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ABSTRACT

ACTIVE NOISE CONTROL IN A DUCT WITH FLOW

In this thesis, active noise control in a duct with flow is investigated. A one di-

mensional acoustic duct model, in which fluid medium inside the duct has a mean flow

velocity, is presented. The acoustic duct model is solved in Laplace domain and infinite

dimensional system transfer functions are obtained. For controller designs, appropriate

microphone and noise canceling source locations inside the duct are determined. In

numerical studies, ideal boundary condition case (open end) and general boundary con-

dition case (frequency dependent impedance end) are investigated. For these boundary

conditions, low order finite dimensional transfer function approximations of actual sys-

tem transfer functions are obtained. It is found that, in a selected frequency range,

approximations represent actual system in a satisfactory way. By using approximated

system transfer functions, low order optimal H2 and H∞ controllers are synthesized

via linear matrix inequalities method found in linear time invariant finite dimensional

control theory. Closed loop frequency response and time domain simulations show that

the controllers successfully suppress unwanted sound which propagates along the duct.
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ÖZET

AKIŞLI BORUDA AKTİF GÜRÜLTÜ KONTROLÜ

Bu tez çalışmasında akışlı bir borudaki aktif gürültü kontrolü incelenmiştir. Boru

içindeki akışkanın ortalama bir hızının olduğu, tek boyutlu akustik bir boru modeli su-

nulmuştur. Akustik boru modeli Laplace alanında çözülmüş ve sonsuz boyutlu sistem

transfer fonksiyonları elde edilmiştir. Kontrolcü tasarımları için, borunun içinde, uy-

gun mikrofon ve gürültü kesici kaynak konumları belirlenmiştir. Nümerik çalışmalarda,

ideal sınır koşulu durumu (açık uç) ve genel sınır koşulu durumu (frekansa bağlı impe-

danslı uç) ele alınmıştır. Bu sınır koşulları için gerçek sistem transfer fonksiyonlarının

düşük dereceli sonlu boyutlu transfer fonksiyon tahminleri elde edilmiştir. Seçilen bir

frekans aralığında, tahminlerin, gerçek sistemi tatmin edici bir şekilde yansıttığı bulun-

muştur. Tahmin edilen sistem transfer fonksiyonları kullanılarak, doğrusal, zamanla

değişmeyen, sonlu boyutlu kontrol teorisinde yer alan doğrusal matris eşitsizlikleri

metodu ile, düşük dereceli optimal H2 ve H∞ kontrolcüleri sentezlenmiştir. Kapalı

döngü frekans cevabı ve zaman alanı simülasyonları sonucunda, boru boyunca iletilen

istenmeyen sesleri, kontrolcülerin başarılı şekilde bastırdığı görülmüştür.
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1. INTRODUCTION

Acoustic noise is an important problem that can influence human health and com-

fort negatively. It can cause several hazards including stress and pain to the human

body. In the modern world, noise is originated and generated by technological devel-

opments such as automobiles, jet engines, fans, exhausts and any kind of machines.

Although they provide lots of benefits and ease people’s lives, they also make noise and

disturb people. So it is a crucial task to provide less noisy and peaceful environments

while benefiting from the blessings of the modern world.

1.1. Noise Control Strategies

Noise control is basically the attenuation of unwanted sound. Here, we briefly

discuss the two strategies namely; passive and active noise control.

1.1.1. Passive Noise Control

Traditionally, passive control techniques are mostly used in noise control prac-

tices. Passive control aims to modify the environment to achieve noise reduction in a

way that either by changing the flow direction of acoustic energy or by reducing the

total sound power that flows away. Changing the flow direction of acoustic energy can

be achieved by a wall or barrier as can be seen along busy highways. On the other hand

reduction of acoustic power can be achieved by acoustic insulation materials which ab-

sorb acoustic energy and turns it into small amount of heat, or by coating vibrating

surfaces, or by changing the acoustic impedance as in the car muffler case [1].

1.1.2. Active Noise Control

Active noise control is a technique that uses superposition principle of waves in

order to suppress unwanted sound. In this technique noise is canceled via introduction

of an additional sound field which has the same magnitude but that is out of phase
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with the noise field. When these two fields meet, the result is a less noisy environment

according to the principle of destructive interference.

Typical application of an active noise control system consists of a reference mi-

crophone, an error microphone, a controller and an actuator which is usually a loud-

speaker [1–3]. Reference microphone picks up incoming noise, converts it into electrical

signal and sends it to controller. Controller uses that information to create a sound

wave, which has the same magnitude but 180◦ out of phase with the noise signal.

Controller sends this information to the actuator as an electrical signal. This signal is

converted into mechanical energy in the actuator (in loudspeaker mechanical energy is

obtained by moving diaphrams). Thus, a canceling sound field which coincides with

original noise field is created. Error microphone is used to check the residual noise and

to adapt the system.

Some of the applications of Active Noise Control (ANC) include: active mufflers

for automobiles and other kind of transportation vehicles; aircraft cabin silencing;

active noise reducing head-phones, earmuffs, headrests; active noise control systems in

HVAC (Heating Ventilating Air Conditioning) equipments, ducts, pipes; active control

of fan noise, helicopter rotor noise; electrical transformer noise; intake and exhaust

noise; car and van interior noise; aircraft jet engine noise [2–8]. Among them the most

successful ANC applications are for controlling low-frequency noise (plane wave noise)

problems in ducts [2, 3, 6, 7].

The idea of active control of noise fields was first mentioned 75 years ago in Lueg’s

patent application [9]. He claimed to reduce incident single tone noise in a duct by

using a microphone, an amplifier, and a loudspeaker. Microphone detects sound and

creates a signal, and this signal is sent to the loudspeaker through the amplifier in

a way that the loudspeaker produces a canceling sound wave. The exact 180◦ out of

phase shift is obtained by arranging the distance between microphone and loudspeaker.

Although promising, Lueg’s idea was impractical because it only deals with single

pure tonal noise and if the frequency of noise changes the residual noise could be
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worsened as stated in [10]. The technology of 1930’s also made it impractical for

realization [9]. However, Lueg understood the physical applicability of active noise

control since speed of electrical signals are much higher than the speed of sound waves.

Once an incoming noisy sound wave is detected, there is enough time to process and

create an anti-sound wave which coincides with the original noisy sound field and results

in reduction of sound amplitude [4, 10].

After Lueg’s early work Olson et al. [11] introduced electronic sound absorber in

1953. That device consists of a microphone, an amplifier and a loudspeaker as Lueg’s

case, but it reduces the sound field near microphone whereas in Lueg’s patent the mi-

crophone is used to obtain information about the incident wave. In active noise control

terminology, if reference microphone is used to get information about the incoming

wave and used to attenuate noise in somewhere else then it is called feedforward con-

figuration, but if it is used to attenuate the noise in the vicinity of the microphone then

that configuration is feedback. From that point of view, Lueg’s work is feedforward

whereas Olson’s work is feedback. Olson obtained reduction in noise levels in a small

volume for low frequency portion of the audio range [11]. But frequency range and

physical noise reduction extent of Olson’s device was limited as well as performance

diminishes quickly from a short distance away from the control point [10].

In 1957 Conover et al. patented a system for transformer noise problem [12]. In

[12] loudspeakers were placed near transformer’s wall in order to cancel the transformer

noise in the near field. The controlled frequencies of the noise are periodic such that

fundamental at 120 Hz and its harmonics at 240 Hz and 360 Hz. Conover obtained

noise reduction in certain areas but the noise levels were increased in some other areas

as well [10].

As a result of early failures active noise control was abandoned till the end of

1960’s. In 1968, the interest to the field increased with the publications of Jessel and

Kido [10]. They realized that active noise control systems can be utilized for reducing

low frequency noise problems. They reached such a conclusion because of the high

cost, large bulk and back-pressure problems of existing passive hardware when dealing
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with low frequency noise [10].

After briefly reviewing some early attempts of active noise control we leave the

review of research done from 1970’s to today in the “Literature Review” section of the

thesis and also we limit that section only to the studies done on “Active Noise Control

in Ducts”.

1.2. Noise Control in Ducts

Here, we begin our discussion with passive noise reduction techniques used in

ducts and then we give our attention primarily to ANC in ducts.

1.2.1. Passive Noise Reduction Techniques in Ducts

Passive noise control approaches in ducts fall into two categories, which are reac-

tive techniques and dissipative techniques. In reactive techniques, the aim is to alter

the duct impedance whereas in dissipative techniques the aim is to absorb acoustic

energy in the duct. Reactive techniques are used in low frequency noise control prob-

lems and dissipative techniques are used primarily in mid and high frequency noise

problems. Examples for reactive techniques used in ducts are side-branch resonator,

expansion chamber and Helmholtz filter. A side-branch resonator is useful when deal-

ing with pure tone noise in a duct. An expansion chamber is a large opening in the

duct and provides sound attenuation over a wider range of frequencies compared to

side-branch resonator. Helmholtz filter is used to suppress noise in flowing gas and

it is an extension of the expansion chamber. But in Helmholtz filter low frequency

attenuation is limited so it is considered as a low pass filter. Dissipative techniques use

a porous lining material which is placed on the walls of the duct in order to absorb the

acoustic energy that propagates along the duct. Dissipative techniques work best for

higher order duct modes and their performance for plane wave mode is very poor [1].

There are some serious problems encountered when dealing with low frequency

noise problems in ducts. A problem with duct silencers is that in order to achieve low
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frequency noise reduction the silencer must be long since they can affect the sound

which has similar or smaller wavelength compared to silencer’s dimensions [8]. That

is to say, we need large passive silencers [3]. When volume of the duct-silencer couple

increases it also reflects as an increase in weight which can be important in aerospace

or automotive industries. Large space needed to implement duct-silencer couple can

be problematic in industries where effective usage of total area is important. Another

problem with duct silencers is that since they reduce the duct area, they cause pressure

drop inside the duct [13]. This would be problematic in systems (such as server rooms)

where large amount of gas/air flow is needed to operate the system properly.

On the other hand, the problem with lining materials (absorbing materials) in

low frequencies is that acoustic wavelengths become large compared to the thickness

of these materials [6]. As the thickness of the lining material increases, the absorption

of lower frequency noise is improved [8, 13]. Thus, when the noise frequency decreases,

thicker and heavier absorbing materials are needed. Thicker absorbing materials inhibit

ventilation [14]. As a result, to obtain noise reduction, we increase the weight of the

duct and inhibit ventilation.

1.2.2. Active Noise Control in Ducts

As mentioned earlier the most important ANC application is plane wave noise

reduction in ducts. Plane waves propagate between 20 Hz and plane wave cut-off

frequency [8]. Plane wave cut-off frequency is inversely proportional to the duct’s

cross-sectional dimensions [8]. ANC application in ducts frequently has feedforward

configuration in which a reference microphone sends primary knowledge about incoming

noise along the duct to a controller arrangement. Controller proceeds this information

and sends an input to actuator in order to attenuate the incident noise at target

location. After interference, an error microphone detects the residual noise downwards

the duct and sends this information to the controller, in order to make controller

adapt the weights used in the algorithm to adjust the control system to meet certain

specifications. This is the most widely encountered configuration [1-3, 13]. The other

configuration is feedback in which an error microphone sends information to controller
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and controller’s task is to attenuate the noise level at the vicinity of error microphone

[2, 3].

Feedforward controllers are usually preferred against feedback controllers because

reference signal combined with error signal increase the stability of the system [2]. One

disadvantage of feedforward controllers over feedback controllers is that the control

source output is also captured by reference microphone [2]. Application of the ANC in

a duct for low frequency noise is simple because of the plane wave propagation along

the duct since a few microphones and a single canceling loudspeaker is satisfactory for

control applications [5, 8, 10].

Typically, passive noise reduction techniques work best above 250 Hz in mid and

high frequency range whereas ANC works best at low frequency range between 31

Hz and 250 Hz [8]. The low frequency range mentioned in [13] is between 40 and

400 Hz. Thus, instead of implementing passive techniques into ducts for plane wave

frequencies it is a better choice to handle low frequency noise problem with ANC. By

this, unnecessary increase in weight, bulk, pressure-drop and cost will be eliminated.

As an illustrative quantitative example, power loss due to passive silencers in a large

size HVAC duct ranges between 2 to 40 kiloWatts whereas the electrical energy needed

for ANC system in a HVAC duct is less than 40 Watts [8].

Advantages of ANC systems over passive methods in ducts can be summarized

as; improved low frequency noise reduction performance, reduction in size and weight

compared to conventional passive control techniques, zero or very low pressure drop

values.

After introducing basic principles regarding ANC in ducts, Literature Review on

this subject is given next.
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1.3. Literature Review

ANC studies in ducts can be grouped into two. The first one utilizes signal

processing and system identification tools for ANC in ducts [15], and then implement an

adaptive control algorithm to achieve noise reduction [16]. Adaptive ANC in ducts need

secondary path identification in some of the studies [17–20]. In adaptive ANC systems,

disturbance to error microphone transfer function is called primary path, control source

to error microphone transfer function is called secondary path and control source to

reference microphone transfer function is called feedback path. Reference microphone

provides primary information about the incoming noise whereas error microphone is

used to adapt the system [21].

Physical model based ANC systems in ducts constitute the second group. Adap-

tive systems could be used for noise reduction purposes, but it is beneficial to see the

limitations and possible theoretical noise reduction levels as well. These can be ob-

served by using the physical model based ANC systems. In our thesis, we would like to

determine the physical limitations and possible noise reduction performances of ANC

applications in ducts with flow. Thus, we give our emphasis to model based studies

which are derived by principles of physical acoustics. In this section, we partition

physical model based studies into two group such that, studies with flow and studies

without flow.

Before starting our review we would like to mention that, all the studies in this

section were done for rigid walled (hard walled) ducts. The studies, which does not

consider flow of fluid inside the duct (no flow case), are reviewed first. Then, stud-

ies which include mean flow of fluid medium inside the duct (mean flow case), are

investigated.

1.3.1. Studies Without Flow Inside The Duct

Eghtesadi and Leventhall proposed an active noise cancelation scheme [22] using

a microphone placed centrally between the two canceling loudspeakers. By this con-
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figuration, in the upstream of the duct standing waves were produced whereas in the

downstream section noise cancelation was achieved. In the microphone section, the

two loudspeaker inputs canceled each other so that only primary noise was detected by

the microphone. This study was supported by experiments conducted in both circular

and rectangular ducts. Noise reduction was achieved both for pure tones and random

noise signals. Flow of the acoustic wave propagation medium (air) was not considered.

After [22], they also discussed the active noise cancelation problem in ducts by using

just one secondary (canceling) source in [23]. In the absence of air flow the primary

noise signal was picked up by a microphone and downstream of the duct the noise was

canceled using a secondary source. They suggested a way to get rid of acoustic feed-

back towards reference microphone caused by using only one canceling loudspeaker.

Experiments conducted in rectangular duct and noise reduction for pure tone and ran-

dom noise signals was achieved. In a later theoretical study [24], they derived a general

expression for various number of sources and spacings between them. They concluded;

as the number of sources increases, the effective bandwidth of noise reduction as well

as isolation of reference microphone from canceling source signals are improved.

In [25], Trinder and Nelson discussed a feedback control scheme for the purpose of

active sound attenuation in a finite length duct. The primary plane wave noise, caused

by a loudspeaker mounted on one side of the square duct, was canceled via a second

canceling loudspeaker at the downstream of the duct. The feedback microphone and

the canceling source was collocated, i.e., their longitudinal coordinate along the duct

was the same. In experiments, they obtained low frequency broadband noise reduction

especially at the longitudinal duct resonance frequencies in an open ended duct with

no flow.

Hull et al. [26], developed a state space representation of a one dimensional acous-

tic duct system by applying separation of variables technique to governing partial dif-

ferential equations. Their model was an adiabatic system with no mean flow and had

totally reflective boundary condition at one end, whereas partially reflective boundary

condition at the other. They obtained an infinite order, diagonal state space model.

Hull and Radcliffe [27], conducted experiments in order to verify the model developed
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in [26]. In [28], Hull et al. developed a truncated state estimator for the purpose of

active noise control since all the states of the duct system was not available for the

pole placement control action. The truncated state space model and state estimator

were adequate to design a finite dimensional feedback controller for low frequency ac-

tive noise reduction purposes. Finally, by using [26] and [28], Hull et al. developed a

feedback control law for active noise control of this one-dimensional acoustic duct by

using pole placement feedback algorithm [29]. Frequency and time domain simulations

together with experiments were performed. In time domain simulations, a pure tone

sine wave was used whereas in experiments a band limited random noise signal was

used.

In [30], Hu discussed active noise control in finite length ducts by transfer function

approach. He obtained transfer functions that relate control inputs to acoustic pressure

in any location of the duct. He studied effects of collocated and noncollocated sensor

and actuator configurations on feedback stability of the system. In his mathematical

work, the flow of the acoustic medium was not considered. In his discussion, he used

both totally and partially reflected boundary conditions. He also developed a feedback

controller in order to suppress unwanted periodic noise. He performed some simulations

resulted in noise reduction at feedback microphone region.

Bai and Shieh [31], obtained modal equations of a finite length duct with the

help of orthogonality of eigenfunctions. Later, they applied modal truncation in order

to obtain finite number of modal equations for control purposes. Their acoustic wave

propagation medium (air) was stationary. They also put truncated modal equations

into modal state form and they derived an optimal controller by using Linear Quadratic

Gaussian (LQG) algorithm. Their modal state observer was designed based on the

Kalman-Bucy filter. Their controller was designed for suppressing zero mean white

Gaussian noise field and they only considered the steady state case. They performed

numerical simulations taking into account various parameters such as type of primary

noise, number of controlled modes, number of sensors, number of actuators, location of

sensors, location of actuators, and the ratio of relative importance of the control error

to control energy.
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In [32], Hong et al. developed the state space model of a rectangular duct open

at both ends and with no flow conditions. The governing partial differential equations

of the system was derived via three fundamental equations: equation of state, equation

of continuity and linearized inviscid force equation. The model consisted of one control

actuator and one control sensor in which control speaker was considered as a point mass

source. By using separation of variables and incorporating a speaker model with acous-

tic duct model a state space representation of the system was obtained. Some model

parameters were determined via experimental identification. In those experiments, it

was found that finite speaker size did not have a significant effect on duct’s acous-

tic response which confirmed the point source assumption. Then, a precompensated

LQG type controller were synthesized in order to minimize the H2 norm of the transfer

function of the state space realization of the closed-loop system at a selected perfor-

mance point. The synthesized controller’s order was truncated by standard techniques

and reduced order controller was implemented digitally in experiments. For collocated

sensor and actuator configuration, this feedback controller showed noise reductions at

performance point (performance point was also selected as sensor location) and at the

end of the duct away from the disturbance source.

Wu et al. [33], developed a one dimensional time domain model describing acous-

tical pressure response in a duct with no flow. Their system consisted of two semi

infinite regions and one finite region which was between semi infinite regions. Primary

source (disturbance source) and secondary source(s) (canceling source(s)) were located

in the finite region. In their model, they also included a passive viscous damping

term acting on the finite duct section. State space formulation which relates the duct

dynamics, disturbance, input and output to each other, was obtained by solving gov-

erning partial differential equations analytically for semi infinite regions, whereas for

finite region solution a standard numerical method (finite difference method) was used.

The discrete and analytical results were then related by the application of boundary

conditions at the intersection points of finite and semi infinite regions; thus completing

the derivation of the state space model. Then, feedback control algorithms utilizing

LQG optimal control theory were designed by using derived state space model. Various

noise control systems with several sensor and actuator arrangements were studied for
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both full state-feedback and state observer based feedback controllers.

Lee [34], modeled acoustic response in a one dimensional finite length duct by

using finite element method. The medium in his model was stationary. He derived

state space representation of the duct system by using finite element formulation. In

order to design a suitable controller, he truncated the state space system, thus only

the few important modes were included to represent low frequency behavior of the

system. He compared the frequency responses of analytical and finite element solutions,

and also discussed the effects of truncation. After convinced that the truncated state

space model was adequate, he designed a feedback controller by using linear quadratic

optimal control technique and a truncated state observer. He performed frequency and

time domain simulations in order to see the performance of the proposed controller.

Frequency response simulations showed noise reduction in low frequency range. In

time domain simulations, a pure tone sinusoidal wave was used as disturbance and

noise reduction was also observed in this case as well.

Grad [35], theoretically discussed the achievable global noise reduction in a one

dimensional duct in which there exists a disturbance point source, a controller point

source and a sensor. She considered totally reflective and partially reflective boundary

conditions and assumed no mean flow in the duct. She obtained the transfer func-

tion relating the pressure measured at some point in the duct to disturbance pressure

applied at disturbance source location by taking laplace transform of the governing

partial differential equations. Then, she formulated the global noise reduction problem

as an H∞ model matching problem. By saying global, it was indicated that the pur-

pose of noise reduction is not only for a single performance point but also for several

performance points altogether. In order to apply finite dimensional H∞ control theory,

she approximated the infinite dimensional system to a finite dimensional system by

using Legendre polynomial based Galerkin approximation method, linear spline based

Galerkin approximation method, and finite difference method. She concluded Legendre

polynomials and linear splines were suitable for approximation of this duct model with

their advantages and disadvantages. In order to solve the model matching problem

she employed Nevanlinna-Pick interpolation method. Finally, she discussed the global



12

noise reduction for feedback and feedforward configurations while considering several

configurations of the actuator, sensor and performance points.

