
 

 

 

KNOWLEDGE EXTRACTION FROM EXPERIMENTAL AND COMPUTATIONAL 

DATA FOR SELECTIVE CO OXIDATION AND WATER GAS SHIFT REACTION 

USING DATA MINING TECHNIQUES  

 

 

 

 

 

 

 

by 

Mehmet Erdem Günay 

B.S., Chemical Engineering, Boğaziçi University, 2002 

M.S., Chemical Engineering, Boğaziçi University, 2005 

 

 

 

 

 

 

 

Submitted to the Institute for Graduate Studies in 

Science and Engineering in partial fulfillment of 

the requirements for the degree of 

Doctor of Philosophy 

 

 

 

 

Graduate Program in Chemical Engineering 

Boğaziçi University 

2012



ii 

 



iii 

 

ACKNOWLEDGEMENTS 

 

 

First and foremost I would like to offer my sincerest gratitude to my thesis supervisor 

Prof. Ramazan Yıldırım who has supported me throughout my thesis with his invaluable 

guidance and experience. This dissertation would not have been possible without his 

inspiration and effort.  

 

I would like to express my great appreciations for Prof. Ahmet Erhan Aksoylu, Asst. 

Prof. Burak Alakent and Prof. Mahir Arıkol for their sincere support and guidance during 

the progression of this work. It was a great opportunity for me to learn from their 

experience and knowledge. I am thankful to Prof. Hüsnü Atakül and Prof İsmail Boz for 

their valuable comments and suggestions; their support is highly appreciated. I am also 

grateful to Prof. Zeynep İlsen Önsan, Assoc. Prof. Ahmet Kerim Avcı and Asst. Prof. 

Kerem Uğuz for their constructive comments at different stages of my research. 

 

 I would like to thank B. Kerem Aksakal, Merve Ayvaz, Şeyma Özkara-Aydınoğlu, 

M. Selcen Başar, Tuğba Davran-Candan, Burcu Selen-Çağlayan, Feyza Gökaliler, Mustafa 

Karakaya, Çağla Odabaşı, Göktuğ N. Özyönüm, A. İpek Paksoy, Aslıhan Sümer, Eyüp 

Şimşek, Sadi T. Tezcanlı, K. Erdem Uğuz, Ali Uzun and all the other past and present 

members of the CATREL team. I was very lucky to be a part of such a great team.  

 

Special thanks to Yakup Bal, Belgin Balkan, Nurettin Bektaş, Bilgi Dedeoğlu, 

Melike Gürbüz and Esma Toprak for their technical aid as well as their heartfelt friendship. 

 

The financial support provided by TUBITAK Project (Grant No: 105M034 and 

109M207) and Boğaziçi University Research Fund Projects (Grant No: 06M104 and 

09A503D) are gratefully acknowledged.  

 

 Finally, I wish to thank to my dearest family members starting from my wife Gaye 

Günay; my parents İsmail H. Günay and Leyla Günay; my siblings Bilge, Emre and Ülkü 

for their motivation and encouragement all through the way.  



iv 

 

ABSTRACT 

 

 

KNOWLEDGE EXTRACTION FROM EXPERIMENTAL AND 

COMPUTATIONAL DATA FOR SELECTIVE CO OXIDATION AND WATER 

GAS SHIFT REACTION USING DATA MINING TECHNIQUES 

  

 

 The objective of this dissertation is to apply various data mining techniques for 

knowledge extraction from experimental and computational data to improve catalyst 

design and testing conditions for selective CO oxidation and water gas shift reactions. 

First, the experimental data produced in our laboratory were analyzed in three parts: 

selective CO oxidation over Pt catalysts by neural networks, selective CO oxidation over 

Au catalysts by decision trees and neural networks, and water gas shift reaction over Pt 

catalysts by neural networks. In all these works, the models successfully established the 

effects and relative significances of the catalyst variables in a reasonable agreement with 

the literature. Then, the data generated by density functional theory for selective CO 

oxidation over Au nanoparticles were modeled using neural networks and logistic 

regression, both of which demonstrated that the relations between structural properties of 

the Au nanoparticles and adsorption energies of CO and O2 on these particles can be 

successfully established. Finally, the published data by the other investigators were 

modeled to assess the possibility of predicting the outcome of an experiment, which was 

not done yet, from the knowledge accumulated in the literature. First, the publications on 

selective CO oxidation over Cu based catalysts were modeled by neural networks. Then, 

the publications on the same reaction for noble metal-gold based catalysts were modeled 

by genetic algorithm supported clustering together with neural networks. In both works, 

the experimental CO conversions reported in each publication were successfully predicted 

by the neural networks trained using the data from the remaining publications. The relative 

significances of the input variables and the major trends associated with these variables 

were also successfully estimated. It was then concluded that the knowledge accumulated in 

the published data through years can be extracted using some suitable data mining tools to 

help the researchers in planning their future experimental works more effectively. 
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ÖZET 

 

 

SEÇİMLİ CO OKSİDASYONU VE SU GAZ DEĞİŞİM REAKSİYONLARINA AİT 

DENEYSEL VE HESAPLAMALI VERİLERDEN VERİ MADENCİLİĞİ 

TEKNİKLERİ KULLANARAK BİLGİ ÇIKARIMI 

  

 

 Bu çalışmada seçimli CO oksidasyonu ve su-gaz değişim reaksiyonlarına ait 

deneysel ve hesaplamalı verilere çeşitli veri madenciliği teknikleri uygulayarak bilgi 

çıkarımı yapılması ve dolayısıyla katalizör tasarımı ve proseslerinin geliştirilmesi 

amaçlanmıştır. Öncelikle, laboratuarımızda üretilmiş deneysel veriler üç ayrı kısımda 

incelenmiştir: Pt bazlı katalizörlerde seçimli CO oksidasyonunun sinir ağlarıyla 

modellenmesi, Au bazlı katalizörlerde aynı reaksiyonun karar ağaçları ve sinir ağlarıyla 

modellenmesi, Pt bazlı katalizörlerde su-gaz değişim reaksiyonun sinir ağlarıyla 

modellenmesi. Bu çalışmaların üçünde de, katalizör değişkenlerinin etkisi ve önem 

dereceleri literatürdeki bilgilerle büyük bir uyum içinde bulunmuştur. Sonraki aşamada, Au 

kümecikleri üzerinde seçimli CO oksidasyonu için kuantum mekaniksel yöntemlerle 

hesaplanmış veriler, sinir ağları ve lojistik regresyon yöntemleriyle modellenmiştir. İki 

metot da Au kümeciklerinin yapısal özellikleriyle kümecikler üzerindeki CO ve O2 

adsorpsiyon enerjilerinin ilişkisini başarılı bir şekilde bulmuştur. Son olarak, başka 

araştırmacıların yayınlanmış çalışmalarına ait deneysel sonuçları tahmin etmeye yönelik 

modeller kurulmuş ve literatürde birikmiş bilginin çıkarımı amaçlanmıştır. İlk aşamada Cu 

bazlı katalizörler üzerinde seçimli CO oksidasyonu sinir ağlarıyla modellenmiştir. 

Ardından, soy metal ve altın bazlı katalizörlerde aynı reaksiyon genetik algoritma destekli 

gruplandırma ve sinir ağlarıyla modellenmiştir. İki çalışmada da bilimsel yayınlarda rapor 

edilmiş deneysel veriler, diğer yayınların sonuçlarıyla eğitilmiş sinir ağları tarafından 

başarılı şekilde tahmin edilmiştir. Değişkenlerin önem analizi ve bu verilere ait ana 

trendler de başarılı şekilde çıkartılmıştır. Sonuç olarak, yıllar boyunca literatürde birikmiş 

olan bilgi, uygun bir veri madenciliği yöntemi kullanarak başarılı şekilde çıkartılabilir ve 

böylelikle bu konuda çalışma yapacak olan araştırmacıların geleceğe yönelik deneylerini 

daha efektif bir şekilde planlanması ve tasarlaması sağlanabilir. 
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1. INTRODUCTION 

 

 

The world energy demand has rapidly increased together with the increase of the 

world population in the recent years. Today, most of the energy is supplied by fossil fuels 

even though they are quite harmful to the environment due to their emissions that cause 

global warming, air pollution and acid rains. In addition, the petroleum sources are limited 

and they are estimated to be depleted in the near future. Therefore, it is very important to 

search new and more sustainable fuel alternatives and energy conversion technologies, 

such as the use of hydrogen in a Polymer Electrolyte Membrane (PEM) fuel cell. 

 

Hydrogen is the most abundant element in the universe, contrary to that free 

hydrogen is quite scarce in the earth atmosphere. The efficient production of hydrogen gas 

has been researched for years, and there are various methods developed such as electrolysis 

of water, the processing of biomass and biological wastes and thermal decomposition of 

water. However, the safe storage of hydrogen is technically quite difficult especially for 

transportation applications. Therefore, on-site generation of hydrogen from a conventional 

fuel using a fuel processor is considered to be the best option in the near future for mobile 

and small-medium scale stationary applications of fuel cells [1]. The hydrogen produced 

this way contains CO, CO2 and H2O, all of which can affect the performance of the fuel 

cell. Among these side products, the presence of CO, even in trace amounts, damages the 

anode catalyst of the PEM fuel cell; hence, it should be totally eliminated from the 

hydrogen stream. High and low water gas shift (WGS) reactions, which are generally 

applied consecutively, can reduce the amount of CO to about 1% (still too high) [2]. Pt, 

Rh, Pd, Ru and Au based catalysts supported over CeO2 and Al2O3 [3]; Pt over ceria-

zirconia [4]; Cu/Al2O3 promoted by Mn [5]; Cu and Ni over CeO2 [6, 7]; Au over ZnO and 

Fe2O3 [8]; Cu-ZnO over Al2O3, MgO, SiO2-Al2O3, SiO2-MgO, β-zeolite, and CeO2 [9] are 

some examples that have been studied for WGS reactions within the last decade. 

 

The last step of hydrogen purification is the catalytic selective CO oxidation in the 

presence of excess amount of hydrogen, which is a crucial process still being improved by 

the use of more efficient catalysts. There are three main types of catalysts for selective CO 
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oxidation, which are noble metal catalysts (Pt, Pd, Rh, Ir, etc.), gold based catalysts and 

copper based catalysts.  

 

Pt catalysts promoted by the oxides of various metals such as Co [10, 11, 12], Ce 

[12, 13], Mg [14], Mn [15], Fe [16, 17], Ni [10, 18], K [19] and Zr [20] over a suitable 

support like Al2O3 are some part of the extensive studies on noble metal catalysts for the 

selective CO oxidation. There are also plenty of successful studies in the literature on gold 

based catalysts: Au over FeOx [21, 22, 23]; Au over CeOx [23, 24]; Au over MnOx [22, 

23]; Au over NiOx and CoOx, Mg(OH)2, MgO, TiOx, Al2O3 and SnOx [23]; Au over MgF2-

MgO [25]; Au/Al2O3 promoted by MgO, MnOx and FeOx [26]; Au/Al2O3 promoted by 

Li2O, Rb2O, BaO and CeOx [27]. Copper based catalysts have been also studied 

extensively especially in the last decade, due to copper being less precious in terms of 

economical point of view and being highly active when combined with ceria. There are 

plenty of works on Cu based catalysts reported to be quite effective for the preferential CO 

oxidation [28, 29, 30]. 

 

Catalyst design is a complex process involving various interacting factors such as 

active metal type and loading, promoter type and loading, support type, preparation 

method and pretreatment conditions. Any variation in these factors may cause significant 

changes in the activity and selectivity of the catalyst. The same is true for the operating 

conditions; different combinations of reaction variables like temperature, feed flow rate, 

feed composition and the amount of the catalyst can produce completely different catalytic 

performance.  

 

Due to these complex factors, coming up with a high activity catalyst for a process is 

a challenging accomplishment that needs quite many experiments requiring significant 

time, labor and resources. Although such effort is needed, it is quite difficult to interpret 

the raw catalytic reaction containing the information about the complex interactions among 

the catalyst preparation and operating variables. Data mining is the branch of computer 

science to extract such knowledge, which is too hard to observe by naked eyes, providing 

the discovery of useful information, such as correlations, trends and patterns from the data.  
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The applications of the data mining methods have become quite widespread due to 

the great development in computer hardware and software in the last two decades. Even 

the methods demanding a massive number of computational calculations are now 

performed quite easily by the high capacity computer processors. Thus, data mining is now 

easily applicable in almost every field of science including the field of catalysis. Multiple 

regression, artificial neural networks and logistic regression methods together with data 

clustering and classification methods such as decision trees and k-means clustering 

techniques can be implemented for catalytic data. 

 

A multiple regression model uses linear surfaces such as a plane or hyper plane to 

approximate the relationship between a continuous target variable and a set of predictor 

variables [31]. Several successful applications of multiple regression modeling for catalytic 

data have been reported in the literature [32-36]. 

 

Artificial neural networks, which have superior ability on non-linear regression and 

data approximation, are among the most effective knowledge extraction tools [31, 37]. 

Some of the successful implementations of neural networks in the area of chemistry were 

reviewed by Burns and Whitesides [38] in as early as 1993. Similarly, Himmelblau [39] 

reported numerous works related to the application of neural network modeling in the field 

of chemical engineering in 2000. A recent publication of Baerns and Holena [40] reviewed 

and described the use of artificial neural networks for the study of catalytic materials. After 

the pioneering work of Hattori and Kito [41], numerous successful applications of neural 

networks have been also reported in the field of catalysis [42-49], including some of our 

recent works [34, 50-53].  

 

Modular neural networks, which divide the problem into subtasks such as separating 

the independent input variables into different groups, seems to be also very suitable to 

model the catalytic works [54]. Similar variables (for example, catalyst preparation or 

operating variables) can be collected in the same groups, and each group can be processed 

differently (i.e. connecting to the different hidden layers, using different activation function 

and so on) and combined later so that the catalytic performance can be modeled more 

accurately. Another advantage of the modular networks is that they require the use of less 

number of weights (connections) than the monolithic networks for a given data set. This 
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can reduce the risk of over-fitting (i.e. memorizing), improve the generalization and 

prediction ability of the network, and it may also decrease the computational time required 

for the training [54, 55].  

 

Multiple logistic regression can also be used in the field of catalysis to model the 

relation between the predictor variables and a categorical response variable [56, 57, 58]. In 

the last decade, logistic regression has been applied in fields such as microbiology [59, 60], 

epidemiological studies [61, 62], environmental issues [63, 64], and catalysis [65]. 

 

Classification and clustering techniques are invaluable tools for data mining, 

considering that they can not only derive information from the experimental data but also 

pre-process the data to improve the effectiveness of regression techniques explained above. 

One of the data mining tools that can be used for classification of catalytic experimental 

data is the decision tree, which is a collection of decision nodes connected by branches and 

extending downward from the root node until terminating in leaf nodes. Attributes are 

tested at decision nodes and each possible outcome results in a branch. Every branch leads 

to another decision node or to a terminating leaf [56, 66]. Decision trees can help to derive 

simple but valuable rules, such as finding the variables, which lead to low, medium or high 

catalytic performance levels. Although there are various applications of decision trees in 

diverse areas, the use of them is quite new in the field of catalysis [65, 67, 68].
 

 

The use of k-nearest neighbor classification is another example of instance based 

learning, in which the training data is stored, so that a classification for a new unclassified 

record may be found simply by comparing it to the most similar records in the training set 

[31].  Similarly, k-means clustering algorithm is a method to group records into classes, in 

such way that the members in the same class are similar to each other and dissimilar to the 

members of the other classes [31]. It is a quite important technique to analyze large and 

complex data sets in more simple clusters and mostly used for a preliminary step of data 

mining.  

 

Based on the principle of survival of the fittest, genetic algorithms are one of the 

most robust algorithms to search for the global optimum solution.  First, a random initial 

population of a definite size, the members of which are the candidates of the solution of the 
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particular problem, is created. Then, the fittest individuals are selected to reproduce, some 

of the individuals mutate, and new members immigrate to the population replacing the 

ones with the worst fitness [56, 69]. At the end, a new generation is formed to replace the 

old one. During the evolution of the generations, survival strength of the population tends 

to increase. After the termination criteria are met, the solution with the highest fitness 

value is stated as the optimum solution [56]. Genetic algorithm can be successfully 

combined with k-means clustering algorithm to improve the optimization of the clustering 

process [69, 70]. 

 

 This dissertation presents the applications of several data mining techniques, 

individually or together, in the field of catalysis to analyze the experimental data in a more 

systematic manner and to extract the essential knowledge to improve the catalyst design 

and testing conditions. In the Literature Survey (Section 2), the details on hydrogen 

production, low temperature CO oxidation catalysts and various data mining techniques 

with their algorithms are explained. The details of all the experimental and computational 

works are presented in the Experimental and Computational Data (Section 3) and 

Computational Details (Section 4), respectively. The results are presented in three main 

sections. In the first part, two sets of experimental data on selective CO oxidation 

(promoted Pt based and promoted Au based catalysts) and one set of experimental data for 

water gas shift reaction, all of which had been generated in our laboratories, were modeled 

and discussed.   

 

 For the Pt based catalysts, the experimental data for selective CO oxidation over 

Pt/Al2O3 catalysts promoted by the oxides Co, Ce, Mg, Fe, Mn, Zr, K and Ni were studied. 

Modular neural network modeling was applied to model the experimental data (Section 

5.1.1). For the Au based catalysts; the experimental data for the selective CO oxidation 

over Au/MOx/Al2O3 (M=Mg, Mn, Co, Ce, Fe, Ni) were analyzed by decision trees and 

modular neural networks (Section 5.1.2). Similarly, WGS activity of Pt-Ce/Al2O3 catalysts 

in the absence and presence of a second promoter (K, Ni, Co) was also analyzed by 

modular neural networks to demonstrate that this technique can be used to predict the 

results of unstudied conditions as well as to understand the effects of preparation and 

operating conditions on the performance of WGS catalysts (Section 5.1.3).   
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In the second part of Results and Discussion, the data generated for Au clusters by 

Density Functional Theory (DFT) are investigated over 2-10 atom Au clusters to determine 

the structure and activity relationships and investigate the CO and O2 adsorptions on the 

catalyst surface. The structures and energies of the anionic, neutral and cationic clusters 

were determined, and then CO and O2 adsorption energies were calculated at various sites 

of the clusters. As a result, a set of user defined descriptors, computationally determined 

structural properties and computationally determined adsorption energies were formed. 

Then, the data were modeled using a series of artificial neural networks explaining the 

structure and activity correlations (Section 5.2.1). Multiple logistic regression methodology 

was also applied to model the O2 adsorption on Au2-Au10 clusters, which was the first time 

such a technique is employed for DFT studies. The modeling was performed in two main 

sections analyzing the stable-unstable and weak-strong adsorptions. Each modeling was 

performed in two sub-sections; with the predictor variables of descriptors and with the 

predictor variables of structural properties (Section 5.2.2).  

 

In the third part of Results and Discussion, the data mined out from the publications 

in the literature on selective CO oxidation are modeled to extract the valuable experience 

and knowledge accumulated in the publications and for predicting the outcome of the 

unstudied experimental conditions. The analysis is presented in two sub-sections: 

knowledge extraction from Cu based catalysts (Section 5.3.1) and noble metal-gold based 

catalysts (Section 5.3.2).  
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2. LITERATURE SURVEY 

 

 

2.1. Hydrogen Production and Purification 

 

The energy source of a fuel cell is simply the hydrogen, which is generally produced 

from hydrocarbons (most commonly from methane). There are three processes that can 

convert hydrocarbons to hydrogen: steam reforming (SMR), partial oxidation and auto-

thermal reforming (ATR) [1, 71, 72]. 

 

2 2( )  
2

n m

m
C H nH O nCO n H    (Steam reforming) (2.1) 

2 2  
2 2

n m

n m
C H O nCO H   (Partial oxidation) (2.2) 

 

SMR is an endothermic and catalytic conversion of a hydrocarbon and steam to H2 

and CO (Equation 2.1) at 750-800°C. Partial oxidation, on the other hand, is an exothermic 

and non-catalytic reaction of a hydrocarbon and O2 to produce a syngas mixture (Equation 

2.2). ATR combines steam reforming and partial oxidation in one reactor; the endothermic 

reforming reactions proceed with the assistance of the internal combustion or oxidation of 

a portion of the feed hydrocarbons. SMR and partial oxidation processes produce syngas 

mixtures having different compositions. SMR has a much higher H2/CO product ratio. Due 

to this advantage, SMR dominates other syngas producing methods in the market [73, 74]. 

Although the specific composition of the reformer effluent depends on the technology and 

operating conditions chosen, steam reforming outlet composition is about 55% H2, 10% 

CO, 5% CO2, and 30% H2O [73]. 

 

The presence of CO in the hydrogen stream is a very serious problem for the fuel 

cell. Even at trace levels such as 5-10 ppm, CO poisons the noble metal anode of the fuel 

cell by forming chemisorption bonds with the metal surface [75]; thus, CO should be 

totally eliminated [2, 76]. It was suggested that most of the CO present in the reformer 

effluent can be removed by water-gas shift (WGS) reaction (Equation 2.3) followed by 
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preferential CO oxidation (PROX) for complete elimination of the remaining CO (Figure 

2.1) [77]. 

 

 

Figure 2.1. Scheme for H2 production and purification. 

  

Commercially, WGS is conducted in a two-step process: a high temperature shift 

(operating at 350-550 
o
C) using Fe-Cr based catalyst, and if necessary, a low temperature 

shift to reduce the carbon monoxide content further (operating at 200-300 
o
C) using a Cu-

Zn catalyst. However, these catalysts are not suitable for fuel cell applications due to their 

low activity and stability as well as their special pretreatment and regeneration 

requirements [77]. Hence, more active and stable WGS catalysts need to be developed for 

PEM fuel cell applications. Pt, Rh, Pd, Ru and Au supported over CeO2 and Al2O3 [3]; Pt 

over ceria-zirconia [4]; Cu/Al2O3 promoted by Mn [5]; Cu and Ni over CeO2 [6, 7]; Au 

over ZnO and Fe2O3 [8]; Cu-ZnO over Al2O3, MgO, SiO2-Al2O3, SiO2-MgO, β-zeolite, 

and CeO2 [9] are some of the examples that have been studied for the low temperature 

WGS studies within the last decade. 

 

While each water gas shift reaction step reduces the CO content, they also provide 

additional hydrogen to the fuel cell. High temperature shift reactor reduces the level of CO 

to 3-5%; in addition, low temperature shift reactor reduces the CO level to 0.5-1% [2, 75]. 

Reformer 
High 

temperature 

WGS 

Low 

temperature 

WGS 

Selective 

CO 

oxidation 

PEM Fuel 

Cell 

Hydrocarbons 

 (CH4, CnHm) 

H2O 

H2, CO2,  

H2O, 10% CO 

H2, CO2,  

H2O, 0.5-1.0 % CO 

H2, CO2,  

H2O 

O2 
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Although, at the end of these two steps, CO level becomes approximately one tenth of the 

CO content in the syngas, this amount is still too high to be processed in a fuel cell. Hence, 

the water gas shift effluent is further purified by the preferential CO oxidation (Equation 

2.4). Since there is also significant amount of H2 present in the same stream, oxidation of 

H2 (Equation 2.5) must be as low as possible. 

 

2 2 2CO H O CO H  
 
(Water gas shift reaction) (2.3) 

2 2

1

2
CO O CO   (Preferential oxidation of CO) (2.4) 

2 2 2

1

2
H O H O   (Undesired H2 oxidation) (2.5) 

 

2.2. Low Temperature Preferential CO Oxidation in H2 Rich Streams 

 

The exit stream of the water gas shift reaction contains a high amount of hydrogen 

gas together with some amount of CO2 and H2O [1]. The possible catalyst that is to be used 

for preferential oxidation of CO must be able to provide a very high CO conversion in 

these feed conditions.  

 

There have been hundreds of published papers covering the effects of various factors 

on CO oxidation activity and selectivity. For example, almost all of the noble metals over a 

support like Al2O3, TiO2, and MgO have been studied for this purpose [6, 76]. Especially, 

platinum is the most studied noble metal while gold has drawn more attention in recent 

years as a more abundant and cheaper alternative [76]. In addition, some Cu based catalyst 

have also been studied and reported to be quite effective [28, 29, 30]. 

 

2.2.1. Noble Metal Catalysts 

 

Examples to noble metal catalysts are Pt, Pd, Rh, Ir or Ru based catalysts, among 

which Pt is the most commonly studied one. The widely accepted Langmuir–Hinshelwood 

type reaction mechanism of the CO oxidation on Pt can be described by the following 

kinetics [78]. 
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 adsorption of CO: adsCOCO  , 

 dissociative adsorption of oxygen: ads2 O22O  , 

 reaction (Langmuir–Hinshelwood):  2adsadsads COOCO , 

 desorption of CO2:  22ads COCO  

where „„ ‟‟ denotes a free adsorption site. 

  

H2 oxidation is strongly inhibited by the presence of CO, because CO chemisorption 

on noble metal surfaces is much stronger than H2 or O2 chemisorption, thus the reaction 

rate is mostly determined by CO oxidation kinetics [1]. CO covers the metal surface and 

prevents the adsorption of H2 or O2; hence, the reaction does not occur unless the 

temperature is high enough to desorb some of the CO on the surface allowing the 

adsorption of O2. However, increasing the temperature to high levels can also cause the 

adsorption of H2 on the metal surface, decreasing the selectivity towards CO oxidation. 

  

There are countless numbers of published studies in the literature searching a high 

activity noble metal catalyst for preferential CO oxidation. Pt catalysts promoted by the 

oxides of various metals such as Co [10, 11, 12], Ce [12, 13], Mg [14], Mn [15], Fe [16, 

17], Ni [10, 18], K [19] and Zr [20] over a suitable support like Al2O3 are some part of the 

extensive studies on noble metal catalysts for the selective CO oxidation. In addition to 

these, zeolite supported Pt catalyst [79]; magnesium supported Rh catalyst [80]; silica 

aerogel supported Pt catalyst [81]; zeolite supported Pd and Ru catalysts [82]; zinc, 

gallium, silica, ceria supported Pd catalysts [83] are some other published works on noble 

metal catalysts. 

 

Although Pt based catalysts are quite resistant to H2 oxidation, increasing the 

temperature to high levels can cause the adsorption of H2 on the metal surface (decreasing 

the selectivity towards CO oxidation). Addition of H2O usually has a slightly positive 

effect on CO conversion, which is possibly due to the fact that hydrated support can 

generate additional free Pt-sites for the CO oxidation [84]. CO2 present in the feed stream 

on the other hand, generally has a negative effect on the performance of the catalyst. The 

magnitude of the negative effect on the activity is strongly dependent on the nature of the 
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catalyst. The highest conversion values for the Pt based catalysts are usually attained at 

mid-level temperatures. 

 

2.2.2. Gold Group Catalysts 

 

Au based catalysts exhibit a very high activity at the PEM fuel cell operating 

temperature; however, they are not very resistant to the presence of CO2 and H2O, which 

cause the deactivation of the catalyst [85]. The activity for H2 oxidation was only 

dependent on the gold metal surface exposed, whereas the choice of support oxide also 

plays a role in CO oxidation. Hydrogen is taken not to chemisorb on Au, however CO 

chemisorbs weakly on the metal. Thus, the catalytic activity for CO may be a result of the 

interaction of species adsorbed on the metal and the support. The interaction of Au with the 

reducible oxide support may change the surface properties of Au particles so that they 

favor CO adsorption [1]. 

 

As in the case of platinum based catalysts, there are plenty of published 

experimental studies in the literature on gold based catalysts such as Pt, Pd, Rh, Ir or Ru 

[21, 22, 23]; Au over CeOx [23, 24]; Au over MnOx [22, 23]; Au over NiOx and CoOx, 

Mg(OH)2, MgO, TiOx, Al2O3 and SnOx [23]; Au over MgF2-MgO [25], Au/Al2O3 

promoted by MgO, MnOx and FeOx [26]; Au/Al2O3 promoted by Li2O, Rb2O, BaO and 

CeOx [27]. 

 

Gold based catalysts are more resistant to H2 oxidation and achieve high activity at 

temperatures lower than those required by the Pt-group metals. These catalysts are also 

unaffected by the presence of H2O; however, they lose their activity in the presence of 

CO2, which is explained by co-adsorption of CO2 on the gold particles [1].  

 

2.2.3. Copper Based Catalysts 

 

Copper based catalysts are composed of cerium-containing mixed oxides (Cu/CeO2), 

which were reported to show promising properties in terms of activity, selectivity and 

resistance to CO2 and H2O [86]. Cu/CeO2 mixed oxide catalysts exhibit precious metal-like 

behavior in selective CO oxidation. The significant activity enhancement of complete CO 
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oxidation by these catalysts is a result from the interaction of copper and CeO2, such that a 

synergistic effect occurs between these materials [87].  

 

Although, the number of studies on copper based catalysts before the year 2000 is a 

little bit limited, there is a growing number of papers in this group of catalysts in the recent 

years [28, 29, 30], probably due to copper being less precious in terms of economical point 

of view: the cost and limited availability of the platinum or the gold group metals 

discourage their widespread applications [87].  

 

Copper based catalysts exhibit higher performance at the temperatures near 200
o
C, 

even though the selectivity is slightly lower at these temperatures [30]. The addition of 

CO2 or H2O to the reaction stream has generally negative effect on the performance of the 

catalyst [88]. 

 

2.3. Density Functional Theory for Catalyst Development 

 

Density functional theory is a tool that has been widely applied to study the catalytic 

processes in the recent years; it helps to determine the physical and chemical properties of 

the catalysts as well as the thermodynamic/kinetic parameters of catalytic reactions from 

the first principles. The cluster model, which uses very small clusters (with the atom size 

of 10s) to represent the catalyst, is often employed in DFT studies because it physically 

suits well to CO oxidation over Au based catalysts: it is well established that Au is active 

for CO oxidation when it is in the form of nano sized clusters or finely dispersed on metal-

oxides [89-94]. Experimental studies indicate that the catalytic systems consisting of Au 

particles with diameters less than 5 nm dispersed on a support like Al2O3, ZrO2 and TiO2 in 

the absence or presence of a promoter such as MgO, MnOx, and FeOx are highly active for 

CO oxidation or selective CO oxidation in hydrogen rich streams [95, 96]. There are 

numerous computational studies for the CO oxidation over Au catalysts using the cluster 

model and DFT methods. Some of these studies were focused on the adsorption of CO [97, 

98] or O2 [99, 100] while the others are about the co-adsorption of these species [98] or the 

reaction between them [101-104].
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Although the tools and the parameters involved in DFT computations are quite 

different from the experimental work, the basic approach quite similar: The effects of some 

user defined descriptors (equivalent to the preparation variables in experimental work) 

such as cluster size, charge of the cluster and coordination number of the atom on which 

the adsorption or reaction take place, are investigated to understand the catalytic system. 

There are even some established trends and generalized observations that are also 

supported by the studies in the literature. For instance, it is known that the anionic clusters 

with even number of Au atoms adsorb O2 more strongly [99, 105] while the adsorption of 

CO is stronger for cationic clusters [97]. Similarly, both CO and O2 prefer the low 

coordinated Au atoms for adsorption [106, 107]. Again, similar to the experimental studies, 

it is known that the descriptors affect some structural properties such as binding energy, 

HOMO-LUMO gap, bond length, and so on [108, 109, 110]. For example, it is commonly 

believed that the binding energy generally increases with increasing cluster size [108] 

while HOMO-LUMO gap exhibits a zigzag behavior depending on the presence of 

unpaired electron [111]. As a result, not only the experimental works but also the quantum 

mechanically generated data and information can be used for the knowledge extraction to 

understand the catalytic systems better. 

 

2.4. Data Mining Methods for Knowledge Extraction 

 

Data mining is the discovery of useful information, such as correlations, trends, 

patterns from the data obtained by experimental and observational methods using statistical 

and mathematical methods. Some of the common tasks for data mining are description, 

clustering, classification, estimation (prediction) and association. 

 

Description is the search for patterns and trends lying within the data to gain an 

insight. Exploratory data analysis (EDA) is a graphical method to find such information. 

The main role of EDA is to explore the data to reveal its structural secrets by using 

graphical methods. The particular graphical techniques employed in EDA are often quite 

simple, consisting of various techniques of: plotting the raw data (such as data traces, 

histograms and probability plots), or plotting some simple statistics (such as mean plots, 

standard deviation plots and box plots) [31]. 
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Classification is quite similar to estimation however the target variable is categorical 

like “good or bad”, “hot, mild or cold”. Classification usually requires multi-dimensional 

plots with more than three dimensions and hence the use of more sophisticated methods 

such as k-nearest neighbor algorithm, decision trees or neural networks [31, 57]. 

