* of the problem. (Brandeau and
Chiu, 1993) experimentally study the worst case behavior of the Cooper’s ALA heuristic and
employ it to create a random sample which is then used to statistically estimate Confidence
Intervals (CIs) for the optimal value of MWP. In this chapter? we follow this line of research
and present statistical procedures to estimate the optimal value of the MCMWP as well as
other Combinatorial Optimization Problems (COPs). We use heuristic solution procedures
presented in Chapter 4 and Chapter 5 which can be randomized through their initial con-
ditions for the MCMWP. These are C-MCALA, C-MDRR and MDA1 heuristics which are

randomly initialized within the convex hull of the customer locations.

7.1. Point and Interval Estimators

One possibility is to use the Extreme Value Theory (EVT) and benefit from Fisher
and Tippett’s theorem (Fisher and Tippett, 1928). EVT deals with the asymptotic behav-
ior of extreme values (i.e., the minimum or maximum values) in samples and tries to fit
probability distributions to extreme values. The well-known Fisher and Tippett’s theorem
is as follows. Consider M independent samples, each of size M, obtained from the same
continuous distribution bounded from below (above) by A. Let Z,, denote the minimum
(maximum) value of sample m, then for M large enough, Z,, for m =1,..., M are Weibull

distributed with location parameter A. Recall that the probability density and probability

4The article by (Akyiiz et al., 2010c), the technical report by (Akyiiz et al., 2008) and the conference
proceeding by (Akyiiz et al., 2009b) are partially based on this chapter.
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distribution functions of the Weibull distribution are respectively

f(2) = <%> (Z — AP eH%) ], Z>A>0,B>0 D>0 (7.1)

and
F(Zy=1-¢ """, (7.2)
where A, B and D denote the location, scale and shape parameters, respectively.

Note that the location parameter of the Weibull distribution gives the minimum value
of the distribution. The Fisher and Tippett’s theorem is valid for any continuous distribution
from which the sampling is performed. As a result, it is possible to treat an objective value
obtained by a randomly initialized run of the heuristic as the minimum of a large random
sample and claim that the distribution of the objective values calculated by the heuristic is
approximately Weibull. Then, any point estimate of the location parameter of the Weibull
distribution estimated using these heuristic objective values yields a point estimate on the
minimum objective value. Moreover, the bounds of any interval estimate of the location
parameter give a lower bound and an upper bound for the optimal value of the problem with

certain confidence level.

Several researchers have employed this result to provide point and interval estimators
of Z* for various difficult COPs. The early study of (McRoberts, 1971) on the facility layout
problem is the first attempt to propose a graphical search method for the estimation of the
Weibull location parameter A, namely Z*. (Dannenbring, 1977) employs both graphical
search and (Gumbel, 1958)’s method to derive an analytical point estimator of the optimal
value of the flow-shop sequencing problem. The first systematic procedure of the point
estimation using EVT is for the famous Traveling Salesman Problem (TSP) (Golden, 1977,
1978). This procedure is later improved by (Golden and Alt, 1979) to compute Cls for the
optimal value of large COPs. The author has defined Zyp = min{Z,, : 1 < m < M}, where

Zm is the minimum objective value in sample m, and have shown that

Pr{Zyp—B< A< Zyp}=1—-e", (7.3)
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which in fact means that [Zyp — B, Zyp] is a 100(1 — e=™)% CI for the location parameter
A, namely Z*. Notice that the confidence level is almost 1 even for small values of M.
(Golden and Stewart, 1985) apply this approach on the TSP and report successful results.
(Los and Lardinois, 1982) suggest to use a subset of size M < M local optima with distinct
values Z1, Zs, ..., Z,p to fit a Weibull distribution. The reason for this suggestion is that the
Fisher and Tippett’s theorem assumes the independence of M samples; nevertheless having
identical local optima in the set of M samples is equivalent to repeating the same sample
several times. They have also indicated that although the sampling is done by using M’
distinct local optima, they are gathered by the same heuristic and each solution attempts to
reach the same point, resulting in a violation of the independence assumption. It should be
noted that (Golden and Alt, 1979) consider a local optimal solution to be the extreme values
of a sample when they apply a randomly initialized heuristic and treat the intermediate
heuristic step solutions to constitute the corresponding sample. According to (Los and
Lardinois, 1982) those samples can have different sizes because the number of intermediate
heuristic steps can be different until the convergence of the heuristic. Even if they were equal
the independence of samples is again violated since each intermediate step reaches the same
local optimum. Therefore, the authors offer to take M samples each having M distinct local
optima. They apply Fisher and Tippett’s theorem to these M  observations each of which
being the minimum of a sample with m distinct values and developed the formula

’

B M
PT(ZUB_ESASZUB):l_exp(_

@)7 (74)

where ® is any real number. The main advantage of Equation 7.4 over Equation 7.3 is its
explicit dependence on the confidence level. In other words, 100(1 — )% confidence interval

[ZUB — %, ZUB} for the location parameter A can be achieved by letting

ol=

Ve
®= (i) (7.5)

Notice that the confidence level is fixed to 100(1 — ()% in Equation 7.3, which is not
the case for Equation 7.4. However, there is a specific problem with the Los and Lardinois’
Equation 7.4: it involves the shape parameter D, which can make the Cls wider or narrower
than it should be due to the direct dependence on D. As a remedy, one can consider to take
samples of equal size and apply Golden and Alt’s procedure in order to avoid from direct

dependence of the CI on the Weibull shape parameter.
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A critic for the Los and Lardinois’ approach is made by (Wilson et al., 2004) who state
that two heuristic solutions having the same objective value need not necessarily indicate
that they are repetitions of the same sample. That is to say, they may stand for two
different feasible solutions. They have also noted that considering only distinct local optima

can prevent us from revealing the actual sampling distribution.

In any case, the Fisher and Tippett’s theorem requires that the parent distribution is
continuous and the samples of equal size drawn from the same population are independent.
The independence assumption of the Fisher and Tippett’s theorem is verified by the inde-
pendence tests. The assumption that the parent distribution is continuous does not hold for
the discrete optimization problems since the validity of the Fisher and Tippett’s theorem has
not been shown for the discrete distributions. However, the discrete optimization problems
have a huge number of solutions and thus the approximation of a discrete distribution by a
continuous distribution does not harm this assumption in practice as claimed by (Los and
Lardinois, 1982). On the other hand, we should point out that the MCMWP is a continu-
ous optimization problem which yields a continuous parent distribution. Very encouraging
results based on the Fisher and Tippett’s theorem have been reported. These results are
indicated with EVT on the third column of Table 7.1 where we present applications of

statistical bound estimation procedures on several COPs.

7.2. The Limiting Probability Distribution Approach

The Limiting Probability Distribution Approach (LPDA) tries to estimate upper (lower)
bounds for independent random observations belonging to the same probability distribution
with a confidence level of 100(1 — ()% after assuming that the density function is twice
differentiable. This method employs limiting probability distributions which are often in the

form

P(Zup < 27 =1—¢, (7.6)

where Z;p is a lower bound on the optimal value Z*. Given that the observations are in

h

increasing order, namely Z; is the smallest, and Z,, is the m!"* smallest value in the sample,

it is possible to set
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Zip =71 — F(Zm — ). (7.7)

Here, Z,, is frequently selected as the second smallest value, namely Z,. There are
several ways of choosing the constant f (. In their early work on the point estimation and
confidence limits for the lower bound of a random variable, (Robson and Whitlock, 1964)

suggest

Fe=(1-¢)/C (7.8)

The authors have used F é in the determination of an approximate 100(1 — ()% lower
confidence limit of a truncation point Z or a lower bound using a sample of size M, from

the distribution F(Z) such that Z < Z and 0 < F(Z) < 1.

This choice of constant F ¢ is later modified for the distributions having two truncation

points at both ends as
_ ~1
Fi={1-¢7"-1} (7.9)

by (Cooke, 1979). Here, p is a positive number and the author recommends to select its
value between 1/5 and 1. Note that for p = 1, FZ equals to F ;. For p < 1, the constant f ¢
yields looser lower bounds on Z* than the ones obtained by using f {. (Boender et al., 1982)
employ F g for p = 2, later on. Another suggestion is realized by (Van Der Watt, 1980):

F={(1 -V ye 17" (7.10)

Again m is a positive integer less than or equal to the sample size standing for the
m!" smallest observation within the sample. Note that for m = 2, F % is equivalent to
FZ. (Van Der Watt, 1980) has pointed out that f? is asymptotically more efficient than
the ones proposed by (Robson and Whitlock, 1964) and (Cooke, 1979). Furthermore, the
expected length of the CI proposed by (Van Der Watt, 1980) is considerably smaller than
the expected length of the one proposed by (Cooke, 1979). According to the experimental
results reported by (Monroe, 1982), Fg performs better than both Fé and F%. There are

only very few applications of the LPDA in the literature as presented in Table 7.1.
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7.3. The Goodness-of-fit Approach

The Goodness-of-fit Approach (GFA) is based on fitting an empirical distribution func-
tion to the population distribution. Using the empirical distribution function a lower bound
for the population can be obtained with a given confidence level. For that purpose, poly-
nomial functions (e.g., second or higher order) may be employed as approximations to the
population distribution. This idea can also be extended to optimization problems when
their objective values are considered as our population and it is required to fit a probability
distribution to the objective values. However, this task is not trivial since the distribution

of the objective values is not known a priori.

For a minimization problem, the GFA starts with an initial valid lower bound Z g and
iteratively progresses by increasing the value of Zyp as long as a predefined goodness-of-fit
measure (e.g., x?) improves. The value of Z;p corresponding to the best goodness-of-fit

value yields an estimate for the lower bound of the optimal value.

The methods adopting the GFA differ primarily in the goodness-of-fit measure, the
form of the fitted distribution function, the parameter estimation procedure for the corre-
sponding empirical distribution function and the number of observations used to execute
the calculations (Monroe, 1982). For further details on the GFA, we refer to the works by
(Hartley and Pfaffenberger, 1969) and (Liau et al., 1973).

7.4. Procedures to Estimate Weibull Parameters

The estimation of the Weibull parameters is a critical issue in the application of the
EVT. Basically, three type of estimators are used: Least Square Estimators (LSEs), Simple
Point Estimators (SPEs) and Maximum Likelihood Estimators (MLEs).

7.4.1. The Least Squares Error Estimators

(Golden, 1977) adapts the Clarke-Wright saving heuristic (Clarke and Wright, 1964)
for the solution of the TSP and employ this heuristic to estimate the global optimal solution
of the TSP. In addition, (Golden, 1977) pursues (McRoberts, 1971)’s method and proposes a
LSE for the location parameter A. By taking logarithms of the Weibull distribution function
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given by Equation 7.2 twice (Golden, 1977) obtains

DIn(Z —A)—DmnB=In[-In(1 - F(2))]. (7.11)

Observe that when the location parameter A of the Weibull distribution is fixed
then Equation 7.11 can be considered as the equation of a regression line of the form
DiZ4 + Dy = f(Z4) with independent variable Z, = In(Z — A), dependent variable
f(Za) = In[—In(1 — F(Z))], slope D; = D and intercept Dy = —DIn B. Their values
can be estimated using the least square analysis. Given a fixed value of the location param-
eter A, it is possible to find D and DIn B, and hence to obtain the scale parameter B and
the shape parameter D. By setting different values for the location parameter A, different
values of the scale parameter B and the shape parameter D can be obtained. Therefore, this
procedure is repeated for different values of location parameter A until the largest correlation
coefficient is obtained. (Golden, 1977) notes that when the absolute value of the correlation
coefficient is close to 1 then this implies that there is a strong linear relationship between
the dependent and independent variables. For the other case, namely when the absolute
value of the correlation coefficient is not close to 1, then the null hypothesis, “the heuristic

solutions are Weibull distributed”, can be rejected.

(McRoberts, 1971) refers to the linear regression version of the LSE, which is imple-
mented in several studies (Brandeau and Chiu, 1993; Dannenbring, 1977; Golden, 1977;
Sastry and Pi, 1991), as the graphical search. A nonlinear regression version of the LSE is
proposed by (Wilson et al., 2004) where the authors employ the Nelder-Mead simplex search
(Nelder and Mead, 1965) in order to find the minimum of the corresponding nonlinear least

squares error function in terms of Weibull parameters.

7.4.2. Simple Point Estimators

The SPEs or analytical estimators of the Weibull distribution are proposed by several
authors. There are mainly four estimators for the location parameter. Let Z; < Z5 < ... <
Zyr be an ordered sample from a Weibull distribution with unknown location parameter A.

The first estimator
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A, =27, — Zy (7.12)

is originally proposed by (Robson and Whitlock, 1964) and used by (Golden and Alt, 1979)
and (Dannenbring, 1977). Another estimator is devised by (Dubey, 1967):

~ Zy Ty — Z2
A2 = .
Z1+ 2y — 2725

(7.13)

It is also employed by (Zanakis, 1979) and (Zanakis and Mann, 1982). Note that as Z,
tends to 7, both /Tl and ﬁg approach to Z;, which makes them biased. We can expect that
121\2 would be a more accurate estimator than 121\1, since A\g makes use of 3 observations rather
than 2 as A; does. However, (Muralidhar and Zanakis, 1992) show through Monte Carlo
simulation experiments that //1\1 provides a much closer estimate of the location parameter
than EQ in particular when the shape parameter is close to 1. By using the fact that an
estimator can be considered to be more effective if it has lower bias and inspired by the
second estimator 121\2, (Muralidhar and Zanakis, 1992) develop a generalization of 22, which

is known as the Minimum-Bias Percentile (MBP) estimator:

-~ LiZy - 23,
ST 24 Ty — 22,

(7.14)

Here, Z,,, is selected among M observations such that 121\3 provides the minimum bias es-
timator of the location parameter A. The authors suggest that the best estimation can be
done with the choice m; = [0.8829M%563]. (Muralidhar and Zanakis, 1992) note that in
most cases MBP estimator is better than both /All and /Alg since it has smaller mean bias
than both ﬁl and 2{2. Another estimator for the location parameter is proposed by (Wyckoff
et al., 1980) as

zZ
> Z]. - M1/ ®1

A== , (7.15)

1
M/®1

where Z is the average of observations and ®; = —2.989 . (Wyckoff et al., 1980)

Z10.97366 M1~ 21
Z10.16731M] ~ 41

argue that fA14 has also good performance in estimating the location parameter.
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The scale parameter B is set to
B\l - Z|—O.63M] - A\ (716)

in almost all studies in the literature where A is an estimate of the location parameter.

(Wyckoff et al., 1980) develop

M
N N1 ]
By = exp [0.5772 <D4> + > In(Zn — Al) (7.17)
m=1

as another estimator of the scale parameter where 154 is the shape parameter which will be

presented later in this section.

The shape parameter D, is the most important parameter which also affects the estima-
tion of other parameters and in case it is miscalculated the Cls produced can be inefficient.

(Golden and Alt, 1979) propose to estimate the shape parameter with

~ In[—In(0.5)]
Dl - = =
hl(Zm — Al) —1In Bl

(7.18)

where Z; stands for the median of the selected sample. Another analytic estimator for the
shape parameter is devised by (Zanakis, 1979):

B, — In[In(1 — ¢z,)/ In(1 — Gy )] N 2.989 (7.19)

In [(Z,% — 2)/(Zmy — 22)} In [(Zﬁm — A3)/ (Zimy — Ay)

where ¢,,, = 0.16731 and ¢;, = 0.97366 are quantiles minimizing the asymptotic variance
of the shape parameter when A, is known. Here Zm, and Zg, are the observations with

my = [0.16731M ] and my = [0.97366M |, respectively.

Also the estimator

In(1—¢5,,)
0.5In [—ln(lfcm;)} 3643
In [—Zﬁ“‘ —Zin } In [Zﬁ’?’*Zﬁ’?’} 7

Zﬁzg_Zm;z, Zﬁq3_Zm3

Ds = (7.20)

where G, = 0.0033, ¢, = 0.9920 and ¢z, = 0.1187 with ms = [0.0033M ], iz = [0.9920M ]
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and mg = [0.1187M, is due to (Zanakis and Mann, 1982).

Finally, (Wyckoff et al., 1980) propose the following analytic estimator

. M,
Di= —zimm - T - (7.21)
— Y I(Zy - A+ 28 Y In(Z, - A))
m=1 m=[0.84M

for the shape parameter where ®, is a constant given by (Engelhardt and Bain, 1977).
(Wyckoff et al., 1980) indicate that the parameters 121\4,112 and 134 appear to be the best
overall analytic estimators in the literature. As the number of order statistic used for an
estimator increases the bias and mean square error of the estimators decrease. Thus, 134
produces better estimates than the others. However, (Zanakis and Mann, 1982) note that

for small true shape parameter values, ﬁg and 133 are also as efficient as lA?4.

All these analytic estimators are frequently used in the initialization of a MLE proce-
dure. However, (Zanakis, 1979) observes that analytic estimators are good approximations
of the true Weibull parameters and it may be preferable to use only SPEs when the sample

size is small.
7.4.3. The Maximum Likelihood Estimators

Let Z1 < Zy < ... < Zj be M independent observations obtained from a Weibull
distribution. The MLE method aims to estimate the best values of the location parameter
A, the scale parameter B and the shape parameter D. In other words, given the Weibull

likelihood function

20) = [11(Z) = ] (= 7 oo (- (P27 (7.22)

=1

where Q = (71,2, ..., Zy, A, B, D) is a vector consisting of observations and parameters,
the MLE method estimates A, B and D, by minimizing L(£2) such that A < Z;, B > 0 and
D > 0. Since the minimization of L(£2) is equivalent to the minimization of the log-likelihood
In(L(Q2)), an approach is the solution of the equality system obtained by setting the partial
derivative [n(L())) with respect to A, B and D, to zero as done by (Golden, 1977). In

fact these three equalities in A, B and D are the first order necessary optimality conditions.
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(Golden, 1977) states that from this system one can derive the value of the scale parameter

B as

M 1/D
B= (Z(Zm - A)D/M> , (7.23)

m=1

and then approximately solve the remaining two nonlinear equations using numerical meth-

ods.

As for example, there are several other approaches for the maximization of the Weibull
log-likelihood function. (Golden and Alt, 1979), (Gonsalvez et al., 1987), (Hall et al., 1988)
and (Los and Lardinois, 1982) employ (Harter and Moore, 1965)’s gradient search technique.
(Derigs, 1985) combines gradient search technique with a Newton method. (Marin and
Salmerdn, 1996) employ an interval search method to solve MLE equations. (Zanakis, 1977)
states that in general parameter estimation by MLE method generate better sample fits than
analytic estimators particularly when the shape parameter becomes larger. (Wilson et al.,
2004) remark that Harter and Moore’s method causes convergence problems in some of their

test instances, which is also noted by (Zanakis, 1977) and (Derigs, 1985).

In the literature, analytic estimators are often used as an initialization step of the
MLE procedure. Then these estimates are improved by MLE procedure which requires to
find the maximum of a non-convex function. Although the MLE procedure is not trivial, the
computational results are encouraging since the additional computational effort required is
relatively low for the MLE procedure when compared with the computational effort required

using only the SPE procedures.
7.5. Independence and Weibull-Fit Tests

The test for independence of the generated local optima is of great importance since
the basic assumption of the Fisher and Tippett’s theorem requires identically distributed and
independent samples. Therefore, before applying the parameter estimation procedure, it is
strongly recommended to test the independence of the random observations. The longest run
and runs test are used by many authors for this purpose (Beyer, 1974). The longest run test

is considered by (Golden and Alt, 1979) and (Hall et al., 1988) to verify the independence of
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the heuristic solutions. The runs test is more popular than the longest run test. The runs
test is employed to check the independence of sample objective values by many researchers

(Gonsalvez et al., 1987; Kudva et al., 1994; Ovacik et al., 2000; Wilson et al., 2004).

Besides the independence tests, it is also important to test that the objective values
computed by means of a heuristic are from a Weibull distribution. For this purpose, two
well-known goodness-of-fit tests are used: the Kolmogorov-Smirnov (K-S) test (Law and
Kelton, 1991) and the Anderson-Darling (A-D) test (Anderson and Darling, 1952). The K-S
test is the most popular and extensively applied in almost all studies (Wilson et al., 2004;
Ovacik et al., 2000, Marin and Salmerén, 1996). The A-D test is known to be more strict
than the K-S test and (Wilson et al., 2004) suggest the use of the A-D coupled with the K-S
because the A-D test is more effective in detecting the discrepancies between the fitted and

empirical distributions in the tail regions.
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8. ALLOCATION SPACE BASED BRANCH-AND-BOUND
METHODS

In this chapter® allocation space based BB (ABB) algorithms are suggested for both the
CMWP and MCMWP. ABB algorithms partition the allocation variable space into smaller
subspaces and aim to find the optimal solution by implicitly enumerating the extreme points
of the constraint sets which are defined by the allocation variables. In the first section, we
address the ABB algorithm which is originally proposed by (Sherali and Tungbilek, 1992)
for the CMWP and we refer to it as the Single-commodity ABB (SABB) algorithm. In the
second section, we develop an ABB algorithm for the MCMWP which we call it as the MABB
algorithm. For both ABB and MABB algorithms, we test the performance of block norm
based lower bounding procedures, which are previously implemented for the DA heuristics in
Chapter 5. Additionally, we consider two other lower bounding procedures: Reformulation-
Linearization Technique (RLT) based lower bounding procedure and a straightforward lower
bound which uses the solution of WPs. The upper bounds are computed with ALA (CALA
or MCALA) heuristics. We follow different search and partitioning strategies for the SABB

and MABB algorithms and offer several branching variable selection strategies.

8.1. Solution of the Capacitated Multi-facility Weber Problem

An optimum solution of the CMWP always occur at an extreme point of the Trans-
portation Problem (TP) polyhedron given by Equation 3.7 — 3.9, independent of the distance
function d(x;,a;). Once we are given such an extreme point, namely feasible allocation val-
ues, the remaining I WPs can be solved to find the corresponding optimum facility locations.
In his earlier work, (Cooper, 1972) tries to enumerate all extreme points of the CMWP. This
enumeration method finds the corresponding facility locations and then picks up the mini-
mum cost solution to find the optimum. Although this enumeration method halts quickly,
the idea of using allocation space and hence the structure of the TP polyhedron is employed
in BB algorithms developed by (Sherali and Tuncbilek, 1992) and (Sherali et al., 2002) for
the SECMWP and the LCMWP, respectively.

Each basis of the TP polyhedron corresponds to a spanning tree on a bipartite graph.

5The conference proceeding (Akyiiz et al., 2011) is partly based on this chapter.
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Therefore, there could be at most I+ .J —1 positive allocations at an extreme point for which
the bipartite graph is constructed with positive flow arcs. This implies that the remaining
flows other than the positive flows are exactly zero. These properties enable to partition
the allocation space into two distinct sets for each allocation variable w;;. Notice that the
commodity index k vanishes for the CMWP i.e., w;j;, = w;; when K = 1. Clearly, each w;;
variable is either set to zero or enforced to be strictly positive at an extreme point. This
binary partitioning approach is first introduced by (Sherali and Tungbilek, 1992) for the
SECMWP and then employed by (Sherali et al., 2002) for the LCMWP.

Actually, the idea of using a binary partitioning of the allocation space corresponds to
dealing with an extreme point on the leaf nodes of a BB tree. After setting all allocation
variables w;; to either a positive value or zero, an extreme point can be obtained. For that
purpose, lower and upper bounds /l;j and u;; on w;; variables are defined. Initially, these
bounds can be taken as l:-j = 0 and u;; = min{s;,¢;} fori =1,...,1;5 =1,...,J. For
allocation variables with positive values we have 1 < lAij < w;; and for allocation variables
with zero values we have Z;j = U;; = w;; = 0. According to the values assigned to w;;
variables three sets are constructed: W+, W and W¥, called as positive variables set, zero
variables set and free variables set, respectively. Namely, W7 is the set of allocation variables
with positive values, W contains the allocation variables with zero values and W consists
of the allocation variables which are not assigned any value. During the exploration of the
BB tree, these three sets are gradually updated. As the SABB algorithm progresses, a free
variable w;; € W is selected and added to the positive variable set W*. Also, the arc
(i,7) corresponding to variable w;;, is added to the graph of the current partial solution.
Given an arc corresponding to a w;; variable with positive value, we try to detect other arcs
(¢, 7) with wy; € W whose existence create a cycle on the graph and the variables wy ;s
corresponding to those arcs are added to set WP, All variables, which are recently added to
Wt or WP, are removed from the free variables set YW¥. An extreme point is reached when
WY is empty. Note that the bounds Zj and u;; are also updated accordingly by considering
whether the allocation variable w;; belongs to W* or W'. At each node of the BB tree a

subproblem is defined by these lower and upper bounds on the allocation variables.

The bounds Ej and u;; are improved using the logical test proposed by (Sherali and
Tungbilek, 1992). A detailed explanation of the logical test is given for the MCMWP later

in this chapter where the MABB algorithm is presented. We limit ourselves with a summary
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of the logical test for the CMWP in order to be concise. The logical test consists of a
sequential update mechanism which uses the maximum slack values of the transportation
constraints with current bounds Zj and u;; of the allocation variables. Since any change on
the bounds of an allocation variable affects the corresponding maximum slack values, the
bounds of all neighbor variables will also change. This situation arises because all resources
(i.e., supply and demand quantities) are common for the allocation variables. Hence, when a
lower or upper bound of a variable is changed, the bounds of its neighbor variable should be
updated with the latest bounds accordingly. This procedure continues until all bounds on
the variables become stable. In case one or several maximum slack values become negative,
this implies that the allocation space is infeasible with current variable bounds. When the
logical test enforces the lower bound of a variable to be positive, W+ should be updated, all
the arcs constituting a cycle with this update should be set to zero and, W° and W* should
be changed appropriately. Consequently, the logical test, should also be integrated with a

cycle detection and prevention mechanism.

The SABB algorithm performs a depth-first search (DFS) strategy along with the
described binary partitioning of the allocation space. The records of the allocation variables
on the BB tree are kept on a partial solution list (PSL) with the framework proposed by
(Geoffrion, 1967). Each PSL element stands for the status of an allocation variable together
with the lower bound value associated with it. A zero variable wy; is indicated by (i, 7)° in the
PSL. However, there exist two types of records for positive variables: selected positive variable
and necessarily positive variable which are denoted by (4, 7)™ and (i, j)*", respectively. A
selected positive variable (i,7)*% implies that the allocation variable w; is set to a positive
value via a branching mechanism. A necessarily positive variable (i,7)™ implies that the
allocation variable w;; is fixed to a positive value within the logical test for the sake of
feasibility of the TP constraints (i.e., cycles are not allowed). The complementary zero
branch (i.e., the branch where w;; = 0) of each w,; with selected positive variable (i, j)™
should also be searched. However, this is not required for a necessarily positive variable,
(i, )N
tree reaches an extreme point if and only if |[PSL| = I x J holds.

, since this can already produce an infeasible solution. The current branch of the BB

At each node of the BB tree a lower and upper bound value which are denoted by
Zrp and Zypg should be determined, respectively. If its lower bound is larger than the best

upper bound value Z2%f found so far, that node is fathomed and other non-fathomed nodes
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are explored. Therefore, a fathoming criterion of Z;p > (1 — €)Z¥5! can be used to avoid
excessive computational effort at each node. We take ¢ = 0.001 in our calculations. We give

a generic outline of the SABB algorithm in Figure 8.1.

1. (Initialization): Set PSL « 0, W «— 0, WO «— 0, WI' — {(i,j) :i=1,...,
LIij=1,...,J}. Setﬁj =0 and w;; =min{s;,q;} fori=1,.... I;j=1,...,J

2. (Logical Test and Cycle Prevention): Perform the Logical Test of (Sherali and
Tungbilek, 1992). if infeasibility is detected, then go to Step 5. else set
W —WHU(i,5), (i,j) € WF with I; > 0 and PSL < PSL U (i, )V
Also set WY — WO U (i,7), (i,7) € WF (i.e., for allocation variables with
u;; = 0) and for all arcs (i, j) creating a cycle with (i, j") € W, set PSL «
PSL U (i,7)° at any stage of the update mechanism of the Logical Test.

After the Logical Test, if |PSL| < I x J, then proceed to Step 3. else an
extreme point is at hand, find an upper bound Zy g, set 2% = min{ 225!,
Zyp} and go to Step 5.

3. (Bounding) Find a lower bound Z; 5 and an upper bound Zyp with current Zj
and 1;; values to the SABB subproblem. Set Z¥% = min{Z%%, Zyp}.
if Zpp > (1—¢€)2%, then go to Step 5.

4. (Branching) Select a branching variable (i,5) € W! using a branching rule, i.e.,
BrS1, BrS2 and BrS3. Set W «— W\ (i, 5), WT «— WT U (i, ), PSL « PSL
u(i,j)™ and lAij = 1. Go to Step 2.

5. (Fathoming) Find a (i, )" element in the PSL by backtracking where its
previous node has a lower bound smaller than (1 — €) Z%s!,
if there is no such an element within the PSL, then STOP: Z{%! is within
100€% of the optimum.
else change the element by (7,7)° in the PSL, set W «— WT\(7,5), W° «
WO U (i, j) and lAZ-j = U;; = 0. Remove all elements added after (7, j) from the
PSL, update WT, WY and W!" accordingly. Set l:j =1, (i,7) € W' and
u;; = min{s;,¢;} fori=1,...,I;j=1,...,J. Go to Step 2.

Figure 8.1. The SABB algorithm for the CMWP.
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8.1.1. Bounding Procedures

The bounding step includes finding both valid lower and upper bounds for the cur-
rent subproblem. A SABB subproblem is defined by substituting the constraints given by
Equation 3.9 with the following set of inequalities in the CMWP formulation:

We suggest employing lower bounding block norms in Equation 3.6 which results in
solving a lower bounding MILP for the current subproblem. We have also devised two more
lower bounding procedures which are originally developed by (Sherali et al., 2002) for the
LCMWP. The next part is dedicated to explain lower bounding procedures that are vital
and the most time-consuming step of the SABB algorithm. Additionally, an upper bounding
procedure which is used at the initialization of the SABB algorithm and an upper bounding

algorithm performed at each node of the BB tree, are presented.

8.1.1.1. Block Norm Based Lower Bounding Procedures. The objective function given by

Equation 3.6 includes the distance function which is considered to be the /,.-distance with
1 < r < oo. The SABB subproblem which is stated by Equation 3.6 — 3.8 and 8.1 can
be bounded from below if the distance function is substituted with a lower bounding norm
function in Equation 3.6. In particular, candidate locations for the optimum facility locations
can be reduced from the entire convex hull of customer locations to a finite set of points
within it when a block norm is used in Equation 3.6 as discussed in Chapter 5. This gives
a chance to formulate a MILP formulation which can produce a lower bound on SABB
subproblems. We first present a MILP formulation to compute the lower bounds with the
SABB algorithm and then a Lagrangean Relaxation (LR) scheme is proposed to increase the

efficiency of the block norm based lower bounding procedures.