Morris [36] theoretically discussed the achievable noise reduction in a one di-

mensional acoustic duct by deriving an infinite dimensional H∞ optimal control law

for suppressing noise at a specified performance point in a duct. She used a similar

model as in [35] except that the totally reflective boundary condition was replaced

with disturbance end boundary condition. In her model, the medium was stationary

as well. She obtained a transfer function which relates the control pressure input to

output pressure obtained in any location of the duct by taking laplace transform of

the governing partial differential equations an solving them by using standard linear

ordinary differential equation solution methods. After that she formulated the control

problem as an H∞ optimization problem in order to minimize the acoustic response

at a desired performance point. Youla parameter function was utilized while obtain-

ing optimal controller for perfect cancelation, but it was found that when using this

controller the controlled system became unstable. Instead, a suboptimal controller

which stabilizes the closed loop system was considered for determining performance

of the proposed system. Feedforward and feedback configurations were analyzed. In

feedforward case, it was emphasized that; when using a performance point, which is

located downstream of the actuator, noise levels at downstream of the actuator was

reduced at the expense of increased noise levels at upstream of the actuator; whereas

when using a performance point located upstream of the actuator, the noise reduction

was achieved only at that point and noise levels at other locations were increased. In

feedback case, performance was limited by feedback delay and imaginary axis zeros

of the system transfer function. It was mentioned that sensor, actuator locations and

relative impedance of partially reflective duct end had effect on performance.

Pota and Kelkar [37], modeled a one dimensional acoustic duct with no flow

by obtaining transfer function that relates actuator input to pressure value at any

spatial position along the duct, for open-open end, closed-closed end, open-closed end

boundary conditions. They also considered the general boundary conditions which

take into account the impedances at both ends of the duct. For comparison of their
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theoretical and experimental frequency response values, they modeled the loudspeaker

as a second order dynamic system and microphone as a constant gain system. They

theoretically discussed an infinite dimensional feedforward controller to suppress the

acoustic noise in their infinite dimensional analytical model. But to implement on real

systems, they obtained finite dimensional models describing the infinite dimensional

system for low frequency range by three approximation methods. Among Maclaurin

series expansion, modal representation and zero phase functions methods, they choosed

the last one as proper approximation scheme. After that, they designed a noncollocated

feedback controller which was a combination of a feedforward passifier, a resonant

compensator and a feedback compensator. They conducted experiments and achieved

noise reduction at microphone sensing point.

In [38], Toochinda studied the two sensor one actuator ANC design in a one

dimensional acoustic duct with no flow. He used a state space approximation of duct

and a transfer function model of the speaker to describe the acoustic dynamics of the

duct. He compared this analytical model with an experimental model and a finite

element model which was constructed by using a commercial software. He found that

there was some discrepancy between analytical model and the other two models but

he also observed that Finite Element Analysis (FEA) model tends to converge to the

analytical model as the duct length increases. He used this mathematical model in order

to discuss the fundamental limitations of Single Input Two Outputs (SITO) systems

on active noise reduction in ducts. He discussed the effects of different sensor/actuator

configurations on closed loop noise control performance and stability. He also studied

the superiority of two sensor designs over one sensor designs. In order to analyse the

control system he designed an H∞ controller, by using a software, which aims to reduce

the noise levels at error microphone. Designed controller used two inputs to calculate

the proper control output which was fed to the system as input. One of the inputs to

the controller came from measurement microphone (feedforward arrangement), whereas

the other one came from error microphone (feedback arrangement).

In [39], Zimmer et al. developed a one dimensional acoustic duct model for Active

Noise Control in a duct. In their system, one end of the duct was closed by a disturbance
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loudspeaker whereas the other end was open. Open end was modeled as partially

reflective and partially absorptive boundary condition. They approximated the specific

acoustic impedance of the open end by a rational function and coupled it to the duct

system in the frequency domain. For the disturbance end, they coupled the loudspeaker

dynamics to the duct system and formed disturbance end boundary condition, again in

the frequency domain. The classical one dimensional wave propagation equations in a

duct without fluid flow were treated in the frequency domain together with boundary

conditions and formed boundary value problem was solved by using a standard Green’s

function method. Then, system transfer functions were obtained. They conducted

experiments for a circular duct. They obtained similar frequency response behavior

both for theoretical and physical systems. Then, an infinite dimensional H∞ optimal

controller was designed in [40] by Morris, in order to suppress unwanted noise at some

desired performance point in the duct by using derived transfer function models. A

single sensor feedforward configuration was preferred and Youla parameter function was

employed to solve the model matching problem. Simulations were performed to analyse

the proposed system’s performance. If performance point was selected at downstream

of the control actuator, then noise reduction occurred at points downstream of canceling

actuator whereas noise amplification occurred at upstream of this actuator. Some other

configurations of performance points yielded unstability and limited noise reduction.

In [41], Yang studied ANC in a one dimensional duct in the absence of flow. He

slightly modified Hull’s state space duct model [26, 27] and obtained transfer functions

from disturbance and canceling inputs to output acoustic pressures. He obtained a

state space model of loudspeaker and converted it to the transfer function description

as well. The whole duct system was then defined using these descriptions. Disturbance

boundary condition was totally reflective, whereas the other boundary condition was

partially reflective. Terminal impedance of partially reflective end was identified, by

System Identification Toolbox in Matlab, as some complex constant value. In labo-

ratory tests, model and real system were compared. After that, ANC problem was

formulated as a disturbance attenuation problem using a negative feedback controller.

Standard control design problems were formulated and several simple Proportional

Integral Derivative (PID) controllers were developed for the truncated infinite dimen-
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sional system which considers certain modes. Fixed feedback controllers were designed

for collocated sensor and control actuator configuration. In real time simulations, a

previously recorded low frequency machine noise was used. In physical tests, a low

frequency narrowband noise and a sweep signal were used. Additionally, he designed

a simple lag compensator in [42] and a feedforward controller filter in [43] with Hicks,

in order to study active noise reduction in the same duct system.

The studies reviewed so far [22–43] did not consider the flow in the duct. However,

the flow of medium inside the duct should be taken into account since real physical

systems such as HVAC or exhaust ducts include gas flow inside. In the literature, there

exists relatively few studies which also consider mean flow of fluid medium inside the

duct.

1.3.2. Studies With Flow Inside The Duct

Swinbanks [44] discussed the active attenuation of sound waves in a long duct

(infinitely long duct). His aim was to suppress a plane wave sound field which is prop-

agating downwards through a uniform flow along the duct. He proposed a mechanism

which produces a unidirectional plane wave downstream of the duct in order to atten-

uate the noise field down the duct. On the other hand, this unidirectional plane wave

had no influence on upstream of the duct so the incoming noise was not influenced by

canceling noise signal. Swinbanks made his analysis for both circular and square long

ducts. The actuator mechanism consist of two or three separated rings of sources in

which there were three (for circular) or four (for square) equally spaced point sources.

In [45], Poole and Leventhall conducted some experiments on active cancelation

of sound in ducts by using Swinbanks’ theoretical method. They constructed a uni-

directional array of secondary (canceling) sources in a finite length rectangular duct.

They obtained good noise reduction in some pure low frequency tones but as band-

width of the noise signal was widened the noise reduction levels were diminished. They

also did not consider the effect of air flow, i.e., there was no air flow in the duct in none

of the experiments conducted. Later in [46], they modified their experimental setup
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and improved the results obtained in previous work [45]. In [46], they also included

the effect of low Mach number flow in their experiments.

In their theoretical study [47], Berengier and Roure proposed a system similar to

Swinbanks’ system [44] but they used vibrating pistons as sound sources instead of point

sources. Their theoretical waveguide was an infinitely long rectangular duct carrying

uniformly flowing fluid. Again the purpose was to create a unidirectional acoustic

field in order to suppress downstream noise while incident noise was not affected by

canceling system as in [44]. They discussed the effects of using various number of

canceling sources on noise reduction performance.

In [48], Hong et al. studied two different feedback configurations. They developed

a theory to cancel the unwanted plane wave noise caused by a noise source in a long

duct. Their first feedback scheme consisted of a tight coupled monopole source, i.e. the

feedback microphone and loudspeaker were in close proximity. The attenuator region

was lined with absorptive material also and that lining effect was also considered in

theory. Then, they extended their theory to a tandem attenuator, i.e. two tight-

coupled monopole attenuators cascaded in series. The loudspeakers were considered

as vibrating rigid pistons. Experiments were conducted to compare theoretical and

measured results. Experiments showed tight-coupled tandem attenuator was superior

than tight-coupled monopole attenuator for both suppressing band limited random

noise and low frequency pure tonal noise. Tests that were done by airflow showed a

decline in performance because of the flow turbulence.

In [49], Bai and Lin studied the active noise control problem in a one dimensional

duct by using H∞ robust control theory. They modeled sound fields in a rectangu-

lar duct by considering the effects of physical conditions which were lining, viscosity,

temperature and flow. After obtaining the transfer function between monopole source

point and any field point they synthesized an H∞ robust feedback controller which

satisfies the mixed sensitivity condition. For the proposed feedback active noise con-

trol configuration numerical simulations were performed to discuss the effects of flow,

temperature, radiation impedance at open end of the duct (the other end of the duct
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was closed) and time delay. Their work was limited to fixed controller and feedback

configuration only. For some plant uncertainties, no fixed controller met the design

requirements.

Sawada and Ohsumi [50], studied active noise attenuation in a one-dimensional

duct with flow. They modeled various number of baffle board speakers and microphones

in their duct model. They combined the governing ordinary differential equations

(ODEs) of each baffle board displacements and wave propagation equation along the

duct. The boundary conditions were chosen as external disturbances caused by a

theoretical fan. These disturbances as well as the measurement noises were modeled

by a standard white Gaussian noise. In order to obtain a state space model of the

system they employed the modal expansion method. After that they designed a finite

dimensional controller based on this model by applying (LQG) theory. By using the

stationary Kalman filter as the state estimator they obtained an optimal control law

which aims to reduce the noise outflowing from the exit of the duct. Only numerical

simulations were performed. In the simulations, one baffle board was used as actuator

and three microphones as sensors. A pure tone sine function was used as a disturbance

noise. However, in those simulations, the velocity of the mean flow of air was taken as

zero.

1.4. Motivation of The Study

As it can be seen from Section 1.3.2, relatively low number of studies have been

done for ANC in a duct in which mean flow of fluid exists. Therefore, there are still

some works that have not been done. Here, we discuss our motivation for this thesis.

There are various theoretical studies on ANC designs that show the capacities

and limitations of these systems. However, the ANC designs in some of these studies

are hard to realize due to certain physical limitations. From engineering point of view,

low cost and efficient ANC systems are needed in real life. By using low order, optimal

controllers and less amount of microphones and sources (e.g., a single microphone and

a single canceling source loudspeaker), these requirements can be met. Although [44,
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47] include flow, these studies can be improved in certain aspects. They considered

infinitely long ducts, many sources and microphones, and unidirectional plane wave

which is a hard thing to obtain in real life without using several electronic devices and

their special arrangements. In [46, 48], in addition to theory, experiments were also

conducted but, optimal controllers were not utilized.

In [49, 50], flow is also considered and modern control theory is utilized. However,

in those studies, transfer function approximations of system were obtained, for ideal

open boundary condition (BC) case, with modal analysis. Modal analysis can possess

weaknesses for representing the actual system, if a low order truncated model is used.

A possible negative outcome is mismatch in resonance frequencies. Instead, if the

system model is solved in Laplace domain, exact system resonance frequencies are

obtained. Thus, the only remaining thing to synthesize a low order, finite dimensional

controller is, to find a suitable low order approximating scheme that fits the original

data. By employing Laplace domain solution, both open BC and frequency dependent

impedance BC transfer functions can be obtained easily.

Moreover, in [50], flow is neglected in numerical simulations and more than one

microphone were used. Only pure tone sine function was used, which is not a realistic

scenario, since, pure tone noises are rarely encountered in real physical world. In [49],

the effects of mean flow and frequency dependent radiation impedance at duct end are

studied separately. In order to have a more realistic flow duct system, mean flow and

frequency dependent impedance end should be considered together.

In addition to those mentioned above, linear matrix inequalities (LMIs) were not

utilized in the literature often [51]. If a control problem can be written in terms of

LMIs, a solvable convex optimization problem is obtained. For H2 and H∞ optimal

control problems, LMIs are valuable tools. Moreover, none of the studies mentioned

in the literature did not compare the closed loop performances of H2 and H∞ optimal

controllers. It is beneficial to make comparison of these and choose the appropriate

one that fits our needs.
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In the light of preceding discussions, we summarize our motivations for this study

as:

• Designing a physically applicable single input single output (SISO) ANC system

in ducts with flow, which aims to reduce low frequency acoustic noise.

• Analyzing ideal (open BC) and realistic (frequency dependent impedance BC)

duct systems with flow, in Laplace domain.

• Studying the effects of mean flow of fluid medium inside the duct and frequency

dependent specific acoustic impedance of the duct end, at the same time.

• Obtaining low order, real, rational, finite dimensional approximations for system

transfer functions in frequency domain.

• Synthesizing physically applicable, low order, finite dimensional optimal H2 and

H∞ controllers with LMI method.

• Comparing the H2 and H∞ controllers’ noise reduction performances.
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2. MODEL OF THE ACOUSTIC DUCT SYSTEM

Here we give the governing equations for an acoustic duct system which includes

mean flow of acoustic medium inside. We then use this model for our active noise

control study.

2.1. Model Assumptions

Following assumptions are made for the duct model:

• Fluid inside the duct is inviscid.

• There are no dissipative effects and no heat interaction inside the duct.

• The process is adiabatic.

• Duct is rigid walled.

• There is uniform flow of fluid medium with velocity u0 along the duct axis.

• Acoustic pressure p, density ρ, temperature τ and velocity u changes are small

compared to equilibrium pressure P0, density ρ0, temperature T0 and mean flow

velocity u0; so that high order nonlinear effects can be neglected.

• Transverse dimensions of the duct are small compared to acoustic wavelengths

considered, i.e., only plane waves inside the duct can progress.

• Gravitational effects inside the duct are neglected.

Rigid walled duct together with inviscid fluid assumption declare that there is no

shear force acting on fluid by the walls of the duct. So the plane pressure field does

not change along the duct cross section. In other words, acoustic pressure at some

axial coordinate x is same throughout the cross sectional plane y − z located at that

x coordinate. So, the pressure inside the duct is just a function of axial coordinate x

and time, i.e., p(x, t). Rigid walled assumption is encountered in all of our Literature

Survey [22–50]. This assumption, also, does not change the mean flow profile, i.e., the

flow velocity everywhere in the duct is same as u0. Since one of our primary goals is

to study the effects of flow field on active noise control performance, this simplification
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seems quite reasonable.

In this study, we disregard the turbulence and viscosity effects. Turbulence can

cause additional sound field in the duct. On the other hand, viscosity makes the

acoustic medium dispersive and we should take into account transfer of heat in the

duct, which alters our adiabatic process assumption. To cope with this problem, we

consider low Mach number flow, i.e., the fluid acts like an ideal gas and there is no

turbulence in the duct.

One dimensional duct assumption can be explained as follows: When transverse

dimensions of the duct (whether it is rectangular or circular that doesn’t matter) is

much less than the wavelength of sound, the higher modes other than the plane wave

mode quickly vanish below a certain cut-off frequency, which is related to the duct

cross-sectional dimensions [52]. So as mentioned previously, the only propagating wave

mode along the duct at low frequencies is plane wave mode. We also only concentrate on

plane wave mode in this study and choose the transverse dimensions and length of the

duct accordingly, for later simulation purposes. All acoustic variables such as particle

displacement, density, pressure etc. have constant amplitudes on plane waves [53].

2.2. The Wave Equation

Our acoustic wave propagation equation along the duct is given as;

∂2p

∂t2
+ 2u0

∂

∂x

∂p

∂t
+ (u20 − c2)

∂2p

∂x2
= c2

[
∂[qs(t)δ(x− xs)]

∂t
+ u0

∂[qs(t)δ(x− xs)]
∂x

]
(2.1)

Equation 2.5 can also be written as;

∂2p

∂t2
+ 2u0

∂

∂x

∂p

∂t
+ (u20 − c2)

∂2p

∂x2
= c2

d

dt
[qs(t)δ(x− xs)] (2.2)

by using the total derivative definition.

The source term has units kg
m3s

, indicating mass flow rate per unit volume. Dirac
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delta function δ(x−xs) has unit m−1, and qs(t) has unit kg
m2s

. Final governing Equation

2.5 and 2.2 are dimensionally consistent.

Our nonhomogeneous one dimensional wave propagation model can be found

in [44], [54] and [55].

Homogeneous version of this model can be found in some major references such

as [52] and [56].

Please note that, when the medium is stationary, i.e., u0 = 0, then our homoge-

neous wave model reduces to the well known wave equation in one dimension:

∂2p

∂t2
= c2

∂2p

∂x2
(2.3)

In this case (u0 = 0) the nonhomogeneous version reduces to:

1

c2
∂2p

∂t2
− ∂2p

∂x2
=

∂

∂t
[qs(t)δ(x− xs)] (2.4)

and this can be found in references such as [32], [37] and [57–59].

2.3. The Complete Duct System

Here, we define our duct system completely by indicating initial and boundary

conditions.

Figure 2.1. Duct system with flow.
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Governing partial differential equation (PDE) of the duct system is:

∂2p

∂t2
+ 2u0

∂

∂x

∂p

∂t
+ (u20 − c2)

∂2p

∂x2
= c2

[
∂[qs(t)δ(x− xs)]

∂t
+ u0

∂[qs(t)δ(x− xs)]
∂x

]
(2.5)

Initial conditions of the system are:

p(x, 0) = 0 (2.6)

ṗ(x, 0) =
∂p(x, 0)

∂t
= 0 (2.7)

Boundary conditions of the system are:

p(0, t) = d(t) (2.8)

−∂p(L, t)
∂x

= ρ0

(
∂u(L, t)

∂t
+ u0

∂u(L, t)

∂x

)
(2.9)

where p is the acoustic pressure, c is the speed of sound, u0 is the mean flow velocity

of the fluid, L is the length of the duct, d(t) is the disturbance coming into the duct,

xs is the point source location in the duct, qs(t) is the time dependent forcing term

of the point mass source, δ(x − xs) is the spatial Dirac delta function indicating the

application location of forcing input into the system, u(L, t) is the velocity change of

fluid particle at x = L, ρ0 is the equilibrium density of fluid particle.

For the purpose of obtaining transfer functions of the system, we have chosen

“zero” initial conditions as encountered widely in control theory.

Disturbance to the system is taken as exterior by using the boundary condition

at x = 0, i.e., p(0, t) = d(t).

Equation 2.9 indicates frequency dependent impedance boundary condition at

x = L. It represents the fact that momentum equation (Equation 2.10) should be

satisfied at x = L. Later, in the next chapter, it will be related with the acoustic

impedance of the duct end, which states some of the acoustic noise is radiated away
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from the duct while the remaining is reflected back into the duct. Momentum equation

is given below:

−∂p
∂x

= ρ0

(
∂u

∂t
+ u0

∂u

∂x

)
(2.10)

The above system constitutes the most difficult problem of our study. But, we

will also give the solutions for simpler problems which are for no flow case and open

boundary condition at x = L.
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3. SYSTEM TRANSFER FUNCTIONS

3.1. Obtaining Infinite Dimensional Transfer Functions

To obtain the transfer functions of the system, we will apply the classical Laplace

transform method encountered in the literature [30, 35-37]. A comprehensive review

about the Laplace transform method to solve boundary value PDE problems can be

obtained in [60]. Now, we will apply this technique to solve our most complicated

problem which has both mean flow of fluid medium and frequency dependent impedance

boundary condition. Simpler cases (no flow and/or open BC (p(L, t) = 0) cases) can

also be solved by the same methodology. Recall that our governing partial differential

equation of the system is;

∂2p

∂t2
+ 2u0

∂

∂x

∂p

∂t
+ (u20 − c2)

∂2p

∂x2
= c2

[
∂[qs(t)δ(x− xs)]

∂t
+ u0

∂[qs(t)δ(x− xs)]
∂x

]
(3.1)

together with the initial conditions (ICs):

p(x, 0) = 0 (3.2)

ṗ(x, 0) =
∂p(x, 0)

∂t
= 0 (3.3)

qs(0) = 0 (3.4)

and with the boundary conditions (BCs):

p(0, t) = d(t) (3.5)

−∂p(L, t)
∂x

= ρ0

(
∂u(L, t)

∂t
+ u0

∂u(L, t)

∂x

)
(3.6)

When we take Laplace transform with respect to time to Equation 3.1 we obtain
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such an equation in the frequency domain:

s2P (x, s)− sp(x, 0)− ṗ(x, 0) + 2u0
∂[sP (x, s)− p(x, 0)]

∂x
+ (u20 − c2)

∂2P (x, s)

∂x2

= c2
[
[sq(s)− qs(0)]δ(x− xs) + u0

∂[q(s)δ(x− xs)]
∂x

]
(3.7)

where P (x, s) is the Laplace transform of p(x, t) and q(s) is the Laplace transform of

qs(t). Since; p(x, 0) = 0, ṗ(x, 0) = 0, qs(0) = 0, then Equation 3.7 simplifies to;

s2P (x, s) + 2u0s
∂P (x, s)

∂x
+ (u20 − c2)

∂2P (x, s)

∂x2

= c2
[
sq(s)δ(x− xs) + u0q(s)

∂[δ(x− xs)]
∂x

]
(3.8)

Please note that Equation 3.8 is an ordinary differential equation (ODE) for variable x

and now Laplace variable s and functions of s behave like constants. So we just need

to solve ODE in Equation 3.8 in order to get the transfer functions.

