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ABSTRACT 

 

MODELLING AND OPTIMIZATION OF A SG TYPE 

SEISMOMETER PROPORTIONAL TO THE ELONGATION 
 

 

In this thesis, a new SG type seismometer is modelled and its counterforce constant 

is optimized to have an increased period length large enough to make seismic 

measurements. In the first part of the thesis a “Kinematic Model of the Seismometer” is 

built in simulink. It consists of three subsequent submodels which are an “Idealized 

Pendulum Angle Model”, a “Magnetic Counterforce Effect on Period Model” and a “Drag 

Force Model”. The problem of period increase with magnetic counterforce is defined in the 

second part of the thesis. The simulink models, which are built in the first part, are used to 

study and to solve this optimization problem. The binary search is used to find the best 

magnetic counterforce constant value and the golden section search is used to find the 

highest possible period value which grants harmonic oscillation and lowest error output. 

As a result; a magnetic counterforce constant value is reached for every desired period 

length, which is possible to reach due to the mechanical restrictions of the pendulum. It is 

proven that with an optimized magnetic counterforce constant, a SG type seismometer will 

have an increased period value, which grants the seismometer to become as effective as a 

high cost seismometer. 
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ÖZET 

 

SALINIMLA DOĞRU ORANTILI ÇALIŞAN SG TİPİNDE BİR 

SİSMOMETRENİN MODELLENMESİ VE OPTİMİZASYONU 
 

 

Bu tezde SG tipinde çalışan yeni bir sismometre modellenmiş ve onun karşı kuvvet 

sabiti tutarlı sismik ölçümler yapmasına yeterli olacak seviyeye optimize edilmiştir. Tezin 

ilk kısmında “Sismometrenin Kinematik Modeli” Simulink’te üç alt model kurulup bu 

modellerin uygun bir şekilde birleştirilmesiyle oluşturulmuştur. Bu modeller sırasıyla 

“Basit Sarkaç Açı Modeli”, “Manyetik Karşı Kuvvet’in Periyoda Etki Modeli” ve 

“Havanın Sürtünme Kuvveti Modeli”dir. İkinci kısımda ilk olarak karşı kuvvet sabitiyle 

periyot arttırma problemi tanımlanmıştır. Ayrıca ilk kısımda oluşturulan Simulink 

modelleri yardımıyla bu optimizasyon problemi için bir çözüm yoluna ulaşılmıştır. 

Sismometrenin kendi özgün değerlerine bağlı olarak çalışabileceği en ideal periyot 

değerine Golden Section Search metoduyla yaklaşılmıştır. Bu sırada istenilen periyot 

değerini sağlayacak manyetik karşı kuvvet sabitine de Binary Search metoduyla 

yaklaşılmıştır. Sonuç olarak sismometrenin fiziksel sınırları içerisinde bulunan periyot 

değerlerine ulaşmasını sağlayan manyetik karşı kuvvet sabit değeri bulunabilmektedir. Bu 

sayede bu tezde optimize edilmiş bir karşı kuvvet sabitiyle SG tipinde çalışan bu yeni 

sismometrenin periyot seviyesinin yükseltilerek, yüksek maliyetli ve yüksek hassasiyetli 

sismometreler seviyesinde ölçüm yapmaya yetecek bir seviyeye çıkarılabileceği 

gösterilmiştir.  
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1.   INTRODUCTION 
 

 

1.1. Seismic Waves 

 

Seismic waves are huge energy waves that advance on the surface or inside the earth. 

They are caused mostly by earthquakes but also sometimes by volcanic eruptions or big 

explosions. The seismic waves are gathered in two groups regarding their path of travel: 

 

• Body waves 

• Surface waves 

 

1.1.1. Body Waves 

 

The waves that travel in the mantle or core of the earth are named as Body waves. P-

waves and S-waves are in this wave group.  

 

P-waves are pressure waves and they travel faster than all other seismic waves. 

Therefore they are named as Primary waves. However they are also called as Compression 

waves because of their propagation characteristics. The direction of vibration is the same 

as the direction of the wave propagation. 

 

 

Figure 1.1. Propagation of a P-Wave [1] . 

  

S-waves are shear waves and their motion is perpendicular to the direction of the 

propagation. They are slower than P-waves and arrive at the location where the seismic 

measurement is being done later therefore they are called as secondary waves. Their speeds 

are in general around 60% of the P-waves in different materials. 
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Figure 1.2. Propagation of a S-wave [1] . 

 

The direction of wave propagation for these transverse waves is perpendicular to the 

motion of the ground which is caused by the wave. 

 

1.1.2. Surface Waves 

 

The waves that travel on the outer surface of the Earth are named as Surface waves, 

namely L-waves. Rayleigh waves, Love waves and Stonely waves are in this wave group. 

Rayleigh waves, which are also named as Ground roll, are surface waves which advance as 

ripples with motions. Their expansion is similar to the expansion of waves on the surface 

of water. However their restoring force is not gravitational like water waves but elastic.  

 

 

Figure 1.3. Propagation of a Rayleigh Wave [1] . 

 

While a Rayleigh wave propagates to the right of the observer particles of inside the 

wave move counterclockwise in an elliptic trajectory.  

 

Love waves are shear waves which are horizontally polarized. They vibrate the 

ground in the horizontal direction, perpendicular to its own direction of traveling. Love 
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waves are created if there exists a semi-infinite medium overlain by an upper layer of finite 

thickness. These dispersive waves are formed by the interaction of S waves with surface.  

 

 

Figure 1.4. Propagation of a Love Wave [1] . 

 

1.2.   Detection and Measurement Methods 

 

Earthquake is a disastrous phenomena that can’t be stopped even by today’s 

technology and knowledge. Therefore it was widely researched and studied carefully over 

centuries which led researchers to find different detection and/or measurement techniques 

of earthquakes. The focus of this thesis will be on SG type seismometers however some of 

the other important types of measurement techniques will be summarized here. 

 

1.2.1. Houfeng Didong Yi 

 

Houfeng Didong Yi is the first seismoscope that can detect an earthquake and show 

its direction of epicenter of the nondistant earthquakes. It was a bronze vessel with 2 

meters in diameter. There were eight dragon's heads holding bronze balls around the top. If 

there was an earthquake, one of the mouths of the dragons would open up and drop its ball 

into a bronze frog sitting at the base, which makes a sound and shows the direction of the 

earthquakes epicenter [2] . 

 

 

Figure 1.5. A Replica of Houfeng Didong Yi [2] . 
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1.2.2. C-Spring Seismometer 

 

C-Spring vertical seismograph consists of a c shaped spring, a damping mechanism 

and a magnet with a coil acting as a sensor. It detects an earthquake by measuring the 

vertical distance changes between the magnet and the coil which causes to induce a 

current. This induced current is then amplified, passed from a low pass filter and processed 

in a computer to obtain the magnitude of the earthquake. The Idea of using the C-shaped 

spring increases the period of oscillation by enabling to use a longer spring inside a shorter 

height [3] . 

 

 

Figure 1.6. Sketch of a C-Spring Seismometer. 

 

1.2.3. Teleseismometer 

 

This seismometer uses levitation of diamagnetic objects to make measurements. A 

small proof mass is tried to be hold motionless relative to the frame by acting electrical or 

magnetic forces on it. The device records this force and calculates the acceleration of the 

mass. Therefore these devices are also called as force balance accelerometer. The 

displacement of earth is then calculated with algebraic calculations. Because the main 

measurement system consist of a small mass and electronics these type of seismometers 

are in general the smallest in volume which makes them ideal for placing in durable 

casings and take measurements on ocean bottom.  
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Figure 1.7. The CMG-40 TOBS Ocean Bottom Seism. build by Güralp Sytem Ltd [4] . 

 

1.2.4. Lehman Seismometer 

 

The Lehman Seismometer is based on a rotational system which is slightly tilted 

from vertical. Its connections and motion are similar to the connections and the motion of a 

gate therefore it is also called as the Garden Gate configuration. If degree from vertical 

axis was 90 degrees, it would be a simple physical pendulum. The main idea is to increase 

the period of the pendulum with the help of the mechanical design such that the support 

structure counteracts much of the gravitational force, and the component of the 

gravitational force which is left becomes very small. Therefore an increased period of 

oscillation is reached with finer mechanical adjustments.  

 

 

Figure 1.8. Sketch of a Lehman Seismometer [5] . 
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1.2.5. Shackleford Gundersen Seismometer 

 

Shackleford Gundersen Seismometer uses a pendulum as an harmonic oscillator. 

The main idea behind this type of seismometers is that the location of the pendulum is read 

with a transmitter receiver system attached to the tip of the pendulum. This location signal 

is then integrated and with the help of electronic circuitry p and s waves are estimated. The 

mechanical design and circuitry be optimized to improve the output however the real 

period value of the pendulum remains still small which in particular hinders the user to 

make exact measurements.  

 

 

Figure 1.9. An overall view (on the left) and a zoomed view to the tip (on the right) of a 

SG Type Seismometer [6] . 

 

1.3.  Former Work and Past Experience 

 

The relevant former work and past experience of the author on the topic will be explained 

here shortly in order to explain the work done with this thesis better. The SG Seismometer 

has a hinge such that by using a transmitter receiver module the exact position of the 

pendulum is received as a signal which is proportional to the elongation of the pendulum. 

While working on this seismometer system a new hinge was found by M.H.Calayir and by 

the author which led them to build a new SG Type Seismometer. [7] The already existing 

signal proportional to the elongation is amplified and given directly to the damping coil 

which caused a magnetic counterforce to act on the pendulum, increasing its period 

literally.   
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Figure 1.10. An Overall View (on the left) and a Zoomed View to the Tip (on the right) of 

the new SG Type Seismometer build by the author and M.H.Calayır together in 2004 [7] . 

 

As a result of the hard work and sensitive optimization, it was proven 

experimentally that the magnetic counterforce method works in increasing the period 

because it let a period for 1.5 seconds to become 10 seconds in past experience. However it 

was never possible to make it increase beyond that point. The reason for that was thought 

to be mechanical imperfections such as not having a totally horizontal bottom plane or tip 

of the pendulum does not stay absolutely in the middle, or for not finding the center of 

gravity with enough precision, etc. However this assumption was disproved when another 

SG type seismometer was built by three mechanical engineers with enough mechanical 

perfection as shown in Figure 1.11, which didn’t show any more progress in period 

increasing [8]. Therefore the only thing left behind was the magnetic counterforce constant 

so it was decided to work on it to understand the effects of its imperfection.  