Define the variables y;;, as the amount shipped to customer j from facility 7 located
at candidate point g. Binary variables v;, are set to 1 if facility ¢ is located at point
g and O otherwise. ¢;j, is the cost of transporting one unit from facility 7 located at
candidate point g with known coordinates @, = (@, dg2)" to customer j where it is de-

fined as ¢;j, = c;;d(@y,a;). Recall that here d(ay, a;) is a block norm distance satisfying
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d(@,,a;) < [[dg — aj|" + [@,2 — aj|")"'" with 1 < r < co. Then, the lower bounding MILP
formulation i.e., Discrete Approximation Problem (DAP) of the SABB subproblem can be

given as

DAP:

1 J G
min Zpap =Y Y Y cijg(Yijg + lijvig) (8.2)

i=1 j=1g=1
J
s.t. Zyijg:@-vig Zzl,,[,g:17,G, (83)
j=1
I G

i=1 g=1

G

D v =1 i=1,....1, (8.5)
g=1

Ogyijggugj 1=1,...,0;j=1,...,J;9=1,...,G, (8.6)

vy € {0,1} i=1,...,1;,9g=1,...,G, (8.7)

where the parameters 5;, g; and u;; are updated with the latest bounds on the variables:

o~

81 = 8 200y Cg igtig = 8~ 1 by T = 45— Loty Yoge ligVig = 45 — 2oy Ly which
follows from the equality ZgG:1 vig = 1 for i =1,...,1 by constraints given by Equation 8.5
and wuj; = (Ui — ZAU) Constraints given by Equation 8.3, 8.4, and 8.6 play similar role as
the bounded TP constraints given by Equation 3.7, 3.8 and 8.1, respectively. Constraints
given by Equation 8.5 enforce each facility to be opened at exactly on one of the candidate
locations. Note that the DAP reduces to the original formulation proposed by (Aras et al.,
2007, 2008) to produce approximate upper bounding solutions for the LCMWP where no
bounds on the allocation variables are imposed (when lAZ-j = 0 and u;; = min{s;, ¢;} for all

w;;). Lower and upper bounds Ej and u;; on variables require additional binary variable

terms which vanish from the formulation when lower bounds are zero.

As we reach the leaf nodes of the BB tree, the DAP can be solved easier than the ones
solved for the nodes generated at the beginning of the SABB algorithm. Recall that during
the run of the SABB algorithm, the variables are gradually fixed. At some step of the SABB

algorithm, positive fixed variables enforce some free variables to take a zero value. The
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existence of these positive variables on the current bipartite graph constructed by positive
flow arcs creates cycles. Certainly, they are dropped from the subproblem formulation and
the remaining problem becomes easier to solve. However, solving the DAP at each node of
the BB tree, particularly for nodes explored at the beginning of the SABB algorithm, is not
a viable choice as the instance size increases. Therefore, we resort to a LR scheme for the

DAP formulation.

Any lower bound on the optimum value of the DAP formulation, which uses a lower
bounding norm function as the distance measure, is also valid for the SABB subproblem. We
use LR and Subgradient Optimization (SO) algorithm to compute lower bounds for the DAP.

When demand constraints given by Equation 8.4 are relaxed with Lagrangean multipliers

5

7, we obtain the Lagrangean subproblem

RDAP(8°):
I J G 1 J G J
win Zors(B%) =)D D (ciig = B))yiia + D_D_D_cualistia+ D 57 (88)
i=1 j=1 g=1 i=1 j=1g=1 j=1
s.t. Equation 8.3, 8.5, 8.6 and 8.7. (8.9)

The last term in the objective function given by Equation 8.8 is constant and RDAP(3°)
decomposes over the facilities. As a result, the solution of RDAP(3”) becomes equivalent to

the solution of the following [/ subproblems

RDAP;(3°):
J G N
min Zpps: (8°) = > (Ciiglisg + Cisgliyvig) (8.10)
j=1g=1
J
st Y Wijg=5sivig g=1,...,G, (8.11)
j=1

G
sz.g -1 (8.12)

Ogyijggu;j j=1,...,J;9=1,...,G, (8.13)

vig € {0,1} g=1,....G, (8.14)
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where €, = (Cijg — ﬁf) is the new unit cost obtained with given multiplier vectors 3°.
The solution of subproblem RDAP; (8°) is not difficult. We can use a “greedy” inspection
procedure where, for each point g, we determine those customers that are supplied from
facility ¢ when located at point g so that the shipment cost Z pis (8°) = ijl CiiglYiig —i—c,;jgl:-j
is minimized subject to Z;.]ZI Yijg = Sivig, With vjg = L and 0 < gy < gy, j =1,...,J.
Note that this yields bounded CKPs whose solutions are very similar to the ones presented
for DA heuristics in Chapter 5. Recall that the solution of the CKP requires a sorting effort
and assignment of facility ¢ to customer j is done starting from the least cost customer until
3; is totally allocated. Here, we should additionally check whether u;; <'5; holds or not for
an assignment of facility i to customer j. In case, u;; < s; holds, the shipment quantity
between facility 7 and customer j is u;; and we continue to search for the next minimum cost
customer to ship the remaining capacity of facility ¢. Otherwise, the shipment between the
minimum cost customer j and facility ¢ equals to 5; and the procedure continues until all

(B%) for each candidate

point g is calculated, Z; ..(3°) is obtained by setting Z} ..(8°) = ming_1__c{Z; 4, (B°)}-

capacity of facility 4 is exhausted. Once the optimal solution Z7 .,

As soon as we solve all subproblems RDAP;(3%), we can calculate the optimal value of the
RDAP(B°) as Zps(8°) = SO0, Z5 i (B) + Z}]=1 32q; for given multiplier vectors 8°. The
rest of the calculations are the same with the ones presented in Chapter 5. Z; -(8°) is a

lower bound on the optimal value of the DAP for any Lagrange multiplier vectors 3°.

8.1.1.2. Reformulation-Linearization Technique Based Lower Bounding Procedure. (Sherali

et al., 2002) devise two lower bounding procedures for the LCMWP. One of them is the RLT

based lower bounding formulation of the CMWP. RLT first defines new variables to denote
distance measures between the facilities and customers and carry its nonlinearity into the
constraint set of the CMWP. Then, the lower bounding supports for these nonlinear terms in
the constraints are added and the bilinear terms are reformulated to linearize them. Clearly,
the resulting formulation is linear and constitutes a lower bound on the optimal solution of
the CMWP. We have also employed the RLT formulation given with the so-called constraints
“(15a) — (15j)” and “(16b)” in the study by (Sherali et al., 2002) as the second lower bound-
ing procedure for the SABB algorithm. A similar RLT formulation is also developed for the
MCMWP in the next section and we omit the original RLT formulation for the CMWP to

avoid repetitions.
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The other lower bounding procedure is first proposed by (Sherali et al., 2002). We

term it as SAS, which is given as follows.

SAS:

I J
Zsas = mxinzzlijcijd(xia aj)7 (8-15)

i=1 j=1

which reduces to solving I WP’s. Both block norm and RLT based lower bounding proce-
dures are strengthened by the SAS lower bound.

8.1.1.3. Upper Bounding Procedures. The computed lower bounds are used to check the

current BB node for fathoming. The objective value of the best feasible solution is employed
to make a decision. Actually, upper bounding feasible solutions are necessary both at the
root node (initialization) and at the subsequent nodes of the BB tree. We summarize the
initial upper bounding procedure, which is proposed in the work by (Sherali et al., 2002),

that we have also employed in this work.

Initial upper bounding procedure: At the root node, two Capacitated ALA (CALA) heuristics,
which are explained in the following, are run and the one with the smallest objective value
is used as the initial value of Z%%!. For that purpose, the customer locations are enclosed
within the tightest rectangle and it is sliced along the x-axis into I equal parts. Then, the
demand quantities in each slice are aggregated and sorted in increasing order. Facilities
are also sorted in increasing order of their capacities. Lastly, each aggregate demand is
assigned to a facility according to their increasing order and the demands of customers are
split among facilities starting from left to right, i.e., unsatisfied demand of customers in a
slice is merged to the next slice and thus the next facility. Once a valid transportation plan
is obtained, the corresponding optimum facility locations are found and the CALA heuristic
is run. This process is also repeated for the y-axis and the best of two feasible solutions is
used as the initial upper bound value for the SABB algorithm. More details can be found in
(Sherali et al., 2002) for the initial upper bounding procedure. Other initial upper bounding
procedures can also be implemented for the SABB algorithm but, we prefer to use this
procedure to perform a fair comparison between existing methods of (Sherali et al., 2002)

and our BB algorithms.
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Intermediate upper bounding procedure: We take the advantage of the CALA heuristic to
find upper bounds at intermediate SABB nodes. The lower bounding procedure (including
the block norm based, the RLT based or the SAS lower bounding) solutions return the
optimal facility locations of the SABB subproblem which are then used to initialize the
CALA heuristic to obtain a feasible solution on the CMWP in order to update the incumbent

solution value Z2%!

when necessary. At the leaf nodes of the BB tree an extreme point is
reached and Weiszfeld’s procedure is run to find an upper bound. We continue to run the

CALA heuristic to obtain an improved feasible solution and to update the value of Z%%.
8.1.2. Branching Variable Selection Strategies

Another feature of the proposed SABB algorithm is the branching step. In this step, we
select the allocation variable which will be added to the positive arc set, W*. The sequence
of variables on which we have selected to branch greatly affects the performance of the SABB
algorithm. Therefore, this choice should be done with utmost care. For that purpose, we
have implemented three different branching variable selection strategies. Two of them are
originally introduced by (Sherali et al., 2002) and the third one is a new branching variable
selection rule. In the following we present these three branching variable selection strategies

(BrSs).

BrS1: Let w be the current allocation vector satisfying the bounding restrictions imposed.

Then, the branching variable w;; is selected with the following rule:

BrS1:

(Z,]) = ar(g le)ZEVI\I;II?X {m/j/, Ci/j/(ai/j/ — Z’j’)} R (816)
i g e

where ties are broken arbitrarily. Note that in Equation 8.16 two vectors are considered and
thus, the selection of the branching variable is done by taking lexicographically maximum

element of the vectors.

BrS2: The second rule is very similar to the first one.
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BrS2:

(Z,]) = (arg)mvz\t); {(ﬂi/j/ — li/]’/) min {(ﬂi/j/ — Ei/]-/), (wi/]‘/ — li’j/)}} . (817)
i’ 3 E

BrS3: The constraints given by Equation 3.7 and 3.8 can be rewritten in the form of two

inequalities as

J J
sz‘j > s; and Zwij <s 1=1,...,1, (8.18)
J=1 j=1

I I
Zwij > q; and Zwij <gqg Jj=1,...,J (8.19)
i=1 i=1

Then, the maximum slack values of these constraints can be expressed by

J J
SLzZSZ_ZZ] and SUZ :Zam_sz L= 177[7 (820)
j=1 j=1
and
I N I
QL;j=q;— Y ly and QU; = > j; — g j=1,...,J (8.21)
=1 =1

Hence we propose the following new branching variable selection strategy.

BrS3:

min SL,‘/, SUz/ 5
(1,7) = argmax ¢ ¢y (wpjr — L) max ‘ { } . (8.22)
(i) EWF min {DLj;, DU}

There are several other strategies used in the study of (Sherali et al., 2002) other than
Equation 8.16 and 8.17. However, Equation 8.16 and 8.17 are the most promising ones and

thus we have taken them into account for assessing the performance of Equation 8.22.

8.2. Solution of the Multi-commodity Capacitated Multi-facility Weber
Problem

(Sherali and Tungbilek, 1992) employ a binary partitioning strategy and tried to im-
plicitly enumerate all extreme points for the SECMWP. The authors also devise a cycle
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prevention mechanism using the tree property of bases: the flows which constitute a cycle
with the arcs defined by the positive variables are set to zero. This setting accelerates the
enumeration of extreme points. Furthermore, they also propose a logical test which may
tighten lower and upper bounds on allocation variables. Consequently, the logical test also
helps reaching an extreme point more quickly. (Sherali et al., 2002) adapt these logical tests
and cycle prevention mechanism and propose a new BB aproach which performs a contin-
uous partitioning of the allocation space of the LCMWP. Continuous partitioning, which is
different than the dichotomization of allocation variables, divides the allocation space into

two subspaces.

The cycle prevention mechanism which is originally devised for the CMWP can not
be directly adapted for the MCMWP. The reason for this is that a cycle may occur at
an extreme point of the MCMWP polyhedron, which is defined on the bipartite graph
constructed by positive flows of each commodity. This is caused by the upper bounds w;;
imposed on the total quantity of flows between each facility and customer pair. However,
for some particular extreme point each commodity may satisfy the tree structure. It is
not easy to design a cycle prevention mechanism which works for all extreme points of the
MCMWP polyhedron. Positive allocation variables at an extreme point of the CMWP is
at most I + J — 1. Additionally, there is not a straightforward formula which states the
number of nonnegative variables in a basic feasible solution of the MCMWP. In short, a
binary partitioning scheme for the MCMWP, similar to the one suggested by (Sherali and
Tungbilek, 1992) for the CMWP, is not applicable. On the other hand, the continuous
partitioning strategy developed by (Sherali et al., 2002) for the CMWP can be used for
the MCMWP as well. For that purpose, we impose the following bounds on the allocation

variables w;j

lwkgwwkguwk 221,,1,]:1,,(],]{7:1,,]( (823)

Initially, these bounds can be set as [;;; = 0 and w;j; = min {s;, ¢ji, u;;} for i =
1,....0;j=1,...,J;k=1,..., K, respectively. At each step of the MABB algorithm, an
active node (a node which is not yet pruned) denoted by ¢ is selected for further exploration.

Let WF = {(i,j,k) : Il), < ul} and WP = {(i,5,k) : I{}), = ul}

ik Z‘jk} denote free variable set

and equality allocation variable set associated with node ¢, respectively. Then, an allocation
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variable w;ji, € WF is selected and the corresponding interval is divided into two intervals

such that [l(t) w}

~2 ()7 ~1 ~2 (t) ~1 2
ik Wig) and (w7, v ] with L, < wiy < wiy, < g, where wy;, and wy;, are not

ijk> Wik ij

necessarily equal. All the remaining allocation variables are inherited from the parent node,
namely node ¢, as they are. These two allocation subsets result in two MABB subproblems
which are given by Equation 2.2 — 2.5 and 8.23. A lower and an upper bound on these two
subproblems are calculated and added to the BB tree 7 whenever they are eligible. The
selection of node t is done by the “best-first search” (BFS) strategy such that node ¢ has the
lowest lower bound among all nodes of the BB tree 7. The algorithm proceeds until either
BB tree 7 is empty or the lower bounds are within a predetermined limit from the best
upper bound Z¥s! found namely, the incumbent solution value. In the following discussion,
we present three lower bounding procedures and an upper bounding procedure. Next, we

propose several branching variable selection strategies (BrSs) together with the partitioning

and search strategy. Finally, a formal outline of the MABB algorithm is given.
8.2.1. Bounding Procedures

8.2.1.1. Block Norm Based Lower Bounding Procedure. A MABB subproblem is stated by
Equation 2.2 — 2.5 and 8.23. Consider two distance functions d(x,0) and d(x, 0) such that

d(x,0) < d(x,0) holds for every x € R?. Clearly, the optimum solutions Z* and Z* of the
corresponding MABB subproblems which use d(x,0) and d(x, 0) in Equation 2.2 also satisfy
Z* < Z*. Therefore, it is possible to use lower bounding distance functions, namely d(x, 0),
on the original MABB subproblem given by Equation 2.2 — 2.5 and 8.23. In particular, we
offer to use block norms as lower bounding distance functions. In the MDAP3 formulation,
which is the approximating MILP formulation of the MABB given by Equation 2.2 — 2.5
and 8.23, the allocation variables y;;r, depend on the candidate facility locations g which
is not the case for the w;j; in the MCMWP. We can not directly set Lz < yijrg < Uijk
for all allocations. Taking the summation over candidate locations g implies that Gl;j, <
Zleyijkg = w;jr < Guyj, which is not feasible for the original MCMWRP. Thus, we replace

Equation 8.23 by the constraints
lijkvig Syijkgguijkvig Zzl,,I,jzl,,J,kzl,,K,gzl,,G (824)

in order to adapt the lower bounding approach for the BB algorithm. Hence, we substitute

Yijkg = Yijkg T lijivig for i = 1, ;5 = 1,..., J;k = 1,.., K and g = 1,...,G. Then, the
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MDAP3 formulation of the lower bounding MABB subproblem associated with node ¢ can

be given as

MDAP3®:
I J K G I J K G
min. Zupaps =D > > Cielijeg + DD DD Cirkoliivi (8.25)
i=1 j=1k=1g=1 i=1 j=1k=1g=1
St) Typg =Sty i=1... Lk=1. Kg=1..G, (8.26)
I G
S Uik =0 J=1....Jk=1... K, (8.27)
i=1 g=1
G
D vy =1 i=1,...,1, (8.28)
g=1
K G
DY g <uy  i=1... . Lj=1..1J (8.29)
k=1g=1
0< Gy ST i=1,....Lj=1,...,Jik=1...Kg=1,..G, (830
vig € 0,1} i=1,....,I:g=1,...,G, (8.31)

where the parameters iz, g;;, and ﬂ% are updated with the latest bounds on the variables
— I t — t)
at node t: Sy = si — Zz 1 Zg 1lzgkvzg = Sik — Diz1 lz(jgw djr = Z; 1 Zg llz(jk Vig =
w— 37 19 and w; = G D vy = ugy — SO (”fu b =1
Qik Zj:l ik ond Ui = uw Zk 129 1k Vig = P iy, follows by Zg 1Vig =

(®)

fori =1,...,1. Lastly, u ij = U — 1Y) denotes current upper bounds on the allocation

ijk
variables. Constraints given by Equation 8.26, 8.27, and 8.29 play similar role as the bounded
Multi-commodity Transportation Problem (MTP) constraints given by Equation 2.3, 2.4 and
2.5, respectively. Constraints given by Equation 8.28 enforce each facility to be opened at
exactly on one of the candidate locations. Constraints given by Equation 8.30 are valid
upper bounds which substitute 0 <7, < ( ”k lz]k)vig' Fortunately, this does not affect
the optimum solution of the MABB subproblem. Given a facility ¢ with v;;« = 1 for some
candidate location g*, then g, ;.. = 0 is satisfied by Equation 8.26 and 0 < 7,,., < (u JL —llﬁg)
is redundant for all j = 1,....,J;k =1,...,. K;g = 1,...,G and g # ¢g*. On the other hand,
constraints given by Equation 8.30 imply valid bounds on allocations quantities. Note that
the MDAP3 reduces to the MDAP1 formulation to produce approximate solutions for the
MCMWP where no bounds on the allocation variables are imposed, namely at the root node

of the BB tree. Lower and upper bounds on variables require additional binary variable

terms which vanish from the formulation when lower bounds take zero values.
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When we relax constraints given by Equation 8.27 and 8.29 with respectively La-

grangean multipliers ﬁjﬁk and ,u?j we obtain the following Lagrangean subproblem:

RMDAP3® (3%, ub):

I K G
min Zpre(8°, 1°) :ZZZZ [(Cijkg — 0% + 1) Tijeg + Cijkng(;;CUig] (8.32)

J K g
22 B = DD i
Jj=1k=1 i=1 j=1
s.t. Equation 8.26, 8.28, 8.30 and 8.31. (8.33)

We skip the details of solving the RMDAP3 and using the SO algorithm for the sake
of conciseness since the LR scheme is very similar to the LR schemes RMDAP1 in Chapter

5 and RDAP for the CMWP as explained.

8.2.1.2. Reformulation-Linearization Technique Based Lower Bounding Procedure.

The MCMWP formulation given by Equation 2.2 — 2.6 can be rewritten as

I J K
min z :ZZZwijkcijkaij (834)

=1 j=1k=1
s.t. Q5 = (|ZL‘21 —aj1|T+|l’i2—CLj2|r)1/r 1= 1,,],] = 17...,J (835)
Equation 2.3 — 2.5 and 8.23, (8.36)

where continuous variables «;; measure the distance between facility ¢ and customer j. The
RLT approach is applied in order to get a lower bounding LP formulation on the formu-
lation given by Equation 8.34 — 8.36, which has bilinear objective function and nonlinear
constraints. The nonlinear constraint set is approximated by generating some supports on
it as suggested by (Sherali et al., 2002) for the CMWP case. Let & be the number of facets

of the convex hull of the customer locations defined by a set of inequalities of the form

wlg,fﬂﬁ—lpgglﬁ'ggd}og Z:].’,.[,Q:l,’r.@ (837)

Also, we define the following constraint sets

Qi 2 T — i1, Qi = Lo — Ao, . ;
¥l 1 71 J 2 j2 'l:17---7[;j:17“‘7‘]’ (838)

Quj 2 Q51 — Ti1, OG5 = Ajo — Tig,
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i > 2=/ (g — aj1 + Tio — aj2),
Qi > o(l=r)/r (ilj'ﬁ — Q1 — Tio + &jz) ) i—1 ]] =1 J (8 39)
g > o(l=r)/r (ajl — X1+ Tip — CLjQ) )
0 > 20 (ay — g — i + )
I J
Y05 (8.40)

i=1 j=1

Ogaijgdaij Zzl,,[7j:17,J, (841)

where Equation 8.38 implies that «;; > max {|z;1 — aj1|, |z — aj2|} and Equation 8.39 im-
poses o > 2=/ (|2 — aj|+ |z —aja|). 2z in Equation 8.40 is calculated by z; =

mxianﬂZ}]ﬂ (|{[11 — aﬂ\r -+ ‘l‘ig —aj2|T)1/r. Lastly, daij — maXx (!aﬁ — CLﬂ‘T +

a=
2
G=1,..,J J

r\ 1/r
> fore=1,...,1I;7=1,...,J in Equation 8.41.

In order to linearize bilinear terms, which occur after the reformulation of constraints,

we define new decision variables

f}/ijk :wijkozl-j,eijk :wl-jk:cﬂ and (bijk :w,-jk:cig, = 1,,],] = 1,,J,k = 1,...,K.

(8.42)

Reformulation: We multiply each inequality given by Equation 8.41 with each inequality
given by Equation 8.23. Then, all inequalities given by Equation 8.38, 8.39 and 8.37 are
multiplied by each of the inequalities in Equation 8.23. We generate the following equalities

J J
(Zwijk—sik> Ti1 =0 and (Zwijk—sik> T2 :O, 1= 1,...,];]{72 1,...,K. (843)
j=1

J=1

Additionally, the RLT based formulation is strengthened with the following two con-
straints:
I J K
Zzzczjsz‘jkaij > 7, (8.44)

i=1 j=1 k=1
I J

K
D DD cupthigroy 2 £, (8.45)

i=1 j=1k=1

where w;;, and w;;;, are the allocation quantities determined in the parent node upper bound

solution and the best feasible solution found so far, and z and Z are their corresponding
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objective values, respectively. To calculate Z and Z a pure location problem is solved with the
I J K
. . oy . . — . J— ™ T
associated allocation quantities, i.e., Z = m}:nzl Zlkz CijkWijk ([T — aji|” + |Ti2 — ajol
i=1j=1k=1

)1/7".

The other supporting constraint uses the first order information of the distance function
d. Note that d(x,a) > d(ag,a) + Vd(ag, a)(x — ag) holds where a; and a are fixed points on
the plane. Here, we employ customer locations as fixed points as recommended by (Sherali
et al., 2002). Therefore, the following supporting constraint is added to the RLT based

formulation:

a,-j2d(a;,aj)—i—Vd(ajf,aj)(xi—a;) i=1,...,1;5=1,...,J;:5=1,...,Jand j # j
(8.46)

Observe that a; # a; must necessarily hold since the derivative is not defined for those
points. It is also possible to obtain a tighter support by multiplying both sides of Equation
8.46 with the allocation variables w;j,. Nevertheless, we have observed that adding these
supports deteriorates the performance of the MABB algorithm employing the RLT. As a
result, we have limited ourselves with Equation 8.46 for the RLT based lower bounding LP
formulation to produce another lower bound for the MABB algorithm. The RLT based lower
bounding formulation for the MCMWP at a BB node ¢ is as follows:

RLT®:

I J K
min ZRLT = Zzzcijk*yijk (847)

i=1 j=1 k=1

st ay < i < o i=1,...,Li=1,...Jik=1,... K, (848)

ij
o Wit + U (i — dayy) < Vi < day Wign + k(05 — da)
i=1,... Lj=1,.. J;k=1,.. K (849)

(t)
Oijr — wigkazi + L (quy — xin + ag1) < yigr < Oige — wijkaz

+ul) (i — wa + aj1) i=1,...,L:j=1,...,J:k=1,...,K, (850)

(0

wikajy — Oir, + L (i + xin — aji) < yigr < wigkagy — Oy,

+ulh (o + i — aj1) i=1,...,Lj=1,...,Ji;k=1,... K  (851)
Pijk — WigkQz2 + lgi(@ij — Tig + aj2) < Vijr < ik — Wijkjo

+u§§3€(aij—xi2+aj2) i:1,...,];j:1,...,J;]{Z:1,...,K, (852)
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Wijkajo — Qijk + lg?g(aij + iz — aj2) < Yijr < Wiika — G

+ulh (o + ip — aj2) i=1,...0;j=1,...,J;k=1,...,K, (8.53)
Oijic + bije — wigr(aj1 + aze) + 20V gy — wiy + ajy — 22 + ay2)

< 20Dy < Oii + Gigre — wign(azn + aj2) + w20V oy — ma

) i=1,... . Lj=1,.. Jk=1,... K (854
Ois — Dije + Wijk(az — ajn) + L2V oy — i + a1 + 2 — aj)

<20y < Oije — g + wigk(aze — aj1) + uge (U oy — xa

+aj + iz — aj) i=1,... Lj=1,...,Jik=1,...,K,  (8.55)
gk — Oije + wigr (a1 — aze) + 20V gy + 20 — ajy — xi2 + ap)

<2 e < i — Oign + wign(az — aj2) + w20 ag; + @

— a1 — Tiz + aj2) i=1,....Lj=1,....J;k=1,... K, (8.56)
— Gijk — Oigr + wigk(ajn + aj2) + LRV gy + xa — aj1 + 22 — aj2)

<207y < =ik — Oin + wige(aj + aj2) + Ugﬁ(?(r_l)/raij + i

— aj1 + Tip — aj2) i=1,....L;j=1,.... J;k=1,..., K, (8.57)
Wik Vop — US’L(%Q — P1oTi1 — YaoTiz) < Yrbiji + Vopdijie < Wijktbo, — ZSL(?/JOQ

—wlgﬂ')l’l—wggﬂfig) 221,,[,jzl,,J,kzl,,K,Q:L,(@, (858)
J J
Z@ijk—sikxil =0 and Zgbijk_sikfz? =0 1= 1,...,];]{3: 1,...,K, (859)
j=1 j=1

Equation 2.3 — 2.6, 8.40, 8.41 and 8.44 — 8.46. (8.60)

In addition to MDAP3 (or RMDAP3) and RLT lower bounds, the following pure

location problem also constitutes a lower bound on the MABB subproblem at node ¢:

I J K
ZMSAS = m}:HZZZlZ(;LCZ]kd(X“ aj). (861)

i=1 j=1 k=1

Here Equation 8.61 can be decomposed into I WP’s. Once solved, the sum of the
optimal values of I WP’s give a lower bound. Both block norm based and RLT based lower
bounds are tightened with Zj;545 at each lower bounding step. Notice that MSAS is the

multi-commodity version of the SAS given by Equation 8.15.



96

8.2.1.3. Upper Bounding Procedures. The lower bound value computed at a MABB node is

used to check the status of that node for pruning. The incumbent solution value Z2% is used
to make such a pruning decision. In fact, upper bounding feasible solutions are necessary

both at the root node (initialization) and at intermediate nodes of the BB tree.

Initial upper bounding procedure: At the root node, we run MCALA heuristic twice with
different initializations and use the outcome with the smallest objective value as the initial
incumbent solution value Z¥s!. Two MCALA heuristics are initialized as suggested by
(Sherali et al., 2002) for the CMWP where they select initial allocations by a greedy-like
procedure before performing a CALA heuristic as discussed in Section 8.1.1.3 for the ABB
algorithm. Here, we adapt their method for the MCMWP. The customer locations are
enclosed within the smallest rectangle and it is sliced along z-axis into I equal parts. Then,
the demand for all commodities of each customer which lies within a slice is aggregated.
These total demand quantities of each slice are sorted in increasing order. Note that there are
I slices and hence I aggregated demand values. Similarly, facility capacities are accumulated

total __

for all commodities such that s/ = Zszl si holds where st is the total facility capacity

total
[

fori =1,..., 1. Total facility capacity values s are also sorted in increasing order. Lastly,
each aggregate demand is assigned to a facility with the same order. Then, total facility
capacities are split among the customers from left to right. When a customer demand for a
commodity is not totally satisfied, its demand is met by the next facility in the order. Once
a feasible allocation vector is obtained, a MCALA is run starting with those allocations.
The process is also repeated for the y-axis and the minimum of these two solution values is

employed as the initial upper bound value.

Intermediate upper bounding procedure: At the intermediate nodes, the MCALA heuristic is
used to find feasible solutions. The initial locations (or allocations) of the MCALA heuris-
tic affects its performance significantly. Observe that the bounds given by Equation 8.23
imposed at a node of the MABB algorithm on allocation variables may lead to a feasible
allocation vector that is worse than the incumbent solution and, in some cases, to infeasi-
ble solutions. As a result, we prefer to employ the location vectors produced by the lower
bounding procedure at an intermediate MABB node to initialize a MCALA heuristic. When
WF is empty, we obtain an extreme point of the MCMWP. In this case, an upper bound
best

can be found by optimally solving I WPs. Lastly, the Zf5 is updated if an improvement is
achieved by the upper bound obtained with the MCALA heuristic for the original MCMWP.
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8.2.2. Other Features of the Allocation Space Based Branch-and-Bound Algo-

rithm

8.2.2.1. Logical Test. Constraints given by Equation 8.23 impose both lower and upper

bounds on allocation variables. Given [;j; and w;; values, it is possible to obtain improved
bounds by a logical test. It consists of a sequential update mechanism which employs the
maximum slack values defined on the bounded MTP constraints given by Equation 2.3 —
2.5 and 8.23 to tighten /;;; and w;;;, values. Logical tests are first developed by (Sherali and
Tungbilek, 1992) for the CMWP. Here, we implement a similar approach for the MCMWP.