 

Clustering is the concept used for grouping of records, observations or cases into 

similar objects. A cluster is a data group in which every data point is similar to each other 

but dissimilar to the data in other clusters. The purpose of clustering is not to make a 

prediction or an estimation of the target variable; instead, the entire data is segmented into 

homogenous subgroups. Clustering is the most common unsupervised data mining method. 

Some of the clustering methods are k-means clustering and Kohonen Neural Networks 

[31]. 

 

Estimation is the attempt to find a numerical target variable by constructing a model 

with complete records of the predictors and the target. Simple linear regression, multiple 

regression, regression trees, k-nearest neighbor methods and artificial neural networks are 

some of the tools that can be used for estimation. Prediction is completely identical to 

estimation; sometimes the term prediction is used for the attempt to find the results lying in 

the future [31, 57]. 

 

Association or affinity analysis search for the rules quantifying the relationship 

between two or more attributes. Association rules take the form “if a thesis is true then this 

consequence is true”. Priori algorithm and the generalized rule induction algorithm are the 

two possible algorithms that can be applied for association [31]. 

 

 Next, a brief introduction to some of the data mining techniques will be given in the 

order of the data mining tasks: classification, clustering and prediction (or estimation). 

Although artificial neural networks were the most applied method in this dissertation, it 

will be introduced after the classification and clustering methods (under the prediction 

methods) in order not to break the order of the data mining tasks.  
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2.4.1. Classification by Decision Trees 

  

One of the most attractive classification methods is the construction of a decision 

tree, which is a collection of decision nodes, connected by branches, extending downward 

from the root node until terminating in leaf nodes. A decision tree starts from the root 

node, which is at the top of the diagram. Attributes are tested at decision nodes and each 

possible outcome results in a branch. Every branch leads to another decision node or to a 

terminating leaf node [31]. In most cases, the interpretation of the results summarized in a 

tree is very simple. This simplicity is useful not only for purposes of rapid classification of 

new data, but can also often yield a much simpler "model" for explaining why observations 

are classified or predicted in a particular manner [112]. 

 

Decision trees are constructed by using supervised learning; hence, a training data set 

is needed with the values of the target variable. The training data set should be rich and 

varied while the target variable must be discrete or the boundaries must be clear. There are 

many decision tree algorithms and one of the common one is the C4.5 [31].  

 

 

Figure 2.2. A simple decision tree. 

  

The main problem for a decision tree is to decide how to split a root to branches, or a 

branch to other sub-branches. The C4.5 algorithm uses the concept of information gain or 

entropy reduction to select the optimal split. First several candidate splits are created. A 

variable X having k possible values have probabilities of p1, p2, …,pk and the entropy of X 

is defined as: 
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The candidate split S, which divides the training set into T subsets (T1, T2,…,Tk) has a 

total entropy calculated as: 
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  (2.7) 

 

Where, Pi represents the proportion of the records in subset i and the main aim is find 

an optimum split that minimizes Hs. 

 

The error rate for a leaf node, which is the fraction of wrong classifications to the 

total records in that node, is minimized by choosing the best split as described above. The 

total error rate of entire tree is the weighted average of the individual leaf error rates [56]. 

Although, a larger tree can have a very small error rate for the training data, the rule it 

proposes can be too complex and have the lack of generalization ability (the ability to 

estimate the data that was seen during the training) [56, 66]. For this reason, the tree size is 

optimized to have a sufficiently low training error and the highest generalization ability 

[67, 68]. The data can be randomly divided into two equal sets: one set to be used for 

training and constructing the decision tree model while the other to be used for testing the 

generalization ability of the model.  

 

2.4.2. Classification by k-Nearest Neighbor Algorithm 

  

The method of k-nearest neighbor is an example of instance based learning, in which 

the training data is stored, so that a classification for a new unclassified record may be 

found simply by comparing it to the most similar records in the training set [31].  

 

In k-nearest neighbor modeling, the distance between an unknown sample and each 

sample in the training set is calculated, and the unknown sample is classified into the class 

containing the majority of the k-nearest neighbors in the training set as it is shown in 

Figure 2.3 [113]. The most commonly used distance function is the Euclidian distance: 
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i
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Where, x=x1, x2,….,xm, and y=y1, y2,...,ym represent the m attribute values of two 

records, which are compared with each other. By calculating the Euclidian distance of an 

unclassified new record to each training data in the data set, one can determine which 

records are the most similar to the unclassified data. According to the simple unweighted 

voting method, the closest candidate k number of data is chosen as the candidate categories 

for the classification of the new data [31].  

 

For the example in Figure 2.3, k value of 3 is chosen and the closest three points are 

one A and two B‟s. Thus, the classification for the new record in “category B” can be 

concluded with a 66.67% confidence. In contrast to the unweighted voting, weighted 

voting considers the closeness of the new record to the possible categorical candidates by 

calculating the inverse square of the distances as shown in Equation 2.9; where, j is the 

number of possible candidates of the category Z closest to the new record. The weighted 

voting thereby gives only one categorical candidate with the highest inverse square 

distance.  
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Figure 2.3. An unclassified data and three close neighbors. 
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2.4.3. Classification by Multiple Logistic Regression 

 

While multiple linear regression modeling approximates the relationship between 

predictor variables to a continuous response (output) variable, multiple logistic regression 

makes an approximation between predictor variables to a categorical response [57, 58]. 

The general form of the multiple logistic regression for “m” independent variables is 

shown in Equation 2.10. 

 

 
 
 

exp

1 exp

X
X

X






 

 
 (2.10) 

 

Where; X  is 0 1 1 2 2 ... m mx x x      ,  X represents the predicted response 

variable, 0 1 2, , ,..., m     are the coefficients of multiple logistic regression and 

1 2, ,..., mx x x  are the predictor variables. Since,  X approaches to 1 and 0 when the 

exponential term approaches to infinity and zero respectively, the numerical value of 

 X indicates the probability of the response variable being positive or negative. The 

multiple logistic regression coefficients (β) are calculated by the maximum likelihood 

estimation of the log likelihood function as shown in Equation 2.11; where, n is the 

number of data points, Yj and Xj represent the j
th

 experimental response variable and the 

predictor variables, respectively [57, 58]. 

 

        
1
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j
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               (2.11) 

 

The significance of the whole model is examined by calculating the difference 

between the deviance of the model with the predictor variables (  
F

L  ) and without the 

predictor variables (  
R

L  ), which is computed as shown in Equation 2.12. 
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G follows a chi-square (χ
2
) distribution with “m” degrees of freedom. For a 95% 

confidence interval (α=0.05), if  2 1 ,G m    the null hypothesis is true (all the 

coefficients of multiple logistic regression are zero). On the other hand; if 

 2 1 ,G m   , at least one perhaps all the coefficients are different from zero.   

  

The standard error (SE) of each coefficient is calculated by taking the square root of 

the diagonal elements of the inverse matrix of –H, as shown in Equation 2.13. 

 

   ( )SE diag inv H    (2.13) 

 

Where, H is the second order partial derivative matrix of the log likelihood function 

with regard to 0 1 2, , ,..., m   
 
(Equation 2.14) [57]. 

 

  
2
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 (2.14) 

 

The significance of each predictor variable is calculated by Wald test [57, 58]. The 

procedure of the test is to first calculate the ratio of the coefficients with their standard 

errors (Zwald
i
), then checking the two tailed p value of this ratio being whether below 0.05 

(for 95% confidence interval) or not. The upper and lower limits of the coefficients are 

then calculated with a 95% confidence interval (Equation 2.15). The interval shows 

whether there is a probability for the coefficients ever being zero.  

 

(1 / 2) ( )i i iZ SE       (2.15) 

   

 Odds ratio, which approximates the change of the probability of the response 

variable with respect to a unit change of the predictor variables, is used to analyze the 

variable effects.  
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2.4.4. Optimization by Genetic Algorithms 

 

Genetic algorithms were inspired by Darwin's theory of evolution. They can be 

applied to solve a variety of optimization problems that are not well suited for standard 

optimization algorithms, including problems in which the objective function is 

discontinuous, non-differentiable, stochastic or highly nonlinear. Genetic algorithms are 

one of the multi-dimensional global optimization methods, and they have less tendency to 

become stuck in local minima [56].  

 

Genetic algorithms work with a population P=(x1, x2,…,xp), in which each population 

member (xi) is called an individual member containing the values of the variables of the 

function to be optimized [114]. Solutions from one population are taken and used to form a 

new population. This is motivated by an expectation that the new population will be better 

than the old one (i.e. more close to the optimum solution).  

 

The genetic algorithm uses three main types of rules to create the next generation 

from the current population: selection, crossover and mutation. Selection is the process to 

choose the individuals, called parents that contribute to the population at the next 

generation. These are the candidate solutions to the problem and the fitter the chromosome 

the more likely it will be selected for reproduction. Crossover combines two parents to 

form children for the next generation. Mutation applies random changes to individual 

parents to form children [56]. 

 

Genetic algorithm starts by specifying a crossover probability of pc (usually higher 

than 0.7), and a mutation probability of pm (approximately 0.001). Then, the initial 

population is generated containing n chromosomes (candidate solutions) each having the 

length L (number of variables in the optimization problem). The function to be optimized 

(fitness function), f(x), is calculated for each chromosome in other words for each 

candidate solutions. The parents that will create the next generation can be selected by 

various methods such as the roulette wheel method. The procedure starts with the 

calculation of each chromosome‟s probability of selection (Equation 2.16). Then, parent 

chromosomes are chosen randomly according to these probabilities [56].  
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The next step is the crossover that occurs on the randomly chosen locus (crossover 

point), with the probability of pc. There are several crossover methods and some of them 

are described below. For the single point crossover, one crossover point is selected, binary 

string from beginning of chromosome to the crossover point is copied from one parent and 

the rest is copied from the second parent (Figure 2.4). For the two point crossover, two 

crossover points are selected, binary string from beginning of chromosome to the first 

crossover point is copied from one parent, the part from the first to the second crossover 

point is copied from the second parent and the rest is copied from the first parent (Figure 

2.5). For the uniform crossover, bits are randomly copied from the first or from the second 

parent (Figure 2.6). 

 

 

Figure 2.4. Single point crossover. 

 

 

Figure 2.5. Two point crossover. 

 

 

Figure 2.6. Uniform crossover. 

 

The next step is the mutation, in which each of the offspring on each locus is 

randomly mutated with the probability of pm. This increases the genetic variety, and helps 

 Offspring Parent B Parent A 

= + 

 Offspring Parent B Parent A 

= + 

 Offspring Parent B Parent A 

= + 
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to prevent to be stuck in local optimal point while the solution is evolving towards the 

optimum point.  

 

Selection, crossover, mutation steps are repeated until the number of individuals 

equal to the initial population size is achieved. This is called a new generation, which is 

entirely different than the prior generation. Each cycle through this algorithm is another 

generation and after testing several generations, a chromosome giving the best fitness 

function is found. In other words, the optimum solution of the optimization problem is 

achieved [56]. 

 

2.4.5. Clustering by k-means Clustering 

 

 K-means clustering is an unsupervised data mining method that groups the data into 

clusters, where the records are similar to those in the same cluster and dissimilar to those in 

the other clusters. Clustering is often used as a preliminary step in data mining process, 

with the resulting clusters being used as further inputs into a different technique such as 

neural networks [31].  

 

In order to prevent any attribute dominate the others, the data should be normalized 

before applying k-means clustering as shown in Equation 2.17 (min-max normalization). 

Then, the degree of similarity between two data points is determined by calculating the 

Euclidian distance between them (Equation 2.18). 
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Where; 1 2, ,..., mx x x x  and 1 2, ,..., my y y y  represent the m attribute values of two 

records. k-means clustering algorithm is shown in Figure 2.7 [31].  

 

Determining the number of clusters that the data is to be separated is a problem in k-

means clustering algorithms. With a small number of k, no distinctive information can be 
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obtained from the data and the total SSE will be high. On the other hand, with a k value 

that is too high, local and common behavior of the records will be missed and there is a 

risk for even the noisy data to be clustered separately [31]. Hence, an optimal number of 

clusters is needed for a particular clustering problem. 

 

 

Figure 2.7. k-means clustering algorithm. 

 

2.4.6. Genetic Algorithm Supported Clustering 

 

The traditional k-means clustering algorithm techniques, which group the clusters 

according to the Euclidian distances as shown above, can easily be stuck to a local optimal 

solution due to the random influence of the initial clusters. Hence, in order to find the 

global optimum solution the k-means algorithms can be combined with genetic algorithms, 
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the combination of which is reported to be superior to the conventional k-means algorithm 

[69, 70].  

 

The genetic algorithm supported clustering algorithm that was developed for general 

purpose is shown in Figure 2.8. First, “k” numbers of cluster centers are created, and then 

these cluster centers are combined to form a string of the population (candidate solution of 

the clustering problem). The procedure is repeated until “p” numbers of strings are formed. 

The next step is to calculate the Euclidian distance (Equation 2.18) of each record (data to 

be clustered) to the closest cluster center in each string. The sum of the distances indicates 

the sum of squared errors (SSE) of that string. The lower the SSE value of a string, the 

more successful the placement of the entire data to the clusters of that string is. Thus, the 

fitness of each string is SSE
-1

, which is the objective function to be maximized. 

 

Selection, crossover and mutation processes are applied in each step to increase the 

fitness of the population like the traditional genetic algorithms. Based on a crossover 

probability, the strings that are going to crossover with each other are selected by the 

Roulette Wheel method according to their fitness values [56]. Then, each string is mutated 

based on a mutation probability, which increases the genetic variety by creating different 

candidate solutions. In addition to these, elimination and immigration are also processed 

through the algorithm. In order to ensure that none of the strings contain empty clusters 

(without any member), such strings are eliminated from the population and random new 

strings immigrate to the population as substitutes. Finally, a new generation is formed but 

whether this is going to be accepted or not depends on the comparison of the average 

fitness of the new generation with the old one. If the average fitness improves, the 

generation is accepted; otherwise the old one is called back; thus, elitism is implemented 

on each generation [69, 70]. The termination criterion is the total number of generations 

created. The string with the highest fitness value ever encountered in all the generations is 

the optimum solution.  
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Figure 2.8. Genetic algorithm supported clustering algorithm.  
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2.4.7. Estimation and Prediction by Multiple Linear Regression 

 

Multiple regression is a method that linearly approximates the relationship of 

multiple independent predictor variables with a continuous target variable. The general 

form of multiple linear regression is shown in Equation 2.19 [56]. 

 

y X 
 

(2.19) 

 

Where; X  is 0 1 1 2 2 ... m mx x x      , y
 
represents the predicted response 

variable; 0 1 2, , ,..., m     are the coefficients of multiple regression and 1 2, ,..., mx x x  are the 

predictor variables. Finding the coefficients of multiple regression is quite straightforward 

but the general form should be represented in matrix form (Equation 2.20).  

 

      , 1 1 ,1,1 n m mn
y X 

 
    
 

 (2.20) 

 

Where; n is the number of data points, m is the number of predictor variables, 

  1 ,1m



  is the coefficient matrix, composed of 0 1 2, , ,..., m    ,    , 1n m

X


  is the matrix of 

predictor variables, in which the first column is composed only of ones in order to achieve 

a constant term when multiplied by the coefficient matrix. Finally, the calculation of the 

multiple regression coefficients is shown in Equation 2.21 and Equation 2.22, where
TX  is 

the transpose of the matrix, X  . 

 

T TX X X y        (2.21) 

 
1

T TX X X y


        (2.22) 

  

2.4.8. Estimation and Prediction by Artificial Neural Networks 

 

Artificial neural networks, which were inspired from the learning that occurs in 

biological neurons, have superior ability on non-linear regression and data approximation; 

hence it is one of the most effective knowledge extraction tools [115]. Before explaining 
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what is done in artificial neural networks, the mechanism of biological neurons should be 

well understood. A typical biological neuron collects signals from others through a host of 

fine structures called dendrites (Figure 2.9). The neuron sends out spikes of electrical 

activity through a long, thin stand known as an axon, which splits into thousands of 

branches. A particular neuron is simple in structure; however, a very large number of 

neurons connected with each other can perform any complex task. The total number of 

neurons in the central nervous system ranges from under 300 for small free-living 

metazoans such as round worms, 30–100 million for the common octopus and small 

mammals such as mice to well over 200 billion for whales and elephants. Estimates for the 

human brain averages 95–100 billion [116]. An artificial neuron is very similar to its 

biological counterpart; it simply mimics the type of nonlinear learning that occurs in the 

networks of neurons found in nature [37]. 

    

Probabilistic neural networks, radial basis function networks, kohonen networks, 

hetero-associative networks, recurrent networks and modular neural networks are some 

types of neural networks [115]. The most commonly applied one is the multilayer feed 

forward perceptron network. 

 

2.4.8.1 Multilayer Feed Forward Perceptron Network. A typical feed-forward neural 

network consists of three layers named as input, hidden and output layers (Figure 2.9). 

Input layer is the place where the vector of predictor variable values (x1...xp) is presented to 

the input layer. In addition to the predictor variables, there is a constant input having a 

value of 1, called the bias that is fed to each of the hidden layers. Hidden layers are where 

the actual processing is done via a system of weighted connections, and output layer is 

where the final solution is given out. 

 

What is done in a single neuron is quite simple like it is shown in Figure 2.10. First, 

input variables are multiplied by corresponding weights and the sum is calculated 

(Equation 2.23). Then, by using an activation function, such as logistic sigmoid function, 

(Equation 2.24) the output is calculated. The output of one neuron becomes input to 

another neuron [37]. 
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Figure 2.9. A typical feed forward neural network. 

 

 

Figure 2.10. A single neuron. 
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Supervised neural networks learn by examples thus require a large data set including 

the target values. As each observation from the training set is processed through the 

network an output value is produced. Comparing the predicted output with the real target 

value gives the error. The comparison can be done mathematically by calculating the sum 

of square error. 
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The main aim of the learning process is to adapt the weights of the neural network so 

that any given input can produce an output with small error. By processing the sum of 

square error through the network the network can adapt its weights. There are many 

learning algorithms and the most common one is the backpropagation learning algorithm, 

which is a simple gradient descend technique that minimizes the mean squared error 

defined in Equation 2.25. However, there are also many various second order approaches 

such as Levenberg-Marquardt, which is an extremely faster method [117, 118]. 

 

The backpropagation algorithm defines two sweeps of the network (Figure 2.11): 

first a forward sweep from the input layer to the output layer, and then a backward sweep 

from the output layer to the input layer. The backward sweep is similar to the forward 

sweep, except that the error values are propagated back through the network to determine 

how the weights are to be changed during training. During the backward sweep, values 

pass along the weighted connections in the reverse direction to that, which was taken 

during the forward sweep: for example, one particular neuron in a layer will send 

activation to every unit in the next layer during the forward sweep, likewise during the 

backward sweep that neuron will receive error signals from every unit in the next layer 

[37]. 

 

The first stage of the backpropagation algorithm is to initialize the weights to small 

random values, (i.e. between -0.3 and +0.3). During the backpropagation process, weights 

of the neural network are updated with each training data point in the direction that leads to 

the most rapid decrease in the error (Equation 2.25). The weight update process is given in 

Equation 2.26-31; where η is the learning rate (a real number), x is the signal coming to the 

neuron and  jk jW   is the error propagated from the output neuron to the hidden layer 

neurons [37]. 
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Figure 2.11. The backpropagation algorithm. 
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  1j j j joutput output actual output       for output layer nodes (2.30) 

   1j j jk joutput output W           for hidden layer nodes (2.31) 

   1w n x w n          (2.32) 

 

After repeating this algorithm with all the samples (training data points) for many 

times, the sum of E gradually converges to a minimum value, so that the network becomes 

a fully trained one. An additional parameter that is commonly used for neural network 

training is the momentum term (α). This term adds a proportion of the previous weight 

change to the weight update rule, which prevents the oscillation of the weight changes 

(Equation 2.32). Hence, the weight change for pattern (n+1) is dependent on the weight 

change for pattern (n).  

 

2.4.8.2 Levenberg-Marquardt Method of Training. The method of Levenberg Marquardt 

training is a blend of gradient descend and Gauss-Newton iteration. The error achieved by 

comparing the predicted output with the real target value is given in Equation 2.33. The 

Jacobian matrix of the error vector for all the patterns is shown in Equation 2.34, where w 

consists of all the weights of the neural network (Equation 2.35). The weight update rule is 

presented in Equation 2.36, where, J
T
.J is the Hessian matrix for the error vectors and η is 

the Levenberg-Marquardt learning parameter.  

 

When η is zero, the method becomes exactly the same as Newton's method using 

only the Hessian matrix. When η is large, the method becomes the same as the gradient 

descent with a small step size [117, 118]. Gradient descent method has higher performance 

far from the minimum and Newton's method is faster and more accurate near an error 

minimum. Thus, η is decreased after each successful step and is increased only when a 
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tentative step increases the error. In this way, error always decreases after each iteration 

[117, 118]. 

 

 
2

21 1

2 2
j j j

j j

E t y e     (2.33) 

1 1 1

1 2

2 2 2

1 2

1 2

, ,...

, ,...

..........................

, ,...

N

N

n n n

N

e e e

w w w

e e e

w w wJ

e e e

w w w

   
   
 
   
   
 
 
 
  
 
    

 

(2.34) 

 1 2 3, , ...
T

Nw w w w w

 

(2.35) 

 
1

T T

new oldw w J J I J e


      

 

(2.36) 

 

2.4.8.3. Partially Connected Neural Networks. Modularity is a very important concept in 

nature. Modularity can be defined as subdivision of a complex object into simpler objects. 

The subdivision is determined either by the structure or function of the object and its 

subparts. Modularity in neural networks is linked to the notion of local computation. That 

means that each module is an independent system interacting with other in a whole 

architecture in order to perform a more complex function. The structure of the modular 

system is similar to architectures known from logical neural networks. The new network is 

not fully connected and therefore the number of weight connections is much less than in a 

monolithic multilayer perceptron [54, 55]. 

 

The term „„Modular neural networks‟‟ is very fuzzy. It is used in a lot of ways and 

with different structures. Everything that is not monolithic is said to be modular. One of 

the main ideas of this approach is to construct a network of modules where all the modules 

are also neural networks. The architecture of a single module is simpler and smaller than 

the one of a monolithic network. The tasks are modified in such a way that training a 

subtask is easier than training the complete task (Figure 2.12). The modules can be 

processed separately having different number of neurons and different activation functions, 
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and their outputs can be combined in another layer to be processed together (working in 

parallel) [54, 55].  

 

 

Figure 2.12. A partially connected modular neural network architecture. 

 

2.4.9. Additional Materials for Neural Networks and Statistical Parameters 

 

2.4.9.1. k-fold Cross Validation. Testing is very important for neural networks since it 

gives the degree of generalization accuracy. k-fold cross validation method starts with the 

division of the whole data set into k subsets randomly, and then the network is trained 

using k-1 subsets while the remaining one subset is used as the test data. This procedure is 

repeated until all the subsets are tested with the rest of the data. Finally, the k pieces of the 

test data are merged and the calculation of the RMSE within the entire test data eventually 

provides the testing error, or in other words the generalization accuracy of the neural 

network [51, 53].  

 

2.4.9.2. Input Significance. The test of significance for the continuous input parameters can 

be done by partial differentiation of the fully trained neural network, which was reported as 

a very successful tool for the identification of primary factors controlling catalytic activity 

[47, 48]. The procedure of the method is as follows: First, the local importance of the i
th

 

input variable on k
th

 catalyst (LRIi,k) is calculated as shown in Equation 2.37, where f is the 

output function and xi is the i
th

 input data. Then, the global relative importance of the i
th

 

input variable (GRIi) is calculated (Equation 2.38) [47, 48]. The partial differentiation 
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operation can be done numerically by using higher order approximations such as using five 

point method as shown in Equation 2.39 (in this work with h=10
-10

). 
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The procedure of the change of root mean square technique, which can be applied to 

find the relative significances for both continuous and categorical variables, begins with 

the removal of one of the input variables. Then the network is trained with the remaining 

input groups. After the training is complete, the RMSE value of the model calculated in the 

absence of this variable is compared with the value obtained in the presence of all inputs, 

and the difference is used as the indicator of the significance of this variable [51, 53]. 

 

2.4.9.3. Pearson Correlation and Coefficient of Determination. Pearson correlation 

coefficient, r, is the measure of multicollinearity, which indicates whether there is a 

directly proportional or inversely proportional relationship between two variables. The 

Pearson correlation is calculated by Equation 2.40; where N is the number of data points, x 

and y are the data pairs the correlation of which is to be found. The value of r is between -1 

and +1. While negative values of r indicate inverse proportionality, positive values indicate 

direct proportionality [56]. The degrees of correlation for different values of “r” are shown 

in Table 2.1.  
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Table 2.1. Rough rule for determining the presence of correlation. 

r value Correlation 

greater than 0.7 positively correlated 

0.33 to 0.7 mildly positively correlated 

-0.33 to 0.33 not correlated 

-0.7 to -0.33 mildly negatively correlated 

less than -0.7 negatively correlated 

 

The coefficient of determination, r
2
 or R

2
, represents how well a regression 

approximation fits to the experimental data. The value of R
2
 can be between 0 and 1, and a 

value of 1 indicates a perfect fit [56]. The mathematical formula used to calculate the 

coefficient of determination is shown in Equation 2.41; where, yi represent the i
th

 

experimental data, iy  is the estimated value of the corresponding experiment and y  is the 

mean value of the experimental data. 
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2.5. Knowledge Extraction from Catalysis by Using Data Mining Methods  

  

In the last two decades, the applications of the data mining methods have become 

quite widespread due to the great development in computer hardware and software. Even 

the methods demanding a massive number of computational calculations are now 

performed quite easily by the high capacity computer processors. Thus, data mining is now 

easily applicable in almost every field of science for the discovery of useful information, 

such as correlations, trends or patterns. Similarly, the application of data mining techniques 

in the field of catalysis has also become prevalent in the recent years. Multiple regression, 

decision trees, artificial neural networks are the most commonly applied methods, which 

help the researcher to analyze their data in a more systematic manner and to extract the 

essential knowledge to improve the catalyst design and testing conditions. 
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2.5.1. Multiple Regression Modeling 

 

Istadi and Amin studied the catalytic conversion of methane to ethane and ethylene 

using carbon dioxide as an oxidant (carbon dioxide oxidative coupling of methane). 

Central composite design was employed to create the experimental data set and response 

surface methodology was applied to analyze the results [32]. A quadratic polynomial 

regression was constructed to model the CH4 conversion, C2 selectivity and C2 yield by 

using two catalyst preparation variables (CaO and MnO amounts) and two operating 

variables (reaction temperature, CO2/CH4 ratio in the feed). In order to find the optimum 

parameters leading to maximum CH4 conversion, C2 selectivity and C2 yield, a 

simultaneous multiple output optimization was performed on the regression models using 

weighted sum of squared objective functions method. It was found that using CO2/CH4 

ratio of 1.99, reactor temperature of 1127 K, 12.78 wt.% CaO and 6.39 wt.% MnO leaded 

to the optimum values of C2 selectivity and yield, which were 76.56% and 3.74%, 

respectively [32]. 

 

Du et al. studied the catalytic partial oxidation of methane to formaldehyde and 

modeled the formaldehyde selectivity, methane conversion and the yield of formaldehyde 

from five continuous variables: reaction temperature, vanadium loading, gas hourly space 

velocity, reactant ratio (CH4/O2) and reaction pressure by using full quadratic multiple 

regression [33]. The data set was prepared by applying a statistical design method covering 

the whole range of variables in a well-proportioned manner. Multiple regression models 

were created and t statistics were performed to eliminate the regression parameters having 

smaller level of significance. It was reported that temperature, CH4/O2 ratio, and pressure 

are the three most significant factors affecting the selectivity of formaldehyde. The optimal 

formaldehyde selectivity was achieved at high temperature with low vanadium loading or 

at low temperature with high vanadium loading. Contrary to that, methane conversion was 

favored at high temperature, high vanadium loading and high pressure, but low gas hourly 

space velocity and low CH4/O2 ratio. The optimum value of formaldehyde space time 

yield, which is the combined effect of the formaldehyde selectivity and methane 

conversion, was achieved at the highest levels of all the five input variables. The regression 

model successfully predicted all these trends successfully. It was concluded that 

statistically designed data can improve the success of the multiple regression models [33]. 
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Günay and Yıldırım employed multiple regression and artificial neural networks to 

model the activity of Pt based CO oxidation catalysts by using the catalyst preparation 

variables (Pt, Co, Ce amounts; calcination temperature and time) [34]. The prediction 

accuracies of the two methods were compared and multiple regression modeling was found 

to be less accurate. Hence, additional analyses on the data were performed by using neural 

network models.  

 

Olutoye and Hameed studied the transesterification of palm oil to produce biodiesel 

by using heterogeneous catalysts composed of the mixed oxides MgO, ZnO and K [35]. 

Central composite design was used to prepare the experiments and response surface 

methodology was applied to analyze the results. Multiple regression modeling was 

employed to analyze the effects of Mg/Zn ratio, calcination temperature and time on the 

conversion of palm oil (triglyceride) to methyl ester, which was used as the degree of 

catalyst efficiency. It was reported that high triglyceride conversion was found to be 

favored at low Mg/Zn ratio and calcination temperature. The optimum Mg/Zn ratio and 

calcination temperature were found as 1/4.81 and 460 °C, which leaded to 73% conversion. 

The high conversion value was attributed to the synergetic effect of mixed oxides MgO, 

ZnO and K [35]. 

 

Chen et al. worked on the oxidation of NO by using MnOx catalysts supported on 

rice husk ash [36]. The experiments were prepared by using quadratic regression rotatable 

orthogonal design. The catalytic activity was modeled by multiple regression from catalyst 

preparation variables (calcination temperature and time, amount of MnOx and incineration 

temperature of rice husk). According to the regression results, the significances of the 

variables were found from the highest to the lowest one as calcination temperature, amount 

of MnOx, incineration temperature of rice husk and calcination time. As the calcination 

temperature increased CO conversion was observed to decrease, which was attributed to 

the increase of MnOx size on the surface of the catalyst at high calcination temperatures. 

Increasing the amount of MnOx in the catalyst or the incineration temperature of the rice 

husk was reported to improve the catalytic activity, and all these trends were observed by 

the multiple regression results [36]. 
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2.5.2. Decision Tree Modeling 

 

Using decision trees or regression trees are very recent approaches in the field of 

catalysts and the amount of studies are limited. Corma et al. applied decision trees on the 

high throughput catalytic data (epoxidation catalysts based on mesoporous titanium silicate 

materials) together with several different data mining techniques [65]. First dimension 

reduction, using an unsupervised method (Kohonen networks), was employed on the 

experimental database, and then the data was classified by decision trees. The object was to 

determine the yield of cyclohexene epoxide for the optimal material synthesis parameters, 

which were the molar concentrations of the components of starting gel. The yield of 

epoxide was classified into five categories from very bad to very good. Decision tree 

technique applied alone was reported to give 89.8% accuracy, however applying decision 

tree after clustering with Kohonen networks resulted 100% classification accuracy [65].   

 

Cukic et al. studied the influence of the catalyst preparation variables on the 

performance of Pd/Al2O3 catalyst for the hydrogenation of 1,3-butadiene by using 

regression trees [67]. The complete set of data was split iteratively into meaningful subsets, 

creating a non-linear regression model. The model was represented by a sequence of 

questions that can be answered with yes or no, combined with a set of fitted response 

values. The best non-linear regression-tree model, shown in Figure 2.13, was chosen with 

respect to the smallest generalizing error, which was estimated by cross-validation method 

(to avoid over-fitting of the model). The stirring speed (n), the pH value of the solution, 

impregnation time (ti), the ratio between volume of solution and pore volume of support 

(Vi/Vp), heating rate of calcination (sc), heating rate of drying (sd), temperature of drying 

(Td), drying time (td), temperature of calcination (tc) and the time of calcination (tc) were 

the ten catalyst preparation conditions affecting the conversion of butadiene. The tree 

model in this study provided the prediction of the catalytic activity from various 

preparation variables, and the tree was proposed as a guide to determine the catalytic 

variables for a desired activity [67]. 
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Figure 2.13. Regression tree for predicting butadiene conversion [67]. 