 

 

Figure 1.11. An Overall View of the Cad Model of the new SG Type Seismometer build by 

M.H.Calayır G.Kakı and B.Müstecapoğlu in 2010 [8] . 
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2.   MATHEMATICAL AND SIMULINK MODELLING  
 

 

2.1. Mathematical Model of an SG Type Seismometer 

 

 As discussed in the Introduction Part, the SG Type Seismometer that it is being 

modeled here, is a pendulum based seismometer. In all types of Seismometers the ultimate 

goal is the same which is to acquire a stable point, not affected from earth’s seismic 

movements. This will allow this stable point to be used as a reference point such that if 

earths seismic movements relative to this point is measured it will give the desired 

outcome. In SG and Lehman Type seismometers this stable point is achieved by using a 

pendulum. However all alone a normal pendulum does not give an isolated point from 

earth.  In this case its period is increased with a magnetic counterforce proportional to the 

elongation of the pendulum. In order to prove the necessity of high period for the 

pendulum it is discussed thoroughly in the theory. Basically this seismometer consists of a 

pendulum with a certain characteristic frequency, ω0, of its own. The seismic wave is used 

as a driving force since the fixture of the pendulum is linked to the surface of the earth.  

 

 

Figure 2.1. The Response of the Seismometer to Seismic Waves  

with Different Frequencies.  

0 

-π/2 

φ -π 

ω0 ω 

x 
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As the seismometer is intended to register the forced but not the characteristic 

oscillation, the characteristic frequency must be clearly lower than the forced oscillation. This 

can be seen in Figure 2.1, which shows the amplitude of the oscillation of the pendulum at ω0 

compared to the forced frequency ω.  

 

There are three areas as stated below: 

 

• ω0 > ω: The pendulum moves in proportion to the forced oscillation with no period shift. 

The seismometer shows no relative movement as seen in Figure 2.3. 

• ω0 = ω: With a period shift of π/2 the pendulum is caused to resound. The resonance of 

the pendulum, and not the movement of the earth, is measured. 

• ω0 < ω: The amplitude of the pendulum becomes almost non-existent for the static 

observer. However, a dynamic observer moving with the seismic wave sees the 

movement of the seismic wave as a movement of the pendulum at a period shift of π as 

seen in Figure 2.4. 

 

This means that the characteristic frequency of the pendulum has to be smaller than 

the forced frequency of the seismic wave. In order to be able to measure seismic waves of 

the 1 Hz – which is typical of distant waves – one needs to reach a period of 20s. However 

according to Equation 2.11 this would make a pendulum length of 100 meters necessary. 

 

 
Figure 2.2. The Position of the Pendulum in two Different Systems of Varying 

Frequencies. 

 

stable system 

moving system 

  system containing   
  pendulum 

pendulum 

GRAPH 6 
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Two different systems are explained below with changing frequency of the moving system, 

stated as fm, and with changing frequency of pendulum, stated as fp . 

 

 

Figure 2.3. The Position of the Pendulum in the case fp>>fm . 

 

As seen in Figure 2.3 if fp>>fm is true then the pendulum moves in the same way as the 

moving system. Despite appearing stable within the moving system, the pendulum moves 

together with the stable system. 

 

 

Figure 2.4. The Position of the Pendulum in the case fp<<fm . 

 

As seen in Figure 2.4 if fp<<fm is true then despite appearing to sway within the moving 

system, the pendulum remains stable according to the stable system. [7] 
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Figure 2.5. Radial Force Sketch for the Deduction of the Period of a Mathematical 

Pendulum. 

 

Fr is the radial force. 

 𝐹𝐹𝑟𝑟 = 𝑚𝑚𝜔𝜔2𝑟𝑟 (2.1) 

 

 

The restoring force can be found as 

 𝐹𝐹𝑅𝑅 = 𝐹𝐹𝑟𝑟 sin𝜃𝜃 = 𝐹𝐹𝑟𝑟
𝑦𝑦
𝑟𝑟 = 𝑚𝑚𝜔𝜔2𝑟𝑟

𝑦𝑦
𝑟𝑟 = 𝑚𝑚𝜔𝜔2𝑦𝑦 

𝐹𝐹𝑅𝑅 = 𝑚𝑚�
2𝜋𝜋
𝑇𝑇 �

2

𝑦𝑦 = 𝑚𝑚
4𝜋𝜋2

𝑇𝑇2 𝑦𝑦 

(2.2) 

 

(2.3) 

 

which implies 

 
𝑇𝑇2 = 𝑚𝑚

4𝜋𝜋2

𝐹𝐹𝑅𝑅
𝑦𝑦 

𝑇𝑇 = 2𝜋𝜋�
𝑚𝑚𝑦𝑦
𝐹𝐹𝑅𝑅

 

 

(2.4) 

 

(2.5) 

 

as the first statement [7] . 

 

 

 

 Fr 
FR

 
θ 
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Figure 2.6. Sketch of the Magnetic Counterforce acting on the Pendulum. 

 

If α is very small1

 

 then the restoring force is also equal to sin(θ) multiple of the 

gravitational force. 

 

𝐹𝐹𝑅𝑅 = 𝐹𝐹𝐺𝐺 sin 𝜃𝜃 . (2.6) 

 

Considering 

 

 𝐹𝐹𝐺𝐺 = 𝑚𝑚𝑚𝑚 (2.7) 

 

and 

 

 sin𝜃𝜃 =
𝑦𝑦
𝑙𝑙  

(2.8) 

 

restoring force formula becomes 

 

 𝐹𝐹𝑅𝑅 = 𝑚𝑚𝑚𝑚
𝑦𝑦
𝑙𝑙  . (2.9) 

 

Putting Equation 2.9 in Equation 2.5 gives out the period formula [7] as 
                                                
1 The magnitude of the period error caused by this assumption is calculated in the Appendix A. 

FG 

θ 

y 

FR 

 

 FC 

l 
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𝑇𝑇 = 2𝜋𝜋�

𝑚𝑚𝑦𝑦

𝑚𝑚𝑚𝑚 𝑦𝑦𝑙𝑙
 

𝑇𝑇 = 2𝜋𝜋�
𝑙𝑙
𝑚𝑚 . 

(2.10) 

 

(2.11) 

 

 

2.1.1. Mathematical Model of the Simple Pendulum (Force Derivation) 

 

 
Figure 2.7.  Sketch of the Simple Pendulum. 

 

A simple pendulum can be modeled as a string, with length l, attached with a mass of 

m on its lower tip. As the pendulum starts its motion a restoring force FR proportional to 

length l, mass m, gravitational acceleration g and angular displacement θ, acts on it as  

 

 𝐹𝐹𝑅𝑅 = −𝑚𝑚𝑚𝑚 sin𝜃𝜃 . (2.12) 

 

The minus sign in the equation implies that the force created by earth’s gravitational force 

has the opposite direction then the angular displacement θ. If Newton’s second law  

 

 𝐹𝐹 = 𝑚𝑚𝑎𝑎 (2.13) 

 

is considered, the expression which shows that the acceleration of the simple pendulum can 

easily be found as  

 

θ 

θ 

FG= m*g 

FR= mg*sin(θ) 

mg*cos(θ) 

l 
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 −𝑚𝑚𝑚𝑚 sin𝜃𝜃 = 𝑚𝑚𝑎𝑎 

𝑎𝑎 = −𝑚𝑚 sin 𝜃𝜃 . 

(2.14) 

(2.15) 

 

A second expression of pendulums acceleration regarding its movement along the arc 

can also be found with the help of arc length formulas which are 

 

 𝑠𝑠 = 𝑙𝑙𝜃𝜃 

𝑣𝑣 =
𝑑𝑑𝑠𝑠
𝑑𝑑𝑑𝑑 = 𝑙𝑙

𝑑𝑑𝜃𝜃
𝑑𝑑𝑑𝑑  

𝑎𝑎 =
𝑑𝑑2𝑠𝑠
𝑑𝑑𝑑𝑑2 = 𝑙𝑙

𝑑𝑑2𝜃𝜃
𝑑𝑑𝑑𝑑2  

(2.16) 

(2.17) 

(2.18) 

 

So combining both expressions of acceleration, Equation 2.15, and the mathematical 

model of simple pendulum, Equation 2.18, gives out 

 

 𝑑𝑑2𝜃𝜃
𝑑𝑑𝑑𝑑2 = −

𝑚𝑚
𝑙𝑙 sin𝜃𝜃 

𝑑𝑑2𝜃𝜃
𝑑𝑑𝑑𝑑2 +

𝑚𝑚
𝑙𝑙 sin𝜃𝜃 = 0 

(2.19) 

(2.20) 

 

which is the mathematical representation of this simple pendulum. 

 

2.1.2. Simulink Model of the Simple Pendulum 

 

Simulink blocks are used to model the idealized (simple) pendulum. The model takes 

in g, l and initial angular position of the pendulum in radians and gives out 𝜃𝜃 , �̇�𝜃 , �̈�𝜃. This 

simulink model of simple pendulum will also be used in modeling the real pendulum with 

magnetic counterforce model. Therefore the model takes in the current �̈�𝜃 value in every 

step as an input.  
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Figure 2.8. Masked (on the left) and unmasked (on the right) Idealized (Simple) Pendulum 

Simulink Model. 

 

For simulating the simple pendulum model by its own the �̈�𝜃 input port needs to 

supplied with its own �̈�𝜃 output port. 

 

2.1.3. Mathematical Model of Magnetic Counterforce  

 

As explained in the introduction section, the period of the pendulum needs to be 

increased in order to be able to make seismic measurements. By examining Equation 2.11 

which is derived for period, the impression is get that in order to increase the period either 

the length of the pendulum needs to be increased or the gravitational acceleration needs to 

be decreased without reaching the zero value. Increasing length will increase the period but 

in order to reach the required period values one must reach lengths over hundred meters, 

which is not feasible to build.  

  
Figure 2.9. Sketch of the Simple Pendulum with Magnetic Counterforce. 