The constraints given by Equation 2.3 — 2.5 can be rewritten as follows:

J J

Zwijk > si and Zwijk <sw, t=1....L;k=1. K, (8.62)
j=1 j=1

I I

Zwijk > qjr and Zwijk <dqr, J=1....5;k=1... K, (8.63)
=1 =1

K

> wip Swy, i=1,..,Lj=1,...,J (8.64)
k=1

The maximum slack values of these constraints are
J J
SLik:Sik_Zlijk and SUik:ZUzjk—Sik izl,...,];kzl,...,K, (865)
j=1 j=1
I I
QijIij_Zlijk and QUjk:Zuijk—qjk jzl,...,J;kzl,...,K, (866)
i=1 i=1
K
ULj=u;—» L i=1,....Lj=1...J (8.67)
k=1

In the next proposition we suggest using these maximum slack values to calculate new

new

lower and upper bounds /75" and u]

o on the allocation variables, respectively. These bounds

are updated when one or more bounds are changed.

Proposition 8.1. The following set of lower and upper bounds are valid implications of

Equation 8.65 — 8.07.

L = max{lijp, wijr, — SUp, i — QUjr },
u;}ekw = min{uijk, SLZk + lijkn QL]k + lijka ULZJ + lijk}

i=1,...Lj=1,... Jk=1,... K (8.68)
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Moreover, at any stage of a continuous sequential updating process, the order of com-

or urg’

new
l; ijk

puting L for a particular variable w;j, does not change the outcome.

Proof. 175" > liji holds trivially. Additionally, for commodity £, if all facilities except facility

i send flows to customer j at their upper bounds, then facility ¢ should send an amount
I I I

of at least gk — D iy yitijk = Wik = Dyp—yUirgk T Qjk = Uigk — (Zi’:lui'jk - %‘k) =

uijr, — QUjx. Similarly, for commodity k, if a facility ¢ sends flows to all customers other than

customer j at its upper bound, then it should ship all its remaining capacity which is at

J J J
least s;;, — Zj/zl’jlijuij’k = Ujjk — Zj/zluzj’k + Sik = Uik — (erzluij’k - Sik) = Uijk — SUi.

new

Now consider the upper bounds, obviously w5’ < wu;j holds. Given a commodity

k, if all facilities except facility ¢ send flows at their lower bounds to meet the demand
of customer j, then facility ¢ can not ship an amount more than g;;, — Zf’:l,i’ #li/jk =
(qjk — Z,{/:lli/jk> + lijr = QLjk + lijr to customer j. Furthermore, for a commodity k, if a
facility ¢ sends flows at its lower bounds to all customers other than customer j, then it can
not ship an amount more than s;, — Z}]/:Ljf;sjlij’k = (sik — Z;f,:llij/k) + liji = SLig + Lijk
to customer j. In addition, if a facility ¢ sends flows to customer j at its lower bounds for

all commodities other than commodity k, then it can not ship commodity £ with an amount

more than u;; — Zﬁzk,ﬁk,#lw = (uij - Zgzlli‘jk/) + lijr = UL;j + 11, to customer j.

Note that Equation 8.68 can be replaced with the following equations:

J I
new __
s =max{lije, S — D5y Witk Qik = Dimy iz Wik s

new __ . J I K
up” = min{uge, Sic — D 5g jilipns Gk — Dimypgilivgis Wi — D p—y plije }

v=1,...I;7=1,...,.J;k=1,.. K.

(8.69)
The value of w;;, does not affect l;ﬁw and the value of [;;; does not affect up”. Hence,
the order of updating either [ or w3 first does not change the outcome. U

A change in the l;;;, or u;j, values should affect the corresponding maximum slack val-

ues given by Equation 8.65 — 8.67 because all resources (i.e., supply, demand or flow capacity

new

quantities) are commonly shared by all allocation variables. Therefore, new bounds i and

new

upg of all neighboring allocation variables should be updated with the latest bounds accord-
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ing to Equation 8.68. For that purpose, we keep a list of allocation variables whose bounds
or maximum slack values have changed at some previous step. The update mechanism is
repeated until the list is empty and all bounds become stable. During the sequential update
mechanism, when we encounter with a negative maximum slack value for any constraint, this
implies that the current partitioning of the allocation space is infeasible thereafter and thus
the current node of the BB tree is pruned. Finally, the logical test is applied on each sub-
problem within the MABB algorithm either to obtain tighter bounds on allocation variables

or to detect infeasibility.

8.2.2.2. Strategies for Partitioning, Tree Search and Branching Variable Selection. The al-

location space associated with an active node of the MABB tree is partitioned into two
distinct subsets and hence, resulting in two new MABB subproblems. At each partitioning,
an allocation variable w;j; € WY is selected and the corresponding bounds are divided into

two subsets while the rest of the bounds remains the same as the current node.

The MABB algorithm performs a BFS strategy: the node with the smallest lower bound
value among all active nodes is selected as the node for partitioning. For each node t, we
keep record of the current objective value, the lower bound value and the feasible allocation
fore=1,..., ;5 =1,...,J
and k = 1,..., K associated with the MABB subproblem of node ¢t. W*) is obtained by

vector wt), ll(]tzc and ugi values such that lfﬂz < mﬁj}c < u%
solving bounded MTP given by Equation 2.3 — 2.5 and 8.23 after fixing the facility locations
to the lower bounding subproblem location vector. All these records are also used within
multi-commodity branching variable selection strategies (MBrSs), bounding procedures and

pruning of the BB tree nodes.

Once a node is selected for further exploration we need to choose a particular allocation
variable w;j;;. Clearly, the sequence of variables on which we branch greatly affects the
performance of the MABB algorithm. Therefore, this choice should be done carefully. For
that purpose, we have implemented three different MBrSs associated with a partitioning
scheme. MBrS1 and MBrS2 are suggested by inspiring from BrSs proposed by (Sherali
et al., 2002) used for the CMWP as presented. MBrS3 is a tailor made partitioning scheme
for the MCMWP. In the following we present these MBrSs.
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MBrS1:
(¢, ', k') = argmax {c;jp(wijr, — lijr)} (8.70)
(4,3,k)EWF

The bounds for the two new subproblems on the selected branching variable wj/ i is

partitioned as [l i, | (lijrw + wirjir)/2]] and [[(lyjier + wirjrr) /2], wirjigr], respectively.

MBrS2:
(i, 5", k) = arg max { (uigr — Lijn) min{Wije — lije, wijn — Wijn}} (8.71)

MBrS3:
(i', ', k") = argmax < cij(uije — lijr) max ming SLi, SV}, (8.72)

(4,5,k)eWr min{Dij, DUjk}, ULU

For the MBrS2 and MBrS3 we partition the flow (¢/, j/, k") into two as follows: [/, Wirjii|
and [Wy e + 1, wyjpe]. Note that for Wy = wyyp, the partitioning can not be done as
suggested for feasibility. Moreover, when Wy, is close to or equal to their boundaries ;s
or Wiy, it is not of much use to partition the intervals as described. (Sherali et al., 2002)
emphasize this difficulty for the CMWP as well. In the context of the CMWP, they propose
to switch from one BrS to another. In the MCMWP case we follow a similar approach.
They apply a test to check whether such a closeness occurs. In case the test is satisfied, they
switch from using Equation 8.17 to Equation 8.70 for the CMWP when the commodity index
k is dropped from Equation 8.70. Namely, they apply a hybrid approach of backtracking to
partition the interval homogeneously as in the MBrS1. We also use a similar approach and

test whether the inequality

min{wi'j/k/ — li’j/k/7ui'j’k' — wi’j/k'} Z 0-1(ui/j'k/ — li’j/k’) (873)

holds. Here 0.1 is a parameter value recommended by (Sherali et al., 2002). Whenever
Equation 8.73 is satisfied we switch from either MBrS2 or MBrS3 to MBrS1. In order to
guarantee the feasibility we further impose the condition wy g — Wy > 1. When we

consider strategies MBrS1, MBrS2 and MBrS3, ties are broken arbitrarily. Whenever a
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variable is selected all the remaining bounds l;;, and w;, fore =1,..., ;5 =1,..., J;k =

1,...,K and (4,4, k) # (¢, j', k) are inherited from the parent node.

The ABB algorithm assumes that right hand-side values of constraints given by Equa-
tion 2.3 — 2.6, namely supply, demand and flow capacity quantities are all integers. Thus,
the flow quantities are integer for all extreme points of the MTP polyhedron. The MBrSs
(MBrS1, MBrS2 and MBrS3) take advantage of this assumption and partition the allocation
space over integer flows. Otherwise, when the right hand-side values of constraints given
by Equation 2.3 — 2.6 are not necessarily integer, the bounds on allocation variables may
be fractional which may lead to a huge BB tree. As a result, the performance of the ABB

algorithm may significantly reduce without the integrality of flows assumption.

8.2.2.3. Optimality Check. For each MABB subproblem, we compute lower and upper

bound values Z; g and Zy g, respectively. To avoid excessive computational effort, whenever
the fathoming criterion Z;5 > (1 — €) 225! holds for a node ¢, it is pruned from the BB tree.

We set € = 0.001 in our calculations.
8.2.3. Summary of the Allocation Space Based Branch-and-Bound Algorithm

At this point we have all ingredients of the MABB algorithm at hand. Its outline can

be formally given as in Figure 8.2.

The MABB algorithm is illustrated with a numerical example in Figure 8.3. We con-
sider an instance named as “mc_2_4_2” which implies that the instance has two facilities to
serve four customer in order to meet their demand on two types of commodities. The data
consisting of the transportation costs, customer coordinates and the right hand sides of the
constraints of “mc_2.4_2" is given as “transportation costs: ci11 = 1, c112 = 9, ¢101 = 3,
Cl22 = 9, ¢131 = 2, c132 = 8, c1a1 = 4, c1a2 = 6, 11 = 3, 212 = 4, 221 = 0, Ca22 = 6, Ca31 = 1,
Cozo = 6, Cog1 = 8, Cogn = 3; customer coordinates: a; = (0,1)7, ay = (0,0)T, ag = (0,2)7,
ay = (4, IO)T; facility capacities: s;1 = 17, s10 = 22, 91 = 17, s99 = 21; customer demands:
qui =95, 12 =3, @21 = 18, qop = 12, q31 = 6, q32 = 17, qa1 = 5, qu2 = 11; bundle restrictions:
uyp = 0, uie = 39, uiz = 39, uyy = 39, uoy = 38, use = 38, usg = 38, ugy = 38”. Figure
8.3 presents several consecutive steps of the MABB algorithm on the instance “mc_2.4 2”
with Euclidean distance. The nodes of the BB tree are denoted by circles associated with

a node number. On the branches connected to the nodes, the selected allocation variable
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1. (Initialization): Set W¥ «— @, WF «— {(i,j, k) :i=1,...,;j=1,...,J;
=1,...,K}. Set ZZ(]Q,)C =0 and uﬁ?) = min{s;x, ¢, wi;  fori =1,...,1;
g=1...,J;k=1,..., K, apply the logical test and bounding procedures.
Construct the root node t° with lower bound Zg;), upper bound Z(Ut;;).
Update 7 «— 7 U t°.

2. Select an active node t € 7 such that t = arg g}lelél{Zg%} and Z]% < (1—e)zks
is satisfied. if there is no such element in 7, then STOP: the incumbent
solution is within 100e% of the optimum. else select a branching variable
wy j i and partition the allocation space into two subspaces accordingly using
one of MBrSs (i.e., MBrS1, MBrS2 or MBrS3). Set Z¥5t = Zg%.

3. For subsets n' = 1,2, perform the logical test as described. Compute a Z; 5 and
Zyp with bounding procedures. Update the incumbent solution when
necessary, i.e., 205 = min{ 2, Zug}. if Zrp < (1 — €)Z{%! construct active

node "', then update 7 «— 7 Ut". Go to Step 2.

Figure 8.2. The MABB algorithm for the MCMWP.

and its current interval is shown. A node which is underlined indicates that it is fathomed.
Each node is associated with a lower and upper bound shown at their (left or right) bottom
and up sides. For example Z{ 5 = 631.9 and Z}5 = 585 are the upper bound value and
lower bound value associated with node 4, respectively. We employ the branching variable
selection strategy MBrS1 given by Equation 8.70 in this example. As the lower bounding
procedure, RMDAP3 with /,.-norm is used together with Zy;s45 given by Equation 8.61.
Upper bounds are calculated by the MCALA heuristic. At the root node an initial upper
bound is obtained as explained in Section 8.2.1.3 and the lower bound is set to zero. The allo-
cation variable w3 has ¢132(u132 — l132) = 136 which is maximum among all other allocation
variables and it is selected for branching with respect to MBrS1. Hence, its solution space
is partitioned into two intervals such that 0 < w3z < 8 and 9 < wy35 < 17 resulting in node
1 and node 2, respectively. After the bounding procedures are applied for each sub-node,
the incumbent solution value Z¥s! is updated as Z2%5 = 631.9 which is the optimal value
for the instance “mc_2.4 2”. Node 1 is fathomed since its lower bound exceeds Z¥%! and the
partitioning continues with node 2. Notice that further branching is done on node 4 even if
both node 3 and node 4 are active since node 4 has the smallest lower bound value among

all active nodes. This is also the reason that the MABB algorithm progresses by exploring
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node 8 rather than node 3. The MABB algorithm will also explore node 3 once its lower
bound becomes the smallest one in the rest of the BB tree. Note that we employ a logical
test to update the current bounds on the allocation variables. This may result in different
lower and upper bound values on them. As an example, after the branching at node 5 the
allocation variable w35 is again selected. However, its lower bound, i.e., l132, has increased
from 9 to 12 while going down from node 2 to node 7. This is due to the update mechanism

of the logical test used after the branching steps.
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9. LOCATION SPACE BASED BRANCH-AND-BOUND
METHODS

(Hansen et al., 1981) devise a location space based BB algorithm named as “Big Square
Small Square” (BSSS) for the Obnoxious Facility Problem (OFP). The BSSS technique par-
titions the plane into smaller squares in which a facility is restricted to be placed. For each
square a lower and an upper bound is calculated. Whenever a lower bound value for a square
exceeds the incumbent solution value then, it is discarded from further consideration. Oth-
erwise, it is partitioned into four subsquares and the BB search process continues. Actually,
the BSSS uses the center point of squares to calculate upper bounds and discards a square
if its center is outside the convex hull of customers. (Plastria, 1992) explains that the BSSS
technique may fail to find the optimal (or close to optimal) solution in such a case and an
upper bound should always be calculated for each square. Hence, the author modifies the
BSSS technique to resolve such a case of failure. Unfortunately, the BSSS technique requires
an additional control of a square to lie within the convex hull of customers. (Drezner and
Suzuki, 2004) employ triangles instead of squares and apply a triangulation method as a
preprocessing step. This approach, which is called as “Big Triangle Small Triangle” (BTST)
technique, partitions a triangle into four subtriangles by connecting the midpoints of its
three sides. Since the triangulation phase eliminates all regions outside the convex hull of
customers, the BTST technique does not require an additional check whether a region to be
within the convex hull of customers or not. The OFP and Weber problem with attraction
and repulsion (WAR) is solved by the BTST technique (Drezner and Suzuki, 2004). (Drezner
et al., 2007) present a generic approach to solve many types of location problems with the
BTST technique. Among them, the Gradual Covering Problem (GCP) and Location with
Acceleration-deceleration Distance Problems (LADP) are handled with the BTST technique
in the studies by (Drezner et al., 2004) and (Drezner et al., 2009), respectively.

The basic idea of both BSSS and BTST techniques is to partition the plane into
polytopes (i.e., squares, triangles and other types of polytopes) in which a single facility can
be placed. To the best of our knowledge, neither the BSSS nor the BTST techniques are
used for the Multi-facility LAPs (MLAPs). Several difficulties can be listed in generalizing
the BSSS or BTST techniques for the MLAPs. First of all, both of the BSSS and BTST
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techniques assume that the allocation values are fixed and known a priori which is not the
case for the MLAPs including the CMWP and MCMWP. Furthermore, both techniques
are designed to use concave lower bounding functions whose minimums occur at one of
the extreme points of the bounded polyhedral regions namely polytopes: squares for the
BSSS, triangles for the BTST. These functions may not be concave when in addition to
the facility locations, the allocation quantities are also unknown. Therefore, one needs new
lower bounding methods for MLAPs. Another difficulty of the BSSS technique is that during
the BB tree search some regions can not be directly discarded from consideration for the
MLAPs. For instance, assume that a region R of facility i* is divided into two subregions
R' and R?. This results in two new facility-region combinations. Now, other facilities
i # i* can also be located in either R' or R? since R is divided. Hence, there are several
facility-region combinations such that other facilities can be restricted to these regions. In
some of these facility-region combinations, the lower bound values calculated may or may
not exceed the incumbent solution value. As a result, when region R is directly eliminated
considering only facility ¢*, then we can get rid of some feasible part of the search space.
A triangulation method can be used as in the BTST technique developed for single facility
location problems, as well. This generates many initial regions (i.e., triangles) that a facility
can be located. Unfortunately, in this case, one should generate all possible facility-region
(triangle) combinations and calculate lower and upper bounds as part of the LBB algorithm.
It is clear that the number of facility-region (triangle) combinations becomes intractable
even for small numbers of facilities and regions (triangles). Consequently, we have focused

on the location space based BB (LBB) algorithm without such a preprocessing mechanism.

All these difficulties are taken into account to define the LBB algorithm and a contin-
uous binary partitioning of the location space is preferred. For that purpose, we define the

following bounds on location variables x;
aﬂ<:ci1<a_i1, a12<xi2<a_i2 ’L:l,,I (91)

Initially these bounds can be defined as a;, = ; :HlllllJ {a;n} and @, = mex {a;,} for
both axesn =1,2 and ¢« = 1,...,I. This implies that the location space is initially selected
as the smallest rectangle covering the customer locations for each facility 7. Observe that it
is also possible to obtain other types of bounded polyhedral regions than rectangles given

by Equation 9.1 by imposing restrictions of type Equation 8.37. At each step of the LBB
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algorithm an active node # € 7 is selected for exploration. Let C* = {(x1, R}), ..., (x;, R})}
denote facility-region (facility-rectangle) combinations at node ¢. Then, a region Rg is se-
lected and partitioned into two complementing subregions (sub-rectangles) RY, and RY,.
Complementing subregions (sub-rectangles) mean that Rl U R, = R! holds after partition-
ing R! and the interiors of RY, and RY, have no intersection (i.e., int(R%) N int(RL) = ().
This results in two subproblems where possible location of facility ¢ is further restricted. All
bounds on location variables for the remaining facilities are directly inherited from Cf. A
lower and upper bound is calculated for each subproblem, and the ones with a lower bound
smaller than the incumbent solution value are added to the BB tree 7. The incumbent so-

lution value is updated when a better upper bound is obtained and the algorithm continues

until 7 is empty.

A similar approach is also used by (Sherali et al., 1994) for the RCMWP on a par-
tial location space which consists of the intersection points generated by the fundamental
directions of ¢;-norm on customer locations. The authors define lower and upper bounds on
location variables in both x and y-axes. However, the partitioning is applied on one axis at a
time considering the customer locations on the selected axis. As the rectilinear distances are
used, there is no need to take into account intermediate points lying between two customers
on one axis. Our approach considers both x and y-axes together and can be extended to
different polytopes other than rectangles. Moreover, the LBB algorithm can also be used to

solve problems having /,-norm with 1 <r < oo.

In this chapter® we suggest Single-commodity LBB (SLBB) and Multi-commodity LBB
(MLBB) algorithms for CMWP and MCMWP, respectively. The next section presents lower
bounding procedures for both CMWP and MCMWP. Section 2 gives upper bounding pro-
cedures for them. Other features of the LBB algorithms (i.e., SLBB and MLBB algorithms)
which include partitioning, tree search and branching strategies together with the optimality
check is provided in Section 3. Section 4 establishes a formal outline of the LBB algorithm.
Section 5 explains an alternative LBB algorithm in which a complete enumeration strategy
is followed. In the last section, we have applied a Beam Search (BS) approach using the

LBB algorithm and provide a heuristic procedure that can be successfully used for MLAPs.

5The conference proceeding (Akyiiz et al., 2011) is partly based on this chapter.
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9.1. Lower Bounding Procedures

We first describe two specially tailored lower bounding procedures: they are LP based
and block norm based approaches. For each lower bounding procedure, we describe how
they can be used within the SLBB and MLBB algorithms developed for the CMWP and
MCMWP, respectively.

9.1.1. Linear Programming Based Lower Bounding Procedures

The lower bounds are needed to eliminate unnecessary nodes before adding them to 7
and to check how close is the incumbent solution value of the LBB algorithm to optimality.
Every time we partition a region R, the LBB subproblems of the form given by Equation
2.2 — 2.6 and 9.1 are constructed. In order to find lower bounds for the LBB subproblems,
we benefit from the distance function properties. Given facility region combinations C! =
{(x1, RY),. .., (x7, RY)}, we define distances dfj which stand for the shortest distance between

cach facility i assigned to a region R! and customer j. Notice that di; = d(af-j,

a;) < d(x;, a;)
holds where agj is the closest point of Rf to customer j. In the LBB algorithm the regions are
selected as rectangles and dgj can also be easily calculated for various types of regions (e.g.,
triangles, squares, pentagons, etc.). Lower bounding distances dfj are previously proposed
in the study by (Hansen et al., 1985). For example, when the rectangles are considered in
the LBB algorithm there are three cases that the closest point afj can be situated on Rf.
These cases are illustrated with Figure 9.1. In the first case, when customer j lies within the
rectangle R! then agj = a; holds (see Figure 9.1a). In the second case, afj is located on one
of the borders of R! (see Figure 9.1b). In the third case (see Figure 9.1c), when customer
j is beyond the area constructed by drawing vertical and horizontal lines on the extreme
points of the rectangle R containing it, agj is situated at one of the extreme points of R!
(ie., (@i, aiz), (@, Giz), (@i, Giz) and (@1, @:2)). In the first case dffj equals to zero. In the
second case, dfj is equal to either vertical or horizontal distance from the selected side of Rg.

In the third case dfj equals to the ¢, distance between the selected extreme point of Rf and
customer j.

Given the lower bounding distances dfj, we solve the usual TP (MTP) within the SLBB
(MLBB) algorithm for the CMWP (MCMWP). Observe that dfj is constant and does not

depend on the location variable x; and df.j < d(x;,a;) holds for : = 1,...I;5 = 1,...,J.
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Figure 9.1. Three possible cases for the closest coint afj of a rectangle R!.

Clearly, afj € Rf implies that Equation 9.1 is already satisfied and thus, the solution of TP
(MTP) constitutes a lower bound for the SLBB and MLBB subproblems given by Equation
3.6 — 3.9 and 9.1, and Equation 2.2 — 2.6 and 9.1, respectively. We provide these lower

bounds as follows:

LPSLBB(E)3
I )
min Z75PP = {Zzwijcijdgj : Equation 3.7 — 3.9} (9.2)

i=1 j=1

for the CMWP and

LPyies®:

1 J K
min ZMFPE — {Zzzwijk@jkdg : Equation 2.3 — 2.6} (9.3)

i=1 j=1 k=1

for the MCMWP. Z?LBB and ZMEBB are the LP based lower bounds for SLBB and MLBB

algorithms.
9.1.2. Block Norm Based Lower Bounding Procedures
The block norm based lower bounding idea can be applied to the LBB algorithm as

well. Given a facility-region combination C*, when the block norms are used candidate

facility locations can be selected from a finite set of intersection points. That is to say,
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Figure 9.2. Candidate point sets within a rectangle R with ¢; and ¢ ,-norms.

when a facility is enforced to lie within a rectangle, the set of candidate facility locations are
restricted within that rectangle. When there is no region restrictions on facilities, the optimal
facility locations lie on the intersection points of the lines drawn on customer locations within
their convex hull along the extreme directions of the corresponding block norm. In case we
restrict facilities to lie within the rectangles, the extreme points of the rectangles also plays
a role to determine the intersection points. In this case, using the results by (Thisse et al.,
1984), the candidate locations are the intersection points of the fundamental rays drawn
on both the customer locations and extreme points of regions Rg for = 1,...,I which lie
either on their borders or within them. Figure 9.2 illustrates the intersection points to be
considered when ¢; and /,,-norms are used. The rectangle restricting a facility location is
denoted by R. Customers are indicated with squares and the intersection points are drawn as
filled circles. The fundamental rays are drawn on both customer locations and the extreme
points of the rectangle R. The resulting candidate points lie either on the intersection of the
borders of the rectangle R and a fundamental ray or on the intersection of two fundamental

rays.

A lower bounding MILP formulation similar to DAP and MDAP1 can be proposed to
find a block norm based lower bound for LBB subproblems. For the sake of conciseness, we
do not explicitly state these MILP formulations. However, we should mention that in DAP
or MDAP1 all candidate points are commonly shared by all facilities. This is because there

are no restrictions on facility locations for them. For the LBB subproblems, each facility i is
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restricted within a rectangle Rf and thus each facility ¢ has its own candidate points within
Rf. As a consequence, we need an additional index to denote the candidate points of each
facility (i.e., g; = 1,...,G; with G; being the number of intersection points in R for facility
i). On large candidate facility location sets, it is possible to use similar LR schemes for
the LBB subproblems to obtain block norm based lower bounds. In the following, we state

modifications over DAP (MDAP1) for the CMWP (MCMWP) to find block norm based

lower bounds.

In the DAP formulation given by Equation 8.2 — 8.7 for the CMWP, we describe several
modifications to adapt it for the SLBB algorithm. As each facility has now its own set of
candidate points denoted by g;, vij4 is replaced with y;;,, which stands for the amount of
flow between facility ¢ located at one of its candidate points g; to customer j. Similarly, v;,
is replaced with v;g4, to denote whether facility ¢ is opened at one of its candidate points g; or
not. Z;j and u;; values are set as Ej = 0 and u;; = min{s;, ¢;} and hence the additional term
lAZ-jvig in Equation 8.2 is dropped from the formulation. Lastly, all g and G are replaced with
g; and G; in the DAP formulation given by Equation 8.2 — 8.7, respectively. Clearly, the
DAP formulation is exactly the same at the root nodes of both SABB and SLBB algorithms.
The rest of the notation is maintained as they are presented in DAP formulation (or RDAP)

to find the block norm based lower bound Z35EP for the SLBB algorithm.

In MDAP1 formulation given by Equation 5.1 — 5.7, we also propose several changes to
adapt it for the MLBB algorithm. As each facility has now its own set of candidate points
denoted by ¢;, yijrg is replaced with y;jie, to show the amount of flow between facility i
located at one of its candidate points g; to customer j of commodity k. v;, is replaced with
v;g, indicate whether facility ¢ is opened at one of its candidate points g; or not. Lastly, all
g and G are replaced with g; and G; in the MDAP1 formulation given by Equation 5.1 —
5.7. The rest of the notation is maintained as they are given in MDAP1 formulation (or
RMDAP1) to find the block norm based lower bound ZMEEE within the MLBB algorithm
for the MCMWP. Similar modifications can also be done with the MDAP2 formulation.

9.2. Upper Bounding Procedures

A node of the LBB tree can be prunned without further branching when the lower

bound of the current node is larger than the best known upper bound value for the problem.
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Therefore, it is important to find a good upper bound, Z; g, which is close to optimum,
in order to reduce the number of branchings made within the LBB algorithm. The upper
bounding procedure is similar to the one described for the SABB and MABB algorithm.
Once a lower bound is found for a LBB subproblem, a feasible allocation vector is at hand
for the CMWP (or MCMWP). Thus, given this allocation vector, solving the resulting WPs
to find the optimum facility locations yields a feasible solution for both the CMWP and
MCMWP. The solution can also be enhanced with a CALA (or MCALA) heuristic. We
also apply a CALA (MCALA) heuristic and update the incumbent objective value, Zg¢s!
throughout the run of the SLBB (MLBB) algorithm when Zyp < Z{%! holds.

9.3. Other Features of the Location Space Based Branch-and-Bound

Algorithms

9.3.1. Partitioning, Search and Branching Strategies

The location space associated with an active node of the LBB tree is partitioned into
two complement subsets which results in two new LBB subproblems. Observe that the
interior of both complement subsets is empty and the union of the complement subsets
is the initial location space before the partitioning. At each partitioning step a rectangle
R corresponding to facility 4 is selected and R! is divided into two complement rectangles
separated by a line. All other facility-rectangle pairs are inherited for new subproblems. A
rectangle can be partitioned in two ways: vertically and horizontally. For each subproblem,
we prefer to partition a rectangle on its longest sides. This implies that if the horizontal
(vertical) sides are longer than the vertical (horizontal) sides, then the rectangle is partitioned
by connecting the mid-points of two horizontal (vertical) sides. This helps to avoid the width
(length) of the rectangles to be too large (small) on their vertical (horizontal) sides. As a

result, the rectangles are uniformly partitioned on both of their vertical and horizontal sides.

The LBB algorithm performs a BFS strategy. We select an active node ¢ € T with
the smallest lower bound value for partitioning. At every active node, we keep track of
facility-rectangle combinations (i.e., C? and Rf fori=1,...,I), and, lower and upper bound
values calculated. Each rectangle is also coupled with its defining extreme points, total area

and parent rectangle.



113

The branching is applied over the rectangles and we try to make a balanced partitioning.
That is to say, we partition the rectangles such that none of the rectangles of node ¢ under
consideration has an area greater than twice of the area of the smallest rectangle. Given ¢
and its associated facility-region combination C?, the following strategy is used to select the

branching rectangle RL:

i* = argmax { Area of R! € Cf} (9.4)

i=1,..,T

Notice that the branching strategy given by Equation 9.4 ensures a homogeneous par-
titioning of rectangles. Without branching strategy given by Equation 9.4, it is possible to
divide a rectangle and its sub-rectangles of the same facility many times which may result

in a series of non-improving steps within the LBB algorithm.
9.3.2. Optimality Check

For each LBB subproblem, we calculate lower and upper bound values Z; 5 and Zyp,
respectively. Notice that we partition the location space continuously and this process may
not end without a suitable stopping condition. Hence we can say that a stopping condition
plays a crucial role on the completion of the LBB algorithm in a finite number of iterations.
For that purpose, we impose the condition Z;p > (1 — €) 2% to prune the nodes satisfying
it. We set ¢ = 0.001 in order to avoid excessive computational effort which also ensures
the finiteness of our LBB algorithm within 100e% of the optimal value. Clearly, there is a
trade-off between the closeness to optimality and the computational time spent by the LBB
algorithms. Furthermore, the number of rectangles is limited to 100000 within the LBB
algorithms. In practice, we observe these settings to be useful for the computational times

of the LBB algorithms.
9.4. Summary of the Location Space Based Branch-and-Bound Algorithm

Both of the SLBB and MLBB algorithms have more or less the same ingredients.
The only difference lies in the bounding procedures. The CMWP requires the solution
of a TP for LP based lower bounding, the solution of a DAP (or RDAP) for the block
norm based lower bounding and the solution of CALA for upper bounding. On the other
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hand, MCMWP requires the solution of MTP and MDAP1 with the suggested modifications
for lower bounding procedures and MCALA heuristic for upper bounding procedure. The
remaining features are common for both SLBB and MLBB algorithms. The formal outline
of the LBB algorithm is given in Figure 9.3. Note that it is generic and it can be used for
the implementation of both the SLBB and MLBB algorithms by paying attention to the

differences as mentioned.