When considering
∂P (x, s)

∂x
= P ′(x, s) and

∂[δ(x− xs)]
∂x

= δ′(x − xs); Equation

3.8 can further be simplified as;

s2P (x, s) + 2u0sP
′(x, s) + (u20 − c2)P ′′(x, s)

= c2 [sq(s)δ(x− xs) + u0q(s)δ
′(x− xs)] (3.9)

In the same manner, when we take Laplace transform of BCs in Equation 3.5 and 3.6

we obtain;

P (0, s) = d(s) (3.10)

−∂P (L, s)

∂x
= ρ0

(
su(L, s) + u0

∂u(L, s)

∂x

)
(3.11)

Now, we will put Equation 3.11 in a more useful form. Define the acoustic
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impedance at x = L as;

ZL(s) =
P (L, s)

u(L, s)
(3.12)

Then, putting Equation 3.12 into Equation 3.11 we get;

−∂P (L, s)

∂x
= ρ0

(
s
P (L, s)

ZL(s)
+

u0
ZL(s)

∂P (L, s)

∂x

)
(3.13)

Rearranging Equation 3.13 we finally get;

P (L, s) = −
(
ZL(s)

ρ0s
+
u0
s

)
∂P (L, s)

∂x
(3.14)

ZL(s) is the frequency dependent specific acoustic impedance of the duct end at

x = L. ZL(s) is approximated with a rational transfer function in [39] and below we

also derive and use this approximation in detail.

In [61] radiation impedance of the plane circular piston vibrating sinusoidally in

the end of a long tube is approximated by the electrical circuit analogy [61] shown

below:

Figure 3.1. Electrical circuit analogy for the duct end impedance.
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where V (t) is the fluid velocity, P (t) is the acoustic pressure and R1, R2, C1, M1 are

analogous circuit’s resistance, capacitance and inductance type elements. Values of

these parameters are given in [61] as;

• R2 = ρ0c/πr
2

• R1 = 0.504R2

• C1 = 5.44r3/ρ0c
2

• M1 = 0.1952ρ0/r

where r is the radius of the duct.

These circuit’s differential equations are obtained by using the guide in [61] as

follows:

dVm(t)

dt
=

1

M1

P (t) (3.15)

P (t) =
Pc(t)

R1

R2 + C1
dPc(t)

dt
R2 + Pc(t) (3.16)

V (t) =
Pc(t)

R1

+ C1
dPc(t)

dt
+ Vm(t) (3.17)

where Vm(t) is the inductance current and Pc(t) is the capacitor voltage.

Taking Laplace transform of Equation 3.15, 3.16, 3.17 and rearranging gives the

following:

P (s)

V (s)
=

C1R1R2M1s
2 +M1s(R1 +R2)

s2M1C1R1 + (M1 + C1R1R2)s+ (R1 +R2)
(3.18)

In order to obtain specific acoustic impedance, we should multiply Equation 3.18

with cross-sectional area of the duct since V (t) = πr2v(t) [61] and we get;

ZL(s) = πr2
C1R1R2M1s

2 +M1(R1 +R2)s

M1C1R1s2 + (M1 + C1R1R2)s+ (R1 +R2)
(3.19)
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To sum up, we collect our ODE boundary value problem variables below (which

are stated in Equation 3.9, 3.10 and 3.14):

s2P (x, s) + 2u0sP
′(x, s) + (u20 − c2)P ′′(x, s) = c2 [sq(s)δ(x− xs) + u0q(s)δ

′(x− xs)]

P (0, s) = d(s)

P (L, s) = −
(
ZL(s)

ρ0s
+
u0
s

)
∂P (L, s)

∂x

where ZL(s) is found from Equation 3.19.

Now, Equation 3.9 together with Equation 3.10 and 3.14 form our ODE boundary

value problem.

We solve this boundary value problem by using a commercial software and obtain

the results shown in oncoming subsections. We once again would like to indicate that

Laplace variable s and functions of s alone (q(s), d(s)) in Equation 3.9, 3.10, 3.14 and

3.19 behaves like constants and when we solve the ODE with respect to x, they remain

same as s and can be directly used in transfer function formulation.

Now, we will obtain the disturbance to P (x, s) and input to P (x, s) transfer

functions of the system for open BC, frequency dependent impedance BC and for no

flow, mean flow cases. P (x, s) denotes the pressure value observed at any location x in

the duct at frequency domain.

3.2. Transfer Functions for Open Boundary Condition

3.2.1. No Flow Case

For obtaining open end duct’s transfer functions for no flow case, we will use

Equation 3.9 while taking u0 = 0, Equation 3.10 and below open end boundary condi-
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tion which is:

P (L, s) = 0 (3.20)

3.2.1.1. Disturbance to Output Pressure Transfer Function. Solving equation system

just mentioned above gives disturbance to output pressure transfer function as:

P (x, s)

d(s)
=
e−

xs
c − e−

(2L−x)s
c

1− e− 2Ls
c

(3.21)

3.2.1.2. Input to Output Pressure Transfer Function. Solving equation system at the

beginning of this subsection mentioned above gives the input to output pressure transfer

function as;

for x < xs

P (x, s)

q(s)
=
c(1− e− 2xs

c )(e−
xss
c − e−

(2L−xs)s
c )

2e−
xs
c (1− e− 2Ls

c )
(3.22)

for x ≥ xs

P (x, s)

q(s)
=
c
[
(1− e− 2xs

c )(e−
xss
c − e−

(2L−xs)s
c ) + (1− e− 2Ls

c )(e−
(2x−xs)s

c − e−xss
c )
]

2e−
xs
c (1− e− 2Ls

c )
(3.23)

3.2.2. Mean Flow Case

By solving ODE boundary value problem formed by Equation 3.9, 3.10 and 3.20,

we will obtain disturbance to output pressure and input to output pressure transfer

functions of the open end duct for mean flow case.
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3.2.2.1. Disturbance to Output Pressure Transfer Function. Disturbance to output

pressure transfer function is obtained as:

P (x, s)

d(s)
= e

xs
u0

c2−u20
e
−xs

c
c2

c2−u20 − e
− (2L−x)s

c
c2

c2−u20

1− e
− 2Ls

c
c2

c2−u20

(3.24)

3.2.2.2. Input to Output Pressure Transfer Function. Input to output pressure trans-

fer function is obtained as:

for x < xs

P (x, s)

q(s)
=

c2

2(c2 − u20)
(a12) [c(a4) + u0(a5)] (3.25)

for x ≥ xs

P (x, s)

q(s)
=

c2

2(c2 − u20)
(a12) [c(a8 + a9) + u0(a10 − a11)] (3.26)

where,

a1 =
e
−xss

u0
c2−u20 e

xs
u0

c2−u20

e
−xs

c
c2

c2−u20

a2 = e
− 2xs

c
c2

c2−u20

a3 = e
− 2Ls

c
c2

c2−u20

a4 = e
−xss

c
c2

c2−u20 − e
− (2L−xs)s

c
c2

c2−u20

a5 = e
−xss

c
c2

c2−u20 + e
− (2L−xs)s

c
c2

c2−u20

a6 = e
− (2x−xs)s

c
c2

c2−u20 − e
−xss

c
c2

c2−u20

a7 = e
− (2x−xs)s

c
c2

c2−u20 + e
−xss

c
c2

c2−u20

a8 = (1− a2)(a4)

a9 = (1− a3)(a6)
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a10 = (1− a2)(a5)

a11 = (1− a3)(a7)

a12 =
(a1)(1− a2)

(1− a3)

3.3. Transfer Functions for Frequency Dependent Impedance Boundary

Condition

3.3.1. No Flow Case

By solving Equation 3.9 while taking u0 = 0, for boundary conditions Equation

3.10 and Equation 3.11, we obtain disturbance to output pressure and input to output

pressure transfer functions as below.

3.3.1.1. Disturbance to Output Pressure Transfer Function. Disturbance to output

pressure transfer function for frequency dependent impedance boundary condition for

no flow case is obtained as:

P (x, s)

d(s)
= e

sx
c

[
e

−2sx
c e

2Ls
c c(cρ0 + ZL(s)) + (−c)(cρ0 − ZL(s))

]
[
e

2Ls
c c(cρ0 + ZL(s)) + (−c)(cρ0 − ZL(s))

] (3.27)

where ZL(s) is given by Equation 3.19, ρ0 is the density of the acoustic medium.

3.3.1.2. Input to Output Pressure Transfer Function. Input to output pressure trans-

fer function for frequency dependent impedance boundary condition for no flow case is

obtained as:
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for x < xs

GqPxltxs =
P (x, s)

q(s)
=

[(b1)(b7) + (b2)(b8)]

2
[
e

2Ls
c (b3) + (b4)

] (3.28)

for x ≥ xs

P (x, s

q(s)
= GqPxltxs +

[(b9)(b5) + (b10)(b6)]

2
[
e

2Ls
c b3 + b4

] (3.29)

where,

b1 = (cρ0 + ZL(s))c2

b2 = (cρ0 − ZL(s))c2

b3 = (cρ0 + ZL(s))c

b4 = (cρ0 − ZL(s))(−c)

b5 = (d5)c
2 − (d3)c

2

b6 = (d6)c
2 − (d2)c

2

b7 = d2 − d1

b8 = d3 − d4

b9 = (cρ0 − ZL(s))

b10 = (cρ0 + ZL(s))

d1 = (a13)(a15)(a17)

d2 = (a14)(a15)(a17)

d3 = (a13)(a16)

d4 = (a14)(a16)

d5 = (a14)(a15)

d6 = (a13)(a16)(a17)
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a13 = e
−sx
c

a14 = e
sx
c

a15 = e
−sxs

c

a16 = e
sxs
c

a17 = e
2Ls
c

3.3.2. Mean Flow Case

By solving Equation 3.9 for boundary conditions Equation 3.10 and Equation

3.11, we obtain disturbance to output pressure and input to output pressure transfer

functions for mean flow case for frequency dependent impedance boundary condition

as below.

3.3.2.1. Disturbance to Output Pressure Transfer Function. Disturbance to output

pressure transfer function for frequency dependent impedance boundary condition for

mean flow case is obtained as:

P (x, s)

d(s)
= g1

[g2(c+ u0)(cρ0 + ZL(s)) + (−c+ u0)(cρ0 − ZL(s))]

[g3(c+ u0)(cρ0 + ZL(s)) + (−c+ u0)(cρ0 − ZL(s))]
(3.30)

where ZL(s) is given by Equation 3.19, ρ0 is the density of the acoustic medium, u0 is

the mean flow velocity of medium, c is the speed of sound.

where,

g1 = e
sx
c

c2

c2−u20 e
sxu0
c2

c2

c2−u20

g2 = e
−2sx

c
c2

c2−u20 e
2Ls
c

c2

c2−u20

g3 = e
2Ls
c

c2

c2−u20
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3.3.2.2. Input to Output Pressure Transfer Function. Input to output pressure trans-

fer function for frequency dependent impedance boundary condition for mean flow case

is obtained as:

for x < xs

GqPxltxs =
P (x, s)

q(s)
=

c2

2(c2 − u20)
[(h1)(h7) + (h2)(h8)]

[(l7)(h3) + (h4)]
(3.31)

for x ≥ xs

P (x, s)

q(s)
= GqPxltxs +

c2

2(c2 − u20)
[(h9)(h5) + (h10)(h6)]

[(l7)h3 + h4]
(3.32)

where,

h1 = (cρ0 + ZL(s))(c+ u0)
2

h2 = (cρ0 − ZL(s))(c− u0)2

h3 = (cρ0 + ZL(s))(c+ u0)

h4 = (cρ0 − ZL(s))(−c+ u0))

h5 = (k5)(c
2 − u20)− (k3)(c− u0)2

h6 = (k6)(c
2 − u20)− (k2)(c+ u0)

2

h7 = k2 − k1

h8 = k3 − k4

h9 = (cρ0 − ZL(s))

h10 = (cρ0 + ZL(s))

k1 = (l1)(l3)(l4)(l6)(l7)

k2 = (l2)(l3)(l4)(l6)(l7)

k3 = (l1)(l3)(l5)(l6)

k4 = (l2)(l3)(l5)(l6)
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k5 = (l2)(l3)(l4)(l6)

k6 = (l1)(l3)(l5)(l6)(l7)

l1 = e
−sx
c

c2

(c2−u20)

l2 = e
sx
c

c2

(c2−u20)

l3 = e
sxu0
c2

c2

(c2−u20)

l4 = e
−sxs

c
c2

(c2−u20)

l5 = e
sxs
c

c2

(c2−u20)

l6 = e
−sxsu0

c2
c2

(c2−u20)

l7 = e
2Ls
c

c2

(c2−u20)

3.4. Effects of Mean Flow on System Resonance Frequencies

We can obtain some basic information from open BC solution mentioned above.

When considering P (x, s)/d(s) transfer functions for no flow case, Equation 3.21 and

mean flow case Equation 3.24 we can see that they have the same form except that the

extra c2/(c2 − u20) term in each individual exponential term.

This term shifts the resonance frequencies by a factor of (c2/(c2 − u20))
−1

. For

example, if c = 340 m/s and u0 = 34 m/s resonance frequency of the first mode is

shifted from 50 Hz to 49.5 Hz. Similarly, if c = 340 m/s and u0 = 68 m/s are selected,

then the first resonance frequency is predicted at 48 Hz.

Second, third and higher resonance frequencies can also be predicted in the same

way since; nth resonance frequency for no flow case occurs at n × f , where f is the

first (fundamental) resonance frequency; and nth resonance frequency for mean flow

case occurs at (c2/(c2 − u20))
−1 × n× f .

The same results are observed when considering P (x, s)/q(s) transfer functions

for no flow case and mean flow case as well. Again the resonance frequencies are shifted

by the factor (c2/(c2 − u20))
−1

.
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From the results obtained for the ideal situations, we can conclude that we

expect a shift in resonance frequency due to flow. The shift, given by the factor

(c2/(c2 − u20))
−1

for open BC case, provides a good approximation for resonance fre-

quency shifts encountered in frequency dependent impedance BC case.

Figure 3.2 and 3.3 show this shifting concept for d(s) to P (x, s) transfer function,

both for open BC and frequency dependent impedance BC cases, respectively. The

parameters in Figure 3.2 and 3.3 are specified as; c = 340 m/s, L = 3.4 m, x = 2.8

m. For comparison, mean flow velocities of fluid (u0’s) are taken as; 0 m/s, 34 m/s

and 102 m/s, i.e., effect of mean flow on system resonance frequencies are observed for

Mach numbers; 0, 0.1 and 0.3, respectively.

Both in Figure 3.2 and 3.3, shift in resonance frequencies occur according to the

discussion mentioned above. In Figure 3.3, it is also observed that, mean flow has a

damping effect for frequency dependent impedance BC case.

Figure 3.2. Frequency response of d(s) to P (x, s) transfer function for three different

Mach numbers for open BC. (red dotted line - Ma = 0, black solid line - Ma = 0.1,

blue dashed line - Ma = 0.3).
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Figure 3.3. Frequency response of d(s) to P (x, s) transfer function for three different

Mach numbers for frequency dependent impedance BC. (red dotted line - Ma = 0,

black solid line - Ma = 0.1, blue dashed line - Ma = 0.3).

3.5. Final Remarks

In this section, we have given d(s) to P (x, s) and q(s) to P (x, s) transfer functions

for; no flow, mean flow cases and for open end, impedance end boundary condition

cases.

We observed that, the resonance frequencies of the mean flow case differs from

no flow case by a factor (c2/(c2 − u20))
−1

for ideal open BC case. For the frequency

dependent impedance BC case, shift in resonance frequencies also occur, but this factor

gives an approximate information about the level of shift.

It should once again be emphasized that the transfer functions obtained in this

chapter are infinite dimensional. In order to apply finite dimensional linear time in-

variant control theory to this acoustic problem, these transfer functions should be

approximated by proper finite dimensional ones. Then, tools for finite dimensional
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linear time invariant (LTI) control theory can be employed to approximated rational

transfer functions, in order to solve active noise control problem in our duct system.
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4. MICROPHONE AND SOURCE POSITIONING

In this thesis, our primary objective is to synthesize an optimal controller for

noise reduction in a duct with mean flow. Our problem is a single input single output

(SISO) control problem so that we need an actuator and a sensor. In order to obtain

a reliable and satisfactory noise reduction performance, we need to place the sensor

(microphone) and the actuator (source) at the right place.

In this chapter, we will determine our source and microphone locations. Results

of this chapter will form our basis to approach our ultimate goal “H2-H∞ Optimal

Active Noise Controller Synthesis”.

4.1. Physics for Acoustic Duct System

Here, we will formulate how to obtain natural frequencies and node points of an

open-open end duct system in which mean flow exists. Thus, when we specify the

parameters; speed of sound, length of the duct and mean flow velocity of fluid medium

inside the duct; then we can find the resonances and antiresonances of the duct system

immediately, thus poles and zeros.

4.1.1. Natural Frequencies of the Duct

Consider an open-open end duct system. In the absence of flow of fluid in the

duct, this duct system satisfies the following relationship:

λn =
2L

n
(4.1)

where λn is the nth mode wavelength, L is the length of the duct, n is the mode

number.
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Following equation gives the relationship between wavelength and frequency:

c = λf (4.2)

From Equation 4.2, we can find the nth natural frequency of the duct (fn) as;

fn =
cn

2L
(4.3)

where c is the speed of sound.

As mentioned in the previous chapter, existence of mean flow of fluid medium in

the duct shifts the poles and zeros of the system by the factor (c2 − u20)/c2. Thus for

mean flow case, we obtain the following relationship for natural frequencies of our duct

system:

f ′n =
cn

2L

(
c2 − u20
c2

)
(4.4)

So, as an example, for c = 340 m/s, L = 3.4 m and u0 = 34 m/s; the nth natural

frequency of the system is found as;

f ′n =
340× n
2× 3.4

× 3402 − 342

3402

= n× 50× 0.99

= n× 49.5

which is the same result obtained in the previous chapter.
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4.1.2. Nodes of the Duct

In the absence of flow, the nodes of an open-open end duct occur at points which

satisfy the Equation 4.5. In Figure 4.1, first three modes of an open-open end duct are

given.

p(x) = sin
(nπx
L

)
= 0 (4.5)

where p(x) is the acoustic pressure, n is the mode number, L is the length of the duct

and x is the node.

Figure 4.1. First three modes of an open-open end duct. First mode (solid line) - no

node inside the duct, second mode (dotted line) - node at x = L/2, third mode

(dashed line) - nodes at x = L/3 and x = 2L/3.

Nodes are the locations where the pressure is “zero” inside the duct. So, if we

put our microphone or source on a node we can not measure or create a sound pressure

from that point at a specific frequency and its harmonics.

We can formulate that at which frequency we can not measure and create a sound

pressure in a duct for a given measuring and actuating point as follows:

Suppose we have an open-open end duct with length L in the absence of fluid

flow. Assume our microphone is located at xm and our source is located at xs inside
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the duct.

The frequency fm at which microphone located at xm measures zero pressure is

found from Equation 4.2 as;

c = 2|x− xm|fm (4.6)

where x is the duct end closest to the xm. So fm becomes;

fm =
c

2(L− xm)
if xm is closer to the duct end (x = L) (4.7)

fm =
c

2xm
if xm is closer to the duct end (x = 0) (4.8)

Same formulations are valid for the frequency fs at which source at xs creates

zero pressure:

fs =
c

2(L− xs)
if xs is closer to the duct end (x = L) (4.9)

fs =
c

2xs
if xs is closer to the duct end (x = 0) (4.10)

If both source and microphone exist inside the open-open end duct, following

procedure for determining zeros is applied:

• Firstly, the zeros of the device (microphone/loudspeaker) which is closest to one

of the ends are determined.

• Then, the zeros of the other device (loudspeaker/microphone) are determined

with respect to the other end.

