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ABSTRACT

TWO ESSAYS IN MODELING AND ANALYSIS OF

EXCHANGE RATE DYNAMICS

This thesis has two main chapters that are focusing on the different aspects of

foreign exchange modeling. In the first chapter, a dynamic programming approach is

used to model the problem that; an investor has to decide on the foreign currency levels

at the beginning of each period in order to meet an uncertain demand. The investor

tries to minimize his cost with the constraint of meeting the uncertain demand. The

problem is formulated with dynamic programming approach and solved, the structure

of the optimal decision is given. In the second part of the thesis, the problem of pricing

FX options is tackled. FX options market is getting very popular among emerging

market economies. Since traders in emerging markets are more prone to FX risk

instead of interest-rate, FX derivatives market has been developing faster than Interest-

Rate derivatives market. The importance of FX options market and the its unique

conventions are described firstly in the second part of the thesis. FX options market

has its own market conventions, and it is necessary to understand those conventions

before going deep in modeling. After the FX conventions are described, the problem of

options pricing is handled through stochastic modeling. The model used is commonly

known as Heston’s stochastic volatility model. Theoretical background of the model

and the interpretation of the parameters are discussed and the relation between implied-

distribution and option smile are discussed. The calibration procedure is described and

practical use of the Heston’s model is given. Heston’s model is commonly used as a tool

to price exotic options through Monte Carlo simulation or finite difference method. In

this thesis, the model will be used for creating trading signals in the market.
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ÖZET

DÖVİZ KURU MODELLEMESİ VE ANALİZİ ÜZERİNE

ÇALIŞMA

Bu çalışma iki ana bölümden oluşmaktadır. İlk bölümde dinamik program-

lama yaklaşımıyla; miktarı önceden bilinmeyen ve yabancı para cinsinden olan talebi

karşılamaya çalışan problem yapısı ele alınmıştır. Karar verici her periyodta elinde ne

kadar yabancı para tutması gerektiğine karar verirken, risksiz faiz oranları da mod-

elde girdiyi oluşturmaktadır. Karar verici talebi karşılarken, toplam maliyetleri de

enküçüklemeye çalışmaktadır. Bu problem yapısı altında, dinamik programlama ile

ideal çözüm bulunmuştur. İkinci ana bölümde döviz kuruna yazılan opsiyonların fiyat-

lanması problemi ele alınmıştır. Gelişmekte olan ülkelerde dövize dayalı opsiyonlar son

yıllarda popülerlik kazanmıştır. Gelişmekte olan ülke ekonomilerindeki yatırımcıların

döviz kuru riski, faiz riskine göre daha fazla olduğu için, dövize dayalı türev araçlar

piyasası, faize dayalı türev araçlar piyasasından daha hızlı gelişmektedir. FX opsiyon

piyasasında modelleme yapmadan önce, bu piyasanın kendine has dinamiklerini anla-

mak gerekir. FX opsiyon piyasası anlatıldıktan sonra Heston’un stokastik volatilite

modeli tanıtılmıştır. Bu modelin teorik bileşenleri ve diğer stokastik modellerden

üstünlüğü anlatıldıktan sonra piyasa verilerine kalibrasyonuna geçilmiştir. Kalibrasyon

problemi anlatılıp, örnek sonuçlar ve grafikler verilmiştir. Heston modelinin literatürde

ve pratikte, çoğunlukla egzotik opsiyon fiyatlamasında kullanıldığını bilerek, bu tezde

farklı bir yol izlenip piyasada alım-satım stratejileri geliştirilmeye çalışılmıştır.
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1. INTRODUCTION

Foreign exchange market has long been one of the largest, liquid and attractive

market for speculators. Exchange rate is essential in today’s economy because of the

huge trading volume between countries. In today’s economy most of the main curren-

cies are floating, meaning that the level is determined in the spot market. In 1960s,

Bretton Woods system was in use. This system simply fixes the exchange rate to a

level and this level remains fixed as the time passes. However today most of the major

currencies are in floating rate regime, except the Chinese Yuan. Chinese Yuan is in

pegged exchange rate regime, meaning that conversion to US Dollar is allowed between

some upper and lower barriers.

Average daily transaction of the market is estimated to be around 4 trillion US

Dollars, which indicates how big the market is. Approximately the 90% of this turnover

is composed of spot transactions and foreign exchange swaps. Largest participants of

the market are banks, central-banks, commercial companies and large funds. Since

foreign exchange market has participants those making large transactions and those

making small transactions, the market is divided into levels of access unlike the stock

market. As an inevitable result of this large volume trading, most of the transactions

are made in over-the-counter (OTC) market. Inter-bank market is at the top of this

level; largest commercial banks, security dealers make their transactions in this mar-

ket. Since larger volumes are traded at the top of this level of access, ask-bid spreads

of the currencies are smaller compared to the lower level of access. Ask-bid spread of

currencies is increasing as one goes down from this level. Most traded currency is US

Dollar as one may expect, then Euro, Great Britain Pound, Swiss Frank and Japanese

Yen can be said as the major currencies that are traded.

Foreign exchange market is getting more and more important especially in Emerg-

ing Market Economies. After the global financial crisis in 2008 and 2009, developed

countries increased regulation on the financial speculative instruments and as a result

of this situation large FX trading desks has started shifting to Emerging Markets,

where regulations are looser.

Exchange rate parity of one major currency with one emerging market currency
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behaves differently when compared to a parity that is composed of two major curren-

cies. Interest rate differential is large and positive in these exchanges, meaning that

risk-free rate of emerging market currency is larger than that of the major currency.

This situation makes emerging market currencies attractive because of the high carry

and the dynamics of the exchange rate becomes highly dependent on the size of the

carry and the uncertainty, or volatility, in the market.

This thesis starts with modeling the exchange rate through the dynamic pro-

gramming approach. A simple decision making problem is constructed and solved.

The decision maker has to satisfy uncertain demand and he can convert his money

to foreign currency. Interest rate differential becomes highly dominant in the decision.

The main difference of this problem setting from classical portfolio management is that

demand is uncertain and independent of the exchange rate process. This problem set-

ting enables the demand risk hedging impossible, since they are driven by independent

sources of uncertainties. In the second part of the thesis, FX options market will be

investigated. Theoretical background of the Heston’s stochastic volatility model will

be introduced. In this problem setting, option price will be a function of spot price

and volatility. Because of the previous reason, it is possible to hedge the risk of the

option position, by trading in money market, underlying security and an option with

same underlying. This problem setting is different from the one that will be handled

in the first chapter. So, two different types of problem settings will be handled in this

thesis in the sense of hedging the risk of the obligation.

Options market enables one to trade the volatility of the underlying security.

Information about the future level of the uncertainty could be extracted in this mar-

ket, and more accurate trading strategies could be constructed. FX options market is

different from the classical equity options market. It has its own conventions. Before

starting any type of modeling, one needs to understand the options market dynam-

ics. For instance, level of moneyness is measured with Black-Scholes Delta instead

of strike price. In equity options, strike price of the option is quoted along with its

price, however in FX options market risk-reversals, butterflies and at-the-money option

volatilities are quoted. From this information, delta-volatility pairs are extracted and

the smile or surface can be drawn. After understanding the FX specific option smile
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convention, one may start modeling the exchange rate. There exists several number of

studies in stochastic modeling and option pricing in literature. In this thesis Heston’s

Stochastic Volatility Model is selected and used. Simplicity and ability to handle the

option smile are the main reasons for selecting Heston’s model.

This thesis models the exchange rate in two different aspects. First chapter analy-

sis foreign exchange consumption model through dynamic programming and the second

chapter tackles the option pricing. Before pricing options, FX options market is intro-

duced since it has unique conventions. In the next section exchange rate basics will

be explained. Motivation, contributions of the thesis and literature review will follow

respectively. Then Dynamic programming model for foreign exchange consumption

will be explained and after that the chapter of pricing FX options in emerging markets

begin.

1.1. Exchange Rate Basics

In finance, exchange rate is the rate between two currencies that defines how one

currency will be converted to another currency. For example, an exchange rate of 1.5100

for USDTRY parity means that 1 USD will be exchanged for 1.5100 TRY. The actual

rate quoted by money dealers in spot will be different for buying or selling the currency,

because of the fact that there is allowance for the dealer’s profit (or commission). Spot

exchange rate refers to the current exchange rate, and forward exchange rate refers to

an exchange rate that is quoted and traded today but the delivery will be made on

the specific future time. Note that in theory forward is never unique, forward price

of a security can be calculated according to any security whose future payoff is known

by today, e.g. bonds, bank account. In foreign exchange (FX) market, forward rate is

calculated according to the risk-free interest rate differences of the two currencies.

FX rate is quoted in terms of the number of domestic (DOM) currency is needed

to exchange 1 unit of foreign (FOR) currency. Foreign and domestic does not refer

to any geographical region, rather they refer to underlying and numeraire currencies

respectively. Quotation is always made in FOR-DOM, that is first currency is always

foreign and the second one is always considered as domestic currency. For the example
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above, 1.5100 USDTRY rate means; 1.5100 domestic currency (Turkish Lira) is needed

to buy 1 foreign currency (US Dollar).

Today most of the currencies are floating, that is the rate is allowed to vary

against other currencies by the market forces of supply and demand. Exchange rates

for such currencies are changing almost instantenously in financial markets mainly by

the intervention of banks. As a result of this floating rate situation, stochastic modelling

of the exchange rates becomes crucial in understanding the internal dynamics of the

market. On the other side of the floating rate there is fixed exchange rate system.

However there are no major economic players that uses fixed exchange rate system.

FX market is a very large financial market that, according to the findings of

BIS, total daily average turnover is nearly 2300 million USD. Nearly 2000 million

USD daily turnover belongs to advanced economies, such as United States, Japan and

United Kingdom. Although the daily average turnover is relatively small in Emerging

Market Economies (EME), there is significant increase for the FX market over the past

decade. Mostly traded currencies are U.S. Dollar, Euro, Hong Kong Dollar, Japanese

Yen, Singapore Dollar, Australian Dollar, Korean Won, Chinese Renminbi and G.B.

Pound. As it can easily be seen that, these currencies used mainly in international

trade and it is an expected result that they constitute the nearly 90% of the total

turnover.

The participant of the FX market is almost everyone. Any company engaging in

international trade has to deal with foreign exchange. Other than that hedge funds

and banks are the major players in the FX market, both in spot and derivatives. Hedge

funds try to generate a return of 10% - 15% annually regardless of the market direction,

since there is no restriction for hedge funds in shorting assets. They try to achieve this

return by taking low risk, as the name of the fund indicates, by hedging the risk. Banks

are trading in FX market for variety of reasons.

Drivers of the FX market are mainly buyers and sellers. These drivers are also

driven by another factors, such as international trade. Foreign direct investment is

another factor, not just buying stocks of foreign company, that affects the FX rate.

Interest rate differential, inflation expectations, monetary policy and even rumors are

the major drivers of the buyers and sellers in FX market. Unlike the equity market,
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FX market incorporates all the macro economic factors into the pricing and trading.

Moreover FX rates are sensitive to political news and events. Also central banks

intervention is a major driver of the FX spot rate.

1.2. Motivation

The main motivation behind the study of the FX market is its liquidity. When

an asset is sold without causing any price change, or with the minimum loss of value,

the market is called liquid. Unlike in equity markets, FX market is highly liquid that

investors can easily buy and sell their currencies with very little spread. This means

that, at almost every price level there exits a buyer and a seller in the market.