We should point out that for the LBB algorithm we do not assume the integrality
of the right-hand sides of the CMWP and MCMWP constraints. Different than the ABB
algorithms, LBB algorithms can be directly used to solve the CMWP (or MCMWP) with
fractional variables. As a reminder, SABB and MABB algorithms should be slightly modified

when the right-hand sides of the constraint sets are not integral as discussed.

1. (Initialization): Initialize the regions RY « {x; : ai < za < @1, iz < Tio
< ap} fori=1,...,1. Construct facility-region combinations
CO — {(x1,RY), ..., (xr,RY)}, compute Z9, and Z},, values associated
with €. Create node 7 and set 7 « 7 U7 . Update 25" and Zbes!
values accordingly.

2. (Partitioning): Select an active node ¢ € 7 such that ¢ = arg Ifli%{ZfB}
and Z¢ 5 < (1 — €)Zb¢s!. if there is no such a node, then STOtPe’: Zbest is
within 100e% of the optimum value. else select i* as in Equation 9.4 and
divide RL. into two subsets as described. Set 2% = ZL , and T « T \ 7.

3. (Bounding): For each subset n’ = 1,2 compute a lower bound Z}; and an
upper bound Z{}IB by bounding procedures. Update Z°% if necessary, i.e.,
Zbest = min{ 28!, Z¢ 5}, When Z, < (1 — €)Zp¢ then, construct an

active node " and set 7 « T UT". Go to Step 2.

Figure 9.3. The LBB algorithm.

The LBB algorithm is illustrated with a numerical example in Figure 9.4. We again

consider the instance “mc_2 4 2”7 and Figure 9.4 presents several consecutive steps of the
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LBB algorithm on it. Each node of the BB tree, which is represented by a circle, is associated
with a number. On the branches connected to the nodes, the selected location variable and
the rectangle in which it is restricted, is shown. A line is drawn under a node in order to
indicate that it is fathomed. Each node is associated with a lower and upper bound shown
at their (left or right) bottom and up sides. For example, Z7 5 = 631.9 and Z3}; = 585 are
the upper and lower bound values associated with node 3, respectively. At each branching
the largest rectangle associated with a facility is selected according to Equation 9.4 and then
this rectangle is partitioned. Here, both the RMDAP1 with /,-norm and the LP based lower
bounding procedures are used together as the lower bounding procedure. Upper bounds are
calculated by running the MCALA heuristic. At the root node an initial upper bound is
obtained as explained in Section 8.2.1.3 and the lower bound is set to zero. Initial rectangle
RY is defined as RY = {(x1, xg)T 10 < <4,0 <y <10} and both facilities are restricted
in R°. R is partitioned into two complementary sub-rectangles R' and R? for the first
facility. This partitioning can also be done for the second facility but we arbitrarily select the
first facility. R and R? are defined respectively as R = {(z1,22)7 : 0 < 1 < 4,0 < 25 < 5}
and R? = {(z1,22)7 : 0 < 2y < 4,5 < x5 < 10}. Notice that the partitioning of R° is done
on its longer sides where the line combining their midpoints is drawn. This partitioning
results in more uniform rectangles than rectangles which are too narrow or too wide on one
of their sides. On the left branch, the first facility is restricted in R' such that x; € R' and
we reach node 1. On the right branch, we set x; € R2. For both node 1 and node 2, x5 still
belongs to R°. After applying the bounding procedures for each sub-node, the incumbent
solution value Zffs! is updated as Z{ = 631.9. Then, node 2 is fathomed and branching
continues with node 1. In node 1, the largest rectangle associated with a facility is selected.
This time, rectangle R° of the second facility is selected since the area of R° is greater than
the area of R!. Now, the second facility is restricted within both R' and R?, similar to the
previous branchings. For node 3, both the first and second facilities are in R!. Node 4 is
fathomed since its lower bound exceeds Z2%. At node 3, R! is further divided into two
complementary rectangles R3 and R? such that R? = {(xy,22)7 : 0 <2y < 4,0 < 29 < 2.5}
and R* = {(xy,22)T : 0 < 2y < 4,25 < my < 5}. The rest of the steps are the same as
in MABB algorithm and the LBB algorithm continues branching on node 7 since it has the

smallest lower bound among all active nodes in the BB tree.
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9.5. Location Space Based Branch-and-Bound Algorithm with Complete

Enumeration

The LBB algorithm selects an active node from the BB tree and partitions the rectangle
corresponding to this active node into two complementing rectangles for a facility. This
results in two new subproblems to be considered which will probably be added to the BB

tree. The partitioning of the selected rectangle is limited to a particular active node t.

On the other hand, the partitioning of a rectangle R into two sub-rectangles R' and
R? can be executed such that R is replaced with R' and R? in all active nodes. For that
purpose, all active nodes having a facility located within rectangle R is branched further.
This branching strategy may generate at most 2/ subproblems for a given active node . For
example, consider two facilities which is to be located in the plane and we are given an active
node 7 associated with a combination C* = {(x;, R), (x2, R)}. Here, both of the locations of
facilities x; and x, are restricted within rectangle R which will be partitioned into two com-
plementing sub-rectangles R! and R?. Then, by partitioning R, all possible combinations

associated with 7 are generated as C'' = {(x1, R"), (x2, R")}, C22, = {(x1, R"), (x2, R?)},

new new

cB., = {(x1,R?), (x2, R")} and C%, = {(x1, R?), (x2, R?)}. The LBB subproblems corre-
sponding to new combinations C!! . C2 = CB ~and C*, are evaluated and added to the

BB tree when they are eligible. Moreover, all remaining active nodes with a combination
for which a facility is restricted in R should also be explored similarly by replacing R with
R!' and R?. Thus, R can be eliminated from the rectangle list since there does not exist
an active node containing R anymore in the BB tree. The number of new facility-region
combinations doubles for each additional facility which is also assigned to region R for a
given combination of C' of an active node f € 7. In short, 27 many new facility-region
combinations should be constructed with I; = Hz "R(CH=R,i=1,..., [H where [; and
R(C!) denote the number of facilities in the facility-region combination C* whose region is R
and the region of the combination C* assigned to facility 4, respectively. The enumeration
procedure can produce 27 subproblems for an active node ¢ and all remaining active nodes
are subject to this procedure. We call this approach as the LBB with complete enumeration
(LBBCE) algorithm which is named as SLBBCE algorithm for the CMWP and MLBBCE
algorithm for the MCMWP, respectively. In addition to the LBB algorithm, the perfor-
mance of the LBBCE algorithm is also tested. We impose an additional stopping condition
for LBBCE which limits the size of the BB tree. For that purpose, we allow up to 500000
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active nodes in the BB tree considering the number of subproblems which will be produced

by active nodes.

9.6. A Beam Search Heuristic

BS is a BB based heuristic search method which dates back to the study by (Lowerre,
1976) on the speech recognition. BS performs a “breadth-first search” (BrFS) strategy on a
truncated BB tree. In a complete BB tree search, branching is done such that all possible
subproblems are produced and evaluated. This requires a bounding step to calculate lower
and upper bounds for each resulting subproblem. On the other hand, BS considers only
the most promising W of them which is also called as “beam width” and branches on them.
Actually, the beam consists of the active nodes which will be considered for further branching
in BS. An active node, which is one of the W nodes in the beam, is further partitioned such
that all possible subproblems are generated and the most promising subproblem replaces the
active node before the branching. This procedure is repeated for each of the W active nodes
which are in the beam. To short, BS applies a BrFS strategy in parallel for all W active nodes
in the beam. However, the number of subproblems may be too large to perform a bounding
procedure for each of them when the branching width is large, that is, when the number of
possible subproblems after a branching step is large. (Ow and Morton, 1988, 1989) modify
the BS by adding a filtering step where a cheap and fast evaluation procedure reduces the
number of subproblems for which the expensive bounding procedure, is performed. This
algorithm is called as Filtered BS (FBS). Clearly, neither BS or FBS does not guarantee an
optimal solution for a problem. Indeed, it is probable that one misses the optimal solution
at an early pruning step of the BB tree with either BS or FBS. Once a node is pruned, there
is no way to backtrack on it for further exploration. (Croce et al., 2004) introduce a recovery
step and the Recovering BS (RBS) to overcome this difficulty. The recovery step in RBS
looks for an improved feasible solution by interchanging current assignments of variables
(i.e., exchanging current values of two zero-one variables) at a given subproblem. Since only
the most promising subproblem is selected to replace an active node in the beam, this gives
a chance to recover the wrong decision of pruning the branch which leads to an optimal

solution.

RBS, which is used for the p-median problem in (Croce et al., 2004), is a heuristic

example for a DLAP. For all we know, a BS approach considering a continuous MLAP does
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not exist. We develop a BS heuristic with our LBB algorithm which performs a continuous
partitioning on the location space. The BS is originally designed for the discrete problems
such as scheduling, p-median and many other COPs as well. The LBB algorithm performs a
continuous partitioning where the depth of the BB tree is not known a priori. Actually, the
finiteness of the LBB algorithm is only guaranteed with the imposed stopping conditions.
The LBB algorithm performs a BFS strategy and here we adapt it to produce heuristic
solutions using the BS heuristic. At each step of the LBB algorithm an active node having
the least lower bound value is selected for further branching and the bounding procedure is

performed on the resulting subproblems. The viable nodes are added to the BB search tree.

In our BS approach, only W nodes are allowed to be active in the BB tree. (Croce
et al., 2004) state that there is no cheap and fast evaluation procedure (filtering) for the
p-median procedure. Hence, we do not expect to find an efficient evaluation procedure for
both CMWP and MCMWP. As a result, no filtering is applied to perform a preprocessing
step in the BS heuristic. Promising nodes for further branching are selected according to
an evaluation function. This is a cost based function of the subproblem associated with the
selected active node t. For that purpose, we employ the evaluation function suggested by
(Croce et al., 2004) which uses a convex combination of the lower and upper bound values,
namely Z¢, and Z%, associated with f, respectively. The evaluation function is defined
as Z! = (1 — U)Zty + VZE, with 0 < U < 1. The performance of the BS heuristic is
significantly affected by the evaluation function used (i.e., Z\E) At first glance, one may
think that the smallest lower bounding (when ¥ = 0) solutions are the ones that lead us to
an optimal solution. In practice, the least lower bounding nodes may not always produce

the best feasible solutions.

We use a BFS strategy and the most promising node is selected for further branching.
Namely the node with the smallest of 7' such that € T where /7| = W is chosen. Instead
of branching over all W active nodes in the beam at each step as in a BrFS strategy, we
perform a single branching over the node having the smallest Z* value in the beam. After
this single branching step, the most promising (the ones having W least Zt values) W nodes
of the beam are kept for further exploration. It is also possible to pursue a complete BrFS
strategy and branch over W nodes in the beam as in the classical BS. However, we have
observed that a BF'S strategy yields better outcomes than the BrFS strategy does. Indeed,
both BFS and BrF'S strategies are the same when W = 1. To sum up, instead of branching
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over all W active nodes at each step, we perform a single branching and keep the most
promising W (W nodes having least Zt values) nodes for further exploration in the BB tree.
This setting helps us to avoid from expensive bounding procedures, in particular the lower

bounding procedures.



121

10. COMPUTATIONAL RESULTS

The performance of the suggested methods are tested on a set of randomly gener-
ated test instances. We first describe our test environment on which our experiments are

performed. Then, we summarize the results obtained with the proposed solution procedures.
10.1. Test Environment

Our test bed contains two groups of test instances: instances for the CMWP and in-
stances for the MCMWP. The test library for the CMWP, consists of both existing instances
for some of which optimal solutions are known and randomly generated new instances. Our
test library for the MCMWP contains of only randomly generated instances since there is

no available test problems in the literature.

We report the percent relative deviations of the objective value (Z,;) computed by one
of our methods developed and we give a reference value (Zg) in order to expose the accuracy

of the methods. They are calculated according to the formula

0 x —|ZM _ZR|.

10
Zr

(10.1)

In the ideal situation Zp is selected as the exact optimum value Z* while this is not
always possible since the exact solution of every test problem is not feasible. Hence, we pursue
a pessimistic approach and replace Zi with a benchmark lower bound when assessing the
accuracy of an upper bound and with a benchmark upper bound when assessing the accuracy
of a lower bound. In fact, the calculated relative deviations are upper bounds on the true
ones, which are definitely smaller. When we report gaps between the final lower bound
Zzgml and the final upper bound Z{;Zgal produced by one of our suggested methods we use

the formula

inal inal
(25" = 2{5™)
ZR

100 x , (10.2)
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where Zpi is the reference value used to make a fair comparison among the solution ap-
proaches. In case the optimal value is not known, we replace Zr with a benchmark value.
We should make it clear that in our computational experiments the Euclidean distance func-
tion (i.e., r = 2) is used for calculations. Otherwise, we specify which distance function is
used with the CMWP or MCMWP (i.e., RMCMWP stands for Rectilinear MCMWP). We
present the details of the generation of the CMWP and MCMWP test beds used for our

computational experiments in the following two subsections.

10.1.1. Test Bed for the Capacitated Multi-facility Weber Problem

We performed computational experiments on two classes of test instances for the
CMWP. The first class consists of 18 test instances from the literature with their given
best known values (Al-Loughani, 1997; Sherali et al., 2002). The second class includes 94

randomly generated test instances with unknown optimal values (Boyaci, 2009).

The instances in the first class are numbered from 1 to 12 and from 15 to 20 as in the
original paper (Sherali et al., 2002). We append a prefix “P” in front of their original instance
number. For these instances, the number of facilities range from 2 to 10 and the number of
customers range from 2 to 30. We consider the total number of allocation variables, namely
I x J, as the main criterion for the classification of instances. In other words, the instances
satisfying inequalities I x J < 50, 50 < [ x J <80 and I x J > 80 are classified as “small”,

“medium” and “large” instances for the CMWP, respectively.

The instances in the second class are further grouped into two subgroups as homoge-
neous (having unit transportation costs i.e., ¢;; = 1) and non-unit (having non-unit trans-
portation costs ¢;;) instances. Randomly generated test instances have a similar structure
as the existing ones (i.e., the test instances from the literature). The number of facilities are
selected in the range from 4 to 50 and the number of customers are selected in the range from
8 to 500. The prefixes “hg” and “ht” are used to represent homogeneous and non-unit test
instances, respectively. The instance names are followed by the number of facilities and the
number of customers for each instance. For example, “hg 4 _24” implies that the instance is a
unit transportation cost test instance which has 4 facilities and 24 customers. The randomly
generated instances in the second class are mostly larger than the ones in the first class.

In 90 out of 94 instances of the second class, there are more than 80 allocation variables.
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This implies that most of them are large. On the other hand, for the first class of instances,
only 5 out of 18 are large. The instances in the second class are generated in a similar way
to the generation of instances in the first class. For the instances in the second class, the
customer locations (a;; aj2),j =1,...,J are uniformly selected (for both z and y-axis) from
the interval [0,25] for instances with I = 4. These values are selected from the interval
[0,100] for instances with I > 4. Unit transportation costs are also uniformly selected from
the interval [0, 25] (as in the existing instances) for the non-unit instances while they are set
c;j = 1 for the homogenous ones. All data entries, other than the cost coefficients c;;, are
the same for these two subgroups of instances which have identical sizes. Customer demands
are uniformly selected within the interval [1,50] and facility capacities are split accordingly

without harming the balanced structure of the transportation constraints.

Note that the instances in the first class are limited in number. Furthermore, we
can say these instances are not large and they are all non-unit instances with non-unit
transportation costs ¢;;. Therefore, the instances in the second class are generated keeping
in mind these facts. Indeed, new instances are larger than the existing ones and the second
class includes also homogenous instances with unit costs. We limit our experiments to BB
methods (ABB and LBB algorithms including the BS heuristic) for the CMWP instances.
As a final remark, the reference values Zp are taken as the best known solutions by (Sherali
et al., 2002) for the first class of CMWP instances. Similarly, we employ benchmark upper
bounds as reference values for the second class of CMWP instances to be consistent with the
first class CMWP instance results. The calculation of these benchmark upper bounds are
selected as the best solutions among several solution approaches. These solution approaches
are the single-commodity variants of CL-MDA and CL-RMDA heuristics, SABB, SLBB and
SLBBCE algorithms and BS heuristic results.

10.1.2. Test Bed for the Multi-commodity Capacitated Multi-facility Weber
Problem

While generating MCMWP test instances we try to use the available data from the
CMWP test instances (Al-Loughani, 1997; Sherali et al., 2002) as much as we can, in order to
replicate existing experimental structure. Hence, we have adapted customer coordinates, unit
transportation costs, customer demands and facility capacities from the available CMWP

instances. Upper bounds on the total amount of multi-commodities shipped from facilities to
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customers are randomly generated by GNETGEN 7 which is a modification of the well-known
NETGEN generator by (Klingman et al., 1974). GNETGEN is a test instance generator
originally designed for the Generalized Multi-commodity Network Flow Problem (GMNEP).
Notice that the MCMWP can be considered as a special case of the GMNFP when the
number of source nodes is set to the number of facilities I, the number of sink nodes is set to
the number of customers J and the number of transhipment nodes is set to 0 when facility

locations are known.

We first run GNETGEN K times to generate K single commodity Transportation

Problem (TP) instances. Then, we sum up upper bounds on the flow quantities shipped

from facilities to customers to obtain bundle restrictions u;; fort =1,...,Tand j =1,...,J.
K
Namely, we set u;; = kzlu;]k fori=1,...,1,j=1,...,J where u;, is the upper bound on

the flow quantity shipp_ed from facility ¢ to customer 7 in each of the K TP instances. Note
that this setting of u;; does not harm the feasibility of the MCMWP instance since each one
of the K single commodity TP instance is guaranteed to be feasible by GNETGEN.

We generated 60 MCMWP test problems of various sizes according to the described
procedure. The number of facilities I is selected between 2 and 10 and the number of
customers J is selected between 2 and 30 by taking into account the sizes of the available
CMWP test instances. The number of commodities K is chosen to be between 2 and 5. The
numbers in an instance name stand for the size of the instance where the number of facilities
I, the number of customers J and the number of commodities K are added after the prefix
“mc”, which stands for “multi-commodity”. A similar approach is followed to classify the
size of the MCMWP instances. Instances with I x J x K <120, 120 < I x J x K < 250 and
I xJx K > 250 are qualified as “small”, “medium” and “large” instances for the MCMWP,

respectively. We call these 60 small to large instances as the first class of the test instances

for the MCMWP.

In addition, we generate 18 very large instances which have 10 to 45 facilities and 100
to 150 customers. Clearly, any exact method will fail to solve these instances, in reasonable
CPU times and thus, we only performed our heuristic approaches on these instances. These
18 very large instances are called as the second class of the test instances for the MCMWP.

Benchmark lower and upper bounds for the MCMWP instances used as reference values Zg

"downloadable from http://netlib.sandia.gov/Ip/ generators/index.html
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in this work are given in Appendix A together with a summary of outcomes of each one of

the proposed methods.
10.1.3. Hardware and Software Environment

The experiments are performed on a Dell Server PE2900 with two 3.16 GHz Quad Core
Processors and 32 GB RAM operating within Microsoft Windows Server 2003 environment
in C'++. Cplex 11.0 with default options is used as a subroutine to solve the resulting LPs

and MILPs which are part of suggested procedures implemented so far (CPLEX, 2007).
10.2. Computational Experiments

Computational experiments are performed on ALA heuristics, DA heuristics, MS al-
gorithm, CI approach and BB methods (ABB and LBB algorithms and the BS heuristic).

We separately present our results for each of the methods with the given order.
10.2.1. Alternate Location-Allocation Heuristics

Alternating location and allocation phases of the MCALA heuristic are executed until
the difference between the objective values of two consecutive iterations are less than 0.0001.
Recall that the allocation phase requires the solution of the MTP which is easy to solve by
a commercial solver (such as Cplex). For the location phase, the Weiszfeld’s algorithm is

used. Weiszfeld’s algorithm is an iterative method which consists of the following steps for

the MCMWP.

K
DD AnCijkWi/d(x] ", a;)
new Jj=lk=1

T = i=1,....,I;n=1,2 (10.3)

in J K
_U;Cijkwijk/ d(x]"™", a;)

J

where the previous location of facility 7 denoted by x"“" is replaced with the new location

prev

of facility ¢ indicated with x}“*. The procedure ends when the distance between x; ~ and

x7 becomes smaller than a tolerance value which is selected as 107¢ in our calculations.
prev

The distance term in the denominator may be zero when x; = coincides with a customer

location a;. As a consequence, we use a similar approach with (Frenk et al., 1994) and add a
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sufficiently small value which is selected as 107¢ to the distance measured by d(x!"™, a;) at

7
each iteration. Moreover, the convergence of the algorithm is slow when the facility location
lies in the close vicinity of a customer even if they do not coincide. Therefore, we limit the

number of iterations to be less than 3000 to overcome these particular cases.

The computational results on the performance of the ALA heuristics (C-MCALA, C-
MRR, C-MDRR) and their discrete variants (D-MCALA, D-MRR, D-MDRR) are reported
in Table 10.1 for the first class of the test instances and Table 10.2 and Table 10.3 for
the second class of the test instances. Table 10.1 and Table 10.2 include relative percent
deviations of the upper bounds calculated according to Equation 10.1 after replacing Z,,

with the best (smallest) values the heuristics compute in x randomly initialized runs. Here

max{100,5 x I}  if J < 50
k= (10.4)
max{100, I x J'/3} otherwise

as proposed by (Luis et al., 2009). & is calculated for every instance and given in the second
columns of Table 10.1-3 dedicated to location-allocation heuristics. The reference value
Zg to calculate relative percent deviation of the upper bounds “UB (%)” is taken as the
benchmark lower bound values presented in Table A.1 and Table A.2. The values under the
columns “CPU” in Table 10.1 and Table 10.3 are the total CPU times in seconds of these
runs. In all these tables the first column indicates the test instance and the last row includes

the column averages.

For the first class of MCMCWP instances the discrete variants of the ALA heuristics
(D-MCALA, D-MRR, D-MDRR) yield better solutions than their continuous counterparts
except for the MRR (with percent deviation less than 1%). However, we can say that the
inverse holds true for the second class of the test instances. C-MCALA, C-MRR and C-
MDRR perform better than their discrete counterparts. We observe that for the first class
of the test instances the most accurate ALA heuristic is D-MCALA and for the second class
of instances the most accurate solutions are obtained with C-MRR. At sum, C-MRR and
D-MCALA are the most accurate ALA heuristics with 25.59% and 28.75% overall percent
deviations in average, respectively. Furthermore, among all heuristics considered in this
work, D-MCALA is the fastest one with 124.15 seconds of average total CPU time. The
third best accuracy belongs to C-MCALA with 29.67% average percent deviation. Note that
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the overall average accuracy of C-MCALA is slightly worse than that of D-MCALA. In
particular, continuous ALA heuristics perform much better than their discrete variants for

the second class of instances (namely, very large instances). Hence, we can say that among

all ALA heuristics C-MRR and C-MCALA are the most viable ones. In addition, ALA
heuristics play an important role in our work. In particular, C-MCALA and D-MCALA
heuristics are incorporated in the proposed DA heuristics, MS algorithm and BB algorithms

to calculate efficient upper bounds on the MCMWP.

10.2.2. Discrete Approximation Heuristics

10.2.2.1. Rectilinear Distance. Table 10.4 shows the strength of MDAP1 and MDAP?2 for-

mulations on the first class of the RMCMWP. The first column stands for the instance
names. The second column presents the optimal values for these instances. As a reminder,
the solution of the MDAP1 (or MDAP2) with the candidate facility locations constructed
by the intersection points of vertically and horizontally drawn lines on the customers is
optimum for the RMCMWP. In columns three to eight we give the LP relaxation (LPR)
performance of MDAP1 and MDAP2. In particular, columns five and six stand for the LPR
performance of MDAP2 where constraints given by Equation 5.15 and 5.16 are replaced with
Equation 5.21. The duality gaps are measured according to Equation 10.2 and given under
the columns named “GAP(%)”. ZJ% and Z{!#* are the final outcomes of the LPRs and
Zr is taken as the optimal value of the RMCMWP.

Table 10.5 shows the performance of the MDA heuristic on the first class of RMCMWP
instances. We state only the CPU times of MDAP1 and MDAP2 formulations as their
optimum solution is the same as in Table 10.4. The “LB(%)” and “UB(%)” stand for the
relative percent deviations from the optimal value, respectively. They are calculated using
Equation 10.1 by replacing the reference value Zg with the optimal value of the RCMWP
which is given under the second column of Table 10.4. Z,; is the lower bound and upper
bound values of the instances for “LB(%)” and “UB(%)”, respectively. The computational
times in seconds are reported under “CPU”. RMDAP1 and RMDAP2 indicate the results
obtained with the LR of the MDAP1 and MDAP2, respectively.

Clearly, MDAP1 is more efficient than the MDAP2 with respect to their CPU times.

Some particular instances are very difficult to solve and require drastic CPU times. Although
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Table 10.4. The strength of the MDAP formulations on the first group of the RMCMWP

instances.
MDAP1 MDAP2 with MDAP?2

Instance | Optimum Equation 5.21

Name Value | Duality | CPU | Duality | CPU | Duality | CPU

Gap(%) Gap(%) Gap(%)

mc_ 222 64 | 100.00 | 0.00 | 100.00 | 0.00 | 100.00 | 0.02
mc_ 223 464 | 100.00 | 0.02 | 100.00 | 0.02 | 100.00 | 0.00
mc_ 225 100 65.17 | 0.02 | 100.00 | 0.00 65.17 | 0.02
mc_2.4.2 797 99.03 | 0.02 | 100.00 | 0.02 99.03 | 0.00
mc 243 585 92.46 | 0.00 | 100.00 | 0.00 92.46 | 0.00
mc_2.4.5 2209 92.55 | 0.00 | 100.00 | 0.00 92.55 | 0.02
mc_3.52 1438 84.76 | 0.02 | 100.00 | 0.02 84.76 | 0.00
mc_3.5.3 572 99.97 | 0.02 | 100.00 | 0.02 99.97 | 0.02
mc_3.5.5 4701 61.71 | 0.03 | 100.00 | 0.02 61.71 | 0.05
mc_3.9.2 1817 | 100.00 | 0.03 | 100.00 | 0.05 | 100.00 | 0.05
mc_3.9.3 5997 89.35 | 0.06 | 100.00 | 0.06 89.35 | 0.08
mc_3.9.5 62706 96.79 | 0.09 | 100.00 | 0.09 96.79 | 0.16
mc_4.82 1566 97.93 | 0.02 | 100.00 | 0.02 97.93 | 0.02
mc_4 .83 9923 85.72 | 0.05| 100.00 | 0.05 85.72 | 0.08
mc 485 9420 72.94 | 0.06 | 100.00 | 0.06 72.94 | 0.13
mc_4.10_2 6437 89.62 | 0.03 | 100.00 | 0.05 89.62 | 0.06
mc_4.10.3 11507 92.16 | 0.08 | 100.00 | 0.08 92.16 | 0.14
mc_4_10_5 28142 79.20 | 0.16 | 100.00 | 0.17 79.20 | 0.31
mc_4_152 12424 97.39 | 0.33| 100.00 | 0.34 97.39 | 041
mc_4.153 35807 92.37 | 0.61 | 100.00 | 0.56 92.37 | 0.97
mc_ 4155 41685 92.67 | 1.67 | 100.00 | 1.42 92.67 | 3.34
mc_5 8.2 6250 93.68 | 0.03 | 100.00 | 0.03 93.68 | 0.06
mc_5_8.3 5551 | 100.00 | 0.06 | 100.00 | 0.08 | 100.00 | 0.09
mc_5_8.5 31353 76.84 | 0.16 | 100.00 | 0.16 76.84 | 0.31
mc_5_10_2 3928 86.69 | 0.06 | 100.00 | 0.06 86.69 | 0.06
mc_5_-10_3 10064 71.85 | 0.09 | 100.00 | 0.11 71.85 | 0.14
mc_5-10_5 56300 79.51 | 0.22 | 100.00 | 0.17 79.51 | 0.38
mc_5_12_2 4316 99.11 | 0.22 100.00 | 0.19 99.11 | 0.24
mc_5.12_3 13947 94.53 | 0.39 | 100.00 | 0.36 94.53 | 0.56
mc_5.12.5 45687 74.10 | 1.00 | 100.00 | 0.80 74.10 | 1.66
mc_5_152 7784 99.78 | 0.34 | 100.00 | 0.33 99.78 | 0.45
mc_5_15_3 32833 91.87 | 1.67| 100.00 | 1.41 91.87 | 2.31
mc_5_15_5 24186 89.19 | 1.75| 100.00 | 1.49 89.19 | 3.42
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Table 10.4. The strength of the MDAP formulations on the first group of the RMCMWP

istances cont.