For the mean flow case, we need to multiply these two frequency values with

shifting factor (c2 − u20)/c2 as is done for the natural frequencies. Thus, zero pressure
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frequencies for mean flow case f ′m and f ′s become:

f ′m =
c

2(L− xm)

c2 − u20
c2

if xm is closer to the duct end (x = L) (4.11)

f ′m =
c

2xm

c2 − u20
c2

if xm is closer to the duct end (x = 0) (4.12)

and,

f ′s =
c

2(L− xs)
c2 − u20
c2

if xs is closer to the duct end (x = L) (4.13)

f ′s =
c

2xs

c2 − u20
c2

if xs is closer to the duct end (x = 0) (4.14)

Consider the following numerical example. Assume that there is no mean flow

inside the duct, c = 340 m/s and L = 3.4 m. Suppose we put our microphone at

xm = 2.8 m. Then;

c = λf

340 = 2(3.4− 2.8)fm

fm = 283.3 Hz

Thus, for xm = 2.8 m we measure the pressure value as “zero” at fm = 283.3 Hz

and at its harmonics.

Similarly, if we put our source at xs = 1.6 m, then;

340 = 2× 1.6× fs

fs = 106.2 Hz

So, at fs = 106.2 Hz and its harmonics we can not create a sound pressure value.
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Please note that calculations for nodal frequencies are done for the distance nearest to

the one of the duct ends.

These two calculated values of fm and fs are for no flow case. For mean flow case

results, all we have to do is to multiply these frequency values with the shifting factor

(c2 − u20)/c2. Thus for u0 = 34 m/s corresponding mean flow frequencies become;

f ′m = 0.99× fm

= 0.99× 283.3

= 280.5 Hz

f ′s = 0.99× fs

= 0.99× 106.2

= 105.2 Hz

Therefore, for mean flow case at f ′m = 280.5 Hz and at its harmonics, we measure

the acoustic response as “zero” and at f ′s = 105.2 Hz and at its harmonics, we create

“zero” acoustic pressure.

The results for this ideal open-open BCs will provide us basic knowledge for

determining microphone and source locations inside the duct.

4.2. Microphone and Source Locations

4.2.1. Proposed Duct System

As mentioned before, our ultimate goal is to synthesize an optimal controller in

order to suppress unwanted noise in the low frequency range. For our duct system, we

specify the parameters as below. However, one can choose a different set of parameters.

• c = 340 m/s
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• u0 = 34 m/s

• L = 3.4 m

So, duct resonance frequencies occur nearly at:

fn = nf
c2 − u20
c2

for n = 1, 2, ...

where f = c/(2L). So fn becomes;

fn = n× 50× 3402 − 342

3402

fn = 49.5n for n = 1, 2, ...

Please note that we have already calculated this value for resonance frequency in the

previous section.

We choose our target low frequency noise reduction range as 0− 250 Hz, i.e., we

want to suppress noise levels up to the first five modes of the duct by using Active

Noise Controller.

Finally, we use a feedback configuration as shown in Figure 4.2 below. We select

xm > xs, since; source input can travel on both direction to the duct ends and if we

place microphone in the duct as xm < xs, this would cause instability. For the xm < xs

configuration, a wrong signal is fed to the controller, since we want to attenuate noise

at duct end at x = L, not the other end. Whereas if we place our microphone at

xm > xs, we can measure noise levels near the target duct end and give appropriate

input to suppress unwanted noise.

In the configuration shown in Figure 4.2, microphone placed at xm measures the

acoustic pressure value at xm and sends it to controller. The controller uses this value

P (xm, s) as input and calculates proper q(s) value to suppress noise resulting from

d(s).
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Figure 4.2. Feedback design for ANC in duct

Now, with the parameters specified above, we are ready to discuss the microphone

and source locations inside this duct system.

4.2.2. Microphone Location

Since we want to suppress the noise levels up to the first five modes of the duct,

we should better to choose a microphone point that has no zeros for P (xm, s)/d(s) and

P (xm, s)/q(s) transfer functions at the target frequency range 0 − 250 Hz. Since at

zeros; we measure the pressure value as “zero” so we can not create a canceling signal

because measured pressure is used as input for our controller.

In mean flow case, for 250 Hz, “zero pressure” point inside the duct can be found

for open-open end case by using Equation 4.11 and 4.12 as:

250 =
340

2× xm1

× 3402 − 342

3402

xm1 = 0.67 m
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and,

250 =
340

2× (3.4− xm2)
× 3402 − 342

3402

xm2 = 2.73 m

Therefore, if we place our measuring point well away at:

xm < 0.67 m (4.15)

or,

xm > 2.73 m (4.16)

then, we can guarantee that no zeros will occur within our frequency range.

4.2.3. Source Location

As was done in previous section “zero pressure” point for source is calculated for

open-open end case from Equation 4.13 and 4.14, for 250 Hz, as:

250 =
340

2× xs1
× 3402 − 342

3402

xs1 = 0.67 m

and,

250 =
340

2× (3.4− xs2)
× 3402 − 342

3402

xs2 = 2.73 m
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Therefore, if we place our actuating (source) point well away at:

xs < 0.67 m (4.17)

or,

xs > 2.73 m (4.18)

then, depending on xm location, we can avoid the zeros in input to output transfer

function which caused by source location.

4.3. Final Duct Configuration for ANC

Here, we describe our complete duct configuration for Active Noise Control

(ANC). In the remaining chapters, we will approximate the system transfer functions

and synthesize our controllers by using this duct configuration.

We have already determined the parameters, microphone-source configuration

and target frequency range, before. Below is the list of parameters:

• speed of sound: c = 340 m/s

• mean flow velocity of fluid: u0 = 34 m/s

• length of the duct: L = 3.4 m

• target frequency range: 0− 250 Hz

• sensor-actuator configuration: xm > xs

Therefore, we are just left with the exact locations of microphone and source in

the duct.

As discussed in “Microphone and Source Locations” section we have found that,
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location of microphone should be at:

xm < 0.67 m or xm > 2.73 m

and, location of source should be at:

xs < 0.67 m or xs > 2.73 m

For our duct system we have decided that its better to configure microphone-

source positioning as xm > xs. So, above inequalities simplifies to:

xm > 2.73 m and xs < 0.67 m (4.19)

since, when xm is closer to the duct end x = L, xs is determined according to Equation

4.14.

Choosing xm = 2.8 m and xs = 0.6 m satisfies Equation 4.19 and finalize our

duct system parameters. Here, we choose a symmetric configuration in order to obtain

zero information for both source and microphone at the same point. Even we have no

zeros at the target frequency range, by choosing a symmetric configuration we get rid

of possible uncertain side effects of antisymmetric configuration. By this design, we

have captured all the poles in our frequency range and got rid of all the zeros.
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5. OPTIMAL CONTROLLER DESIGNS

System transfer functions obtained in Chapter 3 are infinite dimensional. In or-

der to apply LTI finite dimensional control theory, we need finite dimensional transfer

functions which represent the system. In Chapter 6, we will present some approxi-

mating schemes utilizing linear least squares in our case studies. We postpone the

approximation subject to Chapter 6, and throughout this chapter we assume that we

have low order, finite dimensional, real, rational, strictly proper transfer function ap-

proximations representing the real system transfer functions. To sum up, throughout

this chapter, the transfer functions used in finite dimensional control theory derivations

are approximated finite dimensional system transfer functions.

In this chapter, following the discussions made in previous chapters, we will syn-

thesize H2 and H∞ optimal controllers to achieve noise reduction at the end of the

duct. We will apply linear time invariant (LTI) finite dimensional control theory to

approximated low order, finite dimensional, real, rational, strictly proper transfer func-

tions of our acoustic duct system in order to get H2 and H∞ controller designs. We

will begin this chapter with describing control problem formulation, continue with state

space representations of plant and closed loop system, finally conclude with controller

designs.

5.1. Control Problem Formulation

In Figure 4.2 we show our proposed duct system. Here, we formulate our control

problem:

The transfer function that relates disturbance (d(s)) to pressure at a point x

inside the duct (P (x, s)) is given by:

Gd(x, s) =
P (x, s)

d(s)
(5.1)
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and, the transfer function that relates control input (q(s)) to pressure at a point x

inside the duct (P (x, s)) is given by:

Gq(x, s) =
P (x, s)

q(s)
(5.2)

Then, the total pressure at a point x inside the duct resulting from both distur-

bance and control input is found by:

P (x, s) = Gd(x, s)d(s) +Gq(x, s)q(s) (5.3)

As can be seen from Figure 4.2 , our control input is:

q(s) = C(s)P (xm, s) (5.4)

where C(s) is the controller transfer function, P (xm, s) is the measured pressure value

by microphone at sensing point.

When we put Equation 5.4 in Equation 5.3 we get;

P (x, s) = Gd(x, s)d(s) +Gq(x, s)C(s)P (xm, s) (5.5)

P (xm, s) is calculated by using xm instead of x in Equation 5.3:

P (xm, s) = Gd(xm, s)d(s) +Gq(xm, s)q(s) (5.6)

In the configuration shown in Figure 4.2, microphone located at xm measures the

acoustic pressure P (xm) at that point, and sends this information to controller. Our

controller uses this signal and calculates a proper input, which is fed to the system in

order to suppress the unwanted sound downstream of the duct.

Equation 5.3, 5.4 and 5.6 can be formulated as a disturbance attenuation problem

shown in Figure 5.1.
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Figure 5.1. Disturbance attenuation problem.

Using Equation 5.4 in Equation 5.6 results in;

P (xm, s) = Gd(xm, s)d(s) +Gq(xm, s)C(s)P (xm, s)

(1−Gq(xm, s)C(s))P (xm, s) = Gd(xm, s)d(s)

P (xm, s) =
Gd(xm, s)

1−Gq(xm, s)C(s)
d(s) (5.7)

Equation 5.7 gives the closed loop system between P (xm, s) and d(s). Note that,

as we have a SISO system, in Equation 5.7, we can use [1−Gq(xm, s)C(s)] instead of

[I − Gq(xm, s)C(s)] and conduct a simple division operation to get P (xm, s). Figure

5.2 shows it in block diagram form.

Figure 5.2. Closed loop system between P (xm, s) and d(s).
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When we put Equation 5.7 in Equation 5.5 we get;

P (x, s)

d(s)
= Gd(x, s) +Gq(x, s)C(s)

Gd(xm, s)

1−Gq(xm, s)C(s)
(5.8)

Equation 5.8 shows the closed loop system between P (x, s) and d(s). Figure 5.3

shows it in block diagram form.

Figure 5.3. Closed loop system between P (x, s) and d(s).

In H2-design; our task is to synthesize an optimal controller C(s) in order to

minimize H2 norm of closed loop system (||P (x, s)/d(s)||2) while maintaining closed

loop stability.

In H∞-design; our task is to synthesize an optimal controller C(s) in order to

minimize H∞ norm of closed loop system (||P (x, s)/d(s)||∞) while maintaining closed

loop stability.

Now, we will obtain the required state space descriptions for controller synthesis,

in the next section.
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5.2. State Space Representations

5.2.1. State Space Description of Plant

Here, we derive the state space description of our plant. In Figure 5.4, general

form of our plant can be seen.

Figure 5.4. General plant form.

It has two inputs (d and q) and two outputs (z and y) described before. The

relationship between d, q, z and y are;

z = Gdzd+Gqzq (5.9)

y = Gdyd+Gqyq (5.10)

where Gdz(s) is finite dimensional approximation of d to z transfer function, Gqz(s) is

finite dimensional approximation of q to z transfer function, Gdy(s) is finite dimensional

approximation of d to y transfer function, Gqy(s) is finite dimensional approximation

of q to y transfer function.

Since we have finite dimensional transfer functions Gdz, Gqz, Gdy and Gqy; we can

obtain their state space matrices as;

Gdz(s) = Cdz(sI−Adz)
−1Bdz (5.11)

Gqz(s) = Cqz(sI−Aqz)
−1Bqz (5.12)

Gdy(s) = Cdy(sI−Ady)−1Bdy (5.13)

Gqy(s) = Cqy(sI−Aqy)−1Bqy (5.14)
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where A, B and C are the corresponding state space matrices.

Writing state space descriptions explicitly, we have;

ẋdz = Adzxdz + Bdzd (5.15)

ydz = Cdzxdz (5.16)

ẋqz = Aqzxqz + Bqzq (5.17)

yqz = Cqzxqz (5.18)

ẋdy = Adyxdy + Bdyq (5.19)

ydy = Cdyxdy (5.20)

ẋqy = Aqyxqy + Bqyq (5.21)

yqy = Cqyxqy (5.22)

where xdz, xqz, xdy, xqy are the corresponding state vectors, ydz, yqz, ydy, yqy are the

corresponding outputs.

From Equation 5.9 and 5.10 we have;

z = ydz + yqz = Cdzxdz + Cqzxqz (5.23)

y = ydy + yqy = Cdyxdy + Cqyxqy (5.24)

Constructing our plant with Equation 5.15, 5.17, 5.19, 5.21, 5.23 and 5.24 we get;

ẋpl = Axpl + Bu (5.25)

ỹ = Cxpl (5.26)
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where,

xpl =


xdz

xqz

xdy

xqy

 , ẋpl =


ẋdz

ẋqz

ẋdy

ẋqy

 , ỹ =

z
y

 , u =

d
q



and,

A =


Adz 0 0 0

0 Aqz 0 0

0 0 Ady 0

0 0 0 Aqy

 , B =


Bdz 0

0 Bqz

Bdy 0

0 Bqy

 , C =

Cdz Cqz 0 0

0 0 Cdy Cqy



Equation 5.25 and 5.26 form our plant’s state space description. In Figure 5.5,

we can see these in a block diagram form. Our approximated transfer functions are

strictly proper. Thus, we do not have any D matrix. 0’s that are found in matrices

mentioned above have the proper dimensions consistent with dimensions of A, B, C

matrices as well.

Figure 5.5. State space description of the plant.

In Figure 5.6 we have a more compact form for plant state space description:
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Figure 5.6. Compact form of plant state space description.

where,

A =


Adz 0 0 0

0 Aqz 0 0

0 0 Ady 0

0 0 0 Aqy

 , Bd =


Bdz

0

Bdy

0

 , Bq =


0

Bqz

0

Bqy

 ,

Cz =
[
Cdz Cqz 0 0

]
, Cy =

[
0 0 Cdy Cqy

]

5.2.2. State Space Description of Closed Loop System

When we close the loop between y and q with a controller, we get the following

configuration shown in Figure 5.7.

Figure 5.7. Closed loop system.
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For plant;

ẋpl = Axpl + Bdd+ Bqq (5.27)

z = Czxpl (5.28)

y = Cyxpl (5.29)

For controller;

ẋc = Acxc + Bcy (5.30)

q = Ccxc + Dcy (5.31)

Combining Equation 5.27-5.31 together in which state space descriptions of plant

and controller are given, we get;

ẋpl = (A + BqDcCy)xpl + (BqCc)xc + Bdd (5.32)

ẋc = (BcCy)xpl + Acxc (5.33)

z = Czxpl (5.34)

where xpl is the state vector for plant, xc is the state vector for controller.

Equation 5.32-5.34 can be written in matrix form as follows:

˙̃x =

ẋpl

ẋc

 =

A + BqDcCy BqCc

BcCy Ac

 x̃ +

Bd

0

 d (5.35)

z =
[
Cz 0

]
x̃ (5.36)

where x̃ is the closed loop transfer function’s state vector.

Equation 5.35 and 5.36 form the state space description of the closed loop transfer
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function between d to z. In Figure 5.8 it can be seen in a block diagram form.

Figure 5.8. State space representation of closed loop transfer function.

5.3. Controller Designs

Since we have obtained our closed loop transfer function form in Equation 5.35

and 5.36, now our task is to find Ac, Bc, Cc, Dc matrices which provide disturbance

attenuation while maintaining closed loop stability. In this section, we give linear

matrix inequalities (LMI) formulations for H2 and H∞ optimal controller designs.

5.3.1. LMI Formulation for H2 Optimal Controller

Below, we give our LMI formulation for H2 optimal controller synthesis.

trace(Λ) < γ2 (5.37)


E1 E2 Bd

ET
2 E3 XBd

BT
d BT

dX −I

 < 0 (5.38)


Λ CzY Cz

YCT
z Y I

CT
z I X

 > 0 (5.39)
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where,

E1 = AY + BqK + YAT + KTBT
q (5.40)

E2 = A + BqNCy + HT (5.41)

E3 = XA + RCy + ATX + CT
y RT (5.42)

5.3.2. LMI Formulation for H∞ Optimal Controller

Below, we give our LMI formulation for H∞ optimal controller synthesis.

minimize trace(γI) (5.43)


E1 E2 Bd YCT

z

ET
2 E3 XBd CT

z

BT
d BT

dX −γI 0

CzY Cz 0 −γI

 < 0 (5.44)

Y I

I X

 > 0 (5.45)

where E1, E2 and E3 are defined through Equation 5.40-5.42.

5.3.3. Controller Reconstruction for H2 and H∞ Designs

Formulations mentioned in the previous subsections are linear with respect to

matrix variables X, Y, H, K, R, N. These LMIs will be solved by using a commercial

software and these matrix variables will be obtained. Then, they will be placed into

the matrix equation below, in order to get the controller matrices Ac, Bc, Cc and Dc.

For further information please refer to [62].
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Ac Bc

Cc Dc

 =

U XBq

0 I

−1 H−XAY R

K N

  VT 0

CyY I

−1 (5.46)

where,

• U = I

• VT = I−XY

• I is the identity matrix

With Equation 5.46, we finally can get our controller state space matrices Ac,

Bc, Cc and Dc.



63

6. RESULTS AND DISCUSSIONS

In this chapter, we give numerical case studies done in the light of the discussions

made in the previous sections. Firstly, we specify our system parameters. Then, we

obtain finite dimensional, low order, real, rational, strictly proper transfer function

approximations of the system transfer functions. Finally, we synthesize H2 and H∞

optimal controllers in order to achieve noise reduction at our target low frequency

range. We give results for mean flow case, for both open boundary condition case and

frequency dependent impedance boundary condition case. Below is the numerical value

of parameters. These parameters are the same for all case studies:

• speed of sound: c = 340 m/s

• mean flow velocity of fluid: u0 = 34 m/s

• length of the duct: L = 3.4 m

• microphone location: xm = 2.8 m

• source location: xs = 0.6 m

• equilibrium density of fluid: ρ0 = 1.2 kg/m3

• radius of the duct: r = 0.1 m

• target frequency range: 0− 250 Hz

6.1. Open Boundary Condition Case

In this section, we give results for open boundary condition case. Though not

being very realistic, it gives insight for the applicability of ANC in ducts which has

mean flow of fluid inside. We first give an approximating scheme to obtain finite

dimensional transfer function approximation of system transfer functions at selected

target frequency range, then share the optimal controller results which are synthesized

via LTI finite dimensional control theory mentioned in Chapter 5.
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6.1.1. Transfer Function Approximations

Our system transfer functions are infinite dimensional, i.e., when we want to write

them in a traditional rational transfer function form it has infinitely many poles and

zeros. However, we want to synthesize optimal controllers via the LTI finite dimen-

sional control theory, since it gives us physically more readily implementable controller

configuration. Thus, we need to approximate the system transfer functions with finite

dimensional rational ones, particularly in the frequency range of interest. Moreover,

our approximate finite dimensional transfer functions should be not only rational but

also strictly proper. Since we synthesize an H2-controller and for the H2-controller

to be synthesized the closed loop disturbance to controlled output transfer function’s

state space matrix D should be “zero” (Dclosedloop = 0). Thus, in order to guarantee

that, we will obtain strictly proper transfer function approximations of the plant.

We want strictly proper, low order, finite dimensional rational transfer function

approximations of the system. Here, we propose a method, which satisfies all of these

properties.

6.1.1.1. Linear Least Squares Formulation. We write down our transfer function form

used in approximations in Equation 6.1.

5∑
i=1

Ai +Bis

s2 + ω2
i

= Gappx(s) (6.1)

In Equation 6.1; Ai and Bi are the real coefficients to be determined, ωi is the

ith natural frequency of the duct, and s is the Laplace variable. Since we want to

suppress the noise at the first five modes, our summation index goes from 1 to 5. We

already knew from the discussions in the previous chapters that at which frequencies

resonance occur in our duct system. Therefore, we use this information to determine

exact locations of the poles in our approximate transfer function. We do not need to

take into account the zeros since we have already avoided all zeros that can occur in

our frequency range of interest by properly choosing our duct configuration. However,
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we use a term with s in the numerator in order to get the phase information.