Another motivation is that, FX market is getting popular in EMEs and Turkey

is one the biggest EME. With the increasing importance of FX market, understanding

the dynamics of FX rate through stochastic modelling and pricing the instruments,

such as options, is crucial in trading. Big financial institutions started to shift their

trading desks to EMEs, because of the over-regularization in advanced economies. Be-

cause of this reason, they tend to seek equipped FX experts in those countries.

1.3. Contributions

Main contribution of this thesis is, it provides complete guide to foreign exchange

market. The market specific quotation mechanism and the relation between the smile

and implied distribution is explained in detail. Besides the theoretical knowledge pro-

vided about the options market, practical use of Heston’s stochastic volatility model is

explained in detail also.

Another main contribution of this thesis is to show simple trading strategies work

even in FX market, which is a highly volatile market. However these simple trading

strategies are not any simpler than the existing ones. It shows that, extracting infor-

mation from option data enables successful trades in spot price. The trading strategy,

two standard deviation rule, is simple but the signals generated from the data series,

rho, contains correct mixture of information about the market. That is the reason for
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the successful trades, even if simple trading strategies are used.

This thesis can be used as practical and theoretical guide for beginners, it contains

both theoretical and practical knowledge about the FX options market. It illustrates

trading strategies both in spot and option market. Trading in FX spot market is not

easy, since it is highly volatile and has many drivers. However a successful trading sig-

nal is generated in USDTRY currency by the use of Heston’s model parameters. Main

idea behind this strategy is emerging market currencies are driven by rate differential,

later it will be changed to skewness.

To sum up, this thesis provides theoretical information in FX options market

and illustrates how to use models in practice. Then shows that model based trading

systems outperforms the ones that are simpler. Finally, it emphasizes simple trading

rules with model based inputs works fine even in highly volatile FX market.
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2. LITERATURE REVIEW

This thesis is composed of two chapters and consequently the literature review will

contain the previous researches that are related with the two chapters. First chapter

is modelling dynamic model for the consumption of foreign exchange demand. Second

chapter discusses the FX options market. The related literature for the first chapter

are mainly discusses the foreign exchange uncertainty and foreign direct investment of

the firms.

In the pioneering work of Campa [1], the relationship of real exchange rate fluctu-

ations and foreign direct investment is investigated in United States during 1980s. The

aim of this paper is to guide foreign direct investments under the volatile exchange rate

regime, which is observed after the crash of Bretton Woods system of fixed exchange

rates. In this model, the investor enters the market as long as the future dividends

is greater than the initial sunk cost. The paper also handles the other foreign direct

investments and concludes that the exchange rate volatility to be negatively correlated

with the number of foreign investments. The research is done in the wholesale industry

of the United States.

In the masterwork paper of Sung and Lapan [2], the relationship between the ex-

change rate volatility and foreign direct investment decisions of the firm is investigated.

The firm is risk neutral multinational firm, that can open plants in both countries. This

paper emphasized that exchange rate volatility can create opportunities of lower cost

production plants by shifting from one country to another. Their decision model is

in spirit of real options, and high volatility increases the option value and deters the

decision of foreign direct investment. They conclude that exchange rate volatility has

relationship with the domestic competetive market through the idea of high volatility

deters the foreign direct investment and the multi national firms starts to invest in

domestic plants.

Similar work in the first chapter of the thesis has been handled in the paper

of Gurnani and Tang [3]. They tackled a problem of two stage in which the retailer

orders a seasonal product prior to a single selling horizon. This problem is similar

to one handled in the first part of the thesis in some ways; first of all exchange rate
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can be thought of unit production cost and in this paper the cost and demand is un-

certain. Their problem structure allows two stage decision making and the uncertain

cost is allowed to have two different states in the future period. Their model is nested

newsvendor for determining the optimal ordering quantity.

The related literature with the first chapter mainly discusses the exchange rate

volatility and foreign direct investment. One similar problem setting has been observed

in a different problem context. Uncertain production cost can be thought as uncertain

exchange rate in the model of foreign exchange consumption model of this thesis. Sec-

ond similarity was the uncertain demand, which is also the case in this thesis.

The literature review continues for the second part of the thesis. Second chapter

mainly discusses FX options market dynamics and modelling the exchange rate. The-

oretical background of Heston’s stochastic volatility model is discussed and practical

usage of the model is represented. The related literature handles mainly option pricing

and FX conventions.

In the study of Reiswich and Wystup [4], FX options market conventions de-

scribed first and then smile construction problem is tackled. Market conventions are

different from any classical equity options market. In FX options market, moneyness

level is represented by the delta of the option, instead of its strike price. At-the-money

and delta conventions are described in this paper, and it is very important to under-

stand the market conventions before getting deeper in modelling.

After the market specific conventions are understood, the need of modelling the

exchange rate is necessary in order to understand the underlying dynamics of the mar-

ket and also to price derivatives. In mathematical finance Black & Scholes published

a benchmark paper that gave shape to derivatives market. However Black & Scholes

options pricing formula (BS) was not enough to explain the market observed implied

volatilities. Black & Scholes assumes in their paper that stock price process has con-

stant mean and variance (or volatility), and in the risk neutral probability measure, the

drift is replaced with the risk-free interest rate. When the market prices of options are

inverted in the BS formula, different volatilities (or implied volatilities) are observed

for different strike prices and time-to-maturities. This problem is called smile problem.

The selected model should handle smile, and obviously this cannot be Black & Scholes
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model, because of the constant volatility assumption. So the literature continues in

order to handle this problem.

Next step in the literature is local volatility models. Merton [5] suggested that

making the volatility a function of time. Although this approach explains the different

implied volatilities across time-to-maturities, it fails to explain the smile shape across

strike prices.

Dupire [6], Derman and Kani [7], and Rubinstein [8] came up with the idea that mak-

ing the volatility not only a function of time, but a function of state variables, i.e.

volatility is a function of stock price and time. This approach was successful in fitting

the volatility surface, however it failed to explain the persistent smile shape which does

not vanish as the time passes.

Failure of local volatility models would be the success of stochastic volatility mod-

els. In the study of Scott [9], it is assumed that the variance of the stock price changes

randomly and the risk of random variance is diversifiable which leads to uncorrelated

variance with stock returns. Same type of modelling approach is conducted by Hull

and White [10] and Wiggins [11] and all of these models have one common flaw, that

they do not have closed form solution for european type of options.

However the Heston’s stochastic volatility model [12], has the closed form solu-

tion for european type of options and it can be considered as the second milestone in

option theory, after Black & Scholes. The solution technique is based on characteristic

functions and it can be extended to even stochastic interest rates. Heston’s stochastic

volatility model is loved by the practitioners by two main reasons; first one is that

it has a closed form solution for european options which results in fast calibration of

the model to the market data, second the variance process is mean-reverting which in

reality what they observe. Heston’s option pricing formula is semi-analytical because

it requires numeric integration of characteristic functions. Nevertheless, it is one of

most common model in practice.

Another very common model in stochastic volatility model pool is Hagan’s Stochas-

tic Alpha Beta Rho model (SABR) [13]. The main purpose of this paper is to show that

local volatility models would yield to very wrong results and delta and vega hedges de-

rived from local volatility models may perform worse than naive Black & Scholes. The
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authors use singular perturbation techniques to obtain the prices of european options

and from those prices the closed form algebraic formulas for the implied volatilities.

SABR model can be considered as the simplest stochastic volatility model in the liter-

ature, it is also very commonly used in practice.
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3. A DYNAMIC MODEL FOR PLANNING FOREIGN

EXCHANGE CONSUMPTION

3.1. Problem Definition

An investor with an infinite amount of domestic currency, has to meet an uncer-

tain demand, whose unit is foreign currency. The planning horizon, (t1, t2 . . . , tn, . . . , tN),

is fixed and finite. At the beginning of each period, the decision of new foreign cur-

rency level will be given. If there is excess amount of foreign currency, it will be carried

to next period and during that time it will grow with foreign interest rate. On the

other hand, the investor loses the opportunity of investing in domestic interest rate.

Every period, demand must be satisfied and the unmet demand, if there is any, will

be satisfied with the next period’s exchange rate.The problem will be formulated in

Dynamic Programming approach and under some assumptions, the structure of the

optimal decision will be given.

3.2. Sequence of Events

(i) At the beginning of the period, the investor realizes the state of the system, which

are the exchange rate and on hand foreign currency.

(ii) The investor decides on the new level of foreign currency.

(iii) After the given decision, the uncertain demand is realized and at the same time

we move to the next period.

(iv) The unmet demand must be satisfied with the new exchange rate, if there is any.

(v) The cost of excess foreign currency will incur, note that this cost can actually be

profit if the foreign interest rate is higher than the domestic interest rate.

3.3. Model and Dynamic Programming Formulation

Where xtn is the initial foreign currency at the beginning of period tn and Ξtn is the

random variable representing the exchange rate for the period tn. ξtn is the realization
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of the exchange rate for the period tn. Γtn is the random variable representing the

inverse of the exchange rate process for the period tn and γtn is the realization of

the inverse of the exchange rate process for the period tn. Where Dtn is the demand

observed after the given decision at time tn and rd and rf are the risk free interest

rates for domestic and foreign currency respectly.

Gtn(ytn , ξtn) =
ytn
ξtn

+ e−r
d(tn+1−tn)E

[
(Dtn − ytn)+

Ξtn+1

]
+

er
d(tn+1−tn) − 1

ξtne
rd(tn+1−tn)

E[(ytn −Dtn)+]

+ e−r
d(tn+1−tn)E[Vtn+1((ytn −Dtn)+er

f (tn+1−tn),Ξtn+1)] (3.1)

Vtn(xtn , ξtn) = min
ytn≥0
{Gtn(ytn , ξtn)} − xtn

ξtn
(3.2)

VtN+1
(xtN+1

, ξtN+1
) = −

xtN+1

ξtN+1

(3.3)

The cost of changing initial foreign currency level is, ytn−xtn
ξtn

, and this part could

be seen from the combination of the first term in Equation 3.1 and the second term in

Equation 3.2. Cost of unsatisfied demand is represented as the second term in Equation

3.1. Excess demand, (Dtn − ytn)+, is satisfied with the next period’s exchange rate,

Ξtn+1 . Since next period’s exchange rate is uncertain, expectation is taken over Ξtn+1

and this cost is discounted to time tn. When demand becomes less than the new level of

foreign currency, the excess amount is carried with foreign risk-free rate for one period

and this is represented as the third term in Equation 3.1. Last term in Equation 3.1

is the next period’s discounted value function. Expectation operator is both over Dtn

and Ξtn .

The value function in (3.2), is the minimization of Gtn(ytn , ξtn) over ytn , and

subtracting the initial domestic currency. Note that ytn cannot be negative, by the

assumption that the investor cannot borrow money.