MDAP1 MDAP2 with MDAP?2

Instance Optimum Equation 5.21

Name Value | Duality CPU | Duality CPU | Duality CPU

Gap(%) Gap(%) Gap(%)

mc_5_20_2 9813 99.82 1.30 | 100.00 1.11 99.82 1.69
mc_5_20_3 20461 98.41 1.72 | 100.00 1.50 98.41 2.44
mc-5-20_5 58846 87.77 22.61 100.00 18.80 87.77 55.62
mc-5-30_2 56665 98.93 8.84 | 100.00 7.53 98.93 8.44
mc_5_30_3 78443 87.60 20.20 | 100.00 21.42 87.60 29.73
mc_5_30_5 224750 86.17 61.47 | 100.00 | 165.48 86.17 | 255.24
mc_6_10_2 3082 98.29 0.08 | 100.00 0.06 98.29 0.08
mc_6.10_3 6427 71.45 0.13 | 100.00 0.11 71.45 0.17
mc_6-10_5 11459 61.50 0.33 | 100.00 0.23 61.50 0.45
mc-8_10_2 7004 87.83 0.11 100.00 0.11 87.83 0.13
mc-8_10_3 10420 93.03 0.20 | 100.00 0.17 93.03 0.30
mc_8_10_5 21288 67.34 0.42 | 100.00 0.36 67.34 0.86
mc_10_10_2 3601 79.70 0.14 | 100.00 0.13 79.70 0.22
mc_10_10_3 13564 87.79 0.28 | 100.00 0.27 87.79 0.41
mc_10_10.5 5390 89.59 0.64 | 100.00 0.55 89.59 1.75
mc_10-15_2 2878 91.38 1.08 | 100.00 1.03 91.38 1.45
mc-10_15_3 6980 87.82 3.58 | 100.00 3.17 87.82 4.80
mc_10_15_5 13233 76.10 20.84 | 100.00 13.28 76.10 32.45
mc_10_20_2 10367 99.28 5.03 | 100.00 5.11 99.28 6.33
mc_10_20_3 5496 82.61 7.27 | 100.00 5.55 82.61 17.13
mc_10_20_5 18080 99.98 42.78 | 100.00 31.05 82.57 | 367.32
mc_10.24 2 4182 66.77 | 280.96 | 100.00 | 168.75 99.91 69.56
mc_10-24_3 11103 99.55 75.97 | 100.00 66.06 87.48 | 178.23
mc_10-24_5 25276 85.91 | 440.60 | 100.00 | 303.65 74.33 | 1037.46
mc_10-30_2 21333 85.23 | 394.55 | 100.00 99.31 99.77 40.27
mc_10_30_3 51096 87.30 | 1121.09 | 100.00 | 790.61 93.03 | 263.68
mc_10_30_5 82881 82.64 | 929.59 | 100.00 | 1208.63 82.64 | 1944.65
Average 21077.97 87.98 57.52 | 100.00 48.70 88.18 72.27
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Table 10.5. The performance of the MDA heuristics on the first class of the RMCMWP

instances.
Instance MDAP1 | MDAP2 RMDAP1 RMDAP2
Name CPU CPU LB| UB| CPU LB | UB CPU
(%0) | (%) (%) | (%)

mc_2_2_2 0.00 0.00 | 0.00 | 0.00 0.02 | 0.00 | 0.00 0.02
mc_22.3 0.00 0.00 | 0.00 | 0.00 0.02 | 0.00 | 0.00 0.03
mc_2_2_5 0.02 0.02 | 0.00 | 0.00 0.02 | 0.00 | 0.00 0.53
mc_2.4.2 0.00 0.02 | 0.00 | 0.00 0.03 | 0.00 | 0.00 0.05
mc_2.4_3 0.00 0.00 | 0.00 | 0.00 | 138.00 | 0.00 | 0.00 | 420.55
mc_2.4.5 0.00 0.02 | 0.00 | 0.00 0.33 | 0.00 | 0.00 0.16
mc_3_5_2 0.02 0.03 | 0.00 | 0.00 0.20 | 0.00 | 0.00 3.02
mc_3_5_3 0.03 0.03 | 8.93 1| 0.00 0.88 | 9.02 | 0.00 2.91
mc_3.55 0.14 0.14 | 8.59 | 0.57 0.34 | 8.67 | 0.57 2.08
mc_3.9_2 0.44 0.44 | 0.75 1| 0.00 0.39 | 0.76 | 0.00 2.20
mc_3.9.3 0.83 0.89 | 6.12 | 0.00 0.63 | 6.30 | 0.00 3.80
mc_3.9.5 1.06 1.02 | 0.00 | 0.00 1.61 | 0.01 | 0.00 4.86
mc_4_8_2 0.27 0.16 | 4.33 | 0.00 0.39 | 4.34 | 0.00 2.75
mc_4.8_3 1.13 0.86 | 11.52 | 4.00 0.59 | 11.64 | 4.00 2.42
mc_4.85 0.27 0.30 | 0.57 | 0.00 0.78 | 0.99 | 0.00 4.52
mc_4_10_2 0.70 0.84 | 11.71 | 0.87 0.64 | 8.86 | 1.60 3.09
mc_4_10_3 0.49 0.59 | 0.84 | 0.00 0.95| 0.98 | 0.00 5.45
mc_4_10_5 5.47 592 | 11.82 | 0.01 0.94 | 13.08 | 0.00 6.22
mc_4_15_2 8.34 855 | 4.03 | 0.00 2.25 | 4.38 | 0.00 9.38
mc_4_15_3 20.78 2095 | 4.09 | 0.71 283 | 4.1910.71 | 10.58
mc_4_15.5 38.64 4964 | 3.84|1.94 3.42 | 4.83]1.94 9.25
mc_5_8_2 0.16 0.16 | 0.00 | 0.00 0.05 | 0.00 | 0.00 0.56
mc_5_8_3 1.69 1.86 | 16.45 | 7.89 0.64 | 17.93 | 7.89 4.56
mc_5_8_5 4.78 4.67 | 13.73 | 4.84 1.24 | 15.25 | 4.84 4.06
mc_5_10_2 0.63 0.70 | 13.21 | 8.40 0.66 | 13.27 | 1.17 2.50
mc_5_10_3 0.95 0.95| 3.57 | 0.00 0.88 | 3.94 | 0.00 4.67
mc_5_10_5 5.25 6.59 | 8.07 | 6.61 1.34 | 8.07 | 1.56 5.22
mc_5_12_2 3.97 4.61 | 11.53 | 0.00 1.67 | 11.90 | 0.00 4.17
mc_5_12_3 16.78 18.70 | 15.78 | 0.44 1.77 1 15.90 | 0.44 6.92
mc_5_12_5 30.31 37.03 | 9.49 | 0.98 4.47 | 11.36 | 0.00 7.25
mc_5_15_2 2.67 3.09 | 1.71 ] 0.00 2.22 | 1.851|0.00 5.70
mc_5_15_3 21.38 18.63 | 1.96 | 0.00 3.75 | 3.53 ] 0.00 | 29.58
mc_5_15_5 32.58 36.19 | 7.31 | 0.00 4.16 | 8.12 | 0.00 9.00
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Table 10.5. The performance of the MDA heuristics on the first class of the RMCMWP
instances cont.

Instance MDAP1 | MDAP2 RMDAP1 RMDAP2
Name CPU CPU LB UB | CPU LB UuB | CPU
(%) | (%) (%) | (%)

mc_5_20_2 12.48 16.41 | 3.07| 0.00 | 3.56 | 3.21 | 0.00 9.16
mc_5-20_3 54.28 60.50 | 4.03 | 837 | 491 | 434| 577 | 14.03
mc_5-20_5 6832.14 | 10434.50 | 9.58 | 4.19 | 11.03 | 14.69 | 6.78 | 32.08
mc_5-30_2 256.95 233411 239 113 ] 9.19| 339 ] 0.89 | 2591
mc_5_30_3 2271.83 2059.56 | 4.08 | 2.67 |18.34 | 6.21 | 0.00 | 29.25
mc_5_30_5 7291.67 7604.22 | 2.03 | 0.30|25.74| 259 | 024 | 71.14
mc_6-10_2 1.89 250 | 1941 | 4.22| 0.70 | 20.23 | 4.22 4.13
mc_6-10_3 1.49 1.50 | 16.42 | 5.09 | 0.78 | 17.31 | 5.09 3.63
mc_6-10_5 4.11 4.14 11555 | 0.00 | 1.23|15.93 | 0.00 4.52
mc_8_10_2 2.02 1.72 ] 34.14 | 20.52 | 1.00 | 34.35 | 10.95 4.28
mc-8-10_3 19.19 7475794 | 67.72 | 0.97 | 60.05 | 30.89 6.69
mc_8_10_5 31.53 35.59 | 22.86 | 22.01 | 1.59 | 21.45 | 8.20 6.66
mc_10_10_2 3.91 9.67 | 31.56 | 37.68 | 0.78 | 31.84 | 17.55 4.28
mc_10_10_3 111.38 109.06 | 36.94 | 6.78 | 1.70 | 41.76 | 13.28 4.81
mc_-10_10_5 26.44 22.22 1 34.08 | 41.06 | 2.58 | 35.97 | 28.31 0.47
mc_10_15_2 124.22 90.67 | 35.76 | 61.22 | 3.38 | 36.43 | 40.17 8.20
mc-10_15_3 123.45 126.52 | 15.39 | 16.88 | 4.97 | 16.02 | 12.92 | 13.94
mc_10_-15-5 3088.95 2690.47 | 23.21 | 12.48 | 10.05 | 23.84 | 7.90 | 25.91
mc_10-20_2 221.25 212.88 | 12.60 | 28.98 | 7.17 | 13.00 | 25.69 | 14.34
mc_10-20_3 1393.53 1413.77 | 21.79 | 21.96 | 7.13 | 22.81 | 19.10 | 14.48
mc_10-20_5 | 135920.00 | 106411.00 | 15.67 | 16.88 | 22.73 | 18.82 | 9.15 | 64.77
mc-10-24_2 5267.80 0476.11 | 13.05 | 15.21 | 15.25 | 14.04 | 9.28 | 46.17
mc_-10-24_3 | 26998.60 | 33298.50 | 14.48 | 21.38 | 21.92 | 14.98 | 13.54 | 62.33
mec_1024.5 | 43662.60 | 52343.10 | 9.41 | 8.54 | 32.61 | 13.89 | 8.54 | 111.88
mc_10_30_2 5385.80 5172.08 | 18.06 | 0.00 | 22.34 | 18.19 | 0.00 | 53.97
mc_10_30_3 | 53900.10 | 55699.50 | 14.24 | 10.30 | 29.77 | 15.50 | 7.56 | 63.39
mc_10_30_5 | 238939.00 | 287311.00 | 12.08 | 5.56 | 50.73 | 13.68 | 6.74 | 101.70
Average 8869.11 9517.86 | 11.33 | 797 | 8.17|12.06 | 5.29 | 23.09
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MDAP?2 is less efficient than the MDAP1, their LR results indicate that the converse holds
for the accuracy of the upper bounds. In fact, the upper bounds of RMDAP2 are better than
that of RMDAP1 with an increase in computational expenses. RMDAP1 produces slightly
better lower bounds than the RMDAP2. This is expected from the LPR results which
indicate that MDAP1 is tighter than the MDAP2 formulation. MDAP2 with Equation 5.21
produces a trivial lower bound of zero which is absolutely worse than the ones produced by
MDAP2. Fortunately, better upper bounding performance of the MDAP2 over MDAP1 has
motivated us to use both formulations for the MDA heuristics on the MCMWP instances

with Fuclidean distances.

10.2.2.2. Euclidean Distance. The results obtained with the DA heuristics (¢/;-MDA1, ¢;-
MDA2, (-MDA1, (,-MDA2, CL-MDA1, CL-MDA2) and with their relaxed versions (¢;-
RMDAL, ¢;-RMDA2, ¢, .-RMDAT1, ¢,.-RMDA2, CL-RMDA1, CL-RMDAZ2) are summarized
in Table 10.6, Table 10.7 and Table 10.8 for first class of MCMWP test instances. The

first column indicates the instance name and the last rows provide column averages. We
use the formula given by Equation 10.1 to calculate percent deviations from the reference
value Zg. For the “UB(%)” columns Z,; is replaced by the value of the feasible solutions
computed by the heuristics (i.e., an upper bound on the optimal value Z*), which is changed
to the lower bound computed by using the approximation. There are two points which
should be emphasized. First of all we do not report any results with the /;,,-norm based
approximation methods ¢1,.-MDA1, ¢;,,-MDA2, ¢,-RMDA1 and ¢;,.-RMDA2 since they
are very inefficient due to the extremely large number of intersection points. Second, we
should remind that the customer based discrete approximations CL-MDAT1, CL-MDA2, CL-
RMDAT1 and CL-RMDAZ2 provide only upper bounds on Z*. The reference values Zx are
taken as the benchmark lower (upper) bounds given in Table A.1 and Table A.2 to calculate
percent deviations UB (%) (LB (%)). Moreover, the results obtained with the second class
of MCMWP instances are given in Table 10.9 and Table 10.10.

As it can be noticed, CL-MDA1 and CL-MDAZ2 are the most accurate discrete ap-
proximation heuristics. However, CL-MDA2 performs slightly better than CL-MDAT1 at the
expense of higher CPU times. One major weakness of both CL-MDA1 and CL-MDAZ2 is their
extreme inefficiency. Notice that in Table 10.6, although we report the percent deviations

obtained with the CL-MDAZ2, the solutions obtained with the CL-MDAT1 and the CL-MDA2
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are the same for the first class of the test instances. However, this is not the case for the
second class of instances. That is to say we could not obtain upper bounds within CPU time
limits using CL-MDA1 and CL-MDAZ2. Even four-hour CPU time limit is not sufficient to
obtain a feasible solution with the CL-MDA1 and CL-MDA2 for some of the second (very
large) class of instances. These cases are indicated with “N/A” in the tables. Furthermore,
note also that no result with ¢;-MDAT1, ¢,-MDA2, ¢/,.-MDA1 and ¢,,-MDAZ2 is reported for

the second class instances because of the same reason.

Recall that to alleviate the excessive CPU times required for the solution of MDAP1
and MDAP2, we propose LR schemes. They become especially useful for large instances. The
use of LR considerably increases the efficiency of £;-RMDA1, ¢;-RMDA2, (.-RMDAT1, /.-
RMDA2, CL-RMDA1, and CL-RMDAZ2. Namely, they compute good solutions in reasonable
CPU times on large instances. Finally, that among all relaxed MDA heuristics the most

accurate one is CL-RMDA2 with an overall average percent deviation of 6.05%.

At first look, we can say that even the least accurate MDA heuristic £1-RMDA2 yields
lower percent relative deviations than the most accurate location-allocation heuristic C-
MRR: 17.29% versus 25.59%. In addition, the overall average total CPU times for them
are 365.78 and 355.78 seconds, respectively. This implies a superiority of the DA heuristics
over the ALA heuristics. The tightest of the lower bounds is computed by ¢,.-MDA1 and
loo-MDA2 with an overall average percent deviation of 10.26% and 10.25%, respectively;
however, they have the highest CPU times. Notice that the difference between these two
equivalent formulations stems from the four hour of CPU time limit. A “N/A” indicates
that the validity of the lower bound values calculated by block norm based MDA heuristics
is not guaranteed when four hours of time limit is exceeded. On the other hand, the upper
bounds are clearly valid as long as a feasible solution is produced within the CPU time
limit. What is more, for the second class of the test instances, the {,.-RMDA1 produces
the tightest lower bound values. Generally speaking, considering the ¢; and /,.-norm based
approximations we observe that the ¢;-norms based approximation yields more efficient but
less accurate results than the /,-norm based approximation does, except the ¢;-RMDA1

heuristic.

In summary, these experiments have encouraged us to use the lower bounds produced
by {..-MDA1 and /..-RMDAT1 heuristics within the BB methods developed. In particular, we
favor the more efficient £,-RMDA1 to be used within a BB algorithm since the computational

expense of /,.-MDAT1 becomes excessive with increasing instance sizes.
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Table 10.6. The performance of the CL-MDA heuristics on the first class of the MCMWP

instances.

Instance CL-MDA1 CL-MDA2 CL-RMDA1 CL-MDA2

Name UB(%) | CPU | UB(%) | CPU | UB(%) | CPU | UB(%) | CPU
mc_2.2.2 0.00 | 0.06 0.00 | 0.02 0.00 | 0.03 0.00 | 0.08
mc2.2.3 0.00 | 0.13 0.00 | 0.00 0.00 | 0.03 0.00 | 0.09
mc_2_2.5 0.00 | 0.06 0.00 | 0.00 0.00 | 0.08 0.00 | 0.13
mc_2.4._2 0.10 | 0.08 0.10 | 0.02 0.10 | 0.14 0.10 | 0.17
mc2.4.3 0.10 | 0.08 0.10 | 0.00 0.10 | 0.38 0.10 | 19.88
mc_2.4.5 0.10 | 0.17 0.10 | 0.02 0.10 | 1.34 0.10 | 1.17
mc_3.5_2 0.10 | 0.17 0.10 | 0.00 0.10 | 0.44 0.10 | 0.58
mc_3.5_3 0.10 | 0.11 0.10 | 0.05 0.10 | 0.61 0.10 | 12.31
mc_3.5.5 0.10 | 0.28 0.10 | 0.06 0.10 | 1.39 0.10 | 13.50
mc_3.9.2 0.10 | 0.16 0.10 | 0.08 0.10 | 4.48 1.71 ] 16.34
mc_3.9_3 0.10 | 0.36 0.10 | 0.13 0.10 | 1.61 0.10 | 27.06
mc_3.9.5 0.90 | 0.23 0.90 | 0.14 0.90 | 11.27 0.90 | 65.14
mc_4._8_2 0.04 | 0.27 0.04 | 0.05 0.03| 0.34 0.03 | 17.72
mc_4.8_3 0.10 | 0.42 0.10 | 0.13 1.57 | 1.94 0.10 | 25.45
mc_4_8_5 0.05 | 048 0.05 | 0.08 0.05 | 4.02 0.05 | 45.20
mc_4_10_2 0.10 | 0.38 0.10 | 0.11 0.87 | 3.31 2.47 | 28.20
mc_4.10_3 0.44 | 0.52 0.44 | 0.20 0.44 | 2.55 0.44 | 47.23
mc_4_10_5 0.03 | 1.11 0.03 ] 0.75 2.19 | 4.27 2.19 | 68.97
mc_4.15_2 0.10 | 0.80 0.10 | 0.44 0.10 | 2.09 0.10 | 81.47
mec_4_15_3 0.62 | 1.16 0.62 | 1.06 0.65 | 5.70 0.65 | 65.72
mec_4_15_5 0.01] 2.14 0.01 | 1.61 0.01 | 10.38 0.01 | 69.03
mc_5_8_2 0.10 | 0.31 0.10 | 0.05 0.10 | 0.70 0.10 | 1.05
mc_5_8_3 0.10 | 0.52 0.10 | 0.22 10.17 | 1.28 10.17 | 10.59
mc_5.8.5 6.82 | 0.88 6.82 | 0.41 10.55 | 5.52 887 | 17.13
mc_5.10_2 0.10 | 0.42 0.10 | 0.14 0.10 | 6.97 0.10 | 12.47
mc_5_10_3 0.10 | 0.64 0.10 | 0.24 0.10 | 4.69 0.10 | 12.92
mc_5_10_5 0.29 | 1.27 0.29 | 0.73 0.29 | 4.81 0.29 | 21.81
mec_5_12_2 3.40 | 0.72 3.40 | 0.28 3.40 | 1.56 3.40 | 8.36
mec_5_12_3 0.34| 1.25 0.34 | 0.78 0.34 | 2.13 0.34 | 9.59
mc_5_12_5 11.28 | 1.44 11.28 | 1.22 11.29 | 5.70 11.28 | 24.48
mc_5_15_2 0.01 | 0.52 0.01 | 0.34 0.01| 7.03 0.01 | 10.08
mc_5_15_3 0.04 | 1.03 0.04 | 0.50 0.04 | 10.31 0.04 | 17.50
mc_5_15.5 4.79 | 2.25 4.79 | 1.30 4791 591 4.79 | 26.83
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Table 10.6. The performance of the CL-MDA heuristics on the first class of the MCMWP
instances cont.

Instance CL-MDA1 CL-MDA2 CL-RMDA1 CL-MDA2

Name UB(%) | CPU | UB(%) CPU | UB(%) | CPU | UB(%) | CPU
mc_5_20_2 1.35 0.94 1.35 0.67 1.35| 9.27 1.35 | 21.94
mc_5_20_3 2.05 4.09 2.05 4.94 442 | 8.42 2.38 | 24.63
mec_5_20_5 0.02 | 11.91 0.02 11.36 0.02 | 16.88 0.15 | 46.03
mc_5_30_2 0.00 5.22 0.00 4.31 0.85 | 13.27 0.00 | 36.70
mc_5_30_3 0.00 | 24.88 0.00 23.58 0.00 | 11.34 0.00 | 52.81
mc_5_30_5 0.01 | 28.48 0.01 28.97 0.01 | 46.98 0.01 | 86.94
mc_6_10_2 0.11 0.56 0.11 0.39 5.18 1.03 0.11 11.06
mec_6.10_3 0.09 0.70 0.09 0.27 0.09 | 4.86 0.09 | 19.77
mec_6_10_5 0.11 1.30 0.11 0.72 0.11 | 2.64 0.11 | 17.52
mc_8_10_2 0.05 0.84 0.05 0.39 15.86 | 3.19 15.28 | 10.58
mc_8_10_3 0.37 1.97 0.37 1.88 37.88 | 3.78 13.18 | 25.81
mc_8_10_5 0.00 4.05 0.00 4.50 11.94 | 7.95 4.86 | 28.56

mc-10_10_2 0.00 4.86 0.00 4.34 27.86 | 1.53 16.59 | 11.11
mc_10_10_3 0.00 | 11.97 0.00 14.36 0.87 | 6.30 1.85 | 22.78
mc-10_10_5 0.01 9.64 0.01 8.36 30.41 | 9.83 11.40 | 31.31
mc_10-15_2 0.14 | 16.75 0.14 16.67 14.96 | 5.42 48.07 | 19.23
mc-10_15_3 0.01 8.09 0.01 8.41 4.85 | 7.07 2.84 | 33.95
mc-10_15.5 0.20 | 49.69 0.20 22.25 12.24 | 11.08 6.16 | 54.08
mc-10_20_2 0.23 5.64 0.23 5.09 20.55 | 8.77 0.23 | 34.34
mc_10_20_3 0.01 | 75.80 0.01 70.75 34.14 | 6.59 11.82 | 39.88
mc-10-20_5 0.14 | 226.47 0.14 | 314.38 14.39 | 26.38 4.24 | 87.08
mc_-10-24_2 0.47 | 43.70 0.47 01.42 2.59 | 10.42 8.23 | 31.11
mc_-10-24_3 0.01 | 113.75 0.01 | 145.75 22.42 | 18.44 13.99 | 58.59
mc-10_24_5 0.01 | 65.52 0.01 70.80 12.19 | 23.94 3.05 | 119.89
mc-10_30_2 0.16 | 89.14 0.16 77.39 0.16 | 9.58 0.16 | 56.83
mc_10_30_3 0.16 | 803.56 0.16 | 1130.72 15.25 | 24.72 11.55 | 86.00
mc_10_-30_5 0.06 | 634.89 0.06 | 944.30 3.55 | 55.98 3.55 | 160.06
Average 0.61 | 37.75 0.61 49.63 2.72 | 7.82 3.84 | 33.45
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10.2.3. Modified Subgradient Algorithm

According to the recovery procedures employed at the final step of the MS algorithm
we have totally proposed four approaches: solving the SCLP with CG procedure via D.C.
programming (CG with D.C.), solving the SCLP with CG via WPLD (CG with WPLD),
solving the UDAP with ¢;-norm (¢;-UDAP) and solving the UDAP with (.-norm ({o-
UDAP). The computer code developed by (Boyaci, 2009) is used to solve the PS by D.C.
programming. The resulting CM problem is solved by the OA algorithm (Chen et al., 1998)
which is coded in “C#” by (Boyaci, 2009). We call the code from a C++ environment and
adapt it to work for the MCMWP. In all these approaches we have run the UDAH employing
the customer locations as the candidate point set at each step of the MS algorithm as long
as Zypar(p, ) < 28! holds. Whenever Zypaw (e, ) exceeds Zi5! at some step of the
MS algorithm we resort to one of the four recovery procedures to update the Lagrangean
multiplier vectors ¢ and p®. Fortunately, in none of the test instances, Zypam(p, u?)
exceeded Z2! values during the MS algorithm. Therefore, we did not perform a recovery
procedure and we did not update the Lagrangean multipliers until the last step of the MS

algorithm.

In Table 10.11, we give a summary of our results obtained with these four recovery
procedures employed at the final step of the MS algorithm. The first class (small to large) of
the test instances are computationally tested. However, the second class of the test instances
are not considered due to their large sizes and computational requirements. The initial upper
bound values used for the updates in the MS algorithm are obtained by CL-RMDA1 heuristic.
The first column shows the instance names. In the next four blocks of triple columns,
we report the results obtained with each approach (i.e., CG with D.C. programming, CG
with WPLD, ¢;-UDAP and /(,-UDAP, respectively). These are relative percent deviation
of lower and upper values obtained with the corresponding recovery approach and CPU
times in seconds, respectively. “LB (%)” is calculated using Equation 10.1 where Zy is the
benchmark upper bound value given in Table A.1 and Z,, is the corresponding lower bound
value produced by the method. Similarly, “UB (%)” shows the percent deviation of an upper
bound from benchmark lower bound value given in Table A.1. This time heuristic upper
bounds replace Z,; and Zp is the benchmark lower bound value. The computational times
in seconds are given under the columns “CPU”. The numbers in the last row are simply the

column averages.
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The acceleration strategies considerably improve the computational requirements of
the LR scheme. Most of the MCMWP test instances could not be solved in reasonable CPU
times without using heuristic acceleration strategy (namely using UDAH). Furthermore, we
observe that when we apply the first acceleration strategy, that is, using Zypam (e, 1)
values which are computed with the UDAH, have never exceeded Z2% value during the MS
algorithm. In other words, we only apply a recovery approach in the final step of the MS
algorithm to ensure that Z%! < Z* is satisfied. Moreover, we also observe that UDAH
totally requires 72.93% of the overall CPU time of the MS algorithm spent for all test
instances. This implies that almost 30% of the CPU time spent by the recovery procedures
should be repeated hundreds of times if we use them at each step of the MS algorithm. In
other words, comparing these ratios approves the advantage of using heuristic bounds (i.e.,

Zupan (e, u?)) within the MS algorithm.

In addition, we observe considerable improvements in the efficiency of the LR scheme
when we apply the acceleration strategy with the FSG algorithm. Recall that in the second
acceleration strategy we employ two lower bounding schemes which restrict the number of
columns generated by the FSG algorithm into the SCLP. We can eliminate up to 86.6%
(with an overall average of 28.99%) of the columns before considering their addition to the
SCLP, for all test instances by applying the second acceleration strategy. Observe that
handling the pricing subproblem by solving the D.C. programming problem is the winner
among all approaches and it produces best lower bounds in 48 out of 60 instances. The

recovery approaches /1-UDAP and /,.-UDAP perform better in terms of upper bounds.

We observe that the percent deviation of the lower bound value of the proposed ap-
proaches, namely the CG with D.C., CG with WPLD, ¢,-UDAP and /,.-UDAP, from the
benchmark upper bound values are 44.06%, 44.24%, 53.49% and 50.13%, respectively. Fur-
thermore, the best performing ALA heuristic (C-MRR heuristic) upper bounds are worse
than the upper bounds produced by our methods with percentages 9.93%, 10.01%, 10.3%
and 10.3% from CG with D.C. programming, CG with WPLD, ¢;-UDAP and /,.-UDAP
results, respectively. As a final observation, notice that the upper bound values obtained
with the LR approaches are closer to the optimal value than the lower bound values they
provide. Hence, we can say the proposed approaches can be considered as accurate LR
heuristics. Unfortunately, the DA heuristics outperform the MS algorithm in terms of both
accuracy and efficiency. On the other hand, MS algorithm can be very well adapted to



154

many other optimization problems as long as an efficient heuristic solutions can be obtained
for the resulting Lagrangean subproblems. Indeed, the convergence of the MS algorithm is

guaranteed and a lower bound can be achieved as well as an upper bound.

10.2.4. Confidence Intervals

The confidence intervals (Cls) are calculated as explained in Chapter 7 and listed in
Appendix B with Table B.1-8. We provide CIs computed using C-MCALA, randomized
MDA using MDAP1 (MDAL1 heuristic) and C-MDRR heuristics, respectively. That is to
say, for each of the MCALA, MDA1 and MDRR heuristics, the initial facility locations are
randomly selected within the convex hull of the customer locations. The C-MCALA and
C-MDRR heuristics are initialized with I random facility locations and the MDA1 heuris-
tic started with I random candidate facility locations. We employ commonly used SPEs
given by Equation 7.13, 7.16 and 7.19 to calculate Weibull location, scale and shape param-
eters, respectively. We analyze two sampling schemes: the McRoberts’ Approach (MRA)
(McRoberts, 1971) and the Los and Lardinois’” Approach (LLA) (Los and Lardinois, 1982).
In the MRA, intermediate solutions obtained during the run of our randomly initialized
heuristics constitute the samples. However, (Los and Lardinois, 1982) claim that the sample
generation method of MRA may harm the independence of the samples and they suggest
the use of M x M distinct observations. Actually, the requirement that all observations
should be distinct is not necessary as discussed in Chapter 7. In the LLA sampling scheme
the samples can be constructed of M observations which are not necessarily distinct (Wilson

et al., 2004).

Using both MRA and LLA sampling approaches, we generate samples from three parent
populations which include randomly initialized solutions obtained with the MCALA, MDA1
and MDRR heuristics. In our MRA implementation, we consider samples of size M = 20,
M = 30 and M = 40 each consisting of the intermediate feasible solutions of a randomly
initialized heuristic (i.e., MCALA, MDA1 or MDRR). In our LLA implementation, again
samples of size M = 20, M = 30 and M = 40 are taken, where each of them consists
of M = 10 randomly initialized heuristic solution outputs obtained with one the MCALA,
MDAT1 or MDRR heuristics.

In order to test the independence of the samples we employ the runs test over the
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sample minimums with 95% confidence level. On the instances which pass the independence
test, the Kolmogorov-Smirnov (K-S) test with a 95% confidence level is applied to check the
hypothesis that the sample minimums fit the Weibull distribution (Beyer, 1974). In case,
the sample minimums pass both of these tests, a CI can be determined based on the Fisher-
Tippett theorem. Otherwise, in case the sample minimums fail at least one of the tests, we
do not report a confidence interval. We should state that the A-D test is also performed for
our calculations. However, we were not able to produce a CI for the most of the instances.
Therefore, we confine ourselves with only the K-S test to check the fitness of the samples to

the Weibull distribution.

In order to validate the CI estimation using EVT, we focus on the MCMWP where
three heuristics are employed on the test instances. Once we produce the Cls, their validity
can be confirmed by comparing the lower and upper end points of the intervals with the
optimal value of a test instance. For that purpose we consider the results obtained on the
RMCMWP test instances. Note that the optimum solutions for the RMCMWP instances
can be calculated by solving the MDAP1 formulation as discussed. After the validation
of our CI estimation using EVT, we employ it in estimating ClIs of the objective values
of MCMWP (with Euclidean distances) test instances for which we generally do not know

optimum values.

The validation of our CI estimation approach using EVT, is first applied on a subset
(consisting of 30 instances) of the first class of RMCMWP test instances for which we
can obtain optimal solution values. According to our experiments we can say that the CI
estimation approach using EVT performs well for the RMCMWP. First, all samples pass
the independence test. Second, in only 6 out of 30 x 3 x 6 = 540 samples, a CI is not
found due to the failure of the K-S test. Only 3 intervals produce lower bounds larger
than the optimum value. The EVT approach employing the Golden-Alt procedure yields
covering intervals in 98.33% of the samples (531 out of 540) generated by three heuristics,
in total. The results are summarized in Table 10.12 for the RMCMWP. The heuristics used
are shown in the first column. The second column stands for the sampling approaches (i.e.,
MRA and LLA samplings). The sizes of extreme value samples are presented in the third
column. The fourth column denotes the mean CI width which is calculated by taking the
average of values calculated according to Equation 10.2 over all intervals produced for the

corresponding heuristic and sampling method pair. Here, Zggml and Z(];igal indicate the
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Table 10.12. Summary of the confidence interval approach on a subset of 30 RMCMWP
instances.

