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Assoc. Prof. Fatih Alagöz . . . . . . . . . . . . . . . . . . .

Prof. Emin Anarım . . . . . . . . . . . . . . . . . . .
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ABSTRACT

DETECTION QUALITY MEASURE IN

SURVEILLANCE WIRELESS SENSOR NETWORKS

The performance of a surveillance wireless sensor network is generally measured

with its detection capability which is affected by various parameters such as the sensor

count, the sensor range, the area width and the target mobility model. We assume that

intruders prefer some favorite paths because of their geographical advantages and pass

through them instead of following a random mobility model. These paths are generally

in close vicinity of each other and they can be bounded in a region. In this thesis, we

inspect the travelers’ favorite region notions and propose some image processing tools

to detect their location within a border area. Following this, we present a closed form of

the detection probability as the detection quality measure in the existence of travelers’

favorite paths. The detection probability is reduced to the geometric line intersection

problem using bijection and the boundary conditions of intruder trajectories for the

border area and the favorite regions are determined. The line intersection problem is

solved using tools from the integral geometry and geometric probability. The effect of

the favorable region on the detection quality under different conditions is calculated

using probabilistic models. The accuracy of the proposed quality measure is validated

by both analytical methods and simulation results. Furthermore, the importance of

the intrusion model on the network performance is presented using realistic scenarios.

It is shown that the existence of favorite paths has significant impact on the detection

quality of the network. We extend our work to border areas with multiple favorite

path regions and present a closed form of detection probability for such generic cases.

We also inspect the effects of various system parameters such as the sensing model

and application scenarios on the detection quality measure using both analytical tools

and simulations. The proposed detection quality measure provides analytical tools to

forecast the expected detection performance and to optimize the network according to

the intruder mobility model.
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ÖZET

GÖZETİM AMAÇLI KABLOSUZ ALGILAYICI AĞLARDA

TESPİT KALİTESİ ÖLÇÜTÜ

Bir gözetim kablosuz algılayıcı ağın başarımı genellikle, algılayıcı sayısı, algılayıcı

menzili, alanın genişliği ve hedefin hareketlilik modeli gibi çeşitli verilerden etkilenen

hedef tespit kapasitesi ile ölçülmektedir. Hedeflerin rastgele bir hareketlilik modelini

takip etmek yerine, coğrafi avantajları sebebiyle bir takım patikaları tercih ettiğini ve

buralardan geçtiğini varsaymaktayız. Bu patikalar ise genel olarak birbirinin yakınında

bulunmakta ve belirli bir alan içinde sınırlandırılabilmektedir. Bu tezde, hedeflerin

sık kullandıkları bölgeleri incelemekte ve bir sınır bölgesi içindeki yerlerini tespit et-

mek için bazı görüntü işleme araçlarını kullanmaktayız. Bunun ardından, hedeflerin

sık kullandıkları patikalar olması durumunda, bir tespit kalite ölçütü olarak tespit

olasılığını bir formül halinde sunmaktayız. Hedef tespit olasılığı eşleşme metodu ile

geometrik çizgi kesişim problemine dönüştürülmekte ve sınır alanı ve sık kullanılan

alanlar içerisinde bulunan ve hedeflerin takip ettiği yolların geometrik sınır koşulları

tespit edilmektedir. Çizgi kesişim problemi integral geometri ve geometrik olasılık

yöntemleri ile çözümlenmektedir. Sık kullanılan alanların farklı koşullar altında hedef

tespit kalitesine etkileri olasılıksal modeller kullanılarak hesaplanmaktadır. Sunulan

kalite ölçütünün doğruluğu analitik sonuçlar ve benzetim sonuçları ile gösterilmektedir.