θ 

θ 

FG= m*g 

FR= mg*sin(θ) 

FC  

l 
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The second option, decreasing gravitational acceleration, might seem unachievable in 

the first look, because g is dependent only to the distance of the pendulum to the Earth’s 

center. However there is an easy way to do this if that is considered to be done “locally”, 

which means on the pendulum only. A counterforce, FC, can be build which will act on the 

pendulum with almost the same magnitude but with opposite direction of FR. So the effect 

of the restoring force acting on the pendulum will decrease dramatically and the period of 

the pendulum will increase. This force needs to be created and driven also in the force 

model in order to get the new mathematical equation of the pendulum. So after adding this 

counterforce FC the pendulum model becomes 

 

 𝐹𝐹𝑅𝑅(𝜃𝜃) +  𝐹𝐹𝐶𝐶 = 𝑚𝑚𝑎𝑎 . (2.21) 

 

Writing down already known restoring force gives out the new pendulum model with 

magnetic counterforce as 

 

 −𝑚𝑚𝑚𝑚 sin 𝜃𝜃 + 𝐹𝐹𝐶𝐶  = 𝑚𝑚𝑎𝑎 . (2.22) 

 

In order to be able to solve this equation, FC is needed to be solved first.  

 

The magnetic counterforce is created in three simple steps. A bar magnet is fixed on 

the pendulums center of gravity and a coil is positioned such that the bar magnet swings 

inside the coil. Then a current I passes through this coil to build a magnetic field which 

will create a magnetic force acting on the bar magnet, that becomes the desired magnetic 

counterforce. This magnetic counterforce can be altered by changing the current on the 

coil. 

  

 𝐹𝐹𝐶𝐶  = 𝑚𝑚𝑝𝑝𝐵𝐵 cos𝛼𝛼 (2.23) 

 

where mp is the pole strength of the bar magnet, B is the magnetic field inside the solenoid 

and α  is the angle of the bar magnet with the magnetic field lines which is equal to θ (very 

near to zero), since the bar magnet is almost parallel to the magnetic field lines at zero 

state. 
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Pole strength, 𝑚𝑚𝑝𝑝 , of the bar magnet depends on  the cross-sectional area A  and 

magnetization M of the bar magnet as 

 

 𝑚𝑚𝑝𝑝  = 𝑀𝑀𝐴𝐴 = 𝑀𝑀𝜋𝜋𝑟𝑟2 . (2.24) 

 

Magnetic field 𝐵𝐵 inside the solenoid is given below where μ0 is the permeability of 

the free space, N is the number of turns, 𝑙𝑙𝑠𝑠  is the length of the solenoid and 𝐼𝐼 is the total 

current. 

 

 𝐵𝐵 = 𝜇𝜇0
𝑁𝑁
𝑙𝑙𝑠𝑠
𝐼𝐼 . (2.25) 

 

So if  Equation 2.24 and Equation 2.25 is written in Equation 2.23 the magnetic 

counterforce becomes as  

 

 𝐹𝐹𝐶𝐶  = 𝑀𝑀𝜋𝜋𝑟𝑟2𝜇𝜇0
𝑁𝑁
𝑙𝑙𝑠𝑠
𝐼𝐼 cos𝜃𝜃 (2.26) 

 

The restoring force is changing proportional to the elongation if θ is small, which is true in 

this case. Therefore the magnetic counterforce should also change almost proportional to 

the elongation which can be assured by changing the current I proportional to the 

elongation.  It means that  𝐼𝐼 = 𝐼𝐼(𝜃𝜃) and the counterforce becomes 

 

 𝐹𝐹𝐶𝐶(𝜃𝜃) = 𝑀𝑀𝜋𝜋𝑟𝑟2𝜇𝜇0
𝑁𝑁
𝑙𝑙𝑠𝑠
𝐼𝐼(𝜃𝜃) cos 𝜃𝜃 . 

 

(2.27) 

 

As  𝑀𝑀𝜋𝜋𝑟𝑟2𝜇𝜇0
𝑁𝑁
𝑙𝑙𝑠𝑠

 is not changing they all can be summed up inside a new constant CB, which 

will be called as the magnetism constant of the seismometer in this thesis, as 

  

 𝐶𝐶𝐵𝐵 = 𝑀𝑀𝜋𝜋𝑟𝑟2𝜇𝜇0
𝑁𝑁
𝑙𝑙𝑠𝑠

 (2.28) 

 

CB 
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which leads the magnetic counterforce to become 

 

 𝐹𝐹𝐶𝐶(𝜃𝜃) = 𝐶𝐶𝐵𝐵𝐼𝐼(𝜃𝜃) cos𝜃𝜃 . (2.29) 

 

Current 𝐼𝐼(𝜃𝜃) is proportional to the elongation. Therefore it can also be written as 

 

 𝐼𝐼(𝜃𝜃) = 𝑥𝑥1𝜃𝜃 + 𝑥𝑥0 (2.30) 

 

It is known that while pendulum is at its starting position (𝜃𝜃 = 0 𝑟𝑟𝑎𝑎𝑑𝑑) no magnetic 

counterforce should be exerted on it. Therefore it can easily be found by simple 

mathematic that  𝑥𝑥0 = 0 and the current function is reduced to  

 

 𝐼𝐼(𝜃𝜃) = 𝑥𝑥1𝜃𝜃 . (2.31) 

 

So the magnetic counterforce function becomes  

 

 𝐹𝐹𝐶𝐶(𝜃𝜃) = 𝐶𝐶𝐵𝐵𝑥𝑥1𝜃𝜃 cos𝜃𝜃 (2.32) 

 

where 𝑥𝑥1 is the magnetic counterforce constant and 𝐶𝐶𝐵𝐵  is magnetism constant. 

 

Equation 2.32 placed in Equation 2.22 gives out 

 

 𝑚𝑚𝑎𝑎 = −𝑚𝑚𝑚𝑚 sin𝜃𝜃 +  𝐶𝐶𝐵𝐵𝑥𝑥1𝜃𝜃 cos𝜃𝜃 . (2.33) 

 

which implies 

 

 
𝑎𝑎 = −𝑚𝑚 sin𝜃𝜃 +  

𝐶𝐶𝐵𝐵
𝑚𝑚 𝑥𝑥1𝜃𝜃 cos 𝜃𝜃 

𝑙𝑙
𝑑𝑑2𝜃𝜃
𝑑𝑑𝑑𝑑2 = −𝑚𝑚 sin𝜃𝜃 +  

𝐶𝐶𝐵𝐵
𝑚𝑚 𝑥𝑥1𝜃𝜃 cos 𝜃𝜃 

𝑑𝑑2𝜃𝜃
𝑑𝑑𝑑𝑑2 = −

𝑚𝑚
𝑙𝑙 sin 𝜃𝜃 +  

𝐶𝐶𝐵𝐵
𝑚𝑚 ∗ 𝑙𝑙 𝑥𝑥1𝜃𝜃 cos 𝜃𝜃 . 

(2.34) 

(2.35) 

(2.36) 
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2.1.4. Simulink Model of Magnetic Counterforce 

 

Equation 2.36 gives out the mathematical model of the pendulum affected with the 

magnetic counterforce. It is easy to see that it consists of two parts. First part is already 

found to be the simple pendulum model part as 

 

 𝑑𝑑2𝜃𝜃
𝑑𝑑𝑑𝑑2 = −

𝑚𝑚
𝑙𝑙 sin𝜃𝜃 . (2.37) 

 

It is added up with a θ dependant new part, which is  𝐶𝐶𝐵𝐵
𝑚𝑚𝑙𝑙
𝑥𝑥1𝜃𝜃 cos 𝜃𝜃. Therefore it is possible 

to build this magnetic counterforce model as an addition to the simple pendulum model in 

simulink which will make the real SG type pendulum model more flexible.  

 

The sub-model takes in θ, I(θ), CB, m, l and gives out the addition to �̈�𝜃 of the simple 

pendulum model. 

 

 

Figure 2.10. Masked (on the left) and unmasked (on the right) Magnetic Counterforce 

Simulink Model. 

 

One more thing to worth mentioning here is that by looking the mathematical and 

simulink model of magnetic counterforce one can be mislead to the assumption that the 

length in the magnetism constant and the length in this model should cancel each other 

which means that they are redundant. However they are not the same lengths where the 

former is the length of the coil and the latter is the length of the pendulum therefore both of 

them are required inside the model. 
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2.1.5. Mathematical Model of Air Drag Force 

 

Air drag force model is another part of the real pendulum model which has been seen 

as negligible by past self experience but in order to simulate its real affects this model is 

also built.  

In order to build this model the magnitude and direction change of the force 

component needs to be figured out which is being created as the air drag force in the 

dependence of θ. As it is explained before the pendulum in this system moves only in two 

directions assuming to be a thin rectangular prism, or better to say a flat plate, moving with 

its big surface against air resistance.  

 

  
Figure 2.11. Sketch of the Simple Pendulum with Magnetic Counterforce and with 

changing Air Drag Force. 

 

The air drag force [9] is calculated as 

 

 𝐹𝐹𝐷𝐷����⃗ = −
1
2𝜌𝜌𝑣𝑣

2𝐶𝐶𝐷𝐷𝐴𝐴 . (2.38) 

 

The minus sign in this equation clearly implies that the drag force created by air 

resistance has the opposite direction then the speed vector 𝑣𝑣. 𝜌𝜌 is the density of air, 𝐶𝐶𝐷𝐷  is 

the drag coefficient of pendulum in its direction of motion and 𝐴𝐴 is the reference area 

perpendicular to the direction of motion. If this drag force equation is added to the real 

pendulum force model becomes 

FD  

θ 

θ 

FG= m*g 

FR= mg*sin(θ) 

FC  

v 

l 
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 𝑚𝑚�⃗�𝑎 = 𝐹𝐹𝑅𝑅����⃗ (𝜃𝜃) +  𝐹𝐹𝐶𝐶����⃗ (𝜃𝜃) + 𝐹𝐹𝐷𝐷����⃗ (�⃗�𝑣) 

= −𝑚𝑚𝑚𝑚 sin𝜃𝜃 +  𝐶𝐶𝐵𝐵𝑥𝑥1𝜃𝜃 cos𝜃𝜃 + 𝐹𝐹𝐷𝐷����⃗ (�⃗�𝑣) 

= −𝑚𝑚𝑚𝑚 sin𝜃𝜃 +  𝐶𝐶𝐵𝐵𝑥𝑥1𝜃𝜃 cos𝜃𝜃 −
1
2𝜌𝜌𝑣𝑣

2𝐶𝐶𝐷𝐷𝐴𝐴 . 