Heuristic Sampling No. Of Interval | Absolute | No. Of Covering
Method — Samples | Width (%) | Gap (%) Intervals
MCALA MRA 20 38.40 0.08 30
30 37.66 0.63 30
40 39.07 1.46 30
Average 38.37 0.72
MCALA LLA 20 20.18 1.05 30
30 20.83 2.13 30
40 21.00 2.68 30
Average 20.67 1.95
MDA1 MRA 20 23.07 2.59 30
30 24.36 5.22 30
40 24.67 7.06 30
Average 24.03 4.96
MDA1 LLA 20 11.23 2.28 29
30 10.79 3.14 28
40 11.12 3.32 27
Average 11.05 291
MDRR MRA 20 40.04 0.09 30
30 37.85 0.55 30
40 39.83 1.43 30
Average 39.24 0.69
MDRR LLA 20 23.32 1.87 29
30 22.76 2.25 29
40 22.38 3.08 29
Average 22.82 2.40

lower and upper limits of the corresponding Cls, respectively. Zr denotes the corresponding
optimum value of the test instance. The fifth column presents the mean absolute gap in
percentages between the lower limit of the CI and the optimum value for the produced Cls.
Similar to the interval width, they are calculated by taking the average using Equation 10.1
over all intervals. The average of interval widths and absolute gaps are also presented for
each heuristic and sampling method pair. The sixth column includes the number of instances

which have passed the K-S test and for which the optimum is covered by the interval.

The results indicate that both the MCALA and MDRR heuristics employing the MRA
sampling, outperform the other cases in terms of both the mean absolute gap between the
optimum value and the interval lower limit, and the number of covering intervals produced.
The MDAT1 heuristic yields tighter Cls than other heuristics using each of the sampling

methods. For all heuristics, we observe that the MRA sampling produces both smaller
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mean absolute gaps between interval lower bounds and the optimum and greater number
of covering intervals than the LLA sampling. On the other hand, the LLA sampling yields
tighter intervals than the MRA sampling does. What is more, the performance of the
heuristics are generally higher for the sample size of M = 20, than for the sample size
of M = 30 or M = 40 in terms of all performance measures (i.e., mean interval width,
absolute gap and number of covering intervals). Finally, we should note that the CI approach
using EVT applied to the RMCMWP instances produces lower bounds within 0.09% of the
optimum solution value on average. Hence, we can say that the CI approach using EVT

outputs quite good lower bounds on the objective values of the RMCMWP.

Encouraged from the results on RMCMWP instances presented above, we apply the
CI approach using EVT in order to obtain acceptable limits on the objective values of the
MCMWP (with Euclidean distances) test instances. Although the optimum values of the
MCMWP instances are not initially known, CI approaches, which give successful results
for the RMCMWP test instances, can still be applied in order to obtain interval estimates
for the optimum objective values of the MCMWP. For that purpose, we run each of the
C-MCALA, randomized MDA1 and C-MDRR heuristics 20000 times. For the MCMWP,
the quality of Cls are evaluated with respect to the benchmark upper bounds (Zg) provided
in Table 10.4.

We only present a summary of these results here. Out of 30 x3x6 = 540 samples formed
for the MCMWP instances, 12 samples fail to pass the independence test and 53 samples do
not belong to the Weibull distribution due to the failure of the K-S test. Consequently, the
Golden-Alt procedure could not produce Cls 12.03% of the samples (65 out of 540) for the
MCMWP instances. On the remaining 475 ClIs produced by the EVT approach, in 8% of the
intervals (38 out of 475), lower limits are larger than the benchmark global minimum value.
Since the solutions are not known for most of the instances, we can not exactly say that the
optimum is covered by the remaining 92% of the intervals (437 out of 475). However, we
believe that the lower bounds are good approximations for the optimum solutions of most of
the test instances as in the RMCMWP cases. All the independence test failures of samples
have occurred using the MDA heuristic with the LLA sampling method. We again observe
that the samples fail to pass the independence test for the cases in which the corresponding

heuristic generates a relatively less number of local optima.
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The results are summarized in Table 10.13. All but the fourth and fifth columns
are organized in the same way as in Table 10.12. The fourth column denotes the mean
interval width which is calculated by taking the average of Equation 10.2 over all intervals
produced for the corresponding heuristic and sampling method pair. Zg is selected as the
corresponding benchmark upper bound value of the test instance. The fifth column presents
the mean absolute gaps in percentages between the lower limits of the Cls (Z),) and the
benchmark upper bound values (Zg) for the produced Cls. Similar to the interval width,
they are calculated by taking the average of Equation 10.1 over all intervals. The MDRR
heuristic applied with the MRA sampling produces the closest mean lower bounds to the
benchmark global minimums. On the other hand, MDA1 heuristic generates the tightest
intervals for each sampling method except LLA with M = 20. We observe that the MRA
sampling generates wider intervals than the LLA does. However, the MRA performs better
in terms of the mean absolute gaps between the benchmark upper bounds and the interval
lower bounds. Although there are some exceptional instances, the smaller the sample sizes
are, the tighter the widths of the ClIs and the absolute gaps between the lower bounds and
the benchmark minimums are. As a final remark, we should note that the CI approach
applied to the MCMWP instances produces lower bounds within 3.54% on average. Thus,
we can say that the CI approach using EVT outputs quite reasonable lower bounds on the

objective values of the MCMWP.

In the light of our previous computational experiments, we perform some additional
calculations on the remaining first class (the instances from mc_10-152 to mc_10-30_5) and
the second class of the MCMWP instances. In particular, we prefer to use the MRA sam-
pling approach with C-MCALA and C-MDRR heuristics because the performance of the
randomized MDAT1 is not very well and it requires excessive CPU times. The summary of
additional Cls are presented in Table 10.14. They share the same outline with Table 10.12
and Table 10.13. For these additional experiments, we took 1000 random solutions for each
MCALA and MDRR heuristics as their parent populations. As can be noticed, on larger
instances both MCALA and MDRR heuristics can produce Cls which pass both the inde-
pendence and Weibull fitness tests. Moreover, the number of intervals covering benchmark
upper bound values is very high on these instances (5 out of 180 instances in total). The
interval widths between the lower and upper confidence limits are relatively higher on these
larger test instances. The performance of the CI approach is quite reasonable and they

conform with our earlier calculations.
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Table 10.13. Summary of the confidence interval approach on a subset of 30 MCMWP

instances.
Heuristic Sampling No. Of Interval | Absolute | No. Of Covering
Method — Samples | Width (%) | Gap (%) Intervals
MCALA MRA 20 26.28 7.11 30
30 27.54 7.59 30
40 28.07 7.30 30
Average 27.30 7.33
MCALA LLA 20 15.39 3.54 22
30 18.01 8.45 18
40 18.32 8.86 19
Average 17.24 6.95
MDAI1 MRA 20 25.21 6.84 25
30 29.37 9.36 24
40 29.44 11.66 24
Average 28.01 9.29
MDA1 LLA 20 16.42 6.51 20
30 17.03 7.27 19
40 17.12 7.41 19
Average 16.86 7.06
MDRR MRA 20 30.11 9.85 30
30 29.77 8.77 29
40 28.98 6.63 28
Average 29.62 8.42
MDRR LLA 20 24.72 9.86 22
30 25.08 10.78 22
40 24.03 9.21 20
Average 24.61 9.95

Table 10.14. Summary of the performance of the confidence interval approach on 12
MCMWP instances from mc_10_.15_2 to mc_10_30_5.

Heuristic Sampling No. Of Interval | Absolute | No. Of Covering
Method — Samples | Width (%) | Gap (%) Intervals
MCALA MRA 20 38.52 2.13 12
30 39.60 1.11 12
40 40.46 1.98 12
Average 39.53 1.74
MDRR MRA 20 38.22 1.50 11
30 38.24 2.14 11
40 38.78 1.79 11
Average 38.41 1.81
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Table 10.15. Summary of the performance of the confidence interval approach on the second
group of the MCMWP instances.

Heuristic Sampling No. Of Interval | Absolute | No. Of Covering
Method — Samples | Width (%) | Gap (%) Intervals
MCALA MRA 20 71.42 1.19 18
30 71.55 1.64 18
40 71.90 0.43 18
Average 71.62 1.09
MDRR MRA 20 54.16 0.88 18
30 54.33 1.56 17
40 54.70 1.45 17
Average 54.40 1.30

It should be underlined that the CI approach we employ does not guarantee a valid
lower bound on the true optimal values. Lower confidence limits are only estimates of the
lower bounds over the optimal value. On the other hand, the upper confidence limits impose
absolutely an upper bound on the optimal value since it is already a minimum value of
samples which consists of at least one feasible solution for the MCMWP. We should also
emphasize that it is possible to obtain different confidence intervals by different samples.
The ones we report here are the tightest ones in the sense that lower and upper confidence

limits are closest.

10.2.5. Branch-and-Bound Methods

In this section we provide BB based methods which include ABB and LBB algorithms
as well as the BS heuristic for both CMWP and MCMWP. To make a complete compari-
son between the performance of ABB and LBB algorithms, the CMWP and MCMWP are

separately addressed.

10.2.5.1. The Capacitated Multi-facility Weber Problem. We make a series of computa-

tional tests with the proposed ABB and LBB algorithms. We reimplement the RLT based
lower bounding formulation of (Sherali et al., 2002) for the sake of a fair comparison with the
proposed BB algorithms. We employ /,-norm as the lower bounding block norm within the
DAP and in its relaxed version RDAP. We confined ourselves to use the £,.-norm because the
size of the lower bounding MILPs increase rapidly when block norms are employed. Further-
more, the quality of the lower bounds produced by the ¢;-norm is worse than of the ¢,-norm.
This is also experimentally verified by the DA heuristic performances on the MCMWP. For

example, when we employ the weighted ¢;-norm we observe that its performance is worse
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than the f,-norm. We impose a CPU time limit of five hours to report the best feasible
solution for the SABB algorithm. On the other hand, the SLBB and SLBBCE algorithms
are run for two hours for the CMWP. This CPU time limit is enough to show the superior
performance of the LBB algorithms over the SABB algorithm. In addition, it is observed
that the improvements obtained on both lower and upper bounds are marginal with the LBB
algorithms beyond some predefined time limit. A similar pattern is also observed with the

SABB algorithm.

In Table 10.16-18 we give a summary of our experimental results obtained with the
SABB algorithm on the CMWP test instances in the first and second classes, respectively.
The first three columns present instance names (the number of facilities and customers
are given in parenthesis for the first class of standard test instances), the initial upper
bound values as described in Chapter 8, and best known upper bound values which are
used as benchmark upper bounds. The best known upper bound values are taken as the
best outcome of the SABB and SLBB algorithms among the ones run with different lower
bounding procedures and branching variable selection strategies. We should emphasize that
the best known solutions to the first class of the test instances (standard instances) reported
by (Sherali et al., 2002) and our results are slightly different after the decimals. We think
that the difference stems from the typographic errors in (Sherali et al., 2002). Another
reason for this difference can be the round off errors in our or their calculations especially for
the solution of the WPs. In any case, these differences are insignificant and does not affect

the accuracy of the percent deviations.

The next three blocks of columns give the results obtained with the lower bounding
procedures (i.e., RLT Based Lower Bounding, ¢,-norm Lower Bounding of the DAP and
l-norm Lower Bounding of the DAP with LR) which we use together with different branch-
ing variable selection strategies or rules. The top row of these lower bounding procedures
indicates two additional things: whether Zg4s given by Equation 8.15 is used as an addi-
tional lower bounding for tightening the corresponding lower bound or not and the branching
variable selection strategy (i.e., BrS1, BrS2 or BrS3). For example, “+ Zg4¢ with BrS3”
indicates that both Zg4¢ and the suggested lower bound (i.e., RLT, ¢..-DAP or /,.-RDAP) is
employed within the SABB algorithm where the allocation variables are selected using BrS3
given by Equation 8.22. The duality gaps, given under the columns titled as “GAP (%)”,
are presented in the second columns dedicated to each of three blocks of columns. For each

lower bounding procedure, we keep the record of their initial lower bound value calculated
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at the root node of the BB tree. Note that the SABB algorithm follows a DFS strategy and
only the lower bound computed at the root node gives a valid lower bound on the optimum
of the CMWP. As a consequence, the duality gaps are calculated by using Equation 10.2
where Zp is replaced with the best known upper bound values given in the second column
of the tables, Z{* is replaced with the initial lower bounds produced and Z(];igal is the
final upper bound produced by the SABB algorithm. Moreover, the accuracy of the SABB
algorithm is measured with the percent deviation of the final upper bound value (i.e., Zy)
from the best known solution (i.e., Zg) in Equation 10.1 under the columns “UB (%)”. The
corresponding CPU times in minutes are reported under the columns “CPU”. Note that a
CPU time of less than 300 minutes indicates that e-optimality of the best feasible solution
found by the algorithm is proven. Clearly, the lower the percent deviation “UB (%)” and
the duality gap “GAP (%)” are, the better the SABB algorithm performance is. The last

rows of instance classes gives the average values of the columns as usual.

RLT based lower bounding always applies the straightforward lower bounding Zgag to
improve the lower bounds. (Sherali et al., 2002) indicate that the RLT based lower bounding
yields the best performance when the branching variable selection rule BrS2 (Equation 8.17)
is employed. Therefore, we implement this lower bounding scheme in order to make a fair

comparison with the proposed approaches.

We observe that the branching variable selection rule BrS1 beats BrS2 when BrS1 is
used with the /,,-norm based lower bounding procedure. As a result, we only present the
results obtained with the branching variable selection rule BrS1 (Equation 8.16). According
to our computational experiments, SABB algorithm using “+Zg45+ BrS3” outperforms both
of SABB algorithms using “BrS1” and “+Zga5+ BrS1” in terms of efficiency. In addition,
the SABB algorithm results obtained with “+Zgas+ BrS3” are quite promising for the
second class of instances. Notice that the block norm based lower bounding approaches
employed within the SABB algorithm outperforms the RLT based approaches significantly
in terms of both accuracy and efficiency. In particular, the average accuracy of the SABB
algorithm with RLT, (,.-DAP and (,,-RDAP are 9.61%, 0.13% and 0.05% and their average
CPU times are 218.71, 217.60 and 220.09 minutes over all instances, respectively. On the
other hand, RLT based lower bounding procedure solves 13 out of 18 of the first class of
CMWP instances. this number is 12 and 11 for the SABB algorithm with ¢,.-DAP and
lo-RDAP lower bounding procedures, respectively. Unfortunately, only 2 out of 30 second
class of CMWP instances can be solved to e-optimality by the SABB algorithm.
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Our computational results justify that the performance of the exact solution of the
DAP formulation reduces significantly as the instance size increases. It is also possible to
assess the quality of the lower bounding procedures (i.e., RLT, ¢,,-DAP, ¢,.-RDAP). This
can be observed from the percent deviation of the gap between the initial lower bound
value and the best known upper bound value. Clearly, RLT produces the weakest lower
bounds and the worst duality gaps. Meanwhile, (,.-DAP performs is the winner. It is
followed by the (,,-RDAP. On the other hand, although the RLT based approach is quite
efficient, its performance deteriorates significantly on the second class of instances (i.e., large
instances). In this case, employing a LR procedure, which produces weaker lower bounds
than its exact solution in reasonable CPU times, within the ABB algorithm can be a better
choice considering the trade-off between the efficiency and accuracy. We see that the use of
Zsas slightly improves the efficiency of the ABB algorithm. We can say that the performance
of the algorithms on both their accuracy and efficiency indicates that unit cost instances are

generally more difficult to solve than their non-unit cost counterparts.

For the LBB algorithm experiments, we first examine the lower bound Z758P given by

Equation 9.2. Then, we test the performance of the Z3528 by using a hybrid lower bounding

approach. In this hybrid lower bounding approach, both Z?5BB and Z2LEP are calculated
and their maximum is taken as the lower bound value for a facility-rectangle combination
until the location space is partitioned into several rectangles. Since the calculation of Zp5BP
is computationally more expensive, the lower bounding procedure is performed using only
ZPEBB afterwards. On small instances we prefer to use the exact solution of the MILP with

{s-norm approximation for ZPLBP. The LR of the MILP is solved on medium and large

instances to determine Z3LBP. There are two reasons to use the hybrid lower bounding
approach as mentioned. One of them is the observation that block norm based lower bounds
are initially very tight on the LBB algorithm. As a result, the number of subproblems
can be reduced significantly without further exploration at the initial nodes of the BB tree.
The other reason is that once the location space is partitioned into a sufficient number of
rectangles, the Z7588 lower bounds become tighter than the Z35BB. Therefore, we use
both Z2LBB and Z3LEP until the number of rectangles reaches 3 x J and then we switch
to use only Z75P8 as the hybrid lower bounding approach within the SLBB and SLBBCE

algorithms.

A comparison of the SLBB and SLBBCE algorithms is presented in Table 10.19-
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21 which have almost the same outline as the tables given for the SABB algorithm. To
compare the performance of the SLBB algorithm we impose a two hours of run time limit.
We separate two blocks of columns for both the SLBB and SLBBCE algorithms. When we
compare SLBB and SLBBCE algorithms, it can be observed that the SLBB outperforms
the SLBBCE algorithm in terms of average duality gaps between their final upper and
lower bounds. The average accuracy of both algorithms are almost the same with a slight
superiority of the SLBBCE algorithm. On the other hand, SLBBCE algorithm is more
efficient than the SLBB algorithm on the average.

Notice that the SABB algorithm with /,.-RDAP lower bounding beats the SLBB and
SLBBCE algorithms using only Z7588 as the lower bounding procedure. In particular, the
duality gaps are quite weak when only Z75B8 is employed for the LBB algorithms (i.e.,
SLBB and SLBBCE algorithms). However, when the hybrid lower bounding approach (i.e.,
Z9LBB 4 73LBB) is used, it produces better results in terms of accuracy with a slight decrease
in its efficiency. Both of the SLBB and SLBBCE algorithms can solve 10 out of 18 instances
for the first class of the CMWP instances. On the other hand, only 2 out of 30 instances can
be solved by the LBB algorithms on the second class of CMWP instances. Both of the SLBB
and SLBBCE algorithms using only Z758P and Z7EBP 4 Z2LEB lower bounding approaches

yield the same number of e-optimum solutions for the test instances.

The LBB algorithms with hybrid lower bounding approach produces the best duality
gap percentages and accuracy on both the first (standard) and second class of CMWP test
instances while their efficiency is also better than the ones of the SABB algorithm. We should
note that even if the running time of the SLBB algorithm is less than the SABB algorithms,
SLBB algorithm yields at least the same accuracy with the ABB algorithms. Consequently,
we can conclude that SLBB algorithm with the hybrid lower bounding approach is the winner
in terms of both accuracy and efficiency. The results obtained with the LBB algorithms also
confirm that the homogenous subgroup of the test instances are more difficult to solve than
the non-unit subgroup in terms of average duality gap percentages “GAP (%)”, average

accuracy “UB (%)” values and average CPU times (in minutes).

It can be noticed that the second class consists of 30 CMWP test instances. The
remaining 64 instances are large or very large instances. Clearly, neither the ABB algorithms
nor the LBB algorithms are applicable for those instances. As a remedy, we have applied

the BS heuristic on these instances. Another approach may be to resort to DA heuristics for
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accurate solutions. However, the solution of the resulting MILPs is not possible especially
on large instances. In fact, LR approach applied to these MILPs may not always yield quite
accurate solutions. Briefly, we can say that the BS heuristic performs very well in particular

for large instances.

Table 10.22—-24 summarize our results with the BS heuristic. As an additional stopping
condition, we impose a restriction for the minimum area limit of regions considered with the
BS heuristic. The area of the rectangles, which is to be partitioned, are limited to be
larger than 0.001 with the purpose to accelerate the BS heuristic and make sure that the
partitioning ends in a finite number of steps. We use the hybrid lower bounding procedure
described for the LBB algorithms. That is to say, we use both LP based and block norm
based lower bounding procedures for the BS heuristic. It is observed that using only the LP
based lower bounds does not have promising performance. The same settings with the LBB
algorithms are preserved for the BS heuristic. The hybrid bounding continues with the LP
and block norm based lower bounding procedures until there are J x K rectangles for the
LBB algorithm and then we switch to use only LP based lower bounding procedure. The
first columns state the instance names. The second column presents the benchmark upper
bound used as the reference value Zg for the percent deviation of upper bounds. We run DA
heuristics with a discretization over customer locations by solving DAP formulation with
zero lower bounds E]‘ = 0 and u;; = min{s;,¢;}. Namely, the CL-DA heuristic with exact
solution of DAP formulation over the customer locations. Note that MCALA is replaced
with a CALA as a final step to perform improvements for the CMWP. We impose a four-hour
time limit for the solution of the DAP formulation. However, in some very large instances
either it is not possible to obtain a solution or it takes up to almost nine hours to produce a
feasible solution. We also resort to the LR of DAP with a discretization over customers (CL-
RDA heuristic). Then, we select the best solution produced by these heuristics and the BS
heuristic as the benchmark upper bounds. The rest of the columns are dedicated to various
combinations of beam width W and evaluation function parameter ¥ which are indicated
in the second rows within parenthesis as (¥,W). We report upper bound percent deviations
from the benchmark upper bound and CPU times in minutes. Beam width W is set to 1
and 3, and the evaluation function parameter ¥ is set to 0, 0.25 and 0.5 in the experiments.
In addition, ¥ = 0.75 and ¥ = 1.0 is also tested within the experiments. However, their
outcome is not as satisfactory as the ones which are reported here. Additionally, a beam

width of W > 3 requires excessive CPU times. As a result, we prefer to use this setting
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for (W,IW). The combination of (W,IW) affects the performance of the BS heuristic on the
CMWP. We observe that beam width of W = 3 yields more accurate solutions with ¥ = 0.25

for both the first and second class of the test instances.

For the first class of the CMWP instances, BS heuristic is neither more efficient nor
more accurate than the DA heuristics (i.e., CL-DA and CL-RDA heuristics). On the other
hand, BS yields more accurate solutions on the large CMWP instances (instances in the
second class) than the CL-RDA heuristic does. CL-DA heuristic yields the most accurate
solutions. However, for large instances, BS can find good feasible solutions where CL-DA
can only produce solutions with drastic CPU times. Actually, BS heuristic lies in between
the DA heuristics CL-DA and CL-RDA in terms of both efficiency and accuracy. BS requires
more CPU time than the CL-RDA heuristic does. To sum up, on large instances BS is a
promising alternative when the exact solution of the MILPs are not possible for CL-DA with
the CMWP.

10.2.5.2. The Multi-commodity Capacitated Multi-facility Weber Problem. In Table 10.25

we present the results on the first class of MCMWP instances obtained with the MABB algo-
rithm which employs RLT based lower bounding procedure accompanied with pure location
based lower bounding Zyss45 given by Equation 8.61 and three MBrSs (i.e., MBrS1, MBrS2
and MBrS3 defined by Equation 8.70, 8.71 and 8.72 respectively). The first column stands
for the instance names. The second column provides the initial upper bound values. The
calculation of the initial upper bounds are described in Chapter 8 while the lower bounds
are determined by the RLT based lower bounding procedure for the MCMWP. Note that
initially Zyrsas is equal to zero since [;j; = 0 for all allocation variables. The next three
blocks of columns are dedicated to the results obtained with each of the three MBrSs (i.e.,
MBrS1, MBrS2 and MBrS3). Total computational times in minutes are given under the
columns “CPU”. A CPU time limit of four hours is imposed to run the MABB algorithm.
“UB (%)” denotes the percent deviation of the final upper bound Z/2* (Z;) from the
benchmark lower bound value (namely, the reference value Zg) given in Table A.1. They
are calculated by the Equation 10.1. “GAP (%)” stands for the duality gap between the
lower and upper bounds determined by using Equation 10.2 where Z5#e and ZFinal are the
final upper and lower bounds of the corresponding BB algorithm, respectively. Z% is the
benchmark lower bound value given in Table A.1 and Table A.2. Finally, the last rows give

the overall average of the test instances.
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The presentation of Table 10.26 is similar to the one of Table 10.25. Table 10.26
provides the performance of the ¢, -norm based lower bounding procedure (namely /.-
RMDAP1) within the MABB algorithm. Notice that for the MABB algorithm, we prefer a
weaker (looser) but more efficient lower bounding procedure. The motivation behind the use
of LR of MDAP1 with /,.-norm is its approved efficiency on the CMWP instances. The lower

bounds are always tightened with Z);54¢ inspired by the results obtained for the CMWP.

For the sake of conciseness, we will denote the MABB algorithm with the RLT based
lower bounding procedure as RLT-MABB and the MABB algorithm with ¢,,-norm based
lower bounding procedure as ¢,.-MABB in the sequel. The computational results favor
the ¢, -MABB algorithm when compared to RLT-MABB algorithm. Although there are
a few instances for which RLT-MABB algorithm is superior to f,.-MABB, the ¢/,-MABB
algorithm performs much better than the RLT-MABB algorithm in terms of both accuracy
and duality gaps. On the average, the RLT-MABB and ¢,-MABB algorithms yield upper
bound values with percent deviations from Zg by 3.92% and 0.61% and, duality gaps 55.66%
and 9.66%, respectively. Although, the RLT based lower bounds are weak, the RLT-MABB
algorithm can solve 11 out of 60 test instances with 0.1% closeness to optimality. On the
other hand, the /,.-MABB algorithm outputs 8 out of 60 test instances within 0.001 of
the optimal value. The RLT-MABB algorithm requires less CPU time than the ¢/,-MABB
algorithm does on the average. Meanwhile, the CPU times reach the four-hour limit on most
of the instances when both RLT-MABB and ¢,-MABB algorithms are used. It is observed
that the performance of the MABB algorithm deteriorates with the increasing number of
commodities. Furthermore, the total number of allocation variables has also a negative effect

on the MABB algorithm’s performance.

Based on the observations, we can say that MBrS2 does not perform well with neither
RLT nor the /. -norm based lower bounding procedure. Moreover, MBrS1 seems to be
slightly better than MBrS3. Therefore, we can also claim that the performance of the
MABB algorithm is significantly affected by the sequence of allocation variables selected
for branching. The winner is the /,.-MABB algorithm employing the {,,-norm based lower
bounding procedure with MBrS1.

In addition to the MABB algorithm, LBB algorithms (i.e., MLBB and MLBBCE al-

gorithms) are also tested as part of the experiments on the test instances. Both LP (ZMFBB
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given by Equation 9.3) and ¢.-norm (Z3E5BB) based lower bounding procedures are initially

used together within the MLBB and MLBBCE algorithms. However, the calculation of /.-
norm based lower bounding procedure continues until 3 x N x K rectangles are generated
by both MLBB and MLBBCE algorithms. This setting improves the performance of both
the MLBB and MLBBCE algorithms as it is the case for the CMWP. In summary, the block
norm based lower bounding is expensive and the performance of the algorithm deteriorates
when it is calculated at every bounding step together with the LP based bounding procedure.
Actually, the block norm based lower bounding procedure produces sufficiently tight bounds
in the early stages of the LBB and LBBCE algorithms. However, as the algorithm proceeds
LP based lower bound values exceeds the block norm based lower bound values. Hence, we
continue only with the LP based lower bounding procedure when the number of rectangles

reaches a predefined upper limit.

Table 10.27 gives the results obtained with both the MLBB and MLBBCE algorithms.
Table 10.27 has the same format with Table 10.19 — 10.21. At the root node of the BB tree
Zypaps is equal to ZMEBE - Therefore, the initial lower bounds are the same for both ABB

and LBB algorithms using /,.-norm at the root nodes.

Our computational experiments indicate that the MLBB algorithm outperforms the
MLBBCE algorithm on the average in terms of duality gaps. However, there exist four
instances for which MLBBCE algorithm yields better lower bounds than the MLBB algo-
rithm does. The MLBBCE algorithm seems to be more efficient than the MLBB algorithm
on the average but its performance deteriorates significantly for instances with more than
10 facilities. In particular, the number of facility-rectangle combinations increases quickly
during the run of the MLBBCE algorithm. This limits the use of MLBBCE algorithm on
instances with small number of facilities (i.e., I < 10). Once a rectangle is partitioned,
the subproblems produced by the MLBBCE algorithm can be solved by multiple processors
simultaneously as a remedy. We believe the performance of the MLBBCE algorithm may be

improved by a parallel implementation.

The MLBB algorithm yields duality gaps less than 0.15 of the optimum on 90% (54
out of 60) of the test instances. On the other hand, this ratio is 65% (39 out of 60) for
the MLBBCE algorithm and 85% (51 out of 60) for the best performing MABB algorithm
({oo-MABB using MBrS1). On the average, the MLBB algorithm finds duality gaps within
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6.97% while MLBBCE and best performing MABB algorithm yield duality gaps of 11.08%
and 9.66%), respectively. In total, the MLBB and MLBBCE algorithms solve 19 out of 60
and 21 out of 60 instances within 0.001 of optimum, respectively. On the other hand, this
number is 11 out of 60 for the MABB algorithm. As a verdict, the location based algorithms

perform better than the allocation based algorithms in the light of our extensive experiments.

BS heuristic is also applied on the MCMWP test instances with the same settings
defined for the CMWP. Our results are summarized in Table 10.28 for the first class of
MCMWP instances and in Table 10.29 for the second class of the test instances. Table 10.28
and Table 10.29 have the same outline with Table 10.22-24. As the reference values Zp,
benchmark lower bounds in Table A.1 and A.2 are used. BS heuristic performance is more
promising for the MCMWP instances than the CMWP instances. Actually, there is a trade-
off between the performance of the BS heuristic and the beam width W. Clearly, the larger
the beam width is the larger the accuracy and running times are. In general, W = 3 yields
more accurate solutions for the BS heuristic. What is more, we can state that for different
values of W, the BS heuristic may perform differently. Hence the most suitable U value
should be calibrated by some trial and error experiments. According to our computational
experiments, we observe that the combination (V,W) = (0.25,3) has a superior performance
than the other combinations for the first class of MCMWP instances while (¥, W) = (0.5,3)

is better for the second class of the test instances.

According to our computational experiments, BS finds very close solutions (less than
1%) to the best performing heuristic CL-MDA1 for the first group of MCMWP test instances.
Their accuracies are 0.61% and 0.91% on the average for the CL-MDA1 and BS heuristic,
respectively. On the other hand, CL-MDA1 is more efficient than the BS heuristic in the
average. The BS heuristic is 2.93% more accurate than the best performing LR heuristic

CL-RMDAZ2 on the average with an expense of additional CPU time requirements.

On the second class of test instances (very large instances), BS heuristic yields 7.45%
percent deviations from the Zz. This deviation is 13.45% for the CL-RMDA2 heuristic which
is more efficient than the BS heuristic. On these instances, the best performing heuristic
CL-MDA2 does not find solutions in 7 out of 18 test instances even with a four-hour time
limit which is stated in Table 10.9. Consequently, BS heuristic yields competitive results
with the DA heuristics which have the best accuracy and efficiency for the MCMWP on

large instances.
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Table 10.27. The performance of the MLBB and MLBBCE algorithms on the first group of
the MCMWP instances.