Ayrıca, gerçekçi senaryolar ile hedef hareketlilik modelinin ağ başarımı üzerindeki

önemi gösterilmektedir. Sık kullanılan patikaların varlığının hedef tespit kalitesi üzerine

büyük etkisi olduğu gösterilmektedir. Çalışmamızı çoklu sık kullanılan alanlardan

oluşan sınır bölgeleri için genelleştirmekte ve bu genel durum için tespit kalitesi ölçütü

kapalı matematiksel form halinde sunmaktayız. Ayrıca algılama modeli, uygulama

senaryoları ve diğer sistem parametrelerinin tespit kalitesi üzerindeki etkileri de anali-

tik araçlar ve benzetimler ile sunulmaktadır. Önerilen yöntem bir ağın beklenen tespit

performansını öngörmek ve hedef hareketlilik modeline bağlı olarak ağın başarımını

iyileştirmek amacıyla kullanılabilecek araçlar sunmaktadır.
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ÖZET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

LIST OF SYMBOLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi

LIST OF ACRONYMS/ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . xix

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1. Motivation, Problems and Contributions . . . . . . . . . . . . . . . . . 9

2. TRAVELERS’ FAVORITE PATH PROBLEM . . . . . . . . . . . . . . . . . 14

2.1. Network Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2. Region Identification Problem . . . . . . . . . . . . . . . . . . . . . . . 17

2.3. Effects of Mobility on the Detection Count . . . . . . . . . . . . . . . . 19

2.4. Detection of the Region Boundaries . . . . . . . . . . . . . . . . . . . . 20

2.4.1. Regional Maxima Method . . . . . . . . . . . . . . . . . . . . . 21

2.4.2. Contour Map Method . . . . . . . . . . . . . . . . . . . . . . . 22

2.5. Calculation of Preference Probabilities . . . . . . . . . . . . . . . . . . 25

3. DETECTION QUALITY MEASURE PROBLEM . . . . . . . . . . . . . . . 26

3.1. Detection Quality Measure Problem in a Field with Single Region . . . 26

3.1.1. Network Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1.2. Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1.3. Detection Quality Measure . . . . . . . . . . . . . . . . . . . . . 30

3.1.4. Straight Trajectory vs. Segmented Trajectory . . . . . . . . . . 39

3.1.5. Analytical and Simulation Results . . . . . . . . . . . . . . . . . 41

3.2. Detection Quality Measure in a Field with Multiple Regions . . . . . . 49

3.2.1. Network Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2.2. Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.2.3. Detection Quality Metric . . . . . . . . . . . . . . . . . . . . . . 51

3.3. Analytical and Simulation Results . . . . . . . . . . . . . . . . . . . . . 55



ix

3.3.1. Border Area with Multiple Regions . . . . . . . . . . . . . . . . 56

4. ANALYSIS OF DETECTION QUALITY MEASURE . . . . . . . . . . . . 59

4.0.2. Optimization of Sensor Allocation . . . . . . . . . . . . . . . . . 59

4.1. Detection Quality Measure with Different Sensing Models . . . . . . . . 61

4.1.1. Binary Detection Model . . . . . . . . . . . . . . . . . . . . . . 63

4.1.2. Elfes Detection Model . . . . . . . . . . . . . . . . . . . . . . . 64

4.1.3. Analytical and Simulation Results . . . . . . . . . . . . . . . . . 65

4.1.3.1. Binary Detection . . . . . . . . . . . . . . . . . . . . . 65

4.1.3.2. Elfes Detection . . . . . . . . . . . . . . . . . . . . . . 66

4.2. Detection Quality Metric in Different Deployment Scenarios . . . . . . 69

4.2.1. Analysis of Factors . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.3. Detection Quality Measure in Different Region Shapes . . . . . . . . . 77

5. CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

APPENDIX A: ANALYTICAL AND SIMULATION RESULT TABLES . . . 82

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91



x

LIST OF FIGURES

Figure 1.1. The UAV with the sensor node under its wing to be deployed [1]. . 3

Figure 1.2. Trails of intruders along the US-Mexico border [2]. . . . . . . . . . 11

Figure 1.3. Camera feeds from the BlueServo surveillance system [3]. (a) An

area frequently used by drug smugglers. (b) A path frequently used

by the trespassers. . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Figure 2.1. A sample field represented using grid structure. . . . . . . . . . . . 15

Figure 2.2. A sample field with two preferred regions. . . . . . . . . . . . . . . 17