(2.39) 

(2.40) 

(2.41) 

 

Reminding back to Equation 2.18 and Equation 2.17, the equation above also implies 

that  

 

 𝑑𝑑2𝜃𝜃
𝑑𝑑𝑑𝑑2 = −

𝑚𝑚
𝑙𝑙 sin 𝜃𝜃 +  

𝐶𝐶𝐵𝐵
𝑚𝑚𝑙𝑙 𝑥𝑥1𝜃𝜃 cos𝜃𝜃 −

𝜌𝜌𝑣𝑣2𝐶𝐶𝐷𝐷𝐴𝐴
2𝑚𝑚𝑙𝑙  

𝑑𝑑2𝜃𝜃
𝑑𝑑𝑑𝑑2 = −

𝑚𝑚
𝑙𝑙 sin 𝜃𝜃 +  

𝐶𝐶𝐵𝐵
𝑚𝑚𝑙𝑙 𝑥𝑥1𝜃𝜃 cos𝜃𝜃 −

𝜌𝜌𝑙𝑙𝐶𝐶𝐷𝐷𝐴𝐴
2𝑚𝑚 �

𝑑𝑑𝜃𝜃
𝑑𝑑𝑑𝑑�

2

 . 

(2.42) 

(2.43) 

 

2.1.6. Simulink Model of Air Drag Force 

 

Equation 2.43 gives the mathematical model of the simple pendulum with magnetic 

counterforce and with air drag force. It is again easy to see that it has the pendulum with 

magnetic counterforce model  

 

 𝑑𝑑2𝜃𝜃
𝑑𝑑𝑑𝑑2 = −

𝑚𝑚
𝑙𝑙 sin 𝜃𝜃 +  

𝐶𝐶𝐵𝐵
𝑚𝑚𝑙𝑙 𝑥𝑥1𝜃𝜃 cos 𝜃𝜃 (2.44) 

 

added up with a velocity dependent part 

 

 𝜌𝜌𝑙𝑙𝐶𝐶𝐷𝐷𝐴𝐴
2𝑚𝑚 �

𝑑𝑑𝜃𝜃
𝑑𝑑𝑑𝑑�

2

 (2.45) 

 

therefore it is again possible to build this air drag force model as an addition to the 

pendulum with magnetic counterforce model in simulink. The sub-model takes in 𝜌𝜌, 𝑙𝑙, 𝐶𝐶𝐷𝐷 , 

𝐴𝐴, m, and velocity 𝑣𝑣 and gives out the addition to �̈�𝜃 of the simple pendulum model. The air 

drag force model shown in Figure 2.12 is highly dependent on the drag coefficient  𝐶𝐶𝐷𝐷  

because it is not possible to find a general coefficient. As the shape of the pendulum and its 

attachments on the swinging part changes the drag coefficient will change accordingly. In 
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order to solve this uncertainty the worst case is assumed and the 𝐶𝐶𝐷𝐷  of a flat plate is used, 

which is even greater than the 𝐶𝐶𝐷𝐷  of an upright positioned human [9]. 

 

Figure 2.12. Masked (on the left) and unmasked (on the right) Air Drag Force  

Simulink Model. 

 

2.1.7. Simulink Model of the Real Pendulum with Magnetic Counterforce 

 

Until now all major sub-blocks needed to build the Real Pendulum Kinematic Model 

is created in simulink. The last step is summing them up together by building the necessary 

connections.  
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Figure 2.13. The Real Pendulum Kinematics Model of the new SG Type Seismometer with 

Magnetic Counterforce. 

  

I(θ) is actually found to have only one nonzero coefficient ,namely x1, therefore its 

sub-model becomes redundant but it is not discarded and kept inside the model for future 

work.  

 

The model is masked as seen in Figure B.1. It takes all necessary constants and 

variables which are g, l, m, x0, x1, CB, Cd, A, and θ (initial) and gives out only its angular 

position , namely θ. However this sub-model is built as it uses θ in radians. Therefore also 

radians to degrees and degrees to radians converters are built on both inside and outside 

ports of θ which made it more convenient to work with theta in degrees.  

 

2.2. Other Required Models 

 

2.2.1. Signal Generator 1 

 

This simulink block is built in order to create the signal with a desired period. It does 

not need to be real. The most important requirement for this signal is that it should give out 
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an harmonic oscillation which can be altered by changing the initial magnetic counterforce 

constant. Therefore a simplification has been made such that the oscillation becomes an 

harmonic oscillation by using the fact that the angle θ is very small. Equation 2.46 gives 

the oscillation of a pendulum with magnetic counterforce as below. 

 

 𝑚𝑚𝑎𝑎 = −𝑚𝑚𝑚𝑚 sin𝜃𝜃 +  𝑀𝑀𝜋𝜋𝑟𝑟2𝜇𝜇0
𝑁𝑁
𝑙𝑙𝑠𝑠
𝑥𝑥1𝜃𝜃 cos𝜃𝜃 (2.46) 

 

As explained above by considering the fact that 𝜃𝜃 ≪ 1 , cos𝜃𝜃 is simplified as 1, sin 𝜃𝜃 is 

simplified as 𝜃𝜃 and all constants multiplied with x1 are also summed up as 𝐶𝐶𝐵𝐵 . These 

simplifications changes Equation 2.46 as 

 

 𝑎𝑎 = −𝑚𝑚𝜃𝜃 +  𝐶𝐶𝐵𝐵𝑥𝑥1𝜃𝜃 . (2.47) 

 

Considering Equation 2.18 the model reduces to 

 

 
𝑙𝑙
𝑑𝑑2𝜃𝜃
𝑑𝑑𝑑𝑑2 = −𝑚𝑚𝜃𝜃 +  𝐶𝐶𝐵𝐵𝑥𝑥1𝜃𝜃 

𝑑𝑑2𝜃𝜃
𝑑𝑑𝑑𝑑2 = −

𝑚𝑚
𝑙𝑙 𝜃𝜃 + 

𝐶𝐶𝐵𝐵
𝑙𝑙 𝑥𝑥1𝜃𝜃 

𝑑𝑑2𝜃𝜃
𝑑𝑑𝑑𝑑2 =  −  

𝑚𝑚 − 𝐶𝐶𝐵𝐵𝑥𝑥1

𝑙𝑙 𝜃𝜃 . 

(2.48) 

(2.49) 

(2.50) 

 

The mathematical representation of simple harmonic oscillation is given in the following 

equation [10]: 

 

 𝑑𝑑2𝑥𝑥
𝑑𝑑𝑑𝑑2 =  −  

𝑘𝑘∗

𝑚𝑚∗ 𝑥𝑥 . (2.51) 

 

As seen above the simplified system has a harmonic oscillation form with  

 

𝑘𝑘∗ = 𝑚𝑚 − 𝐶𝐶𝐵𝐵𝑥𝑥1   and   𝑚𝑚∗ = 𝑙𝑙 

 

 The period of this simplified pendulum is found with the formula [10]: 
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𝑇𝑇 = 2𝜋𝜋�

𝑚𝑚∗

𝑘𝑘∗  . (2.52) 

 

In this simplified case it becomes 

 

 
𝑇𝑇 = 2𝜋𝜋�

𝑙𝑙
𝑚𝑚 − 𝐶𝐶𝐵𝐵𝑥𝑥1

 . (2.53) 

 

For a given period value, an approximated x1 value can be calculated such that it allows the 

simplified pendulum model to create the desired harmonic oscillation signal.  

 

 
𝑥𝑥1 = �𝑚𝑚 −

4𝜋𝜋2𝑙𝑙
𝑇𝑇𝑑𝑑𝑑𝑑𝑠𝑠 2�

1
𝐶𝐶𝐵𝐵

 (2.54) 

 

As explained above this is not the simple (idealized) pendulum model or not the real 

pendulum model. They are already stated in Equation 2.19 and in Equation 2.36 

correspondingly. This simplified model is used only by creating a reference signal with any 

given desired period length for error calculation. The mathematical representation is 

modelled and masked as seen in Fig. 2.14. Inside the mask is also given in Figure B.2. 

 

Figure 2.14. Signal Generator Model with Simplified Pendulum Block. 

 

After defining its already known characteristics (mass, length, etc.) the model needs 

only two inputs. First one is the θini which is the starting angle displacement of the 

pendulum. This input is of course choice dependent and comes in as an initial statement. 
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The second input is the x1_ini which is the magnetic counterforce constant for the 

“Simplified Pendulum Model” to oscillate with the desired period value. 

 

2.2.2. Signal Generator 2 

 

This model is a simple sinusoidal signal generator block with the given mathematical 

representation in Equation 2.55 below as 

 

 f(t) = a ∗ cos(𝑏𝑏𝑑𝑑 + 𝑐𝑐) . (2.55) 

 

The required variables a, b and c are calculated with the matlab function “Variable 

Calculation” which will be explained thoroughly in the next chapter. 

 

2.2.3. Transmitter Receiver model 

 

This is the part of the Seismometer, attached to the tip of the pendulum, measuring 

the elongation of the pendulum as θ.   

 

Figure 2.15. Transmitter Receiver System [7] . 

 

Shackleford and Gunderson were first to use AM-radio technology to learn the 

pendulums exact position in Seismometers. It functions by taking the advantage of the fact 

that the strength of the signals received depends on the distance between the transmitter 

and the receiver, which is attached to the lower tip of the pendulum. A graphical 

representation of how this part of the seismometer works is given in Appendix B. However 

this model is discarded and not built in simulink because it is redundant. It only takes in θ 
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from the real pendulum model and gives out the same value, namely θ. The only effect this 

model causes is a small time delay which can be calculated as following. The distance 

between receiver and transmitter plates is at most 3mm in this case. Therefore radio waves 

travelling from the transmitter to the receiver will cause the delay calculated below. 

 

𝐷𝐷𝑑𝑑𝑙𝑙𝑎𝑎𝑦𝑦 =
3𝑚𝑚𝑚𝑚
𝑐𝑐 =

0,003𝑚𝑚
299792458𝑚𝑚/𝑠𝑠 ≈ 10−11𝑠𝑠 = 10 𝑝𝑝𝑖𝑖𝑐𝑐𝑝𝑝 𝑠𝑠𝑑𝑑𝑐𝑐𝑝𝑝𝑠𝑠𝑑𝑑𝑠𝑠 . 

 

This delay of ca. 10 picoseconds is smaller than the resolution of the simulation 

therefore this model becomes redundant and left out of the thesis. 

