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ABSTRACT 

 

 

CAUSALITY IN TIME SERIES: 

DYNAMIC TIME WARPING VERSUS GRANGER CAUSALITY 

 

 

 Causality is a concept studied in various areas such as economics, and engineering. 

Identifying the cause and effect relations among variables is important as it enables the 

control of the effected variable by the variation of the cause or helps predict the future 

behavior of the effected variable based on the behavior of the cause. Granger Causality 

(GC) test is a statistical test mainly used for causality detection in economics and recently 

in bioinformatics. The GC test determines whether one series Granger causes the other or 

not, or if there exists a feedback relation. However, results of the GC tests do not elucidate 

how these relations change with time. Dynamic Time Warping (DTW) is a method 

employed for similarity measurement in classification and clustering applications, in areas 

such as speech recognition and batch trajectory synchronization. In the DTW method, 

principles of dynamic programing are utilized and the series are aligned nonlinearly in the 

time axis. In this thesis work, it is proposed that DTW can help determine the temporal 

order and the lead/lag relations of the series, therefore, the causal relations. The DTW 

method is tested on selected synthetic data sets and on data from chemical and biochemical 

processes, and engineering related economic indicators. The DTW-based causality results 

are compared with those of the GC tests and cross-correlation analyses. The DTW-based 

results were found to be as expected and in accordance with the GC test only for the simple 

examples, for multivariable sets and nonlinearly-related variables, the method was 

unsuccessful. 
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ÖZET 

 

 

ZAMAN SERİLERİNDE NEDENSELLİK: 

DİNAMİK ZAMAN BÜKMESİ VE GRANGER NEDENSELLİĞİ 

 

 

 Nedensellik, ekonometri ve mühendislik gibi birçok farklı alanda üzerinde çalışılan 

bir kavramdır. Değişkenler arasındaki neden-sonuç ilişkisinin belirlenmesi, nedenlere 

sonucu yönlendirme amacıyla müdahale edilmesi ya da nedenlerin incelenerek sonuç 

hakkında tahminlerde bulunulabilmesi açısından önemlidir. Granger Nedensellik (GN) 

sınaması ağırlıklı olarak ekonometri alanında, son zamanlarda ise biyoenformatik alanında 

uygulamaları olan istatistiksel bir testtir. Bu testle, değişkenler arasında tek ya da çift yönlü 

nedensellik ilişkilerinin varlığı incelenebilir ancak, bu ilişkilerde zamanla meydana gelen 

değişimler hakkında fikir sahibi olunamamaktadır. Dinamik Zaman Bükmesi (DZB), 

seriler arası benzerlik ölçümü amacıyla, konuşma tanıma ve kesikli proses yörüngelerinin 

senkronizasyonu gibi alanlarda sınıflandırma ve kümeleme uygulamalarında kullanılan bir 

yöntemdir. DZB yöntemde, dinamik programlama ilkeleri kullanılarak, seriler zaman 

ekseninde doğrusal olmayan bir şekilde eşleştirilirler. Bu tez çalışmasında, DZB 

yönteminin seriler arasındaki zamansal sıralamanın ve bu sayede nedenselliğin 

belirlenmesinde kullanılabilirliği araştırılmıştır. Bu amaçla, DZB yöntemi özel olarak 

tasarlanmış veri kümeleri, kimyasal ve biyokimyasal işlemler ve mühendislik ile ilgili 

ekonomik gösterge verileri üzerinde denenmiştir. Uygulamalarda DZB‟ye dayalı sonuçlar 

GN sınaması ve çapraz korelasyon uygulamalarıyla elde edilen sonuçlarla 

karşılaştırılmıştır. DZB yöntemi basit uygulamalarda beklenen ve GN sınamasına uygun 

sonuçlar vermiş olsa da çok değişkenli kümelerde ve doğrusal olmayan ilişkilerlerin 

bulunduğu verilerde yöntem başarılı olmamıştır. 
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1.  INTRODUCTION 

 

 

 There are a number of different approaches to causality in various fields such as 

philosophy, physics, and economics. A review on temporality and causality can be found 

in Karimi (2010). Granger causality (GC) is one of these methods that is based on the 

improvement in the predictability of a variable by using the past values of another variable 

(Granger, 1969). Conditional Granger causality, which searches for causality between 

variables by taking the effect of additional variables into consideration, was introduced by 

Geweke (1984). Guo et al. (2008) presented a method called „partial Granger causality‟ 

that can discover the causal relations in linear and nonlinear systems where exogenous 

variables are present. Moreover, a multivariate nonlinear Granger causality test was 

developed by Bai et al. (2010). For a reliable test of GC, the variables in the model should 

be chosen with care and sample sizes should be large enough (Stern, 2011). The GC test is 

mainly used in economics, with recent applications in bioinformatics. To name a few of 

these studies, Nagarajan and Upreti (2010) used GC for the determination of the functional 

relationships between gene expression profiles of the human cell-cycle. In a study by 

Mukhopadhyay and Chatterjee (2007), GC is used in the formation of a causality network 

of microarray time series data. Li et al. (2006) applied GC on the detection of the causality 

between intermediate phenotypes and Krishna et al. (2011) utilized partial GC for process 

monitoring and fault detection in bioreactors. 

 

 Mullen (2010) criticized the fallacy that correlation implies causality with a 

picturesque example as follows: 

“… To illustrate: suppose we are observing two ants independently following a pheromone trail 

towards some tasty morsel. Ant 1 started the journey two minutes before Ant 2 and so he appears to 

be „leading‟ Ant 2. If we compute the cross-correlation between the two ants‟ trajectories for a range 

of time lags we would find a high correlation between their trajectories and, furthermore, we would 

find the correlation was peaked at a non-zero lag with Ant 1 leading Ant 2 by a lag of two minutes. 

But it would be foolish to say that Ant 1 was „causing‟ the behavior of Ant 2. In fact, not only is there 

no causal relationship whatsoever between the two, but there is not even any information being 

transmitted between the two ants. They are conditionally independent of each other, given their own 

past history and given the fact that each is independently following the pheromone trail (this is the 

„common (exogenous) cause‟ that synchronizes their behavior). If we were to intervene and remove 

Ant 2 (Ant 1), Ant 1 (Ant 2) would continue on his way, oblivious to the fact that his comrade is no 

longer in lock‐step with him. Consequently, if we calculate the Granger‐causality between the two 

trajectories we will find that the GC is zero in both directions: there is no information in the history of 

either ant that can help predict the future of the other ant above and beyond the information already 

contained in each ant‟s respective past…”. 
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Mullen stated that the cross-correlation method does not tell if one of the variables contains 

useful information for the prediction of the other variable that cannot be provided by any 

other variable. The GC test does this by using regression. On the other hand, a maximum 

value of cross-correlation at a non-zero lag means that one of the variables has temporal 

precedence over the other variable and this satisfies a requirement of causality that is 

“causes must precede effects in time” (Mullen, 2010). However, a third 

(hidden/unobservable) variable manipulating both of the variables at different times may 

be the reason for the correlation at lagged values (Sornette and Zhou, 2005). Moreover, in 

a study by Kispersky et al. (2011), correlated noises were generated with correlation 

varying between −1 and 1, and one of the series was lagged behind the other. The direction 

of causality was examined by the application of the GC test. GC detected the causation in 

all cases but the uncorrelated case. It was found that when the series were highly 

correlated/anti-correlated, they were able to capture the lag between the series and the 

direction of causality by using cross-correlation. However, as the correlation between the 

generated series decreased, the relation became less clear. The disadvantage of GC is that it 

does not provide information on the lag (Kispersky et al., 2011). 

 

 A brief review of DTW can be started with the mention of Sakoe and Chiba (1978) 

who used dynamic programing for the nonlinear warping of the time axis in speech-pattern 

recognition. They also compared symmetric and asymmetric forms of the method and 

introduced slope constraints. Kassidas et al. (1998) performed DTW on batch trajectory 

synchronization, required for the comparison and statistical analysis of the batches. In their 

application, they used multivariate batch data. Keogh and Ratanamahatana (2005) showed 

that by using a modified piecewise aggregate approximation, DTW can be utilized in the 

indexing of time series. The use of DTW as a classifier can be seen in Legrand et al. 

(2008) who applied DTW on classification of human chromosomes. 

 

 In the literature, the only study found that uses DTW in the same context with GC 

was carried out by Peng et al. (2008). In the study, a semi-automatic system was presented 

in which DTW and GC methods were utilized together in leading indicator discovery. 

DTW was considered more convenient than Euclidean distance or cross-correlation 

coefficients in measurements of correlation among the indicators. For this purpose, the 

cumulative DTW distance was used. In addition, the time shifts in the warping path were 
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considered and they were used alongside the GC test in the determination of the time order 

and the causal direction of the highly correlated series (Peng et al., 2008). However, they 

have not regarded the use of DTW as a means to determine the variations in the relations 

with time, which could be happening in their system, and examining only the overall time 

shifts may lead to a failure to notice. There is also a US Patent (Peng et al., 2011) which 

claims the discovery of a “semi-automatic system with an iterative learning method for 

uncovering the leading indicators in business processes”. 

 

 Another study with a method and aim similar to the present study was conducted by 

Sornette and Zhou (2005). In this study, “the optimal thermal causal path method” was 

applied on time series. This method, resembling DTW, also used distance measures 

between series, and in order to uncover the lead/lag relationships matched the series 

dynamically in time dimension by minimizing the cumulative distance. The robustness of 

the method was increased by the addition of a non-zero temperature. Synthetic series were 

used as test cases for the demonstration of the performance with changing lags and 

predictability. Better results were obtained compared with the cross-correlation method. 

The method was then applied on several economic variables. The advantage of the method 

is that it can reflect the changes in the behavior of the series with time. In addition, it is 

stated that a large amount of data is not needed and nonlinear relations can be handled as 

well (Sornette and Zhou, 2005). These are mainly what have been aimed with the 

application of DTW as an alternative to the GC test. 

 

 By comparing the magnitudes of the series with respect to the time dimension, DTW 

matches similar trends; for example, an increasing trend in a series is matched with a 

similar trend in the second series. Therefore, the observation of how the series are matched 

can provide information on the time order and it can be assumed that the series in which 

the trend is observed earlier leads the other series. As stated previously, this property 

satisfies the “causes must precede the effect” requirement of causality. Although it helps 

determine temporal precedence and whether it changes over time, concluding that a 

variable causes the other one only by using DTW may not be correct. As it is with the 

cross-correlation method, the series can actually be causally related or a third 

(hidden/unobservable) series may be the common cause. DTW is not expected to 
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differentiate between these two cases. Likewise, the GC test applied in this work does not 

consider additional (exogenous) variables; therefore, spurious relations may be obtained. 

 

 In this study, the aim is to see whether DTW can be used as an alternative method to 

the bivariate GC test in detection of causality. Unlike GC, DTW does not require large 

sample sizes and statistical tests, moreover it can enable the examination of relations that 

are changing over time, which cannot be observed with the GC test. 

 

 Chapter 2 of this thesis work provides information on the DTW method and 

algorithm. Chapter 3 summarizes the GC test and briefly mentions the cross-correlation 

method. In Chapter 4, the results of the applications of DTW on data sets of wide scope are 

given. The data sets are also investigated with the GC test and cross-correlation analyses 

and the results are compared with those of DTW. Chapter 5 provides the conclusions 

drawn from the applications, and recommendations on future work are presented as well. 

In the Appendix, MATLAB codes for the DTW method and GC test are provided for 

selected examples. 
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2.  DYNAMIC TIME WARPING METHOD 

 

 

 This chapter provides theoretical information on DTW and DTW algorithm. DTW 

method and its use in this thesis work are explained in Section 2.1. In Section 2.2, the 

algorithm used in the applications is provided and it is demonstrated on a simple example. 

 

2.1.  DTW Problem Formulation 

 

 Measure of similarity between time series is useful for classification and clustering 

purposes. Given two time series t and r of lengths N and M respectively,  

and , similarity of the series can be measured by using Euclidean distance, 

DistE which is the sum of the squared distances (di) between the corresponding points of 

each series, (t1,r1),(t2,r2),…,(tN,rN). Equation 2.1 shows the calculation of the cumulative 

Euclidean distance. 

 

  (2.1) 

 

 The cumulative distance indicates dissimilarity, so the smaller the distance between 

the series, the more similar they are. However, in some cases Euclidean distance is not a 

very reliable choice for similarity measure because of the one-to-one matching between the 

points. The series can be in fact very similar but slightly shifted in time dimension, 

resulting in a greater distance when the Euclidean distance measure is used. DTW, on the 

other hand, solves this problem by warping the time axis dynamically, 

stretching/compressing the axis where necessary, therefore allowing time-wise different 

points of the series be matched. There are a number of constraints on this nonlinear 

matching of the points. The boundary condition forces the first and the last elements of the 

series to be matched, (t1,r1),...,(ti,rj),…,(tN,rM). The monotonicity condition requires the 

matching to proceed with monotonically increasing indexes, thus preventing going back in 

the time dimension, ik+1 ≥ ik and jk+1 ≥ jk. The continuity condition requires movement only 

towards adjacent indexes, ensuring that each point is used and excessive compression or 

expansion of the time axis is avoided, ik+1−ik ≤ 1 and jk+1−jk ≤ 1 (Pravdova et al., 2002; 

Keogh and Ratanamahatana, 2005). 
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 The complete matching of the two series, starting at the beginning and finishing at 

the end points is called the warping path. An example of a warping path is depicted in 

Figure 2.1. 

 

 

Figure 2.1. 3D representation of a distance matrix and the optimal warping path. 

 

 The aforementioned constraints restrict the predecessors of a point (i,j) on the path to 

three points (i,j−1), (i−1,j) or (i−1,j−1). However, there are still many warping paths 

satisfying this restriction. The one of interest is the warping path that results in the smallest 

cumulative distance between the series; this path is called the optimal warping path. 

Dynamic programing is used in the optimal warping path determination. Instead of 

calculating the cumulative distance for each possible path and then finding the path with 

minimum distance, this method breaks the optimization problem in Equation 2.2 of 

minimizing the cumulative distance, to smaller steps and at each step by moving to a point 

on the path from the minimum of the three points preceding it, the overall minimum 

distance is obtained (Ramaker et al., 2003). The indexes showing how the series are 

matched can then be recovered by backtracking. In Equation 2.2, DistDTW is the cumulative 

distance, the warping path is W=w1,w2,…,wK, wk=(i,j)k and K is the length of the path. 
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  (2.2) 

 

 The two series that are examined with DTW can have different number of data 

points, thus series of equal length are not required for this method. However, DTW has a 

time and space complexity of O(NM) and this makes it more suitable for series containing 

less than a few thousand data points (Keogh and Ratanamahatana, 2005; Salvador and 

Chan, 2004). 

 

 In this thesis work, DTW is not utilized as a similarity measure for clustering or 

classification. It is used to warp the series to their most similar shape by making the 

distance between them minimum and then to determine the lead/lag relation between the 

series by examining the position of the optimal warping path over the cumulative distance 

matrix relative to the diagonal line. The diagonal line represents a special case of DTW 

where the identical indexes of the series are matched and Euclidean distance is obtained, 

wk=(i, j)k, i=j=k. In an analysis of DTW(t,r), the path lies above/right of this line when 

more recent points of the second series (series r) are matched with the past points of the 

first series (series t), wk=(i, j)k, i < j and as a result it is concluded that the series t precedes 

the series r. The reverse is said when the path lies below/left of the diagonal line. For this 

kind of a lead/lag examination of the series, one needs to use a nonlinear time measure 

since using one-to-one measures do not allow the matching of similar trends occurring at 

different times and thus uncovering the order of their occurrence by the investigation of the 

path. 

 

2.2.  DTW Algorithm Applied to an Example Problem 

 

 In this section, DTW algorithm is explained on a simple example. The sample series 

are generated in Excel by using RAND() function. The series t is generated by 

RAND() 100 and the series r by RAND() 80. The lengths of the series are 15. 

 

 

} 
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 Z-score normalization is applied on the series and the following series with mean 

zero and standard deviation one are obtained. From this point on, t and r represent the 

normalized series and all applications are carried out on them. 

 

 

 

 

 

 The local distance between any two points of the series is given by Equation 2.3 and 

the local distance matrix dNxM is constructed by applying this formula for each pair. Table 

2.1 shows the distances between t and r. 

 

  (2.3) 

 

Table 2.1. Local distance matrix d. 

0.1 3.5 2.0 0.1 0.3 0.0 3.2 3.6 1.6 3.2 0.0 0.1 7.9 0.3 0.0 

4.8 0.0 0.3 4.8 1.9 3.7 0.0 0.0 0.5 0.0 3.1 5.3 0.7 2.1 4.0 

0.2 2.5 1.3 0.2 0.1 0.1 2.3 2.7 1.0 2.3 0.0 0.4 6.5 0.1 0.1 

0.0 4.7 2.9 0.0 0.8 0.1 4.4 4.9 2.4 4.4 0.2 0.0 9.6 0.7 0.1 

3.8 0.0 0.1 3.8 1.3 2.9 0.0 0.0 0.2 0.0 2.3 4.2 1.2 1.4 3.1 

5.4 0.0 0.5 5.4 2.2 4.2 0.1 0.0 0.7 0.1 3.6 5.9 0.5 2.5 4.5 

3.5 0.1 0.0 3.5 1.1 2.6 0.0 0.1 0.1 0.0 2.0 3.9 1.4 1.2 2.8 

2.8 0.2 0.0 2.8 0.7 2.0 0.1 0.2 0.0 0.1 1.5 3.2 1.9 0.9 2.2 

0.0 4.0 2.4 0.0 0.5 0.0 3.7 4.2 1.9 3.7 0.1 0.0 8.7 0.4 0.0 

1.0 9.5 7.0 1.0 3.3 1.6 9.1 9.8 6.1 9.1 2.0 0.8 16.3 3.0 1.4 

0.7 1.6 0.7 0.7 0.0 0.3 1.4 1.7 0.4 1.4 0.2 0.9 4.9 0.0 0.4 

4.8 0.0 0.3 4.8 1.9 3.7 0.0 0.0 0.5 0.0 3.1 5.2 0.7 2.1 3.9 

2.2 0.4 0.0 2.2 0.5 1.5 0.3 0.4 0.0 0.3 1.1 2.6 2.4 0.6 1.7 

2.9 0.1 0.0 2.9 0.8 2.1 0.1 0.2 0.1 0.1 1.6 3.3 1.8 0.9 2.3 

0.7 1.6 0.7 0.7 0.0 0.3 1.4 1.7 0.4 1.4 0.2 0.9 4.9 0.0 0.4 

 

 The construction of the cumulative distance matrix DNxM is as follows. 