Figure 2.3. A border area with a watch tower. . . . . . . . . . . . . . . . . . . 19

Figure 2.4. The graphical representation of intruder paths in a border area. . 20

Figure 2.5. The heat map of possible intruder paths in a region. . . . . . . . . 20

Figure 2.6. Detection data after local maxima filter is applied. . . . . . . . . . 22

Figure 2.7. The contour map with disk filter radius = 20. . . . . . . . . . . . 23

Figure 2.8. The contour map with modified disk filter. . . . . . . . . . . . . . 24

Figure 3.1. Border surveillance intruder detection with TFP region problem. . 28

Figure 3.2. The representation of a rectangular deployment site. . . . . . . . . 37



xi

Figure 3.3. Detection probability using straight and segmented trajectories. . 40

Figure 3.4. Detection probability at different number of segmented trajectory. 41

Figure 3.5. Effect of sensor count and TFP preference probability on analytical

and simulated DetQM values. Low density sensor deployment (50

- 450). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Figure 3.6. Effect of sensor count and TFP preference probability on analytical

and simulated DetQM values. High density sensor deployment (500

- 1000). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Figure 3.7. Effect of border width with fixed TFP region ratio and TFP prob-

ability on DetQM values. . . . . . . . . . . . . . . . . . . . . . . . 46

Figure 3.8. Effect of border width with fixed TFP region width and TFP pref-

erence ratio on detection probability. . . . . . . . . . . . . . . . . 47

Figure 3.9. DetQM vs TFP preference (pt). . . . . . . . . . . . . . . . . . . . 49

Figure 3.10. Graphical representation of the border SWSN model with multiple

trespassing regions. . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Figure 3.11. The representation of a region. . . . . . . . . . . . . . . . . . . . . 54

Figure 3.12. Graphical representation of the field used for comparative analysis. 56

Figure 3.13. Detection performance in different region preference probabilities. 57

Figure 4.1. The detection performance comparison between uniform and opti-

mized distributions. . . . . . . . . . . . . . . . . . . . . . . . . . . 61



xii

Figure 4.2. The detection performance comparison between uniform and opti-

mized distributions. . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Figure 4.3. Detection probability function of the binary sensing. . . . . . . . . 63

Figure 4.4. Detection probability of Elfes sensing. . . . . . . . . . . . . . . . . 64

Figure 4.5. Effect of sensing range, r on the required sensor count. . . . . . . 66

Figure 4.6. Effect of λ on the detection. . . . . . . . . . . . . . . . . . . . . . 67

Figure 4.7. Effect of β on the detection. . . . . . . . . . . . . . . . . . . . . . 68

Figure 4.8. An archeological site in the pyramids area. . . . . . . . . . . . . . 69

Figure 4.9. (a) Adjacent placements (A1, A2, A3, A4) of the critical regions. (b)

Segregated placements (S1, S2, S3, S4) of the critical regions. . . . . 70

Figure 4.10. Network detection performance in BAS scenario adjacent critical

regions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Figure 4.11. Network detection performance in BAS scenario segregated critical

regions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Figure 4.12. Network detection performance in CHA scenario adjacent critical

regions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Figure 4.13. Network detection performance in CHA scenario segregated critical

regions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Figure 4.14. Required number of sensors for binary sensing model. . . . . . . . 78



xiii

Figure 4.15. Required number of sensors for Elfes sensing model. . . . . . . . . 78



xiv

LIST OF TABLES

Table 2.1. Preference probability according to detection count. . . . . . . . . 25

Table 3.1. Tested parameters for different TFP scenarios. . . . . . . . . . . . 43

Table 3.2. Detection performance in different region preference probabilities. . 57

Table 4.1. Allocation of the sensors to regions using optimized allocation for-

mulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Table 4.2. List of symbols. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Table 4.3. Detection probability values used in our analysis. . . . . . . . . . . 74

Table 4.4. The sign table used in the 2k factor analysis. . . . . . . . . . . . . 75

Table 4.5. Fraction of variation explained by each factor. . . . . . . . . . . . . 76