Equation (3.3) is the boundary condition. When the planning period ends, the excess

amount of foreign currency is changed back to domestic currency with that period’s

exchange rate. That means a cash inflow, so it is multiplied with −1.
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3.4. Assumptions

(i) Demand is a stationary continuous positive random variable, and it must be

satisfied in each period

(ii) ytn ≥ 0, meaning that increasing or decreasing the initial foreign currency position

is possible but borrowing is not

(iii) There is no ask - bid spread. (But can be incorporated)

(iv) rd and rf are domestic and foreign risk-free interest rates respectively and they

are deterministic

(v) Demand in each period is independent of anything else

(vi) Exchange rate model is either Geometric Brownian Motion or Merton’s Jump

Diffusion Model

(vii) Jump sizes are iid log-normal random variables and they are independent of other

random variables

3.5. Structure of the Optimal Decision

Without loss of generality, let the planning period be equally spaced, tn+1− tn =

∆t; ∀n = 1, 2, . . . , N and let φn(.) be the density function of Dtn and d = er
d∆t

∂Gtn(ytn , ξtn)

∂ytn
= γtn +

E[Γtn+1 ]

d

∂

∂ytn

∫ ∞
ytn

(u− ytn)φn(u)du

+ γtn
d− 1

d

∂

∂ytn

∫ ytn

0

(ytn − u)φn(u)du

+
1

d

∂

∂ytn
E
[

min
ytn+1≥0

{Gtn+1 (ytn+1 , ξtn+1)} − (ytn −Dtn)+er
f∆tΓtn+1

]
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Let Fn(.) be the cumulative distribution function of Dtn

∂Gtn(ytn , ξtn)

∂ytn
= γtn +

E[Γtn+1 ]

d

∫ ∞
ytn

(−1)φn(u)du+ γtn
d− 1

d

∫ ytn

0

(1)φn(u)du

− er
f∆t

d
E[Γtn+1 ]

∫ ytn

0

(1)φn(u)du

= γtn −
E[Γtn+1 ]

d
+

E[Γtn+1 ]

d
Fn(ytn) + γtn

d− 1

d
Fn(ytn)

− er
f∆t

d
E[Γtn+1 ]Fn(ytn)

y∗tn = F−1
n

( E[Γtn+1 ]

d
− γtn

γtn
erd∆t−1

d
− E[Γtn+1 ]

d
(erf∆t − 1)

)
(3.4)

The first order condition has closed form solution for every ytn . Since the function

E
[

min
ytn+1≥0

{Gtn+1(ytn+1 , ξtn+1)}
]

is independent of ytn , its first derivative with respect to ytn becomes zero. The par-

tial derivatives of the rest of the terms are straight-forward. It is assumed that the

investor can drop down the level of foreign currency and this assumption enables the

minimization of Gtn+1 (.) to be independent of ytn .

The optimality of the above formula depends on the second derivative ofGtn(ytn , ξtn)

with respect to ytn , it must be positive in order Equation 3.4 to be valid. Required

condition on the convexity of Gtn(ytn , ξtn), will be given in Section 3.7. The expression

inside the parenthesis of the above formula will be called fractile from now on.

3.6. Exchange Rate Models

Two different exchange rate processes are considered. The first one is Geometric

Brownian Motion (GBM) [14] and the second one is Merton’s Jump Diffusion (MJD)

Model [15]. In the following two subsections, general characteristics of these processes

will be given.
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3.6.1. Geometric Brownian Motion

GBM is the standard model used in classical Black-Scholes. It also makes sure

that inverse process is in the same model class.

dξt = ξtµdt+ ξtσdWt

dγt = (σ2 − µ)γtdt− σγtdWt

Γtn+1 = γtnexp

{
(σ2 − µ− 1

2
σ2)∆t− σ(Wtn+1 −Wtn)

}
Etn [Γtn+1 ] = γtnexp

{
(σ2 − µ)∆t

}
Let

c1 = exp
{

(σ2 − µ)∆t
}

Etn [Γtn+1] = γtnc1 (3.5)

When E[Γtn+1 ] in Equation 3.4, is replaced by the expression in Equation 3.5, the

following line will give the explicit formula for the optimal decision when Geometric

Brownian Motion Model is used for exchange rate process.

y∗tn = F−1
n

(
c1
d
− 1

erd∆t−1
d
− c1

d
(erf∆t − 1)

)
(3.6)

Note that, in risk-neutral probability measure, µ should be replaced with rf − rd.

3.6.2. Merton’s Jump Model

The following process is the standard jump diffusion model of the stock price.

Jump size, Y , is a log-normally distributed random variable with parameters µJump

and σJump, and λ is the Jump intensity. In the risk-neutral probability measure, µ will
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be replaced with rf − rd.

dξt = ξt(µ− λK)dt+ ξtσdWt + ξt(Y − 1)dqt

K = E[Y − 1]

dqt =

 1 λdt

0 (1− λdt)

dγt = (σ2 − µ+ λK)γtdt− σγtdWt +
1− Y
Y

γtdqt

Γtn+1 − γtn = (σ2 − µ+ λK)γtn∆t− σγtn [Wtn+1 −Wtn ]− Y − 1

Y
γtn [qtn+1 − qtn ]

Etn [Γtn+1 ] = γtn [1 + (σ2 − µ+ λK)∆t− E
[
Y − 1

Y

]
λ∆t]

Let

c2 = 1 + (σ2 − µ+ λK)∆− λE
[
Y − 1

Y

]
∆t

Etn [Γtn+1 ] = γtnc2 (3.7)

When E[Γtn+1 ] in Equation 3.4 is replaced by the expression in Equation 3.7, the

following line will give the explicit formula for the optimal decision when Merton’s

Jump Diffusion model is used for exchange rate process.

y∗tn = F−1
n

(
c2
d
− 1

erd∆t−1
d
− c2

d
(erf∆t − 1)

)
(3.8)

3.7. Conditions on the Convexity and the Boundedness of the Decision

In order the formula for optimal decision in Equation 3.4 to hold, the second

derivative of the function Gtn(ytn , etn) must be positive.

∂2Gtn(ytn , γtn)

∂y2
tn

=

(
γtn

er
d∆t − 1

d
−

E[Γtn+1 ]

d
(er

f∆t − 1)

)
φn(ytn)

When E[Γtn+1 ] is replaced with γtnci, i = 1 denotes GBM Model and i = 2 de-

notes MJD Model, the convexity condition simplifies as the following.
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∂2Gtn(ytn , γtn)

∂y2
tn

=

(
er

d∆t − 1

d
− c1

d
(er

f∆t − 1)

)
φn(ytn)γtn

Since φn(ytn), γtn and 1
d

are always positive numbers, the convexity condition

would become:

(
er

d∆t − 1
)
≥ ci

(
er

f∆t − 1
)

(3.9)

If the investor carries one foreign currency for one period, then the expected profit

would be ciγtn

(
er

f∆t − 1
)

amount of domestic currency (Remember that 1 foreign =

γtn domestic, at time tn). On the other hand, if that 1 foreign currency is first changed

into γtn amount of domestic currency and then carried for one period, the profit would

be γtn

(
er

d∆t − 1
)

. So if the condition in Equation 3.9 is not satisfied, it would be

profitable, on the expected, to change all of the domestic currency into foreign currency.

This situation makes the goal of the investor irrelevant, which was satisfying demand

while cost minimizing, because it is possible to make infinite amount of profits by just

changing all of the domestic currency into foreign currency.

Assuming that the convexity condition holds; the fractile in Equation 3.4 should

be between 0 and 1, in order to have bounded decisions.

0 ≤

( E[Γtn+1 ]

d
− γtn

γtn
erd∆t−1

d
− E[Γtn+1 ]

d
(erf∆t − 1)

)

γtn ≤
E[Γtn+1 ]

d
(3.10)

If there is unmet demand, in any period, then it should be satisfied with
E[Γtn+1 ]

d

instead of γtn . So the decision maker should be penalized for not satisfying demand,

otherwise it would be unreasonable to hold foreign currency.

( E[Γtn+1 ]

d
− γtn

γtn
erd∆t−1

d
− E[Γtn+1 ]

d
(erf∆t − 1)

)
≤ 1
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E[Γtn+1 ]

d
− γtn ≤

1

d

(
γtn(er

d∆t − 1)− ciγtn(er
f∆t − 1)

)
(3.11)

Assuming that Equation 3.9 and 3.10 holds, the right and the left hand sides of

the above equation are positive. Left hand side is the expected cost of not satisfying

one unit of demand, and the right hand side is the expected discounted cost of carrying

1 unit of foreign currency for one period. So if the above condition is not satisfied,

then the investor would try to satisfy the demand as much as possible, because not

satisfying is very expensive.

3.8. Structure of the Value Functions

Let,

B(y∗tn) = y∗tn +
ci
d
E
[
(Dtn − y∗tn)+

]
+
d− 1

d
E
[
(y∗tn −Dtn)+

]
− cie

rf∆t

d
E
[
(y∗tn −Dtn)+

]
Since it is possible to find y∗tn ∀n = 1, 2, . . . , N explicitly, it is also possible to

calculate B(y∗tn) ∀n = 1, 2, . . . , N .

GtN (y∗tN , ξtN ) =
B(y∗tN )

ξtN

Gtn(y∗tn , ξtn) =
B(y∗tn)

ξtn
+ E

[
Gtn+1(y∗tn+1

,Ξtn+1)
] 1

d

Gtn(y∗tn , ξtn) =
1

ξtn
B(y∗tn)

N−n∑
j=0

(ci
d

)j
V ∗tn(xtn , ξtn) =

1

ξtn

(
B(y∗tn)

N−n∑
j=0

(ci
d

)j
− xtn

)
(3.12)

3.9. Conclusion

Part one shows that dynamic programming approach in FX market has some

unrealisticities, for instance the convexity condition. When the expected return of

foreign currency is greater than the domestic one, model suggests to convert all of the
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money to higher yielding currency. Because the demand and exchange rate processes

are driven by two independent uncertainties, it is impossible to hedge the demand risk

by trading in foreign currency. These independent uncertainties may lead to unbounded

solution in the dynamic programming, in the case where convexity condition does

not hold. This problem structure is different from the classical portfolio management

problem in the sense of hedging the risk of the obligation. First chapter has provided

solution to the consumption problem when the demand and exchange rate processes

are independent.

In Chapter 2, FX OTC options market will be studied. This time, option price

will be a function of the spot price and the volatility of the spot price, which enables

perfect hedging for options. Hedging the risks of option price, such as delta, gamma

and vega, will be possible in this problem setting because it is possible to trade in

money market, underlying security and an option with the same underlying. So the

first chapter has provided solution to the problem where the demand risk is impossible

to hedge and on the other hand the second chapter will be discussing the problem of

option pricing where the risks of option position is possible to be hedged in the market.
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4. PRICING FX-OPTIONS IN EMERGING MARKET

ECONOMIES

4.1. FX Derivatives in Emerging Market Economies

There are many differences between emerging market economies (EME) and ad-

vanced economies, such as daily turnover, traded instruments and percent share of

exchange trading and OTC trading. All the information contained in this section is

referenced from the 2010 December report of BIS [16]. Average daily turnover of FX

derivatives market in EMEs has grown four times over the past decade. Unlike ad-

vanced economies, FX derivatives are the most traded in EMEs with 50% share in

the total turnover. Exchange traded and OTC traded FX derivatives have the same

share in EMEs, whereas OTC has one third and exchange traded has two third of

the turnover in advanced economies. See figure 4.1 for the graphs that summarizes

derivatives turnover information between advanced and emerging markets.

Figure 4.1. Comparison of Derivatives Turnover in Advanced and Emerging Markets.

Largest FX derivatives market among EMEs are Brazil, Korea, Hong Kong SAR

and Singapore. Brazil and Korea constitutes the 90% of the turnover among EMEs.
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The main reasons of usage are hedging and speculating. Figure 4.2 shows the deriva-

tives turnover by country and also the ratio of FX and interest rate derivatives. Mostly

financial institutions (30%), such as pension funds or hedge funds, commercial and in-

vestment banks (58%) are trading in FX derivatives, rest (12%) is the non-financial

customers.