Now, we use linear least squares technique in order to get estimates for Ai’s and

Bi’s. When expanding Equation 6.1, we get;

Gappx(s) =
A1 +B1s

s2 + ω2
1

+ .......+
A5 +B5s

s2 + ω2
5

(6.2)

Partition Equation 6.2 further to get;

Gappx(s) =

(
A1

s2 + ω2
1

+ .......+
A5

s2 + ω2
5

)
+

(
B1

s2 + ω2
1

+ .......+
B5

s2 + ω2
5

)
s (6.3)

When we put s = jω in Equation 6.3:

Gappx(jω) =

(
A1

(jω)2 + ω2
1

+ .......+
A5

(jω)2 + ω2
5

)
+

(
B1

(jω)2 + ω2
1

+ .......+
B5

(jω)2 + ω2
5

)
jω (6.4)

Since (jω)2 = −ω2 in Equation 6.4, then for any (jω) value, our approximate transfer

function gives:

Gappx(jω) =

(
A1

−ω2 + ω2
1

+ .......+
A5

−ω2 + ω2
5

)
+

(
B1

−ω2 + ω2
1

+ .......+
B5

−ω2 + ω2
5

)
ωj (6.5)

The real part of Gappx(jω) is;

real(Gappx(jω)) =

(
A1

−ω2 + ω2
1

+ .......+
A5

−ω2 + ω2
5

)
(6.6)

and the imaginary part of Gappx(jω) is;

imag(Gappx(jω)) =

(
B1

−ω2 + ω2
1

+ .......+
B5

−ω2 + ω2
5

)
ω (6.7)
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As it can be seen, with this formulation we capture not only the exact resonance

frequencies but also the phase information which is arctan(imag(G(jω))/real(G(jω))).

Recall that, our transfer functions also have imaginary values at some frequency

ω. So in our proposed work, we will treat our exact transfer function values at frequency

ω as our observed values and then use them in obtaining least squares estimates of Ai’s

and Bi’s. We apply linear regression to real parts of the approximate and the exact

transfer function values in order to obtain estimates for Ai’s; whereas for finding Bi’s

linear regression is applied to imaginary parts of the approximate and the exact transfer

function values. Here is the methodology for estimating Ai’s,

For data point at jω we have:

Yrealω ∼= A1
1

−ω2 + ω2
1

+ A2
1

−ω2 + ω2
2

+ A3
1

−ω2 + ω2
3

+ A4
1

−ω2 + ω2
4

+ A5
1

−ω2 + ω2
5

(6.8)

Say;

xri =
1

−ω2 + ω2
i

where, i = 1, ..., 5 and r denotes the real part.

Then, Equation 6.8 becomes;

Yrealω ∼= A1x
r
1 + A2x

r
2 + A3x

r
3 + A4x

r
4 + A5x

r
5 (6.9)

where xri ’s are regressors for real part of approximate transfer function, Ai’s are pa-

rameters to be estimated, Yrealω is the real part of the exact response at ω.

Equation 6.9 is in the standard form for linear least squares and Ai parameters
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are estimated by using N data points as;

aest = (XT
realXreal)

−1XT
realyreal (6.10)

where,

Xreal =



. . . . .

. . . . .
1

−ω2 + ω2
1

1

−ω2 + ω2
2

1

−ω2 + ω2
3

1

−ω2 + ω2
4

1

−ω2 + ω2
5

. . . . .

. . . . .


N×5

yreal =



.

.

real(G(jω))

.

.


N×1

, aest =



A1

A2

A3

A4

A5



Similarly Bi’s are estimated through the same methodology as;

For data point at jω;

Yimagω
∼= B1

ω

−ω2 + ω2
1

+B2
ω

−ω2 + ω2
2

+B3
ω

−ω2 + ω2
3

+B4
ω

−ω2 + ω2
4

+B5
ω

−ω2 + ω2
5

(6.11)

Again, say:

xmi =
ω

−ω2 + ω2
i
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where, i = 1, ..., 5 and m denotes the imaginary part.

Then, Equation 6.11 becomes;

Yimagw
∼= B1x

m
1 +B2x

m
2 +B3x

m
3 +B4x

m
4 +B5x

m
5 (6.12)

where xmi ’s are regressors for the imaginary part of the approximate transfer function,

Bi’s are parameters to be estimated, Yimagω is the imaginary part of the exact response

at ω.

Here, Equation 6.12 is in the standard form for linear least squares as well, and

Bi parameters are estimated by using N data points as;

best = (XT
imagXimag)−1XT

imagyimag (6.13)

where,

Ximag =



. . . . .

. . . . .
ω

−ω2 + ω2
1

ω

−ω2 + ω2
2

ω

−ω2 + ω2
3

ω

−ω2 + ω2
4

ω

−ω2 + ω2
5

. . . . .

. . . . .


N×5

yimag =



.

.

imag(G(jω))

.

.


N×1

, best =



B1

B2

B3

B4

B5


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6.1.1.2. Results. We take N = 25000 data points, which are equally spaced from

0.01 Hz to 250 Hz. Below, we compare the bode magnitude and phase graphs of the

approximated system transfer functions and the exact system transfer functions for

various cases.

Figure 6.1 shows the disturbance (d(s)) to output pressure at measurement

point (P (xm, s)) transfer function’s exact and approximate bode magnitude and phase

graphs. Figure 6.2 shows the input (q(s)) to output pressure at measurement point

(P (xm, s)) transfer function’s exact and approximate bode magnitude and phase graphs.

We show d(s) to P (x, s) and q(s) to P (x, s) Bode graphs for x = 3.0 m, in Figure 6.3

and 6.4, respectively.

Figure 6.1. Exact and approximate Bode magnitude and phase plot of disturbance

(d(s)) to output pressure at measurement point (P (xm, s)) transfer function (red -

exact, blue - approximate).
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Figure 6.2. Exact and approximate Bode magnitude and phase plot of input (q(s)) to

output pressure at measurement point (P (xm, s)) transfer function (red - exact, blue -

approximate).

Figure 6.3. Exact and approximate Bode magnitude and phase plot of disturbance

(d(s)) to output pressure at x = 3.0 m (P (x, s)) transfer function (red - exact, blue -

approximate).
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Figure 6.4. Exact and approximate Bode magnitude and phase plot of input (q(s)) to

output pressure at x = 3.0 m (P (x, s)) transfer function (red - exact, blue -

approximate).

6.1.1.3. Discussions. As it can be seen from Figure 6.1-6.4 our rational transfer func-

tion approximation represents the original system quite well within the selected fre-

quency range (0− 250 Hz). Beyond that range, both Bode magnitude and phase plots

of approximated transfer functions begin to deviate from the original plots.

These obtained approximations are real, rational, low order, finite dimensional

and strictly proper as we seek for. The degree of the denominator of our approximated

transfer functions is 10 and the numerator’s degree is 9. Low order approximations

make the controller’s degree low as well, which is crucial in real life implementations.

So, it can be concluded that our approximating scheme is satisfactory for the

selected frequency range, thus it can be used for controller synthesis using LTI control

theory.
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6.1.2. Performance of Controllers

Here we represent the performance of synthesized controllers, which are designed

according to Chapter 5. Our aim is to reduce the noise levels towards the end section

of the duct. We take measurements from xm = 2.8 m and reduce the noise levels at

some performance point xp which can be located between x = 2.8 m and x = 3.4 m.

We select our performance point as x = 2.8 m as well and suggest that if we succeed

to achieve noise reduction at that performance point, we also achieve noise reduction

at any point in the end section of the duct.

In the design scheme shown in Equation 5.25, we have Adz, Aqz, Ady and Aqy.

But, recall that in our approximation scheme all of these are equal since we have same

poles everywhere (resonance frequencies are the same). In other words, our individual

plant transfer functions all have same dynamics but we have different B and C matrices.

Thus, in our controller synthesis, we can avoid unnecessary modes, that is, instead of

having 40× 40 state matrix we can obtain 10× 10 state matrix for representing plant

dynamics.

After having obtained minimal and balanced plant realizations, we used LMI

formulations mentioned in Sections 5.3.1 and 5.3.2 to synthesize H2 and H∞ optimal

controllers. We give our controllers’ performance results below.

6.1.2.1. Frequency Domain Results. In this section, we give the frequency domain re-

sults for uncontrolled and controlled system transfer functions. System transfer func-

tions used in frequency responses are approximated finite dimensional ones.

Figure 6.5 shows the uncontrolled and controlled system frequency response re-

sults for performance point xp = 2.8 m. Figure 6.6 shows the uncontrolled and con-

trolled system frequency response results for x = 3.0 m in the duct.



73

Figure 6.5. Uncontrolled and controlled system frequency response plot at x = 2.8 m

(red - uncontrolled, blue - H2 controlled, black - H∞ controlled).

Figure 6.6. Uncontrolled and controlled system frequency response plot at x = 3.0 m

(red - uncontrolled, blue - H2 controlled, black - H∞ controlled).
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6.1.2.2. Time Domain Results. In this section, we give time domain simulation results

obtained from Simulink by using approximated system transfer functions.

The disturbance signal used in time domain simulations is a summation of ten

sine waves. All of these sine waves have amplitude 1 Pa. Ten different frequencies for

these sine waves are: 25, 49.5, 75, 99, 125, 148.5, 175, 198, 225 and 247.5 Hz. Note

that 49.5, 99, 148.5, 198, 247.5 Hz frequencies are duct’s first five resonance frequencies.

This broadband disturbance signal is shown in Figure 6.7.

Time domain uncontrolled and controlled system response to disturbance signal

shown in Figure 6.7 at xm = 2.8 m, is shown in Figure 6.8. Similarly, time domain

uncontrolled and controlled system response to disturbance signal shown in Figure 6.7

at x = 3.0 m, is shown in Figure 6.9.

Figure 6.7. Disturbance signal used in time domain simulations for open boundary

condition.
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Figure 6.8. Uncontrolled and controlled system time domain simulation at xm = 2.8

m (red - uncontrolled, blue - H2 controlled, black - H∞ controlled).

Figure 6.9. Uncontrolled and controlled system time domain simulation at x = 3.0 m

(red - uncontrolled, blue - H2 controlled, black - H∞ controlled).
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6.1.2.3. Discussions. As can be seen from Figure 6.5 and 6.6, our synthesized optimal

controllers suppress all the noise in 0− 250 Hz frequency range. H2 optimal controller

gives better results at higher frequencies whereas, H∞ optimal controller gives better

results at lower frequencies. But the overall performance of H∞ optimal controller is

superior than H2 optimal controller.

Even though our design is with respect to the performance point at xp = 2.8 m,

at x = 3.0 m good noise reduction is also achieved. Since resonance frequencies do not

change along the duct, as presumed earlier, our controller design gives good results.

These frequency domain results are supported by the time domain simulations as

well, in which a broadband disturbance signal is used. As can be seen from Figure 6.8

and 6.9 this disturbance signal causes large pressure fluctuations at the corresponding

points in the duct (red lines in those Figures), but due to the control signal produced,

these unwanted pressure fluctuations are omitted (blue lines for H2 performance, black

lines for H∞ performance).

Even though these results are quite satisfactory, open boundary condition does

not represent a very realistic duct system. To obtain more realistic results, we investi-

gate frequency dependent impedance boundary condition in the next section.

6.2. Frequency Dependent Impedance Boundary Condition Case

In this section, we present results for a more realistic case, which has been de-

scribed with a general boundary condition mentioned in Equation 2.9 for the time

domain and in Equation 3.13 for the frequency domain. Frequency dependent specific

acoustic impedance of the duct end is given by Equation 3.19.

Again, we first obtain finite dimensional transfer function approximations of sys-

tem transfer functions by least squares, then present closed loop performance results

of synthesized optimal controllers, as we did for the open end case.
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6.2.1. Transfer Function Approximations

In this part, we propose an approximating scheme for the frequency dependent

impedance end case. Our finite dimensional transfer function approximations are real,

rational, low order and strictly proper. These transfer function approximations are

obtained via linear least squares, which is described in detail, below.

6.2.1.1. Linear Least Squares Formulation. We begin with, writing down the transfer

function form used in approximations in Equation 6.14.

5∑
i=0

Ai +Bis

s2 + 2ζiωis+ ω2
i

= Gappx(s) (6.14)

In Equation 6.14, Ai and Bi are the real coefficients to be determined, ωi is the ith

natural frequency of the duct, ζi is the damping ratio corresponding to the ith mode,

and s is the Laplace variable. Since we want to suppress the noise at first five modes,

our summation index goes from 0 to 5. Note that we have included a mode with index

0, representing the mode near zero frequency. We already knew from the discussions

in previous chapters that approximately at which frequencies resonance occur in our

duct system. Therefore, we use this information to determine the exact locations of

the poles in our approximate transfer function. We do not need to take into account

the zeros since we have already avoided all zeros that can occur in our frequency range

of interest by properly choosing our duct configuration. Please note that we also have

the phase information because of the s terms which exist in both the numerator and

the denominator.

Here, we discuss how to obtain ωi’s and ζi’s where i ranges from 1 to 5.: ζi’s are

obtained approximately by the following procedure found in [63]. A sketch describing

this approximation is given in Figure 6.10. From the frequency response data of the

transfer function for which finite dimensional approximation will be done:

(i) Determine the ith mode’s maximum bode magnitude value in dB (|H(ωdi)|dB).
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(ii) Determine the frequency value corresponding to that maximum (ωdi).

(iii) Search for the Bode magnitude values which satisfies the following relationship

at both sides of ωdi, as shown in Figure 6.10.

|H(ωdi)| − 3 dB = |H(ωa)| = |H(ωb)| (6.15)

(iv) Find the corresponding frequencies of ωa and ωb for |H(ωa)| and |H(ωb)|, respec-

tively.

(v) Find the ζi by the following relationship.

ζi =
ωb − ωa

2ωdi

(6.16)

After finding ζi, the ωi is obtained by damped natural frequency formulation;

ωi =
ωdi√
1− ζ2i

(6.17)

where ωi, is the undamped natural frequency for the ith mode, ωdi, is the damped

natural frequency for the ith mode (ωdi = 2πfdi), ζi, is the damping ratio for the ith

mode.

Figure 6.10. Modal damping ratio estimation.
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For obtaining ζ0 and ω0 we use the same procedure mentioned above but in a

slightly different way. For approximation purposes we take ω0 directly as;

ω0 = 2π0.01 (6.18)

and we find our ζ0 as;

ζ0 =
ωb

2ω0

(6.19)

where ωb is found with the same procedure mentioned above.

Now, we use linear least squares technique to get estimates for Ai’s and Bi’s.

When expanding Equation 6.14 we get;

Gappx(s) =
A0 +B0s

s2 + 2ζ0ω0s+ ω2
0

+ .....+
A5 +B5s

s2 + 2ζ5ω5s+ ω2
5

(6.20)

In order to obtain least squares estimates, we apply the following procedure:

Firstly, we take these individual transfer functions into a common denominator.

So, the resulting approximate transfer function is rational with numerator degree 11

and denominator degree 12. It has the following form:

Gappx(s) =
n1s

11 + n2s
10 + .....+ n10s+ n11

s12 + d1s11 + .....+ d11s+ d12
(6.21)

where ni’s are real coefficients for numerator polynomial, di’s are coefficients for de-

nominator polynomial. Note that, if we put s = jω in Equation 6.21, then we obtain

a complex value at ω such that:

Gappx(jω) =
e+ fj

g + hj
(6.22)
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where e, f , g, h are real numbers and j =
√
−1.

In order to apply our proposed method we should get rid of complex denominator

values obtained in Equation 6.22. For this purpose, we should multiply both the

numerator and the denominator with complex conjugate of the denominator, namely

(g − hj). As a result, we obtained a complex number in numerator and a pure real

number in denominator:

Gappx(jw) =
(e+ fj)

(g + hj)

(g − hj)
(g − hj)

(6.23)

Gappx(jw) =
k +mj

n
(6.24)

where k, m, n are real numbers and j =
√
−1.

After applying the procedure mentioned through Equation 6.21 - 6.24, we obtain

such a relationship after straightforward but tedious calculations:

Gappx(jω) = (A0x1 + .....+ A5x6 +B1x7 + .....+B5x12)

+ (A0z1 + .....+ A5z6 +B1z7 + .....+B5z12)j (6.25)

where xi’s and zi’s are the corresponding regressors.

We can write Equation 6.25 in a more compact way as:

real(Gappx(jω)) = A0x1 + .....+ A5x6 +B1x7 + .....+B5x12 (6.26)

imag(Gappx(jω)) = A0z1 + .....+ A5z6 +B1z7 + .....+B5z12 (6.27)

where real(Gappx(jω)) is the real part of Gappx(jω), imag(Gappx(jω)) is the imaginary

part of Gappx(jω).

In Equation 6.26 and 6.27, for the data point jω, only unknowns are A0,.....,A5

and B0,.....,B5. Therefore, Equation 6.26 and 6.27 form a linear least squares problem
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as mentioned below:

real(Gexact(jω)) ∼= A0x1 + .....+ A5x6 +B0x7 + .....+B5x12 (6.28)

imag(Gexact(jω)) ∼= A0z1 + .....+ A5z6 +B0z7 + .....+B5z12 (6.29)

where real(Gexact(jω)) is the real part of the exact system transfer function to be ap-

proximated at jω, imag(Gexact(jω)) is the imaginary part of the exact system transfer

function to be approximated at jω.

For N number of data points, we can represent this linear regression problem,

described by Equation 6.28 and 6.29, in matrix form as;

β̂ = (XT
fdieXfdie)

−1XT
fdieyfdie (6.30)

where,

Xfdie =





. . . . . . .

. . . . . . .

x1 x2 . . . x11 x12

. . . . . . .

. . . . . . .


N×12

. . . . . . .

. . . . . . .

z1 z2 . . . z11 z12

. . . . . . .

. . . . . . .


N×12


2N×12

β̂T =
[
A0 . . . A5 B0 . . . B5

]
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yfdie =





.

.

real(Gexact(jω))

.

.


N×1

.

.

imag(Gexact(jω))

.

.


N×1


2N×1

Subscript “fdie” denotes “frequency dependent impedance end”.

6.2.1.2. Results. We obtain approximations by using N = 25000 data points which

are equally spaced with 0.01 Hz in the frequency range 0 − 250 Hz. By using such

a large number of data points, we provide a good fit to the exact frequency response

values. Note that, our regressor matrix Xfdie is 50000× 12, and our exact data vector

yfdie is 50000× 1.

Now, we present results of the approximation scheme mentioned just above, for

three different points which are located towards the end of the duct. In Figure 6.11-

6.16, red lines represent infinite dimensional system transfer functions, whereas, blue

lines represent finite dimensional approximations of the corresponding system transfer

functions.

Figure 6.11 and 6.12 show the results for d(s) to P (xm, s) and q(s) to P (xm, s)

transfer functions where xm = 2.8 m. Figure 6.13 and 6.14 show the results for d(s)

to P (x, s) and q(s) to P (x, s) transfer functions at x = 3.1 m. Figure 6.15 and 6.16

show the results for d(s) to P (x, s) and q(s) to P (x, s) transfer functions at the duct

end (x = 3.4 m).
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Figure 6.11. Bode magnitude and phase plot for d(s) to P (xm, s) transfer function at

xm = 2.8 m (red - exact system transfer functions, blue - approximated transfer

functions).

Figure 6.12. Bode magnitude and phase plot for q(s) to P (xm, s) transfer function at

xm = 2.8 m (red - exact system transfer functions, blue - approximated transfer

functions).
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Figure 6.13. Bode magnitude and phase plot for d(s) to P (x, s) transfer function at

x = 3.1 m (red - exact system transfer functions, blue - approximated transfer

functions).

Figure 6.14. Bode magnitude and phase plot for q(s) to P (x, s) transfer function at

x = 3.1 m (red - exact system transfer functions, blue - approximated transfer

functions).
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Figure 6.15. Bode magnitude and phase plot for d(s) to P (x, s) transfer function at

the duct end x = 3.4 m (red - exact system transfer functions, blue - approximated

transfer functions).

Figure 6.16. Bode magnitude and phase plot for q(s) to P (x, s) transfer function at

the duct end x = 3.4 m (red - exact system transfer functions, blue - approximated

transfer functions).
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6.2.1.3. Discussions. As it can be observed in Figure 6.11-6.16, our approximating

scheme is satisfactory for the frequency range of interest (0 − 250 Hz). Compared to

the open end case, it has some slight discrepencies in the representation of the actual

system. But, it should be noted that, open end case is an ideal situation and does

not represent a real physical system. In the open end case, system transfer functions

can be described by a simple relationship mentioned in Equation 6.1. On the other

hand, for our realistic duct case, we have a more complicated transfer function form

mentioned in Equation 6.14. Thus, it is reasonable to get better results in the ideal

case.

We used our approximating scheme by considering the damped natural frequen-

cies of the system as mentioned in Section 6.2.1.1. Because of that, we achieved quite

nice fits for both magnitude and phase plots at pole locations. On the other hand,

we observe some deficiencies at locations other than pole locations. Generally, Figure

6.11-6.16 show that, at edge frequencies, our approximation begins to deviate. But for

the frequency range of interest (0−250 Hz), it can be readily used for representing the

original system, since deviations are not considered as problematic. Beyond 250 Hz,

our approximations are no longer valid, since we did not take into account that region

in our model.

Our approximated real, rational, finite dimensional system transfer functions have

denominator order of 12 and numerator order of 11, thus it is strictly proper and low

order. As indicated before, this causes our controller to be low order as well.

As a conclusion, our approximations work well at our frequency range of interest

and will be used in finite dimensional controller synthesis.