 

 

Figure 2.14. Regression tree modeling HCN yield [68]. 

 

Another regression tree study is on the catalytic conversion of methane and 

ammonia to hydrocyanic acid [68]. HCN yield was modeled by regression trees from the 

catalytic variables (the support and the relative amounts of the individual metal additives). 

Support was a categorical variable consisting of fifteen different options while the metal 

additives were numerical variables. The choice of the most appropriate tree size was based 
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on the generalization error of the tree, estimated by means of k-fold cross validation. 

According to the results of the best decision tree shown in Figure 2.14, it was reported that 

using support materials Si3N4, SiC and AlN with a Pt loading higher than 50% gives 

promising catalytic activity together with the catalysts composed of the metal additives, Ni 

(<30%), Re (<15%), Ir (<16%) and Au (>8%) [68]. 

 

2.5.3. Artificial Neural Network Modeling and Optimization of the Model 

 

Artificial neural networks, which have superior ability on nonlinear regression and 

data approximation, can improve the catalytic experimental studies by helping the 

experimenter to get useful trends, patterns and valuable information that cannot be easily 

interpreted with simple observations. Indeed numerous researches on this subject have 

been published in the literature. An extensive list of these works is given in Table 2.2 and 

summarized below. The published works derived from this dissertation (as discussed in the 

later sections) was also added to the end of the table for completeness.   

 

Hattori and Kito are the first researchers who introduced the use of artificial neural 

networks in the field of catalysis. Two of their early works, which pioneered further such 

studies, were the oxidative dehydrogenation of ethylbenzene [119] and catalytic activity of 

lanthanide oxides in the oxidation of butane published in 1994 and 1995, respectively [41]. 

These studies indicated that neural networks can successfully be used for catalyst 

development in search for new catalysts or additives, which reduce the time spent on 

conventional trial and error experiments.   

 

In 1997, Hou et al. studied propone ammoxidation catalysts supported over 

Al2O3/SiO2 to produce acrylonitrile [120]. The conversion and selectivity of propane were 

modeled by using artificial neural networks from the catalyst components: P, K, Cr, Mo, V 

contents and the weight ratio of Al2O3/SiO2. The neural network model was used to find 

the optimum catalyst ingredients giving the highest acrylonitrile yield [120]. 

 

Cundari et al., in 2001, investigated propane ammoxidation catalysts and modeled 

the catalytic data by using neural networks [121]. Several network topologies were tested 

to establish the relationship between P, K, Cr, Mo, V contents and the weight ratio of 
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Al2O3/SiO2 with the conversion and selectivity of propane. Then, the best 14 neural 

networks with the highest performance were linearly combined to model the acrylonitrile 

yield. It was stated that combining the trained networks like this way can help to integrate 

the knowledge acquired by single network, and produces higher model accuracy. The 

optimum catalyst component leading to the maximum acrylonitrile yield was searched by 

applying genetic algorithm to the combined neural network providing an acrylonitrile yield 

of 79%, which was reported to be higher than those of the similar studies [121]. 

 

In 2001, Huang et al. experimentally studied the catalytic oxidative coupling of 

methane to produce C2 hydrocarbons, and for this purpose, prepared twenty five catalysts 

designed by the orthographical method [122]. Neural network modeling was applied to 

model the catalytic performance (C2 selectivity and CH4 conversion), from the catalyst 

components: Na, Si, W, P, Mn and Zr (Figure 2.15). SWIFT method was applied to the 

trained neural network to find the optimum catalyst ingredients. CH4 conversion and C2 

selectivity were found as 27.54% and 75.40%, respectively; both results being higher than 

any of the experimental results that had been reported [122]. 

 

 

Figure 2.15. Neural network modeling C2 selectivity and CH4 conversion [122]. 

 

In 2001, Liu et al. applied artificial neural networks for the design of CO2 

hydrogenation catalyst for a database composed of 73 samples achieved from literature 

[123]. Five output variables, namely; CO2 conversion, CO selectivity, CH4 selectivity, 

CH3OH selectivity and light alkenes (CnHm) selectivity were modeled from the catalyst 

composition (base metal, promoter A, promoter B) and the operating conditions (support, 

temperature, pressure, H2/CO2 ratio and the gas hourly space velocity). The prediction 
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accuracy of the neural network modeling for the CO2 hydrogenation activity was analyzed 

and it was concluded that neural network modeling is a very powerful tool for the design of 

CO2 hydrogenation catalysts [123]. 

 

Holena and Baerns, in 2003, studied the oxidative dehydrogenation of propane to 

propene [43]. They prepared 226 different catalyst compositions by high throughput 

experimentation and modeled the catalytic performance of the catalysts (selectivity and 

yield) by using neural networks (Figure 2.16). First, some concepts were designated such 

as the phenomenon of over-fitting due to the overtraining of the neural network and the use 

of early stopping to improve the neural network generalization accuracy. Moreover, the use 

of neural networks to find the optimum catalyst composition, and extracting logical rules 

between input and output variables was described in detail. Then, neural network modeling 

was applied for the oxidative dehydrogenation of propane to propene, with the oxides of B, 

Fe, Ga, La, Mg, Mn, Mo and V in the catalyst as the input variables, whereas the propane 

yield as the output variable. The composition of the catalyst was then optimized to find the 

maximum yield by the method of sequential quadratic programming [43].  

 

 

Figure 2.16. Neural network topology modeling propane yield [43]. 
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In 2003, Serra et al. studied the n-octane isomerization catalysts prepared by high 

throughput experimentation and applied neural network modeling for the prediction of n-

paraffin conversion, mono-branched and di-branched yields from the input variables of n-

octane partial pressure, hydrogen partial pressure, reactor temperature and contact time 

[124]. The network size, activation functions, learning rates of the network were changed 

and their effects on the estimation performance were analyzed. It was found that when the 

neural network trained with n-octane samples were retrained with n-hexane samples, only 

a small number of samples were sufficient to obtain good quality predictions. Hence, it was 

concluded that having a library of pre-trained neural networks for several reaction schemes 

can be used as black box models to provide the prediction of new experimental data [124]. 

 

Huang et al., in 2003, modeled the catalytic data related to the oxidative 

dehydrogenation of propane to propene by artificial neural networks and developed a 

hybrid genetic algorithm optimization technique to optimize the C2 selectivity, CH4 

conversion and catalyst yield [125] that complements their previous work published in 

2001 [122]. Genetic algorithm optimization was used as a global optimization method that 

provided the determination of the optimum catalyst composition leading to maximum 

catalyst performance, (C2 selectivity higher than 70%, CH4 conversion exceeding 35% and 

catalyst yield reaching 27.78%) [125]. This catalytic performance was stated to be higher 

than the previously reported ones [122]. 

 

Rodemerck et al., in 2004, used neural networks for the modeling of the catalytic 

data of oxidative dehydrogenation of propane to propene that were prepared by high 

throughput experimentation [44]. They described the use of genetic algorithms to optimize 

the catalytic activity. The best catalyst composition was found from the candidate catalysts, 

which evolve through several generations by applying crossover (catalyst components are 

exchanged between two materials of the former generation), qualitative mutation (one or 

more chemical elements or compounds are replaced by others), quantitative mutation (the 

concentration of one or more compounds in the inorganic material is changed). A neural 

network trained by 328 data points were used to generate virtual experimental data to 

predict propene yield for given catalytic compositions. It was reported that genetic 

algorithm applied on the trained neural network resulted a maximum propene yield of 

9.1% with the catalyst composition of Ga0.21Mg0.40Mn0.21V0.18Ox [44]. 
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Kito et al., in 2004, investigated the methanol conversion over modified mordenite 

catalysts and modeled the catalyst deactivation rate by the help of artificial neural networks 

[126]. Si/Al2 ratio, the degree of Ba ion exchange, the degree of La ion exchange and the 

amount of strong acid sites of the catalyst were used as the input variables for the neural 

network to estimate the deactivation rate constant (Figure 2.17). Another model was 

constructed to extrapolate the hydrocarbon yield (at 4h and 5h) by using the same input 

variables together with the initial decay data (yield at 5min, 1h, 2h, 3h). This provided to 

extrapolate the degree of catalyst deactivation. The accuracy of the modeling results were 

found to be high, even in the case where the experimental data seemed to contain some 

experimental error. It was then concluded that neural network modeling is a powerful tool 

for the estimation of catalyst life through the deactivation rate constant and for the 

extrapolation of the catalyst decay curve [126]. 

 

 

Figure 2.17. Neural network topology modeling catalyst deactivation rate [126]. 

 

Nandi et al. presented a detailed instruction for support vector regression modeling 

and described the adaptation of this approach to the catalytic data in 2004 [127]. The 

experimental data (42 points) related to the benzene isopropylation using Hbeta catalyst 

was modeled by using support vector regression and artificial neural networks with the 

input variables of temperature, pressure, benzene to isopropyl alcohol mole ratio and 

weight hourly space velocity. The models were used further for the genetic algorithm 

based optimization to find the maximum cumene yield and selectivity, and the 

performances of both strategies were compared. Although the prediction accuracy of 

support vector regression was found to be somewhat lower than that of the neural 

networks, it was still in the acceptable region. It was reported that neural networks-genetic 

algorithm strategy provided an optimum cumene yield of 24.88% and selectivity of 
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99.04% while support vector regression-genetic algorithm strategy provided a yield of 

24.80% and selectivity of 95.76%. The neural network-genetic algorithm optimum point 

matched almost perfectly to the verification experiment and as a result, the cumene yield 

and selectivity were experimentally improved by 2.59 and 5.10%, respectively [127]. 

 

Watanabe et al., in 2004, applied high throughput experimentation to study Cu-Zn-

Al-Sc-B-Zr oxide catalyst for low-pressure methanol synthesis in a high throughput reactor 

system, which tested 96 samples simultaneously [128]. A total of 190 random catalysts 

were analyzed in the reactor in two runs and the data achieved were trained by artificial 

neural networks with both preparation and operating conditions as the input variables and 

the catalytic activity as the output variable (space time yield). Then, the well trained neural 

network was optimized by using genetic algorithms. However, the neural network 

predicted optimum result was quite different than the result of the verification experiment, 

which was attributed to the insufficient experimental information around the optimum 

point. Hence, additional 44 catalysts were collected experimentally and the neural 

network-genetic algorithm strategy was applied to the new database composed of 234 

points, which provided an optimum point with a quite high accuracy. It was then reported 

that catalyst with Cu/Zn/Al/Sc/B/Zr ratio of 43/17/23/11/0/6 prepared using 2.2 times of 

oxalic acid and calcined at 605 K was the optimum catalyst giving a space time yield of 

427 g MeOH/kg-cat./h, which was almost two times that of an industrial catalyst [128]. 

 

Corma et al., in 2005, developed a neural network-genetic algorithm hybrid method 

to model the olefin epoxidation Ti catalysts in order to maximize epoxide yield [46]. The 

proposed procedure started with the generation of a random experimental space by using 

high throughput experimentation, and the modeling of this database by using neural 

networks. Then, genetic algorithm sought for the catalysts giving higher yield by 

simulating the input variables through the neural network model, which created the next 

generation. After the experimental evaluation of the new generation, the neural network 

was retrained with the new available data. It was observed that a progressive improvement 

of the epoxidation catalyst was achieved through each generation giving a higher epoxide 

yield, and at the third generation the activity of the catalyst was significantly higher than 

the reference catalyst. It was then concluded that the proposed hybrid system based on high 

throughput experimentation, neural network modeling and genetic algorithm optimization 
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can be adopted for the intelligent discovery of new catalytic materials also for different 

catalytic systems [46].  

 

Tompos et al., in 2003, described a new powerful optimization method, holographic 

research strategy, for the design and testing of the catalyst libraries [129]. It was proposed 

that holographic research can provide the visualization of a continuous multidimensional 

experimental space by two-dimensional presentation (Figure 2.18); hence, it can be used in 

the study of virtual preparation and testing of relatively large number of multi-component 

catalysts. It was also stated that when compared to stochastic genetic algorithms, this 

method has the advantage of being deterministic. The gray scale colors in Figure 2.18 

represent the output results of the variables A, B, C, D, E, F that change periodically. The 

closer the data to the optimum point the darker the color of the given point is. The method 

continues with selecting the darkest region and applying a more detailed holographic 

search into that area. This procedure is repeated until the global optimum is found [129]. 

 

 
Figure 2.18. Six parameter holographic search [129]. 

 

Tompos et al., in 2003, applied artificial neural network modeling combined with 

holographic research strategy to design a catalyst library for low temperature propane 

oxidation, the experimental data of which was collected by high throughput 

experimentation [130]. Propane conversion was modeled from the catalyst components, Pt, 

Pd, Rh, Ru, Au, Pd, Ag and Mn wt.% by artificial neural networks and the maximum 

propane conversion was searched by the holographic method. The optimum catalyst 

components provided by the neural network-holographic research strategy was found to be 

2.4 wt.% Ru and 0.4 wt.% Mn, resulting a maximum propane conversion of 89% at 150
o
C, 

which was stated as the highest conversion ever reported [130]. It was then concluded that 
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application of artificial neural networks together with the holographic research strategy can 

be considered as a powerful tool for data mining in high throughput experimentations. 

 

The total oxidation of methane was proposed as a case study by Tompos et al., in 

2005, for the application of artificial neural network modeling and holographic research 

strategy [45]. The concentration of catalyst components (Ce, Co, Zr, Cr, La, Cu, Pt, Pd and 

Au) were used as the catalyst variables while methane conversion was used as a degree of 

the catalytic activity. Holographic mapping of the neural network outputs translated black 

box nature of neural networks to a more comprehendible way and provided the detailed 

analysis of the catalytic components, such as which component affects the conversion 

positively or negatively. It was reported by the help of this hybrid method that almost 

complete methane conversion was observed at 350
o
C [45].  

 

Tompos et al., in 2006, compared the advantages and disadvantages of genetic 

algorithm and holographic research strategy for the catalyst library optimization [131]. For 

this purpose three different catalytic data (methane oxidation, propane oxidation and 

methane oxidative coupling) were modeled by neural networks and optimized by these two 

methods. It was reported that holographic research reduces the number of necessary 

catalytic tests while reaching the optimum catalyst composition. In contrast, genetic 

algorithms test a numerous compositions of catalysts, even the catalytically poor materials, 

and this causes a waste of time. Hence, holographic research technique found the optimum 

points faster than the genetic algorithm in all three cases. Moreover, it was stated that 

qualitative relationships between compositions and activities can be recognized more 

easily by visual holographic mapping. However, due to the fact that the experimental 

points are arranged randomly in genetic algorithms, no such conclusions can be drawn with 

respect to the activity-composition relationship [131]. 

 

Tompos et al., in 2010, modeled water gas shift reaction catalysts by using artificial 

neural networks, and applied genetic algorithms together with the holographic research 

technique to find the optimum catalyst composition giving the maximum CO2 yield [132]. 

Several neural networks were trained and the best 100 networks with the highest 

performance were linearly combined as described by Cundari et al. [121]. The catalytic 

addives Co, Eu, Fe, Ge, Mo, Ti, Sb, Pt, Ru, Sn, V and Zr at three levels (531,441 data 
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points) were virtually observed by the holographic technique. It was then found that, 

addition of Pt, Eu and Fe was quite crucial for the water gas shift reaction catalysts tested 

in this study and V had also promoting effect, whereas Mo, Ru, Sb, Co and Ge had 

negative effect on the CO2 yield. It was then concluded that analysis by holographic maps 

provides the researcher to focus on only the promising experimental regions, instead of the 

areas resulting poor performance [132]. 

 

Hattori and Kito, in 2006, studied the oxidation of propene over oxide catalysts, 

oxidation of butane over lanthanide oxides, the decomposition of formic acid on metals 

and oxidation of methane on lanthanide oxides in order to estimate the importance of each 

input factors controlling the catalytic activity by using the weights of the trained neural 

network [133]. They named this new approach the “connecting weight method”. Three 

equations (Equation 2.42-44) were proposed to calculate the contribution of ith input 

variable to the kth output variable (Cik), where wij represents the weights between ith input 

variable and jth hidden unit while wjk are for the weights between jth hidden unit and kth 

output variable. This approach was reported to give reliable results in finding the relative 

significances of the factors controlling the activity for all the four catalytic cases [133]. 
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Hattori and Kito, in 2007, described the use of partial differentiation of the neural 

networks to find the relative importance of the input variables to identify which one of 

them affect the output most [47, 48]. The procedure is described in Equation 2.37-39 in 

Section 2.4.9.2. A preliminary study was presented to analyze the primary factors 

controlling the activity of catalytic oxidations of butane and methane on lanthanide oxides 

[47]. Then, a more detailed application of this method was presented for four cases; 

oxidation of propene over oxide catalysts, oxidation of butane over lanthanide oxides, the 

decomposition of formic acid on metals and oxidation of methane on lanthanide oxides 
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[48], and the results were compared with the ones that had been found by the connecting 

weight method applied in one of the previous works [133]. In addition to these, support 

and additive effect on the activity of Pt catalyst in the combustion of propane was also 

examined. The partial differentiation of the neural networks was reported to give superior 

results compared to the ones found by the connecting weight method [48]. It was reported 

that, this method provides additional knowledge such that if the partial derivative with 

respect to a variable is positive, the variable positively affects the catalytic activity or vice 

versa. Thus, the method was proposed to be used to improve catalytic studies by changing 

the additives according to the numerical values of the partial derivatives [48].  

 

Cobalt catalysts supported on SrCO3 for selective CO oxidation was investigated by 

Omata et al., in 2005 [134]. The experimental database was prepared by full factorial 

design, CO and O2 conversions were modeled by radial basis function neural networks 

from the catalyst preparation variables (Co content and pretreatment temperature), and the 

optimum variables to maximize the performance of the catalysts were found by applying 

grid search [134]. Omata et al. investigated the same catalytic system by the same data 

mining approach in a more detailed way in 2006 [135]. First, catalytic CO conversion in 

the H2O and CO2 free stream were modeled and optimized. Then, the effects of H2O and 

CO2 were determined. In order to improve the catalytic activity in the presence of H2O and 

CO2, several additives to Co/SrCO3 were investigated. Several physicochemical properties; 

such as atomic number, atomic weight, melting point, boiling point, heat of vaporization 

etc.; of ten representative elements (B, K, Sc, Mn, Zn, Nb, Ag, Nd, Re, and Tl) were 

selected as input variables for the radial basis neural networks. This network, which 

correlates physicochemical properties with catalytic activities, was then used to predict the 

performance of new additives to the Co/SrCO3. The virtual screening was successfully 

performed by the neural networks, and for this catalytic system, the elements such as Bi, 

Ga, and In were predicted to be promising additives [135]. 

 

As a supplementary study to their previous studies, Omata et al., in 2007, 

investigated the performance of new metal additives to the Co/SrCO3 catalysts for 

preferential CO oxidation by using artificial neural networks [136]. Similar to the previous 

study, the physicochemical properties of ten different elements (B, K, Sc, Mn, Zn, Nb, Ag, 

Nd, Re, and Tl) were selected as input variables for the radial basis neural networks to 
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model the CO and O2 conversions. Then, in order to predict the promoting effect of a new 

metal additive (unseen by the neural network before), the physicochemical properties of 

that element was introduced to the trained network, and the network was forced to find the 

corresponding outputs. It was reported that the performance of the elements such as Ga, In, 

Bi and Yb were predicted to be promising, but only the promoting performance of Yb and 

Bi were experimentally verified. Finally, it was concluded that neural network modeling 

can help the experimenter to discover new additives by virtually screening their effects 

[136].  

 

  

Figure 2.19. Neural network approach to model some catalytic characteristics [49]. 

 

Song et al., in 2007, used artificial neural network approach to design an optimum 

Ni/Al2O3 catalyst for the production of hydrogen by the catalytic reforming of crude 

ethanol [49]. For this purpose, three neural network models were constructed: The input 

variables for the first network was the preparation method (co-precipitation, precipitation 

and impregnation), Ni loading and Al loading while the BET surface area, pore volume, 

pore size and crystallite size were the outputs as shown in Figure 2.19. The second network 

was constructed to model the ethanol conversion, H2 selectivity and H2 yield from the 

same input variables. Finally, the third one was used to predict the preparation method, Ni 

and Al loadings by using the ethanol conversion, H2 selectivity and H2 yield as the input 

variables. Then, the second network was optimized to find the optimum preparation 

method, Ni and Al loadings giving the maximum H2 yield. The optimization was 

performed by starting from the minimum values of the variables and adding small delta 

units to them until the entire experimental range was virtually searched. The optimal 

catalyst was found as the one prepared by the co-precipitation method with the nickel 

loading of 12.4 wt.% and an aluminum composition of 42.5 wt.% giving hydrogen yield of 

4.4 mol%, crude-ethanol conversion 79.6 mol% and H2 selectivity of 91.4 mol% [49].  
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Umegaki et al., in 2008, studied the Cu based catalysts for the oxidative steam 

reforming of methanol by applying L9 orthogonal array as the experimental design, neural 

networks to model the data and grid search to find the optimum catalyst [137]. Radial basis 

function neural networks were used to model the methanol conversion, CO concentration 

in the reformed gas and H2 selectivity as a function of the physicochemical properties of 

several representative additive elements (Mn, Ni, Fe, Co, Ga, Lu, Li, B, Ca, Zr, Mg, Pr, 

Zn, Ce). Then, grid search was applied to the trained neural network to virtually screen the 

performance of several metal additives to the Cu based catalysts, and Cu-Ca catalyst was 

obtained as the highest performance catalyst among the other binary catalysts. In the next 

step, the effects of second metal additive to the Cu-Ca, Cu-Ce, and Cu-Pr catalysts were 

observed through the neural network models. A second metal additive to the Cu-Ca 

catalyst was reported to decrease the catalytic performance; in contrast Mn addition to the 

Cu-Ce catalyst improved the performance. However, Cu-Pr-Ti catalyst was found as the 

catalyst with the highest performance. In the next step, catalyst composition and 

preparation conditions (amounts of Cu, Pr, Ti, calcination temperature, total metal salt 

concentration) were optimized to improve the performance of the Cu-Pr-Ti catalyst further. 

It was concluded that simultaneous application of an experimental design method, neural 

networks and grid search can provide the discovery of the optimum performance catalysts 

in a very short time with a very few number of experimental runs [137]. 

  

Günay and Yıldırım, in 2008, investigated the Pt-Co-Ce/Al2O3 catalysts for selective 

CO oxidation [34]. The experimental data was created by the response surface 

methodology, and CO conversion was modeled by using artificial neural networks as a 

function of the input variables: amount of base metal (Pt wt.%), the promoters (Co and Ce 

wt.%), calcination temperature and calcination time. The “Change of RMSE” method was 

applied to find the relative significances of the input variables, and Pt amount was reported 

to be the most significant one, followed by Ce and Co amounts. The effects of all the five 

input variables were virtually observed at various levels of the other variables, and the 

experimental values were in agreement with the neural network predictions. It was finally 

concluded that neural network modeling can be very helpful to improve the experimental 

works in catalyst design and it may be combined with the statistical experimental design 

techniques, which provide high modeling accuracy even with small number of 

experimental data points [34]. 



 

 

Table 2.2. Publications on neural network modeling in the field of catalysis. 

 

Reference Year Catalyst Input variables Output variables Novelty 

Hattori and Kito [41] 1995 oxidation of butane various physicochemical properties CO2 yield 
one of the first neural network applications 

in the field of catalysis 

Hou et al. [120] 1997 

propone ammoxidation 

catalysts supported over 

Al2O3/SiO2 

P, K, Cr, Mo, V contents, weight ratio of 

Al2O3/SiO2 

conversion and selectivity of 

propane 

optimum catalyst ingredients giving the 

highest acrylonitrile yield were found by the 

neural network 

Cundari et al. [121] 2001 

propone ammoxidation 

catalysts supported over 

Al2O3/SiO2 

P, K, Cr, Mo, V contents, weight ratio of 

Al2O3/SiO2 

conversion and selectivity of 

propane 

combining the trained networks, optimum 

catalyst was found by applying genetic 

algorithm to the trained neural network 

Huang et al. [122] 2001 

oxidative coupling of 

methane to produce C2 

hydrocarbons 

Na, Si, W, P, Mn, Zr contents C2 selectivity, CH4 conversion 

SWIFT method was applied to the trained 

neural network to find the optimum catalyst 

ingredients 

Liu et al. [123] 2001 CO2 hydrogenation 

base metal, promoter A, promoter B, 

support, temperature, pressure, H2/CO2 

ratio and the gas hourly space velocity 

CO2 conversion, CO 

selectivity, CH4 selectivity, 

CH3OH selectivity, light 

alkenes selectivity 

data from the literature was modeled 

Holena and Baerns [43] 2003 
oxidative dehydrogenation 

of propane to propene 
B, Fe, Ga, La, Mg, Mn, Mo, V contents propene yield 

sequential quadratic programming was 

applied to the trained neural network to find 

the optimum catalyst ingredients 

Serra et al. [124] 2003 
n-octane isomerization 

catalysts 

n-octane partial pressure, hydrogen partial 

pressure, reactor temperature and contact 

time 

n-paraffin conversion, mono-

branched and di-branched 

yields 

pre-trained neural networks were used as 

black box models to provide the prediction 

of new experimental data 

Huang et al. [125] 2003 
oxidative dehydrogenation 

of propane to propene 
Na, Si, W, P, Mn, Zr contents 

C2 selectivity, CH4 conversion, 

catalyst yield 

optimum catalyst was found by applying 

genetic algorithm to the trained neural 

network 

Rodermeck et al. [44] 2004 
oxidative dehydrogenation 

of propane to propene 
Ga, Mg, Mo, V contents propene yield 

optimum catalyst was found by applying 

genetic algorithm to the trained neural 

network 

Kito et al. [126] 2004 

methanol conversion into 

hydrocarbons 

 

Si/Al2 ratio, the degree of Ba ion exchange, 

the degree of La ion exchange, the amount 

of strong acid sites of the catalyst 

deactivation rate constant 
neural network model was used to 

extrapolate the catalyst decay curve 

Nandi et al. [127] 2004 benzene isopropylation 

temperature, pressure, benzene to isopropyl 

alcohol mole ratio, weight hourly space 

velocity 

cumene yield and selectivity 

the performances of the neural networks 

were compared with the support vector 

regression, optimum catalyst was found by 

genetic algorithm 



 

 

Table 2.2. Publications on neural network modeling in the field of catalysis (cont.). 

 

 

Reference Year Catalyst Input variables Output variables Novelty 

Watanabe et al. [128] 2004 
low-pressure methanol 

synthesis from syngas 

Cu, Zn, Al, Sc, B, Zr contents, calcination 

temperature, oxalic acid amount 
space time yield 

optimum catalyst was found by applying 

genetic algorithm to the trained neural 

network 

Corma et al. [46] 2005 
Ti-silicate-based catalysts 

for olefin epoxidation 
OH−, titanium, surfactant concentration epoxide yield 

a hybrid system based on high throughput 

experimentation, neural network modeling 

and genetic algorithm optimization was 

proposed 

Tompos et al. [130] 2003 
low temperature propane 

oxidation 
Pt, Pd, Rh, Ru, Au, Pd, Ag, Mn contents propane conversion 

optimum catalyst was found by holographic 

research strategy 

Tompos et al. [45] 2005 total oxidation of methane Ce, Co, Zr, Cr, La, Cu, Pt, Pd, Au contents methane conversion 
optimum catalyst was found by holographic 

research strategy 

Tompos et al. [131] 2006 

methane oxidation, propane 

oxidation, methane 

oxidative coupling 

Same as refs: [45, 122] Same as  refs: [45, 122] 

The performance of genetic algorithms and 

holographic research strategy to find the 

optimum catalyst were compared 

Tompos et al. [132] 2010 water gas shift reaction 
Co, Eu, Fe, Ge, Mo, Ti, Sb, Pt, Ru, Sn, V, 

Zr contents 
CO2 yield 

applied genetic algorithms together with the 

holographic research technique to find the 

optimum catalyst composition 

Hattori and Kito [133] 2006 

oxidation of propene, 

oxidation of butane, 

decomposition of formic 

acid, oxidation of methane 

various physicochemical properties 

various degrees for catalytic 

activity such as reaction rate, 

CO2 yield, CH4 conversion 

 

introduced the “connecting weight method” 

for the calculation of input significance 

Kito and  Hattori [47] 2007 
oxidations of butane and 

methane 
various physicochemical properties 

for oxidation of butane: CO2 

yield; for oxidation of CH4 

conversion 

introduced the “partial differentiation of the 

neural network” for the calculation of input 

significance 

Hattori and Kito [48] 2007 

oxidation of propene, 

oxidation of butane, 

decomposition of formic 

acid, oxidation of methane, 

combustion of propane 

various physicochemical properties 

various degrees for catalytic 

activity such as reaction rate, 

CO2 yield, CH4 conversion 

 

compared the “connecting weight method” 

with the “partial differentiation of the neural 

network” for the calculation of input 

significance 

Omata et al. [134] 2005 preferential CO oxidation Co content and pretreatment temperature CO and O2 conversions 
optimum catalyst was found by applying  

grid search  to the trained neural network 

Omata et al. [135] 2006 preferential CO oxidation 
various physicochemical properties of B, 

K, Sc, Mn, Zn, Nb, Ag, Nd, Re Tl 
CO and O2 conversions 

virtually screening of the effects of new 

metal additives 

Omata et al. [136] 2007 preferential CO oxidation 
various physicochemical properties of B, 

K, Sc, Mn, Zn, Nb, Ag, Nd, Re Tl 
CO and O2 conversions 

virtually screening of the effects of new 

metal additives 



 

 

Table 2.2. Publications on neural network modeling in the field of catalysis (cont.). 

 

Reference Year Catalyst Input variables Output variables Novelty 

Song et al. [49]  

hydrogen production by 

catalytic reforming of 

crude ethanol 

preparation method, Ni and Al loadings 

BET surface area, pore volume, 

pore size and crystallite size or 

ethanol conversion, H2 

selectivity, H2 yield 

used preparation method as an input 

variable,  optimum catalyst was found by 

applying  grid search  to the trained neural 

network 

Umegaki et al. [137] 2008 
oxidative steam reforming 

of methanol 

various physicochemical properties and  

preparation conditions 

methanol conversion, CO 

concentration in the reformed 

gas and H2 selectivity 

simultaneous application of an experimental 

design method, neural networks and grid 

search to find the optimum catalyst 

Günay and Yıldırım [34] 2008 preferential CO oxidation 

Pt, Co, Ce amounts; calcination 

temperature, calcination time, time on 

stream 

CO conversion 

data created by an experimental design 

method, input significance was found by the 

“Change of RMSE” method. 

Günay and Yıldırım [51] 2010 preferential CO oxidation 

Pt, Co, Ce, Mg, Fe, Mn, Zr, K, Ni amounts; 

reaction temperature; CO2 and H2O 

contents; time on stream 

CO conversion 

modular approach to treat the preparation 

and the operating variables differently, 

“Change of RMSE” and “partial 

differentiation of the neural network” was 

used for the input significance 

Günay et al. [50] 2011 water gas shift reaction 

Ce, K, Ni amounts;  reaction temperature; 

CO2 and H2 contents; H2O/CO ratio; time 

on stream 

CO conversion 

modular approach to treat the preparation 

and the operating variables differently, 

“Change of RMSE” and “partial 

differentiation of the neural network” was 

used for the input significance 

Günay and Yıldırım [53] 2011 preferential CO oxidation various preparation and operating variables CO conversion 

By using the data of a set of  published 

papers, neural networks were applied to 

predict the experimental correlations and 

trends reported in the other publications 



55 

 

3. EXPERIMENTAL AND COMPUTATIONAL DATA  

 

 

 First, the details of the experimental data generated in our laboratories are presented 

in three consecutive subsections: “selective CO oxidation over promoted Pt/Al2O3 

catalysts”, “selective CO oxidation over promoted Au/Al2O3 catalysts” and “water gas-

shift activity of promoted Pt/Al2O3 catalysts”. Then, the computational data related to CO 

and O2 adsorption over gold nanoparticles using DFT is described briefly. Finally, the 

details of the experimental data extracted from published papers in the literature are 

presented in the following two subsections: “selective CO oxidation over Cu-based 

catalysts from published data” and “selective CO oxidation over noble metal-gold based 

catalysts”. 