  



39 
 

3.   OPTIMIZATION 
 

 

3.1.   Theoretical Background 

 

This section will start with an introduction of the general optimization problem 

subject to constraints. Then two solution methods of optimization which play an important 

role in this thesis will be mentioned by explaining in detail of how they are implemented. 

General optimization problem subject to constraints is formulated as in Equation 3.1 

below. 

 

      min 𝑓𝑓(𝑥𝑥) 

s.t.  𝑎𝑎𝑖𝑖(𝑥𝑥) = 0,          𝑖𝑖 𝜖𝜖 𝛦𝛦 

       𝑎𝑎𝑖𝑖(𝑥𝑥) ≥ 0,          𝑖𝑖 𝜖𝜖 𝐼𝐼 

(3.1) 

 

The function f(x) is called here the cost function. The constraints 𝑎𝑎𝑖𝑖(𝑥𝑥)'s for 𝑖𝑖 𝜖𝜖 𝛦𝛦 are 

equality constraints and 𝑎𝑎𝑖𝑖(𝑥𝑥)'s for 𝑖𝑖 𝜖𝜖 𝐼𝐼 are inequality constraints. Both f(x) and 𝑎𝑎𝑖𝑖(𝑥𝑥)'s 

can be linear, non-linear, convex or non-convex. Moreover f(x) can be quadratic or non-

quadratic. It is assumed here that the reader has the fundamental knowledge of these terms 

in optimization theory. These properties bring the following problem classifications in 

optimization.  

 

• If f(x) and 𝑎𝑎𝑖𝑖(𝑥𝑥)'s are convex, then it is called a convex problem and the local 

minimum is also the global minimum. 

• If f(x) and 𝑎𝑎𝑖𝑖(𝑥𝑥)'s are linear, then the problem is called linear programming and the 

solution is rather simpler than the nonlinear case. 

• If f(x) is in quadratic form and ai(x)'s are linear, then it is called a quadratic 

programming problem, which again is rather simple to solve. 

 

The optimization problems are solved in an iterative way, where the solution is 

approached one step at a time on ever iteration [11,12]. 
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3.1.1. Binary search method 

 

The binary search method is an optimization algorithm which finds the location of a 

specified target within a search interval. In every step the algorithm goes to the middle 

point and checks the target value against this current value. If the values are the same or 

their difference is below a predetermined threshold τ then the algorithm decides that it has 

reached the target. If the current value is smaller or bigger than the target value then the 

algorithm halves its search interval by throwing the corresponding unnecessary half of the 

interval out. This process is repeated until the remaining interval is narrowed below the 

threshold value τ if the first statement is never fulfilled [13] . 

 

This algorithm can be applied as recursive or iterative. In recursive method the 

algorithm calculates the midway point of the initial interval, determines which of the two 

subintervals to search, and then does a recursive call to search that subinterval. In iterative 

method the algorithm runs a loop where it progressively narrows the search interval and 

jumps out of the loop if it finds its target value. In this thesis the latter method is used by 

building the binary search algorithm.  

 

3.1.2. Golden section search method 

 

The golden section search method is an optimization technique to approach to the 

minimum or maximum point of a unimodal function. In this technique the search interval 

is successively narrowed until it becomes smaller than a predetermined resolution factor.  

 

Figure 3.1. Golden Section Search Diagram.  
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The method is named after the fact that it maintains the function values of three 

points whose distances form a golden ratio. In every iteration the algorithm has three 

points and its function values. Two of them are boundary condition (x1, x3) and the third 

one is the golden section point calculated in the previous iteration (x2). In order for x2 to be 

the golden section of the initial boundary statement  

 

 𝑑𝑑𝑏𝑏
𝑑𝑑𝑎𝑎

= 𝜑𝜑 (3.2) 

 

must hold where ϕ is the golden ratio. The next iteration point must also fulfill the same 

statement. It is done by choosing the fourth point as: 

 

 𝑥𝑥4 = 𝑥𝑥1 + (𝑥𝑥3 − 𝑥𝑥2) (3.3) 

 

This new point replaces one of the boundary condition points regarding its function 

output. In the above example it replaces x3 for the f4a output case and x1 for the f4b output 

case. These iterations continue until the termination condition is met. There are many 

different termination conditions. It is important to pick and alter the termination condition 

correctly in order to be sure that the algorithm gives the correct desired output in all cases. 

The simplest termination condition is to check the size of the search interval in every 

iteration and terminate the algorithm if it gets below a certain value, τ [13] . 

 

3.2. Problem Definition  

 

In the previous chapter a real pendulum model is defined in simulink. The goal here 

is to increase the pendulums period up to a desired high value. In previous attempts, which 

are explained in the first chapter, it was proven experimentally that the magnetic 

counterforce method works in increasing the period because it let a period for 1,5 seconds 

to become 10 seconds in  past experience. However it was never possible to make it 

increase beyond that point [7]. The reason for that was thought to be mechanical 

imperfections such as not having a totally horizontal bottom plane or tip of the pendulum 

does not stay absolutely in the middle, or the center of gravity of the pendulum is not found 

with enough precision, etc. However this assumption was disproved when another SG type 
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seismometer was built by three mechanical engineers with enough mechanical perfection 

[8] . The only thing left behind was the magnetic counterforce constant so it was decided to 

work on it to understand the effects of its imperfection.   

 

The two important characteristics already known about the effects of counterforce 

constant are that increasing it from zero starts increasing the period and increasing it 

beyond the point that it beats up the gravitational force it starts preventing the pendulum to 

continue its harmonic oscillation. Therefore the aim here is to prove in simulation that any 

mechanically robust SG Seismometer could be improved such that its period value goes 

over twenty seconds without its harmonic oscillation being disrupted. 

 

3.3. Solution Approach  

 

It is explained in the second chapter that a simulink model of the real SG type 

seismometers pendulum needs to be created in order to achieve this goal. Also an 

optimized counterforce constant needs to be found for any given reasonable value for 

seismometer characteristics. Therefore an optimization code should also be prepared such 

that it uses some optimization techniques to converge to a magnetic counterforce constant 

value for every desired period value after a finite number of iterations which ensures the 

pendulum to have an harmonic oscillation with a desired high period value. This goal is 

reached in two steps. In the first step an algorithm is built such that it can converge to a 

magnetic counterforce constant value for a given period value. In the second step this 

optimization algorithm supplies a second optimization algorithm which uses the first one 

repeatedly in every step in finding the magnetic counterforce constant and converges to a 

period value by checking the output oscillation for being a harmonic oscillation.  

 

3.3.1. Magnetic Counterforce Optimization  

 

In this part and in the following parts it will be explained how matlab is used to 

create the environment with simulink blocks, mentioned in the previous chapter, and how 

it is used to run necessary simulations. The real pendulum with magnetic counterforce 

model gives only one output which is the degree of displacement of the pendulum, namely 

θ.  This is true because with a real SG type seismometer there is no access to any other 
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variable while it is working. This θ actually comes through the Transmitter Receiver 

Module which is explained entirely in the second chapter. In this model it is captured and 

filled to a dataset with corresponding time points. This dataset, full of θ values, needs to be 

visualized such that it shows the properties of the oscillation. Also the current period value 

of the oscillation needs to be calculated in order to supply the optimization algorithm with 

this vital information. Therefore a signal needs to be created and its period needs to be 

calculated simultaneously.  

 

 

Figure 3.2. Magnetic Counterforce Optimization Diagram (Green Blocks: Models built in 

Simulink; Blue Blocks: Functions and Algorithms written in Matlab; Black Block: 

Unnecessary and Discarded Part in Modelling). 

 

The pendulum of the seismometer makes in its natural state a harmonious oscillation 

which can be modeled as a sinusoidal signal. A signal generator simulink model is built 

with simplification and speed optimization for this purpose only, which is explained in the 

previous chapter as a simulink block. In order to create the signal the model needs the 

corresponding parameters referred as a, b and c. For this purpose a matlab function 
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“Variable Calculation” is created. It calculates the required amplitude, frequency and phase 

of the signal with the given algorithm in appendix C. However it was later understood that 

these outputs are not enough for this step. In the case that the magnetic counterforce 

becomes too powerful the oscillation of the pendulum is hindered. The tip of the pendulum 

never crosses the zero point and makes to the other half. Instead it is pulled or pushed with 

such a big counterforce such that it never completes a full swing. Therefore this matlab 

function also checks whether the signal crosses zero, and raises a flag correspondingly. So 

with these inputs the simulink block “Signal Generator 2” creates the signal visualizing the 

oscillation of the pendulum.  

 

In order to compare the current period of the signal with the desired period value 

another signal with the desired period needs to be created. This process needs to be done 

for ones in every cycle because the desired signal does not change in every step. It is stored 

and used over and over again in calculating the error. The simulink block creating this 

desired signal is derived from the simplified pendulum model. After defining its already 

known characteristics (mass, length, etc.) it needs only two additional inputs. First one is 

the θini which is the starting angle displacement of the pendulum. This input is of course 

choice dependent and comes in as an initial statement. The second input is the x1_ini which 

is the magnetic counterforce constant for the simplified pendulum model to oscillate with 

the desired period value. This input is calculated with the matlab function “simplified 

pendulum” and fed to the simulink block.  

 

The optimization algorithm improves magnetic counterforce constant in every 

iteration until it reaches to the given resolution, namely τ. The most important part here is 

the error function algorithm. In every iteration it only takes in hit crossings of both signals, 

the difference of the two signals and the error flag of variable calculation function. After 

visualizing both signals it was decided to use only one fourth of the period of the signals 

for error calculation. This allows sparing a great amount of computational power by itself. 

It also simplifies the error function algorithm by reducing the possible cases with two 

signals down to three cases which reduces the computational power need of the algorithm. 

These three possible cases are shown in the Figure 3.3 and Figure 3.4. In the first two cases 

both signals are created for the time interval one fourth of their own period length. The 

only difference is that in the former case the desired signals period is greater than the 
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current signals period and in the latter case it is vice versa. In these both cases the error 

function runs until one of the signals hits zero. It measures the size of the difference area 

between them and divides it to the corresponding time length.  

 

Figure 3.3. The Imitation of the Two of the Three Possible Cases with Desired and Current 

Oscillation of the Pendulum. 