6.2.2. Performance of Controllers

Here we present our controllers performances, which are synthesized according to

Chapter 5. We begin with, general procedure applied in order to synthesize low order

controllers and continue with, frequency and time domain performances.
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For the spatial region, x = 2.8 m to x = 3.4 m in the duct, Bode magnitude

value’s maximum value for d(s) to P (x, s) transfer function occurs at x = 2.8 m with

18.73 dB. So, it would be reasonable to suppress the noise levels at that point in the

duct. Thus, as was done in the open end case, our performance point for frequency

dependent impedance end is selected as xp = 2.8 m as well.

Our controlled output (z) and measured output (y) are the same since, we take

measurements from xm = 2.8 m and want to reduce the noise at xp = 2.8 m in the

duct. Thus, we have Adz = Ady and Aqz = Aqy. This condition automatically reduces

plant order by half. To further reduce the order, we use the similarity of damping ratios

and damped natural frequencies of approximated system transfer functions. In Table

6.1 and 6.2, we can see that, damping ratios (ζi’s) and damped natural frequencies

(fdi’s), which are used in transfer function approximations, do not change their value

dramatically at different locations along the duct. Thus, we can obtain a low order

plant description, if we approximate damping ratios and damped natural frequencies

of approximated system transfer functions that are needed for controller design. For

this purpose, we take arithmetic average of (ζi’s) and (fdi’s) of corresponding modes,

then use it to describe the plant. Therefore, we get a very close approximation while

obtaining a low order plant.

Table 6.1. Damping ratios (ζi’s) of approximated system transfer functions.

ζ0 ζ1 ζ2 ζ3 ζ4 ζ5

P(x, s)/d(s) at x = 2.8 m 82.5 0.0325 0.0172 0.0125 0.0106 0.0098

P(x, s)/q(s) at x = 2.8 m 85.5 0.0326 0.0172 0.0125 0.0106 0.0102

P(x, s)/d(s) at x = 3.1 m 80.0 0.0326 0.0172 0.0125 0.0105 0.0095

P(x, s)/q(s) at x = 3.1 m 83.0 0.0327 0.0173 0.0126 0.0105 0.0096

P(x, s)/d(s) at x = 3.4 m 79.5 0.0325 0.0172 0.0126 0.0105 0.0095

P(x, s)/q(s) at x = 3.4 m 82.0 0.0326 0.0172 0.0125 0.0105 0.0096
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Table 6.2. Damped natural frequencies(fdi’s) of approximated system transfer

functions (in Hz).

fd0 fd1 fd2 fd3 fd4 fd5

P(x, s)/d(s) at x = 2.8 m 0.01 48.67 97.28 145.91 194.54 243.08

P(x, s)/q(s) at x = 2.8 m 0.01 48.72 97.30 145.91 194.51 242.95

P(x, s)/d(s) at x = 3.1 m 0.01 48.68 97.29 145.93 194.60 243.29

P(x, s)/q(s) at x = 3.1 m 0.01 48.72 97.31 145.93 194.57 243.16

P(x, s)/d(s) at x = 3.4 m 0.01 48.64 97.29 145.94 194.61 243.31

P(x, s)/q(s) at x = 3.4 m 0.01 48.69 97.30 145.93 194.58 243.18

Then, we reduced the order of the plant to 12 states. Thus, we provided that our

controllers have 12 states as well. Having low order controllers mean less computation

time and fast response, which is crucial in real physical system implementations.

6.2.2.1. Frequency Domain Results. Here, we give frequency response results for un-

controlled and controlled systems. In Bode plots, approximated finite dimensional

transfer functions are used.

Figure 6.17 shows the frequency response of uncontrolled and controlled systems

at xm = 2.8 m. Figure 6.18 shows the frequency response of uncontrolled and controlled

systems at x = 3.1 m. Figure 6.19 shows the frequency response of uncontrolled and

controlled systems at the duct end x = 3.4 m.
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Figure 6.17. Frequency response of uncontrolled and controlled systems at xm = 2.8

m (red - uncontrolled, blue - H2 controlled, black - H∞ controlled).

Figure 6.18. Frequency response of uncontrolled and controlled systems at x = 3.1 m

(red - uncontrolled, blue - H2 controlled, black - H∞ controlled).
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Figure 6.19. Frequency response of uncontrolled and controlled systems at the duct

end x = 3.4 m (red - uncontrolled, blue - H2 controlled, black - H∞ controlled).

6.2.2.2. Time Domain Results. In this part, we give time domain simulation results

obtained from Simulink by using approximated system transfer functions.

The disturbance signal used in time domain simulations is a summation of ten

sine waves. All of these sine waves have amplitude 1 Pa. Ten different frequencies for

these sine waves are: 25, 48.67, 75, 97.28, 125, 145.91, 175, 194.54, 225 and 243.08

Hz. Note that; 48.67, 97.28, 145.91, 194.54, 243.08 Hz frequencies are duct’s first five

damped natural frequencies. This broadband disturbance signal is shown in Figure

6.20.

Time domain uncontrolled and controlled system response at measuring point

(xm = 2.8 m) to this disturbance signal is shown in Figure 6.21. Time domain uncon-

trolled and controlled system response at x = 3.1 m to disturbance signal shown in

Figure 6.20 is given in Figure 6.22. Time domain uncontrolled and controlled system

response at the duct end (x = 3.4 m) to disturbance signal shown in Figure 6.20 is

given below in Figure 6.23.



91

Figure 6.20. Disturbance signal used in time domain simulations for frequency

dependent impedance boundary condition.

Figure 6.21. Time domain uncontrolled and controlled system responses at xm = 2.8

m (red - uncontrolled, blue - H2 controlled, black - H∞ controlled).
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Figure 6.22. Time domain uncontrolled and controlled system responses at x = 3.1 m

(red - uncontrolled, blue - H2 controlled, black - H∞ controlled).

Figure 6.23. Time domain uncontrolled and controlled system responses at the duct

end x = 3.4 m (red - uncontrolled, blue - H2 controlled, black - H∞ controlled).
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6.2.2.3. Discussions. As it can be seen from Figure 6.17, our optimal controllers show

good noise reduction behavior at microphone point (xm). So, our suggested reduced

order approximated plant is adequate for controller synthesis. As can be seen from

the same figure, near the first and the last mode natural frequencies, the closed loop

frequency response deviates a little. It is probably because of approximated damping

ratios and damped natural frequencies. But, since the variation of these parameters

are very small, it does not cause a serious problem.

From Figure 6.17, we observe that H∞ performance is better at low frequencies,

whereas H2 performance is superior at high frequencies. But overall, we can conclude

that, H∞ design demonstrates better performance characteristics throughout the fre-

quency range of interest. At some frequencies, closed loop system shows worse results

than the uncontrolled system. But at overall, this does not cause a big problem because

of the low dB values observed. With controllers, we provide a smooth frequency re-

sponse plot and avoided resonance peaks. Thus, at the performance point we achieved

good noise reduction.

In Figure 6.18, we observe similar characteristics which are considered above.

Again H2 performance is better at high frequencies. But, even though we achieved to

reduce the noise levels at most of the bandwidth, our controllers’ performances are low

at the fifth mode. In addition to that, at resonance frequencies we have a more wavy

plot. Those defects in performance are encountered because we design our controllers

to reduce noise levels at one particular point. But, since variation in damping ratios

and damped natural frequencies are low, our low order controller works reasonably well

at most of the target bandwidth.

Figure 6.19 shows the controller’s performance at the duct end. Again, H2 is

better at high frequencies. But overall, H∞ is superior then H2. All of the peaks are

suppressed. At the fifth mode again performance decreases but it does not cause a

problem because of the low dB values observed. Similarly, around resonance frequency

regions wavy closed loop plots are observed.
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To sum up, by our low order controller designs we obtained smooth closed loop

frequency responses and, we achieved to suppress noise levels along the end section of

the duct. H2 and H∞ performances are similar, but overall H∞ shows better results.

Time domain simulations shown in Figure 6.21 - 6.23 also validate the results

obtained in the frequency domain. A broadband signal shown in Figure 6.20 is signifi-

cantly suppressed.

Using simple low pass weights in controller designs did not change closed loop

performance dramatically. Waterbed effect is observed due to weights used, i.e., at

some frequencies, closed loop performance is getting better, whereas at some other

frequencies, it is getting worse. The controllers’ orders also increase depending on the

orders of weights that are used. Despite the increase in orders of controllers, the closed

loop performances did not improve much. Thus, we avoided to include weights in our

controller designs.
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7. CONCLUSIONS

In this thesis, active noise control in a duct, in which mean flow of fluid medium

exists, is studied. We derive a one-dimensional acoustic duct model with flow; by using

equation of state, equation of motion and equation of continuity. Our acoustic sources

are disturbance signal at one end of the duct and canceling source’s (actuator’s) control

signal somewhere inside the duct. Our canceling source is considered as a point source.

At the other end of the duct, both open and frequency dependent acoustic impedance

boundary conditions are considered.

We solve the acoustic duct model in Laplace domain to get infinite dimensional

system transfer functions. For this purpose, initial conditions are taken as “zero”

which is a routine procedure for obtaining transfer functions in control theory. System

transfer functions are obtained for; no flow case with open BC, no flow case with fre-

quency dependent impedance BC, mean flow case with open BC and mean flow case

with frequency dependent impedance BC. It is observed that, mean flow cause a shift

in resonance frequencies. We also see that, resonance frequencies in open boundary

condition case are undamped natural frequencies, whereas resonance frequencies in fre-

quency dependent impedance boundary condition case are damped natural frequencies

which is more realistic.

For controller synthesis purposes, we suggest a duct configuration in which any

antiresonances due to canceling source (actuator) and measuring device (microphone)

are avoided. Depending on our target frequency range in which we want to suppress

unwanted noise, we can move source and microphone to get rid of any antiresonances.

By this way, we avoided to measure “zero” pressure values, and provided that canceling

source will always work for the selected frequency region.

In our ANC system, we use a feedback configuration in which, microphone is

located at downstream, and source is located at upstream of the duct. A microphone

and a source are used, thus a SISO system is obtained. In controller synthesis LTI
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finite dimensional control theory is utilized and H2 and H∞ optimal controllers are

designed with LMI formulations.

In our case studies, we proposed two approximation schemes (for open BC and

frequency dependent impedance BC) to obtain finite dimensional transfer function

approximations of infinite dimensional system transfer functions. We avoided all an-

tiresonances (zeros) in our frequency range, therefore, in our approximations we only

consider the resonances (poles). In the selected frequency range, our approximations

represent the original system well. According to the duct parameters specified, we ob-

tain low order approximations, and these approximations are used in finite dimensional

optimal controller synthesis.

A control objective, which neglects small variations in damping ratios and damped

natural frequencies of approximated transfer functions, is specified. As a result, a min-

imal and balanced plant realization is obtained, i.e., our plant order is further reduced.

Thus, our controllers’ orders are reduced as well. Designed low order H2 and H∞ con-

trollers show potential to suppress the unwanted noise. For open BC case, nearly flat

and very smooth frequency response plots of closed loop system are observed. For fre-

quency dependent impedance BC case, synthesized controllers still work. But, closed

loop frequency responses are not as smooth as the open end case, since frequency de-

pendent impedance BC case represents a more realistic case. Nevertheless, we achieved

noise reduction at the end section of the duct. Time domain simulations also validate

the results obtained from the frequency domain analyses.
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8. FUTURE WORK

Here are some of the possible future studies about this subject:

• Robustness is not considered in this study. It could be included in a future work,

in which uncertainties in transfer function approximations are taken into account.

These uncertainties are small variations in damping ratios and damped natural

frequencies in frequency dependent impedance BC case.

• Experiments can be conducted to validate the theoretical and numerical studies

done in this thesis.

• In a more advanced study, theoretical findings and signal processing tools can be

combined to synthesize an advanced robust controller. Then, in an experimental

setup, this advanced controller can be tested. By this kind of controller synthesis,

one could benefit from both physical laws and digital data obtained from actual

system.
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APPENDIX A: MATLAB CODES FOR MEAN FLOW

CASE

In this section we give our MATLAB codes used in our study. We give our

primary attention to mean flow case impedance end boundary condition system, for

the sake of saving space in our thesis. The codes for other relatively simple cases (open

end boundary condition and no flow cases) can also be obtained in the same manner.

A.1. Codes for Open Boundary Condition

A.1.1. Least Squares Approximation for d(s) to P (x, s) Transfer Function

%This program calculates the frequency response of the transfer function

%from disturbance d to P for open end boundary condition

%for MEAN FLOW case

clear all

clc

c=340;

L=3.4;

U=34;

a=c^2/(c^2-U^2);

x=3.0;

f=0.01;

for i=1:40000

s=j*2*pi*f;

AA=exp(x*s*U/(c^2-U^2));

BB=exp(-x*s/c*a);

DD=exp(-(2*L-x)*s/c*a);

EE=exp(-2*L*s/c*a);

Pexact(i)=AA*(BB-DD)/(1-EE);

Gexact(i)=20*log10(abs(Pexact(i)));

Phiexact(i)=atan(imag(Pexact(i))/real(Pexact(i)));

f=f+0.01;

end

for i=1:25000

YB(i)=imag(Pexact(i));

YA(i)=real(Pexact(i));

end

for i=1:5

w(i)=2*pi*49.5*i;
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end

f=0.01;

for m=1:25000

for n=1:5

s=j*2*pi*f;

Xreal(m,n)=1/(s^2+w(n)^2);

end

f=f+0.01;

end

Aestimated=inv(Xreal’*Xreal)*Xreal’*YA’

f=0.01;

for m=1:25000

for n=1:5

s=j*2*pi*f;

Xdummy(m,n)=s/(s^2+w(n)^2);

Ximag(m,n)=imag(Xdummy(m,n));

end

f=f+0.01;

end

Bestimated=inv(Ximag’*Ximag)*Ximag’*YB’

f=0.01;

for i=1:40000

s=j*2*pi*f;

P(i)=(Aestimated(1)+Bestimated(1)*s)/(s^2+w(1)^2)+

(Aestimated(2)+Bestimated(2)*s)/(s^2+w(2)^2)+

(Aestimated(3)+Bestimated(3)*s)/(s^2+w(3)^2)+

(Aestimated(4)+Bestimated(4)*s)/(s^2+w(4)^2)+

(Aestimated(5)+Bestimated(5)*s)/(s^2+w(5)^2);

G(i)=20*log10(abs(P(i)));

Phi(i)=atan(imag(P(i))/real(P(i)));

f=f+0.01;

end

A.1.2. Least Squares Approximation for q(s) to P (x, s) Transfer Function

The codes for least squares approximation for q(s) to P (x, s) transfer function is

also similar to the one just mentioned above. The only difference is; exact frequency

domain values are obtained from q(s) to P (x, s) infinite dimensional system transfer

function.
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A.2. Codes for Frequency Dependent Impedance Boundary Condition

A.2.1. Least Squares Approximation for d(s) to P (x, s) Transfer Function

The codes for least squares approximation for d(s) to P (x, s) transfer function is

similar to the one just mentioned below. The only difference is; exact frequency domain

values are obtained from d(s) to P (x, s) infinite dimensional system transfer function.

In previous section, we gave explicit code for d(s) to P (x, s) transfer function, thus in

this section we decided to give q(s) to P (x, s) transfer function to provide complete

view of subject while avoiding unnecessary information.

A.2.2. Least Squares Approximation for q(s) to P (x, s) Transfer Function

%This program calculates the least squares estimates for mean flow case for

%impedance end BC for q to P transfer function

clear all

clc

c=340;

u=34;

L=3.4;

rho=1.2;

a=c^2/(c^2-u^2);

%---------------------------------------------

x=3.4;

xs=0.6;

%---------------------------------------------

r=0.1;

R2=rho*c/(pi*r^2);

R1=0.504*R2;

CC=5.44*r^3/(rho*c^2);

M=0.1952*rho/r;

%---------------------------------------------

%CALCULATIONS FOR ZETA0

f=0.01;

for i=1:2000

s=j*2*pi*f;

%----------------------------------------------------

Z(i)=pi*r^2*((R1+R2)*M*s+R1*R2*M*CC*s^2)/((R1+R2)+(M+R1*R2*CC)*s+R1*M*CC*s^2);

%----------------------------------------------------

delay1=exp(-s*x*a/c);

delay2=exp(s*x*a/c);

delay3=exp(s*x*u*a/c^2);
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delay4=exp(-s*xs*a/c);

delay5=exp(s*xs*a/c);

delay6=exp(-s*xs*u*a/c^2);

delay7=exp(2*L*s*a/c);

%----------------------------------------------------

AA=delay1*delay3*delay4*delay6*delay7;

BB=delay2*delay3*delay4*delay6*delay7;

DD=delay1*delay3*delay5*delay6;

EE=delay2*delay3*delay5*delay6;

FF=delay2*delay3*delay4*delay6;

GG=delay1*delay3*delay5*delay6*delay7;

%---------------------------------------------------

COMP1=(c*rho+Z(i))*(c+u)^2;

COMP2=(c*rho-Z(i))*(c-u)^2;

COMP3=(c+u)*(c*rho+Z(i));

COMP4=(-c+u)*(c*rho-Z(i));

COMP5=FF*(c^2-u^2)-DD*(c-u)^2;

COMP6=GG*(c^2-u^2)-BB*(c+u)^2;

COMP7=BB-AA;

COMP8=DD-EE;

COMP9=(c*rho-Z(i));

COMP10=(c*rho+Z(i));

%----------------------------------------------------

Pqexactxltxs0(i)=1/2*a*(COMP1*COMP7+COMP2*COMP8)/(delay7*COMP3+COMP4);

Pqexactxgexs0(i)=Pqexactxltxs0(i)+1/2*a*(COMP9*COMP5+COMP10*COMP6)/(delay7*COMP3+COMP4);

if x < xs

Pqexact0(i)=Pqexactxltxs0(i);

else

Pqexact0(i)= Pqexactxgexs0(i);

end

Gqexact0(i)=20*log10(abs(Pqexact0(i)));

Phiqexact0(i)=atan(imag(Pqexact0(i))/real(Pqexact0(i)));

%------------------------------------------------------

f=f+0.01;

end

fd0=0.01;

for i=1:2000

OSY0=abs(max(Gqexact0)-Gqexact0(i));

if OSY0>3

if OSY0<3.1

ffff(i)=0.01+0.01*(i-1);

else

ffff(i)=-1000;

end

else

ffff(i)=-1000;

end

end



102

fb0=max(ffff);

zeta0=(fb0-0)/2/fd0;

%fd0=0.01;

%zeta0=80;

clear ffff

clear Z

%CALCULATIONS FOR ZETA1

f=40;

for i=1:2000

s=j*2*pi*f;

%----------------------------------------------------

Z(i)=pi*r^2*((R1+R2)*M*s+R1*R2*M*CC*s^2)/((R1+R2)+(M+R1*R2*CC)*s+R1*M*CC*s^2);

%----------------------------------------------------

delay1=exp(-s*x*a/c);

delay2=exp(s*x*a/c);

delay3=exp(s*x*u*a/c^2);

delay4=exp(-s*xs*a/c);

delay5=exp(s*xs*a/c);

delay6=exp(-s*xs*u*a/c^2);

delay7=exp(2*L*s*a/c);

%----------------------------------------------------

AA=delay1*delay3*delay4*delay6*delay7;

BB=delay2*delay3*delay4*delay6*delay7;

DD=delay1*delay3*delay5*delay6;

EE=delay2*delay3*delay5*delay6;

FF=delay2*delay3*delay4*delay6;

GG=delay1*delay3*delay5*delay6*delay7;

%---------------------------------------------------

COMP1=(c*rho+Z(i))*(c+u)^2;

COMP2=(c*rho-Z(i))*(c-u)^2;

COMP3=(c+u)*(c*rho+Z(i));

COMP4=(-c+u)*(c*rho-Z(i));

COMP5=FF*(c^2-u^2)-DD*(c-u)^2;

COMP6=GG*(c^2-u^2)-BB*(c+u)^2;

COMP7=BB-AA;

COMP8=DD-EE;

COMP9=(c*rho-Z(i));

COMP10=(c*rho+Z(i));

%----------------------------------------------------

Pqexactxltxs1(i)=1/2*a*(COMP1*COMP7+COMP2*COMP8)/(delay7*COMP3+COMP4);

Pqexactxgexs1(i)=Pqexactxltxs1(i)+1/2*a*(COMP9*COMP5+COMP10*COMP6)/(delay7*COMP3+COMP4);

if x < xs

Pqexact1(i)=Pqexactxltxs1(i);

else

Pqexact1(i)= Pqexactxgexs1(i);

end

Gqexact1(i)=20*log10(abs(Pqexact1(i)));