 

 - - - -  (2.4) 
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 Dynamic programing requires each element of D to be calculated by the addition of 

the local distance between the elements at any point to the minimum of the cumulative 

distances of the three preceding points as shown in Equation 2.4. Therefore, the first 

element D1,1 becomes the first element of the local distance matrix d1,1 since there are no 

preceding points. D1,2 is calculated by using Equation 2.5 and the first row D1,m is filled in 

the same manner, the only available point being the previous element of the same row. 

Then, the first column Dn,1 is calculated by using Equation 2.6 and starting from D2,1. 

Figure 2.2 shows the construction of D and the optimal warping path W. In the figure, → 

represents the route to a specific point from the minimum preceding point. W is obtained 

by backtracking from the end point DN,M and         represents the optimal warping path. 

 

 -  (2.5) 

 -  (2.6) 

 

0.1 3.5 5.5 5.6 5.9 5.9 9.1 12.8 14.3 17.5 17.6 17.7 25.6 25.9 25.9 

4.8 0.1 0.4 5.1 7.0 9.6 5.9 5.9 6.4 6.5 9.6 14.8 15.6 17.6 21.6 

5.1 2.6 1.4 0.6 0.7 0.8 3.1 5.8 6.7 8.8 6.5 6.8 13.3 13.4 13.5 

5.1     
 

         

8.9      
 

        

14.2       
 

       

17.7       
 

       

20.5        
  

     

20.5          
 

    

21.5           
 

   

22.2           
 

   

26.9            
 

  

29.2             
 

 

32.1             5.1 6.4 

32.8             5.1 5.5 

 

Figure 2.2. Schematic representation of the construction of D. 

 

 The DTW algorithm (pseudo code) is summarized in Figure 2.3. 
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Figure 2.3. Dynamic time warping algorithm. 

 

Require t and r are normalized 

for n = 1 to N 

   for m = 1 to M do 

      Compute the local distance vector d using Equation 2.3; 

   end for 

end for 

Let DNxM be the cumulative distance matrix  

D1,1 ⇐ d1,1; 

for n = 2 to N 

   Compute the first column Dn,1 using Equation 2.4; 

end 

for m = 2 to M 

   Compute the first row D1,m using Equation 2.5; 

end 

for n = 2 to N  

   for m = 2 to M do 

      Compute the cumulative distance matrix D using Equation 2.4; 

   end for 

end for 

while n + m ≠ 2 

   number ⇐ min([D(n-1,m),D(n,m-1),D(n-1,m-1)]) 

   switch number 

      case 1: n ⇐ n – 1 

      case 2: m ⇐ m – 1 

      case 3: n ⇐ n – 1 

   end switch 

   w ⇐ cat(1,w,[n,m]) 

end while 
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 The following figures are the results of the DTW application. Figure 2.4 shows the 

normalized series t and r before and after warping. The local expansion of the series is 

clearly observed. 

 

 

Figure 2.4. Original signals and warped signals after DTW. 

 

 

Figure 2.5. Alignment of the series. 
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Figure 2.6. DTW distance matrix and the optimal warping path. 

 

 Figure 2.5 shows how the points are matched. Except for the first two and the last 

two points, all points of r are matched with previous points of t. The cumulative distance 

matrix D, the diagonal line and the optimal warping path W are pictured in Figure 2.6. It is 

clearly seen that the optimal warping path lies above the diagonal line meaning that the 

series t precedes the series r. 

 

 The mode of the time shifts between the series in the warping path is −2 and the 

mean of the time shifts is −1, indicating that the series t leads the series r (t ⇒ r). The total 

distance is 5.479 and the length of the optimal path is 18. Moreover, the correlation 

between the unwarped series is measured as 0.026, however after warping the correlation 

becomes 0.836. 

 

 In this thesis, ⇒, ⇐ and ⇔ are used as the symbolic representations of temporal 

precedence directions from the left hand side to the right hand side, from the right hand 

side to the left hand side, and a two-way varying relation, respectively. 
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 In this example, the direction of the lead/lag relation between the series does not 

change consequently the warping path does not cross the diagonal line. However, this is 

also a possibility and in such cases examination of the warping path can indicate the 

regions of different relations separately. Although in some cases with large number of data 

points or for very similar series, drawing conclusions from the figures may not be easy; 

therefore the mode and mean of the time shifts are also important indications. Negative 

values of time shifts suggest that the first series leads the second series and vice versa. It 

should be noted that, these values do not provide insight on the regional behavior of the 

series. 
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3.  GRANGER CAUSALITY 

 

 

 In Section 3.1 of this chapter, bivariate Granger causality (GC) method is explained. 

In Section 3.2, the algorithm used in the applications in this work is provided and it is 

demonstrated on a simple example in Section 3.3. Even though not directly related to GC, 

Section 3.4 briefly presents the cross-correlation method also used in this thesis work. 

 

3.1.  GC Problem Formulation and Algorithm 

 

 GC investigates whether there is a causal relationship between two time series and, if 

so, the direction of the causation. The GC test is a linear test and it assumes linear causal 

relationships between the series (Bai et al., 2010). The test consists of forming regression 

models and testing the significance of the coefficients of the variables in these models. By 

Granger‟s definition, if the inclusion of the past values of a time series Y in the regression 

model for the time series X improves the prediction of X, then the series Y is said to be 

Granger causing X (Granger, 1969). Then, the test can be conducted for the reverse 

direction as well. The outcomes can be such that X Granger causes Y and Y Granger 

causes X, meaning that there is a feedback relation between X and Y. The second possible 

outcome is the case where X Granger causes Y however, Y does not Granger cause X. The 

reverse of this result is the third outcome namely Y Granger causes X and not the other 

way around. Lastly, there may be no causal relationships between the series. 

 

 The series are required to be stationary for the application of the GC test (Granger, 

1969). For this purpose, unit root and stationarity tests such as the augmented Dickey-

Fuller (ADF) and Kwiatkowski–Phillips–Schmidt–Shin (KPSS) tests can be used to 

determine the order of integration and check the stationarity of the series (Lim and Yoo, 

2012; Giles, 2011). In case of non-stationarity, differences (derivatives; i.e., Xt  Xt−1 and 

Yt  Yt−1) of both series are taken before the test. Moreover, Engle-Granger cointegration 

test (Engle and Granger, 1987) is used to check the cointegration. 

 

 For a bivariate test, Equation 3.1 and Equation 3.2 describe the auto-regressive 

models for X and Y respectively. Xt−j, and Yt−j are the past values of the series, m and p are 
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the optimal lags used in the regression models, and ε1,t and η1,t are the prediction errors 

(preferably white noise). These equations are also called the restricted models. 

 

 -  (3.1) 

 -  (3.2) 

 

 In order to check Granger causality, cross-dependence variables (past values of Y in 

X equation and past values of X in Y equation) are included in these models. These 

alternative models are called the unrestricted models for X and Y, and are depicted in 

Equation 3.3 and Equation 3.4 respectively. 

 

 - -  (3.3) 

 - -  (3.4) 

 

 The null hypotheses of „no causality‟ are expressed as follows: 

 

 

 

 

 The hypotheses are tested by conducting an F-test for the restricted and unrestricted 

models. A value of the F-statistic greater than the critical value Fc means that the inclusion 

of another variable, Y to the regression model of X decreases the variance of the prediction 

error, thus improves the prediction. For such a case, H0 is rejected and it is concluded that 

Y Granger causes X (Krishna et al., 2011). Equation 3.5 shows the F-statistic for the test of 

H0
1
. 

 

 
-

 (3.5) 

 

where  and  are the residual sums of squares for the restricted and 

unrestricted models respectively. m is the number of lags of X, k is the number of lags of Y 
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and n is the number of data points. The critical value Fα,m,n−(m+k+1) can be looked up from 

tabulated values (Peng et al., 2008). 

 

 Bayesian Information Criterion (BIC) is used in the determination of the optimum 

number of lags to be included in the regression models. The lag that minimizes BIC is 

chosen for each variable. Equation 3.6 shows the calculation of BIC. 

 

  (3.6) 

 

where RSS is the residual sum of squares, k is the number of regressors and n is the 

number of data points. 

 

 The algorithm (pseudo code) is summarized in Figure 3.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1. The GC test algorithm. 

Require X and Y are normalized 

Check stationarity and cointegration; 

Let MaxLag be the maximum number of lags to be considered 

for i=1 to MaxLag do 

   Compute the coefficient estimates, residuals of Equation 3.1 by linear regression; 

end 

Determine the optimal lag length of X with BIC using Equation 3.6; 

for i=1 to MaxLag do 

   Compute the coefficient estimates, residuals of Equation 3.3 by linear regression; 

end for 

Determine the optimal lag length of Y with BIC using Equation 3.6; 

Compute F using Equation 3.5; 

if F > Fc then 

   Reject the null hypothesis; 

else 

   Cannot reject the null hypothesis; 

end if 
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3.2.  A Simple Example of GC Application 

 

 In this section, the causal relationship between Gross Domestic Product (GDP) and 

Consumption (CS) is investigated by the help of the GC algorithm explained in the 

previous section. The series are taken from EViews (a widely used econometrics software) 

data file “Chow_var” (IHS, Inc., 2011). Each series contains 193 data points. The data are 

illustrated in Figure 3.2.  

 

 

Figure 3.2. Consumption and GDP data. 

 

 Z-score normalization is applied before the GC test. Series are non-stationary and not 

cointegrated, first order difference is taken for the GC test to make the series stationary 

with respect to ADF test. The normalized stationary series are depicted in Figure 3.3. The 

stationarity and cointegration tests were performed using the Econometrics Toolbox of 

MATLAB using adftest and egcitest functions. Significance level for the GC test is 

0.95. 
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Figure 3.3. Consumption and GDP data after normalization and differentiation. 

 

 The maximum number of ordered lags to be considered in the GC regression models 

is five, and the automated analysis based on the Bayesian Information Criterion showed the 

optimum number of lags to be used in the GC tests as three, one and one, two for CS–GDP 

and GDP–CS pairs, respectively. The results of the GC test are as follows: 

 

Table 3.1. GC test results for the CS and GDP data. 

Null Hypothesis (H0) Critical Value F-Statistics Result 

GDP does not Granger cause CS 3.892 0.275 Do not reject H0 

CS does not Granger cause GDP 3.044 10.762 Reject H0 

 

 From the results in Table 3.1 it is seen that since F is > Fc consumption causes GDP 

(CS → GDP) and not the other way around. This is meaningful and as expected since it is 

generally known that public consumption increases country‟s production which in turn 

increases country‟s GDP. 
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 In this thesis, →, ← and ↔ are used as the symbolic representations of causality 

directions from the left hand side to the right hand side, from the right hand side to the left 

hand side, and a two-way relation, respectively. 

 

3.3.  Cross-Correlation Calculation 

 

 Sample cross-correlation r between two series X and Y is estimated by using 

Equation 3.7. 

 

  (3.7) 

 

where  is the cross-covariance between X and Y at lag k and  and  are the 

sample standard deviations of X and Y respectively. Computation of the cross-covariance 

can be performed in either of the two ways shown in Equation 3.8, 

 

 

-

- - -
 (3.8) 

 

where n is the number of samples, and  and  are the sample means of X and Y. The 

sample standard deviations are the square roots of auto-covariances at zero lag as depicted 

in Equation 3.9 and Equation 3.10 (The MathWorks, Inc., 2012). 

 

  (3.9) 

  (3.10) 

 

 In this thesis cross-correlations between series at varying lags are computed using 

MATLAB‟s crosscorr function. 

 

  



20 

 

4.  APPLICATIONS AND COMPARISON OF DTW AND GC 

 

 

 In this chapter, the Dynamic Time Warping (DTW) and the Granger Causality (GC) 

methods will be applied on relatively wide spectrum of data sets and the methods will be 

compared in terms of the causality between the series and the direction of the leads or lags. 

The data sets used are as follows: 

 

 Time series with interval-dependent varying lags 

 Multidimensional linear time series models 

 Multidimensional nonlinear time series models 

 Hair dryer input/output model 

 Economic indexes and the Chemical Engineering Plant Cost Index (CEPCI) 

 Predator-prey model 

 Biochemical system models 

 Chemical reaction models 

 Shifted series 

 

4.1.  Illustrative Examples of Time Series with Interval-Dependent Varying Lags 

 

 The two examples in this section demonstrate the role of DTW in uncovering the 

changes in the lead/lag structures of the time series. Two time series are used and they are 

constructed as follows: one of the series is a first order AR-process with Gaussian noise, 

the second series is created from the first one and it either simultaneously occurs, lags 

behind, or leads the first series (Sornette and Zhou, 2005). According to the interval-

dependent data generation models (Equations 4.1 and 4.2), the expected results are that, for 

the first and last intervals there are no lead/lag relations between the series, for the second 

and third intervals the series x leads the series y, and for the fourth interval the series y 

leads the series x. The series are created by using MATLAB. 

 

4.1.1.  First Example with Interval-Dependent Varying Lags 
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 In this example, the coefficient a in Equation 4.1 is taken as 0.7 and b in Equation 4.2 

is taken as 0.8. ε1 and ε2 are noises with zero mean and with standard deviations 0.5 and 

0.1, respectively. The lag between the series y and x is changed in every 100 time steps. 

Some additional parameters and properties of the data and tests are as follows: Each series 

is made of 500 data points. Z-score normalization is applied before DTW, cross-correlation 

calculations, and the GC test. Series are stationary with respect to ADF test and 

cointegrated. Significance level for the GC test is 0.95. 

 

 -  (4.1) 

 

-

-  (4.2) 

 

 The results of the tests for the entire data range, interval 1 ≤ n ≤ 500, are as follows: 

 

Table 4.1. GC test results for the first data set with interval-dependent lags: the entire data 

range. 

Null Hypothesis (H0) Critical Value F-Statistics Result 

y does not Granger cause x 2.232 6.513 Reject H0 

x does not Granger cause y 1.850 9.036 Reject H0 

 

 The maximum number of ordered lags to be considered in the GC regression models 

is 10, and the automated analysis based on the Bayesian Information Criterion (BIC) 

showed the optimum number of lags to be used in the GC tests as one, five and one, 10 for 

x – y and y – x pairs, respectively. 

 

 The mode of the time shifts between the series in the warping path is zero, indicating 

that there is no lead/lag relation between the series and the mean of the time shifts is −2, 

indicating that the series x leads y (x ⇒ y) in the entire data range. 
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Figure 4.1. DTW distance matrix and the optimal warping path for the first data set with 

interval-dependent lags: the entire data range. 

 

 

Figure 4.2. Sample cross-correlation function for the first data set with interval-dependent 

lags: the entire data range. 

 

 The maximum value of cross-correlation is observed at zero lag, indicating that there 

is no lead/lag relationship between the series x and the series y. 
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 The results of the tests for the interval 1 ≤ n ≤ 100 are as follows: 

 

Table 4.2. GC test results for the first data set with interval-dependent lags: 1 ≤ n ≤ 100. 

Null Hypothesis (H0) Critical Value F-Statistics Result 

y does not Granger cause x 3.939 0.264 Do not reject H0 

x does not Granger cause y 3.939 5.728 Reject H0 

 

 The maximum number of ordered lags to be considered in the GC regression models 

is 10, and the automated analysis based on BIC showed the optimum number of lags to be 

used in the GC tests as one, one and one, one for x – y and y – x pairs, respectively. 

 

 

Figure 4.3. DTW distance matrix and the optimal warping path for the first data set with 

interval-dependent lags: 1 ≤ n ≤ 100. 

 

 The mode and the mean of the time shifts between the series in the warping path are 

zero, indicating that there is no lead/lag relation between the series x and the series y in the 

interval 1 ≤ n ≤ 100. 
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Figure 4.4. Sample cross-correlation function for the first data set with interval-dependent 

lags: 1 ≤ n ≤ 100. 

 

 The maximum value of cross-correlation is observed at zero lag, indicating that there 

is no lead/lag relationship between the series x and the series y in the interval 1 ≤ n ≤ 100. 

 

 The results of the tests for the interval 101 ≤ n ≤ 200 are as follows: 

 

Table 4.3. GC test results for the first data set with interval-dependent lags: 101 ≤ n ≤ 200. 

Null Hypothesis (H0) Critical Value F-Statistics Result 

y does not Granger cause x 3.939 0.357 Do not reject H0 

x does not Granger cause y 1.940 160.646 Reject H0 

 

 The maximum number of ordered lags to be considered in the GC regression models 

is 10, and the automated analysis based on BIC showed the optimum number of lags to be 

used in the GC tests as one, one and one, 10 for x – y and y – x pairs, respectively. 

 

-50 -40 -30 -20 -10 0 10 20 30 40 50
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Lag

S
a
m

p
le

 C
ro

s
s
 C

o
rr

e
la

ti
o
n



25 

 

 

Figure 4.5. DTW distance matrix and the optimal warping path for the first data set with 

interval-dependent lags: 101 ≤ n ≤ 200. 

 

 The mode of the time shifts between the series in the warping path is −10 and the 

mean of the time shifts is −8, indicating that the series x leads the series y (x ⇒ y) in the 

interval 101 ≤ n ≤ 200. 

 

 

Figure 4.6. Sample cross-correlation function for the first data set with interval-dependent 

lags: 101 ≤ n ≤ 200. 
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 The maximum value of cross-correlation is observed at lag 10, indicating that the 

series x leads the series y (x ⇒ y) in the interval 101 ≤ n ≤ 200. 

 

 The results of the tests for the interval 201 ≤ n ≤ 300 are as follows: 

 

Table 4.4. GC test results for the first data set with interval-dependent lags: 201 ≤ n ≤ 300. 

Null Hypothesis (H0) Critical Value F-Statistics Result 

y does not Granger cause x 3.939 0.098 Do not reject H0 

x does not Granger cause y 2.312 368.503 Reject H0 

 

 The maximum number of ordered lags to be considered in the GC regression models 

is 10, and the automated analysis based on BIC showed the optimum number of lags to be 

used in the GC tests as one, one and one, five for x – y and y – x pairs, respectively. 