Figure 4.2. Derivatives Turnover in Emerging Markets in 2010.

Figure 4.3 shows the FX derivatives turnover by instrument. FX swaps comprise

the lion’s share of turnover with 70% and the FX options are less than 10%. However

trading in options also involve trading outright forward contracts and/or FX swaps in

order the trader to hedge his delta risk.

Cross border transactions have increased to 67% in 2010, which is the same

growth size as advanced economies. Importance of FX derivatives market is more

prominent when the growth rates of interest-rate derivatives and FX derivatives mar-

kets are compared in EMEs. The growth rate of interest-rate derivatives market is -8%

since 2007. The main reason to this situation is a mojar dealer, which is accounted for

40-50% of interest-rate derivatives, has shifted its trading desk during crisis. Rest of

the interest-rate derivatives dealers in EMEs increased their turnover however there is

still huge gap between these two derivatives market in EMEs. In advanced economies,

the growth rate of interest-rate derivatives market is 24% from 2007 to 2010. The

reason of controversy between advanced economies and EMEs is liquidity of bond and
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Figure 4.3. FX Derivatives Turnover by Instrument.

money markets in EMEs. With an increasing interest for the FX derivatives market in

EMEs, the transaction sizes of currencies has changed with this growth. Turnover of

EUR, JPY, GBP and CHF has decreased significantly from 2004 to 2010. Local cur-

rency and US dollar are more preferred in transactions. The reasons for such growth

in FX derivatives market can be related to strong growth of internal trade, import and

export, financial globalization and increase of per capita income. The FX derivatives

market is fast growing and one of the largest market in EMEs, which requires accurate

pricing of derivatives and calculating extreme event probabilities.

4.2. FX Options Market Dynamics

4.2.1. Introduction

In options market it is common to summarize the information of the vanilla

options in volatility smile (surface). When the market prices of vanilla options are

inverted in Black-Scholes option pricing formula, the implied volatilities are obtained.

These volatilities and moneyness levels (and different time-to-maturities) are repre-

sented in volatility smile (surface). Moneyness level of an option can be represented

by its strike price or by any linear or non-linear transformation of strike, like log-

moneyness, or delta. Market participants can not generally observe the smile directly

in FX OTC derivatives market. This situation is opposite to what happens in equity
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market, where strike versus price or strike versus volatility pairs can be observed. In

FX OTC derivatives market, delta specific risk-reversals (RR), strangles (STR) and

at-the-money (ATM) volatilities are directly observed for a given time-to-maturity and

currency pair. The reason for that is they are the most traded portfolios. Sample quo-

tation is represented in Table 4.1. These quotes can be used to construct a volatility

smile, which then one can extract the volatility for any delta or strike price.

Table 4.1. Sample Quotation in FX market

Date ATM 25∆RR 10∆RR 25∆STR 10∆STR

04.01.2011 11.595 2.2775 3.93 0.51 1.4775

03.01.2011 11.535 2.3025 4.0025 0.505 1.5125

Rest of this chapter are organized as follows: Definitions of spot, forward and op-

tions, delta conventions, and ATM conventions. Most of the definitions and formulas

in the rest of this chapter are obtained from the paper Reiswich et al. [4].

4.2.2. Spot, Forward and Options Price

4.2.2.1. Spot Rate. The FX spot rate St = foreign-domestic represents the amount of

domestic currency needed to buy one unit of foreign currency at time t. For example,

USD-TRY= 1.5100 means that 1.5100 TRY can buy 1 USD. In this example USD

is the foreign currency (FOR) and TRY is the domestic currency (DOM). The term

foreign does not refer to any geographical region, rather it means underlying just like

in equity market. The term domestic also doesn’t refer to any geographical region, it

refers to numeraire currency.

4.2.2.2. FX Outright Forward Rate. Outright forward contract is the most liquid hedge

contract that trades at time t at a zero cost and at time T there is exchange of notion-

als at pre-specified are f(t, T ). Long leg of the contract will give N units of domestic

currency and short leg will give N × f(t, T ) units of foreign currency. The outright
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forward rate is related to spot via the formula:

f(t, T ) = Ste
(rd−rf )τ (4.1)

where rd is the continuously compounded risk-free interest rate of the domestic cur-

rency, rf is the continuously compounded risk-free interest rate of the foreign currency,

τ is the time-to-maturity, which is also equal to T − t

4.2.2.3. FX Forward Value. Value of the forward contract is zero at the time it is

traded but as the markets move, the value of the contract does not stay at zero rather

it worths;

vf (t, T ) = e−rdτ (f(t, T )−K) = Ste
−rf τ −Ke−rdτ (4.2)

where K is the pre-specified exchange rate. The value of the forward contract is in

terms of domestic currency.

4.2.2.4. FX Vanilla Option Price. In FX markets, options are usually physically set-

tled, i.e. buyer of the vanilla call option will receive a FOR currency with notional

amount of N and gives N ×K units of DOM currency. Price of such a vanilla option

is computed by the Black-Scholes formula

v(St, K, σ, φ) = φ
[
e−rf τStN(φd+)− e−rdτKN(φd−)

]
(4.3)

= φe−rdτ [f(t, T )N(φd+)−KN(φd−)] (4.4)

where d± =
`n( f(t,T )

K )± 1
2
σ2τ

σ
√
τ

, φ is +1 for call options and −1 for put options, K is the

strike price of the option, σ is Black-Scholes volatility and N(x) is the cdf of standard

normal distribution.
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4.2.3. Delta Conventions

In FX OTC options market, moneyness level of options are represented by its

delta as previously mentioned, however there are two characteristics of the delta type.

One characteristic is being spot or forward delta, meaning that one can hedge his

option position either with the spot or with the forward contract. Second characteristic

is premium-adjusted or unadjusted delta. In FX options market, the premium of the

some currency pairs are foreign currency and sometimes deltas are adjusted with the

option premium. This situation is like, shorting a stock option in equity market and

receiving stock as premium instead of money. However not all the deltas are adjusted

even the premium is paid in foreign currency. For example USDTRY currency pair,

the premium currency is USD but the quoted delta volatility pair information are not

premium-adjusted. Analogously when an option is shorted in USDTRY currency, short

position will receive underlying (USD) as premium, although this kind of situation

never happens in equity markets.

So with these two characteristics, there are four different delta types that are

used in practice. Those are “Spot Delta”, “Forward Delta”, “Premium Adjusted Spot

Delta” and “Premium Adjusted Forward Delta”.

4.2.3.1. Spot Delta. Spot delta is the first derivative of Black-Scholes price (4.4) with

respect to St.

∆S(K, σ, φ) =
∂v

∂S

∆S(K, σ, φ) = φe−rf τN(φd+) (4.5)

And the put-call delta parity is:

∆S(K, σ,+1)−∆S(K, σ,−1) = e−rf τ (4.6)

In FX market, one needs to buy ∆S×N foreign currency in order to hedge a short

vanilla position, or equivalently needs to sell ∆S ×N × St units of domestic currency.
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When calibrating a model to the market data, one will need to extract the strike

volatility pairs from delta volatility pairs. So the strike price must be needed to backed-

out from the above formula (Equation 4.5) and after simple algebra the formula for

the strike price is given below when the spot delta type is used.

K

f
= exp

{
−φN−1(φerf τ∆S)σ

√
τ +

1

2
σ2τ

}
(4.7)

4.2.3.2. Forward Delta. Forward delta is the first derivative of Black-Scholes price

(4.4) with respect to vf . This time the position is hedged with forward contract instead

of spot.

∆f (K, σ, φ) =
∂v

∂vf
=
∂v

∂S

∂S

∂vf
=
∂v

∂S

(
∂vf
∂S

)−1

∆f (K, σ, φ) = φN(φd+) (4.8)

And the put-call delta parity is:

∆f (K, σ,+1)−∆f (K, σ,−1) = 1 (4.9)

In FX market, one needs to enter ∆f×N amount of forward contracts in order to

hedge a short vanilla position. Forward delta type is very commonly used convention

in most of the currency pairs, because of the fact that delta of a call and absolute value

of the delta of a put adds up to 1. i.e 10∆P and 90∆C has the same volatility.

Again in the calibration phase, extraction of the strike volatility pairs from delta

volatility are needed. So the formula for the strike price is given below when the

forward delta type is used,

K

f
= exp

{
−φN−1(φ∆f )σ

√
τ +

1

2
σ2τ

}
(4.10)



27

4.2.3.3. Premium-Adjusted Spot Delta. The premium-adjusted spot delta makes the

correction induced by the option premium. Since the option premium is paid in foreign

currency, the actual amount needed to hedge the short position must decrease by the

amount of option value. So it can be represented as,

∆S,pa = ∆S −
v

S

In this delta convention, one needs to buy N ×
(
∆S − v

S

)
amount of foreign

currency in order to hedge the short option position. Equivalently, one needs to sell

N×(St∆S − v) units of domestic currency in order to hedge the short position. Another

way of finding the delta in domestic currency units is flipping around the quotation

and computing delta, meaning that taking the partial derivative of v
S

with respect to

1
S

, because the value of the option, v
S

, is in domestic currency now and 1
S

is DOM
FOR

.

By flipping the quotation domestic currency now becomes the underlying and foreign

currency becomes numeraire, and since the premium is paid in foreign currency now

the formula for delta should be St∆S − v

∂ v
S

∂ 1
S

=
∂ v
S

∂S

∂S

∂ 1
S

=
SvS − v
S2

(
∂ 1
S

∂S

)−1

=
SvS − v
S2

(
− 1

S2

)−1

= −(SvS − v) DOM to buy = SvS − v DOM to sell = vS −
v

S
FOR to buy

which confirms the definition of premium-adjusted spot delta and the formula is

as follows:

∆S,pa(K, σ, φ) = φe−rf τ
K

f
N(φd−) (4.11)

Put-call delta parity relation becomes:

∆S,pa(K, σ,+1)−∆S,pa(K, σ,−1) = e−rf τ
K

f
(4.12)
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The strike versus delta relation is not injective this time, because there is variable

K in d− and also as a multiplier of N(.). So there might exist more than one strike

per delta. The relationship between delta and strike is as follows,

∆S,pa(K, σ, φ) = φ
K

f
e−rf τN

(
φ
`n
(
f
K

)
− 1

2
σ2τ

σ
√
τ

)
(4.13)

In order to find the strike, the authors of the reference paper of this chapter [4]

suggest to search for K ∈ [Kmin, Kmax]. Where Kmax is simply the strike of spot delta

case and Kmin is the solution of the following equation,

σ
√
τN(d−) = n(d−) (4.14)

with n(.) being the probability density function of standard normal distribution.

After finding the bounds, solve the Equation 4.13 in terms of K, and that strike would

be the corresponding strike for the premium-adjusted spot delta.