 

3.1. Selective CO Oxidation over Promoted Pt/Al2O3 Catalysts 

 

Preferential CO oxidation over Pt-M
1
Ox-M

2
Ox/Al2O3 catalysts with various 

promoters (M
1
= Co, K, Ni; M

2
 = Ce, Mg, Fe, Mn and Zr) was experimentally studied in 

hydrogen rich streams by Uguz and Yıldırım [138]. The catalysts were prepared using 

incipient to wetness impregnation technique and the catalytic activities were measured in a 

microreactor flow system with the feed composition of 1% CO, 1%, O2, 60% H2 and He as 

inert balance. F/W (inlet gas flowrate/catalyst weight) was also constant at 24000 cm
3
/(g 

h). The type and range of the input variables are presented in Table 3.1 while the details of 

the experimental work were presented and discussed elsewhere [34, 138].  

 

Table 3.1. Range of variables for Pt/Al2O3 catalyst for selective CO oxidation. 

Input Variables Range Input Group 

Pt (wt.%) 0.7 – 1.4 Group 1 

promoter type Co, Ce, Mg, Fe, Mn, Zr, K, Ni Group 2 

reaction temperature (
o
C) 80-130 

Group 3 CO2 content (%) 0-25 

water content (%) 0-10 

TOS (min) 0-120 Group 4 
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3.2. Selective CO Oxidation over Promoted Au/Al2O3 Catalysts 

 

Preferential CO oxidation over Au/MOx/Al2O3 was experimentally studied for 

various operating conditions with six different promoters (M=Mg, Mn, Co, Ce, Fe, Ni) by 

Davran-Candan et al. [139]. The promoters were loaded to the metal oxide supports by 

incipient to wetness impregnation method while Au was loaded over MOx/Al2O3 by the 

homogeneous deposition precipitation method to attain a catalyst composition of 1 wt.% 

Au and 1.25 wt.% MOx. The performances of the catalysts were tested in a microflow 

reaction system at 1% CO, 1% O2, 60% H2, He as balance with a constant F/W (inlet gas 

flowrate/catalyst weight) at 24000 cm
3
/(g.h). The type and range of the preparation and the 

operating variables are shown in Table 3.2 while the details of the experimental work were 

presented in another communication [139]. 

 

Table 3.2. Range of variables for Au/Al2O3 catalyst for selective CO oxidation. 

Input variables Range Input group 

promoter type (MOx) M = Mg, Mn, Co, Ce, Fe, Ni 
preparation 

variables 

reaction temperature (
o
C) 50-150 

operating 

variables 
CO2 content (%) 0-25 

H2O content (%) 0-10 

 

3.3. Water Gas-Shift Activity of Promoted Pt/Al2O3 Catalysts 

 

WGS activity of Pt-Ce/Al2O3 (1 wt.% Pt, 1.25 wt.% Ce) catalysts in the absence and 

presence of a 1.25 wt.% second promoter (K, Ni, Co) was experimentally studied by 

Akpınar [140]. The catalysts were prepared using the incipient to wetness co-impregnation 

technique. The activities of the catalysts were measured using a micro-reactor flow system. 

The feed flow rate was kept constant at 100 cm
3
/min. The 0.25 g catalyst samples used in 

the experiments were reduced in situ at 400
o
C in a hydrogen environment for 3 hours 

before each activity measurement. All the experiments were performed at atmospheric 

pressure. The range of the preparation and the operating variables are shown in Table 3.3 

while the additional details can be found elsewhere [50].   

 

 



57 

 

Table 3.3. Range of variables for Pt/Al2O3 catalyst for WGS reaction. 

Input Variables Range Input Group 

promoter type Ce, K, Ni 
preparation 

variables 

reaction temperature (
o
C) 250-300 

operating 

variables 

CO2 content (%) 0-10 

H2 content (%) 0-40 

H2O / CO ratio 2-3 

TOS (min) 30-180 

 

3.4. CO and O2 Adsorption over Gold Nanoparticles Using DFT 

 

CO and O2 adsorption on gold nanoparticles (Figure 3.1) were studied by Davran-

Candan using the Density Functional Theory [141]. As described in her dissertation, the 

optimum geometries and the structural properties of various gold nanoclusters were 

determined first. Then, the adsorption energies of CO and O2 were investigated by bonding 

this molecule to all possible sites of the cluster, and optimizing the geometry of the cluster-

CO complex. As a result, a data set containing the structural properties (such as binding 

energy, HOMO-LUMO gap and ionization potential) and CO and O2 adsorption energies 

over 97 possible adsorption sites was formed [52]. In the current work, this data set was 

used to extract knowledge about the effects of user defined variables (such as cluster size, 

coordination number and charge) and structural properties on CO and O2 adsorption 

energies using artifical neural networks and logistic regression. 
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Figure 3.1. Equilibrium geometries of clusters studied [141]. 

 

3.5. Selective CO Oxidation over Cu-Based Catalysts from Published Data in the 

Literature 

 

 Twenty research publications on selective CO oxidation over copper-based catalysts 

were reviewed, and the experimental data presented in these works were extracted [53]. 

The reactor details and catalyst preparation and operating variables studied in these 

publications are presented in Table 3.4, together with the number of data points extracted 

from each work. Each research publication reported the effects of at least one input 

variable on the steady state CO conversion, and the reaction temperature was the common 

input variable for all of the works (Table 3.5). All of the data were merged into a large 

database composed of 1337 data points.  



 

Table 3.4. Publications used for database construction, reactor details, variables analyzed and number of data extracted for Cu based catalysts. 

Reference Publication Reactor type 

Reactor Inside 

Diameter 

(mm) 

Particle 

Diameter 

(μm) 

Variables Analyzed Using the Data in the Corresponding  Publication 

Number of 

Data Points 

Extracted 

Zou et al. [28] fixed-bed quartz reactor - 250-400 H2O%, react. T 17 

Zhu et al. [29] fixed-bed quartz reactor 4 177-250 Cu content, react. T 36 

Liu et al. [30] quartz tubular reactor 10 50-150 O2%, H2O%, CO2%, react. T, F/W 80 

Avgouropoulos et al. [142] fixed-bed reactor - 90-160 H2O%, CO2%, react. T, F/W 35 

Avgouropoulos & Ioannides 

[85] 
fixed-bed reactor 4 90-160 Cu content, H2O%, CO2%, react. T, F/W 146 

Kim & Cha [88] quartz tubular reactor 4 150-180 O2%, CO%, H2O%, CO2%, react. T, F/W 63 

Jung et al. [143] fixed-bed reactor - - calcination temperature, react. T 34 

Park et al. [144] glass tubular reactor 4 125-149 Cu content, second metal additive, O2%, H2O%, CO2%, react. T 92 

Marino et al. [145] glass fixed-bed reactor 8 - Cu content, support type, O2%, react. T 98 

Martinez-Arias et al. [86] glass tubular catalytic reactor - - react. T 28 

Kosmambetova et al. [146] quartz tubular reactor 10 - support type, O2%, react. T 37 

Firsova et al. [147] tubular reactor 3 - second metal additive, react. T 28 

Gomez-Cortés et al. [148] fixed-bed reactor - - Cu content, H2O%, CO2%, react. T 54 

Ribeiro et al. [149] quartz tubular reactor - - support type, react. T 21 

Polster et al. [150] U-shaped quartz reactor 10 75-125 
Cu content, catalyst preparation technique, O2%, CO%, react. T, time on 

stream, F/W 
30 

Ayastuy et al. [151] plug flow reactor - - Cu content, H2%, H2O%, CO2%, react. T 296 

Wu et al. [152] U-shaped quartz reactor - - Cu content, catalyst preparation technique, H2O%, CO2%, react. T 95 

Li et al. [153] fixed-bed quartz reactor 6 177-250 second metal additive, react. T 40 

Razeghi et al. [154] U-shaped quartz reactor 4 125-297 H2O%, CO2%, react. T 62 

Lendzion-Bielun et al. [155] fixed-bed quartz reactor - - Cu content, second metal additive, react. T 45 
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Table 3.5. Input variables and their ranges for Cu based catalysts. 

Input Variable Type 
Range (for Continuous Variables) or Identity (for 

Categorical Variables) 

Cu wt.% continuous 0-20 

preparation method categorical 

incipient to wetness impregnation (IWI), wet impregnation 

(WI), sequential impregnation (SI), co-precipitation (CP), 

sol-gel precipitation (SGP), urea nitrate combustion 

(UNC), urea gelation (UG), hydrothermal method (HM) 

calcination temperature (oC) continuous 300-900 

calcination time (h) continuous 2-5 

support type categorical CeO2, Al2O3, ZrO2, MgO, La2O3, TiO2, Nb2O5, MnO 

second metal type and wt.% categorical/continuous Ce(0-20), Co(0-5), Fe(0-2.5), Mn(0-1.7), Ni(0-2.5)* 

operation temperature (oC) continuous 20-305 

H2 vol.% continuous 0-98 

O2 vol.% continuous 0.5-4.0 

CO vol.% continuous 0.8-2.0 

H2O vol.% continuous 0-20 

CO2 vol.% continuous 0-25 

time on stream (min) continuous 0-420 

F/W (cm3/(h.g)) continuous 12000-240000 

* Numbers in parentheses represent the range of metal weight percentages. 

 

3.6. Selective CO Oxidation Over Noble Metal-Gold Based Catalysts from Published 

Data in the Literature 

 

A large database containing 5008 experimental data points was extracted from 71 

publications on selective CO oxidation over noble metal and gold based catalysts. The 

variables analyzed in these publications are presented in Table 3.6, and their ranges are 

shown in Table 3.7. The database contained seven base metals (Pt, Au, Ru, Rh, Ir, Cu and 

Pd), nine preparation methods (incipient to wetness impregnation, wet impregnation, co-

impregnation, sequential impregnation, sol-gel precipitation, co-precipitation, deposition 

precipitation, sequential precipitation and homogenous precipitation), fifteen supports 

(Al2O3, MgO, CeO2, CuO, TiO2, ZnO, MnO, FeO, Nb2O5, SiO2, ZrO2, La2O3, Co3O4, 

zeolite and activated carbon) and nineteen promoters (Ce, Co, Mg, Fe, Mn, Zr, K, Ni, Sn, 

Li, Na, Rb, Cs, Nb, La, Ba, Pb, Sm and Zn). Reaction temperature; H2, O2, CO, H2O, CO2 

percentages in the feed stream; time on stream and F/W were the operating variables. 



 

 

 

Table 3.6. Details for the extracted data for noble metal and Au based catalysts. 

Reference Publication Reactor Type 
Variables Analyzed Using the Data in the Corresponding  

Publication 
Unique Catalysts 

Number of 

Data Points 

Extracted 

Number of Data 

Points to be 

Tested 

Bethke and Kung [156] 
tubular fused silica 

reactor 
Au content (base metal), reaction temperature  13 13 

Ito et al. [157] 
continuous flow 

reactor 

Rh content (base metal); Mn, Nb contents (promoters); support type; 

calcination temperature and time; reaction temperature 

Rh/Nb2O5*, 

Rh/SiO2** 
39 0 

Grisel and Nieuwenhuys 

[158] 

continuous flow 

reactor 

Mg, Mn contents (promoters); CO, O2, H2 percentages; reaction 

temperature 
 132 132 

Son and Lane [159] 
continuous flow 

reactor 
Ce content (promoter); O2, H2 percentages; reaction temperature  22 22 

Manasilp and Gulari [160] 
glass tubular 

reactor 

Pt content (base metal); H2O, CO2, CO, O2 percentages; reaction 

temperature; F/W 
 51 51 

Bulushev et al. [161] plug-flow reactor Au content (base metal), support type, TOS Au/activated C** 27 18 

Avgouropoulos et al. [142] 
fixed bed flow 

reactor 

base metal type; support type; preparation method; H2O, CO2 

percentages; reaction temperature; F/W 
 73 73 

Zhang et al. [162] 
fixed bed flow 

reactor 
Base metal type, calcination temperature, reaction temperature, TOS  38 38 

Epling et al. [163] 
quartz tubular 

reactor 

Pt content (base metal); Co content (promoter); H2O, CO2, O2, H2 

percentages; reaction temperature 
Pt/TiO2* 62 0 

Tanaka et al. [164] 
fixed bed flow 

reactor 
K content (promoter), reaction temperature Rh/SiO2** 20 0 

Özdemir et al. [165] 
fixed bed flow 

reactor 
CO2, O2 percentages; reaction temperature; TOS  40 40 

Han et al. [80] 
quartz tubular 

reactor 
Base metal type, support type, reaction temperature Rh/MgO* 31 20 

Luengnaruemitchai et al. 

[24] 

U shaped glass 

tubular reactor 
Preparation method; H2O, CO2, O2 percentages; reaction temperature  62 62 

Tibiletti et al. [166] plug-flow reactor Pt content (base metal), H2 percentage, reaction temperature  30 30 

Wootsch et al. [167] 
continuous flow 

reactor 

Pt content (base metal), support type, O2 percentage, reaction 

temperature, F/W 
 46 46 

Marino et al. [168] 
continuous flow 

reactor 
base metal type, support type, reaction temperature 

Pt/MgO*, 

Pt/La2O3* 
41 29 

Yan et al. [169] 
fixed bed flow 

reactor 

Pt content (base metal); Co content (promoter); H2O, CO2, O2, H2 

percentages; reaction temperature, F/W 
  65 65 

 

 



 

 

 

Table 3.6. Details for the extracted data for noble metal and Au based catalysts (cont.). 

Reference Publication Reactor Type 
Variables Analyzed Using the Data in the Corresponding  

Publication 
Unique Catalysts 

Number of 

Data Points 

Extracted 

Number of Data 

Points to be 

Tested 

Ince et al. [170] 
fixed bed flow 

reactor 

Pt content (base metal); Ce, Co contents (promoters); calcination 

temperature and time; O2 percentage; reaction temperature; F/W; TOS 
  140 140 

Luengnaruemitchai et al. 

[22] 

fixed bed flow 

reactor 

Au content (base metal); support type; calcination temperature; H2O, 

CO2 percentages; reaction temperature; TOS 
Au/MnO* 28 14 

Suh et al. [171] 
fixed bed flow 

reactor 

base metal type; Co, Mn, Ni contents (promoters); support type; reaction 

temperature 

Pd/Al2O3*, 

Pt/Act.C* 
120 96 

Zhou et al. [172] 
fixed bed flow 

reactor 
base metal type, reaction temperature 

Co/Act.C*, 

Ni/Act.C* 
24 0 

Chin et al. [173] 
fixed bed flow 

reactor 
support type, reaction temperature Ru/SiO2* 30 15 

Pozdnyakova et al. [174] 
glass tubular 

reactor 
O2, H2 percentages; reaction temperature   96 96 

Pozdnyakova et al. [175] 
glass tubular 

reactor 
O2, H2 percentages; reaction temperature Pd/CeO2* 104 0 

Ko et al. [10] 
fixed bed flow 

reactor 

base metal type, support type; preparation method; Co, Ni contents 

(promoters); CO2, H2 percentages; reaction temperature 
Au/CuO* 113 113 

Ko et al. [18] 
fixed bed flow 

reactor 

Ni content (promoter); preparation method; CO2, H2 percentages; 

reaction temperature 
  40 40 

Ko et al. [176] 
fixed bed flow 

reactor 

Ce, Co, Cu, Fe, Mn, Zr, Ni, Zn contents (promoters); H2 percentage, 

reaction temperature 
  150 150 

Marques et al. [177] 
fixed bed flow 

reactor 

Sn content (promoter), support type, H2 percentage; reaction 

temperature 
Pt/Nb2O5* 41 21 

Cho et al. [14] 
fixed bed flow 

reactor 
Mg content (promoter); H2O, CO2, H2 percentages; reaction temperature   163 163 

Son [13] 
quartz tubular 

reactor 

Pt content (base metal); Ce content (promoter); H2O, CO2, O2, H2 

percentages; reaction temperature; F/W 
  72 72 

Minemura et al. [19] 
fixed bed flow 

reactor 
K, Li, Na, Rb, Cs contents (promoters)   23 23 

Parinyaswan et al. [178] 
U shaped glass 

tubular reactor 
Base metal type; H2O, CO2, O2 percentages; reaction temperature   88 88 

Iwasa et al. [179] 
continuous flow 

reactor 
K, Li, Na, Rb, Cs contents (promoters) Pd/ZnO** 11 0 

 

 



 

 

 

Table 3.6. Details for the extracted data for noble metal and Au based catalysts (cont.). 

Reference Publication Reactor Type 
Variables Analyzed Using the Data in the Corresponding  

Publication 
Unique Catalysts 

Number of 

Data Points 

Extracted 

Number of Data 

Points to be 

Tested 

Wang et al. [180] 
fixed bed flow 

reactor 
Base metal type   17 17 

Wootsch et al. [78] 
tubular glass 

reactor 
reaction temperature, F/W   39 39 

Monyanon et al. [181] 
U shaped tubular 

reactor 

base metal type; preparation method; H2O, CO2 percentages; reaction 

temperature 
  120 120 

Chin et al. [182] 
fixed bed flow 

reactor 
base metal type, preparation method, reaction temperature   26 26 

Ayastuy et al. [15] plug-flow reactor 
Pt content (base metal); Mn content (promoter);  preparation method; 

O2, H2 percentages; reaction temperature 
  200 200 

Souza et al. [183] 
fixed bed flow 

reactor 
support type, H2 percentage, reaction temperature 

Conversion too 

low compared to 

similar studies 

60 0 

Chen et al. [184] 
fixed bed flow 

reactor 
K, La contents (promoters); reaction temperature   36 36 

Naknam et al. [185] 
U shaped fixed 

bed reactor 

base metal type; preparation method; H2O, CO2 percentages; reaction 

temperature 
Pt-Au/zeolite* 81 0 

Gluhoi and Nieuwenhuys 

[27] 

fixed bed flow 

reactor 
Ce, Li, Rb, Ba contents (promoters); reaction temperature   172 172 

Huang et al. [186] 
U shaped quartz 

reactor 
Ir content (base metal), support type, reaction temperature 

Ir/MgO*, Ir/TiO2*, 

Ir/Al2O3**  
49 35 

Teschner et al. [187] 
continuous flow 

reactor 
CO, O2, H2 percentages; reaction temperature; F/W   35 35 

Chang et al. [188] 
fixed bed flow 

reactor 
Mn content (promoter), reaction temperature   26 26 

Wang and Lu [189] 
fixed bed flow 

reactor 
K content (promoter), reaction temperature Au/activated C** 55 0 

Galetti et al. [190] 
fixed bed flow 

reactor 
Rh content (base metal), support type, reaction temperature 

Rh/CeO2*, 
Rh/TiO2*, 

Rh/zeolite* 

51 23 

Huang et al. [191] 
fixed bed flow 

reactor 

Ir content (base metal); preparation method; H2O, CO2, H2 percentages; 

reaction temperature 
  68 68 

 

 



 

 

 

Table 3.6. Details for the extracted data for noble metal and Au based catalysts (cont.). 

Reference Publication Reactor Type 
Variables Analyzed Using the Data in the Corresponding  

Publication 
Unique Catalysts 

Number of 

Data Points 

Extracted 

Number of Data 

Points to be 

Tested 

Ribeiro et al. [192] 
U shaped fixed 

bed reactor 
base metal type, support type, preparation method,  reaction temperature Au/ZrO2* 51 24 

Scire et al. [193] 
continuous flow 

reactor 

Au content (base metal), preparation method, calcination temperature, 

reaction temperature 
  32 32 

Luengnaruemitchai et al. 

[194] 

U shaped tubular 

reactor 
support type; H2O, CO2 percentages; reaction temperature Pt/zeolite** 55 11 

Iwasa et al. [83] 
fixed bed flow 

reactor 

Pd content (base metal); Cs content (promoter); CO, O2 percentages; 

reaction temperature 
Pd/ZnO** 18 0 

Tanaka et al. [195] 
fixed bed flow 

reactor 

support type; K, Li, Na, Rb, Cs contents (promoters); CO, O2, H2 

percentages; reaction temperature 
  126 126 

Tompos et al. [196] 
continuous flow 

reactor 

Au content (base metal); La, Pb, Sm contents (promoters);  reaction 

temperature 
  64 64 

Qiao et al. [197] 
fixed bed flow 

reactor 
Au content (base metal), O2 percentage, reaction temperature   42 42 

Avgouropoulos et al. [198] 
fixed bed flow 

reactor 

La, Sm, Zn contents (promoters); H2O, CO2 percentages; reaction 

temperature; F/W 
  84 84 

Zhao et al. [199] 
U shaped quartz 

reactor 
support type, reaction temperature   40 40 

Zhang et al. [200] 
fixed bed flow 

reactor 

support type, preparation method, Fe content (promoter), reaction 

temperature 

Ir/FeO*, 

Ir/Al2O3**  
77 65 

Yung et al. [201] 
fixed bed flow 

reactor 
CO, O2, H2 percentages; reaction temperature; F/W; TOS   71 71 

Imai et al. [202] 
fixed bed flow 

reactor 

Au content (base metal), support type, preparation method, reaction 

temperature 
  57 57 

Kim et al. [203] 
fixed bed flow 

reactor 
Base metal type, reaction temperature, F/W 

commercial 

catalyst*** 
63 0 

Neri et al. [204] 
U shaped quartz 

glass reactor 
support type, reaction temperature Pt/zeolite** 12 6 

Mozer et al. [205] 
continuous flow 

reactor 
base metal type; H2O, CO2, O2, H2 percentages; reaction temperature Au-Cu/Al2O3* 70 7 

Padilla et al. [206] 
PID micro-activity 

Reactor 
support type; reaction temperature   48 48 

 



 

 

 

Table 3.6. Details for the extracted data for noble metal and Au based catalysts (cont.). 

Reference Publication Reactor Type 
Variables Analyzed Using the Data in the Corresponding  

Publication 
Unique Catalysts 

Number of 

Data Points 

Extracted 

Number of Data 

Points to be 

Tested 

Sangeetha and Chen [207] 
fixed bed flow 

reactor 
Co, La contents (promoters); reaction temperature   18 18 

Uguz and Yildirim] [138] 
fixed bed flow 

reactor 

Pt content (base metal); Ce, Co, Mg, Fe, Mn, Zr, K, Ni contents 

(promoters); H2O, CO2 percentages; reaction temperature; TOS 
  520 520 

Woods et al. [208] Not specified Co content (base metal); O2, H2 percentages; reaction temperature; F/W; Co/CeO2** 38 0 

Liotta et al. [209] 
U shaped quartz 

glass reactor 

Au content (base metal), support type, H2 percentage, reaction 

temperature 
Au/Co3O4* 82 50 

Zhang et al. [210] 
fixed bed flow 

reactor 

preparation method, Fe content (promoter), CO2 percentage, reaction 

temperature 
Ir/SiO2* 32 0 

Tabakova et al. [211] 
fixed bed flow 

reactor 

Au content (base metal), support type, H2O, CO2 percentages, reaction 

temperature 
  86 86 

Davran-Candan et al. [139] 
fixed bed flow 

reactor 

Ce, Co, Mg, Fe, Mn, Ni contents (promoters); H2O, CO2 percentages; 

reaction temperature 
  252 252 

* Catalyst studied in only the current publication, ** catalyst studied in only one more publication, *** preparation details unknown. 
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Table 3.7. Input variables and their ranges for noble metal and Au based catalysts. 

Input Variable Type 
Range (for continuous variables) or Identity (for 

categorical variables) 

base metal type and weight 

percentage 
categorical/continuous 

Pt (0-5), Au (0-10), Ru (0-5), Rh (0-5), Ir (0-5), Cu (0-

3.3), Pd (0-10)* 

preparation method categorical 

incipient to wetness impregnation (IWI), wet impregnation 

(WI), co-impregnation (CI), sequential impregnation (SI), 

sol-gel precipitation (SGP), co-precipitation (CP), 

deposition precipitation (DP), sequential precipitation 

(SP), homogenous precipitation (HP) 

calcination temperature (oC) continuous 110-900 

calcination time (h) continuous 0.5-13 

support type categorical 
Al2O3, MgO, CeO2, CuO, TiO2, ZnO, MnO, FeO, Nb2O5, 

SiO2, ZrO2, La2O3, Co3O4, zeolite, activated carbon 

second metal (promoter) type 

and wt.% 
categorical/continuous 

Ce (0-7.2), Co (0-10), Mg (0-3.1), Fe (0-4.4), Mn (0-15), 

Zr (0-4.7), K (0-20), Ni (0-3), Sn (0-3), Li (0-2), Na (0-

3.5), Rb (0-16.3), Cs(0-13.6), Nb (0-5), La (0-12), Ba(0-6), 

Pb(0-3.5), Sm(0-5.4) Zn(0-3.4)* 

operating temperature (oC) continuous (-20) - (+380) 

H2 vol.% continuous 0-99.3 

O2 vol.% continuous 0.2-5 

CO vol.% continuous 0.2-5 

H2O vol.% continuous 0-10.7 

CO2 vol.% continuous 0-30 

time on stream (min) continuous 0-600 

F/W (cm3/(h.g)) continuous 3000-270000 

*
Numbers in parentheses represent the range of metal weight percentages 
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4. COMPUTATIONAL DETAILS 

 

  

4.1. Artificial Neural Network Modeling 

  

 Artificial neural networks were created by using computer codes written in 

MATLAB environment. For the studies given under Section 5.1, modular networks 

trained by backpropagation algorithm (with delta rule of error correction) were used [37]. 

In order to prevent any variable dominate the others, all the input variables were 

normalized (before beginning the training process) in the range of 0.1-0.9 as shown in 

Equation 2.17 (min-max normalization). The random initialized weights between -0.1 to 

+0.1 were created and the training was done accordingly. In order to eliminate the possible 

extreme conditions occurring due to the random initialization of the weights, each network 

was trained three times and the best solutions were kept. The logistic sigmoid function 

(Equation 4.1) was employed on the entire network as the main activation function to 

determine the optimal neural network structure. Then, the best network was further 

optimized by testing different activation functions (hyperbolic tangent function and 

identity function) for each input group, so that the advantage of using modular network 

structure can be fully utilized [115]. The other activation functions with their derivatives 

are given in Equation 4.2 (hyperbolic tangent function) and Equation 4.3 (identity 

function) [115], where x is the input to a particular neuron, σ(x) is the output of that 

neuron, and   (x) is the corresponding derivative of the activation function.  
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The artificial neural network models presented in Section 5.2.1 had similar 

parameters, except they were in monolithic structure (fully connected), and logistic 

sigmoid function was always used as the transfer function.  

 

The models presented in Section 5.3 were trained by the Levenberg-Marquardt 

method, which is a blend of gradient descent and Gauss-Newton iteration [49, 117, 118]. 

The hyperbolic tangent function was used as the activation function in the hidden layers, 

and the mean square error (MSE) was employed as the measure of fitness. Each network 

topology was trained 10 times to compensate the effects of random initialization of the 

neural network weights, and the best performances were recorded. To prevent overlearning 

of the neural networks, the early-stopping technique was applied during the training of the 

neural networks by using some random data points among the training set as the validation 

data. 

 

Independent of the neural network training method, the optimal network topology 

was always determined by testing the performances of several networks according to their 

generalization accuracies (the ability to predict the data unseen during the training process) 

[212]. The root mean square error (RMSE) of testing, which indicates the degree of the 

generalization accuracy [121], was estimated by applying the k-fold cross validation 

technique [43, 51]. The entire database was divided randomly into k subsets, and then the 

data acquired from k-1 sets were used to train the network to predict the outcome of the 

remaining one set. The errors between these predictions and the corresponding 

experimental results were recorded. This procedure was repeated k times covering all the 

data points, and the RMSE (Equation 4.4) calculated through the entire database was used 

as the indicator to determine the optimal neural network topology. 

 

 
2

1

1
  -

n

i iRMSE p t
n

   (4.4) 

 

Where; pi is the predicted, ti is the target value and n is the total number of 

experiments.  
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 The coefficient of determination (R
2
) was also calculated to indicate the fitness of the 

models. The RMSE of training, which is the error obtained between the experimental data 

points and the model predictions when all the data are used for training, was also 

calculated, together with the corresponding R
2
 values, to give some idea of the suitability 

of the database to construct a single model, although it was not used in decision making. 

 

The test of significance for the continuous input variables was done by partial 

differentiation of the fully trained neural network, which was reported as a very successful 

tool for the identification of primary factors controlling catalytic activity [47, 48]. On the 

other hand, “the change of root mean square error” technique [51, 213] was used to test the 

significance of the categorical inputs (promoter type) since the method of partial 

differentiation cannot be applied to discrete data.  

 

4.2. Decision Tree Modeling 

 

Decision trees were employed for the study in Section 5.1.2. The program codes 

were created by writing computer codes in MATLAB environment. The error rate for a 

leaf node, which is the fraction of wrong classifications to the total records in that node, 

was minimized by trying several candidate splits and choosing the best separation. The 

total error rate of the entire tree, which is the weighted average of the individual leaf error 

rates, should be small for a successful classification. Even though large trees may have 

very small error rates, they may cause the overlearning of the data, and the rules they 

deduce may be too complex for practical purposes. For this reason, the tree size was 

optimized to have an acceptable error rate for training (error from the data used to 

construct the tree) and the smallest error for testing (error from the data not seen by the 

model before), which is the indicator of the generalization ability of the model [67, 68]. 

The data was randomly divided into two equal sets: one set was used for training and 

constructing the decision tree model while the other was used for testing its generalization 

ability.  
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4.3. Multiple Logistic Regression Modeling 

 

The logistic regression models were also created using computer codes written in 

MATLAB environment and applied for the work presented in Section 5.2.2. The 

significance of the entire model was examined by the G test (Equation 2.12). The 

significance of each predictor variable was calculated by Wald test (Equation 2.15). Since 

the details of the method have already been given in Section 2.4.3, they are omitted here. 

 

4.4. Genetic Algorithm Based Clustering 

 

This method was employed for pre-processing of the data presented in Section 5.3.2. 

A population size of 20 strings (candidate solutions of the problem) each containing all the 

centers of the clusters. Roulette wheel method was implemented for selection of the strings 

to reproduce (with a crossover probability of 0.8) and one point crossover was employed 

between these strings. A mutation probability of 0.01 was applied for each string; in 

addition, strings containing empty clusters were eliminated from the population and they 

were replaced by random new strings (immigration) in each generation while the solution 

was evolving towards the optimum cluster centers. The full procedure of genetic algorithm 

based clustering has been given in Section 2.4.6. 
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5. RESULTS AND DISCUSSION 

 

 

Results and Discussion are presented in three sections. First, knowledge extraction 

from the experimental data generated in our laboratories are presented in three subsections: 

“modeling promoted Pt/Al2O3 catalysts for selective CO oxidation using modular neural 

networks”, “modeling promoted Au/Al2O3 catalysts for selective CO oxidation using 

decision trees and modular neural networks” and “modeling promoted Pt/Al2O3 catalysts 

for water gas shift activity by modular neural networks”. Then, the results of the DFT 

generated data modeled by two different methods are discussed in two subsections: 

“structure and activity relationship for CO and O2 adsorption over gold nanoparticles using 

DFT and artificial neural networks” and “analysis of O2 adsorption stability and strength 

over gold nanoparticles using DFT and logistic regression”. Finally, the modeling results 

of the data collected from the publications in the literature are discussed in two 

subsections: “neural network analysis of selective CO oxidation over copper-based 

catalysts for knowledge extraction from published data” and “analysis of selective CO 

oxidation over noble metal-gold based catalysts for knowledge extraction from published 

data by clustering and artificial neural networks”. 

 

5.1. Knowledge Extraction from Experimental Data  

 

5.1.1. Modeling Promoted Pt/Al2O3 Catalysts for Selective CO Oxidation Using 

Modular Neural Networks 

 

 CO conversion, which is the main indicator of the performance of the catalytic 

system studied, was used as the output variable (with 520 different data points). The input 

variables were first classified in two main groups as preparation and operating variables. 

Then, the preparation variables were divided further into two subgroups as Pt amount 

(group 1) and promoter type (group 2), which were continuous and categorical type of 

variables, respectively as shown in Section 3.1 Eight input neurons, each assigned to a 

different promoter type, were used for categorical variables indicating whether that 

particular promoter exists (indicated as 1) or not (indicated as 0).  Likewise, the operating 
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variables were also divided into two subgroups as group 3 (reaction temperature, CO2 

content and H2O content in the feed) and group 4 as time on stream (TOS) considering that 

the effect of TOS on catalytic performance is related to the “stability” of catalysts while 

the others primarily affect the “activity”.  

  

 First, the neural network structure having sufficiently high prediction and 

generalization accuracies in representing the experimental data was searched. Then, the 

optimal neural network was used to analyze the significances of input variables and their 

effects on CO conversion [51].  