 

 

Figure 4.7. DTW distance matrix and the optimal warping path for the first data set with 

interval-dependent lags: 201 ≤ n ≤ 300. 

 

 The mode and the mean of the time shifts between the series in the warping path are 

−5, indicating that the series x leads the series y (x ⇒ y) in the interval 201 ≤ n ≤ 300. 
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Figure 4.8. Sample cross-correlation function for the first data set with interval-dependent 

lags: 201 ≤ n ≤ 300. 

 

 The maximum value of cross-correlation is observed at lag five, indicating that the 

series x leads the series y (x ⇒ y) in the interval 201 ≤ n ≤ 300. 

 

 The results of the tests for the interval 301 ≤ n ≤ 400 are as follows: 

 

Table 4.5. GC test results for the first data set with interval-dependent lags: 301 ≤ n ≤ 400. 

Null Hypothesis (H0) Critical Value F-Statistics Result 

y does not Granger cause x 2.312 485.372 Reject H0 

x does not Granger cause y 3.939 0.902 Do not reject H0 

 

 The maximum number of ordered lags to be considered in the GC regression models 

is 10, and the automated analysis based on BIC showed the optimum number of lags to be 

used in the GC tests as one, five and one, one for x – y and y – x pairs, respectively. 

 

 The mode and the mean of the time shifts between the series in the warping path are 

five, indicating that the series x lags behind the series y (x ⇐ y) in the interval 301 ≤ n ≤ 

400. 
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Figure 4.9. DTW distance matrix and the optimal warping path for the first data set with 

interval-dependent lags: 301 ≤ n ≤ 400. 

 

 

Figure 4.10. Sample cross-correlation function for the first data set with interval-dependent 

lags: 301 ≤ n ≤ 400. 

 

 The maximum value of cross-correlation is observed at lag −5, indicating that the 

series x lags behind the series y (x ⇐ y) in the interval 301 ≤ n ≤ 400. 
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 The results of the tests for the interval 401 ≤ n ≤ 500 are as follows: 

 

Table 4.6. GC test results for the first data set with interval-dependent lags: 401 ≤ n ≤ 500. 

Null Hypothesis (H0) Critical Value F-Statistics Result 

y does not Granger cause x 3.940 1.216 Do not reject H0 

x does not Granger cause y 3.940 1.535 Do not reject H0 

 

 The maximum number of ordered lags to be considered in the GC regression models 

is 10, and the automated analysis based on BIC showed the optimum number of lags to be 

used in the GC tests as two, one and two, one for x – y and y – x pairs, respectively. 

 

 

Figure 4.11. DTW distance matrix and the optimal warping path for the first data set with 

interval-dependent lags: 401 ≤ n ≤ 500. 

 

 The mode and the mean of the time shifts between the series in the warping path are 

zero, indicating that there is no lead/lag relation between the series x and the series y in the 

interval 401 ≤ n ≤ 500. 
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Figure 4.12. Sample cross-correlation function for the first data set with interval-dependent 

lags: 401 ≤ n ≤ 500. 

 

 The maximum value of cross-correlation is observed at zero lag, indicating that there 

is no lead/lag relation between the series x and the series y in the interval 401 ≤ n ≤ 500. 

 

 Table 4.7 summarizes the results of the GC test, DTW, and cross-correlation 

analyses, stated by Table 4.1 through Table 4.6 and Figure 4.1 through Figure 4.12. 

 

Table 4.7. Summary of the results for the first data set with interval-dependent lags. 

Interval GC DTW Cross-correlation 

1 ≤ n ≤ 100 x → y No precedence No precedence 

101 ≤ n ≤ 200 x → y x ⇒ y x ⇒ y 

201 ≤ n ≤ 300 x → y x ⇒ y x ⇒ y 

301 ≤ n ≤ 400 x ← y x ⇐ y x ⇐ y 

401 ≤ n ≤ 500 No causality No precedence No precedence 

1 ≤ n ≤ 500 x ↔ y 
Partially no precedence, 

x ⇒ y and x ⇐ y 
No precedence 

 

 In this example, DTW method finds all relations as expected according to the 

interval-dependent data generation models (Equations 4.1 and 4.2). These relations 

between the series x and the series y can be observed by the examination of the overall 

data with DTW as well as each interval individually where the lead/lag relation remains 

-50 -40 -30 -20 -10 0 10 20 30 40 50
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Lag

S
a
m

p
le

 C
ro

s
s
 C

o
rr

e
la

ti
o
n



31 

 

constant. From this example it is seen that DTW can discover the lead/lag relations 

between series even when the direction changes over time. Cross-correlation analysis also 

provides the correct results however, as opposed to DTW, when the data is examined as a 

whole, individual zones where one series leads the other cannot be detected. The GC test 

shows similar results in general, the only different result is obtained in the interval 1 ≤ n ≤ 

100 where it falsely finds that x → y, whereas DTW correctly points to no precedence 

between the series. 

 

4.1.2.  Second Example with Interval-Dependent Varying Lags 

 

 In this example, the coefficients a and b in Equation 4.1 and Equation 4.2 are kept 

the same as before, however, the standard deviations of noises ε1 and ε2 are changed to one 

and 0.5, respectively. The lag between the series y and x is again varied in every 100 time 

steps. On the other hand, the magnitude of the lags is increased as given by Equation 4.3 

and Equation 4.4. Some additional parameters and properties of the data and tests are as 

follows: Each series is made of 500 data points. Z-score normalization is applied before 

DTW, cross-correlation calculations, and the GC test. Series are stationary with respect to 

ADF test and cointegrated. Significance level for the GC test is 0.95. 

 

 -  (4.3) 

 

-

-  (4.4) 

 

 The results of the tests for the entire data range, interval 1 ≤ n ≤ 500, are as follows: 

 

Table 4.8. GC test results for the second data set with interval-dependent lags: the entire 

data range. 

Null Hypothesis (H0) Critical Value F-Statistics Result 

y does not Granger cause x 1.808 5.959 Reject H0 

x does not Granger cause y 3.860 3.983 Reject H0 
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 The maximum number of ordered lags to be considered in the GC regression models 

is 20, and the automated analysis based on BIC showed the optimum number of lags to be 

used in the GC tests as three, 11 and two, one for x – y and y – x pairs, respectively. 

 

 

Figure 4.13. DTW distance matrix and the optimal warping path for the second data set 

with interval-dependent lags: the entire data range. 

 

 

Figure 4.14. Sample cross-correlation function for the second data set with interval-

dependent lags: the entire data range. 
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 The mode of the time shifts between the series in the warping path is zero, indicating 

that there is no lead/lag relation between the series and the mean of the time shifts is −4, 

indicating that the series x leads y (x ⇒ y) in the entire data range. 

 

 The maximum value of cross-correlation is observed at zero lag, indicating that there 

is no lead/lag relation between the series x and the series y in the entire data range. 

 

 The results of the tests for the interval 1 ≤ n ≤ 100 are as follows: 

 

Table 4.9. GC test results for the second data set with interval-dependent lags: 1 ≤ n ≤ 100. 

Null Hypothesis (H0) Critical Value F-Statistics Result 

y does not Granger cause x 3.091 6.765 Reject H0 

x does not Granger cause y 3.941 2.622 Do not reject H0 

 

 The maximum number of ordered lags to be considered in the GC regression models 

is 20, and the automated analysis based on BIC showed the optimum number of lags to be 

used in the GC tests as one, two and three, one for x – y and y – x pairs, respectively. 

 

 

Figure 4.15. DTW distance matrix and the optimal warping path for the second data set 

with interval-dependent lags: 1 ≤ n ≤ 100. 
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 The mode and the mean of the time shifts between the series in the warping path are 

zero, indicating that there is no lead/lag relation between the series x and the series y in the 

interval 1 ≤ n ≤ 100. 

 

 

Figure 4.16. Sample cross-correlation function for the second data set with interval-

dependent lags: 1 ≤ n ≤ 100. 

 

 The maximum value of cross-correlation is observed at zero lag, indicating that there 

is no lead/lag relation between the series x and the series y in the interval 1 ≤ n ≤ 100. 

 

 The results of the tests for the interval 101 ≤ n ≤ 200 are as follows: 

 

Table 4.10. GC test results for the second data set with interval-dependent lags: 101 ≤ n ≤ 

200. 

Null Hypothesis (H0) Critical Value F-Statistics Result 

y does not Granger cause x 3.939 1.489 Do not reject H0 

x does not Granger cause y 1.707 22.484 Reject H0 

 

 The maximum number of ordered lags to be considered in the GC regression models 

is 20, and the automated analysis based on BIC showed the optimum number of lags to be 

used in the GC tests as one, one and one, 20 for x – y and y – x pairs, respectively. 
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Figure 4.17. DTW distance matrix and the optimal warping path for the second data set 

with interval-dependent lags: 101 ≤ n ≤ 200. 

 

 The mode of the time shifts between the series in the warping path is −20 and the 

mean of the time shifts is −14, indicating that the series x leads the series y (x ⇒ y) in the 

interval 101 ≤ n ≤ 200. 

 

 

Figure 4.18. Sample cross-correlation function for the second data set with interval-

dependent lags: 101 ≤ n ≤ 200. 
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 The maximum value of cross-correlation is observed at lag 20, indicating that the 

series x leads the series y (x ⇒ y) in the interval 101 ≤ n ≤ 200. 

 

 The results of the tests for the interval 201 ≤ n ≤ 300 are as follows: 

 

Table 4.11. GC test results for the second data set with interval-dependent lags: 201 ≤ n ≤ 

300. 

Null Hypothesis (H0) Critical Value F-Statistics Result 

y does not Granger cause x 3.939 1.415 Do not reject H0 

x does not Granger cause y 1.940 22.386 Reject H0 

 

 The maximum number of ordered lags to be considered in the GC regression models 

is 20, and the automated analysis based on BIC showed the optimum number of lags to be 

used in the GC tests as one, one and one, 10 for x – y and y – x pairs, respectively. 

 

 

Figure 4.19. DTW distance matrix and the optimal warping path for the second data set 

with interval-dependent lags: 201 ≤ n ≤ 300. 

 

 The mode of the time shifts between the series in the warping path is −10 and the 

mean of the time shifts is −9, indicating that the series x leads the series y (x ⇒ y) in the 

interval 201 ≤ n ≤ 300. 
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Figure 4.20. Sample cross-correlation function for the second data set with interval-

dependent lags: 201 ≤ n ≤ 300. 

 

 The maximum value of cross-correlation is observed at lag 10, indicating that the 

series x leads the series y (x ⇒ y) in the interval 201 ≤ n ≤ 300. 

 

 The results of the tests for the interval 301 ≤ n ≤ 400 are as follows: 

 

Table 4.12. GC test results for the second data set with interval-dependent lags: 301 ≤ n ≤ 

400. 

Null Hypothesis (H0) Critical Value F-Statistics Result 

y does not Granger cause x 1.940 32.741 Reject H0 

x does not Granger cause y 3.939 1.628 Do not reject H0 

 

 The maximum number of ordered lags to be considered in the GC regression models 

is 20, and the automated analysis based on BIC showed the optimum number of lags to be 

used in the GC tests as one, 10 and one, one for x – y and y – x pairs, respectively. 

 

 The mode of the time shifts between the series in the warping path is 10 and the 

mean of the time shifts is nine, indicating that the series x lags behind the series y (x ⇐ y) 

in the interval 301 ≤ n ≤ 400. 
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Figure 4.21. DTW distance matrix and the optimal warping path for the second data set 

with interval-dependent lags: 301 ≤ n ≤ 400. 

 

 

Figure 4.22. Sample cross-correlation function for the second data set with interval-

dependent lags: 301 ≤ n ≤ 400. 

 

 The maximum value of cross-correlation is observed at lag −10, indicating that the 

series x lags behind the series y (x ⇐ y) in the interval 301 ≤ n ≤ 400. 
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 The results of the tests for the interval 401 ≤ n ≤ 500 are as follows: 

 

Table 4.13. GC test results for the second data set with interval-dependent lags: 401 ≤ n ≤ 

500. 

Null Hypothesis (H0) Critical Value F-Statistics Result 

y does not Granger cause x 3.941 3.507 Do not reject H0 

x does not Granger cause y 2.700 8.737 Reject H0 

 

 The maximum number of ordered lags to be considered in the GC regression models 

is 20, and the automated analysis based on BIC showed the optimum number of lags to be 

used in the GC tests as three, one and one, three for x – y and y – x pairs, respectively. 

 

 

Figure 4.23. DTW distance matrix and the optimal warping path for the second data set 

with interval-dependent lags: 401 ≤ n ≤ 500. 

 

 The mode and the mean of the time shifts between the series in the warping path are 

zero, indicating that there is no lead/lag relation between the series x and the series y in the 

interval 401 ≤ n ≤ 500. 
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Figure 4.24. Sample cross-correlation function for the second data set with interval-

dependent lags: 401 ≤ n ≤ 500. 

 

 The maximum value of cross-correlation is observed at zero lag, indicating that there 

is no lead/lag relation between the series x and the series y in the interval 401 ≤ n ≤ 500. 

 

 Table 4.14 summarizes the results of the GC test, DTW, and cross-correlation 

analyses, stated by Table 4.8 through Table 4.13 and Figure 4.13 through Figure 4.24. 

 

Table 4.14. Summary of the results for the time series with interval-dependent lags. 

Interval GC DTW Cross-correlation 

1 ≤ n ≤ 100 x ← y No precedence No precedence 

101 ≤ n ≤ 200 x → y x ⇒ y x ⇒ y 

201 ≤ n ≤ 300 x → y x ⇒ y x ⇒ y 

301 ≤ n ≤ 400 x ← y x ⇐ y x ⇐ y 

401 ≤ n ≤ 500 x → y No precedence No precedence 

1 ≤ n ≤ 500 x ↔ y 
Partially no precedence, 

x ⇒ y and x ⇐ y 
No precedence 

 

 The results of DTW presented in Table 4.14 are again as expected according to the 

interval-dependent data generation models (Equations 4.3 and 4.4). In this second example, 

since the magnitude of the lags is increased in the creation of the data points, the lead/lag 
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relation in Figure 4.13 is even clearer from the shape of the path than it is in the first 

example. Cross-correlation analysis results are in accordance with DTW results when the 

intervals are examined individually, however, when the complete data is used, the varying 

lead/lag relations cannot be recovered. The GC test shows similar results in general, 

different results are obtained only in the intervals 1 ≤ n ≤ 100 and 401 ≤ n ≤ 500 where it is 

found that x ← y and x → y, respectively. For these intervals DTW points to no 

precedence between the series. 

 

4.2.  Multidimensional Linear Time Series Models 

 

 The two examples in this section examine data sets generated from two separate 

multidimensional linear time series models where the direction of leads/lags between the 

series remains constant. The series are created by using MATLAB. 

 

4.2.1.  Five-Dimensional Linear Time Series Model 

 

 The model consists of five time-series simultaneously produced from the linear 

equations, Equation 4.5 through Equation 4.9. x1 is independent of other series; x2, x3 and 

x4 are directly caused by x1; and there is a feedback relation between x4 and x5 as depicted 

in Figure 4.25. There are also several indirect relations in the model. ε1, ε2, ε3, ε4 and ε5 are 

noises with zero mean and variance one. The coefficient of the noises, c is taken as one 

(Krishna and Guo, 2008). Some additional parameters and properties of the data and tests 

are as follows: Each series is made of 500 data points. Z-score normalization is applied 

before DTW, cross-correlation calculations, and the GC test. Series are stationary with 

respect to ADF test and cointegrated. Significance level for the GC test is 0.95. 
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Figure 4.25. The schematic representation of the causal relations among the series in 

Equation 4.5 through Equation 4.9. 

 

 The results of the tests for the pair x1 – x2 are as follows: 

 

Table 4.15. GC test results for the x1 – x2 pair of the five-dimensional example. 

Null Hypothesis (H0) Critical Value F-Statistics Result 

x2 does not Granger cause x1 3.860 0.910 Do not reject H0 

x1 does not Granger cause x2 3.014 211.510 Reject H0 

 

 The maximum number of ordered lags to be considered in the GC regression models 

is five, and the automated analysis based on BIC showed the optimum number of lags to be 

used in the GC tests as two, one and five, two for x1 – x2 and x2 – x1 pairs, respectively. 

 

 

Figure 4.26. DTW distance matrix and the optimal warping path for the x1 – x2 pair of the 

five-dimensional example. 
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 The mode and the mean of the time shifts between the series in the warping path are 

−2, indicating that the series x1 leads the series x2 (x1 ⇒ x2). 

 

 

Figure 4.27. Sample cross-correlation function for the x1 – x2 pair of the five-dimensional 

example. 

 

 The maximum value of cross-correlation is observed at lag two, indicating that the 

series x1 leads the series x2 (x1 ⇒ x2). 

 

 The results of the tests for the pair x1 – x3 are as follows: 

 

Table 4.16. GC test results for the x1 – x3 pair of the five-dimensional example. 

Null Hypothesis (H0) Critical Value F-Statistics Result 

x3 does not Granger cause x1 3.860 1.136 Do not reject H0 

x1 does not Granger cause x3 2.623 99.108 Reject H0 

 

 The maximum number of ordered lags to be considered in the GC regression models 

is five, and the automated analysis based on BIC showed the optimum number of lags to be 

used in the GC tests as two, one and five, three for x1 – x3 and x3 – x1 pairs, respectively. 
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Figure 4.28. DTW distance matrix and the optimal warping path for the x1 – x3 pair of the 

five-dimensional example. 

 

 The mode of the time shifts between the series in the warping path is −7 and the 

mean of the time shifts is −4, indicating that the series x1 leads the series x3 (x1 ⇒ x3). 

 

 

Figure 4.29. Sample cross-correlation function for the x1 – x3 pair of the five-dimensional 

example. 

 

D
is

ta
n

c
e

0

74

149

224

299

373

448

523

-2 0 2

50

100

150

200

250

300

350

400

450

500

x 1

 

100 200 300 400 500

-2
0
2

x
3

 

-50 -40 -30 -20 -10 0 10 20 30 40 50
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Lag

S
a
m

p
le

 C
ro

s
s
 C

o
rr

e
la

ti
o
n



45 

 

 The maximum value of cross-correlation is observed at lag seven, indicating that the 

series x1 leads the series x3 (x1 ⇒ x3). 