Instance | MLBB (ZMEBB + ZMLEBY TNLBBCE (ZMFBB + ZMLEE)
Name UB(%) | GAP(%) | CPU | UB(%) | GAP(%) CPU
me_2.2.2 0.00 0.00 | 0.00[ 0.00 0.00 0.01
me2.2.3 0.00 0.00| 002] 0.00 0.00 0.01
me 225 0.00 0.00 | 0.00] 0.00 0.00 0.01
me_2.4.2 0.10 0.10 | 0.13| 0.10 0.10 0.10
mc_2.4.3 0.10 0.10 | 044 0.10 0.10 0.47
me_2.4.5 0.10 0.10| 1.25| 0.10 0.10 0.52
me_3.5.2 0.10 0.10 | 147 0.10 0.10 1.30
me_3.5.3 0.10 0.10 | 874| 0.10 0.11 186
me_3.55 0.10 0.10| 691 0.10 0.10 6.32
me_3.92 0.10 0.10 | 80.73| 0.10 0.10 97.26
me_3.9.3 0.10 0.10 | 594 0.10 0.11 198
me_3.95 0.90 0.98 | 240.00 | 0.90 0.90 | 240.00
me4.8.2 0.03 0.10 | 16.97 | 0.03 0.11 11.81
me4.8.3 0.10 0.10 | 3461 0.10 0.10 37.54
me 485 0.05 0.10 | 21.66 | 0.05 0.10 7.88
mcA4102 | 0.10 0.10 | 133.05 | 0.10 0.10 79.94
mc4.103 | 0.4 0.44 [ 240.00 | 0.4 0.67 |  240.00
mcA4105 | 0.03 0.10 | 240.00 | 0.03 0.10 | 155.73
mcA4152 |  0.10 0.10 | 23352 | 0.10 0.11|  240.00
meAd 153 | 0.62 6.43 | 240.00 | 0.62 11.02 | 240.00
meA4 155 | 0.01 5.95 | 240.00 | 0.01 872  240.00
me_5_8.2 0.10 0.10 | 3833 | 0.10 0.11 13.26
me_5.8.3 0.10 0.10 | 2653 | 0.10 0.10 20.55
me_5.8.5 6.82 6.82 | 240.00 |  6.82 15.83 | 240.00
me 5102 | 0.10 0.10 | 3319 0.10 0.10 38.51
me5.103 | 0.10 0.10 | 57.90 | 0.10 0.10 68.35
me 5105 | 0.29 14.79 [ 240.00 | 0.29 1955 | 240.11
me 5122 | 3.40 3.40 | 240.00 | 3.40 446 |  240.00
me 5123 |  0.34 159 [ 240.00 | 0.34 0.34 |  240.00
mc5.125 | 11.28 14.66 | 240.00 | 11.28 | 2624 |  240.00
me 5152 | 0.01 476 | 240.00 | 0.01 368 |  240.01
mc5.153 | 0.04 434 240.00 | 0.0 9.90 | 240.00
me 5155 | 4.79 10.19 [ 240.00 | 4.79 16.49 | 240.00
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Table 10.27. The performance of the MLBB and MLBBCE algorithms on the first group of
the MCMWP instances cont.

Instance MLBB (ZpP8 + ZMEESY | MLBBCE (Z14B8 4 Z31LEE)

Name UB(%) | GAP(%) | CPU | UB(%) | GAP(%) CPU
me_5_20_2 1.35 8.22]240.00 | 1.35 10.78 | 240.00
me_5.20_3 2.05 11.44 [ 240.00 | 2.05 12.62 | 240.01
me_5_20_5 0.02 8.53 | 240.02 | 0.02 1243 240.00
me_5_30_2 0.00 7.63 [ 240.01 | 0.00 8.96 |  240.20
me_5_303 0.00 7.40 | 240.00 | 0.00 9.11|  240.01
me_5_305 0.01 0.55 | 240.04 | 0.01 10.68 | 240.01
me_6_10_2 0.11 6.46 | 240.00 | 0.1 0.11|  164.11
me_6.103 0.09 9.57 | 240.00 | 0.09 11.21 ] 240.00
me_6.105 0.11 14.89 | 240.02 | 0.11 17.38 | 240.00
me_8.10_2 0.05 11.26 | 240.00 | 0.05 11.20 | 240.00
me_8_103 0.37 16.05 | 240.00 | 0.37 | 2272  240.06
me_8_105 0.00 1351 | 240.18 | 0.00| 22.11| 240.10

mc_10_10_2 0.00 14.94 | 240.02 0.00 30.31 241.08
mc_10_10_3 0.00 25.33 | 240.00 0.00 35.41 240.02
mc_10_10_5 0.01 17.22 | 240.18 0.01 39.06 243.75
mc_10-15_2 0.14 15.36 | 240.00 0.14 47.63 240.11
mc-10_15_3 0.01 9.24 | 240.04 0.01 18.63 240.20
mc-10_15.5 0.20 14.84 | 240.11 0.20 27.40 242.77
mc_10_20_2 0.23 13.03 | 240.00 0.23 19.69 240.06
mc_10_20_3 0.01 14.28 | 240.37 1.62 28.68 241.63
mec-10-20_5 0.14 13.28 | 240.07 1.09 24.26 240.31
mc-10-24_2 0.47 16.30 | 240.02 0.47 26.84 240.06
mc-10-24_3 0.01 18.75 | 240.01 3.00 26.66 240.64
mc-10-24_5 0.01 12.39 | 240.21 0.01 17.70 240.53
mc-10_30_2 0.16 10.76 | 240.06 0.16 21.49 240.25
mc_10_30_3 0.16 11.64 | 240.03 0.16 17.13 240.86
mc_10_30_5 0.06 10.37 | 240.23 0.06 14.81 241.26
Average 0.61 6.97 | 171.72 0.70 11.08 168.13
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11. CONCLUSIONS

In this dissertation, we address a multi-commodity and capacitated extension of the
MLAP. In particular, we deal with a variant of the continuous MLAP, namely the MCMWP,
that is new to the literature. We propose heuristics and exact solution methods for the

MCMWP where the distances are measured using £,-norm with 1 < r < oo.

First, we suggest new location-allocation heuristics for the MCMWP. The location-
allocation heuristics are basically the adaptations and enhancements of Cooper’s alternate
location-allocation and Luis et al.’s region rejection heuristics (Cooper, 1964; Luis et al.,
2009). Among them the C-MRR and the D-MCALA, which are straightforward general-
izations of Cooper’s ALA heuristic, perform the best. All MCALA, MRR and MDRR are
randomly initialized heuristics which are very efficient. They may produce accurate solutions
when they are performed many times. Nevertheless, their performance depends on the initial
selection of the facility locations (or an initial feasible transportation problem). In practice,
there may be a sequence of random locations which gives rise to a superior performance
of one ALA heuristic over the others. That is to say, randomized ALA heuristics have an
oscillating performance that the range between their best and worst case is quite large. Such
a randomness is exploited to produce practical estimates on the objective value within a

confidence interval framework in this work.

Second, Discrete Approximation (DA) heuristics are implemented for the MCMWP.
They are inspired from the studies by (Hansen et al., 1998) for the MWP and (Aras et al.,
2007) for the CMWP. DA heuristics reduce the location space into a finite number of candi-
date facility locations and require the optimum solution of a MILP problem. We incorporate
the theoretical results by (Thisse et al., 1984) on block norms and extended the applicability
of the DA heuristics such that they can now be used to produce lower bounds, as well. Basi-
cally, we suggest two discretization strategies which select the candidate locations using the
block norms and customer locations. In the experiments, we implement block norms based
strategy for the ¢; and /. .-norms. We observe that /,,-norm is a better choice than the
{1-norm in computing the lower bounds; but the upper bounds obtained using the customer
locations have been the most accurate ones. In particular, it can be expected that ¢;-norm
produces better lower bounds than the ¢,-norm when 1 < r < 2. In fact, the relation

2=1)/T¢, < ¢, becomes tighter as r approaches towards 1. On the other hand, /,-norm is a
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better lower bounding approximation for ¢,-norm when r > 2. Another, choice is to rotate
the customer locations on the plane with an angle between 0° and 45° and test whether
a better lower bounding block norm, which also has four fundamental directions as ¢; and

ls-norms, can be found using the relations given in Chapter 5.

When comparing the ALA and DA heuristics, we can say that the latters generally
perform better than the formers in terms of accuracy. However, their major weakness is the
drastic CPU time requirement, especially for large instances. Therefore, keeping in mind this
inconvenience, we devised specially tailored LR strategies in order to increase the efficiency of
the discrete approximation procedures. According to our computational experiments, we can
say that among all relaxed discrete approximation heuristics, CL-RMDA?2 produces the most
accurate upper bounds within reasonable CPU times. Considering the trade-off between the
accuracy and efficiency we can recommend ¢;-RMDA1 or /,-RMDA1 as lower bounding
approaches. However, when accurate upper bounds are crucial we definitely recommend the

CL-MDAT at the expense of its inefficiency.

As the third heuristic approach, we propose a LR scheme and the MS algorithm for
the MCMWP. The proposed LR scheme requires the solution of a variant of the well-known
MWP, as a subproblem of the MCMWP. The LR subproblem was handled with two strate-
gies: the CG procedure and the lower bounding block norm approach. In the first strategy,
we suggest an equivalent SC problem formulation for the LR subproblem. Then the LP
relaxation of the equivalent SC problem, namely SCLP, is solved by CG procedure. We
examine two different approaches, which are successfully applied on the MWP by (Krau,
1997) and (Righini and Zaniboni, 2007), in solving the Pricing Subproblem (PS) of the CG
procedure. In one approach, we solve a D.C. programming problem. In the other approach,
we solve the WPLD to perform the CG procedure. In the second strategy to solve the LR
subproblem, we propose using the block norm approach. For that purpose, we make use of an
approximating MILP of the LR subproblem, namely the UDAP. Then, using the ¢;-norm and
ls-norm in the objective function of the UDAP, we propose two lower bounding approaches
for the LR subproblem. In total, four lower bounding approaches are employed within the
MS algorithm for the MCMWP. We can say that among all lower bounding approaches,
handling the PS by solving the D.C. programming problem yields the most accurate lower
bounds at the expense of its inefficiency. Unfortunately, the MS algorithm for the MCMWP,

which employs any of these four approaches at each step, requires excessive CPU times even
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for small MCMWP instance. When we compare the MS algorithm with the ALA and DA
heuristics, the MS is very inefficient. Its accuracy is better than the ALA heuristics but
worse than the DA heuristics. Although, the MS algorithm does not perform well on the
MCMWP instances, it can be applied on other COPs for which the resulting subproblems

can be solved by efficient heuristics.

In another approach we have applied the Fisher and Tippett’s theorem to produce
statistical estimates and confidence intervals on the optimal solution of the MCMWP. Ini-
tialized by random starting solutions, three approximate solution procedures (i.e., MCALA,
MDA1 and MDRR) are devised for that purpose and they are combined with statistical
estimation procedures. We see that both the sampling method and the sample size affect
the efficiency of the confidence interval approach using EVT. Generally, the MRA sampling
produces more reliable confidence intervals, smaller absolute gaps and greater number of
covering intervals than the LLA does on test instances. In addition, a small sample size (i.e.,
M = 20) is often enough to obtain reasonable bounds with the Golden and Alt’s approach on
the optimum (or benchmark minimum) value for the MCMWP. It is also interesting to ob-
serve that an optimal (or good) initial assignment of random candidate locations to facilities
(e.g., the MDA1 or MDRR heuristic) does not always produce better results than a totally
random initialization of the facilities (e.g., MCALA heuristic). Indeed, although the MDA1
heuristic yields narrower confidence intervals than the others do, the MCALA and MDRR
heuristics yield more reliable intervals, smaller absolute gaps and greater number of covering
intervals than the MDAT1 heuristic. In the overall, the MCALA can be a better choice for

the MCMWP since it produces the largest number of covering intervals in all cases.

Exact solution methods are implemented for two continuous MLAPs: the CMWP and
MCMWP. We develop two types of BB algorithm: One of them works on the allocation
space and the other one works on the location space. The SABB algorithm is based on
the study by (Sherali et al., 2002) for the CMWP. We replicate (Sherali et al., 2002)’s
RLT based bounding procedure for the CMWP. Additionally, we embed our block norm
based bounding procedures within the SABB algorithm and use several branching variable
selection strategies with a DFS strategy. We can say that our SABB implementation using
block norm based bounding procedures beats (Sherali et al., 2002)’s algorithm using RLT
based bounding procedure for the CMWP. For the MCMWP, the MABB algorithm is the

first attempt to solve it exactly. We devise three lower bounding procedures: block norm and
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RLT based lower bounding procedures which are tightened with pure location based lower
bounds Zy;545. We follow a BFES strategy and investigate the performance of three different
MBrSs (i.e., MBrS1, MBrS2 and MBrS3) for the MABB algorithm. The block norm based
bounding procedures also produced better results than the ones produced by RLT based
bounding procedures for the MCMWP.

The LBB algorithms partition the location space and, for all we know, it is the first
time that such an algorithm is employed for continuous MLAPs. For both CMWP and
MCMWP, we employ two lower bounding procedures: LP and block norm based lower
bounding procedures. We pursue a BFS strategy and used a specially tailored branching
strategy working on the location space. We also suggest a complete enumeration strategy
(i.e., LBBCE) that can be used within the LBB algorithm. The LBBCE algorithm can be
enhanced further with a parallel implementation to solve new subproblems. In general, the
LBB algorithm shows a superior performance than the ABB algorithm in terms of both the

efficiency and the accuracy.

Lastly, we focus on the BS heuristics employing the LBB algorithm. The generic
BS heuristic is designed to solve discrete optimization problems such as sequencing and
scheduling problems. For the CMWP and MCMWP, we adapt the BS heuristic within a
continuous partitioning scheme (i.e., partitioning of the location space). Its performance is
higher than the DA heuristics using LR schemes. Moreover, the BS heuristic is also suitable
for very large instances on which the most accurate DA heuristic MDA1 fails to produce any
bounds. We believe that the framework we use for the BS heuristic can also be extended to

other optimization problems which requires a continuous partitioning.

As a further research direction, one can consider the MCMWP2 formulation and apply
a MS algorithm by relaxing constraints given by Equation 2.10 and 2.11. The resulting
Lagrange subproblem can be decomposed into a variant of K CMWPs. Then, the MS
algorithm can yield both lower and upper bounds on the MCMWP. However, we should note
that such a LR scheme and using MS algorithm may not be an efficient method regarding the
inherent difficulty of solving the CMWP exactly. In case the constraints given by Equation
2.8 is also relaxed from the MCMWP2, then the LR subproblems are again MWP variants

which can be solved by methods similar to the ones presented in Chapter 6.3.

In this work, we only consider the most primitive BB approach for the LBB algorithm.
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Yet, another research direction may be the generation of valid inequalities which can be
used within the LBB algorithm to improve the performance of the proposed lower bounding

procedures.

To the best of our knowledge, the LBB algorithm is a novel approach for the MLAPs
and its performance is promising. As an open research avenue, one can also develop the LBB
algorithm for various location-allocation problems. As for example, there may be passage
limitations over some regions on the customer’s plane and/or some regions may be forbidden
for locating a facility. In this case, for the LP based bounding procedure, the definition
of the closest distance over a region changes. In other words, one should also consider the
barriers or forbidden regions to calculate the lower bounding distance function. As far as we
know, there does not exist such a single or multi-commodity capacitated continuous MLAP
in the literature. Heuristic or exact solution methods deserve further research for these more

restricted problems.

As another open research avenue, one can consider the situation where customer lo-
cations are randomly distributed. In this case, customer locations may have a bivariate
probability distribution. The problem reduces to solving the MCMWP with the expected
value of distances between customers and facilities. The studies by (Durmaz et al., 2009) and
(Altinel et al., 2009) propose new ALA and DA heuristics for the CMWP with probabilis-
tic customer locations (PCMWP). Similar ALA and DA heuristics can also be developed
for the MCMWP with probabilistic customer locations (PMCMWP). However, an exact
solution method for solving the PCMWP does not exist in the literature. Exact solution
methods suggested in this dissertation can be adapted to the PCMWP and as well as to the
PMCMWP in order to fill this gap in the literature.

Last but not least, it is possible to obtain various variants of location problems by
substituting the allocation space with another set of constraints. In particular, the trans-
portation constraints of the MCMWP can be replaced with the constraint sets of Minimum
Spanning Tree Problem, Minimum Cost Network Flow Problem, Travelling Salesman Prob-
lem and Vehicle Routing Problem which result in Location-Minimum Spanning Tree Prob-
lem, Location-Network Flow Problem, Location-Travelling Salesman Problem and Location-
Routing Problem, respectively. Each of these problems is computationally difficult to solve

and also deserves special research interest.
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APPENDIX A: BENCHMARK BOUNDS

Table A.1 and Table A.2 summarize the outcomes of the solution methods suggested
for the MCMWP. In Table A.1 and Table A.2, the first column shows the instance names.
Each of the remaining columns correspond to the outcome of a solution (both exact and
approximate) method which are the best outcome produced by each solution method. For
example, “BEST LB” and “BEST UB” under the columns dedicated to “ABB” algorithm
stand for the best lower bound value and the best upper bound value produced by the MABB
algorithm. Note that there are several lower bounding (i.e. RLT based, block norm based
and MSAS) procedures and branching variable selection strategies (i.e., MBrS1, MBrS2 and
MBrS3). The values reported here are selected as the best ones of the lower and upper
bounds produced by the MABB algorithm with different bounding procedure and MBrS

combinations.
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APPENDIX B: CONFIDENCE INTERVALS

Now we present the detailed computational experiments which are summarized in
Chapter 7 with Table 10.12-15. Confidence intervals obtained with the MCALA, MDA1
and MDRR heuristics on the RMCMWP instances and the MCMWP (with Euclidean dis-
tance) instances are presented in Tables B.1-8, respectively. In Table B.1-8, the first columns
include the labels of the test instances. The number of distinct local optima produced by
each heuristic, i.e., MCALA, MDA1 and MDRR, is shown in the second, third and fourth
columns, respectively. The letter F indicates that the sample has failed to pass the indepen-
dence test and the symbol “N/A” is used to indicate samples which do not fit the Weibull
distribution. In Table B.1-8, the extreme value sample sizes, which are selected as M = 20,
M = 30 and M = 40, are presented in the fifth column. Confidence intervals obtained with
the MCALA, MDA1 and MDRR heuristics using the MRA and LLA samplings are given
in the remaining columns. The cells representing large instances which can not be solved

because of excessive CPU time requirements are marked with “N/A”.
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Table B.1. Confidence intervals obtained with random MCALA heuristic on a subset of 30
MCMWP instances with the rectilinear distance.

Instance | Loc. Opt. | Samp. Confidence Intervals
Names Num. Num. MRA LLA
20 [1565.29,1924.01] [1562.26,1744]
mc_4 82 219 30 [1563.67,1963] [1562.26,1744]
40 [1563.53,1963 [1562.26,1744
20 [9862.98,13428 [9867.69,10306
mc_4.8_3 342 30 [9529.92,13428] | [9867.69,10300]
40 [8981.42,12576 [9867.69,10306
20 [9411.99,11007 [9237.59,10201
mc 4 85 1188 30 [9411.99,11007] [9384.8,10201]
40 [9257.22,11007 [9229.69,10201
20 [6433.67,8891 [6429.16,6842
mc_4.10_2 397 30 [6342.2,8775] [6429.16,6842]
40 [6237.79,8775] [6429.16,6842]
20 [11498.92,15190] | [10858.39,12610]
mc_4.10_3 381 30 [11458.65,14349] | [11349.39,12610]
40 [11458.65,14349] | [11349.39,12610]
20 [28130.25,31909] | [28139.67,29333]
mc4.10_5 945 30 [27264.73,32273] | [28139.67,29333]
40 [27122.59,32202] | [28048.42,29335]
20 [12400.27,17051] | [12399.1,15164]
mc_4_152 646 30 [12412.26,16823] | [11967.31,14695]
40 [12341.52,16971] | [11716.31,14695]
20 [35786.78,43448] | [35699.69,39314]
mc 4153 2640 30 [35782.7,42889] | [34023.82,37709]
40 [35788.72,43203] | [32716.95,37048
20 [41657.9,50190] | [41662.68,45317
mc 4155 4306 30 [41277.98,52850] | [41679.36,44609]
40 [39363.29,48528] | [41662.68,45317
20 [3925.4,5764 [3405.41,4592
mc_5_10_2 437 30 [3918.31,5288] [2406.03,3974]
40 [3913.29,5739 [2406.03,3974
20 [10060.58,17054 [9979.54,16306
mc_5_10_3 1084 30 [10062.11,18984] | [9912.56,16205]
40 [10062.86,18429 [9300.92,15894
20 [56190.36,65581] | [56258.84,57337
mc_5_10.5 1371 30 [52787.9,63101] | [56248.62,57385]
40 [49379.44,60557] | [55906.16,56991
20 [7782.34,9353 [7776.22,7784
mc_5_15_2 552 30 [7758.03,9353] [7776.22,7784]
40 [7781.31,9379] [7776.22,7784]
20 [32831.31,44312] | [32829.38,38366]
mc_5_15_3 7064 30 [32769.33,44083] | [32823.63,38360]
40 [32794.94,46280] | [32723.58,37421]
20 [24177.85,36344] | [24183.45,29562]
mc_5_15.5 6257 30 [24153.42,34396] | [24184.22,29398]
40 [24185.21,36326] | [24181.14,29534]
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Table B.1. Confidence intervals obtained with random MCALA heuristic on a subset of 30
MCMWP instances with the rectilinear distance cont.

Instance Loc. Opt. | Samp. Confidence Intervals
Names Num. Num. MRA LLA
20 [9800.98,14284] [9808,10997]
mc_5_202 2280 30 [9770.22,14263] [9768.53,11466]
40 [9775.81,15192 [9590,10997
20 [20454.21,23193 [20459.62,21714
mc_5_20_3 1896 30 [20452.9,22103] [20282.43,21714]
40 20338.28,22634 20385.15,21714
20 58843.13,69522 58844.78,64354
mc_5_20.5 6802 30 [58844.78,67501] [58844.28,63658]
40 58840.98,67898 58845.12,64342
20 56646.66,76477 56664.16,64098
mc_5_30_2 7310 30 [56654.47,75867] [56664.55,64118]
40 56635.39,74826 56658.83,65021
20 78437.99,96930 78427.73,87451
mc_5_30_3 11827 30 [78438.41,97088] [78442.32,88324]
40 [78433.4,96977 [78403.6,87451
20 [224740.64,271616] | [224749.37,243052
mc_5_30_5 12697 30 [224735.98,266003] | [224749.26,244214]
40 [224718.52,267429 [224724.5,242228
20 [3069.65,4194 [3025.3,3485
mc_6_10_2 367 30 [3062.24,3756] [2937.39,3358]
40 [2960.24,3756 [2945.21,3358
20 [6417.45,7546 [6426.56,7062
mec_6_10_3 1295 30 [6423.45,7546] [6426.66,7062]
40 [6370.45,7546 [6426.66,7062
20 [11455.3,14992 [10777.84,12162
mc_6_10_5 1443 30 [11449.01,14992] [10777.84,12162]
40 [11454.02,14909 [10726.84,12162
20 [7003.59,11357 [7003.51,8957
mc_8_10_2 3090 30 [7001.88,11011] [7000.95,9047]
40 [7001.02,11171 [7003.37,9160
20 [10418.69,18134 [10418.46,14545
mc_8.10_3 5353 30 [10410.18,17493] [10408.2,14781]
40 [10415.86,18108 [10393.63,14590
20 [21287.16,32528 [21287.87,27652
mc_8_10.5 8970 30 [21287.37,33607] [21287.24,28325]
40 [21287.15,33570 [21287.98,28650
20 [3600.53,7044 [3600.76,5908
mc_10_10_2 2587 30 [3599.74,6793] [3600.97,5940]
40 [3599.81,6812 [3600.82,5908
20 [13563.27,17475 [13563.29,16174
mc_10_10_3 4026 30 [13563.51,17475] [13563.47,16174]
40 [13563.65,17376 [13563.91,15926
20 [5387.62,11839 [5387.1,10773
mc_10_10_5 4020 30 [5387.93,12335] [5387.74,11076]
40 [5389.99,12335] [5380.66,11076]
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Table B.2. Confidence intervals obtained with the randomized MDA1 heuristic on a subset
of 30 MCMWP instances with the rectilinear distance.

Instance | Loc. Opt. | Samp. Confidence Intervals
Names Num. Num. MRA LLA
20 [1494.09,1913] [1495.56,1708]
mc_4.82 46 30 [1494.09,1913] [1397.34,1656]
40 [1494.09,1913] [1386.43,1566]
20 [9883.68,10320] [9913.08,9923]
mc 483 38 30 [9102.08,9923] [9913.08,9923]
40 [9102.08,9923] [9913.08,9923]
20 [9145.38,11135] [9410.58,9420]
mc 4. 85 85 30 [6946.58,9420] [9410.58,9420]
40 [6946.58,9420] [9410.58,9420]
20 [6029.98,7019] [6379.61,6711]
mc 4102 47 30 [5820.07,6914] [6379.61,6711]
40 [5676.16,6842 [6396.29,6711
20 [9988.49,11507] | [11495.49,11507
mc_4.10_3 41 30 [9988.49,11507] | [11495.49,11507]
40 [9988.49,11507] | [11495.49,11507
20 [27169.5,29500 [27765.3,28740
mc-4-10-5 88 30 [25607.5,29500] | [27765.3,28740]
40 [25607.5,29500] | [26755.86,28142]
20 [9514.58,12424] | [12411.58,12424]
mc 4152 89 30 [7265.58,12424] | [12411.58,12424]
40 [7172.58,12424] | [12411.58,12424]
20 [33880.09,39909] | [35625.88,36060]
mc 4153 98 30 [32850.95,37048] | [35632.94,36060]
40 [32490.78,36218] | [35632.94,36060]
20 [41662.68,45317] | [41643.32,41685]
mc-4.-15.5 238 30 [41662.68,45317] | [41643.32,41685]
40 [41658.68,45317] | [41643.32,41685]
20 [3622.03,3974 N/A
me_5_10_2 14 30 [3622.03,3974] N/A
40 [3622.03,3974 N/A
20 [9752.92,17076 [7763.79,10215]
me_5_10_3 180 30 [9179.99,17212] | [7967.33,10478]
40 [4886.85,14463] | [7763.79,10215]
20 [56205.25,59752] | [56225.64,58291]
mc_5_10_5 113 30 [55691.51,59495] | [56210.84,58291]
40 [56093.25,59752] | [56179.33,58284]
20 [7744.227784] [7776.22,7784]
me_5_152 91 30 [7744.227784] [7776.22,7784]
40 [7744.227784] [7776.22,7784]
20 [32793.33,35668] | [29965.17,32833]
mec-5-15_3 284 30 [32793.33,35668] | [29965.17,32833]
40 [32793.33,35668] | [29965.17,32833]
20 [23536.88,27713] | [23627.04,24504]
mc_5_15.5 350 30 [22021.94,25723] | [23424.89,24425]
40 [21857.97,25723] | [23168.81,24186]
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Table B.2. Confidence intervals obtained with the randomized MDA1 heuristic on a subset
of 30 MCMWP instances with the rectilinear distance cont.

Instance Loc. Opt. | Samp. Confidence Intervals
Names Num. Num. MRA LLA
20 [9759.4,13596] [9300.85,10154]
mc_5_202 294 30 [9759.4,13596] [9300.85,10154]
40 [9779.33,13570 [9117.92,10154
20 [20449.9,22103 [20434.88,21463
mec_5_20_3 310 30 [20449.9,22103] [20434.88,21463]
40 [20449.9,22103 [20434.88,21463
20 [58840.23,63175 [57508.94,61600
mc_5_20.5 239 30 [58819.66,63519] [57154.54,61700]
40 58833.92,63519 N/A
20 56658.06,62940 [56454.39,59609]
mc_5_30_2 809 30 [56658.06,62940] [55713.15,59609]
40 56609.23,62637 [56000.39,59609
20 78432.62,83348 [78136.17,81504
mc_5_30_3 1811 30 [77923.16,33348] [77762.88,81317]
40 [77093.39,84615 [78247.96,81504
20 [219956.04,224965] | [224740.04,224965
mc_5_30_5 433 30 [219956.04,224965] | [224740.04,224965]
40 [216217.04,224965] | [224740.04,224965
20 [3079.04,3693 [2729.76,3521
mc_6_10_2 58 30 [3079.04,3693] [2729.76,3521]
40 [3079.04,3693 [2729.76,3521
20 [6421.78,7062 [6426.15,6851
mec_6_10_3 84 30 [6414.84,7070] [6426.15,6851]
40 [6423.22,7269 [6426.15,6851
20 [11435.81,14414 [11046.8,13585
mc_6_10_5 68 30 [11018.63,14414] [12277.05,12162]
40 [10950.42,13585 N/A
20 [7002.84,9162 [6997,7004]
mc_8_10_2 531 30 [6981.52,9235] [6020,7004]
40 [6835.24,9162 [6020,7004
20 [10375.46,14730 [10407.14,11938
mc_8.10_3 601 30 [10351.51,13210] [10391.87,11809]
40 [10031.42,13581 [10332.87,11809
20 [21284.95,29756 [21256.67,26026
mc_8_10_5 1418 30 [21284.67,29481] [21229.97,26026]
40 [21249.19,29481 [21229.97,26026
20 [3598.68,6293 [3593.98,5913
mc_10_10_2 953 30 [3600.87,6749] [3600.73,5476]
40 [3599.32,6293 [3600.44,5476
20 [13563.74,16722 [13546.38,14616
mc_10_10_3 1248 30 [13563.18,16340] [13546.38,14616]
40 [13556.3,16516 [13535.38,14616
20 [5389.25,10725 [5383.48,8986
mc_10_10_5 1439 30 [5388.9,10896] [5387.28,9061]
40 [5389.37,10725] [5389.41,8986]
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Table B.3. Confidence intervals obtained with the randomized MDRR heuristic on a subset
of 30 MCMWP instances with the rectilinear distance.