Table A.1. Analytical and simulated DetQM values for areas with different

border region width and TFP preference ratio. The border region

width is 20000 m and TFP width is 200 m. . . . . . . . . . . . . . 83

Table A.2. Analytical and simulated DetQM values for areas with different

border region width and TFP preference ratio. The border region

width is 20000 m and TFP width is 200 m. . . . . . . . . . . . . . 84

Table A.3. Analytical and simulated DetQM values for areas with different

border region width and TFP preference ratio. The TFP width is

kept constant at 200 m and the number of sensors deployed is 200. 85



xv

Table A.4. Analytical and simulated DetQM values for areas with different

border region width and TFP preference ratio. The TFP width is

kept constant at 200 m and the number of sensors deployed is 800. 86

Table A.5. Analytical and simulated DetQM values for areas with different

border region width and TFP preference ratio. The TFP width

ratio is 0.1 and the number of sensors deployed is 200. . . . . . . . 87

Table A.6. Analytical and simulated DetQM values for areas with different

border region width and TFP preference ratio. The TFP width

ratio is 0.1 and the number of sensors deployed is 800. . . . . . . . 88

Table A.7. DetQM for uniform and optimized sensor allocations for different

values of pt1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Table A.8. DetQM for uniform and optimized sensor allocations for different

values of width w. . . . . . . . . . . . . . . . . . . . . . . . . . . . 90



xvi

LIST OF SYMBOLS

AT (Υφ) Area of S covered by lines in Υ with parameter φ.

C A bounded set.

Ci A bounded subset.

E(AT ) Expected area of S covered by lines in Υ.

E(ATt
) Expected area of TFP region covered by lines in Υt.

E(T ) Expected thickness of S wrt Υ.

E(Ti) Expected thickness of set Si wrt Υ.

E(Tt) Expected thickness of TFP region wrt Υt.

G Intruder path line.

h The height of the rectangular border.

h′ Thickness of the lines with slope α in S.

h′t Thickness of the lines with slope α in TFP region.

m(G) Measure of a set of lines G(p, φ).

Nd,si Number of detections made by the sensor si.

Ns Number of deployed sensors.

Nt Number of TFP regions.

p Distance of the intruder line to the origin.

P Intruder entry point into the deployment area.

PD Probability that the network detects an intruder.

PD|t Probability of detection in a TFP path.

PD|t Probability of detection in a non-TFP path.

PD Probability that the network misses an intruder.

Psi Probability that a sensor si detects an intruder.

Psi Probability that a sensor si misses an intruder.

pt The total probability of selecting TFP region by an intruder.

pti The probability of selecting TFP region ti by an intruder.

pt The probability of selecting non-TFP region by an intruder.

r Radius of sensing coverage of a sensor.

P Intruder exit point from the deployment area.



xvii

S Convex deployment area.

SSA Sum of squares of factor A.

SSB Sum of squares of factor B.

SSC Sum of squares of factor C.

SSAB Sum of squares of interaction between factors A and B.

SSAC Sum of squares of interaction between factors A and C.

SSBC Sum of squares of interaction between factors B and C.

SSABC Sum of squares of interaction between factors A, B, and C.

SST Sum of squares total.

s2y The sample variance of y.

si Index of a sensor.

Si Sensing coverage area of a sensor si.

t TFP region.

ti TFP region i.

w The width of the rectangular border.

wt The total width of the TFP region.

wti The width of the TFP region ti.

X The intruder.

y Measure of performance in detection probability.
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1. INTRODUCTION

The wireless sensor networks (WSN) are generally composed of small and low-cost

sensor nodes having limited computational and communication power. Although they

have limited capabilities, they are designed to achieve certain tasks by collaboration in

situations where alternative complex solutions are infeasible. Wireless sensor networks

are generally deployed to inaccessible terrains by an airplane or the artillery. This

situation requires a wireless sensor network to be self-organizing after deployment.