 

 The results of the tests for the pair x1 – x4 are as follows: 

 

Table 4.17. GC test results for the x1 – x4 pair of the five-dimensional example. 

Null Hypothesis (H0) Critical Value F-Statistics Result 

x4 does not Granger cause x1 3.860 0.644 Do not reject H0 

x1 does not Granger cause x4 3.014 172.925 Reject H0 

 

 The maximum number of ordered lags to be considered in the GC regression models 

is five, and the automated analysis based on BIC showed the optimum number of lags to be 

used in the GC tests as two, one and four, two for x1 – x4 and x4 – x1 pairs, respectively. 

 

 

Figure 4.30. DTW distance matrix and the optimal warping path for the x1 – x4 pair of the 

five-dimensional example. 

 

 The mode of the time shifts between the series in the warping path is −6 and the 

mean of the time shifts is −2, indicating that the series x1 leads the series x4 (x1 ⇒ x4). 
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Figure 4.31. Sample cross-correlation function for the x1 – x4 pair of the five-dimensional 

example. 

 

 The maximum value of cross-correlation is observed at lag six, indicating that the 

series x1 leads the series x4 (x1 ⇒ x4). 

 

 The results of the tests for the pair x3 – x4 are as follows: 

 

Table 4.18. GC test results for the x3 – x4 pair of the five-dimensional example. 

Null Hypothesis (H0) Critical Value F-Statistics Result 

x4 does not Granger cause x3 3.860 102.604 Reject H0 

x3 does not Granger cause x4 3.014 8.274 Reject H0 

 

 The maximum number of ordered lags to be considered in the GC regression models 

is five, and the automated analysis based on BIC showed the optimum number of lags to be 

used in the GC tests as five, one and four, two for x3 – x4 and x4 – x3 pairs, respectively. 

 

 The mode of the time shifts between the series in the warping path is one and the 

mean of the time shifts is two, indicating that the series x3 lags behind the series x4 (x3 ⇐ 

x4). 
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Figure 4.32. DTW distance matrix and the optimal warping path for the x3 – x4 pair of the 

five-dimensional example. 

 

 

Figure 4.33. Sample cross-correlation function for the x3 – x4 pair of the five-dimensional 

example. 

 

 The maximum value of cross-correlation is observed at lag −2, indicating that the 

series x3 lags behind the series x4 (x3 ⇐ x4). 
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 The results of the tests for the pair x4 – x5 are as follows: 

 

Table 4.19. GC test results for the x4 – x5 pair of the five-dimensional example. 

Null Hypothesis (H0) Critical Value F-Statistics Result 

x5 does not Granger cause x4 3.860 28.360 Reject H0 

x4 does not Granger cause x5 3.860 165.818 Reject H0 

 

 The maximum number of ordered lags to be considered in the GC regression models 

is five, and the automated analysis based on BIC showed the optimum number of lags to be 

used in the GC tests as four, one and four, one for x4 – x5 and x5 – x4 pairs, respectively. 

 

 

Figure 4.34. DTW distance matrix and the optimal warping path for the x4 – x5 pair of the 

five-dimensional example. 

 

 The mode and the mean of the time shifts between the series in the warping path are 

two, indicating that the series x4 lags behind the series x5 (x4 ⇐ x5). 

 

 The maximum value of cross-correlation is observed at lag −2, indicating that the 

series x4 lags behind the series x5 (x4 ⇐ x5). 
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Figure 4.35. Sample cross-correlation function for the x4 – x5 pair of the five-dimensional 

example. 

 

 Table 4.20 summarizes the results of the GC test, DTW, and cross-correlation 

analyses, stated by Table 4.15 through Table 4.19 and Figure 4.26 through Figure 4.35. 

 

Table 4.20. Summary of the results for the five-dimensional time series. 

Pair GC DTW Cross-correlation 

x1 & x2 x1 → x2 x1 ⇒ x2 x1 ⇒ x2 

x1 & x3 x1 → x3 x1 ⇒ x3 x1 ⇒ x3 

x1 & x4 x1 → x4 
x1 ⇒ x4 

(Figure 4.30: x1 ⇔ x4) 
x1 ⇒ x4 

x3 & x4 x3 ↔ x4 
x3 ⇐ x4 

(Figure 4.32: no precedence) 
x3 ⇐ x4 

x4 & x5 x4 ↔ x5 
x4 ⇐ x5 

(Figure 4.34: no precedence) 
x4 ⇐ x5 

 

 The relations between the pairs x1 – x2, x1 – x3 and x1 – x4 are correctly acquired by 

the GC test and the DTW. The indirect relation between x3 – x4 (x3 → x4, x3 ← x4) found 

by the GC test is due to the common cause x1. DTW fails to reflect the feedback relation 
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between x4 – x5 by showing mainly no lead/lag in Figure 4.34 and x4 ⇐ x5 by examining 

the time shifts. Cross-correlation analysis results are identical with the DTW results. 

 

4.2.2.  Three-Dimensional Linear Time Series Model 

 

 In the second model there are three time series generated with the equations Equation 

4.10 through Equation 4.12. Of these series x2 directly causes x3 and x3 causes x1 as 

depicted in Figure 4.36. ε1, ε2 and ε3 are noises with zero mean and variances 0.3, one and 

0.2 respectively. Data are tested pairwise with the GC test, DTW and cross-correlation 

analysis (Ding et al., 2006). Some additional parameters and properties of the data and 

tests are as follows: Each series is made of 100 data points. Z-score normalization is 

applied before DTW, cross-correlation calculations, and the GC test. Series are stationary 

with respect to ADF test and cointegrated. Significance level for the GC test is 0.95. 

 

 - - -  (4.10) 

 - -  (4.11) 

 - - -  (4.12) 

 

 

Figure 4.36. The schematic representation of the causal relations among the series in 

Equation 4.10 through Equation 4.12. 

 

 The results of the tests for the pair x1 – x2 are as follows: 

 

Table 4.21. GC test results for the x1 – x2 pair of the three-dimensional example. 

Null Hypothesis (H0) Critical Value F-Statistics Result 

x2 does not Granger cause x1 3.092 31.138 Reject H0 

x1 does not Granger cause x2 3.941 0.461 Do not reject H0 

 

x2 x3 x1
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 The maximum number of ordered lags to be considered in the GC regression models 

is five, and the automated analysis based on BIC showed the optimum number of lags to be 

used in the GC tests as two, two and three, one for x1 – x2 and x2 – x1 pairs, respectively. 

 

 

Figure 4.37. DTW distance matrix and the optimal warping path for the x1 – x2 pair of the 

three-dimensional example. 

 

 

Figure 4.38. Sample cross-correlation function for the x1 – x2 pair of the three-dimensional 

example. 
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 The mode of the time shifts between the series in the warping path is three and the 

mean of the time shifts is one, indicating that the series x1 lags behind the series x2 (x1 ⇐ 

x2). 

 

 The maximum value of cross-correlation is observed at lag −2, indicating that the 

series x1 lags behind the series x2 (x1 ⇐ x2). 

 

 The results of the tests for the pair x1 – x3 are as follows: 

 

Table 4.22. GC test results for the x1 – x3 pair of the three-dimensional example. 

Null Hypothesis (H0) Critical Value F-Statistics Result 

x3 does not Granger cause x1 3.940 99.579 Reject H0 

x1 does not Granger cause x3 3.942 0.620 Do not reject H0 

 

 The maximum number of ordered lags to be considered in the GC regression models 

is five, and the automated analysis based on BIC showed the optimum number of lags to be 

used in the GC tests as two, one and four, one for x1 – x3 and x3 – x1 pairs, respectively. 

 

 

Figure 4.39. DTW distance matrix and the optimal warping path for the x1 – x3 pair of the 

three-dimensional example. 
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 The mode and the mean of the time shifts between the series in the warping path are 

one, indicating that the series x1 lags behind the series x3 (x1 ⇐ x3). 

 

 

Figure 4.40. Sample cross-correlation function for the x1 – x3 pair of the three-dimensional 

example. 

 

 The maximum value of cross-correlation is observed at lag −2, indicating that the 

series x1 lags behind the series x3 (x1 ⇐ x3). 

 

 The results of the tests for the pair x2 – x3 are as follows: 

 

Table 4.23. GC test results for the x2 – x3 pair of the three-dimensional example. 

Null Hypothesis (H0) Critical Value F-Statistics Result 

x3 does not Granger cause x2 3.941 0.414 Do not reject H0 

x2 does not Granger cause x3 3.094 108.221 Reject H0 

 

 The maximum number of ordered lags to be considered in the GC regression models 

is five, and the automated analysis based on BIC showed the optimum number of lags to be 

used in the GC tests as three, one and four, two for x2 – x3 and x3 – x2 pairs, respectively. 
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Figure 4.41. DTW distance matrix and the optimal warping path for the x2 – x3 pair of the 

three-dimensional example. 

 

 The mode and the mean of the time shifts between the series in the warping path are 

−1, indicating that the series x2 leads the series x3 (x2 ⇒ x3). 

 

 

Figure 4.42. Sample cross-correlation function for the x2 – x3 pair of the three-dimensional 

example. 
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 The maximum value of cross-correlation is observed at lag one, indicating that the 

series x2 leads the series x3 (x2 ⇒ x3). 

 

 Table 4.24 summarizes the results of the GC test, DTW, and cross-correlation 

analyses, stated by Table 4.21 through Table 4.23 and Figure 4.37 through Figure 4.42. 

 

Table 4.24. Summary of the results for the three-dimensional time series. 

Pair GC DTW Cross-correlation 

x1 & x2 x1 ← x2 x1 ⇔ x2 x1 ⇐ x2 

x1 & x3 x1 ← x3 x1 ⇐ x3 x1 ⇐ x3 

x2 & x3 x2 → x3 x2 ⇒ x3 x2 ⇒ x3 

 

 The relations between x1 – x3 and x2 – x3 are captured correctly by the GC test and 

the DTW. Even though there is no direct relation between x1 – x2, the GC test and cross-

correlation methods indicate a causal influence from x2 to x1, x1 ⇐ x2. DTW shows 

regional changes in the direction of causality, however it is mainly from x2 to x1 and the 

time shifts indicate this as well. This spurious relation between x1 – x2 is due to the 

influence of x2 on x3 (x2 ⇒ x3) and x3‟s further influence on x1 (x1 ⇐ x3). 

 

4.3.  Multidimensional Nonlinear Time Series Models 

 

 Two examples given in this section examine data sets generated from two different 

nonlinear series where the GC test fails to function correctly. The series are created by 

using MATLAB. 

 

4.3.1.  Two-Dimensional Nonlinear Time Series Model 

 

 In this example there are two time series created by using the nonlinear equations 

Equation 4.13 and Equation 4.14. ε1 and ε2 are noises with zero mean and variance one. c 

is the nonlinear coupling strength, and can take values between zero and one. In this 

example c is taken as 0.5. The direction of causality is from x1 to x2 as depicted in Figure 

4.43 (Seth and Príncipe, 2010). Some other parameters and properties of the data and tests 

are as follows: Each series is made of 500 data points. Z-score normalization is applied 
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before DTW, cross-correlation calculations, and the GC test. Series are stationary with 

respect to ADF test and cointegrated. Significance level for the GC test is 0.95. 

 

 - - - -  

-   (4.13) 

 - - - -  

- -  (4.14) 

 

 

Figure 4.43. The schematic representation of the causal relations among the two-

dimensional nonlinear time series in Equation 4.13 and Equation 4.14. 

 

 The results of the tests are as follows: 

 

Table 4.25. GC test results for the two-dimensional nonlinear series. 

Null Hypothesis (H0) Critical Value F-Statistics Result 

x2 does not Granger cause x1 3.860 3.160 Do not reject H0 

x1 does not Granger cause x2 3.014 9.862 Reject H0 

 

 The maximum number of ordered lags to be considered in the GC regression models 

is five, and the automated analysis based on BIC showed the optimum number of lags to be 

used in the GC tests as two, one and four, two for x1 – x2 and x2 – x1 pairs, respectively. 

 

 The mode of the time shifts between the series in the warping path is 14 and the 

mean of the time shifts is 28, indicating that the series x1 lags behind the series x2 (x1 ⇐ 

x2). 

 

 The maximum value of cross-correlation is observed at lag 30, indicating that the 

series x1 leads the series x2 (x1 ⇒ x2). 

 

x1 x2
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Figure 4.44. DTW distance matrix and the optimal warping path for the two-dimensional 

nonlinear series. 

 

 

Figure 4.45. Sample cross-correlation function for the two-dimensional nonlinear series. 

 

 Table 4.26 summarizes the results of the GC test, DTW, and cross-correlation 

analyses, stated by Table 4.25, Figure 4.44 and Figure 4.45. 
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Table 4.26. Summary of the results for the two-dimensional nonlinear series. 

Pairs GC DTW Cross-correlation 

x1 & x2 x1 → x2 x1 ⇐ x2 x1 ⇒ x2 

 

 Examining the DTW results, it is seen that the optimal warping path in Figure 4.44 is 

essentially below the diagonal line except the beginning and end parts, and the mode and 

mean of the time shifts are positive meaning that x2 precedes x1, x1 ⇐ x2. So, in this 

example the DTW gives incorrect results. Even though the GC test is a linear method and 

not expected to work correctly in nonlinear problems, in this particular case, correct result 

is obtained as it is found that x1 → x2 and not the other way around. Cross-correlation 

analysis results are consistent with the GC test results. 

 

4.3.2.  Four-Dimensional Nonlinear Time Series Model 

 

 Second example consists of four series created by using the nonlinear equations, 

Equation 4.15 through Equation 4.17, influencing one another in a complex way. Time 

series x1 and x2 have a feedback relation, and x2 is also caused by x4. x3 does not cause any 

of the series however x1 and x2 have an influence on x3. x4 is Gaussian white noise of 

variance one. The causal relations among the series are depicted in Figure 4.46 (Seth and 

Príncipe, 2010). Some other parameters and properties of the data and tests are as follows: 

Each series is made of 500 data points. Z-score normalization is applied before DTW, 

cross-correlation calculations, and the GC test. Series are stationary with respect to ADF 

test and cointegrated. Significance level for the GC test is 0.95. 

 

  (4.15) 

   

(4.16) 

  (4.17) 
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Figure 4.46. The schematic representation of the causal relations among the four-

dimensional nonlinear time series in Equation 4.15 through Equation 4.17. 

 

 The results of the tests for the pair x1 – x2 are as follows: 

 

Table 4.27. GC test results for the x1 – x2 pair of four-dimensional nonlinear time series. 

Null Hypothesis (H0) Critical Value F-Statistics Result 

x2 does not Granger cause x1 2.623 195.210 Reject H0 

x1 does not Granger cause x2 2.623 18.240 Reject H0 

 

 The maximum number of ordered lags to be considered in the GC regression models 

is five, and the automated analysis based on BIC showed the optimum number of lags to be 

used in the GC tests as three, three and three, three for x1 – x2 and x2 – x1 pairs, 

respectively. 

 

 

Figure 4.47. DTW distance matrix and the optimal warping path for the x1 – x2 pair of 

four-dimensional nonlinear time series. 
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 The mode and the mean of the time shifts between the series in the warping path are 

one, indicating that the series x1 lags behind the series x2 (x1 ⇐ x2). 

 

 

Figure 4.48. Sample cross-correlation function for the x1 – x2 pair of four-dimensional 

nonlinear time series. 

 

 The maximum value of cross-correlation is observed at lag −1, indicating that the 

series x1 lags behind the series x2 (x1 ⇐ x2). 

 

 The results of the tests for the pair x1 – x3 are as follows: 

 

Table 4.28. GC test results for the x1 – x3 pair of four-dimensional nonlinear time series. 

Null Hypothesis (H0) Critical Value F-Statistics Result 

x3 does not Granger cause x1 3.014 33.178 Reject H0 

x1 does not Granger cause x3 3.014 109.028 Reject H0 

 

 The maximum number of ordered lags to be considered in the GC regression models 

is five, and the automated analysis based on BIC showed the optimum number of lags to be 

used in the GC tests as three, two and two, two for x1 – x3 and x3 – x1 pairs, respectively. 
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Figure 4.49. DTW distance matrix and the optimal warping path for the x1 – x3 pair of 

four-dimensional nonlinear time series. 

 

 The mode and the mean of the time shifts between the series in the warping path are 

zero, indicating that there is no lead/lag relation between the series x1 and the series x3. 

 

 

Figure 4.50. Sample cross-correlation function for the x1 – x3 pair of four-dimensional 

nonlinear time series. 
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 The maximum value of cross-correlation is observed at zero lag, indicating that there 

is no lead/lag relation between the series x1 and the series x3. 

 

 The results of the tests for the pair x2 – x3 are as follows: 

 

Table 4.29. GC test results for the x2 – x3 pair of four-dimensional nonlinear time series. 

Null Hypothesis (H0) Critical Value F-Statistics Result 

x3 does not Granger cause x2 2.623 6.632 Reject H0 

x2 does not Granger cause x3 2.390 690.468 Reject H0 

 

 The maximum number of ordered lags to be considered in the GC regression models 

is five, and the automated analysis based on BIC showed the optimum number of lags to be 

used in the GC tests as three, three and two, four for x2 – x3 and x3 – x2 pairs, respectively. 

 

 

Figure 4.51. DTW distance matrix and the optimal warping path for the x2 – x3 pair of 

four-dimensional nonlinear time series. 

 

 The mode and the mean of the time shifts between the series in the warping path are 

−1, indicating that the series x2 leads the series x3 (x2 ⇒ x3). 
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Figure 4.52. Sample cross-correlation function for the x2 – x3 pair of four-dimensional 

nonlinear time series. 

 

 The maximum value of cross-correlation is observed at lag one, indicating that the 

series x2 leads the series x3 (x2 ⇒ x3). 

 

 The results of the tests for the pair x2 – x4 are as follows: 

 

Table 4.30. GC test results for the x2 – x4 pair of four-dimensional nonlinear time series. 