4.2.3.4. Premium-Adjusted Forward Delta. Just like in the premium-adjusted spot

delta case, the hedge quantity needs to be adjusted because of the premium paid in

foreign currency, and the resulting formula for the premium-adjusted forward delta is,

∆f,pa(K, σ, φ) = φ
K

f
N(φd−) (4.15)

The Put-call delta parity relation becomes,

∆f,pa(K, σ,+1)−∆f,pa(K, σ,−1) =
K

f
(4.16)

Again the strike delta relation is not injective like in Spot-pa delta case. However

the technique is the same as Spot-pa case, search for K ∈ [Kmin, Kmax]. This time

Kmax is the strike of forward delta, however Kmin is the same as in Spot-pa case, it is

the solution of K in the Equation 4.14.
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4.2.4. At-the-Money Convention

Since it is an attempt to specify the middle of the spot distribution, at-the-money

(ATM) definition may not be obvious. One can think of many definitions for ATM,

such as

ATM-spot K = S0

ATM-forward K = f

ATM-∆-neutral K such that call delta = − put delta

The delta-neutral ATM definition has sub-categories depending on which delta

type is used. This ATM convention is default for short-dated FX options. The strike

prices and deltas for every combination of ATM definition are given in the following

Table 4.2.

Table 4.2. Strike and Delta Values for Different Type of Delta Conventions.

∆neutral

strike

Forw

strike

Spot

strike

∆neutral

Delta

ATM Forward

Delta

ATM Spot Delta

Spot

Delta

fe
1
2
σ2τ f S0

1
2
φe−rf τ φe−rf τN(φ1

2
σ
√
τ) φe−rf τ .

N
(
φ(

rd−rf
σ

√
τ + 1

2
σ
√
τ)
)

Forward

Delta

fe
1
2
σ2τ f S0

1
2
φ φN(φ1

2
σ
√
τ) φN

(
φ(

rd−rf
σ

√
τ + 1

2
σ
√
τ)
)
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Delta p.a.

fe−
1
2
σ2τ f S0

1
2
φe−rf τ−

1
2
σ2τ φe−rf τN(−φ1

2
σ
√
τ) φe−rdτ .

N
(
φ(

rd−rf
σ

√
τ − 1

2
σ
√
τ)
)
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Delta p.a.

fe−
1
2
σ2τ f S0

1
2
φe−

1
2
σ2τ φN(−φ1

2
σ
√
τ) φe(rf−rd)τ .

N
(
φ(

rd−rf
σ

√
τ − 1

2
σ
√
τ)
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4.3. The Heston Model

4.3.1. Introduction

In option pricing theory, Black&Scholes [14] published a benchmark paper that

option prices were related with the distribution of spot returns. Although the Black-

Scholes european option pricing formula is successful in relating distribution of spot and

option prices, it does not explain the smile effect. Meaning that options with different

strike prices and time-to-maturities have different implied volatilities. When the market

option prices are inverted with the Black-Scholes formula to obtain volatility, with

known strike, time-to-maturity, risk-free-interest rate and spot price, it is called BS-

implied-volatility. This situation is conflicting with the model assumption that the spot

price process has constant volatility, since it has been observed that options written

on the same underlying asset with varying strikes and time-to-maturities actually have

different volatilities. One simple way of handling this situation is using different models

for every different strike and time-to-maturity pairs, so that these models would capture

the different volatilities across strike and time-to-maturity. However using different

models would result inconsistency in the management of option books that contains

several levels of strikes and time-to-maturities. So the literature continued with the

relaxation of this assumption.

Next step in the literature is local volatility models. Merton [5] suggested that

making the volatility a function of time. Although this approach explains the different

implied volatilities across time-to-maturities, it fails to explain the smile shape across

strike prices. Dupire [6], Derman and Kani [7], and Rubinstein [8] came up with the

idea that making the volatility not only a function of time, but a function of state

variables. This approach was successful in fitting the volatility surface, however it

failed to explain the persistent smile shape which does not vanish as the time passes.

Failure of local volatility models is followed by the idea of making the volatility

a stochastic process. With the pioneering work of Scott [9], Hull and White [10], and

Wiggins [11] the idea of stochastic volatility is further developed. These models have

the disadvantage of not having closed form solution for european type of options and

also they require extensive use of numerical techniques.
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The Heston’s stochastic volatility model [12] is different from the other models

for two reasons. First one is the stochastic process for the volatility is non-negative

and mean-reverting, which is observed in the market. Second one is there exists a

semi-analytical formula for european type of options, which one can easily implement.

The second advantage is very important in calibrating the model to the market data.

So these two advantages made Heston’s model very popular and many practitioners

uses this model in front office implementation.

4.3.2. The Model Definition

Heston [12] proposed the following model:

dSt = µStdt+
√
V tStdW

1
t (4.17)

dVt = κ (θ − Vt) dt+ σ
√
V tdW

2
t (4.18)

dW 1
t dW

2
t = ρdt (4.19)

where St and Vt are the spot price and variance processes respectively. W 1
t and

W 2
t are correlated brownian motions with correlation parameter ρ. The intuition of

the parameters of the mean-reverting variance process are: long term variance level θ,

rate of mean reversion κ and volatility of volatility, sometimes referred as volofvol, σ.

All the parameters are independent of time and the current state of the system. Note

that parameter µ will be replaced with rd− rf in risk-neutral-world, so the parameters

that will be calibrated to market data would be: κ, θ, σ, ρ and initial variance v0.

4.3.3. Option Pricing Formula

Consider a contingent claim, whose value is G(t, v, S) at time t, paying G(T, v, S)

at time T . Since the Heston model has two sources of uncertainty, the self-financing

portfolio must include the possibilities of trading in the money market, underlying and

another derivative whose value function is V (t, v, S). The differential of the process X
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is as follows:

dX = ∆dS + ΓdV + rd (X − ΓV −∆S) dt+ rf∆Sdt

where ∆ is the number of underlyings and Γ is the number of derivative securities

V, held at time t. The aim is constructing a portfolio that has initial wealth of X0,

and finding ∆ and Γ so that Xt = G(t, v, S) for all t = [0, T ]. The standard approach

is to compare the differentials of the processes X and G. After some algebra the partial

differential equation which G must satisfy, in order the market to be arbitrage free, is

as follows:

1

2
vS2∂

2G

∂S2
+ ρσvS

∂2G

∂S∂v
+

1

2
σ2v

∂2G

∂v2
+ (rd − rf )S

∂G

∂S

+ {κ (θ − v)− λ(t, v, S)} ∂G
∂v

+
∂G

∂t
− rdG = 0 (4.20)

Note that λ(t, v, S) is the market price of volatility risk and every different level

of λ(t, v, S) would lead to different risk-neutral measure, meaning that the risk-neutral

measure is not unique and that the market is incomplete. However this is an expected

result for the Heston model, because there is another brownian motion for the variance

process. The above partial differential equation can be solved with the appropriate

boundary conditions. For an European type of option, these conditions are:

G (T, v, S) = max {φ(S −K), 0} (4.21)

G (t, v, 0) =
1− φ

2
Ke−rdτ (4.22)

∂G

∂S
(t, v,∞) =

1 + φ

2
e−rf τ (4.23)

rdG (t, 0, S) = (rd − rf )S
∂G

∂S
(t, 0, S) + κθ

∂G

∂v
(t, 0, S) +

∂G

∂t
(t, 0, S) (4.24)

G (t,∞, S) =

 Se−rf τ φ = +1

Ke−rdτ φ = −1
(4.25)

where K is the strike price, φ = ±1 for call and put options respectively and

τ = T − t is the time-to-maturity. Heston solved the partial differential equation
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analytically and the european FX option price is given by:

H (κ, θ, σ, ρ, λ, rd, rf , vt, St, K, τ, φ) = φ
{
Ste
−rf τP+(φ)−Ke−rdτP−(φ)

}
(4.26)

where u1,2 = ±1
2
, b1 = κ+ λ− σρ, b2 = κ+ λ,

dj =
√

(ρσψi− bj)2 − σ2(2ujψi− ψ2) (4.27)

gj =
bj − ρσψi+ dj
bj − ρσψi− dj

(4.28)

Cj(τ, ψ) = (rd − rf )ψiτ +
κθ

σ2

{
(bj − ρσψi+ dj)τ − 2log

(
1− gjedjτ

1− gj

)}
(4.29)

Dj(τ, ψ) =
bj − ρσψi+ dj

σ2

(
1− edjτ

1− gjedjτ

)
(4.30)

fj(logSt, vt, τ, ψ) = exp {Cj(τ, ψ) +Dj(τ, ψ)vt + iψlogSt} (4.31)

Pj(logSt, vt, τ, logK) =
1

2
+

1

π

∫ ∞
0

R

{
e−iψlogKfj(logSt, vt, τ, ψ)

iψ

}
dψ (4.32)

P+(φ) =
1− φ

2
+ φP1(logSt, vt, τ, logK) (4.33)

P−(φ) =
1− φ

2
+ φP2(logSt, vt, τ, logK) (4.34)

The above formulas require integration of complex logarithms and this situation

causes numerical instability. Efficient transformation of gj, Cj and Dj are proposed in

the paper of Janek et. al. [17], so when coding in Matlab the Equations 4.28, 4.29 and

4.30 are changed with the following ones,

g̃j =
1

gj
=
bj − ρσψi− dj
bj − ρσψi+ dj

(4.35)

Cj(τ, ψ) = (rd − rf )ψiτ +
κθ

σ2

{
(bj − ρσψi− dj)τ − 2log

(
1− g̃je−djτ

1− g̃j

)}
(4.36)

Dj(τ, ψ) =
bj − ρσψi− dj

σ2

(
1− e−djτ

1− g̃je−djτ

)
(4.37)

Above formulas are coded in Matlab and details of the code are given in Appendix

A.
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4.4. Calibration

4.4.1. Effects of Parameters in the Smile and in Implied Distribution

Before starting the calibration of model to the market data, it is preferred to ex-

amine firstly the qualitative effects of parameters on the smile and also on the implied

distribution (ImpDist). Knowing which parameter effects which characteristic of the

smile (or ImpDist) will help to better understand the calibration results and possibly

give clues about which parameters to fix before calibration.

Empirical studies show that the distribution of asset’s log-return is non-Gaussian,

which conflicts with the Black-Scholes model assumption. Classical BS model assumes

Gaussian log-return distribution. The log-return distribution with high peaks and

heavy tails is referred as leptokurtic and Heston’s model can generate these kinds of

distributions.

The parameter ρ, correlation between the log-returns and volatility, affects the

heaviness of the tails, meaning that ρ being positive will make the right tail fatter and

squeeze the left tail, and being negative will do the reverse. Therefore ρ affects the

skewness of the distribution. In particular positive ρ makes calls more expensive, while

negative ρ makes puts more expensive. Figure 4.4 shows the effect of different values

of ρ on the distribution and smile. From the figure one can also imply the relation

between the smile and ImpDist, such as; if the right end of the smile is higher than the

left end side in the smile, it means the ImpDist is right-skewed, and vise-versa.

Volatility of the volatility, σ, effects the kurtosis (peakness) of the distribution. In-

creasing σ will result in peaker distributions and that will cause heavier tails on both

sides. In the smile, increasing sigma increases the convexity of the fit. Higher volofvol

means market has greater potential to make extreme movements, therefore the price

of both call and put options should go up. Figure 4.5 shows the effect of different

values of σ on the distribution and smile. Again from the figure one can realize that

convexity of the smile increases as σ increases. In other words, probability of extreme

event increases in the market, which also means that ImpDist has heavier tails.

Changing initial variance, vt affects the height of the smile curve. Moreover the

long term variance θ has similar effect on the smile. That is why in the paper “FX
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Figure 4.4. The Effect of Changing Parameter ρ.