Phiqexact1(i)=atan(imag(Pqexact1(i))/real(Pqexact1(i)));
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%------------------------------------------------------

f=f+0.01;

end

[MAXMAG1,IMAX1] = max(Gqexact1);

fd1=40+0.01*(IMAX1-1);

for i=1:2000

OSY1=MAXMAG1-Gqexact1(i);

if OSY1<3

if OSY1<3.1

ffff(i)=40+0.01*(i-1);

else

ffff(i)=1000;

end

else

ffff(i)=1000;

end

end

fa1=min(ffff);

clear ffff

for i=1:2000

OSY1=MAXMAG1-Gqexact1(i);

if OSY1<3

if OSY1<3.1

ffff(i)=40+0.01*(i-1);

else

ffff(i)=0;

end

else

ffff(i)=0;

end

end

fb1=max(ffff);

zeta1=(fb1-fa1)/2/fd1;

clear ffff

clear Z

%----------------------------------------------------------------

%CALCULATIONS FOR ZETA2

f=90;

for i=1:2000

s=j*2*pi*f;

%----------------------------------------------------

Z(i)=pi*r^2*((R1+R2)*M*s+R1*R2*M*CC*s^2)/((R1+R2)+(M+R1*R2*CC)*s+R1*M*CC*s^2);

%----------------------------------------------------

delay1=exp(-s*x*a/c);

delay2=exp(s*x*a/c);

delay3=exp(s*x*u*a/c^2);

delay4=exp(-s*xs*a/c);

delay5=exp(s*xs*a/c);
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delay6=exp(-s*xs*u*a/c^2);

delay7=exp(2*L*s*a/c);

%----------------------------------------------------

AA=delay1*delay3*delay4*delay6*delay7;

BB=delay2*delay3*delay4*delay6*delay7;

DD=delay1*delay3*delay5*delay6;

EE=delay2*delay3*delay5*delay6;

FF=delay2*delay3*delay4*delay6;

GG=delay1*delay3*delay5*delay6*delay7;

%---------------------------------------------------

COMP1=(c*rho+Z(i))*(c+u)^2;

COMP2=(c*rho-Z(i))*(c-u)^2;

COMP3=(c+u)*(c*rho+Z(i));

COMP4=(-c+u)*(c*rho-Z(i));

COMP5=FF*(c^2-u^2)-DD*(c-u)^2;

COMP6=GG*(c^2-u^2)-BB*(c+u)^2;

COMP7=BB-AA;

COMP8=DD-EE;

COMP9=(c*rho-Z(i));

COMP10=(c*rho+Z(i));

%----------------------------------------------------

Pqexactxltxs2(i)=1/2*a*(COMP1*COMP7+COMP2*COMP8)/(delay7*COMP3+COMP4);

Pqexactxgexs2(i)=Pqexactxltxs2(i)+1/2*a*(COMP9*COMP5+COMP10*COMP6)/(delay7*COMP3+COMP4);

if x < xs

Pqexact2(i)=Pqexactxltxs2(i);

else

Pqexact2(i)= Pqexactxgexs2(i);

end

Gqexact2(i)=20*log10(abs(Pqexact2(i)));

Phiqexact2(i)=atan(imag(Pqexact2(i))/real(Pqexact2(i)));

%------------------------------------------------------

f=f+0.01;

end

[MAXMAG2,IMAX2] = max(Gqexact2);

fd2=90+0.01*(IMAX2-1);

for i=1:2000

OSY2=MAXMAG2-Gqexact2(i);

if OSY2<3

if OSY2<3.1

ffff(i)=90+0.01*(i-1);

else

ffff(i)=1000;

end

else

ffff(i)=1000;

end

end

fa2=min(ffff);
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clear ffff

for i=1:2000

OSY2=MAXMAG2-Gqexact2(i);

if OSY2<3

if OSY2<3.1

ffff(i)=90+0.01*(i-1);

else

ffff(i)=0;

end

else

ffff(i)=0;

end

end

fb2=max(ffff);

zeta2=(fb2-fa2)/2/fd2;

clear ffff

clear Z

%CALCULATIONS FOR ZETA3

f=140;

for i=1:2000

s=j*2*pi*f;

%----------------------------------------------------

Z(i)=pi*r^2*((R1+R2)*M*s+R1*R2*M*CC*s^2)/((R1+R2)+(M+R1*R2*CC)*s+R1*M*CC*s^2);

%----------------------------------------------------

delay1=exp(-s*x*a/c);

delay2=exp(s*x*a/c);

delay3=exp(s*x*u*a/c^2);

delay4=exp(-s*xs*a/c);

delay5=exp(s*xs*a/c);

delay6=exp(-s*xs*u*a/c^2);

delay7=exp(2*L*s*a/c);

%----------------------------------------------------

AA=delay1*delay3*delay4*delay6*delay7;

BB=delay2*delay3*delay4*delay6*delay7;

DD=delay1*delay3*delay5*delay6;

EE=delay2*delay3*delay5*delay6;

FF=delay2*delay3*delay4*delay6;

GG=delay1*delay3*delay5*delay6*delay7;

%---------------------------------------------------

COMP1=(c*rho+Z(i))*(c+u)^2;

COMP2=(c*rho-Z(i))*(c-u)^2;

COMP3=(c+u)*(c*rho+Z(i));

COMP4=(-c+u)*(c*rho-Z(i));

COMP5=FF*(c^2-u^2)-DD*(c-u)^2;

COMP6=GG*(c^2-u^2)-BB*(c+u)^2;

COMP7=BB-AA;

COMP8=DD-EE;

COMP9=(c*rho-Z(i));
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COMP10=(c*rho+Z(i));

%----------------------------------------------------

Pqexactxltxs3(i)=1/2*a*(COMP1*COMP7+COMP2*COMP8)/(delay7*COMP3+COMP4);

Pqexactxgexs3(i)=Pqexactxltxs3(i)+1/2*a*(COMP9*COMP5+COMP10*COMP6)/(delay7*COMP3+COMP4);

if x < xs

Pqexact3(i)=Pqexactxltxs3(i);

else

Pqexact3(i)= Pqexactxgexs3(i);

end

Gqexact3(i)=20*log10(abs(Pqexact3(i)));

Phiqexact3(i)=atan(imag(Pqexact3(i))/real(Pqexact3(i)));

%------------------------------------------------------

f=f+0.01;

end

[MAXMAG3,IMAX3] = max(Gqexact3);

fd3=140+0.01*(IMAX3-1);

for i=1:2000

OSY3=MAXMAG3-Gqexact3(i);

if OSY3<3

if OSY3<3.1

ffff(i)=140+0.01*(i-1);

else

ffff(i)=1000;

end

else

ffff(i)=1000;

end

end

fa3=min(ffff);

clear ffff

for i=1:2000

OSY3=MAXMAG3-Gqexact3(i);

if OSY3<3

if OSY3<3.1

ffff(i)=140+0.01*(i-1);

else

ffff(i)=0;

end

else

ffff(i)=0;

end

end

fb3=max(ffff);

zeta3=(fb3-fa3)/2/fd3;

clear ffff

clear Z

%CALCULATIONS FOR ZETA4

f=190;
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for i=1:2000

s=j*2*pi*f;

%----------------------------------------------------

Z(i)=pi*r^2*((R1+R2)*M*s+R1*R2*M*CC*s^2)/((R1+R2)+(M+R1*R2*CC)*s+R1*M*CC*s^2);

%----------------------------------------------------

delay1=exp(-s*x*a/c);

delay2=exp(s*x*a/c);

delay3=exp(s*x*u*a/c^2);

delay4=exp(-s*xs*a/c);

delay5=exp(s*xs*a/c);

delay6=exp(-s*xs*u*a/c^2);

delay7=exp(2*L*s*a/c);

%----------------------------------------------------

AA=delay1*delay3*delay4*delay6*delay7;

BB=delay2*delay3*delay4*delay6*delay7;

DD=delay1*delay3*delay5*delay6;

EE=delay2*delay3*delay5*delay6;

FF=delay2*delay3*delay4*delay6;

GG=delay1*delay3*delay5*delay6*delay7;

%---------------------------------------------------

COMP1=(c*rho+Z(i))*(c+u)^2;

COMP2=(c*rho-Z(i))*(c-u)^2;

COMP3=(c+u)*(c*rho+Z(i));

COMP4=(-c+u)*(c*rho-Z(i));

COMP5=FF*(c^2-u^2)-DD*(c-u)^2;

COMP6=GG*(c^2-u^2)-BB*(c+u)^2;

COMP7=BB-AA;

COMP8=DD-EE;

COMP9=(c*rho-Z(i));

COMP10=(c*rho+Z(i));

%----------------------------------------------------

Pqexactxltxs4(i)=1/2*a*(COMP1*COMP7+COMP2*COMP8)/(delay7*COMP3+COMP4);

Pqexactxgexs4(i)=Pqexactxltxs4(i)+1/2*a*(COMP9*COMP5+COMP10*COMP6)/(delay7*COMP3+COMP4);

if x < xs

Pqexact4(i)=Pqexactxltxs4(i);

else

Pqexact4(i)= Pqexactxgexs4(i);

end

Gqexact4(i)=20*log10(abs(Pqexact4(i)));

Phiqexact4(i)=atan(imag(Pqexact4(i))/real(Pqexact4(i)));

%------------------------------------------------------

f=f+0.01;

end

[MAXMAG4,IMAX4] = max(Gqexact4);

fd4=190+0.01*(IMAX4-1);

for i=1:2000

OSY4=MAXMAG4-Gqexact4(i);

if OSY4<3
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if OSY4<3.1

ffff(i)=190+0.01*(i-1);

else

ffff(i)=1000;

end

else

ffff(i)=1000;

end

end

fa4=min(ffff);

clear ffff

for i=1:2000

OSY4=MAXMAG4-Gqexact4(i);

if OSY4<3

if OSY4<3.1

ffff(i)=190+0.01*(i-1);

else

ffff(i)=0;

end

else

ffff(i)=0;

end

end

fb4=max(ffff);

zeta4=(fb4-fa4)/2/fd4;

clear ffff

clear Z

%CALCULATIONS FOR ZETA5

f=235;

for i=1:2000

s=j*2*pi*f;

%----------------------------------------------------

Z(i)=pi*r^2*((R1+R2)*M*s+R1*R2*M*CC*s^2)/((R1+R2)+(M+R1*R2*CC)*s+R1*M*CC*s^2);

%----------------------------------------------------

delay1=exp(-s*x*a/c);

delay2=exp(s*x*a/c);

delay3=exp(s*x*u*a/c^2);

delay4=exp(-s*xs*a/c);

delay5=exp(s*xs*a/c);

delay6=exp(-s*xs*u*a/c^2);

delay7=exp(2*L*s*a/c);

%----------------------------------------------------

AA=delay1*delay3*delay4*delay6*delay7;

BB=delay2*delay3*delay4*delay6*delay7;

DD=delay1*delay3*delay5*delay6;

EE=delay2*delay3*delay5*delay6;

FF=delay2*delay3*delay4*delay6;

GG=delay1*delay3*delay5*delay6*delay7;
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%---------------------------------------------------

COMP1=(c*rho+Z(i))*(c+u)^2;

COMP2=(c*rho-Z(i))*(c-u)^2;

COMP3=(c+u)*(c*rho+Z(i));

COMP4=(-c+u)*(c*rho-Z(i));

COMP5=FF*(c^2-u^2)-DD*(c-u)^2;

COMP6=GG*(c^2-u^2)-BB*(c+u)^2;

COMP7=BB-AA;

COMP8=DD-EE;

COMP9=(c*rho-Z(i));

COMP10=(c*rho+Z(i));

%----------------------------------------------------

Pqexactxltxs5(i)=1/2*a*(COMP1*COMP7+COMP2*COMP8)/(delay7*COMP3+COMP4);

Pqexactxgexs5(i)=Pqexactxltxs5(i)+1/2*a*(COMP9*COMP5+COMP10*COMP6)/(delay7*COMP3+COMP4);

if x < xs

Pqexact5(i)=Pqexactxltxs5(i);

else

Pqexact5(i)= Pqexactxgexs5(i);

end

Gqexact5(i)=20*log10(abs(Pqexact5(i)));

Phiqexact5(i)=atan(imag(Pqexact5(i))/real(Pqexact5(i)));

%------------------------------------------------------

f=f+0.01;

end

[MAXMAG5,IMAX5] = max(Gqexact5);

fd5=235+0.01*(IMAX5-1);

for i=1:2000

OSY5=MAXMAG5-Gqexact5(i);

if OSY5<3

if OSY5<3.1

ffff(i)=235+0.01*(i-1);

else

ffff(i)=1000;

end

else

ffff(i)=1000;

end

end

fa5=min(ffff);

clear ffff

for i=1:2000

OSY5=MAXMAG5-Gqexact5(i);

if OSY5<3

if OSY5<3.1

ffff(i)=235+0.01*(i-1);

else

ffff(i)=0;

end
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else

ffff(i)=0;

end

end

fb5=max(ffff);

zeta5=(fb5-fa5)/2/fd5;

clear ffff

clear Z

%-------------------------------------------------------------

%THIS SECTION CALCULATES THE EXACT FREQUENCY RESPONSE VALUES FOR 25000 DATA

%POINTS

f=0.01;

for i=1:40000

s=j*2*pi*f;

%----------------------------------------------------

Z(i)=pi*r^2*((R1+R2)*M*s+R1*R2*M*CC*s^2)/((R1+R2)+(M+R1*R2*CC)*s+R1*M*CC*s^2);

%----------------------------------------------------

delay1=exp(-s*x*a/c);

delay2=exp(s*x*a/c);

delay3=exp(s*x*u*a/c^2);

delay4=exp(-s*xs*a/c);

delay5=exp(s*xs*a/c);

delay6=exp(-s*xs*u*a/c^2);

delay7=exp(2*L*s*a/c);

%----------------------------------------------------

AA=delay1*delay3*delay4*delay6*delay7;

BB=delay2*delay3*delay4*delay6*delay7;

DD=delay1*delay3*delay5*delay6;

EE=delay2*delay3*delay5*delay6;

FF=delay2*delay3*delay4*delay6;

GG=delay1*delay3*delay5*delay6*delay7;

%---------------------------------------------------

COMP1=(c*rho+Z(i))*(c+u)^2;

COMP2=(c*rho-Z(i))*(c-u)^2;

COMP3=(c+u)*(c*rho+Z(i));

COMP4=(-c+u)*(c*rho-Z(i));

COMP5=FF*(c^2-u^2)-DD*(c-u)^2;

COMP6=GG*(c^2-u^2)-BB*(c+u)^2;

COMP7=BB-AA;

COMP8=DD-EE;

COMP9=(c*rho-Z(i));

COMP10=(c*rho+Z(i));

%----------------------------------------------------

Pqexactxltxs(i)=1/2*a*(COMP1*COMP7+COMP2*COMP8)/(delay7*COMP3+COMP4);

Pqexactxgexs(i)=Pqexactxltxs(i)+1/2*a*(COMP9*COMP5+COMP10*COMP6)/(delay7*COMP3+COMP4);

if x < xs

Pqexact(i)=Pqexactxltxs(i);

else
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Pqexact(i)= Pqexactxgexs(i);

end

Gqexact(i)=20*log10(abs(Pqexact(i)));

Phiqexact(i)=atan(imag(Pqexact(i))/real(Pqexact(i)));

%------------------------------------------------------

f=f+0.01;

end

%---------------------------------------------------------------

%THIS SECTION CALCULATES Y vector for Least Squares Estimation

for i=1:25000

Y1(i)=real(Pqexact(i));

Y2(i)=imag(Pqexact(i));

end

%_______________________________________________________________

Y=[Y1’;Y2’];

%---------------------------------------------------------------

%THIS SECTION DECLARES wn’s

w0=2*pi*fd0;

w1=2*pi*fd1/(sqrt(1-zeta1^2));

w2=2*pi*fd2/(sqrt(1-zeta2^2));

w3=2*pi*fd3/(sqrt(1-zeta3^2));

w4=2*pi*fd4/(sqrt(1-zeta4^2));

w5=2*pi*fd5/(sqrt(1-zeta5^2));

%----------------------------------------------------------------

%THIS SECTION CALCULATES THE REGROSSOR MATRIX X

f=0.01;

for i=1:25000

w=2*pi*f;

Z0=2*zeta0*w0;

Z1=2*zeta1*w1;

Z2=2*zeta2*w2;

Z3=2*zeta3*w3;

Z4=2*zeta4*w4;

Z5=2*zeta5*w5;

P1=Z1+Z2;

P2=w1^2+w2^2+Z1*Z2;

P3=w1^2*Z2+w2^2*Z1;

P4=w1^2*w2^2;

P5=P1+Z3;

P6=P1*Z3+P2+w3^2;

P7=P1*w3^2+P2*Z3+P3;

P8=P2*w3^2+P3*Z3+P4;

P9=P3*w3^2+P4*Z3;

P10=P4*w3^2;

P11=Z4+P5;

P12=w4^2+P5*Z4+P6;

P13=P5*w4^2+P6*Z4+P7;

P14=P6*w4^2+P7*Z4+P8;
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P15=P7*w4^2+P8*Z4+P9;

P16=P8*w4^2+P9*Z4+P10;

P17=P9*w4^2+P10*Z4;

P18=P10*w4^2;

P19=Z5+P11;

P20=w5^2+P11*Z5+P12;

P21=P11*w5^2+P12*Z5+P13;

P22=P12*w5^2+P13*Z5+P14;

P23=P13*w5^2+P14*Z5+P15;

P24=P14*w5^2+P15*Z5+P16;

P25=P15*w5^2+P16*Z5+P17;

P26=P16*w5^2+P17*Z5+P18;

P27=P17*w5^2+P18*Z5;

P28=P18*w5^2;

P29=P27*w;

P30=P26*(-w^2);

P31=P25*(-w^3);

P32=P24*w^4;

P33=P23*w^5;

P34=P22*(-w^6);

P35=P21*(-w^7);

P36=P20*w^8;

P37=P19*w^9;

P38=-w^10;

P39=Z2+Z3;

P40=w2^2+w3^2+Z2*Z3;

P41=w2^2*Z3+w3^2*Z2;

P42=w2^2*w3^2;

P43=Z4+Z5;

P44=w4^2+w5^2+Z4*Z5;

P45=Z4*w5^2+w4^2*Z5;

P46=w4^2*w5^2;

P47=Z1+Z3;

P48=w1^2+w3^2+Z1*Z3;

P49=Z1*w3^2+w1^2*Z3;

P50=w1^2*w3^2;

P51=P39+P43;

P52=P40+P44+P39*P43;

P53=P45+P39*P44+P40*P43+P41;

P54=P46+P39*P45+P40*P44+P41*P43+P42;

P55=P39*P46+P40*P45+P41*P44+P42*P43;

P56=P40*P46+P41*P45+P42*P44;

P57=P41*P46+P42*P45;

P58=P42*P46;

P59=P43+P47;

P60=P44+P47*P43+P48;

P61=P45+P47*P44+P48*P43+P49;

P62=P46+P47*P45+P48*P44+P49*P43+P50;
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P63=P47*P46+P48*P45+P49*P44+P50*P43;

P64=P48*P46+P49*P45+P50*P44;

P65=P49*P46+P50*P45;

P66=P50*P46;

P67=P43+P1;

P68=P44+P1*P43+P2;

P69=P45+P1*P44+P2*P43+P3;

P70=P46+P1*P45+P2*P44+P3*P43+P4;

P71=P1*P46+P2*P45+P3*P44+P4*P43;

P72=P2*P46+P3*P45+P4*P44;

P73=P3*P46+P4*P45;

P74=P4*P46;

P75=Z5+P5;

P76=w5^2+P5*Z5+P6;

P77=P5*w5^2+P6*Z5+P7;

P78=P6*w5^2+P7*Z5+P8;

P79=P7*w5^2+P8*Z5+P9;

P80=P8*w5^2+P9*Z5+P10;

P81=P9*w5^2+P10*Z5;

P82=P10*w5^2;

P83=w^8;

P84=P51*(-w^7);

P85=P52*(-w^6);

P86=P53*w^5;

P87=P54*w^4;

P88=P55*(-w^3);

P89=P56*(-w^2);

P90=P57*w;

P91=P59*(-w^7);

P92=P60*(-w^6);

P93=P61*w^5;

P94=P62*w^4;

P95=P63*(-w^3);

P96=P64*(-w^2);

P97=P65*w;

P98=P67*(-w^7);

P99=P68*(-w^6);

P100=P69*w^5;

P101=P70*w^4;

P102=P71*(-w^3);

P103=P72*(-w^2);

P104=P73*w;

P105=P75*(-w^7);

P106=P76*(-w^6);

P107=P77*w^5;

P108=P78*w^4;

P109=P79*(-w^3);

P110=P80*(-w^2);
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P111=P81*w;

P112=P11*(-w^7);

P113=P12*(-w^6);

P114=P13*w^5;

P115=P14*w^4;

P116=P15*(-w^3);

P117=P16*(-w^2);

P118=P17*w;

P119=P38+P36+P34+P32+P30+P28;

P120=P37+P35+P33+P31+P29;

P121=P58+P83+P85+P87+P89;

P122=P84+P86+P88+P90;

P123=P66+P83+P92+P94+P96;

P124=P91+P93+P95+P97;

P125=P74+P83+P99+P101+P103;