Null Hypothesis (H0) Critical Value F-Statistics Result 

x4 does not Granger cause x2 2.623 146.107 Reject H0 

x2 does not Granger cause x4 3.860 4.152 Reject H0 

 

 The maximum number of ordered lags to be considered in the GC regression models 

is five, and the automated analysis based on BIC showed the optimum number of lags to be 

used in the GC tests as three, three and one, one for x2 – x4 and x4 – x2 pairs, respectively. 

 

 The mode of the time shifts between the series in the warping path is one indicating 

that the series x2 lags behind the series x4 (x2 ⇐ x4), and the mean of the time shifts is −6, 

indicating that the series x2 leads the series x4 (x2 ⇒ x4). 
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Figure 4.53. DTW distance matrix and the optimal warping path for the x2 – x4 pair of 

four-dimensional nonlinear time series. 

 

 

Figure 4.54. Sample cross-correlation function for the x2 – x4 pair of four-dimensional 

nonlinear time series. 

 

 The maximum value of cross-correlation is observed at lag −1, that the series x2 lags 

behind the series x4 (x2 ⇐ x4). 
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 Table 4.31 summarizes the results of the GC test, DTW, and cross-correlation 

analyses, stated by Table 4.27 through Table 4.30 and Figure 4.47 through Figure 4.54. 

 

Table 4.31. Summary of the results for the four-dimensional nonlinear time series. 

Pair GC DTW Cross-correlation 

x1 & x2 x1 ↔ x2 x1 ⇐ x2 x1 ⇐ x2 

x1 & x3 x1 ↔ x3 No precedence No precedence 

x2 & x3 x2 ↔ x3 x2 ⇒ x3 x2 ⇒ x3 

x2 & x4 x2 ↔ x4 x2 ⇔ x4 x2 ⇐ x4 

 

 The GC test incorrectly indicates that x3 causes x1 and x2 (x1 ← x3, x2 ← x3), and x2 

causes x4 (x2 → x4). x3 causing x1 can be explained by the fact that x2 causes both x1 and 

x3, similarly x1 is a common cause of both x2 and x3 so the GC test erroneously finds that 

x3 causes x2. DTW captures only the relation between x2 and x3 correctly, failing to 

uncover the expected causal relation among all series. However, overall it produces similar 

results with cross-correlation analysis. 

 

4.4.  Hair Dryer Input/Output Model 

 

 The data set was acquired from a MATLAB demo for nonlinear system identification 

(The MathWorks, Inc., 2007). It was originally obtained from a laboratory device 

resembling a hair dryer. In this device air is heated at the inlet of a tube and its temperature 

is measured at the outlet. Voltage over the resistor wires is the input, u(k) and the air 

temperature at the outlet is the output, y(k) as seen from the model in Figure 4.55. The data 

set can be accessed from the System Identification Toolbox of MATLAB. The expected 

result is that the input (u) leads the output (y). 

 

  

 

 

Figure 4.55. System model for the hair dryer device. 

 

 

 u(k)         y(k) 

                (Voltage)                                                       (Temperature)  

 

 Hair Dryer 
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 Some parameters and properties of the data and tests are as follows: Each series is 

made of 1000 data points. Z-score normalization is applied before DTW, cross-correlation 

calculations, and the GC test. Series are stationary with respect to ADF test and 

cointegrated. Significance level for the GC test is 0.95. 

 

 The results of the tests are as follows: 

 

Table 4.32. GC test results for the hair dryer data. 

Null Hypothesis (H0) Critical Value F-Statistics Result 

y does not Granger cause u 3.851 5.053 Reject H0 

u does not Granger cause y 2.223 1194.081 Reject H0 

 

 The maximum number of ordered lags to be considered in the GC regression models 

is five, and the automated analysis based on BIC showed the optimum number of lags to be 

used in the GC tests as one, one and three, five for u – y and y – u pairs, respectively. 

 

 

Figure 4.56. DTW distance matrix and the optimal warping path for the hair dryer data. 

 

 The mode of the time shifts between the series in the warping path is −5 and the 

mean of the time shifts is −6, indicating that the series u leads the series y (u ⇒ y). 
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Figure 4.57. Sample cross-correlation function for the hair dryer data. 

 

 The maximum value of cross-correlation is observed at lag six, indicating that the 

series u leads the series y (u ⇒ y). 

 

 Table 4.33 summarizes the results of the GC test, DTW and cross-correlation 

analyses, shown by Table 4.32, Figure 4.56 and Figure 4.57. 

 

Table 4.33. Summary of the results for the hair dryer data. 

Pair GC DTW Cross-correlation 

u & y u ↔ y u ⇒ y u ⇒ y 

 

 The GC test shows a feedback relation between the input (u) and output (y); although 

in the first test, the value of the F-statistic is very close to the critical value whereas in the 

second test it is greater than the critical value by a very large amount and causality from 

the output to the input (y → u), can be considered weak. On the other hand, DTW and 

cross-correlation results are in accordance with the expected results and indicate that the 

input leads the output; u ⇒ y. 

 

-100 -50 0 50 100
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Lag

S
a
m

p
le

 C
ro

s
s
 C

o
rr

e
la

ti
o
n



68 

 

4.5.  Economic Indexes and the Chemical Engineering Plant Cost Index 

 

 In this section, the causal relations among various US macroeconomic indicators and 

chemical engineering related cost index are investigated. For this purpose annual data on 

Chemical Engineering Plant Cost Index, Industrial Production Index, Spot Oil Prices and 

Gross Domestic Product between the years 1950 and 2010 are employed. 

 

 Plant cost indexes use the construction costs for chemical plants as the basis and 

reflect the effect of time on the costs. They are utilized in the estimation of process-

equipment costs and chemical plant investments (Baasel, 1990). The indexes are based on 

averages and their accuracy is about 10% for periods up to five years. Chemical 

Engineering Plant Cost Index (CEPCI) is commonly used and published in the Chemical 

Engineering Magazine and years 1957-1959 are taken as the reference period (Loh et al., 

2002; Coker, 2007). The CEPCI was designed mainly for the US chemical industry and 

uses US macroeconomic indicators in its construction and updates (Vatavuk, 2002). 

 

 Industrial Production Index (IP) evaluates the amount of output from various 

industries as well as the manufacturing industry in the USA. 2007 is the reference year 

where the index is taken as 100. IP is a major economic indicator showing how well the 

industries are performing. An increase in IP causes an increase in the national currency rate 

and Gross National Product. Data of the index is made public monthly by the Federal 

Reserve Board of St. Louis (Industrial Production Index – IPI). 

 

 The West Texas Intermediate oil price index (OP) is an index for partially refined oil 

prices from the US. Data is provided by the Federal Reserve Bank of St. Louis and the 

values are based on the Spot Oil Price: West Texas Intermediate in Wall Street Journal. 

(Bottazzi, 2012). 

 

 Gross Domestic Product (GDP) is a measure of a country‟s standard of living and 

economic wellbeing. It consists of all private consumption in a nation‟s economy, the sum 

of government spending, total net exports and the business spending on capital in a country 

for a specified time period which is usually one year (Gross Domestic Product – GDP). 
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 Some parameters and properties of the data and tests are as follows: All series are 

made of 61 data points. Z-score normalization is applied before DTW, cross-correlation 

calculations and the GC test. Series are non-stationary and not cointegrated. First order 

difference is taken for the CEPCI – IP, CEPCI – OP and IP – OP data sets and second 

order difference is taken for the IP – GDP, OP – GDP, and CEPCI – GDP data sets before 

the GC test to make the series stationary with respect to ADF and KPSS tests. Significance 

level for the GC test is 0.95. 

 

 The results of the tests for the CEPCI – IP data sets are as follows: 

 

Table 4.34. GC test results for the CEPCI and IP data. 

Null Hypothesis (H0) Critical Value F-Statistics Result 

IP does not Granger cause CEPCI 4.023 1.265 Do not reject H0 

CEPCI does not Granger cause IP 2.546 9.936 Reject H0 

 

 

Figure 4.58. DTW distance matrix and the optimal warping path for the CEPCI and IP 

data. 

 

 The maximum number of ordered lags to be considered in the GC regression models 

is five, and the automated analysis based on BIC showed the optimum number of lags to be 
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used in the GC tests as five, one and two, four for CEPCI – IP and IP – CEPCI pairs, 

respectively. 

 

 The mode of the time shifts between the series in the warping path is −6 and the 

mean of the time shifts is −1, indicating that CEPCI precedes IP. 

 

 

Figure 4.59. Sample cross-correlation function for the CEPCI and IP data. 

 

 The maximum value of cross-correlation is observed at zero lag, indicating that there 

is no lead/lag relation between CEPCI and IP. 

 

 The results of the tests for the CEPCI – OP data sets are as follows: 

 

Table 4.35. GC test results for the CEPCI and OP data. 

Null Hypothesis (H0) Critical Value F-Statistics Result 

OP does not Granger cause CEPCI 4.023 1.728 Do not reject H0 

CEPCI does not Granger cause OP 2.389 5.292 Reject H0 

 

 The maximum number of ordered lags to be considered in the GC regression models 

is five, and the automated analysis based on BIC showed the optimum number of lags to be 

used in the GC tests as five, one and one, five for CEPCI – OP and OP – CEPCI pairs, 

respectively. 
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Figure 4.60. DTW distance matrix and the optimal warping path for the CEPCI and OP 

data. 

 

 

Figure 4.61. Sample cross-correlation function for the CEPCI and OP data. 

 

 The mode of the time shifts between the series in the warping path is one, indicating 

that CEPCI lags behind OP, and the mean of the time shifts is zero, indicating that there is 

no lead/lag relation between the series. 
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 The maximum value of cross-correlation is observed at zero lag, indicating that there 

is no lead/lag relation between CEPCI and OP. 

 

 The results of the tests for the IP – OP data sets are as follows: 

 

Table 4.36. GC test results for the IP and OP data. 

Null Hypothesis (H0) Critical Value F-Statistics Result 

OP does not Granger cause IP 4.013 26.501 Reject H0 

IP does not Granger cause OP 4.010 2.845 Do not reject H0 

 

 The maximum number of ordered lags to be considered in the GC regression models 

is five, and the automated analysis based on BIC showed the optimum number of lags to be 

used in the GC tests as two, one and one, one for IP – OP and OP – IP pairs, respectively. 

 

 

Figure 4.62. DTW distance matrix and the optimal warping path for the IP and OP data. 

 

 The mode and the mean of the time shifts between the series in the warping path are 

zero, indicating that there is no lead/lag relation between IP and OP. 
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Figure 4.63. Sample cross-correlation function for the IP and OP data. 

 

 The maximum value of cross-correlation is observed at zero lag, indicating that there 

is no lead/lag relation between IP and OP. 

 

 The results of the tests for the IP – GDP data sets are as follows: 

 

Table 4.37. GC test results for the IP and GDP data. 

Null Hypothesis (H0) Critical Value F-Statistics Result 

GDP does not Granger cause IP 2.404 5.037 Reject H0 

IP does not Granger cause GDP 4.027 0.283 Do not reject H0 

 

 The maximum number of ordered lags to be considered in the GC regression models 

is five, and the automated analysis based on BIC showed the optimum number of lags to be 

used in the GC tests as four, five and five, one for IP – GDP and GDP – IP pairs, 

respectively. 
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Figure 4.64. DTW distance matrix and the optimal warping path for the IP and GDP data. 

 

 The mode of the time shifts between the series in the warping path is −2, indicating 

that IP precedes GDP, and the mean of the time shifts is zero, indicating that there is no 

lead/lag relation between the series. 

 

 

Figure 4.65. Sample cross-correlation function for the IP and GDP data. 
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 The maximum value of cross-correlation is observed at zero lag, indicating that there 

is no lead/lag relation between IP and GDP. 

 

 The results of the tests for the OP – GDP data sets are as follows: 

 

Table 4.38. GC test results for the OP and GDP data. 

Null Hypothesis (H0) Critical Value F-Statistics Result 

GDP does not Granger cause OP 4.016 24.541 Reject H0 

OP does not Granger cause GDP 4.027 12.550 Reject H0 

 

 The maximum number of ordered lags to be considered in the GC regression models 

is five, and the automated analysis based on BIC showed the optimum number of lags to be 

used in the GC tests as two, one and five, one for OP – GDP and GDP – OP pairs, 

respectively. 

 

 

Figure 4.66. DTW distance matrix and the optimal warping path for the OP and GDP data. 

 

 The mode of the time shifts between the series in the warping path is zero, indicating 

that there is no lead/lag relation between the series, and the mean of the time shifts is −2, 

indicating that OP precedes GDP. 
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Figure 4.67. Sample cross-correlation function for the OP and GDP data. 

 

 The maximum value of cross-correlation is observed at zero lag, indicating that there 

is no lead/lag relation between OP and GDP. 

 

 The results of the tests for the CEPCI – GDP data sets are as follows: 

 

Table 4.39. GC test results for the CEPCI and GDP data. 

Null Hypothesis (H0) Critical Value F-Statistics Result 

GDP does not Granger cause CEPCI 4.027 10.178 Reject H0 

CEPCI does not Granger cause GDP 4.027 20.530 Reject H0 

 

 The maximum number of ordered lags to be considered in the GC regression models 

is five, and the automated analysis based on BIC showed the optimum number of lags to be 

used in the GC tests as five, one and five, one for CEPCI – GDP and GDP – CEPCI pairs, 

respectively. 

 

 The mode of the time shifts between the series in the warping path is zero, indicating 

that there is no lead/lag relation between the series, and the mean of the time shifts is three, 

indicating that CEPCI lags behind GDP. 
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Figure 4.68. DTW distance matrix and the optimal warping path for the CEPCI and GDP 

data. 

 

 

Figure 4.69. Sample cross-correlation function for the CEPCI and GDP data. 

 

 The maximum value of cross-correlation is observed at zero lag, indicating that there 

is no lead/lag relation between CEPCI and GDP. 
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 Table 4.40 summarizes the results of the GC test, DTW, and cross-correlation 

analyses to the index pairs, stated by Table 4.34 through Table 4.39 and Figure 4.58 

through Figure 4.69. 

 

Table 4.40. Summary of the results for the economic indexes. 

Pair GC DTW Cross-correlation 

CEPCI & IP CEPCI → IP CEPCI ⇔ IP No precedence 

CEPCI & OP CEPCI → OP CEPCI ⇔ OP No precedence 

IP & OP IP ← OP IP ⇔ OP No precedence 

IP & GDP IP ← GDP IP ⇔ GDP No precedence 

OP & GDP OP ↔ GDP OP ⇔ GDP No precedence 

CEPCI & GDP CEPCI ↔ GDP CEPCI ⇔ GDP No precedence 

 

 The GC results, showing a causal relation directed from OP to IP and OP to GDP, 

are as expected. CEPCI is found to be causing IP, OP and GDP, however this should not be 

the case since these indicators do not actually depend on CEPCI, on the contrary CEPCI 

depends mainly on the other economic indicators. In these cases, the GC test could not 

reflect the true/expected relation. When the optimal warping paths of DTW are studied, 

regional changes are seen around the diagonal. Therefore, DTW incorrectly suggests that 

all these pairs precede one another at different times. In these applications, the cross-

correlation analysis implies that the series have the highest correlation as they are and no 

causal relation is discovered. 

 

4.6.  Predator-Prey Model 

 

 The predator-prey models are nonlinear differential equations of two interacting 

variables, a predator and a prey. They can also characterize parasite-host models, virus-

immune system models and so on. These predator-prey interactions are represented by 

Lotka-Volterra equations (Hoppensteadt, 2006). 

 

 In this example, the prey is rabbits and the predator is foxes. The models for the prey 

(rabbit) population and the predator (fox) population are described by Equation 4.18 and 

Equation 4.19 respectively. In Equation 4.18, the coefficient α is the growth rate of rabbits 
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when there is no interaction with foxes, β is the coefficient of the predator-prey 

interactions that result in a decrease in the rabbit population. The coefficient γ in Equation 

4.19 is the death or emigration rate of foxes in the absence of interactions with rabbits and 

δ is the coefficient of the growth of the fox population in case of interaction with rabbit 

population. 

 

 -  (4.18) 

 -  (4.19) 

 

 The equation parameters are , , , , and the initial values are , . 

The differential equations are solved with fourth order Runge-Kutta method and  is 

used as the step size (Wang, 1998). 

 

 Some additional parameters and properties of the data and tests are as follows: Each 

series is made of 101 data points. Z-score normalization is applied before DTW, cross-

correlation calculations, and the GC test. Series are non-stationary and not cointegrated, 

third order difference is taken for the GC test to make the series stationary with respect to 

ADF and KPSS tests. Significance level for the GC test is 0.95. 

 

 The results of the tests are as follows: 

 

Table 4.41. GC test results for the predator-prey data. 

Null Hypothesis (H0) Critical Value F-Statistics Result 

Predator does not Granger cause prey 2.319 5647.191 Reject H0 

Prey does not Granger cause predator 2.319 6821.313 Reject H0 

 

 The maximum number of ordered lags to be considered in the GC regression models 

is five, and the automated analysis based on BIC showed the optimum number of lags to be 

used in the GC tests as five, five and five, five for Prey – Predator and Predator – Prey 

pairs, respectively. 
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Figure 4.70. DTW distance matrix and the optimal warping path for the predator-prey data. 

 

 The mode of the time shifts between the series in the warping path is −14 and the 

mean of the time shifts is −16, indicating that the prey leads the predator (prey ⇒ predator). 

 

 

Figure 4.71. Sample cross-correlation function for the predator-prey data. 

 

 The maximum value of cross-correlation is observed at lag 10, indicating that the 

prey leads the predator (prey ⇒ predator). 
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 Table 4.42 summarizes the results of the GC test, DTW, and cross-correlation 

analyses, stated by Table 4.41, Figure 4.70 and Figure 4.71. 

 

Table 4.42. Summary of the results for the predator-prey data. 

Pair GC DTW Cross-correlation 

Prey & Predator Prey ↔ Predator Prey ⇒ Predator Prey ⇒ Predator 

 

 When the model equations, Equation 4.18 and Equation 4.19 are investigated, it can 

be expected that the prey population causes the predator population and vice versa. 

However, DTW warps the series in a way that suggests that only the prey population leads 

the predator population. Cross-correlation analysis indicates the same relation, as prey ⇒ 

predator. The GC test results on the other hand, correctly reflect the expected relation and 

imply that both the prey population causes the predator population (Prey → Predator) and 

the predator population causes the prey population (Prey ← Predator). 