Instance | Loc. Opt. | Samp. Confidence Intervals
Names Num. Num. MRA LLA
20 [1564.32,1977] [1474.43,1560]
mc_4.82 218 30 [1544.09,1913] [1474.43,1566]
40 [1552.46,1976] [1386.43,1566]
20 [9920.47,13748] | [8991.69,10306]
mc 483 362 30 [9917.86,13748] | [8991.69,10306]
40 [9915.71,13735] | [8245.69,10306]
20 [9417,11002] | [9112.94,10065]
mc 4. 85 1230 30 [9411.99,11007] | [8984.94,10065]
40 [9259.99,11007] [8243.58,9420]
20 [6422.79,9097] [6427.32,6842]
mc_4.10_2 364 30 [5973.75,8413] [6411.11,6894]
40 [5593.09,7906 [6411.11,6894
20 [11481.26,14736] | [11349.39,12610
mc_4.10_3 265 30 [11482.3,14676] | [10858.39,12610]
40 [11466.29,14676] | [11349.39,12610
20 [28099.07,31895] | [28114.28,30209
mc-4-10-5 684 30 [28133.09,31909] | [27837.38,29335]
40 [27264.73,32273] | [27837.67,29335]
20 [12421.92,17030] | [12419.37,15112]
mc 4152 827 30 [12410.74,16824] | [12420.7,15112]
40 [12410.73,16824] | [12306.92,15112]
20 [35799.8,42203] | [35367.73,38343]
mc 4153 1996 30 [35754.98,43110] | [33443.59,37086]
40 [35427.57,42031] | [33461.11,37474]
20 [41660.06,49018] | [41674.37,43998]
mc-4.-15.5 4326 30 [41231.06,47943] | [41664.01,44179]
40 [40977.74,48926] | [41670.54,44241
20 [3922.47,5538 [3469.46,5424
me_5_10_2 134 30 [3926.95,5538] [3469.46,5424]
40 [3926.26,5538 [3408.31,4686
20 [10023.85,19387 [9995.24,16804
mc_5.10_3 630 30 [10052,18757] | [9394.71,16205]
40 [10059.03,19266] | [9319.69,16306]
20 [56276.24,64410] | [56292.74,58189]
mc_5_10_5 822 30 [54973.33,62681] | [56284.12,58352]
40 [52787.9,63101] | [56273.43,58117]
20 [7760.33,9376] [7776.22,7784]
me_5_152 346 30 [7720.77,9353] [7776.22,7784]
40 [7693.62,9379] [7776.22,7784]
20 [32824.12,47174] | [32830.43,39224]
mec-5-15_3 5218 30 [32832.14,46280] | [32822.88,39112]
40 [32827.85,45835] | [32731.51,38490]
20 [24160.4,33600] | [24180.58,29163]
mc_5_15.5 3614 30 [24164.24,33642] | [24178.68,28846]
40 [24108.4,34148] | [24184.05,28909]
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Table B.3. Confidence intervals obtained with the randomized MDRR heuristic on a subset
of 30 MCMWP instances with the rectilinear distance cont.

Instance Loc. Opt. | Samp. Confidence Intervals
Names Num. Num. MRA LLA
20 [9812.99,15192] [9811.35,12530]
mc_5_202 1796 30 [9812.73,15214] [9810.01,12687]
40 [9810.81,15192 [9809.12,12530
20 [20455.02,22742 [20448.64,21714
mec_5_20_3 1175 30 [20449.69,23193] [20448.25,21714]
40 20441.26,22742 20453.17,21714
20 58843.12,69215 58839.86,63299
mc_5_20.5 4862 30 [58844.02,67744] [58842.81,64047]
40 58844.21,67744 58844.02,64266
20 56661.93,76152 56664.55,66082
mc_5_30_2 8564 30 [56588.62,78123] [56662.13,64118]
40 56656.87,76314 56621.76,64118
20 78429.61,93703 78441.45,86774
mc_5_30_3 10158 30 [78442.41,94737] [78439.14,86340]
40 [78437.23,94759 [78395.94,87938
20 [224737.76,270670] | [224746.43,243276
me_5_30_5 12161 30 [224748.73,261621] | [224749.26,240742]
40 [224380.53,260322] | [224728.57,239699
20 [3073.95,4050 [3057.65,3485
mc_6_10_2 222 30 [3073.95,4050] [3069.36,3485]
40 [3062.24,3756 [3074.71,3485
20 [6426.28,8449 [6415.77,7195
mec_6_10_3 520 30 [6423.45,7546] [6419.6,7062]
40 [6220.82,7435] | [6418.37,7062]
20 [11434.92,15373 [11449.97,13799]
mc_6_10_5 551 30 [11364.08,15203] [11401.46,13915]
40 [11426.13,15203 [11400.33,13778
20 [7002.66,11283 [7001.34,9778
mc_8_10_2 950 30 [7001.3,11057] [7003.44,9710]
40 [7003.7,11524 [7003.24,9595
20 [10411.73,16787 [10341.2,13799
mc_8.10_3 1107 30 [10267.06,16787] [10270.58,13799]
40 [9547.08,19918 [10341.2,13799
20 [21283.67,34775 [21281.83,28833
mc_8_10_5 2144 30 [21282.44,34465] [21278.65,29082]
40 [21282.47,33209 [21282.23,29093
20 [3594.94,7311 [3118.86,5987
mc_10_10_2 612 30 [3600.22,7125] [3598.15,5987]
40 [3600.81,7083 [3545.72,5987
20 [13561.55,17352 [14379.97,17475
mc_10_10_3 799 30 [13562.35,17241] [15228.95,17475]
40 [13559.69,17475 [15681.04,17241
20 [5386.03,12884 [5341.41,11534
mc_10_10_5 1652 30 [5389.89,11534] [5367.01,11534]
40 [5383.73,12377] [5328.87,11534]
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Table B.4. Confidence intervals obtained with the randomized MCALA heuristic on a subset
of 30 MCMWP instances.

Instance | Loc. Opt. | Samp. Confidence Intervals
Names Num. Num. MRA LLA
20 [1134.02,1364.08] [1176.86,1271.11]
mc.4.8 2 49 30 [1112.31,1364.08] [993.85,1179.55)
40 1134.02,1364.08 [993.85,1179.55)
20 6121.65,9198.07 N/A
mc 4 83 75 30 [5937.13,9106.36) N/A
40 5938.32,9106.36 N/A
20 7700.98,8746.15 N/A
mc.4.85 198 30 [7705.85,8746.15) N/A
40 7705.85,8746.15 N/A
20 4286.73,5689.31 [5210.65,5689.31]
mc_4_10_2 76 30 [5303.60,6900.90] N/A
40 5303.60,6900.90 N/A
20 8714.82,9934.85 N/A
mc_4.10_3 55 30 [8714.82,9934.85] N/A
40 [8714.82,9934.85 N/A
20 [23480.99,25268.60] | [23401.87,24475.26]
mec_4_10_5 129 30 [23332.10,25075.31] | [23411.38,24475.26]
40 [23480.99,25268.60] | [23306.78,24475.26]
20 [4854.59,9528.17 N/A
mc_4.152 93 30 [4854.59,9528.17) N/A
40 [4777.79,9528.17 N/A
20 [28173.72,30336.44] | [28014.78,28890.78]
me_4_15_3 150 30 [28173.72,30336.44] | [28014.78,28890.78]
40 [28166.56,30332.70] | [27751.82,28897.34]
20 [33412.56,35754.25] | [32452.58,34120.48]
mc_4.15.5 265 30 [32229.38,35754.25] | [30872.23,34120.48]
40 [31961.39,35754.25] | [30256.57,34120.48]
20 [2388.56,3800.37 N/A
me_5_10_2 64 30 [2388.56,3800.37] N/A
40 [2388.56,3800.37 N/A
20 [7476.60,13886.28 [6067.57,9981.92]
mc_5_10_3 220 30 [7031.16,13886.28] [2296.21,8095.30)
40 [7209.22,13753.12 [2296.21,8095.29
20 [41973.50,44047.83] | [43314.11,43702.83
me_5_10_5 159 30 [41900.61,44047.83] | [42786.39,43438.83]
40 [41654.70,44047.83] | [42436.76,43949.43
20 [5866.65,7319.68 [6582.33,6954.48
mc_5_15_2 120 30 [5866.64,7319.68] [6512.07,6973.72)
40 [5866.64,7319.68 [6512.07,6973.72
20 [24071.87,29613.06] | [25289.65,26949.93
mec_5_15_3 680 30 [25532.04,31593.52] | [25414.31,26949.93]
40 [23937.67,30793.45] | [25098.08,26949.93
20 [17404.93,23458.29] | [18100.47,18966.76
mc_5_15.5 684 30 [15008.48,22168.32] | [18100.47,18966.76]
40 [17119.33,24214.73] | [17985.33,18966.76]
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Table B.4. Confidence intervals obtained with the randomized MCALA heuristic on a subset
of 30 MCMWP instances cont.

Instance Loc. Opt. | Samp. Confidence Intervals
Names Num. Num. MRA LLA
20 [8063.66,10133.70] [7760.66,8375.72]
mc_5_20_2 268 30 [7557.35,9895.20] [7760.66,8378.72]
40 [7787.39,10332.67 [7760.66,8378.72]
20 [16682.84,17692.99 [17675.31,17692.99]
mec_520_3 377 30 [16468.55,17692.99] [17675.31,17692.99]
40 16247.65,17692.99 [17675.31,17692.99]
20 46190.16,50550.99 N/A
mc_5_20_5 371 30 [46141.07,50550.99] N/A
40 46210.19,50550.99 N/A
20 46443.90,54240.05 [47037.66,51385.11]
mc_5_30_2 980 30 [46964.09,55813.98] [47038.08,51385.11]
40 44497.82,54009.85 [47004.04,51385.11
20 64223.97,69068.36 [63339.02,65454.87
mc_5_30_3 2085 30 [64234.22,70165.71] [64228.57,66743.50]
40 [63356.48,70165.71 [63685.49,66411.84
20 [180207.82,192929.95] | [177883.44,183649.38
mc_5_30_5 586 30 [177274.91,191226.71] | [175141.10,181700.98]
40 [180957.76,195908.98] | [174290.43,181700.98
20 [2343.33,2887.30 [2290.62,2637.79
mc_6_10_2 91 30 [2496.47,2982.33] [2290.62,2637.79]
40 [2488.22,3060.64 2212.31,2637.79
20 [5103.52,5946.22 5037.55,5913.87
mc_6.10_3 254 30 [5057.30,5913.87] [3839.84,5108.09]
40 [5057.30,5913.87 3839.84,5108.09
20 [8210.28,11315.34 8656.69,9614.58
mc_6_10_5 291 30 [8016.40,11315.34] [8656.84,9614.58]
40 [7834.10,11224.70 7955.97,9640.47
20 [5595.51,7745.36 5721.14,6466.87
mc_ 8102 886 30 [5077.75,7225.74] [5721.14,6466.87]
40 [5387.18,7678.92 [5701.53,6466.87
20 [8774.10,12462.21 [8890.02,11236.10
mec 8.10_3 2095 30 [8996.27,12853.06] [8787.27,11236.10]
40 [8961.19,12853.06 [8772.59,11259.59
20 [18228.09,23615.46 [18293.39,21795.95
mc_8.10_5 4300 30 [18287.73,24122.19] [18295.01,21795.95]
40 [18152.27,24122.19 [18244.59,21795.95
20 [3214.51,5085.74 [3262.86,4684.84
mc_10_10_2 1110 30 [3223.75,5085.74] [3260.06,4684.84]
40 [3242.20,5096.34 [3255.44,4684.84
20 [11079.78,13057.84 [11085.08,12708
mc_10-10_3 1585 30 [11034.86,13057.84] [11086.49,12708]
40 [11014.52,13057.84 [11086.49,12708
20 [4850.43,8720.21 [4802.69,8891.50
mc_10-10_5 3381 30 [4807.20,8720.21] [5607.98,8720.21]
40 [4906.80,8891.50] [5546.58,8891.50]
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Table B.5. Confidence intervals obtained with the randomized MDA1 heuristic on a subset
of 30 MCMWP instances.

Instance | Loc. Opt. | Samp. Confidence Intervals
Names Num. Num. MRA LLA
20 [1179.14,1179.55] | [1178.37,1179.55]
mc_4.82 25 30 [1172.63,1472.32] | [1178.37,1179.55]
40 1150.92,1472.32 1178.37,1179.55
20 7342.11,8228.35 8220.12,8228.35
mc_4.8.3 23 30 [7342.11,8228.35] | [8220.12,8228.35]
40 5254.77,8228.35 8220.12,8228.35
20 6112.61,7741.16 6394.87,7741.16
mc_4.85 34 30 [6112.61,7741.16] N/A
40 | [6112.61,7741.16] N/A
20 [5486.66,6988.11] | [5683.62,5689.31]
mc_4.10_2 39 30 [6313.62,7086.21] | [5683.62,5689.31]
40 [4695.41,6590.59] | [5683.62,5689.31]
20 [11133.76,11144.9] F
mc 4103 7 30 N/A F
40 N/A F
20 [24592.24,26085.1] | [22842.88,25445.9]
mc_4_10_5 23 30 [24602.04,26085.1] | [22842.88,25445.9]
40 [22996.01,25445.9] | [22842.88,25445.9]
20 [9518.64,9528.17] N/A
mc_4_152 37 30 [4853.91,9528.17] N/A
40 [4261.61,9528.17 N/A
20 [28711.79,30014 N/A
mc 4 153 30 30 [28711.79,30014] N/A
40 [28711.79,30014 N/A
20 [34099.44,35754.3] | [32452.58,34120.5]
mc_4.15.5 35 30 [34090.19,35754.3] | [32452.58,34120.5]
40 [34099.44,35754.3] | [32452.58,34120.5]
20 [2472.82,3800.37] F
mc_ 5102 7 30 [2472.82,3800.37] F
40 [2472.82,3800.37 F
20 [11121.29,17992.7] | [15213.78,17992.7]
mc 5103 35 30 [11121.29,17992.7] | [14931.48,17992.7]
40 [13043.56,17992.7] | [14923.98,17992.7]
20 [41654.65,44047.8 [43254.1,43702.8]
mc_5_10_5 39 30 [41654.65,44047.8] | [41973.45,44047.8]
40 [45713.22,46078.1] | [41973.45,44047.8]
20 [5872.16,6737.96] [6421.1,6582.82]
mc 5152 9 30 [6872.16,6737.96] | [5839.38,6582.82]
40 [6872.16,6737.96 [5839.38,6582.82
20 [25424.79,31891 [25595.63,30266
mc 5153 86 30 [25517.59,31918] [25595.63,30266]
40 [25475.97,31891 [25595.63,30266
20 [13348.63,22168.3 [18020.6,20104.5
mc 5155 97 30 [13333.43,22160.7] | [17980.42,20084.4]
40 [13103.83,22168.3] | [17980.42,20084.4]
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Table B.5. Confidence intervals obtained with the randomized MDA1 heuristic on a subset
of 30 MCMWP instances cont.

Instance Loc. Opt. | Samp. Confidence Intervals
Names Num. Num. MRA LLA
20 [8196.58,10343.6] [8267,9895.2]
mc_5202 56 30 [8169.8,10343.6] | [6283.88,8903.14]
40 [8196.58,10343.6] | [6283.88,8903.14]
20 [17477.41,17693) F
mc_5_20_3 43 30 [17477.41,17693) F
40 [17321.01,17693 F
20 [52739.18,52922 F
me-5-20_5 21 30 [52739.18,52922) F
40 [52869.08,52922 F
20 [47013.32,55829.9] | [47025.33,53375.8]
me_5_30_2 172 30 [47013.32,55829.9] | [47038.04,53375.8]
40 [47018.38,55261.9] | [47041.89,53375.8
20 [64228.06,71939.4] | [64210.87,68826.5
mc_5.30_3 385 30 [64247.67,71939.4] | [64163.77,69213.2]
40 [64229.6,71939.4 [63633.8,67048.8
20 [181010.09,195909] | [181477.3,181701
mc_5.30_5 124 30 [180888.09,195909] | [181477.3,181701]
40 [177364.09,195909] | [181477.3,181701
20 [2480.95,3060.64 [2825.83,2945.35
mc_6.10_2 36 30 [2331.87,2982.33] | [2878.12,2945.35]
40 [2324.78,2982.33 2800.48,2945.35
20 [4793.2,6070.78 4881.72,6070.78
mc_6.10_3 42 30 [6172.54,6070.78] | [4881.72,6070.78]
40 [5287.41,6070.78 4881.72,6070.78
20 [8518.33,11384.7 9337.35,9640.47
mc_6.10_5 39 30 [5588.98,9919.2] | [9337.35,9640.47]
40 [5588.98,9919.2 9337.35,9640.47
20 [5728.04,8126.1 5721.14,6466.87
mc_8.10_2 154 30 [5724.97,8126.1] [5721.14,6466.87]
40 [6703.72,7910.56] | [5721.14,6466.87]
20 [7945.32,12323.7] | [8835.76,11840.2]
mc_8.10_3 166 30 [8589.06,12682.5] | [8835.76,11840.2]
40 [8926.15,12682.5 [8835.76,11840.2
20 [18319.44,24764.6] | [18284.99,22209.7
me-8-10_5 471 30 [18318.81,24764.6] | [18308.63,22209.7]
40 [18303.52,25265.2] | [18305.89,22209.7
20 [3263.54,5801.43 [3172.12,4684.84
me_10_10_2 136 30 [3263.29,5801.43] | [3163.29,4684.84]
40 [3263.29,5801.43 [3163.29,4684.84]
20 [10923.51,13622.8 N/A
me_10_10_3 51 30 | [10859.22,14528.2] N/A
40 [11082.52,14186.2 N/A
20 [4890.37,9333.41 [4862.75,9333.41]
me_10_10_5 312 30 [4906.69,9333.41] | [4848.14,9544.64]
40 [4906.69,9333.41] | [4570.47,9333.41]
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Table B.6. Confidence intervals obtained with the randomized MDRR heuristic on a subset
of 30 MCMWP instances.

Instance | Loc. Opt. | Samp. Confidence Intervals
Names Num. Num. MRA LLA
20 [1134.01592,1364.08] | [885.60045,1179.55]
mc 4 82 44 30 [1123.974497,1364.08] | [885.60045,1179.55]
40 [1112.30592,1364.08 [885.60045,1179.55]
20 [8105.593086,10226.3] | [7528.75165,8228.35]
mc 483 72 30 [7955.710637,10226.3] | [7528.75165,8228.35]
40 [8177.0737,10226.3] | [7528.75165,8228.35]
20 [7737.651793,8746.15] | [6589.84884,7741.16]
mc4.85 178 30 [7705.85385,8746.15] | [6589.84884,7741.16]
40 [7703.049933,8746.15] | [6589.84884,7741.16]
20 [4286.72069,5689.31 N/A
mc 4102 72 30 [5315.7191,6900.9] N/A
40 [5309.677634,6900.9 N/A
20 [8714.86515,9934.85 N/A
mc_4.10-3 34 30 [8714.86515,9934.85] N/A
40 [8714.86515,9934.85 N/A
20 [23298.71736,24890.3] | [23406.6247,24475.3]
mc 4105 102 30 [23275.87553,24890.3] | [23406.6247,24475.3]
40 [23474.35614,25268.6] | [23406.6247,24475.3]
20 [4853.91183,9528.17 N/A
mc 4 152 109 30 [4777.81183,9528.17] N/A
40 N/A N/A
20 [28599.13303,30014] N/A
mec-4.15_3 79 30 [26479.5027,28897.3] N/A
40 [26479.5027,28897.3 N/A
20 [34117.05237,35754.3 N/A
mc 4 155 214 30 [33344.9457,35754.3] N/A
40 [30078.9795,34120.5 N/A
20 [2448.46963,3800.37] | [2472.81963,3800.37]
me-5-10_2 27 30 [2388.55963,3800.37] | [2472.81963,3800.37]
40 [2388.55963,3800.37 N/A
20 [1033.237,10663 [2496.537,10663]
mc 5103 151 30 [1033.237,10663] [2496.537,10663]
40 [4776.544597,13886.3 [2496.537,10663
20 [42798.52355,44685.5] | [43248.2145,44685.5
mec-5-10_5 97 30 [42788.55194,44685.5] | [43248.2145,44685.5]
40 [41110.2062,43949.4] | [41973.4522,44047.8
20 [6421.05298,7597.02] | [5839.37718,6582.82
mc 5152 42 30 [6421.05298,7597.02] | [5839.37718,6582.82]
40 [6421.05298,7597.02] | [5839.37718,6582.82
20 [23521.13411,28458.6] | [25314.6219,27978.1
mc 5153 413 30 [23560.04858,29750.5] | [25314.6219,27978.1]
40 [23560.0495,29750.5] | [25314.6219,27978.1
20 [17440.0859,19814.1] | [18100.5332,18966.8
mc 5155 228 30 [15746.3332,18966.8] | [18100.5332,18966.8]
40 [15746.3332,18966.8] | [18100.5332,18966.8]
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Table B.6. Confidence intervals obtained with the randomized MDRR heuristic on a subset
of 30 MCMWP instances cont.

Instance Loc. Opt. | Samp. Confidence Intervals
Names Num. Num. MRA LLA
20 [7290.193713,10343.6] | [7880.409068,10343.6]
mec_5_20_2 158 30 [7801.495764,10343.6] [6385.8116,8988.4]
40 [7289.0564,10343.6] | [8245.497873,10343.6]
20 [16247.607,17693 [17675.307,17693]
mc_5_20_3 92 30 [16247.607,17693] [17675.307,17693]
40 [16142.707,17693 [17675.307,17693]
20 [43557.5361,48263.9 N/A
mc_5_20_5 175 30 [43557.5361,48263.9] N/A
40 [43557.5361,48263.9 N/A
20 [47033.16971,55907.1] | [46742.55052,51385.1]
mc_5_30_2 676 30 [46016.49484,55475.8] [46811.7149,51385.1]
40 [46757.31296,56238.5 [46722.3221,52477.9
20 [64146.89011,70099.4 [63685.3882,66411.8
mc_5-30_3 774 30 [63508.12038,70099.4] [63688.7882,66411.8]
40 [63881.73561,71683.8] | [64239.58865,67406.6
20 [181416.2428,193256 [177744.351,183649
mc_5_30_5 330 30 [180680.07,192930] [176314.351,183649]
40 [180849.985,193015 [176309.351,183649
20 [2414.46767,2982.33 [2290.61221,2637.79
mc_6_10_2 58 30 [2414.46767,2982.33] | [2212.30221,2637.79]
40 [2481.31936,3060.64 [2212.30221,2637.79
20 [5095.794286,5946.22] | [4577.228748,5946.22
mc_6.10_3 106 30 [5094.23742,5946.22] | [4577.228748,5946.22]
40 [5102.08784,5946.22] | [4577.228748,5946.22
20 [6879.319076,14264.1 [8084.7323,11167.7
mc_6_10_5 79 30 [9814.538537,14115.8] [8084.7323,11167.7]
40 [10984.25072,14239.5 [8084.7323,11167.7
20 [5251.567179,7618.18] | [5661.541911,6848.78
mc_8.10_2 185 30 [5727.211199,8298.13] | [5654.05122,6848.78]
40 [5677.032806,8263.74 [5654.05122,6848.78
20 [8224.5598,11840.2 [8390.2906,10009.4
mc_8.10_3 304 30 [8685.7035,12396.5] [8390.2906,10009.4]
40 [8685.7035,12396.5 [8438.5877,10112.3
20 [18281.55069,24786.8] | [18248.92179,24230.3
mc_8.10_5 575 30 [18234.51927,24786.8] | [18305.73619,24230.3]
40 18304.82261,24986.5] | [18255.30639,24230.3
20 3234.907203,5963.98] | [3124.185158,5552.07
mc_10_10_2 212 30 [3221.059398,5919.75] | [3124.185158,5552.07]
40 3218.989708,5919.75] | [3329.831315,5558.06
20 11055.98513,14186.2 [13232.2138,14186.2
mc_10-10_3 133 30 [11055.98513,14186.2] | [12998.64538,14020.9]
40 [11042.73932,14020.9] | [12864.34538,14020.9
20 [4802.241468,9133.5] | [4811.562205,9333.41
mc_10-10_5 695 30 [4886.987501,9133.5] | [4679.846228,9333.41]
40 [4888.649777,9133.5] | [4761.185833,9333.41]
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Table B.7. Confidence intervals obtained on 12 MCMWP instances from mc_10_15_2 to
mec_10_30_5.

Instance Loc. Opt. Num. Samp. CI (with MRA sampling)
Name MCALA | MDRR | Num. MCALA MDRR
20 [2201.11,4243.64] | [2471.548467,4521.72]
mc_10_152 134 61 30 [2341.77,4430.20] | [2595.10828,4521.72]
40 [2378.32,4330.61 [2595.10828,4521.72
20 [6130.63,7612.19] | [6055.896894,7378.53
mc-10_15_3 456 337 30 (6120.99,7612.19] | [5979.996731,7365.24]
40 [6086.27,7757.54] | [5991.678961,7378.53

20 [10301.20,13909.46] | [10274.93385,14275.5

mc_10_15_5 617 355 30 [10227.56,13975.56] | [10109.76066,14331.6]
40 [9942.73,14048.50] | [9946.987447,14363.9
20 [8176.21,13216.85] | [7958.889685,13227.3
mc_10-20_2 590 380 30 [8177.69,13251.39] | [8046.202456,13227.3]
40 [8301.80,13216.85 [8145.4727,13227.3
20 [4263.74,6242.70 [4411.78621,6609.82
mc_10-20_3 507 335 30 [4295.29,6372.97] | [4375.567393,6558.38]
40 [3991.70,6192.17] | [4415.304393,6609.82
20 [13951.04,17028.77] | [13816.49277,17306.8
mc_10_20_5 733 390 30 [14304.37,17583.93] | [14245.2456,17889.8]
40 [14354.55,17786.20] | [14352.32642,18220.3
20 [3231.81,4962.32 [3256.264229,4464.4
mc_10-24_2 648 477 30 [3261.97,5148.39] | [3207.184942,4436.01]
40 [3168.74,5082.50 [3208.64399,4436.01
20 [8551.46,10950.88] | [8699.384793,11132.2
mc_10-24_3 880 699 30 [8693.4811074.45] | [8586.190734,11074.5]

20 [19265.54,25909.67] | [19711.87498,26936.9
mc-10-24_5 876 706 30 [19899.25,26574.68] | [19875.57072,26936.9]
40 19842.96,26574.68 [19906.6425,27480.6
20 17546.44,22587.51 [17655.3125,22587.5

|

40 | [8467.05,10905.31] | [8575.591244,11157.3
[
[

mc_10_30_2 260 244 30 [17314.06,22587.51] | [17655.3125,22587.5]
40 17679.59,23390.36 [17655.3125,22587.5
20 42126.96,50616.18 [41701.289,49911
mc-10_30_3 763 729 30 [41379.07,50238.58] [41343.889,49911]

40 41430.19,50877.30] | [42485.22269,51175.8
20 67173.91,86497.44] | [67997.90941,86136.6
mc_10_30_5 865 820 30 [68116.57,86476.41] | [67955.49377,87000.5]
40 [68040.91,87856.67] | [67920.78177,86918.1]




Table B.8. Confidence intervals on the second class of the MCMWP instances.

Instance Loc. Opt. Num. | Samp. CI (with MRA sampling)
Name MCALA | MDRR | Num. MCALA MDRR
20 | [224043.34,260168.18] | [222068.37,246927]
mc-10-100_2 946 563 30 [224695.33,261102.63] [224331,249732]
40 [224647.70,261102.63] | [224236.95,249732
20 [226995.75,270249.7] | [226811.17,264732
mc-10-100_3 999 887 30 [226064.30,269098.47] | [226909.31,264732]
40 [226444.31,272687.21] | [226953.13,265733
20 [357299.4,400184.71] | [349779.37,385787
mc_10_100_5 997 853 30 [352757.96,397675.32] | [355161.27,393595]
40 356920.28,401555.59] | [355200.97,393835
20 167864.79,221988.53] | [167442.27,215734
mc_10-150_2 998 787 30 [166923.87,221988.53] | [167802.18,215734]
40 168775.91,225404.42] | [168373.27,215734
20 139777.58,172152.05] | [139677.72,172996
mc-10-150_3 1000 966 30 [139115.06,172152.5] | [148171.70,171931]
40 140021.75,173145.38] | [148400.75,171931
20 250930.51,294147.39] | [251305.26,291110
mc_10_150_5 1000 986 30 [251617.22,294147.39] | [251353.26,291110]
40 [249574.34,294147.39] | [250227.01,291110
20 [36630.63,58771.89] | [36554.71,54480.3
mc-20-100_-2 1000 905 30 [36504.43,58459.72] | [36624.72,54480.3]
40 [36423.64,58459.72] | [36620.11,54480.3
20 [53284.25,91099.35] | [53227.37,84200.7
mc-20-100_3 1000 889 30 [53420.3,91099.35] | [52194.72,84200.7]
40 [53225.38,91099.35] | [53440.11,84200.7
20 [96559.65,130934.92 [96666.78,115660
mc-20-100_5 1000 986 30 [96846.10,130934.92] | [96722.39,115660]
40 [96878.9,131415.87] | [96821.65,115660]

Table B.8.

Confidence intervals on the second class of the MCMWP instances cont.
Instance Loc. Opt. Num. | Samp. CI (with MRA sampling)
Name MCALA | MDRR | Num. MCALA MDRR
20 [5189.67,16590.99] | [5171.22,15584.8]
me_30.1002 | 999 943 30 [5192.13,16590.99] |  [4958.46,15584.8]
40 [5192.08,16590.99 [4822.78,15673.1
20 [25714.23 53156.77] | [25725.09,45963.8
me_30_100.3 | 1000 996 30 [25749.63,53156.77) | [25418.52,45963.8]
40 25742.12,53156.77] | [25731.12,45963.8
20 61053.18,94248.97 [61469,81909.5
me 301005 | 1000 992 30 [61414.98,94248.97] | [61492.09,81909.5]
40 61511.87,94248.97] | [61506.09,81909.5
20 27854.02,54716.48] | [26355.38,41084.6
me_30.150_2 | 1000 985 30 [27951.81,54716.48] | [26409.02,41084.6]
40 27803.84,54716.48 [27677.8,42372
20 13550.80,68518.02] | [45282.42,70417.3
me_30.150_3 | 1000 998 30 [45307.56,71376.43] [44079.66,70507]
40 [45301.03,71376.43] | [44343.28,70417.3
20 | [108781.86,153807.60] | [108773.95,135631
me_30.150.5 | 999 979 30 | [108683.26,153897.60] | [108715.86,135681]
40 [108782,153897.60] | [108780.78,135681
20 [3384.07,11912.79 [3380.81,0432.88
me.45.150.2 | 1000 973 30 [2664.92,11062.19)] 3381,9414.9]
40 [3334.58,11818.27 [3367.94,9414.9
20 [10958.04,23024.34] | [12170.25,19427.5
me.45.150_3 | 1000 992 30 [12143.38,24814.20] | [12168.42,19427.5]
40 [12176.40,24814.20] | [12176.29,19427.5
20 [40494.54,72333.01] | [40693.068,65431.3
me.45150.5 | 999 999 30 [40698.66,72333.01] | [40609.76,65431.3]
40 [40766.99,72333.01] | [39126.28,66367.8]
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