Once the nodes are synchronized and the network is built, the sensor network starts

collecting information about the environment such as temperature, motion, pressure,

and magnetism. The sensor nodes forward the collected information to the sink node

directly or with the help of intermediate nodes, but instead of sending the raw data,

they generally perform simple calculations and filter out the unnecessary part of the

data. The wide capability range of sensor nodes and their simplicity and low-cost in

design allows them to be used in many application areas, such as agriculture [4–8],

health care [9–11], environmental monitoring [12]. A general survey about wireless

sensor networks can be found in [13–17].

In this thesis, we are focused on surveillance wireless sensor networks (SWSN).

SWSNs are used to detect the movements within a monitored area. Some of the

application examples of SWSNs are:

• Border surveillance against intruders

• Security sensitive area monitoring such as embassies, barracks

• Cultural heritage monitoring

• Wildlife monitoring

Like most of the other WSN types, also in SWSNs, after the deployment, the

sensors wake up, organize themselves to construct a network and start the monitoring

the area. When a sensor detects an event, it is reported to the sink node so that the

necessary action can be taken by the network operators. The SWSNs are frequently

used in security applications. The prerequisites and requirements for each application

type may vary greatly.
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The border surveillance is one of the popular SWSN applications, where the envi-

ronmental conditions may impose different challenges. The border areas are generally

in the shape of long, narrow bands that separate two countries. The mountains and

valleys may cause significant altitude changes in the deployment zone. The length

of the border zone which may be hundreds of kilometers in length may require the

sensor network to be divided into smaller segments and be managed by different con-

trol centers. The segments of the network can be determined according to the terrain

properties. The harsh climate conditions may require the sensor nodes to be modified

accordingly.

Cultural heritage surveillance is another application area where the aim is to mon-

itor the historical and archeological fields and items. The historical sites are generally

public places vulnerable to dangers such as fire, theft and vandalism. Some parts of an

historical site may be open to public during visiting hours whereas some parts of the

site may be restricted to general access due to various reasons. Some parts of the old

buildings and the castles under restoration are generally dangerous for a public visit.

Most of the active archeological dig sites are generally under protection because of the

sensitive conditions of the buried items which need special care during excavation.

There have been various surveillance wireless sensor network testbeds that are

implemented using different sensor nodes for performance measurement under real life

conditions. One of the early demonstrations is conducted in March 2001. Researchers

from University of California at Berkeley deployed a sensor network onto a road from

an unmanned aerial vehicle (UAV) [1, 18]. The deployed sensor nodes were equipped

with magnetometers that have a typical range of 10 meters. The UAV with the sensor

node to be deployed attached to the bottom of its wing can be seen in Figure 1.1. The

network is used to detect and track vehicles passing through the area. This information

was later collected from the sensor nodes using the UAV flying over the area.

The targets that are desired to be detected may have different properties. Their

speed may vary greatly such as the case between a walking soldier and a moving vehi-

cle. A walking soldier may carry high amount of metal in contrast to an unarmed man.

The noise and vibration a vehicle produces is generally much more than a walking man.

Such properties can be used to detect and classify targets [19]. In this study, the au-
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Figure 1.1. The UAV with the sensor node under its wing to be deployed [1].

thors focused on the sensor nodes’ physical properties and capabilities. The detection

and classification capability of a sensor node is tested using different types of targets.

Another type of sensor that can be used for detection is passive infrared (PIR) type

sensors. The authors demonstrate a wireless network deployment for border surveil-

lance using 10 PIR type sensor nodes [20]. The system consists of iSense nodes which

contains an AMN14112 PIR sensor. Authors design and test protocols for trespasser

and failure detection.

Although, there are various fields a WSN can be utilized in, WSN applications

can be roughly divided into two main categories: monitoring and tracking [17]. The

detection oriented applications are also classified in the monitoring category. Moni-

toring an area against movements is an important topic in surveillance systems. The

capability of a surveillance wireless sensor network is generally inspected from two as-

pects: coverage and detection. In this section, we will provide some related work about

coverage and detection from the literature.