Smile in the Heston Model” [17], the authors suggest fixing the initial variance at ATM

volatility and let θ vary. Figure 4.6a and Figure 4.6b show the effects of vt and θ on

the distribution and smile respectively.

The mean-reversion speed parameter, κ affects the ATM part and the wings of

the smile, however its effect on the level of the curve is more prominent. When the

current volatility is far away from the long term volatility level, higher κ makes current

volatility approach to long term volatility faster. This situation can be referred as

volatility clustering, because higher κ makes large price variations followed by large

price variations. In the paper, “FX Smile in the Heston Model” [17], authors suggest

to fix κ at some level and calibrate the rest of the three parameters. Figure 4.6c shows

the effect of different values of κ on the distribution and smile.

4.4.2. Calibration Scheme

Calibration of stochastic volatility models are done basically in two conceptually

different ways. One is estimation from the historical time seires data such as; general-

ized method of moments, efficient method of moments and bayesian MCMC. Second

way of calibration is fitting the empirical distributions of returns to the marginal dis-



36

Figure 4.5. The Effect of Changing Parameter σ.

tributions via a minimization scheme. This thesis chooses to use the second way,

because the historical approaches fail to estimate the market price of volatility risk,

namely λ(t, v, S). When second way of calibration scheme is used one need not worry

about λ(t, v, S), because that information is embedded in the market smile. Simply

set λ(t, v, S) = 0 and continue with the calibration process.
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(a) The Effect of Changing Parameter vt.

(b) The Effect of Changing Parameter θ.

(c) The Effect of Changing Parameter κ.

Figure 4.6. The Effects of Changing Parameters vt, θ and κ.
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More specifically this approach tries to minimize the discrepancy between the

model implied volatilities and market implied volatilities. i.e.

min
∑
∀i

[
σBS(Ω, Ki)− σMrkt(Ki)

]2
(4.38)

σBS(Ω, Ki) is the model implied volatility, and Ω is the parameter vector, for the ith

calibration object. Here note that the model implied volatility is Black-Scholes volatil-

ity, so the price argument of the Black-Scholes-implied-volatility function should be

parametric Heston price. More specifically, after finding the heston price of the ith

calibration object (price is a function of Ω), the Black-Scholes volatility needed to be

backed-out from that price. After computing the parametric volatility, the ith element

of the objective function is constructed by taking the squared differences of model

volatility and market volatility.

As a preliminary step, one needs to retrieve the strike versus volatility pairs from

the delta versus volatility pair information. This step can be done by using the for-

mulas given in Section 4.2.3. Next thing is to fix the parameter, v0 to the σ2
ATM . As

it is argued previously, v0 affects the level of the smile curve and fixing it to σ2
ATM

is not insensible. This step is suggested in the paper Janek [17], and the authors of

that paper also suggest to fix the parameter κ to some level, say 1.5, and optimize the

rest of the parameters, θ, σ and ρ. The Matlab function of calibration is provided in

Appendix B.

To summarize the calibration step by step:

(i) Retrieve the σ(Ki) from the data σ(∆i)

(ii) Decide which parameters to fix, such as v0 = σ2
ATM and/or κ = 1.5

(iii) Find the heston price of the ith object, hi(θ, σ, ρ) assume v0 and κ are fixed

(iv) Find the Black-Scholes implied volatility of the ith object using its heston price,

hi(θ, σ, ρ). Matlab function for this step is “blsimpv.m”

(v) Construct the objective function by taking squared differences of model implied

volatilities and market volatilities, and then summing them up. The Matlab
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function for this step is provided in Appendix B

(vi) Minimize the objective function using “fmincon.m” in Matlab by defining sensible

bounds for the parameters, such as −1 ≤ ρ ≤ 1.

4.4.3. Sample Calibration Results

Now one can easily calibrate heston model to market data. Sample experiments

are made in the USDTRY 1 month options. Table 4.3 shows the market quoted volatil-

ities. Note that this information has to be converted to delta volatility pairs by the

use of simplified formula (4.39), which is given below

σ∆C = σATM +
1

2
σRR + σSTR

σ∆P = σATM −
1

2
σRR + σSTR (4.39)

After converting quotations to delta-volatility pairs, it is now ready to be given

to the calibration function as input. Note that, this delta-volatility information will be

converted to strike-volatility pairs inside the calibration function. Table 4.4 shows the

delta-volatility pairs of sample quotations represented in Table 4.3.

Table 4.3. Four Days Sample Quote for USDTRY 1 Month Options.

Date Spot rd rf σATM 25 ∆RR 10 ∆RR 25 ∆STR 10 ∆STR

04.01.2011 1.5476 0.07 0.02 11.595 2.2725 3.93 0.51 1.4775

03.01.2011 1.5376 0.07 0.02 11.535 2.3025 4.0025 0.505 1.5125

31.12.2010 1.5460 0.07 0.02 11.44 2.355 4.13 0.51 1.535

30.12.2010 1.5567 0.07 0.02 11.57 2.355 4.09 0.4925 1.5525

In USDTRY OTC options market, the delta convention used is “forward-delta”

and the ATM type is “forward-delta-neutral”. Sample calibration results, parameter

values, are represented in the Table 4.5. It can be seen from the results that parameter
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Table 4.4. Delta Volatility Pairs Given in Table 4.3.

Date Spot rd rf 10∆P 25∆P ATM 25∆C 10∆C

04.01.2011 1.5476 0.07 0.02 11.1075 10.96875 11.595 13.24125 15.0375

03.01.2011 1.5376 0.07 0.02 11.04625 10.88875 11.535 13.19125 15.04875

31.12.2010 1.546 0.07 0.02 10.91 10.7725 11.44 13.1275 15.04

30.12.2010 1.5567 0.07 0.02 11.0775 10.885 11.57 13.24 15.1675

κ is more steady compared to other variables as the time passes. Fixing κ to level 1.5

does not make much difference in the estimates of the other variables, so a model with

one less parameter is always better, so fixing κ seems not a bad idea. In this table, v0

is set to σ2
ATM . Note that when calibrating to volatility surface, fixing v0 = σ2

ATM is

not suggested, because then for every different time-to-maturity there will be an initial

variance estimate, which is unreasonable and will result in inconsistency in the model.

In figure 4.7, sample smile results for four days are represented. In these figures,

the model is calibrated with 3 parameters, θ, σ and ρ, the initial variance is set to

square of ATM-volatility, v0 = σ2
ATM , and κ = 1.5. It can be seen that heston model

has fitted the market data almost perfectly.

There are mainly three parameters in the model, when calibrating to smile, those

are θ, σ and ρ. The long-run average variance level, θ, is related to the level of the

smile, which corresponds to ATM level; vol-of-vol, σ, is related with the convexity of

the smile, which corresponds to quoted strangle volatilities; and correlation parameter,

ρ, is related with the skewness of the smile, which also corresponds to quoted risk-

reversals. These direct relationship of the parameters with the quoted volatilities makes

the heston model more attractive.

4.5. Trading Algorithm

After calibrating the Heston’s model to the market data, it is now time to con-

struct trading strategies. The most basic trading strategy in the literature is two
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Table 4.5. Calibration Results for 1 Month USDTRY Option Data for 10 Days.

When κ is free When κ = 1.5

Date κ θ σ ρ θ σ ρ

04.01.2011 1.517 0.0502 0.6621 0.4019 0.0506 0.6617 0.4019

03.01.2011 1.5169 0.0507 0.6712 0.4054 0.0511 0.6708 0.4055

31.12.2010 1.5171 0.0509 0.6769 0.4159 0.0513 0.6765 0.4159

30.12.2010 1.5166 0.0516 0.684 0.4087 0.052 0.6836 0.4087

29.12.2010 1.517 0.0516 0.6842 0.4201 0.052 0.6838 0.4201

28.12.2010 1.5175 0.0499 0.6682 0.4176 0.0503 0.6678 0.4176

27.12.2010 1.5178 0.0496 0.6601 0.4207 0.05 0.6597 0.4208

24.12.2010 1.5177 0.0501 0.6658 0.4229 0.0505 0.6654 0.4229

23.12.2010 1.5171 0.0506 0.6765 0.4123 0.051 0.6761 0.4123

22.12.2010 1.5181 0.0494 0.6516 0.4205 0.0498 0.6512 0.4206

standard deviation rule, and in this study two standard deviation rule is used to con-

struct trading signals.

The rule is simple, when the time series hits its µ + 2σ level the sell signal is

generated and when it hits the µ − 2σ level the buy signal is generated. According

to the Law of One Price, time series is mean-reverting and when it deviates too much

from its long term mean, it will start to close that deviation by returning to its mean.

The rule is simple, straight-forward and widely used in practice specifically in pairs

trading. Figure 4.8 demonstrates the strategy on the line chart in order to understand

better.

4.5.1. Two Standard Deviation Rule in Trading Exchange Rate

In this section, the previously defined trading strategy will be constructed on

the exchange rate (spot price). Differently from the literature, signal generating pro-

cess will be different from the one that is traded, in our example it is spot price. The
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Figure 4.7. Sample Smile Fits for 4 Days.

candidates for the signal generating process are: 10 Delta Risk-Reversal, 25-Delta Risk-

Reversal, Interest Rate Differential (rd − rf ), Heston’s model parameter rho (ρ), and

the skewness parameter of the log-normal distribution. Note that all of these candi-

dates are kind of measure of skewness in the implied distribution. The idea is, interest

rate differential and spot price is highly correlated in emerging market currencies, so

the candidates are all belong to same class in a sense. Before starting to construct

the trading signal, a simple regression analysis is made in order to have an intuition

among the candidates. The dependent variable in the regression model is spot price,

and the independent ones are all of the candidates listed above. Results of the Linear

Regression is given in Figure 4.9.

The P-values of the covariates 10 Delta and 25 Delta Risk-Reversal are too high

to be in the model, so the type one error will be very small when we assume that the

coefficients of those are zero and continue with the regression model without them.

Results of the second regression model is given in Figure 4.10. As it can be seen easily,

the covariates rho and skewness are very significant compared to Rate Differential.

Trading signal will be constructed individually by using these covariates and decide

on which one will perform best, however for the sake of completeness the results of
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Figure 4.8. Two Standard Deviation Rule.

the third regression is provided in Figure 4.11. This last regression has two covariates;

those are rho and skewness.

Now the signal generating process will be selected from the covariates and ac-

cording to the signal coming from that, long or short position will be taken in the spot

price. Specifically when rho is selected as the signal generating one, the 90-days moving

average and standard deviation will be calculated. After that the sigma position (x−µ
σ

)

will be calculated and if it is above 2, sell signal will be generated and if it is below -2

then the buy signal will be generated.

The results of the back-test is provided in the Table 4.6. To make the results more

realistic, a take profit (3%) and stop loss limits (2%) are applied in the back-test, since

FX market is too volatile to trade without take-profit and stop-loss limits in practice.

The results are promising in the case of rho, since the strategy results in an an-

nualized return of 26%. The success probability of the signal is 0.67, meaning that the

signal gives correct direction, nearly two third of the time. The back-test results of

skewness and rate differential are given in Table 4.7 and 4.8.

When skewness and interest-rate differential is used as the sigma position input,
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Figure 4.9. Regression Results-1.

the annualized return of 1.50% and −2.48% are resulted, which shows that rho signif-

icantly outperforms the rest of the two input type.