 

This division to time ensures that the error function becomes independent of the time 

interval that passes until the first zero hit of the signals and also it ensures that larger 

period values create reduced error output if compared to smaller period values. The third 

case in Figure 3.4 is different than the first two. In this case the current oscillation never 

reaches zero. This happens if the magnetic counterforce grows beyond a certain value and 

it obviously tells the algorithm to reduce the magnetic counterforce constant. Therefore for 

this case a flag is built to be raised in variable calculation function. The optimization 

algorithm checks this flag once in every iteration and if it is raised, it gives out the 

maximum negative error which allows the magnetic counterforce constant to be reduced in 

the next iteration. 

 

 

Figure 3.4. The Imitation of the Third Case with Desired and Current Oscillation of the 

Pendulum. 
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The optimization algorithm in this step was first chosen to be a golden section search 

algorithm in order to reduce the need of computational power. However in some cases 

instead of converging to a solution it diverged from it. Therefore golden section search 

algorithm is changed with binary search algorithm sacrificing some computational power 

in order to prevent the algorithm from diverging.  

 

The binary search algorithm starts its search inside a boundary. The lower bound is 

set to be almost zero. The upper bound is chosen as a very high value which allows the 

magnetic counterforce to become so powerful that it greatly beats the gravitational force on 

pendulum; therefore it is ensured that the response of the seismometer is like the third case 

in Figure 3.4 and the optimum point lies inside the starting boundary. In every iteration the 

algorithm checks the error function output for the current iteration point, decides to the 

direction of converging and calculates next iteration point as given in Appendix C. 

  

3.3.2. Oscillation Period Optimization  

 

So far the algorithm in the first step can converge to a magnetic counterforce 

constant value for a given period. In this step it will be decided how much the desired 

period value should be increased. The two already known characteristics about the effects 

of the counterforce constant are that increasing it from zero starts increasing the period and 

beyond a point it beats up the gravitational force and prevents the pendulum to oscillate. 

These two characteristics are also tested with the Real Pendulum with Counterforce Model 

in Simulink. Results are shown in Figure 3.5. 

 
Figure 3.5. Oscillation of the Pendulum with different magnetic counterforce 

constant values. 
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These simulations are run with different initial states and different pendulum 

variables. In all of them the result comes out as confirming the given statement: “As long 

as the magnetic counterforce constant increases the period increases proportionally and 

after a blow-up point it hinders a full swing”. So the upper and lower boundary conditions 

of counterforce constant are known, the conditions in between needs to be simulated and 

understood. 

 

Figure 3.6. Magnetic Counterforce Constant Effect on Pendulum Oscillation. 
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Signal Generator simulink block which are also used in the magnetic counterforce 

optimization. 

 

 
Figure 3.7. Oscillation Period Optimization Diagram (Green Blocks: Models built in 

Simulink; Blue Blocks: Functions and Algorithms written in Matlab; Black Block: 

Unnecessary and Discarded Part in Modelling). 
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the resolution, namely τgs. The optimization is based on the golden section search 

algorithm which is explained in section 3.1.2. The Simulink block “Real Pendulum with 

Counterforce Model” is run for many different values of counterforce constant. The 

corresponding period values and error outputs are recorded in a dataset.  

 

Figure 3.8. Error Output mapped against Magnetic Counterforce Constant. 

 

In Figure 3.8 error output is plotted against its corresponding magnetic counterforce 

constant value. It is obvious that the error output for increasing counterforce constant 

values has many local minima and local maxima and also a global minimum. In order to 

have the Seismometer working at its best condition the magnetic counterforce constant 

should be arranged such that the error output stays as close as possible to the global 

minimum.   

 

Figure 3.9. Maximum Angle Displacement Effect on Error Output. 
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The effects of the maximum angle displacement on the pendulum are also tested with 

different initial angle values. In Figure 3.9 some of them are shown. The error output 

decreases proportional to the decrease in maximum elongation of the pendulum. This is 

logical because the simple pendulum behaves like an harmonic oscillator if the maximum 

elongation goes to zero. As much as this maximum elongation is increased that much the 

error will increase due to the pendulum dynamics which is calculated in Appendix A. 

 

Figure 3.10. The Effect of the Change in Total Pendulum Mass on Error Output. 
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seen in Figure 3.10 the mass increase doesn’t effect the total error output map. However it 
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because the total mass increase leads to the need of the total magnetic counterforce 
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Figure 3.11. The Effect of the Change in Total Pendulum Length on Error Output. 
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The effect of the change in the total pendulum length on error output is also 

examined. At the first look on the Figure 3.11 it can be understood that increase in length 

decreases error output for a given magnetic counterforce constant value. This difference 

tends to decrease as the magnetic counterforce constant converges to its minimum error 

point and becomes zero at its minimum point. Therefore it can be assumed that if the 

pendulum parameters are optimized the length of the pendulum has no effect on the 

pendulum. However this is not true because length of the pendulum has a small but a non-

zero effect on the error output of the pendulum. An increase in the length of the pendulum 

also implies a smaller maximum angular elongation for the same seismic wave. As it can 

be seen in Figure 3.9 this fact implies that it will decrease the error output of the pendulum.   
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4. CONCLUSION 
 

 

4.1. Summary of Achievements and Conclusion 

 

In this thesis the simulink model of the new SG type Seismometer is built which was 

found and experimentally built first by the author and M.H.Calayir together in 2004 [7] . 

The main goal, achieved in this thesis, was to find the problem which hinders the period of 

the seismometer to be increased over ten seconds. The problem is related with the 

magnetic counterforce constant value of the seismometer therefore its effects on the 

pendulum are also studied in detail.  

 

In the first step a fully representative kinematic model of this new seismometer, 

which uses the magnetic counterforce to have an increased period, is built in matlab 

(simulink) as seen in Fig 2.13. An increase in the length of the pendulum clearly increases 

the maximum period value of the seismometer. An increase in the mass of the pendulum 

doesn’t change the maximum period value of the seismometer but it increases the magnetic 

counterforce constant range which in particular increases the sensitivity of its optimization 

in real world implementation. 

 

In the second step the effect of changing the magnetic counterforce constant of the 

seismometer is examined thoroughly. It is found that by increasing the magnetic 

counterforce constant, the period of the pendulum starts increasing until it reaches the blow 

up boundary. If the magnetic counterforce constant is increased beyond this value, the 

pendulum can’t complete a full swing. After the mathematical representation of the signal, 

given in Equation 2.43, is studied, it was seen that by acting a magnetic force on the 

pendulum its harmonic oscillation is disrupted. However after the simulated test results are 

examined, it was seen that the magnitude of this error is related to the change of the 

magnetic counterforce constant. The magnitude of this error shows the particular behavior 

if it is considered with respect to the change of the counterforce constant: While the 

magnetic counterforce constant starts to increase beginning from its minimum value, the 

envelope of the error output shows a stable decrease with an exponentially increasing 

slope. The amplitude of the ripple becomes also smaller while the magnetic counterforce 
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constant increases. While converging to the blow up point from left, which totally stops the 

pendulum to complete its full swings, the error starts to increase with a very high slope. If 

the blow up point is reached the pendulum can’t complete a full swing anymore. This can 

be seen in Figure 3.8 clearly. 

 

The optimization part of this second step is started with the knowledge gained in the 

first part. The goal is to design an algorithm which is built such that it can converge to a 

magnetic counterforce constant value for any given period value, if it is physically 

possible. This goal is reached by using the binary search method as the optimization 

algorithm. It requires obtainable computational power and it is stable. This step was 

planned to be the end of this thesis however it is carried on one step further.  

The error, related with the change of the magnetic counterforce constant, has a very 

sharp minimum point. The second optimization algorithm by using a golden section type 

search method is built to converge as near as possible to this minimum. This algorithm has 

given promising results. It converges to the minimum point with every iteration one step 

further. It doesn’t cross to the right hand side of the minimum. This is important because 

on the right hand side of the minimum the slope of the error function is very high. 

Therefore a small increase in magnetic counterforce constant causes a rapid increase in the 

error value. Mapping the whole effect of the change in the magnetic counterforce constant 

value gives out a better solution than using this optimization algorithm.  However this 

mapping takes 1 to 4 weeks to complete with a good processor unit2

4.2. Future Work 

. The optimization 

algorithm, which is built with this thesis, requires only 1 to 2 hours to give almost the same 

results with the same precision. 

 

 

In this thesis it is proven that the optimization of the magnetic counterforce constant 

value is the key to increase the period of the new SG type Seismometer. Two methods to 

find an optimized magnetic counterforce constant value is found and also explained. 

However a real world implementation method should be developed in order to be able to 

adjust these parameters in the required resolution. The most basic method is to amplify the 

signal where the amplification constant is built adjustable with a potentiometer. However if 
                                                
2 Intel Core 2 Quadcore CPU Q6600 @ 2.40 Ghz 4 GB RAM 
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it covers the whole possible range of the magnetic counterforce constant value, the 

required precision can’t be reached. Now with this algorithm, the minimum error point for 

magnetic counterforce constant of any SG type seismometer is found as a small range. 

Therefore a very precise potentiometer can be implemented to the seismometer such that it 

allows adjusting the magnetic counterforce constant just in this small range with a high 

precision. 
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APPENDIX A: PENDULUM PERIOD CORRECTION 
 

 

An exact analytical solution of the period error of the pendulum oscillation is given as an 

Jacobian elliptic sinus function [14] . 
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By using Equation A.2, Equation A.3 is found as 
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which implies 
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By using Equation A.3 and Equation A.4, Equation A.5 is found as 
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Equation A.4 also implies 
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By using Equation A.4 and Equation A.5, Equation A.7 is found as 

 

𝑠𝑠𝑠𝑠𝑛𝑛10𝜃𝜃 = (𝑠𝑠𝑠𝑠𝑛𝑛4𝜃𝜃)(𝑠𝑠𝑠𝑠𝑛𝑛6𝜃𝜃) = 𝜃𝜃10 −⋯ (A.7) 

Putting Equation A.3, Equation A.4, Equation A.5, Equation A.6, Equation A.7 into A.1, 

A.8 is found as 
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Summing these up gives the error function of pendulum as 
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(A.8) 

 

and for the maximum elongation of 1o and a period value of 3s the period error comes out 

as 
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3

=
1

16
+
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+
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+
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+
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951268147200 

∆𝑇𝑇 ≈ 0.2 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛𝑠𝑠𝑠𝑠 . 
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APPENDIX B: OTHER SEISMOMETER BLOCK FIGURES 
 

 

 

Figure B.1 Real Pendulum Kinematics Model of the new SG Type Seismometer with 

Magnetic Counterforce (masked). 