P126=P98+P100+P102+P104;

P127=P82+P83+P106+P108+P110;

P128=P105+P107+P109+P111;

P129=P18+P83+P113+P115+P117;

P130=P112+P114+P116+P118;

P131=P121*P119+P122*P120;

P132=P122*P119-P121*P120;

P133=P123*P119+P124*P120;

P134=P124*P119-P123*P120;

P135=P125*P119+P126*P120;

P136=P126*P119-P125*P120;

P137=P127*P119+P128*P120;

P138=P128*P119-P127*P120;

P139=P129*P119+P130*P120;

P140=P130*P119-P129*P120;

K1=Z0+P19;

K2=w0^2+P19*Z0+P20;

K3=P19*w0^2+P20*Z0+P21;

K4=P20*w0^2+P21*Z0+P22;

K5=P21*w0^2+P22*Z0+P23;

K6=P22*w0^2+P23*Z0+P24;

K7=P23*w0^2+P24*Z0+P25;

K8=P24*w0^2+P25*Z0+P26;

K9=P25*w0^2+P26*Z0+P27;

K10=P26*w0^2+P27*Z0+P28;

K11=P27*w0^2+P28*Z0;

K12=P28*w0^2;

K13=Z0+P51;

K14=w0^2+P51*Z0+P52;

K15=P51*w0^2+P52*Z0+P53;

K16=P52*w0^2+P53*Z0+P54;

K17=P53*w0^2+P54*Z0+P55;

K18=P54*w0^2+P55*Z0+P56;
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K19=P55*w0^2+P56*Z0+P57;

K20=P56*w0^2+P57*Z0+P58;

K21=P57*w0^2+P58*Z0;

K22=P58*w0^2;

K23=Z0+P59;

K24=w0^2+P59*Z0+P60;

K25=P59*w0^2+P60*Z0+P61;

K26=P60*w0^2+P61*Z0+P62;

K27=P61*w0^2+P62*Z0+P63;

K28=P62*w0^2+P63*Z0+P64;

K29=P63*w0^2+P64*Z0+P65;

K30=P64*w0^2+P65*Z0+P66;

K31=P65*w0^2+P66*Z0;

K32=P66*w0^2;

K33=Z0+P67;

K34=w0^2+P67*Z0+P68;

K35=P67*w0^2+P68*Z0+P69;

K36=P68*w0^2+P69*Z0+P70;

K37=P69*w0^2+P70*Z0+P71;

K38=P70*w0^2+P71*Z0+P72;

K39=P71*w0^2+P72*Z0+P73;

K40=P72*w0^2+P73*Z0+P74;

K41=P73*w0^2+P74*Z0;

K42=P74*w0^2;

K43=Z0+P75;

K44=w0^2+P75*Z0+P76;

K45=P75*w0^2+P76*Z0+P77;

K46=P76*w0^2+P77*Z0+P78;

K47=P77*w0^2+P78*Z0+P79;

K48=P78*w0^2+P79*Z0+P80;

K49=P79*w0^2+P80*Z0+P81;

K50=P80*w0^2+P81*Z0+P82;

K51=P81*w0^2+P82*Z0;

K52=P82*w0^2;

K53=Z0+P11;

K54=w0^2+P11*Z0+P12;

K55=P11*w0^2+P12*Z0+P13;

K56=P12*w0^2+P13*Z0+P14;

K57=P13*w0^2+P14*Z0+P15;

K58=P14*w0^2+P15*Z0+P16;

K59=P15*w0^2+P16*Z0+P17;

K60=P16*w0^2+P17*Z0+P18;

K61=P17*w0^2+P18*Z0;

K62=P18*w0^2;

K63=-w^10;

K64=K13*w^9;

K65=K14*w^8;

K66=K15*(-w^7);
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K67=K16*(-w^6);

K68=K17*w^5;

K69=K18*w^4;

K70=K19*(-w^3);

K71=K20*(-w^2);

K72=K21*w;

K73=K63+K65+K67+K69+K71+K22;

K74=K64+K66+K68+K70+K72;

K75=K23*w^9;

K76=K24*w^8;

K77=K25*(-w^7);

K78=K26*(-w^6);

K79=K27*w^5;

K80=K28*w^4;

K81=K29*(-w^3);

K82=K30*(-w^2);

K83=K31*w;

K84=K63+K76+K78+K80+K82+K32;

K85=K75+K77+K79+K81+K83;

K86=K33*w^9;

K87=K34*w^8;

K88=K35*(-w^7);

K89=K36*(-w^6);

K90=K37*w^5;

K91=K38*w^4;

K92=K39*(-w^3);

K93=K40*(-w^2);

K94=K41*w;

K95=K63+K87+K89+K91+K93+K42;

K96=K86+K88+K90+K92+K94;

K97=K43*w^9;

K98=K44*w^8;

K99=K45*(-w^7);

K100=K46*(-w^6);

K101=K47*w^5;

K102=K48*w^4;

K103=K49*(-w^3);

K104=K50*(-w^2);

K105=K51*w;

K106=K63+K98+K100+K102+K104+K52;

K107=K97+K99+K101+K103+K105;

K108=K53*w^9;

K109=K54*w^8;

K110=K55*(-w^7);

K111=K56*(-w^6);

K112=K57*w^5;

K113=K58*w^4;

K114=K59*(-w^3);
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K115=K60*(-w^2);

K116=K61*w;

K117=K63+K109+K111+K113+K115+K62;

K118=K108+K110+K112+K114+K116;

K119=w^12;

K120=K1*(-w^11);

K121=K2*(-w^10);

K122=K3*w^9;

K123=K4*w^8;

K124=K5*(-w^7);

K125=K6*(-w^6);

K126=K7*w^5;

K127=K8*w^4;

K128=K9*(-w^3);

K129=K10*(-w^2);

K130=K11*w;

K131=K119+K121+K123+K125+K127+K129+K12;

K132=K120+K122+K124+K126+K128+K130;

K133=P119*K131+P120*K132;

K134=P120*K131-P119*K132;

K135=K73*K131+K74*K132;

K136=K74*K131-K73*K132;

K137=K84*K131+K85*K132;

K138=K85*K131-K84*K132;

K139=K95*K131+K96*K132;

K140=K96*K131-K95*K132;

K141=K106*K131+K107*K132;

K142=K107*K131-K106*K132;

K143=K117*K131+K118*K132;

K144=K118*K131-K117*K132;

%regressors for real(G(jw))

x1(i)=K135/(K131^2+K132^2);

x2(i)=K137/(K131^2+K132^2);

x3(i)=K139/(K131^2+K132^2);

x4(i)=K141/(K131^2+K132^2);

x5(i)=K143/(K131^2+K132^2);

x6(i)=K133/(K131^2+K132^2);

x7(i)=w*(-K136)/(K131^2+K132^2);

x8(i)=w*(-K138)/(K131^2+K132^2);

x9(i)=w*(-K140)/(K131^2+K132^2);

x10(i)=w*(-K142)/(K131^2+K132^2);

x11(i)=w*(-K144)/(K131^2+K132^2);

x12(i)=w*(-K134)/(K131^2+K132^2);

%regressor for imag(G(jw))

y1(i)=K136/(K131^2+K132^2);

y2(i)=K138/(K131^2+K132^2);

y3(i)=K140/(K131^2+K132^2);

y4(i)=K142/(K131^2+K132^2);
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y5(i)=K144/(K131^2+K132^2);

y6(i)=K134/(K131^2+K132^2);

y7(i)=w*(K135)/(K131^2+K132^2);

y8(i)=w*(K137)/(K131^2+K132^2);

y9(i)=w*(K139)/(K131^2+K132^2);

y10(i)=w*(K141)/(K131^2+K132^2);

y11(i)=w*(K143)/(K131^2+K132^2);

y12(i)=w*(K133)/(K131^2+K132^2);

f=f+0.01;

end

X=[x1’ x2’ x3’ x4’ x5’ x6’ x7’ x8’ x9’ x10’ x11’ x12’

y1’ y2’ y3’ y4’ y5’ y6’ y7’ y8’ y9’ y10’ y11’ y12’];

%--------------------------------------------------------------------------

%THIS SECTION CALCULATES LEAST SQUARES ESTIMATE OF Ai’s and Bi’s

Estimated=inv(X’*X)*X’*Y;

A_estimated=Estimated(1:6);

B_estimated=Estimated(7:12);

%-------------------------------------------------------------------------

%THIS SECTION CALCULATES THE APPROXIMATED TF FREQUENCY RESPONSE

f=0.01;

for i=1:40000

s=j*2*pi*f;

Pqapproximated(i)=(A_estimated(6)+B_estimated(6)*s)/(s^2+2*zeta0*w0*s+w0^2)+

(A_estimated(1)+B_estimated(1)*s)/(s^2+2*zeta1*w1*s+w1^2)+

(A_estimated(2)+B_estimated(2)*s)/(s^2+2*zeta2*w2*s+w2^2)+

(A_estimated(3)+B_estimated(3)*s)/(s^2+2*zeta3*w3*s+w3^2)+

(A_estimated(4)+B_estimated(4)*s)/(s^2+2*zeta4*w4*s+w4^2)+

(A_estimated(5)+B_estimated(5)*s)/(s^2+2*zeta5*w5*s+w5^2);

Gqapproximated(i)=20*log10(abs(Pqapproximated(i)));

Phiqapproximated(i)=atan(imag(Pqapproximated(i))/real(Pqapproximated(i)));

f=f+0.01;

end

A.2.3. Plant Construction for Controller Synthesis

%After obtaining transfer function approximations at xm=2.8m

clear all

clc

load ENSONSYSTEMINFOatxm28m

fd0=(fd0dxm+fd0qxm)/2;

fd1=(fd1dxm+fd1qxm)/2;

fd2=(fd2dxm+fd2qxm)/2;

fd3=(fd3dxm+fd3qxm)/2;

fd4=(fd4dxm+fd4qxm)/2;

fd5=(fd5dxm+fd5qxm)/2;

zeta0=(zeta0dxm+zeta0qxm)/2;
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zeta1=(zeta1dxm+zeta1qxm)/2;

zeta2=(zeta2dxm+zeta2qxm)/2;

zeta3=(zeta3dxm+zeta3qxm)/2;

zeta4=(zeta4dxm+zeta4qxm)/2;

zeta5=(zeta5dxm+zeta5qxm)/2;

w0=2*pi*fd0;

w1=2*pi*fd1/(sqrt(1-zeta1^2));

w2=2*pi*fd2/(sqrt(1-zeta2^2));

w3=2*pi*fd3/(sqrt(1-zeta3^2));

w4=2*pi*fd4/(sqrt(1-zeta4^2));

w5=2*pi*fd5/(sqrt(1-zeta5^2));

%_______________________________________________________________________

SYSdPxm0=tf([B_estimated_dxm(6) A_estimated_dxm(6)],[1 2*zeta0*w0 w0^2]);

SYSdPxm1=tf([B_estimated_dxm(1) A_estimated_dxm(1)],[1 2*zeta1*w1 w1^2]);

SYSdPxm2=tf([B_estimated_dxm(2) A_estimated_dxm(2)],[1 2*zeta2*w2 w2^2]);

SYSdPxm3=tf([B_estimated_dxm(3) A_estimated_dxm(3)],[1 2*zeta3*w3 w3^2]);

SYSdPxm4=tf([B_estimated_dxm(4) A_estimated_dxm(4)],[1 2*zeta4*w4 w4^2]);

SYSdPxm5=tf([B_estimated_dxm(5) A_estimated_dxm(5)],[1 2*zeta5*w5 w5^2]);

SYSdPxm=SYSdPxm0+SYSdPxm1+SYSdPxm2+SYSdPxm3+SYSdPxm4+SYSdPxm5;

SYSTEMdPxm=ss(SYSdPxm);

%_______________________________________________________________________

SYSqPxm0=tf([B_estimated_qxm(6) A_estimated_qxm(6)],[1 2*zeta0*w0 w0^2]);

SYSqPxm1=tf([B_estimated_qxm(1) A_estimated_qxm(1)],[1 2*zeta1*w1 w1^2]);

SYSqPxm2=tf([B_estimated_qxm(2) A_estimated_qxm(2)],[1 2*zeta2*w2 w2^2]);

SYSqPxm3=tf([B_estimated_qxm(3) A_estimated_qxm(3)],[1 2*zeta3*w3 w3^2]);

SYSqPxm4=tf([B_estimated_qxm(4) A_estimated_qxm(4)],[1 2*zeta4*w4 w4^2]);

SYSqPxm5=tf([B_estimated_qxm(5) A_estimated_qxm(5)],[1 2*zeta5*w5 w5^2]);

SYSqPxm=SYSqPxm0+SYSqPxm1+SYSqPxm2+SYSqPxm3+SYSqPxm4+SYSqPxm5;

SYSTEMqPxm=ss(SYSqPxm);

%_______________________________________________________________________

A_PLANT=[SYSTEMdPxm.a zeros(12,12) zeros(12,12) zeros(12,12)

zeros(12,12) SYSTEMqPxm.a zeros(12,12) zeros(12,12)

zeros(12,12) zeros(12,12) SYSTEMdPxm.a zeros(12,12)

zeros(12,12) zeros(12,12) zeros(12,12) SYSTEMqPxm.a];

B_PLANT=[SYSTEMdPxm.b zeros(12,1)

zeros(12,1) SYSTEMqPxm.b

SYSTEMdPxm.b zeros(12,1)

zeros(12,1) SYSTEMqPxm.b];

C_PLANT=[SYSTEMdPxm.c SYSTEMqPxm.c zeros(1,12) zeros(1,12)

zeros(1,12) zeros(1,12) SYSTEMdPxm.c SYSTEMqPxm.c];

D_PLANT=[SYSTEMdPxm.d SYSTEMqPxm.d

SYSTEMdPxm.d SYSTEMqPxm.d];

PLANT=ss(A_PLANT,B_PLANT,C_PLANT,D_PLANT);

PLANT =minreal(PLANT);

PLANT =balreal(PLANT);

%___________________________________________________________

A=PLANT.a;

B=PLANT.b;
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C=PLANT.c;

Bu=B(:,2);

Bw=B(:,1);

Cy=C(2,:);

Cz=C(1,:);

A.2.4. H2 Synthesis via LMIs

minusI=-1;

I=eye(12);

setlmis([])

X=lmivar(1,[12 1]);

Y=lmivar(1,[12 1]);

H=lmivar(1,[12 1]);

LLL=lmivar(2,[12 1]);

K=lmivar(2,[1 12]);

N=lmivar(2,[1 1]);

LAMBDA=lmivar(2,[1 1]);

LMI1=newlmi

lmiterm([LMI1 1 1 Y],A,1,’s’);

lmiterm([LMI1 1 1 K],Bu,1,’s’);

lmiterm([LMI1 1 2 0],A);

lmiterm([LMI1 1 2 N],Bu,Cy);

lmiterm([LMI1 1 2 H],1,1);

lmiterm([LMI1 1 3 0],Bw);

lmiterm([LMI1 2 2 X],1,A,’s’);

lmiterm([LMI1 2 2 LLL],1,Cy,’s’);

lmiterm([LMI1 2 3 X],1,Bw);

lmiterm([LMI1 3 3 0],minusI);

LMI2=newlmi

lmiterm([-LMI2 1 1 LAMBDA],1,1);

lmiterm([-LMI2 1 2 Y],Cz,1);

lmiterm([-LMI2 1 3 0],Cz);

lmiterm([-LMI2 2 2 Y],1,1);

lmiterm([-LMI2 2 3 0],I);

lmiterm([-LMI2 3 3 X],1,1);

LMISYSTEM=getlmis

nnn=decnbr(LMISYSTEM);

ccc=zeros(nnn,1);

for iii=1:nnn,

[LAMBDAiii]=defcx(LMISYSTEM,iii,LAMBDA);

ccc(iii)=trace(LAMBDAiii);

end

[COPT,XOPT]=mincx(LMISYSTEM,ccc,[0 0 0 0 0],[],2500)

X=dec2mat(LMISYSTEM,XOPT,X);

Y=dec2mat(LMISYSTEM,XOPT,Y);
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H=dec2mat(LMISYSTEM,XOPT,H);

LLL=dec2mat(LMISYSTEM,XOPT,LLL);

K=dec2mat(LMISYSTEM,XOPT,K);

N=dec2mat(LMISYSTEM,XOPT,N);

LAMBDA=dec2mat(LMISYSTEM,XOPT,LAMBDA);

%________________________________________________________________________

UUU=eye(12);

Vtrans=eye(12)-X*Y;

CONTROLLERMATRICE=inv([UUU X*Bu;zeros(1,12) 1])*[H’-X*A*Y LLL;K N]

*inv([Vtrans zeros(12,1);Cy*Y 1]);

Ac=CONTROLLERMATRICE(1:12,1:12);

Bc=CONTROLLERMATRICE(1:12,13);

Cc=CONTROLLERMATRICE(13,1:12);

Dc=CONTROLLERMATRICE(13,13);

A_closed_loop=[A+Bu*Dc*Cy Bu*Cc;Bc*Cy Ac];

B_closed_loop=[Bw;zeros(12,1)];

C_closed_loop=[Cz zeros(1,12)];

D_closed_loop=0;

CLOSED_LOOP_SYSTEM=ss(A_closed_loop,B_closed_loop,C_closed_loop,D_closed_loop)

CONTROLLERSS=ss(Ac,Bc,Cc,Dc);

[NUMCONTROLLER,DENCONTROLLER]=ss2tf(Ac,Bc,Cc,Dc);

CONTROLLERTF=tf(NUMCONTROLLER,DENCONTROLLER);

A.2.5. H∞ Synthesis via LMIs

I=eye(12);

Cztrans=Cz’;

setlmis([])

X=lmivar(1,[12 1]);

Y=lmivar(1,[12 1]);

H=lmivar(1,[12 1]);

LLL=lmivar(2,[12 1]);

K=lmivar(2,[1 12]);

N=lmivar(2,[1 1]);

gama=lmivar(1,[1 1]);

LMI1=newlmi

lmiterm([LMI1 1 1 Y],A,1,’s’);

lmiterm([LMI1 1 1 K],Bu,1,’s’);

lmiterm([LMI1 1 2 0],A);

lmiterm([LMI1 1 2 N],Bu,Cy);

lmiterm([LMI1 1 2 H],1,1);

lmiterm([LMI1 1 3 0],Bw);

lmiterm([LMI1 1 4 Y],1,Cztrans);

lmiterm([LMI1 2 2 X],1,A,’s’);

lmiterm([LMI1 2 2 LLL],1,Cy,’s’);

lmiterm([LMI1 2 3 X],1,Bw);
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lmiterm([LMI1 2 4 0],Cztrans);

lmiterm([LMI1 3 3 gama],-1,1);

lmiterm([LMI1 3 4 0],0);

lmiterm([LMI1 4 4 gama],-1,1);

LMI2=newlmi

lmiterm([-LMI2 1 1 Y],1,1);

lmiterm([-LMI2 1 2 0],I);

lmiterm([-LMI2 2 2 X],1,1);

LMISYSTEM=getlmis

nnn=decnbr(LMISYSTEM);

ccc=zeros(nnn,1);

for iii=1:nnn,

[gamaiii]=defcx(LMISYSTEM,iii,gama);

ccc(iii)=trace(gamaiii);

end

[COPT,XOPT]=mincx(LMISYSTEM,ccc,[0 0 0 0 0],[],3.25)

X=dec2mat(LMISYSTEM,XOPT,X);

Y=dec2mat(LMISYSTEM,XOPT,Y);

H=dec2mat(LMISYSTEM,XOPT,H);

LLL=dec2mat(LMISYSTEM,XOPT,LLL);

K=dec2mat(LMISYSTEM,XOPT,K);

N=dec2mat(LMISYSTEM,XOPT,N);

gama=dec2mat(LMISYSTEM,XOPT,gama);

%________________________________________________________________________

UUU=eye(12);

Vtrans=inv(UUU)*(eye(12)-X*Y);

CONTROLLERMATRICE=inv([UUU X*Bu;zeros(1,12) 1])*[H-X*A*Y LLL;K N]

*inv([Vtrans zeros(12,1);Cy*Y 1]);

Ac=CONTROLLERMATRICE(1:12,1:12);

Bc=CONTROLLERMATRICE(1:12,13);

Cc=CONTROLLERMATRICE(13,1:12);

Dc=CONTROLLERMATRICE(13,13);

A_closed_loop=[A+Bu*Dc*Cy Bu*Cc;Bc*Cy Ac];

B_closed_loop=[Bw;zeros(12,1)];

C_closed_loop=[Cz zeros(1,12)];

D_closed_loop=0;

CLOSED_LOOP_SYSTEM=ss(A_closed_loop,B_closed_loop,C_closed_loop,D_closed_loop)

CONTROLLERSS=ss(Ac,Bc,Cc,Dc);

[NUMCONTROLLER,DENCONTROLLER]=ss2tf(Ac,Bc,Cc,Dc);

CONTROLLERTF=tf(NUMCONTROLLER,DENCONTROLLER);
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