 

4.7.  Biochemical System Models 

 

 The two models in this section describe glycolytic oscillations. They were used as 

test models by Lebiedz and Skanda in their study of dynamic biochemical systems (Skanda 

and Lebiedz, 2010). Equation 4.20 and Equation 4.21 represent the first and second models 

respectively. In the first model, positive feedback is observed with linear product sink. In 

the second model, the product sink is expressed with Michaelis-Menten kinetics. Series are 

expected to cause one another in both models. 

 

 

-

 (4.20) 

 

-

 (4.21) 
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 In these equations α is the substrate concentration and γ is the product concentration, 

ν is the flow parameter and it is taken as 0.22. The values of the additional parameters are 

,  , , and , for the first model and the initial 

concentrations are , . For the second model , , , 

and  are used, and the initial concentrations are taken as , . 

 

 Some additional parameters and properties of the data and tests are as follows: Each 

series is made of 201 data points. Z-score normalization is applied before DTW, cross-

correlation calculations, and the GC test. Series in the first and second models are non-

stationary and not cointegrated, fifth order difference is taken for the first model and fourth 

order difference is taken for the second model before the GC test to make the series 

stationary with respect to ADF and KPSS tests. Significance level for the GC test is 0.95. 

The solution of the differential equations is performed by using MATLAB. 

 

 The results of the tests for the first biochemical system data are as follows: 

 

Table 4.43. GC test results for the first biochemical system data. 

Null Hypothesis (H0) Critical Value F-Statistics Result 

Product does not Granger cause substrate 2.263 135.522 Reject H0 

Substrate does not Granger cause product 2.263 68.718 Reject H0 

 

 The maximum number of ordered lags to be considered in the GC regression models 

is five, and the automated analysis based on BIC showed the optimum number of lags to be 

used in the GC tests as five, five and five, five for Substrate – Product and Product – 

Substrate pairs, respectively. 

 

 The mode of the time shifts between the series in the warping path is −12 and the 

mean of the time shifts is −13, indicating that the substrate precedes the product (substrate 

⇒ product). 
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Figure 4.72. DTW distance matrix and the optimal warping path for the first biochemical 

system data. 

 

 

Figure 4.73. Sample cross-correlation function for the first biochemical system data. 

 

 The maximum value of cross-correlation is observed at lag 13, indicating that the 

substrate precedes the product (substrate ⇒ product). 
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 Table 4.44 summarizes the results of the GC test, DTW, and cross-correlation 

analyses, stated by Table 4.43, Figure 4.72 and Figure 4.73. 

 

Table 4.44. Summary of the results for the first biochemical system data. 

Pair GC DTW Cross-correlation 

Substrate & Product Substrate ↔ Product Substrate ⇒ Product Substrate ⇒Product 

 

 The results of the applications are similar to the results obtained for the predator – 

prey model. The DTW and cross-correlation analyses show that substrate population leads 

the product population for all times (Substrate ⇒ Product). However, the GC test results 

correctly suggest a feedback relation between substrate and product series (Substrate ↔ 

Product). 

 

 The results of the tests for the first biochemical system data are as follows: 

 

Table 4.45. GC test results for the second biochemical system data. 

Null Hypothesis (H0) Critical Value F-Statistics Result 

Product does not Granger cause substrate 2.420 1905.611 Reject H0 

Substrate does not Granger cause product 2.420 400.144 Reject H0 

 

 The maximum number of ordered lags to be considered in the GC regression models 

is five, and the automated analysis based on BIC showed the optimum number of lags to be 

used in the GC tests as five, four and five, four for Substrate – Product and Product – 

Substrate pairs, respectively. 

 

 The mode and the mean of the time shifts between the series in the warping path are 

−12, indicating that the substrate precedes the product (substrate ⇒ product). 

 

 The maximum value of cross-correlation is observed at lag 13, indicating that the 

substrate precedes the product (substrate ⇒ product). 

 



85 

 

 

Figure 4.74. DTW distance matrix and the optimal warping path for the second 

biochemical system data. 

 

 

Figure 4.75. Sample cross-correlation function for the second biochemical system data. 

 

 Table 4.46 summarizes the results of the GC test, DTW, and cross-correlation 

analyses, stated by Table 4.45, Figure 4.74 and Figure 4.75. 
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Table 4.46. Summary of the results for the second biochemical system data. 

Pair GC DTW Cross-correlation 

Substrate & Product Substrate ↔ Product Substrate ⇒ Product Substrate ⇒Product 

 

 The same results are acquired for the second model. The GC test provides the 

expected results correctly (Substrate ↔ Product) whereas the DTW and cross-correlation 

analyses show only a one-way relation from substrate to product (Substrate ⇒ Product). 

 

4.8.  Chemical Reaction Models 

 

 Two example problems of chemical reactions are examined in this section. The tests 

are applied to the concentration data of the chemical species that are either used or 

generated in these reactions. 

 

 In the analysis of the reactions, the expected result for the DTW is to find no lead/lag 

relation between the series. The concentration of the products depends on the concentration 

of the reactants through the balance equations and rate laws however for a lead/lag relation 

to exist there should be a time difference in the way the series affect each other, one of the 

series should be affected by the past values of the other series. For this reason, no 

precedence is expected to be found between the series after warping. 

 

4.8.1.  Irreversible Reaction in a Semibatch Reactor 

 

 The example problem is taken from Fogler (2008). 

 

 “The production of methyl bromide is an irreversible liquid-phase reaction that 

follows an elementary rate law. The reaction, 

 

 

 

is carried out isothermally in a semibatch reactor. An aqueous solution of methyl amine 

(B) at a concentration of 0.025 mol/dm
3
 is to be fed at a rate of 0.05 dm

3
/s to an aqueous 

solution of bromine cyanide (A) contained in a glass-lined reactor. The initial volume of 



87 

 

fluid in the vat is to be 5 dm
3
 with a bromine cyanide concentration of 0.05 mol/dm

3
. The 

specific reaction rate constant, k is 2.2 dm
3
/s.mol”. 

 

 The differential equations, Equation 4.22 through Equation 4.25 are constructed for 

each compound. 

 

 -  (4.22) 

 -  (4.23) 

  (4.24) 

  (4.25) 

 

 CA, CB, CC and CD are CNBr, CH3NH2, CH3Br and NCNH2 concentrations 

respectively, and ν0 is the volumetric flow rate. Additionally, the volume of the reactor, V 

is expressed as a function of time in Equation 4.26, with V0 as the initial volume. 

 

  (4.26) 

 

 Polymath is utilized for the solution of the equations. Some parameters and 

properties of the data and tests are as follows: Each series is made of 100 data points. Z-

score normalization is applied before DTW, cross-correlation calculations, and the GC test. 

Series are non-stationary and not cointegrated, second order difference is taken for the GC 

test to make the series stationary with respect to ADF and KPSS tests. Significance level 

for the GC test is 0.95. 

 

 The results of the tests for the series A and C are as follows: 

 

Table 4.47. GC test results for the series A and C of the first reaction example. 

Null Hypothesis (H0) Critical Value F-Statistics Result 

C does not Granger cause A 2.475 18.655 Reject H0 

A does not Granger cause C 2.475 27.610 Reject H0 

 



88 

 

 The maximum number of ordered lags to be considered in the GC regression models 

is five, and the automated analysis based on BIC showed the optimum number of lags to be 

used in the GC tests as five, four and five, four for A – C and C – A pairs, respectively. 

 

 

Figure 4.76. DTW distance matrix and the optimal warping path for the series A and C of 

the first reaction example. 

 

 

Figure 4.77. Sample cross-correlation function for the series A and C of the first reaction 

example. 
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 The mode of the time shifts between the series in the warping path is zero, indicating 

that there is no lead/lag relation between the series and the mean of the time shifts is −27, 

indicating that the series A leads the series C (A ⇒ C). 

 

 The maximum value of cross-correlation is observed at lag 37, indicating that the 

series A leads the series C (A ⇒ C). 

 

 The results of the tests for the series B and D are as follows: 

 

Table 4.48. GC test results for the series B and D of the first reaction example. 

Null Hypothesis (H0) Critical Value F-Statistics Result 

D does not Granger cause B 2.319 21.055 Reject H0 

B does not Granger cause D 2.475 27.620 Reject H0 

 

 The maximum number of ordered lags to be considered in the GC regression models 

is five, and the automated analysis based on BIC showed the optimum number of lags to be 

used in the GC tests as five, five and five, four for B – D and D – B pairs, respectively. 

 

 

Figure 4.78. DTW distance matrix and the optimal warping path for the series B and D of 

the first reaction example. 
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 The mode of the time shifts between the series in the warping path is zero, indicating 

that there is no lead/lag relation between the series and the mean of the time shifts is 15, 

indicating that the series B lags behind the series D (B ⇐ D). 

 

 

Figure 4.79. Sample cross-correlation function for the series B and D of the first reaction 

example. 

 

 The maximum value of cross-correlation is observed at lag −28, indicating that the 

series B lags behind the series D (B ⇐ D). 

 

 Table 4.49 summarizes the results of the GC test, DTW, and cross-correlation 

analyses, stated by Table 4.47 and Table 4.48, and Figure 4.76 through Figure 4.79. 

 

 DTW results mainly suggest a leading relation from the reactant A to the product C 

(A ⇒ C) and from the reactant B to the product D (B ⇐ D). These results are in accordance 

with the cross-correlation analysis results. On the other hand, the GC test shows a feedback 

relation between the compounds A and C and the compounds B and D, (A ↔ C and B ↔ 

D). 
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Table 4.49. Summary of the results for the first chemical reaction example. 

Pair GC DTW Cross-correlation 

A & C A ↔ C A ⇒ C A ⇒ C 

B & D B ↔ D B ⇐ D B ⇐ D 

 

4.8.2.  Reversible and Irreversible Reactions in a CSTR 

 

 In this example problem, the following reversible and irreversible reactions take 

place in a CSTR. 

 

 

 

 The reaction rate constant for the forward direction of the first reaction, k1 is two and 

for the reverse direction, k2 is 7/8. The rate constant of the second reaction producing C, k3 

is 1/8 (Akman, 2011). 

 

 The differential equations written for each compound are 

 

 -  (4.27) 

 -  (4.28) 

  (4.29) 

 

 The initial conditions are 

 

 

 

 The analytical solutions are as follows. 

 

  (4.30) 

  (4.31) 
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  (4.32) 

 

with - , and . 

 

 Some parameters and properties of the data and tests are as follows: Each series is 

made of 100 data points. Z-score normalization is applied before DTW, cross-correlation 

calculations, and the GC test. Series are non-stationary but cointegrated. 15th order 

difference is taken for A – B set and 18th order difference is taken for B – C and A – C sets 

for the GC test to make the series stationary with respect to ADF and KPSS tests. 

Significance level for the GC test is 0.95. 

 

 The results of the tests for the series A and B are as follows: 

 

Table 4.50. GC test results for the series A and B of the second reaction example. 

Null Hypothesis (H0) Critical Value F-Statistics Result 

B does not Granger cause A 3.963 6.596 Reject H0 

A does not Granger cause B 3.963 0.793 Do not reject H0 

 

 

Figure 4.80. DTW distance matrix and the optimal warping path for the series A and B of 

the second reaction example. 
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 The maximum number of ordered lags to be considered in the GC regression models 

is five, and the automated analysis based on BIC showed the optimum number of lags to be 

used in the GC tests as five, one and five, one for A – B and B – A pairs, respectively. 

 

 The mode of the time shifts between the series in the warping path is zero, indicating 

that there is no lead/lag relation between the series and the mean of the time shifts is nine, 

indicating that the series A lags behind the series B (A ⇐ B). 

 

 

Figure 4.81. Sample cross-correlation function for the series A and B of the second 

reaction example. 

 

 The maximum value of cross-correlation is observed at zero lag, indicating that there 

is no lead/lag relationship between the series A and the series B. 

 

 The results of the tests for the series B and C are as follows: 

 

Table 4.51. GC test results for the series B and C of the second reaction example. 

Null Hypothesis (H0) Critical Value F-Statistics Result 

C does not Granger cause B 2.499 57.940 Reject H0 

B does not Granger cause C 2.499 341.577 Reject H0 
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 The maximum number of ordered lags to be considered in the GC regression models 

is five, and the automated analysis based on BIC showed the optimum number of lags to be 

used in the GC tests as five, four and five, four for B – C and C – B pairs, respectively. 

 

 

Figure 4.82. DTW distance matrix and the optimal warping path for the series B and C of 

the second reaction example. 

 

 

Figure 4.83. Sample cross-correlation function for the series B and C of the second 

reaction example. 
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 The mode and the mean of the time shifts between the series in the warping path are 

zero, indicating that there is no lead/lag relation between the series B and the series C. 

 

 The maximum value of cross-correlation is observed at lag 20, indicating that the 

series B leads the series C (B ⇒ C). 

 

 The results of the tests for the series A and C are as follows: 

 

Table 4.52. GC test results for the series A and C of the second reaction example. 

Null Hypothesis (H0) Critical Value F-Statistics Result 

C does not Granger cause A 2.344 81.195 Reject H0 

A does not Granger cause C 2.344 334.692 Reject H0 

 

 The maximum number of ordered lags to be considered in the GC regression models 

is five, and the automated analysis based on BIC showed the optimum number of lags to be 

used in the GC tests as five, five and five, five for A – C and C – A pairs, respectively. 

 

 

Figure 4.84. DTW distance matrix and the optimal warping path for the series A and C of 

the second reaction example. 
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 The mode and the mean of the time shifts between the series in the warping path are 

zero, indicating that there is no lead/lag relation between the series A and the series C. 

 

 

Figure 4.85. Sample cross-correlation function for the series A and C of the second 

reaction example. 

 

 The maximum value of cross-correlation is observed at lag −20, indicating that the 

series A lags behind the series C (A ⇐ C). 

 

 Table 4.53 summarizes the results of the GC test, DTW, and cross-correlation 

analyses, stated by Table 4.50 through Table 4.52 and Figure 4.80 through Figure 4.85. 

 

Table 4.53. Summary of the results for the second chemical reaction example. 

Pair GC DTW Cross-correlation 

A & B A ← B A ⇐ B No precedence 

B & C B ↔ C No precedence B ⇒ C 

A & C A ↔ C No precedence A ⇐ C 

 

 DTW analysis suggests that there is no lead/lag relation between the compounds B 

and C, and A and C. In Figure 4.80 it is seen that, the compound B leads the compound A 
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for the most part of the series (A ⇐ B); on the other hand, for the beginning section no 

precedence is found between these series as well. Therefore, DTW results are close to what 

is expected. Cross-correlation analysis also detects no lead/lag relation for A and B, 

however it indicates a leading relation from B to C (B ⇒ C) and from C to A (A ⇐ C), and 

it is observed that at zero lag, the series are negatively correlated. The GC test incorrectly 

shows that the compound B causes A (A ← B). For the remaining pairs, the GC test shows 

feedback relations between the compounds (B ↔ C and A ↔ C). 

 

4.9.  Shifting the Series 

 

 Finally a change is employed on the DTW method by shifting the series before 

warping them. The reason for this variation in the series is because there is a boundary 

condition in DTW that requires the alignment of the first and the last elements of the series 

and this creates inflexibility in the warping around the beginning and end of the series. 

 

 In the following application, one of the series is shifted to the left or right with 

respect to the other depending on the sign of the lag to account for the limitation coming 

from the boundary condition. The first shifting value is chosen as the value giving the 

highest cross-correlation. By doing this, the overall time change (overall lag) between the 

series is aimed to be offset. Moreover, for a range of [–lag, +lag], the series are 

incrementally shifted and DTW is applied to the shifted series for all incremental lags. The 

results for each lag are presented on a figure. The investigated parameters are the 

cumulative distance between the series after warping (Dist), the length of the optimal 

warping path (K), the ratio of the distance to the path length (Dist/K) which normalizes the 

cumulative warping distance (warping cost) with the length of the warped path, the 

correlation between the unwarped series (CorOrg), the correlation between the series after 

warping (CorDTW) and the mode of the time shifts between the series in the warping path 

(TimeShift). The lags corresponding to the minimum value of Dist/K and the maximum 

value of CorDTW are chosen to shift the series by and perform DTW analysis. The tested 

series in this section are the first and the second examples of the nonlinear series models. 

 

4.9.1.  Two-Dimensional Nonlinear Time Series Model with Shifting 
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 The analysis of the model in Section 4.3.1 with DTW presented conflicting results 

with the GC test and cross-correlation analysis. The following analysis is carried out by 

shifting the series x1 and x2 to the left or right by the lag at which the sample cross-

correlation is at the maximum and by the amounts determined from the Figure 4.86. Figure 

4.86 shows various results related to the DTW analysis for different lag values. 

 

 

Figure 4.86. DTW results for shifted two-dimensional nonlinear time series. 

 

 The maximum value of cross-correlation was observed at lag 30. Therefore the series 

x2 is shifted to the left by 30 with respect to x1 and the results of DTW are as follows. 

 

 The mode of the time shifts between the series in the warping path is zero, indicating 

that there is no lead/lag relation between the series and the mean of the time shifts is −21, 

indicating that the series x1 leads the series x2 (x1 ⇒ x2). 

 

-100 0 100
200

250

300

350

D
is

t

-100 0 100
550

600

650

700

K

-100 0 100
0.35

0.4

0.45

0.5

D
is

t/
K

Lag

-100 0 100
-0.5

0

0.5

C
o
rO

rg

-100 0 100
0.7

0.72

0.74

0.76

C
o
rD

T
W

-100 0 100
-100

0

100

T
im

e
S

h
if

t

Lag



99 

 

 

Figure 4.87. DTW distance matrix and the optimal warping path for shifted two-

dimensional nonlinear time series (after x2 is shifted to the left by 30 with respect to x1). 

 

 By inspection of Figure 4.86 for the range of [−30, +30] lags, the minimum value of 

distance to path length ratio (Dist/K) is found at lag 16 with a value of 0.43. The series x2 

is shifted to the left by 16 with respect to x1 and the results of DTW are as follows. 