 

 

 

Figure B.2 Simplified Pendulum Model for estimating the desired Theta Signal. 
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Figure B.3 Transmitter Receiver Part Signal Processing to get the Signal θ(t) in Real 

Pendulum [6] . 
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APPENDIX C: MATLAB ALGORITHMS AND FUNCTIONS 
 

 

C.1 Error Function of the Magnetic Counterforce Optimization Algorithm 

 
function[F_Error]=Func_Error(Hit_Crossing_Sgn_1,Hit_Crossing_Sgn_2,Sgn_1,

Sgn_2,error_Th,Timer) 

  

%Takes in: 
%Hit_Crossing_Sgn_1 
%Hit_Crossing_Sgn_2 
%Timer 
%Diff Signal (Sgn_3=Sgn_1-Sgn_2) 
%error_Th 

  

%Gives out: 
%Error Function Value (F_Error) 

  

Sgn_3=zeros(max(size (Sgn_1,1),size (Sgn_2,1)),1);  % Creating the Diff 

Signal (Sgn_3=Sgn_1-Sgn_2) without data 
i_err=1;        %counter for Diff Signal  (dummy_deneme = -3;) 

  

if(error_Th==1)         % If the pendulum goes over the edge and does not 

swing back and forward then this error_Th (Theta error occurs) 
    F_Error=-123456789;  % So we initialize the error output to a maximum 

in this case 
elseif(error_Th==0)     % If this is not the case, we calculate the error 

below 

  

    while (i_err <= (min(size (Sgn_1,1),size (Sgn_2,1))))   % Loading all 

the diff. data to Sgn_3 
        Sgn_3(i_err,1)=Sgn_1(i_err,1)-Sgn_2(i_err,1);       % until one 

of the signals hits zero    
        if(Hit_Crossing_Sgn_1(i_err,1)== 1)                 % We check at 

each step whether one of  
            break                                           % the signals 

Hits the Zero 
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        elseif (Hit_Crossing_Sgn_2(i_err,1)== 1)            % If this is 

the case so we terminate 
            break                                           % the 

process. 
        end 
        i_err=i_err+1; 
    end 

  

    i_err_2=1; 
    F_Error=0; 
    while (i_err_2 <= i_err)                        % Summing up the 

error at this variable for later check 
        F_Error=F_Error+Sgn_3(i_err_2,1);           % in the optimisation 

code. This wil be the error output 
        i_err_2=i_err_2+1;                          % of the function. 
 

    end 
    F_Error=F_Error/Timer(i_err,1);                 % Dividing the error 

sum to the passed time 
                                                    % which is needed 

because of the changing process  
                                                    % time at each Error 

check (Because Zero hitting time       
                                                    % of Signals will 
                                                    % change at each 

optimisation step) 

     

end                                                  
%%%%%------ END ----%%%%% 

 

C.2 Variable Calculation Algorithm 

 
function[a,b,c,error_Th]=Func_Var(Deg_Theta,Timer,Th_ini) 

%%% Matlab Function to calculate a , b & c &error_Th %%% 

%%% Th_ini*cos(b*t+c)=Deg_Theta 

%%%----------------------------------%%%%%%%%% 

i=2; 

error_Th=0; 

i_max=size(Deg_Theta,1); 
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while(i<=i_max && Deg_Theta(i,1)>0 ) %Getting Zero crossing time for 

Signal Deg_Theta 

    if(Deg_Theta(i-1,1)<Deg_Theta(i,1)) %Check whether function is 

getting larger or smaller (Model Blow-up Control) 

        error_Th=1; %Give error if counter force is growing larger then 

the gravitational force. 

        a=1; 

        b=1; 

        c=0; 

        break; 

    end; 

    i=i+1; 

end 

t_dummy=Timer(i-1,1); %recording time initial. 

  

if(error_Th==0) 

    a=Th_ini; %Amplitude is equal to the initial theta value. 

    c=acos((Deg_Theta(1,1)/Th_ini)); %This should come out zero (Because 

it is the Phase 

    b=(acos(0)-c)/t_dummy; %Frequencty should be calculated, 

end 

 

C.3 Period Calculation Algorithm 

 
function [T_Out]=Calc_T_Signal(Signal,Timer,Period) 

%   Function Should Take inside:  

%   1) Data set of the signal values 

%   2) and its own Timer output values set 

%   3) Number of Periods over which we should look to calculate T. 

% 

%   And it gives out Period Time T 

% 

%   ASSUMPTION "Signal Should Start with a Positive Elongation!" In our 

%   case this assumption is fulfilled. 

%    

N_ZC=(Period*2)+1;           % Number of ZeroCrossings needed to pass  

                             % until the desired number of Periods 

reached.  

  

i=0; 
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j=1; 

j_max=size(Signal,1); 

while(Signal(j,1)>=0 && j<j_max)        % Signal reaches zero with 

negative derivative first time. 

    j=j+1; 

end 

T_Start=Timer(j,1);          % Store the timer output of this step.(As 

starting point) 

i=i+1; 

while (i<N_ZC) 

    while(Signal(j,1)<=0 && j<j_max)    % Signal reaches zero with 

positive derivative . 

        j=j+1; 

    end 

    i=i+1; 

    while(Signal(j,1)>=0 && j<j_max)    % Signal reaches zero with 

negative derivative . 

        j=j+1; 

    end 

    i=i+1; 

end 

T_End=Timer(j,1);            % Store the timer output of this step.(As 

end point) 

  

if(T_End==T_Start)           % j eger j_max sevitesine ulaşırsa yani 

Periyodunu ölçmek istediğimiz sinyal hiç sıfıra ulaşmıyorsa Periyodu 

maximum olarak geriye döndür. 

    T_Start=0; 

end 

T_Out=(T_End-T_Start)/Period; 

 

C.4 Optimization Algorithms calling Simulink blocks and other Functions to 

converge to the desired period and magnetic counterforce constant value 

 
gs_cnt=1;       %%%%%%%%%Golden Section Count for Total End Error and 

Tdes optimisation%%%%%%%%%% 

phi=(1+5^0.5)/2;        % Golden Ratio (phi)= 1.6180 

tau_gs=1;            % Tau (Sensitivity of Goldensection Pendulum Search) 

Gs_Output_Array=zeros(50,8); 
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T_a=0; 

T_b=0; 

T_c=0; 

T_d=0; 

FT_a=0; 

FT_b=0; 

FT_c=0; 

FT_d=0; 

  

while(gs_cnt<50) 

    if(gs_cnt==1) 

        Tdes=Tdes; 

        T_a=Tdes;       % Search Range starts from Tdes 

    elseif(gs_cnt==2) 

        Tdes=Tend; 

        T_b=Tend;       % Search Range goes up to Tend %%%---Boundry 

Condition---%%% 

    elseif(gs_cnt==3) 

         

            % Calculation of first golden section of the range 

            % a = d_a Distance a (which is T_c-T_a) 

            % b = d_b Distance b (which is T_b-T_c) 

            %    T_b-T_a = a+b 

            %    T_b-T_a = a+(phi*a) 

            %    T_b-T_a = a(1+phi) 

            %            a =(T_b-T_a)/(1+phi) 

        d_a=(T_b-T_a)/(1+phi); 

        T_c=T_a+d_a;            % Adding diff. between T_a and T_c gives 

us 

                                % the first golden section of the boundry 

(T_c) 

        Tdes=T_c; 

    else 

        %%%%---- Calculating new golden section ----%%%%                     

        if(T_b-T_c>T_c-T_a)             %CASE 1 

            T_d=T_a+(T_b-T_c); 

        else                            %CASE 2 

            T_d=T_b-(T_c-T_a); 

        end 

        Tdes=T_d; 
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        if(abs(T_b-T_a)<tau_gs)      % Checking whether the search area 

is narrowed enough in Goldensection Search. 

            T_Gs =(T_a+T_b)/2 

            break 

        end 

    end 

  

  

    %%%----- Calculating X1 Initial -----%%%%%%%% 

    x1_ini=((g-((l*4*pi^2)/Tdes^2))/Cb); %Calculated from the formula 

Serwey 6E (P:457 Formula 15.13) 

    %%%%%-----......-----%%%%% 

 

    x1=x1_ini; 

    %%%-----Running Reference Pendulum Model-----%%%%%%%% 

    sim('Cosine_Gen_1.mdl',Tdes) 

    %%%%%-----......-----%%%%% 

  

  

    %%%%%------ OPTIMISATION OF X1 TO REACH Tdes VALUE ----%%%%% 

     

    %phi=(1+5^0.5)/2;       % No need to Golden Ratio (phi)= 1.6180 

Because of 

                            % using BINARY SEARCH in this optimization 

    tau=0.0001;             % Tau (Sensitivity of Goldensection Pendulum 

Search) 

    x1_a=x1_ini;            % Search Range starts from x1_a 

    x1_b=1000;              % Search Range goes up to x1_b=1000 %%%---

Boundry Condition---%%% 

    s_w=0;                  % Binary Search Error check (Something Wrong) 

                        

  

    %%%----- GETTING ERROR FUNCTION OUTPUT FOR x1_a -----%%%%%%%% 

     

    %%%%% --- INITIALISATION --- %%%%% 

    x1=x1_a; 

    %%%-----Running Real Pendulum Model-----%%%%%%%% 

    sim('Pendulum_Model_5_BForce_Subsystemed.mdl',Tdes); 

    %%% Matlab Function to calculate a , b & c & error_Th %%% 

    [a,b,c,error_Th]=Func_Var(Deg_Theta,Timer,Th_ini); 
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    %%%----- Cosine Generator__Signal_2 (Simulating pendulum current 

oscillation)---%%% 

    sim('Cosine_Gen_2.mdl',Tdes); 

    %%%%%------RUNNING ERROR FUNCTION OF THE SG-PENDULUM MODEL ----%%%%% 

    

fx1_a=Func_Error(Hit_Crossing_Sgn_1,Hit_Crossing_Sgn_2,Sgn_1,Sgn_2,error_

Th,Timer); 

    %%%%%-----......-----%%%%% 

     

    %%%----- GETTING ERROR FUNCTION OUTPUT FOR x1_b -----%%%%%%%% 

    x1=x1_b; 