Covering an area using various surveillance methods have been formulated in

different domains in the past. One of the famous problems is the Art Gallery Problem

in which the objective is to place guards in an art gallery such that every point of

rooms is covered by at least one observer [21]. The coverage problem in the wireless

sensor networks are differentiated according to the requirements and properties of the
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network. In [22], the authors make a survey about the coverage problem in sensor

networks and define three types of network coverage which are area coverage, point

coverage and barrier coverage.

The area coverage which is also referred as full coverage or blanket coverage, is the

most studied coverage type in the literature. In this type of coverage, the objective of

the network is to monitor a given RoI with respect to different performance criteria such

as coverage ratio, minimum number of sensors providing desired minimum coverage

level during the maximum lifetime of the network. Generally, node sleep schedule

algorithms are used for maximizing the network lifetime. Since the sleep scheduling

problem is NP-hard, there is no certain optimal algorithm existing. For that purpose,

several heuristics are proposed. More can be found in [22–24]. In another approach

to network connectivity and coverage relationship, the authors propose an algorithm

to maintain a desired coverage ratio while not crippling the network connectivity. The

algorithm is run on the cluster heads in which each sensor node sends its position to

the respective cluster head. The cluster head computes the mutually exclusive and

disjoint set of common nodes. These sets are used to form the sleep schedule [25].

In point coverage, the object of the network is to monitor given targets during its

lifetime. A target is considered covered if it is within the sensing range of an active sen-

sor node. Most of the studies are focused on providing connected target coverage while

optimizing other network parameters. In [26], the authors model the problem as a max-

imum cover tree problem and show that it is an NP-complete problem. They propose

heuristic approximation algorithms to increase the lifetime of the network. In [27], the

authors analyze the sparse surveillance networks against moving targets. For a moving

target moving with a given speed a pill shaped region called target pill is formed which

includes all possible locations of sensors that can detect the target. They formulate the

region in terms of given parameters and propose a sensor placement framework. Due

to the complexity of the optimization problem dimensions, two-stage optimization is

used consisting of genetic search algorithm and nonlinear optimization program utiliz-

ing sequential quadratic programming algorithm. Deterministic deployment is another

method in point coverage. In that case, the locations of the sensors are determined

according to target positions and required coverage level. In [28], authors proposed



5

an approximation to the sensor deployment plan with constraints of minimum sen-

sor cost and maximum target coverage which are spread across a geographical region.

Their alpha-beta approximation is a combination of LP-rounding and greedy set-cover

selection. They show using simulations that it outperforms previous approximations.

The barrier coverage aims forming a line made up from sensor coverage areas and

tries to detect every object that breaches this line. One of the advantages of the barrier

coverage over full coverage is its requirement for less number of sensors. In addition

to this, they try to provide certain detection against breaches. One of the major

limitations of the barrier coverage against the full coverage is that, it is not suitable for

developing localized algorithms since the central nodes must be aware of other nodes’

states to decide if the barrier is intact. Most of the algorithms used in the barrier sensor

networks are centralized. In addition to this, the loss of a sensor node in a critical point

can form a breach hole within the barrier. The barrier is as strong as the weakest node

in the network. That makes the barrier networks vulnerable to jamming and physical

attacks. Another weak point of the barrier coverage networks is their inability about

determining the path of the intruders. The detection is performed within the coverage

area of the barrier nodes which means that the observed section of the intrusion path is

at most in the length of the coverage diameter. The path of the intruder before entering

and after exiting the sensor coverage is not known. Most of the studies in the barrier

coverage tries to improve the detection quality and lifetime of the barrier coverage using

different sleep schedule and communication algorithms. In [29], to localize the barrier

coverage problem, the authors divide a long border region into shorter rectangular

segments. Within each segment, a horizontal barrier is constructed and along the

connection strips of these segments, a vertical barrier is constructed. Compared to a

centralized method, they use more sensor nodes but gain in terms of communication

overhead and computation cost in the central node in addition to the reduced delay of

forming a centralized barrier. In [30], the authors assume that most of the intrusions

are performed within a narrow slice of the longer border region. They propose a

localized sleep-wakeup protocol called Localized Barrier Coverage Protocol (LBCP)

for maximizing the network lifetime. LBCP does not guarantee global barrier coverage

like a centralized method does, but performs well under given assumptions. In [31],
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the authors claim that sensor deployment may be linear instead of uniform random

in some deployments such as dropped from an aircraft. They study the properties of

barrier coverage of the network under such conditions.