 

5.1.1.1. Determining the Optimal Neural Network Topology. Fourteen neural networks 

with 13 input variables and one output variable (percent CO conversion) were constructed 

in different architectures with different number of hidden layer neurons. The notation of 

“(b-c-d-e)-f” is used to label the neural networks, where “b, c, d, e” represent the first 

hidden layer neurons connected to four different input groups (with the order of Pt wt.%, 

promoter type, reaction conditions and time on stream) and “f” shows the number of 

neurons in the second hidden layer.  

  

 The RMSE of training was calculated by the error obtained between the experimental 

data points and the model predictions when all the data was used for training. On the other 

hand, the RMSE of testing, which was calculated by 5-fold cross validation analysis, was 

applied to test the generalization accuracy (prediction ability for the unseen data). Since the 

change of the “time on stream” does not change the main character of the catalyst like the 

other variables, the data of a particular catalyst at all time on stream values were excluded 

simultaneously while preparing the cross validation subsets. Otherwise, the exclusion of 

one data point at one time on stream value would be compensated by the others, and the 

validation results would demonstrate the network more successful than it really was [34, 

51].  

 

 The training and testing errors of fourteen networks are compared in Figure 5.1 with 

the order of increasing number of weights. The grey bars in Figure 5.1 represent the 

training error (indicating the prediction accuracy) of that particular network while the black 

bars represent the validation error (indicating the generalization accuracy). 
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 Figure 5.1 shows that there is an obvious reduction of the training RMSE (increase of 

prediction accuracy) at the beginning with increasing network size. As the network gets 

larger, the modeling error continues to decline; on the other hand the experimental error, 

which is independent of the network size, keeps unchanged. Therefore, the decrease in the 

training RMSE, which is composed of both the modeling and the experimental error, slows 

down as the network gets larger. 

 

  

Figure 5.1. Training and testing errors of various neural network topologies [51]. 

 

The testing error, as indicated by the black bars, decreases first with increasing 

network size and starts to increase (probably due to some degree of over-fitting) after 

reaching a minimum. This increase in the validation error for larger networks is quite 

natural, since the number of data points should be several times higher than the number of 

weights of the network for a sufficient degree of generalization [214].  

  

 It should be noted that the generalization ability of a network, which measures the 

success of estimating the unseen data, is more valuable than the prediction ability of the 

training data (involves the prediction of the data already used for training). The network 

structure 1(2-4-3-2)-7 exhibits the minimum RMSE of testing (1.718) with a considerably 

low RMSE of training (0.872), and thereby it was used in the remaining part of the work as 

the one that best represents the experimental data among the networks tested.  The 

schematic representation of this network is shown in Figure 5.2, with black circles as the 
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bias neurons having a constant value of 1. Since the number of connections among the 

layers is very large, only some representative lines were drawn in figure for simplicity 

while the exact number of neurons was used.  

 

 

Figure 5.2. Optimal network topology for selective CO oxidation over Pt/Al2O3. 

 

 The statistical performance of (2-4-3-2)-7 neural network, which has 148 weights 

(about 2/7 of 520 experimental data points), was also compared with a monolithic neural 

network (7 neurons in the first hidden layer, 5 neurons in the second) having almost the 

same number of connections (144). Although the training RMSE value of the modular 

network (0.872) was a little higher than the training RMSE of the monolithic network 

(0.779), its RMSE of testing value (1.718) was much lower than that of the monolithic 

network (1.969). This is an expected result, since properly arranged partially connected 

networks have less unnecessary connections showing usually higher generalization 

accuracy than fully connected neural networks [54, 55].  Besides, the performance of the 

modular networks can further be improved using different activation functions for different 
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modules considering that an activation function suitable for a particular problem may not 

be appropriate for another type [115]. This flexibility does not exist for the monolithic 

networks. Hence, different activation functions on each input group were tested in the first 

layer of the modular network (2-4-3-2)-7 in various combinations while the logistic 

sigmoid function was kept in the remaining layers. The results of some combinations are 

shown in Figure 5.3. The performance of the network discussed above (fully activated by 

the logistic sigmoid function in all modules) was also added to the same figure for 

statistical comparison.  The bars in the figure are labeled using the abbreviation of 

activation functions in the order of input groups. For example, “lsf-tanh-ide-lsf” indicates 

the use of  “logistic sigmoid function (lsf)” for group 1, “hyperbolic tangent  function 

(tanh)” for group 2, “identity function (ide)” for group 3 and “logistic sigmoid function 

(lsf)” for group 4.  

 

 

Figure 5.3. Training and testing errors of various neural network topologies with different 

activation functions in the first hidden layer [51]. 

 

 Figure 5.3 indicates that the network activated with the combination of “lsf-tanh-ide-

lsf” has the highest generalization accuracy. The training and the testing errors of 0.614 

and 1.491 in this combination are much lower than those of the modular network fully 

activated by the logistic sigmoid function (0.872 and 1.718, respectively).  The superiority 

of the modular network for this type of problems becomes more apparent after utilization 

of this flexibility since the training and validation errors of the corresponding monolithic 

network was 0.779 and 1.969 respectively. As a result, the modular network with (2-4-3-
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2)-7 structure and with the “lsf-tanh-ide-lsf” activation function set were used for the 

remaining parts of the work to extract additional knowledge. The experimental versus 

predicted CO conversion plots for both training and the testing are given in Figure 5.4. 

 

  

Figure 5.4. Experimental versus predicted CO conversion for: (a) training, (b) testing data 

by the optimal neural network topology [51]. 

 

5.1.1.2. Analyzing the Input Significance. The relative group importance was calculated by 

the method of change of mean square error, and the results are in the first column of Table 

5.1. First, the preparation variables were deactivated and the model was trained with the 

rest of the data using only the operating variables; then, the same procedure was reversed. 

The increase of RMSE in each trial was noted and the relative group importance was found 

accordingly. The preparation variables were found to have 69.49% relative significance 

while the operating variables had 30.51% total significance.   

 

Then, the relative significances of the preparation variables with respect to each other 

were tested. The change of RMSE was used for this purpose due to the categorical nature 

of the first and the second promoter types. The same method was applied for Pt wt.% for 

comparison, although this parameter is a continuous variable for which the partial 

differentiation is a better method.  
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Table 5.1. Relative significances for Pt/Al2O3 catalyst for selective CO oxidation. 

Input Variables  

% Group 

Significance 

(change of 

RMSE) 

% Global Relative Significance 

(change of 

RMSE) 

(partial 

differentiation) 

Pt wt.% 

69.49 

17.12 - 

Co, K, Ni 45.37 - 

Mg, Ce, Fe, Mn, Zr 37.51 - 

Rxn. Temp 

30.51 

- 57.51 

H2O% - 14.66 

CO2% - 16.59 

TOS - 11.25 

  

The first promoter type was found to have a relatively higher significance than the 

second promoter type as expected considering that Co catalyzes CO oxidation itself [11, 

12, 138], although the metals used as the second promoter contribute through O2 

adsorption. Pt wt.% was found to have relatively lower significance value compared to 

those of the first and the second promoters. However, this does not mean that Pt, which is 

the primary constituent of the catalysts, has less impact on the catalyst. The value of 

17.12% of relative importance in Table 5.1 indicates the sensitivity of CO conversion to 

the change of Pt wt.% between 0.7-1.4, while the percent significances of the promoters 

indicate the sensitivity of CO conversion to their presence or absence.  

  

The method of partial differentiation was applied to the operating variables, all of 

which are continuous. The most important process parameter was found as the reaction 

temperature, which is also quite reasonable considering low temperature CO oxidation 

reactions are too sensitive to reaction temperature changes [15, 215]. This is followed by 

CO2 vol.%, H2O vol.% and TOS with the significances in decreasing order.  

 

5.1.1.3. Analyzing the Effects of the Catalyst Variables. The optimal neural network model 

proposed above was used for analyzing the effects of Pt wt.%, reaction temperature and 

second promoters (excluding Zr) on the catalysts with Co as the first promoter (Figure 5.5). 

The results for the catalysts containing K and Ni as the first promoter and Zr as the second 

promoter are not presented here because these catalysts were not as much active as those 

discussed here.  
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Figure 5.5. Effects of variables on CO conversion: (a) effect of Pt wt.% in the absence of 

H2O and CO2; (b-f) effects of reaction temperature (H2O = 10%, CO2 = 25%) [51]. 

  

 Figure 5.5a shows the effect of Pt wt.% on CO conversion for the Pt-Co catalyst 

without any secondary promoter in the absence of H2O and CO2, together with the 

experimental values (triangles for 1.4 wt.% Pt, stars for 0.7 wt.% Pt). The higher Pt content 
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provides higher CO conversion as expected and the model predictions are in quite good 

agreement with the experimental values [138, 203]. The discrepancies between model 

predictions and experimental data at low TOS for the catalyst containing 0.7 wt.% Pt 

seems to be visually large due to the scale of the graph although the actual deviation is 

only about 2% indicating a very good fit. The model is even more successful for 1.4 wt.% 

Pt containing catalyst.   

  

 The CO conversion over 1.4 wt.% Pt catalyst in the presence of a second promoter is 

nearly 100% making to analyze the effects of the variables on the activity of the catalyst 

almost impossible [138]. Thus, the remaining part of the analysis was performed using the 

experimental data obtained over 0.7 wt.% Pt containing catalyst (Figure 5.5b-f). 

  

 Figure 5.5b compares the experimental and the predicted temperature effects on CO 

conversion over 0.7 wt.% Pt-Co catalysts while Figure 5.5c-f present the same comparison 

in the presence of various second promoters. The model predictions are quite reasonable 

for all cases indicating that the CO conversion decreased significantly with increasing 

temperature from 110 
o
C to 130 

o
C over all the catalysts having a second promoter. This is 

explained by the fact that CO has the ability to cover the whole surface of the Pt catalyst 

providing the CO oxidation to occur as the main reaction at low temperatures; however, as 

the temperature increases H2 competes with CO to be adsorbed on the catalyst surface 

causing a decrease in the CO oxidation activity [15]. This decrease was minimum for Pt-

Co/Al2O3 in the absence of a second promoter. 

  

 Uguz and Yildirim [138] reported that the addition of Mg increased the activity of 

Pt-Co/Al2O3 most while Mn and Ce also have some positive effects. The addition of Fe on 

the other hand, has a significant negative effect on CO conversion. Hence, they repeated 

the experiments using 1 wt.% Pt containing Pt-Co-Mg/Al2O3 catalyst and they found 100% 

CO conversion at 110 
o
C for all values of TOS as correctly predicted by our model in 

Figure 5.5d. 

 

 The CO conversions in the absence and presence of 25% CO2 and 10% H2O were 

also compared in the experimental work considering that these two components exist in a 

realistic gas mixture from the fuel processor at these concentrations, and the catalyst to be 
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used for the selective CO oxidation should be active in their presence [138]. The model 

predictions are in a good agreement with the available experimental data points as it is 

shown in Figure 5.6. Although only two experimental data points can be normally 

considered as insufficient to test the success of the model, the general trend predicted by 

the model is in accordance with the literature indicating that the presence of CO2 has 

detrimental influence while H2O enhance the catalytic activity. It was reported that the 

competitive adsorption of CO2 on Pt surface decreases the rate of CO adsorption, and  CO2 

in the feed can cause reverse water gas shift reaction producing CO and consuming H2 

[160]. The positive effect of H2O, on the other hand, was attributed to the generation of 

additional free Pt sites by hydrated Al2O3 [84], to the possible water gas shift activity [160, 

170] and to formation of hydroxyl groups (from the dissociation of H2O) assisting to the 

interaction of CO and O2 [216]. 

 

  

Figure 5.6. Effects of CO2 (a) and H2O (b) in the feed stream on CO conversion: (a) Pt = 

0.7 wt.%, T=110
o
C, TOS=120 min, H2O = 0%; (b) Pt = 0.7 wt.%, T=110

o
C, TOS=120 

min, CO2 = 25% [51]. 

  

5.1.2. Modeling Promoted Au/Al2O3 Catalysts for Selective CO Oxidation Using 

Decision Trees and Modular Neural Networks 

  

The procedure used to analyze the CO oxidation data (given in Section 3.2), included 

two steps as shown in Figure 5.7. The first step was to classify the entire catalytic data 

composed of 252 points by decision trees to derive rules to identify the variables and their 

ranges that lead high catalytic performance. The data set was then reduced by eliminating 
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the data belonging to the conditions that were not favoring high catalytic activity. As the 

second step, the new reduced dataset was analyzed using modular neural networks to 

extract additional knowledge about the effects of variables and their relative significances.  

 

 

Figure 5.7. Conceptual approach of knowledge extraction from experimental data. 

 

5.1.2.1. Classification of the Data Using Decision Trees. The experimental data of 

Au/Al2O3 catalysts were classified according to their CO conversion levels as very high 

(90-100), high (80-90), moderate (50-80), low (25-50) and very low (0-25) by using 

decision trees Half of the data (randomly selected) was used to construct the decision tree 

and to train it; the other half was used for testing the generalization ability of the decision 

tree. The optimal decision tree was found by first starting with a large tree and then 

pruning it from the lower branches until the minimum test error was found. The training 

and the testing error rates for various tree sizes are shown in Figure 5.8. The training error 

decreased as the tree size increased while the testing error decreased first and then 

increased at large trees due to the overlearning of the data, as expected. The tree with the 

minimum testing error (with maximum generalization ability) was found to be the one with 

14 terminal nodes (Figure 5.8) having a total training and testing errors of 11.9% and 

18.3% respectively. Figure 5.9 shows the optimal decision tree. The variables that were 

used to separate the data are given on the branches of the tree while the classes of the data 

as well as the number of the erroneous classifications during training and testing are 
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presented in terminal nodes. The distribution of training and testing errors among the 

conversion levels for the optimum tree structure are presented in Table 5.2 and Table 5.3.  

 

 

Figure 5.8. Change of error rates with size of decision tree. 

 

The classification by the decision tree was quite successful considering that 111 out 

of 126 data points were correctly classified during training, and all of the wrong 

classifications took their places in one level higher or lower categories they were actually 

belonged to. For example, a moderate performing catalyst, which was classified wrongly, 

was placed into either high or low performance levels but it was never labeled as a very 

high or a very low performing catalyst. 

 

The success of the tree is also apparent from the results of testing (Table 5.3); 103 

out of 126 catalysts (not seen by the tree during training) were correctly placed into their 

performance levels. Even the predictions for the remaining 23 catalyst were not completely 

wrong considering that they were placed into the neighboring performance levels similar to 

the erroneous placement for training. 

 

Figure 5.9 reveals that the data were first divided at the top of the tree according to 

the reaction temperature indicating that this variable was the most significant factor 

determining the CO conversion level. Low temperatures (T<67.5 
o
C) leaded to higher CO 

conversions while higher temperatures (T>107.5 
o
C) usually resulted lower CO 

conversions for all the catalysts tested. At intermediate temperatures; on the other hand; 
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low, moderate or high conversion levels were possible depending on the promoter type 

and/or the presence of H2O and CO2, which were the other classifiers.   

 

 

Figure 5.9. Optimal decision tree structure (“tr. err.” refer to “training error”, “test err.” 

refer to “test error”). 

 

The catalysts promoted by Mg or Mn exhibited higher CO conversion compared to 

the catalysts with the other promoters as observed in the branches of the optimal tree. It is 

believed that Au particle size directly affects CO oxidation on gold catalysts: smaller the 

Au particles dispersed on a support, higher the catalytic activity is [26, 217]. Mg as a 

promoter stabilizes the small Au particles on the support improving CO oxidation activity 

of the catalyst [26, 158]. The addition of Mn, on the other hand, was reported to increase 

CO oxidation rate by providing additional active oxygen for the reaction [158, 218]. 

Although, the addition of Ce might also act as an oxygen supplier, it was reported to be 
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less effective promoter for Au catalysts for low temperature CO oxidation [27]. The 

addition of Co, Fe or Ni were also known to be less effective [218]. All these trends were 

successfully indicated by the tree.  

 

Table 5.2. Prediction errors for individual performance levels for the training data. 

Experimental data Predictions for training 

Conversion number of data 
very 

high 
high moderate low 

very 

low 
% error 

very high 9 7 2 
   

22.2 

high 11 
 

9 2 
  

18.2 

moderate 36 
 

3 32 1 
 

11.1 

low 40 
  

2 35 3 12.5 

very low 30 
   

2 28 6.7 

 

Table 5.3. Prediction errors for individual performance levels for the testing data. 

Experimental data Predictions for testing  

Conversion number of data 
very 

high 
high moderate low 

very 

low 
% error 

very high 1 1 
    

0 

high 12 
 

12 
   

0 

moderate 35 
 

3 30 2 
 

14.3 

low 54 
  

7 37 10 31.5 

very low 24 
   

1 23 4.2 

 

5.1.2.2. Determining the Optimal Neural Network Topology. Since the catalysts promoted 

by Co, Ce, Fe and Ni had lesser performance under the conditions studied, the data related 

to these catalysts were removed from the database. Then, the neural network models were 

constructed using only the reduced data set containing 108 data points (belonging to 

Au/Al2O3, Au-Mg/Al2O3 and Au-Mn/Al2O3 catalysts). Although the conversion was also 

low at high temperatures, no data was eliminated based on this variable to be able to 

analyze the effects of the reaction temperature on CO conversion in a wider range.  

 

Eight different modular neural network topologies were constructed. The optimal 

neural network topology with the minimum testing error was found to be 5-(2-2)-3-1 

(indicating five input neurons, two modules each containing two neurons in the first hidden 

layer, three neurons for the second hidden layer and one output). This network was found 

to have a training RMSE of 1.05 and a testing RMSE of 3.69. The corresponding topology 

is shown in Figure 5.10.  
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Figure 5.10. Optimal network topology for selective CO oxidation over Au/Al2O3. 

 

The statistical performance of the optimal network topology was further improved 

using different activation functions for the preparation and the operating variables; this is 

one of the advantages of using modular neural networks. Logistic sigmoid function (lsf), 

hyperbolic tangent function (tanh) and identity function (ide) were tested for each module 

in the first hidden layer while logistic sigmoid function was kept in the second hidden layer 

all the times. Figure 5.11 shows training and testing errors of all the combinations of 

activation functions sorted according to the testing error. The labeling of the bars in the 

figure was done by the activation functions used for the preparation variables (first 

module) and the operating variables (second module), respectively.  

 

According to Figure 5.11, the generalization accuracy of the optimal neural network 

was improved most with the use of hyperbolic tangent function for the preparation 

variables and identity function for the operating variables, providing a testing RMSE of 

1.31. The plots of predicted versus experimental CO conversion values for this network are 

shown in Figure 5.12 indicating that the model exhibits excellent fits for both training and 

testing data.  
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Figure 5.11. Testing and training errors of optimal neural networks with various 

combinations of activation functions for the first hidden layer. 

 

 

Figure 5.12. Experimental versus predicted CO conversion obtained using the optimal 

network (a) training, (b) testing. 

 

5.1.2.3. Analyzing the Effects of Catalyst Variables and Their Relative Significances. The 

optimal neural network topology, proposed above, was used to screen the effects of input 

variables on CO conversion. Figure 5.13 shows CO conversion versus temperature in the 

absence and presence of H2O and CO2 for all the three catalysts analyzed (Au/Al2O3, Au-

Mg/Al2O3 and Au-Mn/Al2O3). Apparently, the reaction temperature was the most 

influential variable; for example, CO conversion drops from 99% to about 35% in the 

absence of H2O and CO2 for the Au-Mg/Al2O3. For the same feed composition, the 

performances of the catalysts containing Mg or Mn were found to be higher than the 

catalyst without promoter indicating the positive effects of these promoters. 
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It is generally believed that the presence of H2O positively affects CO conversion by 

creating surface OH groups assisting the activation of O2 [148]. The detrimental effect of 

CO2 is, on the other hand, attributed to the reverse WGS reaction, formation of carbonates 

and adsorbed carboxylates [23, 24, 142]. The negative effect of CO2 seems to be stronger 

than the positive effect of H2O under the conditions studied, considering that CO 

conversions were lower when both were present than the conversions obtained in their 

absence (Figure 5.13). Both Mg and Mn provided some resistance to the negative effects of 

CO2 compared to the catalyst without promoter while Mg appeared to be significantly 

better.  

 

 

Figure 5.13. Experimental and predicted CO conversions versus temperature for Au 

catalysts in the absence and presence of CO2 and H2O. 

 

Table 5.4 shows the relative significances of the catalyst preparation and operating 

variables calculated using the change of RMSE method (for promoters) and partial 

differentiation method (continuous variables). The relative significances of the promoter 

addition represent the influence of each promoter compared to the catalyst with no 

promoter. Mg was found to have higher significance than Mn, which supports the results 

discussed above. Among the operating conditions, the most significant variable was the 

reaction temperature as expected. The group significance of the operating variables was 

found to be 76.5% while the preparation variables had 23.5% relative significance. This is 

quite reasonable since the operating variables (especially temperature) influenced the CO 

conversion more strongly compared to the addition of promoters. However, it should be 

noted that the relative significance of the variables calculated here are valid in their ranges 
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used in the experiments; otherwise, using different ranges may result different relative 

significances.  

 

Table 5.4. Relative significances for Au/Al2O3 catalyst for selective CO oxidation. 

 Variables 

RMSE 

without 

Variable 

RMSE 

Difference* 

% Relative 

Significance 

(change of 

RMSE) 

% Relative 

Significance 

(partial 

differentiation) 

Group 

Significance 

(change of 

RMSE) 

preparation 

variables 

Mg 7.6 6.7 56.7 
 23.5 

Mn 6.0 5.1 43.3 
 

operating 

variables 

react. T 
   

84.3 
76.5 

 
H2O 

   
7.4 

CO2    
8.3 

*difference between “RMSE without the variable” - “RMSE of the original model (0.89)” 

 

5.1.3. Modeling Promoted Pt/Al2O3 Catalysts for Water Gas Shift Activity by 

Modular Neural Networks 

 

First, the optimal network topology that represents the experimental data (given in in 

Section 3.3) will be presented. Then, the effects of catalyst preparation and operating 

variables on CO conversion will be discussed in detail followed by the analysis of relative 

significances of these variables [50].  

 

5.1.3.1. Determining the Optimal Neural Network Topology. In order to find the optimal 

neural network topology that may best represent the experimental data, nine modular 

neural networks with different topologies were constructed. The notation of “(a-b)-c” is 

used to label the neural networks, where “a” represents the number of the first hidden layer 

neurons connected to the preparation variables (promoter type), similarly “b” represents 

the first hidden layer neurons connected to the operating variables, c is the number of 

neurons in the second hidden layer. There are eight input variables and one output variable, 

which is the CO conversion.  

 

 The training errors were calculated by using the entire data set for training. On the 

other hand, the testing errors were calculated by applying 4-fold cross validation. Among 

the networks analyzed, the network with the topology of (2-3)-3 (Figure 5.14) was chosen 
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as the topology (testing RMSE=5.22) with the highest generalization ability, which is the 

indicator of network‟s ability to predict the data not seen before.  

 

 

Figure 5.14. Optimal network topology for WGS reaction over Pt/Al2O3 [50]. 

 

 This network was improved further by using different activation functions in the 

modules of the first hidden layer. All the nine combinations of logistic sigmoid function 

(lsf), hyberbolic tangent function (tanh) and identity function (ide) [115] were tested for 

the modules of catalyst preparation and operating variables while the logistic sigmoid 

function was kept in the second hidden layer (Figure 5.15). 

 

It was found that the network with the topology (2-3)-3 was improved significantly 

with the use of identity function for the preparation variables and hyperbolic tangent 

function for the operating variables. The training and the testing RMSE of this network 

were calculated as 1.99 and 3.36 respectively. The experimental versus predicted CO 

conversion plots for both training and testing data are given in Figure 5.16. The data are 

distributed around the y=x lines with very high R
2
 values for both plots indicating that the 

neural network model constructed is quite successful in predicting the data. Especially, the 

fitness of the testing plot (Figure 5.16b) is quite remarkable considering that each predicted 

CO conversion in this plot was made by the network which did not see that point during 

training. The optimal neural network topology proposed here was used for the remaining 

part of the analysis. 
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Figure 5.15. Testing and training errors for (2-3)-3 topology with different activation 

functions for the preparation and the operating variables [50]. 

 

 

Figure 5.16. Experimental vs. predicted CO conversion values (a) training, (b) testing [50]. 

  

5.1.3.2. Analyzing the Effects of the Catalyst Variables. Figure 5.17 compares the 

predicted and the experimental CO conversions versus TOS for all the catalysts in the 

absence and presence of H2 or/and CO2. The predictions are generally very close to the 

experimental values, which is a further indicator for the success of the model. Although 

neural networks have superior ability in predicting the nonlinear effects of variables, the 

model predictions in this case are almost linear because the experimental CO conversions 

are not significantly influenced by the change of TOS. The prediction of slight nonlinearity 

could be improved by employing a larger network topology; however the use of the 
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smallest network capturing the general trends was preferred to keep the generalization 

ability higher. It is quite apparent from Figure 5.17 that the presence of H2 decreases CO 

conversion significantly for all the catalysts due to the reverse WGS reaction, which 

consumes CO2 and H2 producing CO and H2O. For the same reason, the presence of CO2 

also decreases the WGS activity though its effect seems to be smaller in the present case, 

actually due to the small feed concentration of this component compared to hydrogen. 

When both CO2 and H2 are present in the reaction stream (realistic stream composition 

exiting a reformer), the catalytic activity reduces even more. It is also apparent from Figure 

5.17 that the activities of all catalysts slightly decrease with increasing TOS which may be 

an evidence for possible deactivation.  

 

In the absence of CO2 and H2, the catalyst with the best performance is the Pt-Ce 

catalyst (without any second promoter), which was proposed as a very good catalyst for 

WGS reaction due to the high oxygen storage capacity of ceria and its ability of stabilizing 

the support and the noble metal [6]. On the other hand, the addition of any of the promoters 

Co, K, Ni had a detrimental effect in the absence of CO2 and H2. However, a good water 

gas shift reaction catalyst has to work in the presence of significant levels of CO2 and 

especially H2 [28, 151]. Hence, all the catalysts were also tested in the presence of these 

components, and it was found that the Pt-Ce-K catalyst was less affected from CO2 and/or 

H2 in contrast to the Pt-Ce-Co and Pt-Ce-Ni catalysts. When only CO2 was present in the 

reaction stream, Pt-Ce-K had significantly higher activity even compared to Pt-Ce. The 

performance of the Pt-Ce-K catalyst was almost the same (slightly better) as the Pt-Ce 

catalyst when both CO2 and H2 were present. The Pt-Ce-K catalyst can be analyzed further 

in future studies, since it may be superior to the Pt-Ce catalyst under some other operating 

conditions.  

 

The predicted and the experimental performances of Pt-Ce, Pt-Co-Ce and Pt-K-Ce 

catalysts at different temperatures under realistic conditions are given in Figure 5.18, 

which shows that decreasing the reaction temperature has a negative effect on CO 

conversion. This is expected because, although WGS is an exothermic reaction 

(equilibrium constant increases with decreasing temperature), it also becomes kinetically 

controlled at lower temperatures which prevents the approach to thermodynamic limits 
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[219, 220]. The effects of temperature on all the catalysts are quite successfully predicted 

by the neural network model. 

 

 

 

Figure 5.17. CO conversion versus TOS at 300
o
C in various reaction streams for: (a) Pt-

Ce, (b) Pt-Co-Ce, (c) Pt-K-Ce, (d) Pt-Ni-Ce [50]. 

 

Finally, the effect of H2O/CO ratio in the feed on CO conversion over the Pt-Ce 

catalyst at 275
o
C is shown in Figure 5.19 as a sample case. The increase in the H2O/CO 

ratio positively affects the catalytic activity as also reported by various previous studies 

[221, 222]. The promotion of WGS is due to the shifting of reaction equilibrium to the 

product side by the presence of excess water as also successfully predicted by the model. 
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Figure 5.18. CO conversion versus temperature in the presence of 10% CO2 and 40% H2 at 

90 min of TOS for: (a) Pt-Ce, (b) Pt-Co-Ce, (c) Pt-K-Ce [50]. 

 

 

Figure 5.19. Effect of H2O/CO on catalyst activity in the presence of 10% CO2 and 40% H2 

at 275
o
C for Pt-Ce [50]. 

 

Normally, the neural network can be optimized to find the input variables 

maximizing CO conversion. However, it was not necessary in the present case because it is 

evident that higher temperatures and H2O/CO ratios would increase CO conversion. On the 

other hand, the lower values of these variables are more desirable for the heat and water 

management in fuel cell systems. Hence, the optimization of the neural network was 

omitted for this case.  

 

5.1.3.3. Analyzing the Input Significance. Table 5.5 shows the relative significances of the 

catalyst preparation and the operating variables. It is to be noted that these significances 
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should be treated within the range of conditions studied; otherwise, they may produce 

misleading conclusions. For example, the relative significance of the temperature indicates 

its relative influence over CO conversion between the lowest to highest values selected in 

the study; if the reaction temperature were set to very low values (like room temperature), 

no CO conversion would be obtained and the temperature would have a much higher 

relative significance. This is also true for all the other variables. 

 

Table 5.5. Relative significances for Pt/Al2O3 catalyst for WGS reaction. 

 Variables 

RMSE 

without 

the Variable 

RMSE 

Difference* 

% Relative 

Significance 

(change of  

RMSE method) 

% Relative 

Significance 

(partial 

differentiation) 

Group  

Significance 

(change of  

RMSE method) 

preparation 

variables 

Co 4.11 2.13 40.0  

18.3 K 3.79 1.81 34.0  

Ni 3.37 1.38 26.0  

operating 

variables 

React T    9.4 

81.7 

CO2    10.7 

H2    43.7 

H2O/CO    33.3 

TOS    2.9 

*difference between “RMSE without the variable” - “RMSE of the original model (1.99)” 

 

Under the conditions studied, the group significance of the operating variables was 

found to be 81.7% while the second promoter addition was 18.3%. This is quite reasonable 

since the Pt-Ce catalyst has a certain level of performance, and the second promoter has a 

minor impact. On the other hand, the chances of temperature and feed composition to 

influence CO conversion are significant. Among the operating variables, H2% was the 

most significant because it increased reverse WGS reaction decreasing the CO conversion 

severely. The presence of CO2 had the same effect with lesser degrees due to its smaller 

percentage in the feed.  

 

The H2O/CO ratio was the second most significant operating variable; increasing this 

ratio was expected to increase the water gas shift catalytic activity considerably [221, 222]. 

The influence of TOS was not found significant because it had only some minor impact on 

CO conversion due a very slight activity loss. This is also apparent in Figure 5.17, which 

shows that CO conversions do not decrease significantly even after 3 hours of operation for 

all the catalysts. The low relative significance value (9.4%) for the operation temperature 
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can be attributed to the fact that experimental analysis was conducted in a narrow 

temperature range compatible with actual operating conditions used in fuel processors. 

 

5.2. Knowledge Extraction from DFT Generated Data 

 

5.2.1. Structure and Activity Relationship for CO and O2 Adsorption over Gold 

Nanoparticles Using DFT and Artificial Neural Networks 

 

 The data generated by Davran-Candan [141] for CO and O2 adsorption over various 

gold nanoparticles was organized and modeled as follows (Figure 5.20): 

 

 CO and O2 adsorption energies for 97 possible sites over 27 clusters to be used as the 

response variables for the models. 

 The values of user defined descriptors (such as particle size, unpaired electron, 

charge and coordination number) as the input variables considering that the 

adsorption energies will depend on them. 

 Some structural properties of clusters (such as HOMO-LUMO gap, binding energy 

and ionization potential) as the intermediate variables that can be predicted from the 

input variables and to be used to predict the adsorption energies.    

  

The neural network models for the descriptors versus adsorption energies were 

constructed first to see the general picture. All the descriptors (size, charge, coordination 

number and unpaired electron) were used for this purpose. However, the linear dependence 

among these variables was checked first to avoid multicolinearity [56].
 
No pair of 

correlated variables was used together in the same network. Then, the neural network 

models for the descriptors versus the structural properties (HOMO-LUMO gap, binding 

energy per atom, ionization potential and electron affinity) were also built similar to the 

modeling of adsorption energies. Finally, the adsorption energies were tried to be modeled 

using the structural properties to see their relative significances for the CO and O2 the 

adsorption. Each of the descriptors was treated according to its characteristics when the 

neural networks were constructed. The size, for instance, is taken as a continuous variable 

while the coordination number was treated as categorical, since it is mainly used to 

distinguish the position of the adsorbed atom on the cluster. The charge, which has only 
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three distinct values and unpaired electron with two possible states were also used as 

categorical inputs. All of the structural properties, on the other hand, were taken as 

continuous variables when they were used as the inputs of the networks.  