    %%%-----Running Real Pendulum Model-----%%%%%%%% 

    sim('Pendulum_Model_5_BForce_Subsystemed.mdl',Tdes); 

    %%% Matlab Function to calculate a , b & c & error_Th %%% 

    [a,b,c,error_Th]=Func_Var(Deg_Theta,Timer,Th_ini); 

    %%%----- Cosine Generator__Signal_2 (Simulating pendulum current 

oscillation)---%%% 

    sim('Cosine_Gen_2.mdl',Tdes); 

    %%%%%------RUNNING ERROR FUNCTION OF THE SG-PENDULUM MODEL ----%%%%% 

    

fx1_b=Func_Error(Hit_Crossing_Sgn_1,Hit_Crossing_Sgn_2,Sgn_1,Sgn_2,error_

Th,Timer); 

    %%%%%-----......-----%%%%% 

 

    i_bs_count=1; 

    while (i_bs_count<201)          % Binary Search algorithm limited to 

200 Loops. 

        i_bs_count=i_bs_count+1; 

         

        if(abs(x1_b-x1_a)<tau)      % Checking whether the search area is 

narrowed enough. 

            x1=(x1_a+x1_b)/2 

            break 

        else 

             

            %Binary Type Search Optimized for calculating Backforce 

constant 

            %using Pendulum Model Blocks with Backforce manupulation and 

created Matlab 

            %Functions for estimating SG-Seismograph Period length. 
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            %%%%---- Calculating new binary section ----%%%% 

            x1_c=(x1_a+x1_b)/2; 

            %%%%%-----......-----%%%%% 

             

            %%%----- GETTING ERROR FUNCTION OUTPUT FOR x1_c -----%%%%%%%% 

            x1=x1_c; 

            %%%-----Running Real Pendulum Model-----%%%%%%%% 

            sim('Pendulum_Model_5_BForce_Subsystemed.mdl',Tdes); 

            %%% Matlab Function to calculate a , b & c & error_Th %%% 

            [a,b,c,error_Th]=Func_Var(Deg_Theta,Timer,Th_ini); 

            %%%----- Cosine Generator__Signal_2 (Simulating pendulum 

current oscillation)---%%% 

            sim('Cosine_Gen_2.mdl',Tdes); 

            %%%%%------RUNNING ERROR FUNCTION OF THE SG-PENDULUM MODEL --

--%%%%% 

            

fx1_c=Func_Error(Hit_Crossing_Sgn_1,Hit_Crossing_Sgn_2,Sgn_1,Sgn_2,error_

Th,Timer); 

            %%%%%-----......-----%%%%% 

         

            if(fx1_c>0)             %CASE 1 

                if(fx1_c <= fx1_a) 

                    x1_a=x1_c; 

                    fx1_a=fx1_c; 

                else 

                    s_w=1; 

                end 

                 

            elseif(fx1_c<0)         %CASE 2 

                if(fx1_c >= fx1_b) 

                    x1_b=x1_c; 

                    fx1_b=fx1_c; 

                else 

                    s_w=1; 

                end 

            else 

                s_w=0.5; 

            end 
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        end 

 

    %%%--- Here alg. has converged to a new Period T ---%%% 

    % Lets measure it. 

    % To measure this we run our real Pendulum Model long enough to take 

5 

    % period long measurement 

    sim('Pendulum_Model_5_BForce_Subsystemed.mdl',1000); 

    x1_store=x1; 

     

    % Calculating the Period length of the real pendulum 

    T_Now=Calc_T_Signal(Deg_Theta,Timer,1); 

     

    % Calculating the needed x1 for creating the simulated Pendulum Theta 

output with Period T_Now 

    x1_ini=((g-((l*4*pi^2)/T_Now^2))/Cb);   %MODEL "Cosine_Gen_1.mdl" 

uses x1_ini for Backforce constant% 

     

    % Simulating Reference Pendulum Model 

    sim('Cosine_Gen_1.mdl',1000) 

     

    %%%%%----- Calculate the additive error of the function over a 3/4 

period ----%%%%%%  

     

    Sgn_Error=zeros(max(size (Deg_Theta,1),size (Sgn_1,1)),1);  % 

Creating the Diff Signal without data 

    i_er=1;        %counter for Diff Signal  (dummy_deneme = -3;) 

    count_cross=0; 

     

    while (i_er <= (min(size (Deg_Theta,1),size (Sgn_1,1))))   % Loading 

all the diff. data to Sgn_Error 

        Sgn_Error(i_er,1)=Sgn_1(i_er,1)-Deg_Theta(i_er,1);     % until 

one of the signals hits zero 

        if(Hit_Crossing_Sgn_1(i_er,1)== 1)                    % We check 

at each step whether Sig_1 crosses Zero 

            count_cross=count_cross+1; 

        end 

         

        if (count_cross == 2)            % If it crosses Zero twice, we 

terminate the process nowing that the time passed is equal to 3/4*T 
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            break 

        end 

        i_er=i_er+1; 

    end 

     

    i_er_2=1; 

    F_Error_Gs=0; 

    while (i_er_2 <= i_er)                                  % Summing up 

the error at this variable for later check 

        F_Error_Gs=F_Error_Gs+abs(Sgn_Error(i_er_2,1));     % in the 

optimisation code. This wil be the error output 

        i_er_2=i_er_2+1;                                    % of the 

function. 

    end 

    F_Error_Gs=F_Error_Gs/Timer(i_er,1)                     % Dividing 

the error sum to the passed time 

     

    % which is needed because of the changing process 

    % time at each Error check (Because Zero hitting time 

    % of Signal 1 will 

    % change at each optimisation step) 

     

    %x1=x1_store;                    % Write calculated & stored x1 at 

lines 42&94 

    % Which is achieved x1 value for real pendulum model 

     

     

     

    %%%%--- Golden Section Optimisation Output Calculations ---%%%% 

     

    if(gs_cnt==1)         

        FT_a=F_Error_Gs;       % Error Output of Starting condition T_a 

         

    elseif(gs_cnt==2) 

        FT_b=F_Error_Gs;       % Error Output of Bonudry condition T_b 

     

    elseif(gs_cnt==3) 

        FT_c=F_Error_Gs;       % Error Output of First Golden Seciton T_c 

         

    else 
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        FT_d=F_Error_Gs;       % Error Output of New Golden Seciton T_d 

        

        if(T_d-T_c>0)          %CASE 1  New Golden Section is 

choosen(T_d) on the right hand side  

            if(FT_d >= FT_c) 

                T_b=T_d; 

                FT_b=FT_d; 

            else 

                T_a=T_c; 

                T_c=T_d; 

                FT_a=FT_c; 

                FT_c=FT_d; 

            end 

           

   

        else                   %CASE 2  New Golden Section is 

choosen(T_d) on the left hand side 

            if(FT_d > FT_c) 

                T_a=T_d; 

                FT_a=FT_d; 

            else 

                T_b=T_c; 

                T_c=T_d; 

                FT_b=FT_c; 

                FT_c=FT_d; 

            end 

        end 

    end 

    Gs_Output_Array(gs_cnt,:)=[T_a,T_b,T_c,T_d,FT_a,FT_b,FT_c,FT_d]; 

     

     

 

    gs_cnt=gs_cnt+1        % Golden Section Optimisation counter 

increase. 

     

     

end 
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    gs_cnt=gs_cnt+1        % Golden Section Optimisation counter 

increase. 

     

end 
 

C.5 An Example of the Long Term Data Collection Algorithms 

 
row=1;    

%x1=4; 

m=16; 

x1=2.8+(row/100000); 

Data_Collected_mass_16=ones(100002,5); 

while (x1<3.00000) 

     

    %%%--- Here alg. has converged to a new Period T ---%%% 

    % Lets measure it. 

    % To measure this we run our real Pendulum Model long enough to take 

5 

    % period long measurement 

    x1_store=x1; 

    sim('Pendulum_Model_5_BForce_Subsystemed.mdl',1000); 

         

    % Calculating the Period length of the real pendulum 

    T_Now=Calc_T_Signal(Deg_Theta,Timer,1); 

     

    %Calculating the needed x1 for creating the simulated Pendulum Theta 

output with Period T_Now 

    x1_ini=((g-((l*4*pi^2)/T_Now^2))/Cb);   %MODEL "Cosine_Gen_1.mdl" 

uses x1_ini for Backforce constant% 

     

    % Simulating Reference Pendulum Model 

    sim('Cosine_Gen_1.mdl',1000) 

     

    %Calculate the additive error of the function over a 3/4 period 

     

    Sgn_Error=zeros(max(size (Deg_Theta,1),size (Sgn_1,1)),1);  % 

Creating the Diff Signal without data 

    i_er=1;        %counter for Diff Signal  (dummy_deneme = -3;) 

    count_cross=0; 
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    while (i_er <= (min(size (Deg_Theta,1),size (Sgn_1,1))))   % Loading 

all the diff. data to Sgn_Error 

        Sgn_Error(i_er,1)=Sgn_1(i_er,1)-Deg_Theta(i_er,1);     % until 

one of the signals hits zero 

        if(Hit_Crossing_Sgn_1(i_er,1)== 1)                    % We check 

at each step whether Sig_1 crosses Zero 

            count_cross=count_cross+1; 

        end 

 

if (count_cross == 2)            % If it crosses Zero twice, we terminate 

the process. 

            break 

        end 

        i_er=i_er+1; 

    end 

     

    i_er_2=1; 

    F_Error_Out=0; 

    while (i_er_2 <= i_er)                                  % Summing up 

the error at this variable for later check 

        F_Error_Out=F_Error_Out+abs(Sgn_Error(i_er_2,1));   % in the 

optimisation code. This wil be the error output 

        i_er_2=i_er_2+1;                                    % of the 

function. 

    end 

    F_Error_Out=F_Error_Out/Timer(i_er,1);                   % Dividing 

the error sum to the passed time 

     

    % which is needed because of the changing process 

    % time at each Error check (Because Zero hitting time 

    % of Signal 1 will 

    % change at each optimisation step) 

     

    %x1=x1_store;                    % Write calculated & stored x1 at 

lines 42&94 

    % Which is achieved x1 value for real pendulum model 

     

    Data_Collected_mass_16(row,:)=[row,x1,x1_store,T_Now,F_Error_Out]; 

     

    x1=x1+0.00001; 
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    row=row+1; 

end 

m=4; 
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