 

 

Figure 4.88. DTW distance matrix and the optimal warping path for the shifted two-

dimensional nonlinear time series (after x2 is shifted to the left by 16 with respect to x1). 
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 The mode of the time shifts between the series in the warping path is 30 and the 

mean of the time shifts is 44, indicating that the series x1 lags behind the series x2 (x1 ⇐ 

x2). This is the same result obtained in Figure 4.44 before the series are shifted. 

 

 For the range of [−30, +30] lags, the maximum value of correlation between the 

warped series (CorDTW) is obtained at lag 17 with a value of 0.75 as can be seen from 

Fig. 4.86. The series x2 is shifted to the left by 17 with respect to x1 and the results of DTW 

are as follows. 

 

 

Figure 4.89. DTW distance matrix and the optimal warping path for the shifted two-

dimensional nonlinear time series (after x2 is shifted to the left by 17 with respect to x1). 

 

 The mode of the time shifts between the series in the warping path is 31 and the 

mean of the time shifts is 45, indicating that the series x1 lags behind the series x2 (x1 ⇐ 

x2). Once more the same result is obtained. 

 

Table 4.54. Summary of the results for the shifted two-dimensional nonlinear time series. 

Shift by x1 – x2 

Max cross-correlation x1 ⇒ x2 

Min Dist/K x1 ⇐ x2 

Max CorDTW x1 ⇐ x2 
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 When the results from Table 4.54 are compared with the GC test, DTW and cross-

correlation results of the unshifted series from Table 4.26 and with the expected results 

from Figure 4.43, it is seen that shifting the series by a lag corresponding to the maximum 

value of cross-correlation produced correct results (x1 ⇒ x2) unlike the results of the 

unshifted series, or the shifts by the minimum of Dist/K or the maximum of CorDTW (x1 

⇐ x2). The expected result was also obtained by the GC test and cross-correlation analysis 

on the unshifted series. 

 

4.9.2.  Four-Dimensional Nonlinear Time Series Model with Shifting 

 

 The analysis of the model in Section 4.3.2 with DTW also showed conflicting results 

with what was expected. Consequently, the series are shifted by the lag of the maximum 

cross-correlation and by the lags determined from the Figure 4.90, Figure 4.94, Figure 4.96 

and Figure 4.98. 

 

 The results of the tests for the pair x1 – x2 are as follows. 

 

 

Figure 4.90. DTW results for shifted four-dimensional nonlinear time series for the x1 – x2 

pair. 
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 The maximum value of cross-correlation was observed at lag −1. Therefore the series 

x1 is shifted to the left by one with respect to x2 and the results of DTW are as follows. 

 

 

Figure 4.91. DTW distance matrix and the optimal warping path for the x1 – x2 pair of the 

shifted four-dimensional nonlinear time series (after x1 is shifted to the left by one with 

respect to x2). 

 

 The mode and the mean of the time shifts between the series in the warping path are 

zero, indicating that there is no lead/lag relation between the series x1 and the series x2. 

 

 By inspection of Figure 4.90, the minimum value of distance to path length ratio 

(Dist/K) is found at lag six with a value of 0.22. The series x2 is shifted to the left by six 

with respect to x1 and the results of DTW are as follows. 

 

 The mode of the time shifts between the series in the warping path is seven and the 

mean of the time shifts is six, indicating that the series x1 lags behind the series x2 (x1 ⇐ 

x2). This is the same result as the unshifted series from Figure 4.47 and Table 4.26. 
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Figure 4.92. DTW distance matrix and the optimal warping path for the x1 – x2 pair of the 

shifted four-dimensional nonlinear time series (after x2 is shifted to the left by six with 

respect to x1). 

 

 The maximum value of correlation between the warped series (CorDTW) is obtained 

at lag one with a value of 0.89. The series x2 is shifted to the left by one with respect to x1 

and the results of DTW are as follows. 

 

 

Figure 4.93. DTW distance matrix and the optimal warping path for the x1 – x2 pair of the 

shifted four-dimensional nonlinear time series (after x2 is shifted to the left by one with 

respect to x1). 
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 The mode and the mean of the time shifts between the series in the warping path are 

two, indicating that the series x1 lags behind the series x2 (x1 ⇐ x2). The result of the 

unshifted series is still preserved. 

 

 The results of the tests for the pair x1 – x3 are as follows. 

 

 

Figure 4.94. DTW results for shifted four-dimensional nonlinear time series for the x1 – x3 

pair. 

 

 The maximum value of cross-correlation was observed at zero lag and by inspection 

of Figure 4.94, the minimum value of distance to path length ratio (Dist/K) is found at lag 

zero with a value of 0.24. Therefore the series are not shifted. 

 

 The maximum value of correlation between the warped series (CorDTW) is obtained 

at lag one with a value of 0.88. The series x3 is shifted to the left by one with respect to x1 

and the results of DTW are as follows. 

 

 The mode and the mean of the time shifts between the series in the warping path are 

one, indicating that the series x1 lags behind the series x3 (x1 ⇐ x3). 
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Figure 4.95. DTW distance matrix and the optimal warping path for the x1 – x3 pair of the 

shifted four-dimensional nonlinear time series (after x3 is shifted to the left by one with 

respect to x1). 

 

 The results of the tests for the pair x2 – x3 are as follows. 

 

 

Figure 4.96. DTW results for shifted four-dimensional nonlinear time series for the x2 – x3 

pair. 
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 The maximum value of cross-correlation was observed at lag one. The series x3 is 

shifted to the left by one with respect to x2 and the results of DTW are as follows. 

 

 

Figure 4.97. DTW distance matrix and the optimal warping path for the x2 – x3 pair of the 

shifted four-dimensional nonlinear time series (after x3 is shifted to the left by one with 

respect to x2). 

 

 The mode and the mean of the time shifts between the series in the warping path are 

zero, indicating that there is no lead/lag relation between the series x2 and the series x3. 

 

 By inspection of Figure 4.96, the minimum value of distance to path length ratio is 

(Dist/K) found at zero lag with a value of 0.16 and the maximum value of correlation 

between the warped series (CorDTW) is also obtained at zero lag with a value of 0.92. 

Therefore the series are not shifted. 

 

 The results of the tests for the pair x2 – x4 are as follows. 

 

 The maximum value of cross-correlation was at lag −1. Therefore the series x2 is 

shifted to the left by one with respect to x4 and the results of DTW are as follows. 

 

D
ista

n
ce

0

166

332

498

664

830

996

1163

-2 0 2

50

100

150

200

250

300

350

400

450

x 2
 s

h
ift

e
d

 

100 200 300 400

-2
0
2

x
3
 shifted

 



107 

 

 

Figure 4.98. DTW results for shifted four-dimensional nonlinear time series for the x2 – x4 

pair. 

 

 

Figure 4.99. DTW distance matrix and the optimal warping path for the x2 – x4 pair of the 

shifted four-dimensional nonlinear time series (after x2 is shifted to the left by one with 

respect to x4). 

 

-100 -50 0 50 100
200

300

400

D
is

t

-100 -50 0 50 100
400

600

800

K

-100 -50 0 50 100
0.35

0.4

0.45

0.5

D
is

t/
K

Lag

-100 -50 0 50 100
-1

0

1

C
o
rO

rg

-100 -50 0 50 100
0.7

0.75

0.8

C
o
rD

T
W

-100 -50 0 50 100
-100

0

100

T
im

e
S

h
if
t

Lag

D
ista

n
ce

0

294

589

883

1177

1471

1766

2060

-2 0 2

50

100

150

200

250

300

350

400

450

x 2
 s

h
ift

e
d

 

100 200 300 400
-2
0
2

x
4
 shifted

 



108 

 

 The mode of the time shifts between the series in the warping path is zero, indicating 

that there is no lead/lag relation between the series and the mean of the time shifts is −7, 

indicating that the series x2 leads the series x4 (x2 ⇒ x4). 

 

 By inspection of Figure 4.98, the minimum value of distance to path length ratio 

(Dist/K) is found at lag −18 with a value of 0.39. The series x2 is shifted to the left by 18 

with respect to x4 and the results of DTW are as follows. 

 

 

Figure 4.100. DTW distance matrix and the optimal warping path for the x2 – x4 pair of the 

shifted four-dimensional nonlinear time series (after x2 is shifted to the left by 18 with 

respect to x4). 

 

 The mode of the time shifts between the series in the warping path is −17 and the 

mean of the time shifts is −20, indicating that the series x2 leads the series x4 (x2 ⇒ x4). 

 

 For the range of [−30, +30] lags, the maximum value of correlation between the 

warped series (CorDTW) is again obtained at lag −18 with a value of 0.78. 

 

 When the results from Table 4.55 are compared with the GC test, DTW, cross-

correlation results of the unshifted series from Table 4.31 and with the expected results 

from Figure 4.46, it is seen that for x1 – x2 pair, the expected result of a feedback (x1 ↔ x2) 
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is recovered with a shift corresponding to the maximum value of cross-correlation. 

Because the series affect each other with the same amount of time lag, DTW finds that 

none of the series leads the other (no precedence). The same results were obtained by the 

GC test and cross-correlation analysis on the unshifted series. For x1 – x3 pair, the only 

different result is found by a shift of the value corresponding to the maximum CorDTW (x1 

⇐ x3); however it is the opposite of the expected result of x1 preceding x3 (x1 ⇒ x3). For 

the case of the series x2 – x3, the expected result was obtained by the unshifted series and 

this also corresponds to the shifts by the minimum of Dist/K and the maximum of 

CorDTW since they occur at lag zero. Lastly, none of the shifted series provides the 

correct result that x4 preceding x2 (x2 ⇐ x4). 

 

Table 4.55. Summary of the results for the shifted four-dimensional nonlinear time series. 

Shift by x1 – x2 x1 – x3 x2 – x3 x2 – x4 

Max cross-correlation No precedence No precedence No precedence x2 ⇒ x4 

Min Dist/K x1 ⇐ x2 No precedence x2 ⇒ x3 x2 ⇒ x4 

Max CorDTW x1 ⇐ x2 x1 ⇐ x3 x2 ⇒ x3 x2 ⇒ x4 

 

 Overall, an appropriate lag to shift the series by could not be determined. Different 

results are obtained for different series, therefore, they cannot be generalized. In some 

cases the results of the unshifted series are preserved, in the others the opposite results are 

obtained and at times these results agreed with what was expected and at other times they 

did not. However, the number of correct results is higher when the lag value is chosen to 

be the lag value giving the highest cross-correlation. 
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5.  CONCLUSIONS AND RECOMMENDATIONS 

 

 

 In this thesis work, the aim was to investigate the applicability of the Dynamic Time 

Warping (DTW) method to explore time-series causality. For this purpose, DTW was first 

applied on data pairs from linear and nonlinear test sets. The sets were of different 

dimensions, with constant and varying relations between the variables. In addition, data 

sets from a hair-dryer device, chemical and biochemical reactions, and chemical 

engineering plant cost index and macroeconomic indicators were used in the applications. 

 

 The DTW results were obtained by investigating the optimal warping paths and time-

shift values. The Granger Causality (GC) and cross-correlation methods were also applied 

on the data sets and the results were presented for a comparison with the DTW method. All 

methods were implemented in MATLAB. 

 

 When the synthetic test sets were examined, it was seen that for the first two data sets 

where the relationship between the variables changes with time, the DTW method 

provided the correct results. This conclusion was drawn from the graphical examination of 

the overall warping path over the cumulative distance matrix. These two examples 

successfully demonstrated the advantage of DTW in the identification of the time-varying 

lead/lag relations between two variables. However, these examples only consisted of 

bivariate models. The performance of the method was then tested on mainly multivariable, 

linear and nonlinear models with interacting variables, and constant lead/lag relations. In 

these examples, there existed a number of spurious relations due to the common (hidden) 

leading variables and the DTW method could not handle additional (exogenous) variables. 

 

 Moreover, in the case of feedback relations, existing in several models, DTW did not 

work properly. DTW was expected to show the direction of temporal precedence correctly, 

and, for the variables depending on one another through the same value of temporal 

lagging, DTW should have found no precedence. Majority of the feedback relations were 

present in nonlinear models and the performance of the method worsened in the 

applications on the data sets with nonlinear relations. 
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 Another group of data sets was composed of chemical and biological processes and 

economic indicators. Out of these sets, the application on the input-output data of the hair-

dryer process provided the best results: The input was found to be preceding the output as 

expected. The relations between the economic variables can be changing with time and 

DTW has found as such. However, the expected relation for the tested variables was 

mainly one-directional. The reason for the incorrect results may be the existence of 

additional common factors affecting these series, and isolating the tested pairs from these 

causes was not possible. Furthermore, the unsuccessful applications on the reactions data 

may be due to the nonlinearity of the processes. As a variation, the series were shifted, 

before warping, by values corresponding to several parameters related with the DTW. 

However, no significant improvement was gained by the application. 

 

 In these applications, the GC results were mainly correct apart from certain nonlinear 

problems. Moreover, spurious relations were mistaken for real causal relations as it has 

happened in the case of DTW. The cross-correlation results were parallel with the DTW 

results, except for the problems where the lead/lag relation changed with time. In light of 

all the applications, it was seen that DTW does not provide the same results as the GC test. 

 

 It is concluded that, DTW cannot be used for causality detection with the form used 

in this work. Nevertheless, the use of DTW in the discovery of temporal precedence can 

still be investigated. 

 

 One possible future approach can be in the way of decreasing the effect of noise. In 

this regard, the study of Sornette and Zhou (2005) can be taken as an example. However, 

their method is conceptually different from DTW. 

 

 Furthermore, there is a 3D DTW application in Wöllmer et al., (2009), and this can 

be tested with multidimensional models to see if there is any improvement in the case of 

common factors. On the other hand, the pairwise projections of the 3D warping path 

correspond to the 2D results, therefore the 3D view may not provide any better results. 
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 The aim of the work was not the GC application but DTW, therefore a simple 

bivariate GC test was used in this thesis. However, a partial nonlinear GC test can provide 

more accurate results. 

 

 The GC test is a parametric test, on the other hand the DTW is a non-parametric 

approach. It may be possible to parameterize the warping path (e.g., using smooth 

quadratic polynomial parameterization). Although such a parametric warping path cannot 

yield the global shortest path, suboptimal parametric warping may give causality results 

that are closer to those of the GC test. 
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APPENDIX A:  MATLAB PROGRAM CODES 

 

 

A.1.  DTW Main Code 

 

echo off; clc; clear all; close all; format short g; warning off; 

  
% --- Applications Ch4 
% --- First Example with Interval-Dependent Varying Lags 
t = xlsread('seriesarticle','long-gc','A2:A501'); 
r = xlsread('seriesarticle','long-gc','B2:B501'); 

  
st = zscore(t); 
sr = zscore(r); 
tf = st'; 
rf = sr'; 

  
% @ Lag=0 (original) 
pflag = 1; Icon = 0; 
[Dist,D,k,w] = Dtwfun(tf,rf,pflag,Icon); 
% [Dist,D,k,w] = Dtwfun(tf,rf,pflag,Icon,CU,CL); 

 

A.2.  DTW Function Code 

 

function [Dist,D,k,w]=Dtwfun(t,r,pflag,Icon,CU,CL) 
[rows,N] = size(t); 
[rows,M] = size(r); 

  
switch Icon 
    case 0, 
        CL = N; 
        CU = M; 
    case 1, 
        %if the lengths of the series are not equal, window constraint 
        %should be greater than a certain value. 
        a = abs(N-M)+1; 
        if (CU<(a)) 
            disp(['Window constraint should be greater than or equal to: 

',  num2str(a)]); 
        end 
        CL = CU; 
    case 2, 
        %if the lengths of the series are not equal, upper and lower 

constraints 
        %should be greater than a certain value. 
        l = N-M+1; 
        u = M-N+1; 
        if (CL<(l)) 
            disp(['Lower window constraint should be greater than or 

equal to: ',  num2str(l)]) 
        elseif (CU<(u)) 
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            disp(['Upper window constraint should be greater than or 

equal to: ',  num2str(u)]) 
        end 
end 

  
d = NaN(N,M); 
D = NaN(size(d)); 
D = triu(D,CU)+tril(D,-CL); 
[I J] = find(D==0); 

  
for k = 1:length(I) 
    d(I(k),J(k))=(t(I(k))-r(J(k)))^2;       % Squared Euclidean Distance 
end 

  
D(1,1) = d(1,1); 

  
for k = 2:min(N,CL) 
    D(k,1) = d(k,1)+D(k-1,1); 
end 
for k = 2:min(M,CU) 
    D(1,k) = d(1,k)+D(1,k-1); 
end 
for n = 2:N 
    for m = 2:M 
        if((m-n) <= CU && (n-m) <= CL) 
%        D(n,m) = d(n,m)+min([D(n-1,m),D(n-1,m-1),D(n,m-1)]); 
         D(n,m) = d(n,m)+min(D(n-1,m),min(D(n-1,m-1),D(n,m-1))); % 

Another 10-fold Speed-up can be achived if you use a double-MIN 

construction for the Distance matrix 
        end 
    end 
end 

  
Dist = D(N,M); 
n = N; m = M; k = 1; w = []; w(1,:) = [N,M]; 
while ((n+m) ~= 2) 
   if (n-1) == 0 
      m = m-1; 
   elseif (m-1) == 0 
      n = n-1; 
   else  
      [values,number] = min([D(n-1,m),D(n,m-1),D(n-1,m-1)]); 
      switch number 
      case 1 
        n = n-1; 
      case 2 
        m = m-1; 
      case 3 
        n = n-1; 
        m = m-1; 
      end 
  end 
  k = k+1; 
  w = cat(1,w,[n,m]); 
end 

  
w = sort(w,'ascend'); 

  
TimeShift = mode(w(:,1)-w(:,2)) 
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TimeShift2 = mean(w(:,1)-w(:,2)) 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
if pflag 

   

     
    % --- Warped signals 
    figure('Name','Original and warped signals'); 

     
    subplot(2,1,1); 
    plot(t,'r-'); grid on;  hold on;  
    hold on; 
    plot(r,'b:'); grid on;  hold on; 
    hold off; 
    grid; 
    legend('signal 1','signal 2'); 
    title('Original signals'); 
    xlabel('Samples'); 
    ylabel('Amplitude'); 
    xlim([0 max(M,N)]); 

     
    subplot(2,1,2); 
    plot(t(w(:,1)),'r-'); grid on; 
    hold on; 
    plot(r(w(:,2)),'b:'); grid on; 
    hold off; 
    grid; 
    legend('signal 1','signal 2'); 
    title('Warped signals'); 
    xlabel('Samples'); 
    ylabel('Amplitude'); 
    xlim([0 k]); 