 

  

Figure 5.20. Conceptual approach to model CO and O2 adsorptions over Au nanoparticles. 

 

The results of the CO adsorption models are presented in full detail in the following 

sections, and then the O2 adsorption work is summarized to avoid repetition. The structure-

activity relationship was established using the simplified model shown in Figure 5.20 

based on the assumption that any changes in the user defined descriptors influence the 

adsorption energies by changing some structural properties of the catalyst or catalyst-

reactant complex [52]. 

 

5.2.1.1. Descriptors Versus CO Adsorption Energy. In order to find the optimal neural 

network that represents the CO adsorption data, various neural networks having different 

structures and neuron numbers were constructed with the descriptors of size, charge, 

unpaired electron and coordination number of the Au atom to which CO was bonded while 

the CO adsorption energy was the output.  
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The statistical analysis for training and validation was performed and presented in 

Figure 5.21 with the order of increasing number of weights. The “a-b-c-d” notation was 

used to label the neural networks, where “a” represents the number of input variables (4 in 

this case), “b” and “c” represent the number of neurons in the first and second hidden 

layers, respectively, and d (1 in this case) is the output number. The numbers in 

parentheses on the x axis represents the number of weights (connections) of the networks.  

 

 

Figure 5.21. Training and testing RMSE values of various neural networks modeling the 

CO adsorption energy from the user defined descriptors [52]. 

 

The grey bars in Figure 5.21 represent the training error, which is calculated by using 

the entire data set. The black bars, on the other hand, show the testing error (indicating 

generalization accuracy), which was obtained by employing 4-fold cross validation.  The 

network structure 11-4-3-1 has the smallest RMSE of testing (0.182) and considerably low 

RMSE of training (0.080) when compared with the other networks.  Therefore, it was used 

as the optimal network to model the CO adsorption energy from the descriptors. The 

schematic representation of this network is shown in Figure 5.22, with black circles as the 

bias neurons having a constant value of 1. Since the number of connections among the 

layers is very large, only some representative lines were drawn in the figure for simplicity 

while the exact number of neurons was used.   
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Figure 5.22. Optimal neural network topology for CO adsorption energy from user defined 

descriptors [52]. 

 

In Figure 5.23a, the neural network predicted CO adsorption energies for the training 

data were plotted against DFT calculated values. The data points lie quite close to y=x line, 

indicating that the model is quite successful to represent the CO adsorption data. This is 

also supported by the R
2
 value of 0.956, which is quite high. Besides, the statistical results 

of the 4-fold cross validation analysis, which indicates the prediction power of the neural 

network for the data not included in the training set (not seen by the network before), is 

also quite satisfactory with an R
2
 value of 0.764 (Figure 5.23b).  In contrast to the neural 

network training R
2
 value of 0.956 and the RMSE value of 0.080, the same data modeled 

by full quadratic multiple linear regression provided a training R
2
 value of 0.653 and a 

RMSE value of 0.225, indicating the superiority of neural networks against multiple linear 

regression.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Unpaired 

electron 

Charge 

 

-1 

0 

Eads 

s 

 

-1 

1 

2 

3 

4 

5 

6 

Coordination 

number 

Size 



99 

 

 

 

 

Figure 5.23. Predicted (from descriptors) vs. calculated CO adsorption energy; (a) training 

data, (b) test data [52]. 

 

The relative significance of each variable was calculated using the change of RMSE 

method and the results are presented in Table 5.6. The charge of the cluster seems to be the 

most significant variable for CO adsorption energy followed by the coordination number 

and the size of the cluster. The unpaired electron has relatively less significance.  

 

Table 5.6. Relative significances of descriptors for the CO adsorption. 

Descriptors 

RMSE 

without 

the Variable 

RMSE 

Difference* 

Relative  

Significance 

size 0.151 0.071 20.4 

charge 0.258 0.177 51.1 

coordination number 0.162 0.082 23.6 

unpaired electron 0.097 0.017 4.9 

*the difference between “RMSE without the variable” - “RMSE of the original model (0.080)” 

 

The plots of the maximum adsorption energies versus the cluster size are given in 

Figure 5.24, indicating a remarkable agreement between the quantum mechanically 

computed and neural network predicted energies. Both our DFT calculations and previous 

findings [97] indicated that the adsorption strength of CO generally followed the order: 

cationic > neutral > anionic, which may be explained with the electron donating nature of 

CO during adsorption [223]. No clear correlation between the size and CO adsorption 

strength was found for the neutral and anionic clusters, while a decreasing trend with 

increasing cluster size was observed for the cationic clusters. This may be attributed to the 
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fact that the charge is diluted as the number of atoms involved in the cluster got higher, 

similar to the previous findings in the literature [97]. 

 

 

Figure 5.24. Effect of size on maximum CO adsorption energy [52]. 

 

 

Figure 5.25. Effect of coordination number on CO adsorption energy for n=9 [52]. 

 

The effect of the coordination number on the adsorption energy is presented in 

Figure 5.25 for the cluster size of 9 as an example. Although the presence of low-

coordinated Au atoms was reported to be crucial in determination of the adsorption 

strength [106, 107], the decreasing trend of adsorption energy with increasing coordination 

number was not so evident in our DFT results and therefore in our model predictions. This 

is probably due to the fact that the Au sites involved in this study are already under-
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coordinated (max 6), so that the effect of the coordination number was not so deterministic 

on CO adsorption strength. 

 

Finally, the presence of the unpaired electron was found to have relatively less effect 

on the CO adsorption energy, which is expected since there is no report in the literature 

showing such a correlation as far as we know.  

 

5.2.1.2. Descriptors Versus Structural Properties of Clusters. Then, the structural properties 

of the clusters were modeled as a function of descriptors. All four structural properties 

were predicted successfully as it can be seen from the plots of neural network predicted 

versus quantum mechanically calculated properties and their high training R
2
 values in 

Figure 5.26. R
2
 values for validation (predicting the data not included to training set) were 

also quite high as 0.806, 0.900, 0.926 and 0.931 for the HOMO-LUMO gap, the binding 

energy, the ionization potential and the electron affinity, respectively.  

 

  

  

Figure 5.26. Predicted (from descriptors) vs. calculated structural properties using training 

data. (a) HOMO-LUMO gap (eV), (b) binding energy (eV/atom), (c) ionization potential 

(eV), (d) electron affinity (eV) [52]. 
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The significance analysis (Table 5.7) indicates that the size of the cluster was found 

to be the most important variable for the binding energy, which generally increases with 

increasing cluster size in agreement with the literature (Figure 5.27) [108, 111]. This may 

be explained as follows: As the cluster becomes larger, the atomic interactions increase due 

to the increase in the number of neighboring atoms [111]. The effect of charge was also 

remarkable. The strength of the binding energy generally followed the order: cationic > 

anionic > neutral, similar to the results obtained by Fernandez et al. [224]. The unpaired 

electron, on the other hand, had relatively small impact on the binding energy as evident 

from the weak even-odd oscillations (Figure 5.27), which was also observed in some 

previous studies [108, 111].  

 

Table 5.7. Relative significances of descriptors for the structural properties. 

 Relative Significances 

Descriptors 

 

HOMO-LUMO 

Gap 

Binding 

Energy 

Ionization 

Potential 

Electron 

Affinity 

size 7.2 63.2 14.4 9.6 

charge 14.2 28.2 79.7 84.3 

unpaired electron 78.6 8.6 5.9 6.1 

 

 

Figure 5.27. Effect of cluster size on binding energy [52]. 

 

For the HOMO-LUMO gap, on the other hand, the most significant variable was 

found to be the unpaired electron while the charge and the size of the cluster had relatively 

small effects. When the HOMO-LUMO gap was plotted as a function of size, the even-odd 

oscillation pattern (Figure 5.28) was evident similar to the previous findings [52, 97, 110].
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The clusters with even number of electrons have higher HOMO-LUMO gaps compared to 

the neighboring clusters having odd-number of electrons, which was attributed to the 

electron pairing effect [110].  

 

 

Figure 5.28. Effect of cluster size on HOMO-LUMO gap [52]. 

 

The agreement between the neural network predicted and the quantum mechanically 

computed values of the ionization potential and the electron affinity was much higher with 

the R
2
 values of 0.990 and 0.986, respectively (Figures 5.26c and 5.26d). The analysis of 

significance reveals that the charge of the cluster is the most dominating factor for both the 

ionization potential and the electron affinity, of which their values followed the order: 

cationic > neutral > anionic. This is an expected result for the ionization potential because 

it is obviously more difficult to remove an electron from a cationic cluster compared to 

neutral and anionic ones. The electron affinity follows the same trend for similar reasons. 

This is clearly seen from the plots in Figure 5.29 and Figure 5.30, which also show the size 

dependencies of two properties. On the other hand, even though the relative significance of 

the size is found to be relatively small compared to the charge, its effect on the ionization 

potential and the electron affinity is still significant for cationic and anionic clusters.  

 

Finally, despite the low significance of the unpaired electron, ionization potential 

was generally higher for the clusters having even number of electrons (when compared to 

the neighboring clusters with odd number of electrons) while electron affinity was 

generally higher for the clusters having odd number of electrons. This is due to the fact that 

0

1

2

3

4

2 3 4 5 6 7 8 9 10

H
o

m
o
 l

u
m

o
 g

a
p

 (
eV

)

Size

Predicted (anionic) Calculated (anionic)

Predicted (neutral) Calculated (neutral)

Predicted (cationic) Calculated (cationic)



104 

 

 

 

it is more difficult to remove an electron from the valence shell of a cluster having even 

number of electrons.  

 

 

Figure 5.29. Effect of cluster size on ionization potential [52]. 

 

 

Figure 5.30. Effect of cluster size on electron affinity [52]. 

 

5.2.1.3. Structural Properties Versus CO Adsorption Energy. As the last step for CO 

adsorption, various neural networks were constructed to model adsorption energy from the 

structural properties and the optimal network topology was chosen. The coordination 

number was also added as an input list to identify the location of the adsorption although it 

is not an actual structural property.  The ionization potential and the electron affinity were 

not used in the same network because they are not independent. The best network results 
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were obtained if the ionization potential was used together with the binding energy, 

HOMO-LUMO gap and coordination number.  The predicted versus calculated adsorption 

energies shown in Figure 5.31 was impressive with R
2
 values of 0.962 and 0.806 for the 

training and the validation data, respectively. The relative significances of the properties 

are given in Table 5.8. 

 

 

Figure 5.31. Predicted (from structural properties) vs. calculated CO adsorption energy; (a) 

training data, (b) test data [52]. 

 

Table 5.8. Relative significances of structural properties for CO adsorption. 

Structural Properties 

RMSE 

without 

the Variable 

RMSE 

Difference* 

Relative 

Significance  

HOMO-LUMO gap 0.131 0.056 21.7 

binding energy 0.105 0.030 11.6 

ionization potential 0.146 0.071 27.4 

coordination number 0.176 0.102 39.3 

*the difference between “RMSE without the variable” - “RMSE of the original model (0.075)” 

 

Replacing ionization potential with electron affinity produced almost the same result 

with the training R
2
 of 0.951 as expected since these two variables are not independent.  It 

is interesting to note that the removal of the ionization potential (or electron affinity) from 

the model (using only HOMO-LUMO gap, binding energy and coordination number) does 

not worsen the results much either as evidence from the training R
2
 value of 0.904. Instead, 

the contributions of the remaining three variables increase; resulting a quite good 

agreement between model prediction and quantum mechanically computed CO adsorption 
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energies. Apparently, the HOMO-LUMO gap and the coordination number together with 

any one of the remaining three (binding energy, electron affinity or ionization potential) 

carry the significant part of the necessary information to predict the CO adsorption energy 

although the nature of this information is not clear at this stage.  

 

5.2.1.4. Descriptors Versus O2 Adsorption Energy. A similar analysis was also performed 

for O2 adsorption energy since most of the mechanisms proposed for the CO oxidation 

over Au based catalysts involve the adsorption of O2 as well [100, 225]. The details of the 

analysis are quite similar to CO adsorption case; hence, they will not be given here to 

avoid repetition. Instead, the results will be summarized with the discussion of the issues 

unique to O2 adsorption.  

 

The most significant difference between the O2 and CO adsroption data is the fact 

that adsorption of O2 over some sites is endothermic. Although these results are not 

physically meaningful, the degree of endothermicity is an indicator of instability of the 

adsorption complex. Hence, these data points were not excluded in the models because 

they still carry some information even though they are not useful by themselves. The 

positive sign was used for the stable adsorption sites while the negative values represent 

the unstable complexes during the model construction.  

 

The optimal network topology for the O2 adsorption energy was searched, and it was 

found to be the same as the one used for the CO adsorption. The plot of quantum 

mechanically calculated versus predicted O2 adsorption is given in Figure 5.32. The R
2
 

values of 0.967 and 0.873 for the training and the testing are quite good. 

 

The input significance analysis indicated that the unpaired electron is the most 

significant descriptor affecting the O2 adsorption energy (Table 5.9) in contrast to the case 

of the CO adsorption (Table 5.6).  This makes sense, since it is already known that the 

existence of the unpaired electron has a deterministic effect on O2 adsorption stemming 

from the interaction mechanism of O2 with Au clusters. The adsorption mechanism for 

anionic and neutral clusters was argued to take place through electron transfer from Au to 

the 
*
 orbital of O2 [110, 226].

 
For anionic clusters, this transfer is accompanied by the 

activation of O-O bond to a superoxo state through stretching of the bond [100]. No such 
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activation of O2 was reported for neutral and cationic clusters, even though electron 

transfer from Au to O2 was observed to some extent for neutral clusters [100, 226]. Hence, 

the electron transfer required for the adsorption of O2 is easily achieved by the clusters 

having unpaired electrons and adsorption of O2 is stronger for clusters having odd number 

of electrons. Parallel to these findings, we found that Au clusters having odd number of 

electrons (whatever the total charge is) adsorbed O2, while clusters with even number of 

electrons showed no activity towards O2.  

 

 

Figure 5.32. Predicted (from descriptors) vs. calculated O2 adsorption energy; (a) training 

data, (b) test data [52]. 

 

Table 5.9. Relative significances of descriptors for O2 adsorption. 

Descriptors 

RMSE 

without 

the Variable 

RMSE 

Difference* 

Relative 

Significance 

size 0.176 0.043 10.0 

charge 0.231 0.097 22.5 

coordination number 0.166 0.033 7.5 

unpaired electron 0.393 0.260 60.0 

*the difference between “RMSE without the variable” - “RMSE of the original model (0.133)” 

 

The input significance analysis showed that the effect of charge was also significant, 

which has already been shown by various groups [100, 227]. Although early experimental 

findings indicated that neutral and cationic clusters showed no activity towards O2 

molecule except for Au10
+
 cluster [227], the general consensus reached in the field is that 

both neutral and cationic clusters can adsorb O2 but adsorption strength is the greatest for 
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the anionic ones [99, 100], which
 
is also supported by our calculations. For the anionic and 

neutral clusters, the adsorption of O2 was accompanied with the electron transfer from Au 

to O2 molecule, in agreement with the previous findings [100, 226]. For the cationic 

clusters, however, an electron transfer in the other direction (from O2 to Au) was observed, 

which may be explained with the high electron affinity values calculated for cationic 

clusters (Figure 5.30). The amount of charge transferred from O2 to Au decreased with 

increasing cluster size, parallel to the slight decrease in electron affinity of cationic clusters 

with increasing size (Figure 5.30) and at n=10, the transfer changes direction and electron 

transfer from Au to O2 is observed.  

 

Finally, although the adsorption strength of O2 was argued to increase with 

decreasing coordination number [106], this effect was found to be small compared to the 

other descriptors in our input significance analysis as in the case of CO adsorption 

probably for the same reason (absence of high coordinated Au  atoms in our clusters). 

 

  

Figure 5.33. Effect of cluster size on maximum O2 adsorption energy [52]. 

 

The effects of cluster size, charge and unpaired electron can be seen together in the 

plots in Figure 5.33, which shows the success of the model clearly. The significance of the 

unpaired electron is reflected itself as the even-odd alternating pattern in energy as 

opposite to the CO adsorption energy. 
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5.2.1.5. Structural Properties Versus O2 Adsorption Energy. Then, the O2 adsorption 

energies were modeled using the same structural properties (HOMO-LUMO gap, binding 

energy, ionization potential together with the coordination number) as the input set. The 

plots of calculated versus predicted O2 adsorption energies are given in Figure 5.34 with 

the R
2
 values of 0.963 and 0.827 for the training and the validation respectively. The input 

significance analysis reveals that the HOMO-LUMO gap and the ionization potential are 

the most effective variables in determination of the adsorption strength of O2 (Table 5.10). 

It was observed that O2 adsorption was stronger for the clusters having low ionization 

potentials, which can be attributed to the interaction mechanism of O2 with the cluster as 

explained in the previous section. The effect of HOMO-LUMO gap, on the other hand, 

seems to be through the unpaired electron, since this descriptor was found to be significant 

for both HOMO-LUMO gap and adsorption energy of O2.  

 

  

Figure 5.34. Predicted (from structural properties) vs. calculated O2 adsorption energy; (a) 

training data, (b) test data [52]. 

 

Table 5.10. Relative significances of structural properties for O2 adsorption. 

Structural Properties  

RMSE 

without 

the Variable 

RMSE 

Difference* 

Relative 

Significance  

HOMO-LUMO gap 0.204 0.063 36.6 

binding energy 0.150 0.010 5.7 

ionization potential 0.215 0.074 43.0 

coordination number 0.166 0.025 14.7 

*the difference between “RMSE without the variable” - “RMSE of the original model (0.140)” 
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When the ionization potential was replaced by the electron affinity, the training R
2
 

was almost the same (0.961) indicating two variables can be interchanged as in the case of 

CO adsorption. However, removing the ionization potential (or electron affinity) from the 

input set and using only the HOMO-LUMO gap, binding energy and coordination number 

lowered the training R
2
 value to only 0.920, which is still meaningful. 

 

5.2.2. Analysis of O2 Adsorption Stability and Strength over Gold Nanoparticles 

Using DFT and Logistic Regression 

 

As a complementary study to artificial neural network modeling of the DFT data, 

multiple logistic regression modeling was also applied to understand the role of user 

defined descriptors and DFT computed structural properties on the stability and strength of 

O2. The results are presented and discussed in two parts. In part one, the data set was 

divided into two categories, namely “stable” and “unstable” adsorption depending on the 

sign of adsorption energies, where the computed positive adsorption energies indicated 

instability. In part two, the stable adsorption values were analyzed in terms of strength, 

dividing the data set as “strong” (if the value of the adsorption energy was smaller than -

0.5 eV) and “weak” (if the value of the adsorption energy was higher than -0.5 eV). It 

should be noted that the -0.5 eV border separating strong and weak adsorption has no 

physical significance. It was selected by trial and error such that the data points can be 

classified effectively based on the values of the descriptors and the structural properties, 

which is the main purpose of the work [228].  

 

5.2.2.1. Descriptors Versus O2 Adsorption Stability. The stability analysis was performed 

by using both the descriptors and the structural properties. However, the “stable” or 

“unstable” classification based on the descriptors can be treated as the demonstration and 

verification of our approach, otherwise one needs no special tool to make this 

classification.  It is very clear from the visual inspection of the data that the stability of 

adsorption depends on the absence or the presence of the unpaired electron. If an unpaired 

electron was present in the cluster, the adsorption was found to be stable except for a few 

cases. However, the implementation of the logistic regression for this “known” problem 

seemed to form a good demonstration. Hence, we first discussed this model and then 

continued with the analysis of stability through the structural properties.  
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The descriptors of the clusters were used as the predictor variables of the probability 

of the stable adsorption, and the results of the logistic regression model developed are 

presented in Table 5.11. Since the G value (106.4) of the model is much greater than the 

critical chi-square value of 9.49 (for four degrees of freedom), the null hypothesis that all 

the coefficients are zero (meaning no significant pattern or correlation) was rejected and 

the model was concluded as being significant. As indicated from the p values in the table, 

the stability of O2 adsorption depends only on the presence of unpaired electron. This is 

also evident from the upper and lower bounds of the regression coefficients (β). Except 

unpaired electron, the lower and upper limits of the regression coefficients for all the 

descriptors have values with opposite signs, which indicate that their coefficients can have 

the value of zero within 95% confidence interval. Hence, these variables cannot be 

deterministic for the stable-unstable classification. On the other hand, lower (1.89) and 

upper (7.04) limits of the regression coefficient for unpaired electron have the same sign 

(no possibility to have the value of zero), indicating that it is a significant variable. The 

positive value of the regression coefficient also indicates that the presence of unpaired 

electron affects the stability positively, i.e. clusters having odd number of electrons adsorb 

O2, while clusters with even number of electrons show small or zero reactivity towards O2, 

parallel to the previous findings [52, 100]. This result clearly demonstrates that logistic 

regression modeling can be easily and effectively employed in this subject. 

 

Table 5.11. Statistics of descriptors versus O2 adsorption stability. 

Descriptors 

β 

(regression 

coefficient) 

SE(β) 

(standard error  

of regression 

coefficient)  

ZWald 

(β /SE(β)) 
p value of 

ZWald 
βlower βupper 

constant term 0.65 2.47 0.26 0.793 -4.19 5.49 

size -0.13 0.36 -0.36 0.722 -0.83 0.57 

charge -0.57 0.85 -0.67 0.503 -2.24 1.10 

coordination number -0.30 0.45 -0.66 0.510 -1.18 0.59 

unpaired electron 4.46 1.31 3.40 0.001 1.89 7.04 

  

 

The logistic curve obtained for the unpaired electron versus the probability of having 

stable adsorption is shown in Figure 5.35. The red symbols indicate the status of stability 

for the quantum mechanically computed values; they have 100% or 0% probabilities, 

106.4G   2 0.95,4 9.49 
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because O2 either adsorb or do not adsorb on a given cluster. The blue symbols, on the 

other hand, show the corresponding model predictions, which are quite close to the 

computed data.  Since x axis has only two values (two categories), the separation between 

the data points in the same category has no physical meaning; they were just created to 

prevent overlapping and make the visual inspection easier.  

 

The test of extrapolation ability of the model was not necessary in this section 

because the size was found to be not significant as a variable. The model can predict the 

adsorption stability of any cluster if the absence or presence of unpaired electron, which is 

the only variable determining the stability, is known. 

 

 

Figure 5.35. Effect of unpaired electron on O2 adsorption probability [228]. 

 

5.2.2.2. Structural Properties Versus O2 Adsorption. Table 5.12 shows the results of the 

logistic regression when the structural properties were used as the predictor variables 

against the stability of adsorption.  Since the ionization potential and the electron affinity 

were not linearly independent, only the ionization potential was used here as one of the 

structural properties.  On the other hand, the coordination number was also added as a 

predictor variable to identify the location of the adsorption, although it is not an actual 

structural property of the cluster. Like the previous case, the G value (97.4) of the model is 

much greater than the critical chi-square (9.49) indicating that the model is significant. The 

Wald test demonstrates that all the structural properties had p values quite higher than 0.05, 

except the HOMO-LUMO gap. This means that among the structural properties 

0

20

40

60

80

100

0 1 2

O
2

a
d

so
rp

ti
o
n

 p
ro

b
a
b

il
it

y
(%

)

predicted calculated

Absence of 

unpaired electron

Presence of 

unpaired electron



113 

 

 

 

considered, HOMO-LUMO gap is the only structural property effective on the stability of 

O2 adsorption.   

 

Table 5.12. Statistics of structural properties versus O2 adsorption stability. 

Descriptors 

β 

(regression 

coefficient) 

SE(β) 

(standard error  

of regression 

coefficient)  

ZWald 

(β /SE(β)) 
p value of 

ZWald 
βlower βupper 

constant term 6.26 2.91 2.15 0.032 0.55 11.97 

HOMO-LUMO gap -4.55 0.99 -4.59 0.0001 -6.49 -2.60 

binding energy 1.08 2.01 0.54 0.592 -2.86 5.01 

ionization potential 0.10 0.14 0.73 0.466 -0.17 0.38 

coordination number -0.40 0.35 -1.15 0.252 -1.09 0.29 

  

 

Next, a new reduced model was constructed based only on HOMO-LUMO gap so 

that the results could be further verified and visually presented in a two dimensional plot. 

As it is shown in Table 5.13, the G value (96.2) of the new model is very close to the G 

value (97.4) of the full model verifying the significance of HOMO-LUMO gap. This effect 

seems to be through the presence of unpaired electron, which is the most significant 

variable for HOMO-LUMO gap [52]. 

 

Table 5.13. Statistics of the reduced model. 

Structural  

Properties 

β 

(regression 

coefficient) 

SE(β) 

(standard error  

of regression 

coefficient)  

ZWald 

(β /SE(β)) 
p value of 

ZWald 
βlower βupper 

constant term 7.06 1.30 5.44 0.0001 4.52 9.60 

HOMO-LUMO gap -4.42 0.90 -4.94 0.0001 -6.18 -2.67 

  

 

The negative value of the coefficient of HOMO-LUMO gap indicates that the 

probability of stable O2 adsorption is negatively affected by the increase of HOMO-LUMO 

gap, the cut off value being 1.44 eV. This makes sense when the even-odd pattern observed 

in the change of HOMO-LUMO gap with size is considered. The lower values of the gap 

correspond to the clusters with odd number of electrons, which were shown to adsorb O2 

[52, 100]. The plot of HOMO-LUMO gap versus the probability of O2 adsorption stability 

97.4G   2 0.95,4 9.49 

96.2G   2 0.95,1 3.84 
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shows a logistic curve supporting these findings (Figure 5.36). Except three data points, all 

the predicted O2 adsorption probabilities lie quite close to the actual situations. 

 

 

Figure 5.36. Effects of HOMO-LUMO gap on O2 adsorption probability [228]. 

 

5.2.2.3. Descriptors Versus O2 Adsorption Strength. In the second part of the work, the 

stable adsorption data (50 data points) were divided into two categories as explained at the 

beginning of Results and Discussion: strong adsorption  if Eads < -0.50 eV and weak 

adsorption if Eads > -0.50 eV. The effects of descriptors and structural properties on the 

adsorption strength are presented below.  

 

Since all the clusters with unpaired electron already had the ability to adsorb O2, the 

clusters without unpaired electron were excluded; therefore, this descriptor was not treated 

as a predictor variable anymore. Hence; size, charge and coordination number were used as 

the descriptors of this model. The results are summarized in Table 5.14. Although the G 

value of 16.4 is not as high as the G values of the models discussed above for the 

adsorption stability, it is still well above the critical chi-square value (7.81). Thus, this 

model should also be accepted as significant.  

 

According to the findings summarized in Table 5.14, the strength of O2 adsorption 

depends on the size and the charge of the cluster (p values are 0.018 and 0.010 

respectively). The coordination number seems to have no significant effect. 
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Table 5.14. Statistics of descriptors versus O2 adsorption strength. 

Descriptors 

β 

(regression 

coefficient) 

SE(β) 

(standard error  

of regression 

coefficient)  

ZWald 

(β /SE(β)) 
p value 

of ZWald 
βlower βupper 

constant term 0.82 68.5 0.01 0.99 -133.4 135.1 

size -0.52 0.22 -2.36 0.018 -0.96 -0.09 

charge -1.53 0.59 -2.59 0.010 -2.68 -0.37 

coordination number 0.27 0.35 0.78 0.44 -0.41 0.96 

  

 

 The coefficient of size and charge are both negative as shown in Table 5.14, 

indicating that O2 adsorption becomes weaker as the cluster size increases or the charge 

changes in the order of anionic-neutral-cationic (Figure 5.37a). Indeed, the effect of charge 

on the adsorption strength of O2 over Au clusters was shown by previous studies. Despite 

of the early claims that cationic and neutral clusters show no reactivity towards O2 except 

for Au10
+
, the cationic and neutral clusters were also shown to adsorb O2 if they possess 

unpaired electrons [52, 228]. Nonetheless, the strength of O2 adsorption on anionic Au 

clusters was always demonstrated to be greater than the adsorption strength on cationic and 

neutral clusters [52, 100, 228].
 

 

The decrease of strong adsorption probability with increasing size is also clear from 

Figure 5.37a. It should be noted that, the figure indicates the mean probabilities for strong 

adsorption, since the percent probability values shown in the figure were calculated by 

averaging the values over all the possible adsorption sites for that cluster, rather than 

considering only the maximum adsorption energies.  Some cluster sizes do not appear in 

the figure (for example the anionic cluster with the size of three), because they do not 

result any stable adsorption for that charge; hence they were eliminated from the data set in 

this section. 

 

The decrease of the mean probabilities for strong adsorption with the increasing size 

can be attributed to the increase in the number of inner atoms (atoms located on the flat 

surfaces of the clusters) with high coordination number parallel to the arguments in the 

literature that the strength of adsorption decreases with increasing coordination number 

[107]. The reason why coordination number was found to be insignificant in this work may 

16.4G   2 0.95,3 7.81 
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be related to its mild correlation with the size (Pearson correlation coefficient of 0.57). On 

the other hand, it was also argued that the underlying factor determining the adsorption 

ability of a cluster was the shape of the frontier orbitals (HOMO, in this case) rather than 

the coordination number of the adsorption site [229, 230]. In other words, O2, being an 

electron acceptor, was argued to adsorb on the sites where HOMO protruded furthest in the 

vacuum [230]. Since the lobes of HOMO over the inner atoms are generally smaller than 

those on the corners/edges, and the number of inner atoms increases with increasing the 

cluster size, the orbital shape seems to reflect its effect through the cluster size.  

 

 

Figure 5.37. Dependency of strong adsorption probability on size and charge for: (a) full 

model, (b) using Au2-Au8 clusters to predict the results of Au9-Au10 [228]. 

 

The extrapolation ability of logistic regression was tested by constructing a model 

from the data belonging to Au2-Au8 clusters, and this model was used to predict the 

probability of strong adsorption over Au9-Au10 clusters (data unseen by the model).  The 

new model was found to be also significant with its G value of 27.7, which is significantly 

higher than the critical chi-square value (7.81). Figure 5.37a and Figure 5.37b compares 

the probabilities of models generated from Au2-Au10 and Au2-Au8 respectively; the 

numerical values of predicted probabilities for Au9-Au10 were also given on the top of the 

corresponding bars. The predictions of both models for Au10
-
 clusters are quite close with 

each other (26.8%-26.3%) as well as with the DFT computed value (16.7%).  The 

probability of strong adsorption for Au9 is predicted better by the new model (2.3% 

compared to 11.9% of the original model) since the DFT computed value is 0%. The 

0

20

40

60

80

100

2 3 4 5 6 7 8 910 2 3 4 5 6 7 8 910 2 3 4 5 6 7 8 910

%
 P

ro
b

a
b

il
it

y
 o

f 
st

ro
n

g
 O

2
a

d
so

rp
ti

o
n

Size

anionic neutral cationic

(a)

0

20

40

60

80

100

2 3 4 5 6 7 8 910 2 3 4 5 6 7 8 910 2 3 4 5 6 7 8 910

%
 P

ro
b

a
b

il
it

y
 o

f 
st

ro
n

g
 O

2
a

d
so

rp
ti

o
n

Size

anionic neutral cationic

(b)



117 

 

 

 

probability of the Au10
+
 cluster changes from 2.4% to about 0%, both being lower than the 

actual probability of 20% found by DFT calculations; however the model still successfully 

captures the low probability of strong adsorption for this cluster.  

 

5.2.2.4. Structural Properties Versus O2 Adsorption Strength. Finally, the structural 

properties were used to model the strength of O2 adsorption (Table 5.15). The G value 

(14.3) of the model is still above the critical chi-square value (9.49) indicating that the 

model is still significant. The only significant variable for the adsorption strength, which 

has a p value below 0.05, is the ionization potential.  

 

Table 5.15. Statistics of structural properties versus O2 adsorption strength. 