The reason why skewness has failed to perform well in trade is because of the un-

derlying distribution is not log-normal. In fact the implied distribution is leptokurtic,

meaning that it has heavy tails and large kurtosis compared to log-normal distribution.

In calculation of the skewness of the log-normal distribution, historic volatility is used

for the variance parameter, that is why the observations in regression model are 414.

90 days moving standard deviation is used for the calculation of skewness, with this 90

days a total of 504 days (2 years, 252 in a year) are used in the analysis.

As our trading idea suggests, interest-rate differential should be one of the most

important covariate and the back-test results should be promising. Since most of the

skewness is coming from the positivity of the rate differential, it should perform well

in trading also. The reason why it underperformed in the trade is that, it contains

very less information about the spot price. Although the rate differential is the main
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Figure 4.10. Regression Results-2.

reason of positive skewness, trading in exchange rate by just looking to rate differential

is not enough, since FX market is highly volatile and it has many drivers besides rate

differential. This reasoning can be justified with the results of the regression analysis,

the p-value was 0.004 in the last regression (See Figure 4.11), which means that in-

terest rate differential has information in explaining the behavior of the spot, however

this information is obviously not enough to trade in exchange rate, at least with two

standard deviation rule.

The Heston parameter rho has significantly outperformed its rivals both in re-

gression analysis and in trading. The reason is that it contains the information at every

delta risk reversal, i.e. 10D RR, 15D RR, 25D RR etc. To be more specific, rho is the

output of calibration procedure and obviously it contains all the information coming

from risk-reversals, butterflies, rate differentials and spot. So this right mixture of

information makes rho out-performer in the trade. Still, FX market has many drivers

and this situation is specific to emerging market currencies, which the underlying trade

idea is: skewness is the main driver of the exchange rate. At this point, it is crucial to
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Figure 4.11. Regression Results-3.

emphasize that simple trading strategies work even in FX market, with the input(s)

having the right mixture of information about the market.
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Table 4.6. Back-Testing Results When Heston Parameter Rho is Used as Signal

Generating Series.

Enter Direction Exit Return # of days in trade

1.4706 long 1.4395 -2.12 % 9

1.4395 long 1.4092 -2.11 % 4

1.4092 long 1.4565 3.22 % 25

1.5771 short 1.5226 3.58 % 6

1.4825 long 1.5300 3.20 % 17

1.4871 long 1.4563 -2.07 % 9

1.4563 long 1.5079 3.54 % 12

1.5234 short 1.4760 3.21 % 7

1.4633 long 1.5351 4.91 % 60

4.5.2. Conclusion

In the second part of the thesis, FX OTC options market is introduced and quo-

tation mechanism is explained in detail. FX options market is different in various ways

compared to equity options market; level of moneyness is measured with the options

delta in FX market, however in classical option markets strike price of the option is

used to measure the level of moneyness. The reason for this difference was not arbi-

trary, communicating in terms of delta makes the system efficient. Traders can directly

understand the spot risk when they trade options with the use of delta mechanism in-

stead of strike price. Second difference from the classical option market is quotation

mechanism. Calls and puts are not quoted in the market, instead risk-reversals and

butterflies (strangles) are quoted. The reason for this situation is, those are the mostly

traded instruments in the market. Traders prefer to finance their call option premium

by shorting same delta put option for instance. The premium obtained from shorting

put option is paid to long call option. By this strategy initial investment is zero, but

the spot risk (delta) is doubled. This situation is same for the butterflies.

After the definition of the market, Heston’s stochastic volatility model is in-
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Table 4.7. Back-Testing Results When Skewness of Log-normal Distribution is Used

as Signal Generating Series.

Enter Direction Exit Return # of days in trade

1.4545 long 1.4162 -2.63 % 8

1.4162 short 1.4546 -2.64 % 26

1.5644 long 1.6128 3.09 % 18

1.6128 long 1.5763 -2.26 % 3

1.5763 long 1.5430 -2.11 % 10

1.5235 short 1.4743 3.34 % 19

1.4767 long 1.5351 3.96 % 40

troduced and calibrated to market data. Heston’s model is selected because of this

simplicity, realisticity and ability to handle the smile implied by options. One to one

correspondence between Heston parameters and market quoted instruments is another

reason for the popularity of this model in FX options market. The correlation param-

eter ρ and risk-reversals are affecting the skewness of the smile, and butterflies and

volofvol parameter, σ are affecting the curvature of the smile, which is an indication of

extreme event movement.

FX options market is getting increasingly popular in emerging market economies,

and trading strategies should be generated in this market. The underlying trade idea

was, emerging market currencies are mostly driven by the interest rate differential.

Interest rate differential was found to be under-performer in trade and not successful

in regression analysis also. However the reason is that, rate differential affects the

skewness of the implied distribution and this skewness is the main driver of the spot

price. Following this idea, risk-reversals, skewness parameter of log-normal distribution

and the Heston model parameter rho are tested and rho has outperformed its rivals in

two sigma trading rule. The reason of this huge out-performance is the right mixture

of information in parameter rho, since it is the output of the calibration procedure.

Rho has the right mixture of skewness information and other market drivers, so that

the signals generated from rho has resulted in an annual return of 26%. In all of the
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Table 4.8. Back-Testing Results When Interest-Rate Differential is Used as Signal

Generating Series.

Enter Direction Exit Return # of days in trade

1.5439 long 1.5058 -2.47 % 8

1.4889 long 1.4545 -2.31 % 26

1.4161 short 1.4546 -2.65 % 18

1.4643 long 1.5103 3.14 % 3

1.5155 long 1.5205 0.33 % 10

1.5771 long 1.5430 -2.16 % 19

1.5942 short 1.5358 3.80 % 40

1.4852 short 1.5042 -1.26 % 10

1.4871 short 1.4739 0.90 % 19

1.5234 long 1.5351 0.77 % 40

regression models, rho has been the most significant covariate. Since the parameter

rho affects the skewness of the implied distribution, the initial idea was proven to be

successful with the back-test results, with a slight change, emerging market currencies

are driven by the skewness of the implied distribution. This thesis also showed that

simple trading strategies, the two standard deviation rule, can be successful even in

highly volatile FX market if the correct input is used. In our example this input is

Heston’s model parameter rho.
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5. CONCLUSION

This thesis has started with dynamic programming approach to model the ex-

change rate dynamics and finalized with generating trading signals. Spot market and

options market of exchange rate has explained in detail. In both markets, it is observed

that interest rate differential is highly dominant in the direction of the spot price, espe-

cially in emerging market currencies. Attractive carry in emerging market currencies

results in fast depreciation of the EM currency. In the first part, the decision maker was

observing just the spot price and interest rates of the two currencies and the convexity

condition was dependent on the difference of interest rates. The difference from classi-

cal portfolio management problem was demand and exchange rate were independent,

and this assumption lead to unbounded solutions in DP when the convexity condition

did not hold. The reason for this situation was independence assumption made demand

risk hedging impossible. In the second chapter FX option pricing is tackled, which now

hedging the risks of option position is possible, since option price is a function of spot

and volatility. However FX options market convention is different from the classical

options market, and before going deep in modelling one needs to understand the mar-

ket conventions. After explaining the FX specific quotation mechanism and delta and

ATM conventions, Heston’s stochastic volatility model is introduced. Its advantages

were; simplicity, semi-analytic solution for european type of options and its ability

to capture the option smile. Calibration of the model to the market data has been

explained and sample results were given. Relationship between the option smile and

implied distribution has been described. Parameters of the Heston model are closely

related with the market quoted risk-reversals and butterflies and with the shape of

the smile. Correlation coefficient rho and risk-reversals both affect the skewness of the

implied distribution, for instance.

In the second chapter, FX basics, spot market, options market, calibration of

option smile were discussed. After learning FX market in-depth, simple trading rules

were constructed using the output of the calibration. Following the trading idea of

rate differential and spot price movement in EMs, two standard deviation rule is used

with Heston’s model parameter rho, in trading the spot price. Regression analysis have
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been made and rho had been found to be the most significant covariate in predicting

the spot price. The success of the parameter rho was it is being the output of the cali-

bration procedure, meaning that it contains more information about the expectations

of the spot price. This thesis has shown that simple trading strategies works even in

highly volatile FX market, if the correct information mixture is used. Rho is a very

good indicator in trading the spot price, since it extracts the information coming from

option smile.

To sum up, this thesis discussed two different problems in FX market. In the

first chapter, demand consumption was handled, where hedging the demand risk was

impossible. In the second chapter, FX option pricing problem was tackled and this

time it was possible to hedge the risks of option position. So this thesis tackled two

different problem settings in the sense of hedging the risk of the obligation is possible

and impossible. It will be good starting point for those who want to study in foreign

exchange. One another purpose was to provide theoretical and practical information

together. Matlab codes for both Heston pricer and calibration procedure was provided,

and detailed explanation of the model is also provided, effects of parameters in the smile

and implied distribution.
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APPENDIX A: Vanilla Option Pricer

function [price]=HestonVanilla(k,teta,sigma,ro,lambda,...

rd,rf,vt,St,K,tao,fi)

y=log(K);

x=log(St);

u1=0.5;

u2=-0.5;

b1=k+lambda-sigma.*ro;

b2=k+lambda;

d1=@(psi) sqrt( (ro.*sigma.*psi.*1i-b1).^2-sigma^2.*...

(2.*u1.*psi.*1i-psi.^2) );

d2=@(psi) sqrt( (ro.*sigma.*psi.*1i-b2).^2-sigma^2.*...

(2.*u2.*psi.*1i-psi.^2) );

g1=@(psi) (b1-ro.*sigma.*psi.*1i-d1(psi))./(b1-ro.*...

sigma.*psi.*1i+d1(psi));

g2=@(psi) (b2-ro.*sigma.*psi.*1i-d2(psi))./(b2-ro.*...

sigma.*psi.*1i+d2(psi));

C1= @(tao,psi) (rd-rf).*psi.*1i.*tao+k.*teta./sigma.^2.*...

((b1-ro.*sigma.*psi.*1i-d1(psi)).*tao-2.*log((1-g1(psi).*...

exp(-d1(psi).*tao))./(1-g1(psi))));

C2= @(tao,psi) (rd-rf).*psi.*1i.*tao+k.*teta./sigma.^2.*...

((b2-ro.*sigma.*psi.*1i-d2(psi)).*tao-2.*log((1-g2(psi).*...

exp(-d2(psi).*tao))./(1-g2(psi))));

D1= @(tao,psi) (b1-ro.*sigma.*psi.*1i-d1(psi))./sigma.^2.*...

(1-exp(-d1(psi).*tao))./(1-g1(psi).*exp(-d1(psi).*tao));

D2= @(tao,psi) (b2-ro.*sigma.*psi.*1i-d2(psi))./sigma.^2.*...

(1-exp(-d2(psi).*tao))./(1-g2(psi).*exp(-d2(psi).*tao));

f1= @(x,vt,tao,psi) exp(C1(tao,psi)+D1(tao,psi).*vt+1i.*psi.*x);

f2= @(x,vt,tao,psi) exp(C2(tao,psi)+D2(tao,psi).*vt+1i.*psi.*x);

P1= @(x,vt,tao,y) 0.5+1/pi.*quadgk(@(psi) real((exp(-1i.*psi.*y).*...
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f1(x,vt,tao,psi))./(1i.*psi)),0,inf);

P2= @(x,vt,tao,y) 0.5+1/pi.*quadgk(@(psi) real((exp(-1i.*psi.*y).*...

f2(x,vt,tao,psi))./(1i.*psi)),0,inf);

Pplus= @(fi) (1-fi)./2+fi.*P1(x,vt,tao,y);

Pminus= @(fi) (1-fi)./2+fi.*P2(x,vt,tao,y);

price=fi.*(exp(-rf.*tao).*St.*Pplus(fi)-K.*exp(-rd.*tao).*Pminus(fi));

end
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APPENDIX B: Calibration Scheme

function [output] =HestonCalibration(kappa,parity)

data=xlsread(’option data[Bloomberg].xls’,...