In most of the coverage studies, it is assumed that the sensing range of the

sensor nodes to be equal and homogeneous. The coverage of the network is calculated

according to this assumption. This may not be true for all types of sensor networks.

The network may be composed of different types of sensors with different sensing

ranges, thus forming a heterogeneous network. Sensing areas of some sensor nodes

may already be covered by other types of nodes with larger sensing area. These sensors

are called unnecessary sensor nodes and they may be turned off without affecting the

coverage of the network [32]. An algorithm can be used to determine these nodes and

minimize the number of nodes to remain active.

The network may also be composed of the same type of sensors with dynamic

sensing ranges. There are commercial sensor nodes whose sensing parameters can be

adjusted accordingly [33,34]. When the targets are redundantly covered by the sensors,

their sensing range can be adjusted and they can be grouped into sets to setup a sleeping

schedule. This problem, which is called as Adjustable Range Set Covers by the authors

is investigated in [35]. The problem is modeled mathematically and formulated using

integer programming. A greedy heuristic algorithm based on integer programming is

proposed as a solution. The proposed heuristic can be both applied in centralized and

distributed cases. In their work, the researchers use the sensors with various sensing

and transmission ranges instead of fixed ones [36]. It is stated that sensors with larger

range consume more energy, thus have shorter lifetime. The problem is to select a

subset of sensors with specified sensing and transmission radii such that they should

cover all of the points within the region by their assigned sensing radii and they should

be able to form a connected communication group by their assigned transmission radii.

The goal is to minimize the sum of the sensing and communication energy cost of the

sensors. A Voronoi-based algorithm is used to solve the k1-connectivity and k2-coverage

problem where k1 and k2 are desired connectivity and coverage degrees.

Surveillance sensor networks are studied in terms of their detection capability, too.

The detection of a target trespassing a monitored zone is essential to the functioning
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of a surveillance wireless sensor network. Some of the work in this field investigate

the sensor nodes in terms of their physical and sensing properties whereas some of

the others combine different systems to improve the detection quality under different

conditions.

In [37], the authors formally define the exposure and using it, they define the

maximal breach and the minimum support paths. This information is used to estimate

the reliability of the network against trespassing. In [38], authors calculate the quality

of deployment and find breach paths in wireless networks in the existence of obstacles.

They propose a method that converts the watershed segmentation of the field to a 2D

auxiliary graph and calculate the weakest breach path. In [39], the detection problem

is formulated to provide analytical results for target detection within a convex zone.

The probability of target detection is calculated for both stochastic and deterministic

deployments. Using the results of the analytical study, they propose a sensor placement

heuristic to achieve better target detection. In [40], the authors calculate the detection

quality of a sensor network in the existence of jammer attacks. They assume that

the sensors that are within the range of jammer ceases functioning which results in a

coverage hole within the monitored zone. They describe the system using the given

parameters and formulate the detection quality measure in a closed form. They prove

the correctness of the formulation both with analytical and simulation methods.

In a recent study, the authors built a wireless sensor network composed of PIR

sensor nodes [41]. They propose an algorithm based on the Haar transform and support

vector machine to be used in PIR sensor networks for detection. In another study, Li

and Parker designed and implemented an intruder detection system that consists of a

wireless sensor network and a mobile robot [42]. The sensor network utilizes neural

network techniques to learn about the environment. When an intruder is detected by

the network, a mobile robot is sent to the detection location. After deployment, using

its light and sound sensors, the network constructs a base state of the environment.