Structural  

Properties 

β 

(regression 

coefficient) 

SE(β) 

(standard error  

of regression 

coefficient)  

ZWald 

(β /SE(β)) 
p value of 

ZWald 
βlower βupper 

constant term 3.84 3.65 1.05 0.294 -3.31 11.0 

HOMO-LUMO gap 0.37 2.36 0.15 0.877 -4.27 5.00 

binding energy -2.50 1.55 -1.61 0.107 -5.54 0.54 

ionization potential -0.25 0.12 -2.11 0.035 -0.48 -0.02 

coordination number 0.03 0.30 0.10 0.924 -0.56 0.61 

  

 

The ionization potential has a negative coefficient meaning that the strength of 

adsorption is negatively affected by this variable. This is something expectable for the 

anionic and neutral clusters since the adsorption of O2 on these clusters are known to be 

accompanied by an electron transfer from Au to the * orbital of O2 [100, 226, 229]. 

Hence, the lower the value of ionization potential, which is defined as the amount of 

energy required to pull off an electron, the easier to make the electron transfer required for 

the adsorption. On the other hand, an electron transfer in the opposite direction (from O2 to 

Au) is observed for the cationic clusters during O2 adsorption [52]. This means that for the 

cationic clusters, adsorption of O2 need not be stronger as ionization potential decreases, 

which is contradictory to the suggestion of the model. This explains the relatively lower G 

value (lower prediction ability) for this model compared to the previous models above.  

 

14.3G   2 0.95,4 9.49 
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5.3. Knowledge Extraction from Published Data 

 

5.3.1. Neural Network Analysis of Selective CO Oxidation over Copper-Based 

Catalysts for Knowledge Extraction from Published Data 

 

The database for Cu based catalysts was constructed from the experimental data 

reported in 20 selected publications (as described in Section 3.5). Some of the variables in 

these works (as shown in Table 3.4) are continuous in their nature (Cu weight percentage, 

metal additive weight percentage, calcination temperature and time, reaction temperature, 

feed compositions, and F/W), whereas others are categorical (catalyst preparation method, 

metal additive type, support type).  

 

Each continuous variable was treated as one input to the neural network in the range 

between the minimum and maximum values reported in the 20 publications. Each option 

for the categorical variables, such as support type and preparation method, was treated as 

an individual input variable having the value of 1 or 0 depending whether it was used or 

not, respectively. For example, the catalysts in the database were prepared by one of the 

eight preparation methods described in Table 3.5. This variable was introduced into the 

neural network through eight input neurons, corresponding to one neuron for each method. 

For the data points taken from each publication, the input neuron corresponding to the 

preparation method used in that publication had the value of 1, and the input neurons of the 

other seven methods had the value of 0. Similarly, each second metal additive option was 

introduced through a neuron that had the value of 0 if that metal was not used for that data 

point. On the other hand, if the metal was used, the percentage loading of that metal was 

taken as the value of that variable (continuous), allowing the network to predict the effects 

of both metal type and loading. As a result, 14 variables (Table 3.5, column 1) treated 

through 32 input entries (Table 3.5, column 3), were used for the neural network models. 

The ranges of the continuous variables are also as given in Table 3.5. 

 

Figure 5.38 shows a simple representation of the conceptual approach to the 

problem. First, the optimal neural network topology representing this database was 

searched by analyzing the performances of several networks according to their 

generalization accuracies [212], which should be as high as possible if the network is to be 
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used for knowledge extraction from the literature (a generic neural network structure is 

shown in Figure 5.39). Then, the optimal network topology was trained again using the 

data from 19 publications and used to predict the results in the remaining publication to 

test the ability of the network to predict the unseen data. This procedure was repeated until 

all of the publications had been tested to ensure that the optimal network structure could 

predict the unseen data over the widest possible range of experimental conditions. The 

differences between the predictions and the corresponding experimental results were used 

to determine the mean absolute error of testing for each publication (dividing the sum of 

absolute errors by the number of data points used in that publication). These error values 

indicate whether the results of the corresponding publication could be predicted by a neural 

network instructed by the experimental results of the other works [53].  

 

As the next step, if necessary, the unsuccessful predictions could be used to 

determine the limits and exclusions of the network and to reconstruct the database and/or 

the optimal network topology. In the present case, however, the exclusions and limits 

identified did not require any reconstruction. 
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Figure 5.38. Conceptual approach for knowledge extraction from published data for Cu-

based catalysts [53]. 
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Figure 5.39. A generic neural network topology modeling catalytic performance [53]. 

 

5.3.1.1. Constructing the Optimal Neural Network Model. To find the best neural network 

model representing the database, several network topologies were tested and compared 

according to their RMSEs for testing and training (Figure 5.40). Only the results of two-

hidden-layer networks are presented here because they produced better fits than single-

hidden-layer networks. The notation a-b is used to label the networks, where a and b refer 

to the numbers of neurons in the first and second hidden layers, respectively. 

 

 

Figure 5.40. Comparison of errors for various neural network topologies [53]. 
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As the network size increases, the training error generally decreases because of the 

use of more weights [118, 212]. The testing error, on the other hand, has the tendency to 

decrease first and then to increase as the network gets larger, because of the increase in the 

degree of overlearning [53]. Because the main purpose was to find a successful 

knowledge-extraction model with the ability to predict the results of a new set of 

conditions using existing data, the testing error should be as small as possible. Hence, the 

network architecture (7-7) with the lowest RMSE of testing (8.69) was chosen as optimal 

and used in the remaining parts of the work. It should also be noted from Figure 5.40 that 

the increase in the RMSE for testing in large networks was not as sharp as the decrease in 

the small sizes. This is a good indicator that the overlearning in the large networks was 

apparently prevented because of the use of the early-stopping technique. Plots of 

experimental versus predicted CO conversions for training and testing are shown in Figure 

5.41, which indicates considerably successful fittings. 

 

  

Figure 5.41. Experimental vs. predicted CO conversion values for the entire database: for 

(a) training, (b) testing [53]. 

 

5.3.1.2. Testing the Optimal Network to Predict the Unseen Data. The 7-7 network 

structure was used to predict the results obtained in each publication after being retrained 

with the remaining 19 publications. This procedure was repeated for 14 publications, so 

that the ability of the network to predict the unseen data could be seen over a wide range of 

experimental conditions. The remaining six publications were left out of testing because 

they had some unique variables that did not exist in the other publications. For example, 
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Kosmambetova et al. [146] tested the effects of TiO2 and MnO2 as supports, whereas the 

other publications mostly used CeO2 as the support. Similarly, Ribeiro et al. [149] studied 

an uncommon support (Nb2O5) that was not repeated in any other work. Naturally, when 

the data related to these unique experiments is not fed to the neural network during the 

training process, there is no way for a model to learn the effects of these supports and 

accurately predict the corresponding CO conversions. Indeed all those supports were 

reported to provide poor CO conversions compared to the use of CeO2 [146, 149]; and 

there were no such data in the other publications that would have taught this information to 

the network. Although these six publications were excluded in the testing stage, the 

database or optimal network did not need to be reconstructed. These data were still 

beneficial in enriching the model because of their common variables such as temperature 

or Cu amount, and the unique variables did not participate in the predictions, so that they 

did not have any negative effects. 

 

Table 5.16 reports the performances of the neural networks in predicting the 

outcomes of the publications in order from the highest R
2

test values to the lowest. The 

predictions for 11 publications of the 14 tested were quite successful, as indicated by their 

mean absolute errors (lower than 15%). For example, the mean absolute error of testing for 

the work of Gomez-Cortés et al. [148] was 6.06%, meaning that the corresponding 

conversion values could be estimated with an average accuracy of ±6.06%. This can be 

considered as a quite successful prediction, as is also evident from the R
2
 test value of 

0.946. 

  

Plots of predicted versus experimental CO conversions for the most successfully 

predicted six publications are presented in Figure 5.42. The symbols represent the CO 

conversion results of the corresponding publication predicted by the neural network model 

constructed with the remaining 19 publications, plotted against the experimental values 

from that publication. Although the deviation of the data points from the y=x line seems to 

be significant in some of the plots, the predictions are actually much better than they 

appear. Most of the experimental data points are near 100% CO conversion level leading to 

the fact that the neural networks are better tuned to this region (because the data around 

this conversion level had more effect on determining the weights of neural networks). 

Consequently, the model predictions are better for the conversions near 100%. These well-
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predicted data points overlap with each other, whereas the data points at lower conversion 

values are mostly scattered as individual points, giving a false impression of the fitness of 

the models. As a result, the models should be evaluated and compared using the R
2
 values 

rather than their appearances. 

 

Table 5.16. Prediction errors of individual publications for Cu based catalysts. 

Reference 

Mean 

Absolute 

Error of 

Testing 

R2
test Possible Explanation 

Gomez-Cortés et 

al. [148] 
6.06 0.946 

predicted successfully 

Li et al.30 [153] 4.55 0.935 

Razeghi et al. 

[154] 
7.63 0.928 

Zhu et al. [29] 3.70 0.910 

Jung et al. [143] 6.09 0.897 

Wu et al. [152] 8.66 0.882 

Liu et al. [30] 9.87 0.855 

Avgouropoulos & 

Ioannides [85] 
11.01 0.798 

Kim & Cha [88] 11.98 0.791 

Avgouropoulos et 

al. [142] 
10.72 0.725 

Ayastuy et al. 

[151] 
13.48 0.694 

Zou et al. [28] 16.56 0.373 conversion is too low compared to other studies 

could not be predicted 

successfully probably 

due to these reasons 

Martinez-Arias et 

al. [86] 
20.61 0.309 significant activity loss at high temperatures 

Lendzion-Bielun 

et al. [155] 
15.47 0.142 conversion is too low compared to other studies 

Park et al. [144]   one of the two papers with Al2O3 as support* 

these variables are 

unique to these papers 

Polster et al. [150]   use of urea gelation as preparation method 

Marino et al. 

[145] 
  use of MgO, La2O3 as support 

Firsova et al. 

[147] 
  use of Fe & Ni as second metal additive 

Kosmambetova et 

al. [146] 
  use of TiO2, Al2O3, MnO2 as support 

Ribeiro et al. 

[149] 
  use of ZrO2, Nb2O5 as support 

* the other publication containing Al2O3 (Kosmambetova et al [146]) did not have sufficient number of data 

points for prediction of its results. 

  



125 

 

 

 

 

 

 

Figure 5.42. Experimental vs. predicted CO conversion for:  (a) Gomez-Cortés et al. [148], 

(b) Li et al. [153], (c) Razeghi et al. [154], (d) Zhu et al. [29], (e) Jung et al. [143], (f) Wu 

et al. [152], (g) Liu et al. [30], (h) Avgouropoulos and Ioannides [85]. 

 

The data from publications that were successfully predicted usually contained the 

most commonly studied variables such as temperature, Cu content, and feed composition 

(as opposed to the six publications left out because of their unique variables), whereas the 
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three publications that could not be predicted successfully had unexpectedly low or high 

CO conversions. This suggests that, if a sufficient number of data points around a set of 

conditions are available in the literature on catalytic CO oxidation, the neural networks can 

indeed be used to predict the outcome of the experimental conditions that have not yet 

been studied. 

 

5.3.1.3. Predicting the Effects of Catalyst Variables. Experimental works in the field of 

catalysis are performed not just to find the optimum conditions, but also to analyze the 

effects of catalyst preparation or operating variables so that the catalytic processes can be 

understood better. These effects should also be part of the knowledge extraction from the 

literature. Therefore, the neural network was also tested whether it could predict the trends 

reported in the literature. In this section, some sample plots of experimental versus 

predicted CO conversions for the most commonly studied variables are present. The 

symbols in Figures 5.43-5.49 show the experimental data reported in the corresponding 

publication, and the lines are the model predictions.  

 

In Figure 5.43, the effect of Cu content, which is one of the most important catalyst 

preparation variables for this catalytic system, on CO conversion is analyzed through the 

experimental results reported by Wu et al. [152], Zhu et al. [29], Gomez-Cortés et al. [148] 

and Ayastuy et al. [151]. The CO conversion was found to increase with increasing 

temperature in all four works, although some activity loss with a further increase in 

temperature was also observed in the studies of Wu et al. [152] and Gomez-Cortes et al. 

[148]. As shown in Figure 5.43, the model predictions for all four publications were quite 

satisfactory. 

 

It should be noted that the experimental data in these four publications were obtained 

for different values of other input variables, as detailed in the caption of Figure 5.43. 

Therefore, the plots presented in this figure, as well as the others in the remainder of this 

section should be used to compare the experimental and predicted CO conversion values 

but not the experimental works among themselves. 
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Figure 5.43. Effect of Cu content on CO conversion for: (a) 1% CO, 1% O2, 50% H2, 15% 

CO2, 10% H2O [152], (b) 1% CO, 1% O2, 50% H2 [29], (c) 1% CO, 1% O2, 50% H2 [148], 

(d) 1% CO, 1% O2, 60% H2 [151]. 

 

The type and loading of metal oxide additive are also significant for the activity of 

the CO oxidation catalysts. Li et al. [153] reported that, when a small amount of 

manganese oxide was added to the catalyst, a more stable solid with a larger catalyst 

surface area was formed, and more lattice oxygen was supplied, thereby increasing the 

catalytic activity. The positive effect of Mn addition was more apparent at lower 

temperatures, as shown in Figure 5.44. The neural network model also successfully 

predicted the general trends, although the predictions were slightly lower than the 

corresponding experimental values. 
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Figure 5.44. Effect of Mn/Cu molar ratio on CO conversion for 5 wt.% Cu over CeO2 (1% 

CO, 1% O2, 50% H2, F/W=60000 cm
3
/g∙h) [153]. 

 

 

Figure 5.45. Effect of calcination temperature on CO conversion for 5.1 wt.% Cu over 

CeO2 (0.8% CO, 0.8% O2, 71.9% H2, 23.5% CO2, F/W=37440 cm
3
/g∙h) [143]. 

 

The effects of support type and catalyst preparation method could not be analyzed by 

the neural network model, because each publication used only one support and preparation 

method. Comparison of the data from two or more publications in this respect was also not 

possible because their experiments were carried out under different conditions. The only 

remaining catalyst preparation variable that could be analyzed is the calcination 

temperature. Although only Jung et al. [143] explicitly studied the effect of calcination 

temperature by comparing the activities of the catalysts calcined at various temperatures, 

other researchers also calcined their catalysts, providing some additional knowledge in this 
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area. The experimental and predicted CO conversions obtained at calcination temperatures 

of 700 and 900 
o
C are compared in Figure 5.45 for the study of Jung et al. [143]. The 

general trend was successfully predicted by the neural network model, although the 

predictions were not as good as for the Cu and Mn loadings.  

 

Next, the effects of operating variables on CO conversion starting from H2 in the feed 

were analyzed. The performance of the CO oxidation catalysts in a hydrogen-rich 

environment is important, as the catalysts should be able to oxidize carbon monoxide but 

not hydrogen [1]. Ayastuy et al. [151] tested their 7 wt.% Cu-containing catalyst, which 

exhibited the highest activity under the experimental conditions studied, in the presence 

and absence of H2. As shown in Figure 5.46, the conversion was found to increase with 

increasing temperature and reached 100% at about 130 
o
C in the absence of H2. The 

presence of 60% H2 lowered the temperature range required for high activity [151]. Again, 

the effect of this variable was also predicted with an acceptable accuracy by the neural 

network model. 

 

 

Figure 5.46. Effect of H2 on CO conversion for 7 wt.% Cu over CeO2 (1% CO, 1% O2, 

F/W=120000 cm
3
/g∙h) [151]. 

 

In Figure 5.47, the effect of the amount of O2 in the feed on the catalytic activity is 

analyzed through the results of two works that were performed with 1% CO in the feed 

[30, 88]. As indicated by Figure 5.47, the use of 0.5% (stoichiometric) or 1% O2 did not 

make much difference at low temperatures, whereas the use of 1% O2 provided slightly 
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better performance at high temperatures. The model predictions were again quite 

reasonable at low and moderate temperatures. The discrepancy between the experimental 

and predicted conversions at high temperatures (for 0.5%O2) in Figure 5.47a [88] can be 

attributed to the fact that the effect of O2 on the catalytic activity was studied in only these 

two publications. As a result, the decrease in CO conversion at high temperatures in the 

work of Kim and Cha [88] probably caused a false prediction of the same trend for the 

results of Liu et al. [30] and vice versa. 

 

   

Figure 5.47. Effect of O2 on CO conversion (a) 20 wt.% Cu over CeO2 (1%CO, 50%H2, 

F/W=120000 cm
3
/g∙h) [88], (b) 10 at.% Cu over CeO2 (1%CO, 50%H2, F/W=80000 

cm
3
/g∙h) [30]. 

 

For small or medium-size fuel-cell applications such as houses and transportation 

vehicles, it has been proposed that H2 be generated by steam reforming with the use of 

hydrocarbons or alcohols instead of being stored in gaseous form [53]. The hydrogen 

produced by this method contains CO2 and H2O; hence, any CO oxidation catalyst that can 

be used for this purpose has to work in the presence of some significant levels of CO2 and 

H2O [28, 142]. The effects of CO2 and H2O are analyzed in Figure 5.48 through the 

experimental results reported by Avgouropoulos and Ioannides [85], Liu et al. [30], 

Gomez-Cortés et al. [148] and Razeghi et al. [154].  
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Figure 5.48. Effects of CO2 and H2O on CO conversion for: (a) Cu/(Cu+Ce) molar ratio of 

0.15 over CeO2 [85], (b) 10 at.% Cu over CeO2 [30], (c) 6 wt.% Cu over CeO2 [148], (d) 5 

wt.% Cu over CeO2 [154]. 

 

Even though the experiments were carried out under different catalytic preparation 

and operating conditions, the observations mostly coincide: The addition of both CO2 and 

H2O decreases CO conversion and increases the temperature required for high catalytic 

activity. Competitive adsorption of CO and CO2 [30, 85, 148] and carbonate formation 

over the catalyst surface caused by the adsorbed CO2 [154] were argued to be the possible 

reasons for the negative effects of CO2. On the other hand, H2O is believed to block the 

active sites of the catalyst [30, 85, 148] and form hydroxyl groups, decreasing the CO 

adsorption [151]. The trends reported by each publication were again successfully 

predicted by the neural networks.  
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Finally, the effect of F/W (W/F is used in some of the works) on the catalytic activity 

is analyzed through the results of Avgouropoulos and Ioannides [85] and Kim and Cha 

[88] in Figure 5.49. Two levels of F/W are compared in the figure, and it can be observed 

that, at high F/W, the catalytic activity is lower because of the use of a rapid gas feed per 

amount of catalyst, as expected. Although there are some discrepancies between the 

experimental and the neural-network-estimated CO conversion values, the predictions are 

still in accordance with the experimental trends. 

 

  

Figure 5.49. Effect of F/W on CO conversion for: (a) Cu/(Cu+Ce) molar ratio of 0.15 over 

CeO2 (1% CO, 1.25% O2, 50% H2) [85], (b) 20 wt.% Cu over CeO2 (1% CO, 1% O2 50% 

H2, 13.5% CO2, 20% H2O) [88]. 

 

5.3.1.4. Significance Analysis for Catalyst Variables. In this section, the relative 

significances of the catalyst preparation and operating variables on CO conversion are 

analyzed. This is an important piece of knowledge because an effective search for the best 

catalyst requires the manipulation of the most influential preparation and operating 

variables. Table 5.17 reports the relative significances of the preparation and operating 

variables. The reaction temperature was found to be the most influential variable (relative 

significance of 54.3%); its exclusion increased the RMSE of the model more than the 

exclusion of any other variable. This is an expected result from both mathematical 

(conversion goes from nearly 0% to 100% in the temperature range studied) and theoretical 

(temperature is usually important for most reactions) points of view. This also indicates 

0

20

40

60

80

100

50 100 150 200 250

C
O

 C
o

n
v

e
r
si

o
n

 %

Temperature oC

exp., F/W=25,000 pred., F/W=25,000

exp., F/W=120,000 pred., F/W=120,000

(a)

0

20

40

60

80

100

100 125 150 175 200

C
O

 C
o

n
v

e
r
si

o
n

 %

Temperature oC

exp., F/W=15,000 pred., F/W=15,000

exp., F/W=120,000 pred., F/W=120,000

(b)



133 

 

 

 

that the current approach can be used to find the most influential variable if it is not already 

known [53].  

 

Table 5.17. Relative input significances for Cu based catalysts. 

Variable 

RMSE 

without 

the Variable 

RMSE 

Difference* 

Relative 

Significance (%) 

Relative group 

Significance (%) 

base metal (Cu wt.%) 11.39 7.07 14.0 

26.5 

support 8.06 3.74 7.4 

preparation method 5.36 1.04 2.1 

second metal additive 5.10 0.78 1.5 

calcination conditions 4.72 0.40 0.8 

reaction temperature 31.74 27.42 54.3 

73.5 

H2O vol.% 7.61 3.29 6.5 

CO2 vol.% 6.71 2.39 4.7 

F/W 5.54 1.22 2.4 

H2 vol.% 5.50 1.18 2.3 

O2 vol.% 5.41 1.09 2.2 

CO vol.% 4.82 0.50 1.0 

time on stream 4.75 0.43 0.8 

*the difference between RMSE without the variable or variables and RMSE of the original model (4.32) 

 

Cu weight percentage was found to be the second most significant variable, with 

14.0% relative significance. This is also reasonable, as one might expect the significance of 

Cu to be high because it is the active ingredient of the catalyst. However, all of the 

catalysts examined by the neural network models contained quite similar amounts of Cu as 

a result of experience accumulated over many years. In fact, the relative significance of 

14.0% measured how the CO conversion was affected by the change of Cu weight 

percentage within the experimental range used in these publications. Otherwise, dramatic 

changes in Cu content (for example, setting the Cu weight percentage to 0) would have 

resulted in a higher relative significance. Similarly, if the temperature range had been set to 

a narrower interval (for example, 90-100 
o
C), the significance of the reaction temperature 

would not have been as great as found here, because a 10 
o
C change would not have 

produced a significant effect on CO conversion. Therefore, the relative significances for all 

of the variables in Table 5.17 should be considered strictly within the range of 
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experimental conditions investigated. This is exactly the information needed to be able to 

manipulate the most significant variable for future works by keeping all other variables in 

commonly reported ranges. 

 

5.3.2. Analysis of Selective CO Oxidation over Noble Metal-Gold Based Catalysts for 

Knowledge Extraction from Published Data by Clustering and Artificial Neural 

Networks 

 

The database for noble metal-gold based catalysts were constructed from the 

experimental data reported in 71 publications (as explained in Section 3.6), and the 

variables were treated similar to the work described above for the Cu based catalysts. The 

metal amount, calcination temperature and time, promoter amount as well as all the 

operating conditions were taken as continuous variables; whereas catalyst preparation 

method, base metal, support and promoter types were categorical. Each continuous 

variable was treated as one input to the neural network in the range between the minimum 

and maximum values reported in the entire set of publications. Each option for the 

categorical variables was treated as an individual input variable having the value of 1 or 0 

depending whether it was used or not, respectively. For example fifteen different supports 

were used to prepare the catalysts in the database. This variable was introduced into the 

neural network through fifteen input neurons, corresponding to one neuron for each 

support type. The input neuron referring to the support used in a publication had the value 

of 1 while the input neurons representing the other fourteen supports had the value of 0. 

Base metal type and amount as well as the second metal type and amount carry categorical 

and continuous nature at the same time; thus, each base metal and second metal additive 

option was introduced through an input entry that had the value of 0 if that metal was not 

used. On the other hand, if the metal was used, the percentage loading of that metal was 

taken as the value of that variable (continuous), allowing the model to predict the effects of 

both metal types and their loadings. As a result, 14 variables (Table 3.7, column 1) treated 

through 60 input entries (Table 3.7, column 3), were used for modeling purposes.  

 

Since it was impossible to predict the effects of unique variables on the catalytic 

activity, the data to be tested was reduced by eliminating these unique variables from the 

datasets extracted from each publication. If a base metal-support combination was not 
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studied in at least three publications those data were treated as unique; thus, the data of 

some publications had to be completely removed or only some parts of them (that were 

unique) were discarded. As a result, the reduced dataset (to be used for testing) contained 

4070 data points from 58 publications as shown in the last column of Table 3.6. 

 

First, the direct neural network approach was employed by finding the optimal neural 

network model that best represents the data. Then, the two-step approach composed of 

clustering and neural network modeling was implemented and the performances of both 

approaches on predicting the unseen data were compared. Finally, the effects of catalyst 

preparation and operating variables as well as their significances were determined by the 

predictions of the two-step approach.  

  

 The two-step approach to the problem is shown in Figure 5.50. The entire database 

(containing 5008 data points) was constructed from 71 publications and after eliminating 

the unique variables, the reduced dataset (containing 4070 data points) from 58 

publications was formed. First, the direct neural network approach was employed by 

calculating the training errors of the neural networks from the full database and the testing 

errors from the reduced database. The optimal neural network topology representing this 

database was searched by analyzing the performances of several networks according to 

their generalization accuracies. After finding the optimal neural network topology it was 

used for predicting the unseen data similar to the procedure implemented for the data of 

Cu-based catalysts extracted from the literature (Section 5.3.1). In addition, the optimal 

topology was used to calculate the relative significances of each input variable. 

 

The two-step approach procedure started by genetic algorithm based clustering of the 

reduced data. In order to find the optimum number of clusters separating the reduced 

dataset, several numbers of clusters were tested by a procedure similar to the k-fold cross 

validation method used for neural network modeling. Since the main purpose was to 

predict the experimental results of a publication by using the data of the other publications, 

the data of 57 out of 58 publications were used to construct the clusters; whereas the data 

of the remaining one publication was allocated to those clusters and the SSE value 

(calculated by the distance of each data point to the center of the cluster it belongs to) was 

recorded. The procedure was repeated 58 times each time with different publication to be 
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tested and different publications to construct the clusters [231]. The total SSE value 

calculated through 58 publications was recorded as the SSE of testing. The optimum 

number of clusters was chosen as the one that leads to the smallest SSE value. 

 

 

Figure 5.50. Two-step approach for knowledge extraction from published data for noble 

metal-Au based catalysts. 

 

Genetic algorithm based clustering + neural network approach Direct neural network approach 

0 

Determine 

the limits and 

exclusions, 

reconstruct 

the database  

(reduced 

database) 

 

Construct the 

database from 

published 

papers  

(full database) 

Yes 

No 

Repeat the 

procedure 

until the 

networks 

are tested 

for all 

publications 

Use the networks for knowledge extraction 

form the published data 

 

Predict the outcome of untested catalyst 

preparation and operating conditions 

Predict the effects of catalyst preparation 

and operating variables 

Are all the publications 

tested? 

Test the ability of the networks to predict the unseen data 

  

test  

the networks  
train the 

networks 

data from 

remaining  

one paper 

 
data from  

57 of 58 

publication 

 

 

 

 

 

 

1 

2 

72 

         

Use the reduced database to 

apply genetic algorithm based 

k-means clustering to separate 

the data and determine the 

optimum number of clusters 

(100 clusters) 

 
 

 

1 

2 

58 

Construct individual 

neural networks for 

the data in each cluster 

(100 networks) 

(100 networks for 100 clusters) 

0 

Use the full 

database to 

calculate the 

training 

errors of 

neural 

networks 

Use the 

optimal 

topology to 

calculate the 

significance 

of input 

variables 

 

0 

Use the 

reduced 

database to 

calculate the 

testing errors 

of neural 

networks 

Determine  

the optimal 

topology 

having the 

lowest 

testing error 

 



137 

 

 

 

After finding the optimum number of clusters to separate the data, individual one 

hidden layer neural networks were constructed for the data in each cluster. These networks 

were trained using the data from 58 publications and used to predict the results in the 

remaining publication to test the ability of the networks to predict the unseen data. This 

procedure was repeated until all of the publications were tested to ensure that the optimal 

network structure could predict the unseen data over the widest possible range of 

experimental conditions. The differences between the predictions and the corresponding 

experimental results were used to determine the mean absolute error of testing and the R
2
 

values for each publication. These parameters indicate whether the results of the 

corresponding publication could be predicted by a neural network instructed by the 

experimental results of the other works.  

 

5.3.2.1. Modeling by the Direct Neural Network Approach. Several two hidden layer 

network topologies with 60 input variables and one output variable (CO conversion) were 

constructed, and the performances of the networks were compared according to their 

RMSEs of training and testing as shown in Figure 5.51. The entire dataset (containing 

5008 data points from 71 publications) was used to find the training errors while the 

reduced dataset (containing 4070 data points from 58 publications without any unique 

catalysts) was used to determine the testing errors of the neural networks. The notation “a-

b” is used to label the networks, where “a” and “b” refer to the numbers of neurons in the 

first and second hidden layers, respectively.  

 

 

Figure 5.51. Comparison of errors for various neural network topologies (x-axis shows the 

number of neurons in the first and second hidden layers, respectively). 
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Figure 5.52. Experimental versus predicted conversion values (a) for training the entire 

database (b) for testing (4 fold cross validation) the reduced data. 

 

Similar to the previous cases, the training error decreases with the increase of the 

network size [51, 53]. On the other hand, the testing error decreases with increasing 

network size and tends to stay constant (probably due to the use of early stopping to 

prevent overlearning). The neural network topology (20-20) with the minimum RMSE of 

testing (13.00) was chosen as the network that best represents the experimental data. Plots 

of experimental versus predicted CO conversions of training and testing for this network 

are shown in Figure 5.52, which indicates considerably successful fittings. The statistical 

fitness of the model for the individual papers is also given in Table 5.18 to compare with 

the fitness of the two-step model presented in the next section.  

 

5.3.2.2. Modeling by the Two-Step Approach. After finding the optimal neural network 

topology for the direct neural network approach, the two-step approach was implemented 

by first finding the optimal number of clusters to separate the data. If the database was 

divided to small number of clusters, the data belonging to each cluster would be too 

dissimilar and the SSE value will naturally be too high [231]. On the other hand, if the 

number of clusters was large, each cluster may contain very little number of data points 

being unique to that cluster (lack of generalization ability); in addition, it would be quite 

difficult to construct neural network models with such datasets too small in size. Hence, 
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generalization ability) was searched. In order to find the optimum number of clusters, 4-

fold cross validation method was applied on the reduced dataset. 

 

Table 5.18. Prediction errors of individual publications for noble metal-Au based catalysts 

by direct neural network approach. 

Reference R
2
test 

Mean 

Absolute 

Error of 

Testing 

Reference R
2

test 

Mean 

Absolute 

Error of 

Testing 

Neri et al. [204] 0.77 14.8 Uguz and Yildirim [138] 0.18 18.2 

Luengnaruemitchai et al. [194] 0.62 14.0 Manasilp and Gulari [160] 0.16 20.5 

Liotta et al. [209] 0.62 21.2 Son [13] 0.15 30.8 

Wootsch et al. [78] 0.55 21.3 Tibiletti et al. [166] 0.15 24.2 

Ko et al. [18] 0.52 20.3 Avgouropoulos et al. [198] 0.14 10.9 

Chin et al. [173] 0.46 30.0 Imai et al. [202] 0.14 25.3 

Suh et al. [171] 0.45 19.9 Son and Lane [159] 0.13 19.4 

Qiao et al. [197] 0.43 17.7 Bulushev et al. [161] 0.13 11.5 

Ribeiro et al. [192] 0.41 23.0 Luengnaruemitchai et al. [22] 0.13 10.7 

Yung et al. [201] 0.39 24.5 Chang et al. [188] 0.11 21.1 

Cho et al. [14] 0.34 28.2 Chen et al. [184] 0.10 14.8 

Minemura et al. [19] 0.33 20.7 Ince et al. [170] 0.10 26.1 

Ayastuy et al. [15] 0.32 22.7 Bethke and Kung [156] 0.08 10.5 

Özdemir et al. [165] 0.30 18.9 Galetti et al. [190] 0.06 24.4 

Yan et al. [169] 0.28 16.9 Zhang et al. [200] 0.05 24.8 

Padilla et al. [206] 0.27 31.3 Tabakova et al. [211] 0.05 18.9 

Ko et al. [176] 0.27 23.2 Monyanon et al. [181] 0.03 21.2 

Han et al. [80] 0.26 21.3 Pozdnyakova et al. [174] 0.01 21.7 

Gluhoi and Nieuwenhuys [27] 0.25 9.2 Mozer et al. [205] 0.00 16.7 

Teschner et al. [187] 0.25 16.7 Wang et al. [180] 0.00 1.5 

Parinyaswan et al. [178] 0.24 15.7 Grisel and Nieuwenhuys [158] 0.00 32.7 

Marques et al. [177] 0.24 33.0 Tompos et al. [196] 0.00 14.2 

Tanaka et al. [195] 0.23 23.4 Wootsch et al. [167] 0.00 22.9 

Luengnaruemitchai et al. [24] 0.22 30.0 Davran-Candan et al. [139] 0.00 22.3 

Scire et al. [193] 0.21 18.1 Sangeetha and Chen [207] 0.00 17.5 

Avgouropoulos et al. [142] 0.20 27.1 Huang et al. [186] 0.00 18.2 

Chin et al. [17] 0.19 35.9 Marino et al. [168] 0.00 19.2 

Ko et al. [10] 0.19 18.3 Zhao et al. [199] 0.00 34.4 

Huang et al. [191] 0.19 19.7 Zhang et al. [162] 0.00 2.4 
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Figure 5.53. Testing and training SSE values for different number of clusters. 