     

     
    % --- Accumulated distance matrix and optimal path 
    figure('Name','Accumulated distance matrix and optimal path'); 

     
    main1 = subplot('position',[0.20 0.20 0.65 0.75]); 
    imagesc(D); 
    colormap(1-gray) 
    hold on; 
    x = w(:,1); y = w(:,2); 
    ind = find(x==1); x(ind) = 1+0.2; 
    ind = find(x==N); x(ind) = N-0.2; 
    ind = find(y==1); y(ind) = 1+0.2; 
    ind = find(y==M); y(ind) = M-0.2; 
    plot(y,x,'-r','LineWidth',3); 
    line('XData',[w(1,1) w(end,1)],'YData',[w(1,1) 

w(end,1)],'Color','g','LineWidth',2)  
    hold off; 
    axis([1 M 1 N]); 
    set(main1, 'FontSize',8, 'XTickLabel','', 'YTickLabel',''); 

  
    colorb1 = subplot('position',[0.87 0.20 0.04 0.75]); 
    nticks = 8; 
    ticks = floor(1:(size(1-gray,1)-1)/(nticks-1):size(1-gray,1)); 
    mx = max(max(D)); 
    mn = min(min(D)); 
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    ticklabels = floor(mn:(mx-mn)/(nticks-1):mx); 
    colorbar(colorb1); 
    set(colorb1, 'FontSize',9, 'YTick',ticks, 'YTickLabel',ticklabels); 
    set(get(colorb1,'YLabel'), 'String','Distance', 'Rotation',-90, 

'FontSize',9, 'VerticalAlignment','bottom'); 

     
    left1 = subplot('position',[0.08 0.20 0.10 0.75]); 
    plot(t,N:-1:1,'r-', 'LineWidth',2); 
    set(left1, 'YTick',mod(N,10):10:N, 'YTickLabel',10*floor(N/10):-10:0) 
    axis([min(t) 1.1*max(t) 1 N]);  
    set(left1, 'FontSize',9); 
    set(get(left1,'YLabel'), 'String','Samples', 'FontSize',9, 

'Rotation',90, 'VerticalAlignment','cap'); 
    set(get(left1,'XLabel'), 'String',' ', 'FontSize',6, 

'VerticalAlignment','cap'); 

     
    bottom1 = subplot('position',[0.20 0.08 0.65 0.10]); 
    plot(r,'b:', 'LineWidth',2); 
    axis([1 M min(r) 1.1*max(r)]); 
    set(bottom1, 'FontSize',9, 'YAxisLocation','right'); 
    set(get(bottom1,'XLabel'), 'String','Samples', 'FontSize',9, 

'VerticalAlignment','middle'); 
    set(get(bottom1,'YLabel'), 'String',' ', 'Rotation',-90, 

'FontSize',6, 'VerticalAlignment','bottom'); 

     

     
    % --- Alignment with lines - series constant 
    figure 
    ht = ones(N,1); 
    hr = zeros(M,1); 
    plot(ht,'r','LineWidth',3); grid on; 
    hold on; 
    plot(hr,'b--','LineWidth',3); grid on; 
    xlim([0 max(M,N)]); 
    ylim([-0.1 1.1]); 
    for kk = 1:k 
        line('XData',[w(kk,2) w(kk,1)],'YData',[0 

1],'Color','k','LineWidth',1) 
    end 
    legend('signal 1','signal 2'); 
    xlabel('Samples'); 
    set(gca, 'YTickLabel',''); 

     

  
    % --- Alignment with lines-moving series 
    DeltaH = 1.8; 
    t2 = t+DeltaH; 
    figure 
    plot(t2,'r-','LineWidth',2); grid on; hold on;   
    plot(r,'b--','LineWidth',2); 
    xlim([0 max(M,N)]); 
    for kk = 1:k 
        line('XData',[(w(kk,1)) (w(kk,2))],'YData',[t2(w(kk,1)) 

r(w(kk,2))],'Color','k','LineWidth',1) 
    end 
    legend('signal 1','signal 2'); 
    xlabel('Samples'); 
    set(gca, 'YTickLabel',''); 
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    % --- Alignment with lines 
    figure 
    plot(t,'ro-'); grid on; hold on; plot(r,'b^-'); 
    for kk = 1:k 
        line('XData',[(w(kk,1)) (w(kk,2))],'YData',[t(w(kk,1)) 

r(w(kk,2))],'Color','k','LineWidth',1) 
    end 
    legend('signal 1','signal 2'); 
    xlabel('Samples'); 
    ylabel('Amplitude'); 

     

     
    % --- Slopes 
    for kk = 1:k 
        slopew(kk) = 1/(w(kk,1)-w(kk,2)); 
    end 
    figure('Name','Slope'); 
    plot(slopew,'ro-'); grid on; 
    xlabel('Samples'); 
    ylabel('1/Slope'); 

  

     
    % --- 3D plot of accumulated distance matrix and optimal path 
    figure('Name','Optimal path on surface plot'); 
    surfc(D) 
    colormap(1-gray) 
    axis([0 M 0 N 0 max(max(D))]) 
    hold on; 
    for m = 1:k 
        P(m,:) = [w(m,2) w(m,1) D(w(m,1),w(m,2))]; 
    end 
    plot3(P(:,1),P(:,2),P(:,3),'r','LineWidth',5); grid on; 
    xlabel('Signal 2'); 
    ylabel('Signal 1'); 
    zlabel('Distances'); 

     
    % --- Time Shift Plot       
    figure('Name','Time Shift Plot'); 
    plot((w(:,1)-w(:,2)),'r-','LineWidth',3); 
    ylabel('w - w'); 
    xlabel('Samples'); 
    xlim([0 k]); 

  
end 

  
% D 
% w; 
Dist 
k 

  
if M == N 
CORORG = corr(t',r') 
end 
CORDTW = corr(t(w(:,1))',r(w(:,2))') 

  
end 
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A.3.  GC Test Main Code 

 

echo off; clc; clear all; close all; format short g; warning off; 

  

%--- NOTE: The code GrangerCausalityUA implements the equations in 

%          SAS_Bivariate Granger Causality Test Example.pdf 

% (UA - 12 May 2011) 

  

  

% Eviews Data: 1st column: CS (consumption) & 2nd column: GDP 

load Eviews_Chow_var.txt 

DATA = Eviews_Chow_var; 

  

whos DATA 

figure 

plot(DATA) 

legend('signal 1','signal 2'); 

xlabel('Samples'); 

  

t = DATA(:,1); 

r = DATA(:,2); 

t = zscore(t); 

r = zscore(r); 

DATA = [t r]; 

  

  

% Pretest for the Order of Integration 

% from Cointegration and Pairs Trading with Econometrics Toolbox by 

Stuart Kozola  

% Augmented Dickey-Fuller test for a unit root &  

% Kwiatkowski, Phillips, Schmidt and Shin (KPSS) test for stationarity 

  

% Levels data - t: 

fprintf('=== Test t for a unit root ===\n\n') 

[h1,pVal1] = adftest(t,'model','ARD') % Left-tail probability 

  

disp(' ') 

disp('Null Hypothesis (H0): "Unit root exists"') 

if h1 == 1 

   disp('h = 1 : Reject the Null Hypothesis') 

   disp('Series is stationary') 

else 

   disp('h = 0 : Do not Reject the Null Hypothesis') 

   disp('Series contains a unit root') 

end 

fprintf('p-Value = %12.6f \n',pVal1); 

disp(' ') 

  

fprintf('\n=== Test t for stationarity ===\n\n') 

[h0,pVal0] = kpsstest(t,'trend',false) % Right-tail probability 

  

disp(' ') 

disp('Null Hypothesis (H0): "Trend stationary"') 

if h0 == 1 

   disp('h = 1 : Reject the Null Hypothesis') 

   disp('Series contains a unit root') 

else 

   disp('h = 0 : Do not Reject the Null Hypothesis') 
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   disp('Series is stationary') 

end 

fprintf('p-Value = %12.6f \n',pVal0); 

disp(' ') 

  

  

% Levels data - r: 

fprintf('=== Test r for a unit root ===\n\n') 

[h1,pVal1] = adftest(r,'model','ARD') % Left-tail probability 

  

disp(' ') 

disp('Null Hypothesis (H0): "Unit root exists"') 

if h1 == 1 

   disp('h = 1 : Reject the Null Hypothesis') 

   disp('Series is stationary') 

else 

   disp('h = 0 : Do not Reject the Null Hypothesis') 

   disp('Series contains a unit root') 

end 

fprintf('p-Value = %12.6f \n',pVal1); 

disp(' ') 

  

fprintf('\n=== Test r for stationarity ===\n\n') 

[h0,pVal0] = kpsstest(r,'trend',false) % Right-tail probability 

  

disp(' ') 

disp('Null Hypothesis (H0): "Trend stationary"') 

if h0 == 1 

   disp('h = 1 : Reject the Null Hypothesis') 

   disp('Series contains a unit root') 

else 

   disp('h = 0 : Do not Reject the Null Hypothesis') 

   disp('Series is stationary') 

end 

fprintf('p-Value = %12.6f \n',pVal0); 

disp(' ') 

  

%--- Engle-Granger Cointegration Test 

% (Requires Matlab's Version 2.0 (R2011a) Econometrics Toolbox) 

% 

%    Engle-Granger tests assess the null hypothesis of no 

% cointegration among the time series in Y. The test 

% regresses Y(:,1) on Y(:,2:end), then tests the residuals 

% for a unit root. 

%    h: Vector of Boolean decisions for the tests, with length 

% equal to the number of tests. Values of h equal to 1 (true) 

% indicate rejection of the null in favor of the alternative of 

% cointegration. Values of h equal to 0 (false) indicate a 

% failure to reject the null. 

%   NULL Hypothesis, H0: h=0 No Cointegration 

%                        h=1 Cointegration 

  

%[h,pValue,stat,cValue,reg1,reg2] = egcitest(DATA) 

figure 

plot(DATA) 

[h_EGCoint,pValue_EGCoint] = egcitest(DATA); 

  

disp(' ') 

disp('Null Hypothesis (H0): "No Cointegration"') 

if h_EGCoint == 1 
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   disp('h = 1 : Reject the Null Hypothesis') 

   disp('Cointegration Among the Time Series') 

else 

   disp('h = 0 : Do not Reject the Null Hypothesis') 

   disp('No Cointegration Among the Time Series') 

end 

fprintf('p-Value = %12.6f \n',pValue_EGCoint); 

disp(' ') 

  

% figure 

% plot(diff(DATA,1)) 

% [h_EGCoint,pValue_EGCoint] = egcitest(diff(DATA,1)); 

% h_EGCoint,pValue_EGCoint 

  

  

%-- Perform Bivariate Granger Causality Test 

%   USAGE: Granger_Cause(X, Y, alpha, Max_Lag) 

%   Below: first X=f(Y), next Y=f(X) 

%   where X is the 1st series (1st column of data: CS) and 

%         Y is the 2nd series (2nd column of data: GDP) 

  

  

Alpha = 0.95 % 95% confidence 

Max_Lag = 5 

[F_Stat,CrVal] = GrangerCausalityUA(DATA(:,1),DATA(:,2),Alpha,Max_Lag); 

[F_Stat,CrVal] = GrangerCausalityUA(DATA(:,2),DATA(:,1),Alpha,Max_Lag); 

  

% For this Eviews example: CS Granger Causes GDP 

% i.e., Granger Casuality runs one way from CS to GDP 

%       and not the other way; i.e., GDP=f(CS) is OK 

%       but CS=f(GDP) is not OK. (UA - 12 May 2011) 

% 

%--- Eviews' Interpretation 

% For this example, we cannot reject the hypothesis that GDP does 

% not Granger cause CS but we do reject the hypothesis that CS 

% does not Granger cause GDP. Therefore it appears that Granger 

% causality runs one-way from CS to GDP and not the other way. 

 

A.4.  GC Test Function Code 

 

function [F,c_v] = GrangerCausalityUA(x,y,alpha,max_lag) 

% [F,c_v] = granger_cause(x,y,alpha,max_lag) 

% Granger Causality test 

% Does Y Granger Cause X? 

% 

% User-Specified Inputs: 

%   x -- A column vector of data 

%   y -- A column vector of data 

%   alpha -- the significance level specified by the user 

%   max_lag -- the maximum number of lags to be considered 

% User-requested Output: 

%   F -- The value of the F-statistic 

%   c_v -- The critical value from the F-distribution 

% 

% The lag length selection is chosen using the Bayesian information 

% Criterion  

% Note that if F > c_v we reject the null hypothesis that y does not 
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% Granger Cause x 

  

% Chandler Lutz, UCR 2009 

% Questions/Comments: chandler.lutz@email.ucr.edu 

% $Revision: 1.0.0 $  $Date: 09/30/2009 $ 

% $Revision: 1.0.1 $  $Date: 10/20/2009 $ 

% $Revision: 1.0.2 $  $Date: 03/18/2009 $ 

  

% References: 

% [1] Granger, C.W.J., 1969. "Investigating causal relations by 

econometric 

%     models and cross-spectral methods". Econometrica 37 (3), 424–438. 

  

% Acknowledgements: 

%   I would like to thank Mads Dyrholm for his helpful comments and 

%   suggestions 

  

% GRANGER_CAUSE is a Granger Causality Test. The null hypothesis is that 

% the y does not Granger Cause x. A user specifies the two series, x and 

y, 

% along with the significance level and the maximum number of lags to be 

% considered. The function chooses the optimal lag length for x and y 

based 

% on the Bayesian Information Criterion. The function produces the 

% F-statistic for the Granger Causality Test along with the corresponding 

% critical value. We reject the null hypothesis that y does not Granger 

% Cause x if the F-statistic is greater than the critical value. Type 

help 

% granger_cause to learn more. 

  

%Make sure x & y are the same length 

if (length(x) ~= length(y)) 

    error('x and y must be the same length'); 

end 

  

%Make sure x is a column vector 

[a,b] = size(x); 

if (b>a) 

    %x is a row vector -- fix this 

    x = x'; 

end 

  

%Make sure y is a column vector 

[a,b] = size(y); 

if (b>a) 

    %y is a row vector -- fix this 

    y = y'; 

end 

  

%Make sure max_lag is >= 1 

if max_lag < 1 

    error('max_lag must be greater than or equal to one'); 

end 

  

  

T = length(x); 

  

%First find the proper model specification using the Bayesian Information 

%Criterion for the number of lags of x 

BIC = zeros(max_lag,1); 



122 

 

  

%Specify a matrix for the restricted RSS 

RSS_R = zeros(max_lag,1); 

  

i = 1; 

while i <= max_lag 

    ystar = x(i+1:T,:); 

    xstar = [ones(T-i,1) zeros(T-i,i)]; 

    %Populate the xstar matrix with the corresponding vectors of lags 

    j = 1; 

    while j <= i 

        xstar(:,j+1) = x(i+1-j:T-j); 

        j = j+1; 

    end 

    %Apply the regress function. b = betahat, bint corresponds to the 95% 

    %confidence intervals for the regression coefficients and r = 

residuals 

    [b,bint,r] = regress(ystar,xstar); 

     

    %Find the bayesian information criterion 

    BIC(i,:) = T*log(r'*r/T) + (i+1)*log(T); 

     

    %Put the restricted residual sum of squares in the RSS_R vector 

    RSS_R(i,:) = r'*r; 

     

    i = i+1; 

end 

[dummy,x_lag] = min(BIC); 

  

  

%First find the proper model specification using the Bayesian Information 

%Criterion for the number of lags of y 

BIC = zeros(max_lag,1); 

  

%Specify a matrix for the unrestricted RSS 

RSS_U = zeros(max_lag,1); 

  

i = 1; 

while i <= max_lag 

    ystar = x(i+x_lag+1:T,:); 

    xstar = [ones(T-(i+x_lag),1) zeros(T-(i+x_lag),x_lag+i)]; 

    %Populate the xstar matrix with the corresponding vectors of lags of 

x 

    j = 1; 

    while j <= x_lag 

        xstar(:,j+1) = x(i+x_lag+1-j:T-j,:); 

        j = j+1; 

    end 

    %Populate the xstar matrix with the corresponding vectors of lags of 

y 

    j = 1; 

    while j <= i 

        xstar(:,x_lag+j+1) = y(i+x_lag+1-j:T-j,:); 

        j = j+1; 

    end 

    %Apply the regress function. b = betahat, bint corresponds to the 95% 

    %confidence intervals for the regression coefficients and r = 

residuals 

    [b,bint,r] = regress(ystar,xstar); 
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    %Find the bayesian information criterion 

    BIC(i,:) = T*log(r'*r/T) + (i+1)*log(T); 

     

    RSS_U(i,:) = r'*r; 

     

    i = i+1; 

end 

[dummy,y_lag] = min(BIC); 

  

%The numerator of the F-statistic 

F_num = ((RSS_R(x_lag,:) - RSS_U(y_lag,:))/y_lag); 

  

%The denominator of the F-statistic 

F_den = RSS_U(y_lag,:)/(T-(x_lag+y_lag+1)); 

  

%The F-Statistic 

F = F_num/F_den; 

  

  

c_v = finv(alpha,y_lag,(T-(x_lag+y_lag+1))); 

  

  

%--- UA 

disp(' ') 

disp(' ') 

disp('USAGE: Granger_Cause(X, Y, alpha, Max_Lag)') 

disp(' ') 

fprintf('Number of Lags in the model of X: %3d \n',x_lag); 

fprintf('Number of Lags in the model of Y: %3d \n',y_lag); 

disp(' ') 

disp('Null Hypothesis (H0): "Y does not Granger Cause X"') 

   if F>c_v 

      disp('F-Statistic > Critical Value: Reject the Null Hypothesis') 

      disp('The second argument (Y) Granger Causes the first one (X)') 

   else 

      disp('F-Statistic <= Critical Value: Do not reject the Null 

Hypothesis') 

      disp('The second argument (Y) does not Granger Cause the first one 

(X)') 

   end 

disp(' ') 

fprintf('F-Statistic    = %12.6f \n',F); 

fprintf('Critical Value = %12.6f \n',c_v); 
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