’1Month_Matlab_format’,’B2:I1232’);

tstart=tic;

numberofdays=length(data(:,1));

output=zeros(numberofdays,4);

yaxis2=zeros(1,length(data(1,4:end)));

K=zeros(1,length(data(1,4:end)));

tao=1/12;

if strcmp(parity,’USDTRY’)

putcallseq=[-1 -1 1 1 1];

deltaseq=[-10 -25 0 25 10]./100;

modelimpvol=zeros(numberofdays,length(deltaseq));

delta_type=’forward’;

ATM_type=’delta-neutral-forward’;

end

if strcmp(delta_type,’spot’)

strikef=@(f,tao,sigma,phi,rf,delta) f.*...

exp( -phi.*sigma.*sqrt(tao).*...

icdf(’normal’,phi.*exp(rf.*tao).*delta,0,1)+...

0.5.*sigma.^2.*tao );

putcallparityf=@(rf,tao,K,f) exp(-rf.*tao)-...

deltaseq(round(length(deltaseq)/2)+1:end);

deltaf=@(phi,rf,tao,f,K,sigma) phi.*exp(-rf.*tao).*...

cdf(’normal’,phi./...

sigma./sqrt(tao).*(log(f./K)+0.5.*sigma.^2.*tao),0,1);

elseif strcmp(delta_type,’forward’)

strikef=@(f,tao,sigma,phi,rf,delta) f.*exp( -phi.*...
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sigma.*sqrt(tao).*...

icdf(’normal’,phi.*delta,0,1)+0.5.*sigma.^2.*tao );

putcallparityf=@(rf,tao,K,f) 1-...

deltaseq(round(length(deltaseq)/2)+1:end);

deltaf=@(phi,rf,tao,f,K,sigma) phi.*cdf(’normal’,phi./sigma./...

sqrt(tao).*(log(f./K)+0.5.*sigma.^2.*tao),0,1);

elseif strcmp(delta_type,’spot-pa’)

dminus=@(f,K,sigma,tao) (log(f./K)-0.5.*sigma.^2.*tao)./...

(sigma.*sqrt(tao));

Kmax=@(f,tao,sigma,phi,rf,delta) f.*exp( -phi.*sigma.*sqrt(tao).*...

icdf(’normal’,phi.*exp(rf.*tao).*delta,0,1)+0.5.*sigma.^2.*tao );

Kminf=@(sigma,tao,f,K) sigma.*sqrt(tao).*cdf(’normal’,...

dminus(f,K,sigma,tao),0,1)-pdf(’normal’,dminus(f,K,sigma,tao),0,1);

Kmin=@(sigma,tao,f) fzero(@(K)Kminf(sigma,tao,f,K),1);

strikef=@(f,tao,sigma,phi,rf,delta) fzero(@(K)phi.*exp(-rf.*tao).*...

K./f.*cdf(’normal’,phi.*dminus(f,K,sigma,tao),0,1)-delta,...

[Kmin(sigma,tao,f) Kmax(f,tao,sigma,phi,rf,delta)]);

putcallparityf=@(rf,tao,K,f) exp(-rf.*tao).*...

K(round(length(deltaseq)/2)+1:end)./...

f-deltaseq(round(length(deltaseq)/2)+1:end);

deltaf=@(phi,rf,tao,f,K,sigma) phi.*exp(-rf.*tao).*K./f.*...

cdf(’normal’,phi./sigma./sqrt(tao).*...

(log(f./K)-0.5.*sigma.^2.*tao),0,1);

elseif strcmp(delta_type,’forward-pa’)

dminus=@(f,K,sigma,tao) (log(f./K)-0.5.*sigma.^2.*tao)./...

(sigma.*sqrt(tao));

Kmax=@(f,tao,sigma,phi,rf,delta) f.*exp( -phi.*sigma.*sqrt(tao).*...

icdf(’normal’,phi.*delta,0,1)+0.5.*sigma.^2.*tao );

Kminf=@(sigma,tao,f,K) sigma.*sqrt(tao).*cdf(’normal’,...

dminus(f,K,sigma,tao),0,1)-pdf(’normal’,dminus(f,K,sigma,tao),0,1);

Kmin=@(sigma,tao,f) fzero(@(K)Kminf(sigma,tao,f,K),1);
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strikef=@(f,tao,sigma,phi,rf,delta) fzero(@(K)phi.*exp(-rf.*tao).*...

K./f.*cdf(’normal’,phi.*dminus(f,K,sigma,tao),0,1)-delta,...

[Kmin(sigma,tao,f), Kmax(f,tao,sigma,phi,rf,delta)]);

putcallparityf=@(rf,tao,K,f) K(round(length(deltaseq)/2)+1:end)./...

f-deltaseq(round(length(deltaseq)/2)+1:end);

deltaf=@(phi,rf,tao,f,K,sigma) phi.*K./f.*...

cdf(’normal’,phi./sigma./sqrt(tao).*...

(log(f./K)-0.5.*sigma.^2.*tao),0,1);

end

if strcmp(ATM_type,’spot’)

atmstrikef=@(f,rd,rf,sigma,tao) f./exp((rd-rf).*tao);

elseif strcmp(ATM_type,’forward’)

atmstrikef=@(f,rd,rf,sigma,tao) f;

elseif strcmp(ATM_type,’delta-neutral-spot’)

atmstrikef=@(f,rd,rf,sigma,tao) f.*exp(0.5.*sigma.^2.*tao);

elseif strcmp(ATM_type,’delta-neutral-forward’)

atmstrikef=@(f,rd,rf,sigma,tao) f.*exp(0.5.*sigma.^2.*tao);

elseif strcmp(ATM_type,’delta-neutral-spotpa’)

atmstrikef=@(f,rd,rf,sigma,tao) f.*exp(-0.5.*sigma.^2.*tao);

elseif strcmp(ATM_type,’delta-neutral-forwardpa’)

atmstrikef=@(f,rd,rf,sigma,tao) f.*exp(-0.5.*sigma.^2.*tao);

end

elapsedtime(40,1)=0;

for i=1:5

looptime=tic;

vols=data(i,4:end)./100;

st=data(i,1);

rd=data(i,2);

rf=data(i,3);
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mid=round(length(vols)/2);

f=st.*exp(rd.*tao-rf.*tao);

for m=1:length(vols)

if m~=mid

K(m)=strikef(f,tao,vols(m),putcallseq(m),rf,deltaseq(m));

end

end

K(mid)=atmstrikef(f,rd,rf,vols(mid),tao);

vt=vols(mid).^2;

if isempty(kappa)

objf=@(teta,sigma,ro,kappa) 0;

else

objf=@(teta,sigma,ro) 0;

end

for j=1:length(vols)

if j~=mid

pricevanilla=@(teta,sigma,ro) HestonVanilla(kappa,teta,sigma,ro,...

0,rd,rf,vt,st,K(j),tao,putcallseq(j));

if putcallseq(j)==1; class=’call’;else class=’put’; end

impsigma=@(teta,sigma,ro) blsimpv(st,K(j),rd,tao,...

max(0,pricevanilla(teta,sigma,ro)),[],rf,[],{class});

objf=@(teta,sigma,ro) objf(teta,sigma,ro)+...

(impsigma(teta,sigma,ro)-vols(j)).^2;

elseif j==mid
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ATMpricecall=@(teta,sigma,ro) HestonVanilla(kappa,teta,sigma,ro,...

0,rd,rf,vt,st,K(j),tao,1);

ATMpriceput=@(teta,sigma,ro) HestonVanilla(kappa,teta,sigma,ro,...

0,rd,rf,vt,st,K(j),tao,-1);

ATMimpsigmacall=@(teta,sigma,ro) blsimpv(st,K(j),rd,tao,...

max(0,ATMpricecall(teta,sigma,ro)),[],rf,[],{’call’});

ATMimpsigmaput=@(teta,sigma,ro) blsimpv(st,K(j),rd,tao,...

max(0,ATMpriceput(teta,sigma,ro)),[],rf,[],{’put’});

objf=@(teta,sigma,ro) objf(teta,sigma,ro)+...

(ATMimpsigmacall(teta,sigma,ro)-vols(j)).^2+...

(ATMimpsigmaput(teta,sigma,ro)-vols(j)).^2;

end

end

options=optimset(’Algorithm’,’interior-point’);

problem.objective=@(x)objf(x(1),x(2),x(3));

problem.x0=[0.5,1,0.5];

problem.lb=[0 0 -1];

problem.ub=[1 1 1];

problem.solver=’fmincon’;

problem.options=options;

[output(i,1:3) output(i,4)]=fmincon(problem);

output(i,1:3)

voltemp=zeros(1,length(vols));

for m=1:length(vols)

if putcallseq(m)==1; class=’call’;else class=’put’; end

pricetemp=HestonVanilla(kappa,output(i,1),...

output(i,2),output(i,3),0,rd,rf,...

vt,st,K(m),tao,putcallseq(m));
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voltemp(m)=blsimpv(st,K(m),rd,tao,...

max(0,pricetemp),[],rf,[],{class}).*100;

end

modelimpvol(i,:)=voltemp;

if 1==1

xaxis=[-deltaseq(1:mid-1),...

deltaf(1,rf,tao,f,atmstrikef(f,rd,rf,vols(mid),tao),...

vols(mid)),putcallparityf(rf,tao,K,f)];

yaxis1=vols(1:end).*100;

for m=1:length(vols)

if putcallseq(m)==1; class=’call’;else class=’put’; end

pricetemp=HestonVanilla(kappa,output(i,1),...

output(i,2),output(i,3),0,rd,rf,vt,st,...

K(m),tao,putcallseq(m));

yaxis2(m)=blsimpv(st,K(m),rd,tao,...

max(0,pricetemp),[],rf,[],{class}).*100;

end

figure(1);subplot(2,2,1);

plot(xaxis,yaxis1,’-o’,xaxis,yaxis2,’--sr’);

title(’Delta vs Volatility Plot’)

xlabel(’Delta [\%]’);ylabel(’Implied Volatility [\%]’);

legend(’1M smile’,’Heston fit’,’location’,’north’);

subplot(2,2,2);plot(K,yaxis1,’-o’,K,yaxis2,’--sr’);

title(’Strike vs Volatility Plot’)

xlabel(’Strike’);ylabel(’Implied Volatility [\%]’);

legend(’1M smile’,’Heston fit’,’location’,’north’);

end
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elapsedtime(i,1)=toc(looptime);

end

xlswrite(’HestonResults.xlsx’,modelimpvol,’Sheet1’,’J3’);

xlswrite(’estimationresults.xlsx’,output(:,1:3),’Sheet1’,’B3’);

xlswrite(’estimationresults.xlsx’,output(:,4)*1e7,’Sheet1’,’E3’);

xlswrite(’estimationresults.xlsx’,elapsedtime,’Sheet1’,’F3’);

toc(tstart);

end
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