 

In Figure 5.53, testing SSEs for different number of clusters are shown by black bars. 

The white bars on the same figure correspond to the total SSE of all the clusters when all 

the data (58 out of 58 publications) were used for training (for constructing the clusters). 

As it was expected, the SSE of training decreases as the number of clusters increases 

(would become zero if the number of clusters were equal to the number of data points). On 

the other hand, the SSE of testing first decreases then tends to stay constant. It seems that 

separating the data to more than 100 clusters provides no additional gain in terms of 

generalization accuracy; hence, the optimum number of clusters was chosen as 100.  

 

The power of the two-step approach was demonstrated on the training data of the 

entire database (71 publications) by first separating them into 100 clusters and then 

modeling the data belonging to each cluster by different small size neural networks (with 

one hidden layer). The improvement of the model can be observed by comparing Figure 

5.52a (R
2
=0.952) and Figure 5.54 (R

2
=0.978), where the former is the predicted CO 

conversions versus the experimental ones obtained by direct neural network approach and 

the latter is the same analysis for the two-step approach. 

 

Next, the testing performance of two-step approach based on clustering and neural 

network modeling was analyzed. The experimental results of 32/58 publications were 

predicted with R
2
test values higher than 0.5 by this approach (Table 5.19 and Table 5.20) 

while 5/58 publications had been predicted with R
2

test values higher than 0.5 by the direct 

neural network approach (Table 5.18). The two-step approach was found to be superior in 
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predicting the outcomes of the individual publications and hence, all further analyses in the 

rest of this study were done by this method.  

 

 

Figure 5.54. Experimental versus predicted CO conversion values for training data (71 

publications) by genetic algorithm based clustering and neural network approach. 

 

The results of publications predicted with R
2

test values higher than 0.25 are shown in 

Table 5.19 while those with R
2
test values lower than 0.25 are shown in Table 5.20 with 

possible explanations or comments for the unsuccessful predictions. The most common 

reason for unsuccessful predictions in Table 5.20 was that those publications investigated 

the effects of variables that had been rarely studied in the other publications such as using 

Sm or Pb as a promoter as in the work of Tompos et al. [196] or using Zn as a promoter as 

in the work of Avgouropoulos et al. [198]. If there are no sufficient data for a particular 

variable, the effects related to the presence or absence of that variable is quite hard to be 

determined. In addition, some of the unsuccessfully predicted publications contained 

variables with values being the maximum in the range of all publications, such as using 

F/W of 270000 cm
3
/(h.g) as in the work of Bethke and Kung [156]. When the data at the 

limit of the range of a variable was excluded from the training data, the range of that 

variable becomes narrower and the data to be tested becomes out of the range of the model; 

hence, the model might fail to predict the corresponding results.  
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Table 5.19. Prediction errors of publications for noble metal-Au based catalysts with R
2

test 

higher than 0.25 by clustering and neural network approach. 

Reference R
2
test 

Mean 

Absolute 

Error of 

Testing 

Reference R
2

test 

Mean 

Absolute 

Error of 

Testing 

Chin et al. [17] 0.95 6.21 Özdemir et al. [165] 0.65 13.57 

Padilla et al. [206] 0.95 6.52 Ayastuy et al. [15] 0.64 15.21 

Luengnaruemitchai et al. [194] 0.91 6.22 Huang et al. [186] 0.63 8.09 

Neri et al. [204] 0.87 8.30 Zhao et al. [199] 0.60 11.30 

Chin et al. [173] 0.85 9.68 Gluhoi and Nieuwenhuys [27] 0.58 5.84 

Bulushev et al. [161] 0.85 3.48 Teschner et al. [187] 0.57 12.12 

Koe et al. [10] 0.83 7.54 Avgouropoulos et al. [142] 0.54 18.67 

Yung et al. [201] 0.81 10.93 Galetti et al. [190] 0.53 11.21 

Pozdnyakova et al. [174] 0.81 7.93 Scire et al. [193] 0.53 14.13 

Wang et al. [180] 0.78 0.67 Zhang et al. [200] 0.49 15.76 

Luengnaruemitchai et al. [24] 0.76 14.57 Cho et al. [14] 0.48 21.89 

Uguz and Yildirim [138] 0.76 6.61 Sangeetha and Chen [207] 0.48 10.88 

Ko et al. [18] 0.73 12.51 Zhang et al. [162] 0.48 0.71 

Davran-Candan et al. [139] 0.73 9.73 Ribeiro et al. [192] 0.47 19.66 

Marques et al. [177] 0.73 18.49 Wootsch et al. [78] 0.46 24.74 

Qiao et al. [197] 0.71 10.98 Imai et al. [202] 0.40 21.11 

Son [13] 0.70 13.33 Manasilp and Gulari [160] 0.40 17.38 

Suh et al. [171] 0.70 13.81 Tanaka et al. [195] 0.38 23.79 

Marino et al. [168] 0.69 7.80 Yan et al. [169] 0.34 16.77 

Liotta et al. [209] 0.69 16.32 Mozer et al. [205] 0.33 13.44 

Tibiletti et al. [166] 0.67 13.48 Ko et al. [176] 0.29 20.06 

Tabakova et al. [211] 0.66 11.17 Ince et al. [170] 0.29 20.89 

Grisel and Nieuwenhuys [158] 0.66 16.92 Monyanon et al. [181] 0.28 18.37 
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Table 5.20. Prediction errors of publications for noble metal-Au based catalysts with R
2

test 

lower than 0.25 by clustering and neural network approach. 

Reference R2
test 

Mean 

Absolute 

Error of 

Testing 

Comments for Unsuccessful Predictions 

Avgouropoulos et al. 

[198] 
0.24 10.54 

Au-Zn/CeO2 catalyst was investigated. Zn was used in one more 

publication as a promoter (7 data points) [176]. Although the predictions 

were close, the trends related to the presence of Zn could not be predicted. 

Wootsch et al. [167] 0.20 17.75 
5% CO (maximum in the range of all publications) was used. The 

predicted conversions were somewhat lower than the experimental values. 

Han et al. [80] 0.18 23.88 
Some catalyst preparation details were not clear in this publication. 

Predictions were not satisfactory probably due to the missing data. 

Parinyaswan et al. 

[178] 
0.17 14.57 

Bimetallic Pt-Pd/CeO2 catalyst was investigated. Although the effects 

related to the change of Pt could be predicted to some extent those of Pd 

could not, probably due to Pd being only in this publication 

Tompos et al. [196] 0.15 11.52 

Au-Pb/MgO and Au-Sm/MgO catalysts were investigated; the use of Pb 

was unique to this publication and the use of Sm was done in one more 

publication (18 data points) [198]. Although the predictions were close, 

the trends related to Pb and Sm could not be predicted. 

Son and Lane [159] 0.13 14.91 
The predicted conversion values were close but somewhat higher than the 

experimental values. 

Minemura et al. [19] 0.06 23.70 
Effects of alkali promoters were studied at T=100 oC. Effects of K and Na 

were successfully predicted while those of Li, Rb and Cs were not. 

Huang et al. [191] 0.03 19.44 
Ir/CeO2 was used in only 2 more publications, the data of which (33 

points) were insufficient to predict the results (70 points) in this work. 

Chang et al. [188] 0.03 22.08 
Au/TiO2 was used in only 2 more publications, the data of which (33 

points) were insufficient to predict the results (26 points) in this work. 

Chen et al. [184] 0.00 10.86 
Predictions were quite close to the experimental results but no trend was 

achieved. 

Bethke and Kung [156] 0.00 10.85 
Conversions were too low due to high F/W (maximum in the range of all 

publications); predictions were close but no trend was achieved. 

Luengnaruemitchai et 

al. [22] 
0.00 10.56 

Data accumulated in a small range near 100%; predictions were close but 

no trend was achieved 

 

The experimental CO conversion values from each publication was plotted against 

the predicted conversions, which were achieved by using the data of the remaining 57 

publications, and the most successfully predicted nine publications with the highest R
2

test 

values are presented in Figure 5.55.  In some of the plots the experimental data points are 

accumulated near 100% or 0% CO conversion levels; hence, these points overlap each 

other in the plots. Although some plots indicate some discrepancies between the predicted 

and experimental values, in general good data distributions around the y=x line can be 

observed for all the plots.  
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Figure 5.55. Experimental versus predicted CO conversion for references (a) [182], (b) 

[206], (c) [194], (d) [204], (e) [173], (f) [161], (g) [10], (h) [201], (i) [174]. 

 

5.3.2.3. Predicting the Effects of Catalyst Variables. The two-step approach was used to 

predict the effects of catalyst variables on the catalytic activity. Revealing this information 

accumulated within the publications is a very important piece of knowledge because an 

effective search for the best catalyst requires the analysis of each variable on the catalytic 

activity. The effects of preparation method; calcination conditions; base metal, promoter 

and support types as well as various operating conditions on catalytic activity was 

investigated by some sample plots of experimental versus predicted CO conversions. The 
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symbols in Figures 5.56-5.65 show the experimental data reported in the corresponding 

publication, and the lines are the model predictions.  

 

 The effect of preparation method was investigated through the works of 

Luengnaruemitchai et al. [24] and Ko et al. [10] for Au/CeO2 catalyst (Figure 5.56). 

Luengnaruemitchai et al. compared the activity of Au/CeO2 catalyst prepared by sol-gel 

precipitation (SGP) and co-precipitation (CP), and found that the CP-catalyst had higher 

performance compared to the SGP-catalyst. This was attributed to the fact that catalysts 

prepared by CP had much smaller crystallite size leading to a higher activity [24]. 

Similarly, Ko et al. compared the performance of the catalysts prepared by CP and 

deposition precipitation (DP), and reported that the DP-catalyst was more active for a 

much wider range of temperature due to its relatively smaller crystallite size [10]. All these 

trends were predicted almost perfectly by the neural networks. 

 

     

Figure 5.56. Effect of preparation method on CO conversion for Au/CeO2 (a) 1% CO, 1% 

O2, 40% H2, 2.6% H2O, 2% CO2, F/W=30000 [24]; (b) 1% CO, 1% O2, 10% H2, 2% H2O, 

0% CO2, F/W=60000 [10]. 

 

 The effect of calcination temperature on CO conversion was investigated for Au/FeO 

catalyst under 50% H2 containing stream through the work of Qiao et al. (Figure 5.57) 

[197]. They reported that calcination at high temperatures was detrimental for the catalytic 

activity for this catalyst. The catalyst calcined at 200
o
C were more active in lower 

temperatures, and in order for the catalyst calcined at 400
o
C to reach to the same activity a 
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much higher operating temperature was needed. This trend was also successfully predicted 

by the neural network models. 

 

  

Figure 5.57. Effect of calcination temperature on CO conversion for Au/FeO (1% CO, 4% 

O2, 50% H2, 0% H2O, 0% CO2, F/W=20000 [197]. 

 

The effect of promoter type on CO conversion was analyzed in Figure 5.58, through 

the experimental results of 1 wt.% Pt over Al2O3 (1% CO, 1% O2, 80% H2, 2% H2O, 0% 

CO2, F/W=60000) [10], 1.8 wt.% Pt over Al2O3 (0.7% CO, 0.7% O2, 64% H2, 10.7% H2O, 

21% CO2, F/W=10000) [171], 1 wt.% Au over Al2O3 (1% CO, 1% O2, 60% H2, 0% H2O, 

0% CO2, F/W=24000) [139] and 0.6 wt.% Au over Al2O3 (1% CO, 5% O2, 0% H2, 0% 

H2O, 0% CO2, F/W=25500) [161].  Ko et al. reported that the addition of Ni or Co metal 

oxide promoters to the Pt/Al2O3 catalyst enhanced the catalytic activity by forming highly 

dispersed bimetallic phases on the surface [10]. Almost the same conclusion was achieved 

by Suh et al. for the same catalyst and the positive effect of Co was attributed to the fact 

that Co creates a strong synergetic phase between platinum that also decreases the 

interaction between Pt and Al2O3 [171]. 

 

In Figure 5.58c and Figure 5.58d the experimental and the predicted activities of 

Au/Al2O3 catalysts promoted by Mn and Fe are compared with the activities of the un-

promoted catalysts. The addition of Mn was reported to increase CO oxidation rate by 

providing additional active oxygen for the reaction [139]; whereas Fe was reported to 

enhance the activity by increasing the Au dispersion on the support [161]. Both of these 

effects were successfully predicted by the neural network models.  
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Figure 5.58. Effect of promoter type on CO conversion for (a) 1 wt.% Pt over Al2O3 [10]; 

(b) 1.8 wt.% Pt over Al2O3 [171]; (c) 1 wt.% Au over Al2O3 [139]; (d) 0.6 wt.% Au over 

Al2O3 at 30
o
C [161]. 

  

 The catalytic activity of a selective CO oxidation catalyst can further be improved by 

the addition of a second promoter. In Figure 5.59a the addition of Mg, Fe or Zr to the Pt-

Co/Al2O3 catalyst (1% CO, 1% O2, 60% H2, 0% H2O, 0% CO2, F/W=24000) was 

investigated [138], and in Figure 5.59b the addition of Ce to the Au-Rb/Al2O3 catalyst 

(2.6% CO, 1.3% O2, 0% H2, 0% H2O, 0% CO2, F/W=12000) was observed [27]. Under the 

studied operating conditions, the enhancement of the activity of Pt-Co/Al2O3 catalyst by 

the addition of Mg was experimentally found to be superior to the additions of Fe or Zr 

[138]. On the other hand, the addition of Ce to the Au-Rb/Al2O3 catalyst was found to be 

detrimental in spite of the oxygen supplying property of Ce [27]. The experimental results 

in Figure 5.59 are quite close to the neural network models, which is a further success of 

the modeling approach. 
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Figure 5.59. Effect of second promoter type on CO conversion for (a) 0.7 wt.% Pt and 1.25 

wt.% Co over Al2O3 at 110 
o
C [138],; (b) 5 wt.% Au and 5 wt.% Rb over Al2O3 [27]. 

 

 

Figure 5.60. Effect of base metal and promoter amounts on CO conversion for Pt-Ce/Al2O3 

(1% CO, 1% O2, 98% H2, 0% H2O, 0% CO2, F/W=60000) [13]. 

 

Besides the analysis of catalytic activity according to the presence or absence of a 

base metal or a promoter, the neural network models could also predict the effect of base 

metal and promoter amount on CO conversion as shown in Figure 5.60 [13]. For Pt-

Ce/Al2O3 catalyst, two different levels of Pt and Ce in three combinations were compared 

and it was found that increasing the Pt amount had positive effect on CO conversion, 

whereas, increasing the Ce amount had detrimental effect, which was attributed to the fact 

that excess amount of Ce leaded to higher H2 oxidation decreasing the O2 amount. The 

optimum base metal and promoter amounts were reported to be 5 wt.% Pt and 1 wt.% Ce 

as also successfully predicted by the neural network models. 
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 Among the preparation variables the last to be analyzed is the effect of support type 

on CO conversion through some example studies. Figure 5.61a compares the experimental 

and predicted activities of Pt/Al2O3 with Pt/CeO2 catalysts (2% CO, 1% O2, 70% H2, 0% 

H2O, 0% CO2, F/W=60000) [168], similarly Figure 5.61b compares Pt/Al2O3 with 

Pt/SiO2/Al2O3 (1% CO, 1% O2, 41%H2, 0% H2O, 0% CO2, F/W=40000) [206], Figure 

5.61c compares Au/TiO2 with Au/Al2O3 (1% CO, 1% O2, 0% H2, 0% H2O, 0% CO2, 

F/W=60000) [209], Figure 5.61d compares Au/CeO2 with Au/Fe2O3 (1% CO, 1.3% O2, 

50% H2, 10% H2O, 15% CO2, F/W=120000) [211], Figure 5.61e compares Ir/CeO2 with 

Ir/Al2O3 (2% CO, 1% O2, 40% H2, 0% H2O, 0% CO2, F/W=40000) [186] and Figure 5.61f 

compares Co/ZrO2 with Co/CeO2 (1% CO, 1% O2, 60% H2, 0% H2O, 0% CO2, 

F/W=30000) [199]. Depending on the preparation and operating variables, each support 

leads to a different catalytic activity as almost perfectly predicted by the neural network 

models. 

 

Next, the effects of the operating variables are analyzed through some example 

studies starting from the effect of the presence of H2 on CO conversion. Pozdnyakova et al. 

investigated this effect on Pt/CeO2 catalyst (1% CO, 1% O2, 0% H2O, 0% CO2, 

F/W=73000), and found for the H2 containing stream that the conversion decreased as the 

temperature increased due to the consumption of O2 with H2 to form H2O at high 

temperatures (Figure 5.62a) [174]. A similar trend was observed (Figure 5.62b) by Tibiletti 

et al. for Pt/CeO2 catalyst (1% CO, 2% O2, 0% H2O, 0% CO2, F/W=22000), and they 

attributed the negative effect of H2 to its competitive adsorption with CO to the surface and 

its direct interaction with ceria lattice oxygen enhancing the H2O formation [166]. On the 

other hand, Marques et al. investigated the H2 effect on Pt-Sn/Al2O3 catalyst (5% CO, 5% 

O2, 0% H2O, 0% CO2, F/W=34000), and found that the presence of H2 enhances the 

reaction by lowering the temperature range required for high activity (Figure 5.62c) [177]. 

The predictions in Figure 5.62 lie quite close to the experimental values. 
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Figure 5.61. Effect of support on CO conversion for (a) Marino et al [168], (b) Padilla et 

al. [206], (c) Liotta et al. [209], (d) Tabakova et al. [211], (e) Huang et al. [186], (f) Zhao 

et al. [199]. 

  

 

0

20

40

60

80

100

50 100 150 200 250 300

C
O

 c
o

n
v

er
si

o
n

 %
 

Temperature (oC) 

exp., Pt/Al2O3 pred., Pt/Al2O3

exp., Pt/CeO2 pred., Pt/CeO2

(a) 

0

20

40

60

80

100

80 125 170 215 260

C
O

 c
o

n
v

er
si

o
n

 %
 

Temperature (oC) 

exp., Pt/Al2O3

pred., Pt/Al2O3

exp., Pt/SiO2/Al2O3
pred., Pt/SiO2/Al2O3

(b) 

0

20

40

60

80

100

20 80 140 200 260

C
O

 c
o

n
v

er
si

o
n

 %
 

Temperature (oC) 

exp., Au/TiO2 pred., Au/TiO2

exp., Au/Al2O3 pred., Au/Al2O3

(c) 

0

20

40

60

80

100

100 150 200

C
O

 c
o

n
v

er
si

o
n

 %
 

Temperature (oC) 

exp., Au/CeO2 pred., Au/CeO2

exp., Au/Fe2O3 pred., Au/Fe2O3

(d) 

0

20

40

60

80

100

60 100 140 180 220

C
O

 c
o

n
v

er
si

o
n

 %
 

Temperature (oC) 

exp., Ir/CeO2 pred., Ir/CeO2

exp., Ir/Al2O3 pred., Ir/Al2O3

(e) 

0

20

40

60

80

100

50 75 100 125 150 175 200 225

C
O

 c
o

n
v

er
si

o
n

 %
 

Temperature (oC) 

exp., Co/ZrO2 pred., Co/ZrO2

exp., Co/CeO2 pred., Co/CeO2

(f) 



151 

 

 

 

    

Figure 5.62. Effect of H2 on CO conversion for (a) 1 wt.% Pt over CeO2 [174], (b) 4.75 

wt.% Pt over CeO2 [166], (c) 1 wt.% Pt and 1 wt.% Sn over Al2O3 [177]. 

 

The effect of O2 on CO conversion is shown in Figure 5.63a [174] and Figure 5.63b 

[13] for Pt/CeO2 and Pt/Al2O3, respectively. Both plots compare the experimental and 

predicted conversions attained by 1% O2 and 0.5% O2 in an identical reaction stream, and 

the same conclusions can be predicted: higher O2 leads to higher conversion, which are in 

accordance with the experimental results. 

 

 

Figure 5.63. Effect of O2 on CO conversion for (a) 1 wt.% Pt over CeO2 (1% CO, balance 

H2, F/W=73000) [174]; (b) 1 wt.% Pt over Al2O3 (1% CO, balance H2, F/W=60000) [13]. 

 

Since, the reaction stream used for selective CO oxidation also contains some 

amount of H2O and CO2, the effects of these variables on CO conversion are frequently 

analyzed in the literature. The detrimental effect of CO2 on CO conversion is observed in 

Figure 5.64a for Pt-Co/Al2O3 [138] and in Figure 5.64b for Au/CeO2 [24]. The negative 

effect of CO2 was attributed to the competitive adsorption of CO2 on Pt surface decreasing 
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the rate of CO adsorption, and to the increase of the reverse water gas shift reaction rate 

due to the presence of CO2 [138]. The neural network predictions shown in Figure 5.64 

successfully coincide with the experimental findings. 

 

 

Figure 5.64. Effect of H2O and CO2 on CO conversion for (a) 0.7 wt.% Pt and 1.25 wt.% 

Co over Al2O3 at 110 
o
C (1% CO, 1% O2, 60% H2, F/W=24000) [138]; (b) 1 wt.% Au over 

CeO2 (1% CO, 1% O2, 40% H2, F/W=30000) [24]. 

 

 

Figure 5.65. Effect of F/W on CO conversion for (a) 10 wt.% Co over ZrO2 (0.5% CO, 

0.5% O2, 5% H2, 0% H2O, 0% CO2) [201]; (b) 1 wt.% Pt over Al2O3 (1% CO, 1% O2, 98% 

H2, 0% H2O, 0% CO2) [13]. 

 

Among the operating variables the last to be analyzed is the effect of F/W on CO 

conversion. In Figure 5.65a three different levels of F/W are compared for Co/ZrO2 [201] 

and in Figure 5.65b two different levels of F/W are compared for Pt/Al2O3 [13]. As the 
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ratio of the feed flow rate to the catalyst weight increases, the CO conversion decreases 

expectedly. 

 

Table 5.21. Relative input significances for noble metal-gold based catalysts. 

Variable 

RMSE 

without 

the Variable 

RMSE 

Difference* 

% Relative 

Significance 

(change of 

RMSE) 

% Relative 

Significance 

(partial 

differentiation) 

(%) Group 

Significance 

(change of 

RMSE) 

promoter type and amount 13.73 6.05 43.5  

43.4 

base metal type and amount 10.82 3.14 22.6  

support type 10.74 3.06 22.0  

preparation method 8.93 1.26 9.0  

calcination conditions 8.08 0.41 2.9  

reaction temperature    20.3 

56.6 

F/W    14.7 

O2 vol.%    14.3 

CO vol.%    14.0 

H2 vol.%    13.5 

CO2 vol.%    8.5 

Time on stream    8.4 

H2O vol.%    6.3 

*the difference between RMSE without the variable or variables and RMSE of the original model (7.67) 

 

5.3.2.4. Significance Analysis for Catalyst Variables. In this section, the relative 

significances of the preparation and operating variables on CO conversion are discussed. 

The significances of the preparation variables from the most significant to the lowest one 

were determined as the promoter type and amount, base metal type and amount, support 

type, preparation method and the calcination conditions as shown in Table 5.21. It should 

be noted that the calculated relative significance values indicate the CO conversion 

influenced by the change of a variable from its minimum to maximum value. This is the 

reason why the base metal type and amount seems to have lower significance level than the 

promoter type and amount. The relative significance of the promoter type includes the 

effect of the presence or absence of one promoter or two promoters at the same time, 

whereas the significance of the base metal is the sensitivity of CO conversion to the change 

of base metals between their minimum and maximum.  The relative significances of the 
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operating variables from the most significant to the lowest one were determined as the 

reaction temperature, F/W, amounts of O2, CO and H2 in the feed. Each of the preparation 

and operating variables has some part of contribution to the catalytic activity and according 

to the group significance analysis both preparation and operating variables were found to 

be influential on the activity of the catalysts.  
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6. CONCLUSIONS AND RECOMMENDATIONS 

 

 

6.1. Conclusions 

 

 The objective of this dissertation was to apply several data mining techniques on 

catalysis data for knowledge extraction to improve the catalyst design and testing 

conditions. This thesis consists of three main studies: analysis of the experimental data 

produced in our laboratories, the data generated by the density functional theory and the 

data mined out from the publications in the literature. The major conclusions from these 

works were summarized below.  

 

The experimental data for selective CO oxidation over promoted Pt-Co/Al2O3 

catalyst were analyzed using modular neural networks. The optimal network topology was 

used to analyze the relative significances of the preparation and the operating variables, 

and their effects on CO conversion. The network predictions were in a perfect agreement 

with the experimental results as well as the findings in the literature as summarized below: 

 

 Higher Pt content provided higher CO conversion. 

 CO conversion decreased significantly with increasing temperature from 110 
o
C to 

130 
o
C over all the catalysts having a second promoter. 

 The addition of Mg increased the activity of Pt-Co/Al2O3 most while Mn and Ce also 

had some positive effects. The addition of Fe on the other hand, had a significant 

negative effect on CO conversion. 

 The presence of CO2 had detrimental influence while H2O enhanced the catalytic 

activity. 

 

The experimental data of CO oxidation over promoted Au/Al2O3 was analyzed by 

decision tree classification and neural network modeling. It was found from the decision 

tree analysis that the catalysts promoted by Mg or Mn always exhibited higher CO 

conversions compared to the catalysts with the other promoters, and low temperatures 

leaded to higher CO conversions. Then, the reduced dataset containing only the promising 
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data (excluding the data related to the promoters: Ce, Co, Fe and Ni) were modeled using 

modular neural networks. The effects of catalyst preparation and operating variables over 

CO conversion were successfully predicted as given below: 

 

 The addition of both Mg and Mn improved the catalytic activity while the positive 

effect of Mg was higher especially in the presence of H2O and CO2. 

 The operating variables (especially reaction temperature) were found to be relatively 

more significant for catalytic activity than the catalyst preparation variables. 

 

The effects of second promoter (K, Co and Ni) on the water gas shift activity of Pt-

CeO2/Al2O3 catalyst were analyzed computationally using modular neural networks. The 

neural network model successfully predicted the effects of promoter type and operating 

variables and the conclusions can be summarized as follows:  

 

 K had some beneficial effects under product-containing feed compositions. 

 Co and Ni promoters worsened the catalyst performance. 

 The reaction temperature and feed H2O/CO ratio positively affected the catalytic 

activity 

 CO2 and H2 addition to the feed decreased CO conversion.  

 H2 concentration and H2O/CO ratio in the feed were the most significant variables. 

 

These results suggested that modular neural networks may be used to analyze similar 

systems to capture the effects and significances of reaction variables, and they may 

improve and expedite experimental studies. Moreover, the decision trees and neural 

networks can complement each other to extract easily comprehensible information from 

the experimental data. 

 

The structure and activity relationship was analyzed for CO and O2 adsorptions over 

Au2-Au10 clusters using DFT and artificial neural networks. It was demonstrated that the 

structural properties of the catalyst clusters can be successfully predicted from the user 

defined descriptors by using artificial neural networks trained by the data generated with 

DFT. Then, these properties can be used to predict the adsorption energies of CO and O2. 
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The results showed that the use of only a few structural properties is sufficient to predict 

the adsorption energies. The conclusions can be summarized as follows: 

 

 The adsorption strength of CO followed the order: cationic > neutral > anionic. The 

presence of the unpaired electron was found to have relatively less effect on the CO 

adsorption energy. 

 The size of the cluster was found to be the most important variable for the binding 

energy and the degree of the binding energy followed the order: cationic > anionic > 

neutral. 

 For the HOMO-LUMO gap, the most significant variable was found to be the 

unpaired electron while the charge and the size of the cluster had relatively small 

effects. 

 The charge of the cluster was the most dominating factor for both the ionization 

potential and the electron affinity. 

 The HOMO-LUMO gap and the coordination number together with any one of the 

binding energy, electron affinity or ionization potential carried the significant part of 

the necessary information to predict the CO adsorption energy. 

 Unpaired electron was the most significant descriptor affecting the O2 adsorption 

energy. 

 The HOMO-LUMO gap and the ionization potential were the most effective 

structural properties in determination of the adsorption strength of O2 

 

The effects of user defined descriptors and structural properties of the Au clusters on 

the stability and strength of the O2 adsorption were also analyzed by classifying the DFT 

computed adsorption data using multiple logistic regression. It was found that: 

 

 Among the user defined descriptors, unpaired electron was the most significant 

variable for the stability of O2 adsorption, whereas the size and charge of the cluster 

determined the adsorption strength. 

 The probability of finding strong adsorption decreased with increasing cluster size 

and changing the charge of the cluster in the order of anionic-neutral-cationic. 
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 For the structural properties, the stability of the O2 adsorption depended on HOMO-

LUMO gap; probability of stable adsorption being smaller for the clusters with high 

HOMO-LUMO gaps. 

 The strength of the adsorption, on the other hand, was mostly determined by the 

ionization potential. 

 

These results suggested that multiple logistic regression modeling can successfully 

classify the DFT computed data, and the combination of neural networks with DFT may 

improve the computational studies in catalysis by reducing the computational time and 

efforts as well as by helping to extract useful knowledge to understand the real catalytic 

systems.  

 

Finally, two databases were constructed from the data mined out from the 

publications on selective CO oxidation: Cu based catalysts and noble metal-gold based 

catalysts. The database of Cu based catalysts was formed from twenty publications in the 

literature (containing 1337 data points), and the experimental CO conversions reported in 

each publication were successfully predicted by a neural network trained using the data 

from the remaining nineteen papers. It was found that neural network models created by 

this way were quite successful in predicting the experimental results of a new set of 

experimental conditions. The models were more effective to predict the results of the 

publications that contained the most commonly studied variables within the commonly 

studied ranges. However, the predictions were also quite acceptable even for the rarely 

studied variables unless an experimental dataset held unique information. The relative 

significances of the main catalyst preparation and operating variables as well as the major 

trends associated with these variables were also successfully estimated. 

 

The database of noble metal-gold based catalysts was constructed from seventy one 

publications in the literature (containing 5008 data points), and genetic algorithm based 

clustering together with artificial neural network modeling was implemented for the 

prediction and the analysis of the data. First, a reduced dataset (containing 4070 data points 

from 58 publications) was formed by eliminating the unique data from the database. Then, 

a two-step approach, composed of clustering the data and then neural network modeling 

for each cluster, was applied for knowledge extraction. In contrast to the direct neural 



159 

 

 

 

network modeling, the two-step approach was superior in predicting the outcomes of the 

individual publications. Only the results of 5/58 publications were predicted with R
2

test 

values higher than 0.5 by the direct neural network approach while 32/58 publications were 

predicted with R
2

test values higher than 0.5 by the two-step approach. Several major trends 

associated with the catalytic variables were extracted by the two-step model, and they were 

in a very good accordance with the results in the publications. According to the input 

significance analysis, both the preparation and the operating variables were found to be 

influential on the activity of the catalysts. The significances of the preparation variables 

from the most significant to the lowest one were determined as the promoter type and 

amount, base metal type and amount, support type, preparation method and the calcination 

conditions while those of the operating variables were in the order of reaction temperature, 

F/W, amounts of O2, CO and H2 in the feed.  

  

As a result of these findings, it can be concluded that genetic algorithm based 

clustering together with neural networks can be used in catalytic systems to extract the 

essential knowledge and experience accumulated in the published experimental data in a 

very accurate manner, which may help the researchers in planning their future 

experimental work more effectively. 

 

6.2. Recommendations 

 

Based on the results obtained in this study the following recommendations will be 

beneficial for future studies aiming for knowledge extraction from catalytic data: 

 

 Different modeling techniques may be employed such as support vectors or genetic 

programming for knowledge extraction from the catalytic data, and their 

performances may be compared with the methods presented in this work.  

 Analysis of the published data by using data mining techniques is a very promising 

study. This may also be implemented for the data of similar catalytic reactions (i.e. 

water gas shift reaction) or for other areas such as to model the reaction rate from the 

operating variables to acquire the reaction mechanisms and the kinetic parameters. 
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