When there happens a change in the environment, the mobile node, which acts as a

cluster head, is notified. The mobile robot calculates the path, reaches the detection

site and starts tracking the intruder with its embedded camera system. In another

study, the performance of particle filter to track targets by acoustic sensor nodes is
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measured [43]. The authors analyze the theoretical bounds for tracking performance

and compare it with the simulation results. Their testbed consists of Xbow MicaZ

motes which are arranged such that they reach the data sink with single hop. They

present the effects of various parameters in the target detection and recommend optimal

values based on experiment results.

One of the common network type used in surveillance is barrier coverage type sen-

sor networks which are generally employed in intrusion detection applications. In [30],

authors are focused on the determination of the global barrier coverage of a network

using local coverage information. They propose a localized barrier coverage protocol

(LBCP) that is used to construct a sleep schedule and increase the network lifetime

while providing required local coverage. It is expressed by the authors that most of

the time local coverage provides global coverage due to nature of mobility. In [31], the

authors claim that sensor deployment may be linear instead of uniform random in some

deployments such as dropped from an aircraft. They study the properties of barrier

coverage of the network under such conditions. To improve the reliability of barriers

against failures and attacks, k-barrier coverage is proposed. An area is called k-barrier

covered if an intruder traveling along any orthogonal crossing path can be detected

by at least k sensors. The problem with the barrier coverage in a surveillance sensor

network is its susceptibility to node failures and attacks. Most of the time, barrier

coverage networks are deployed as a thin long line in order to maximize detection with

minimum number of sensor nodes. This linear coverage is as strong as its weakest part,

i.e. its thinnest part in terms of coverage. Any failure or coverage hole in that part will

make the whole network obsolete. They are also considered more prone to jamming

and physical attacks.

The detection capability of a sensor network is discussed in [44]. In this study,

authors define the path exposure phenomenon to quantify the detection capability of a

sensor network. They define the exposure of a target as the probability of detecting the

target traversing along a minimum detection path. Their sensor model is based on the

power of the signal emitted by the target at a distance. The detection probability is

calculated according to the distance between the sensor node and the target. A sensor

deployment strategy is proposed to reach the desired minimum exposure. In a similar
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study, authors propose a formulation to determine the target detection probability

using the minimum exposure path [45]. They investigate the effects of the shape of the

field and the sensing range on the detection quality of the network. They assume that

the target position is determined randomly and does not take the target mobility into

account. In [46], authors analyze the k-sensed ratio of a path by a sensor network, which

is the part of the path sensed by at least k sensors. Other performance metrics such as

distance until first sensed, sensing holes, breach and support paths are also investigated

using their model. They also provide a generalized version of their model using m-

dimensional straight line paths sensed by an n-dimensional sensor network. In [39],

authors formulate the target detection problem as a line-set intersection problem and

use integral geometry to analyze it. They analytically evaluate the target detection

probability and the mean free path until a target is detected, and show that detection

probability is independent of the shape of the monitored zone. Their work assumes that

the targets traverse all the monitored zone randomly and do not have a direction of

travel over the zone. Similarly, most of the studies that investigate the sensor network

detection ignore the behavior of the intruder when analyzing the detection probability

or utilize mobility models inherited from previous wireless network and ad hoc network

experiments. Most of these models employ random mobility either in single entity or a

group of entities that are related to each other according to some properties [47]. More

detailed surveys about mobility models can be found in [48–50]. Though these mobility

models may be acceptable for representing the movement of an individual intruder, the

intrusion preferences over the whole border region are generally not random. In a recent

study, the authors propose an environment-aware mobility model to be used in wireless

ad hoc networks [51]. They use obstacles and doorways to model different pathways.

They present that the existence of regions of interest has significant impact on node

mobility.

1.1. Motivation, Problems and Contributions

The surveillance wireless sensor networks are expected to have high detection

probability while monitoring an area. The detection probability is affected by many

parameters including the number of sensor nodes, the sensing range, the sensing model,

the environmental conditions, the target mobility model, and the monitored zone di-
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mensions.

In our study, we present that the properties of the application for which the

SWSN will be used affect the mobility of the targets drastically. The movements of

the targets are not random in the real life, but they have a purpose. In contrary to

most of the models, we take the aim of the mobility into account. In general, the

mobility of an intruder is shaped for achieving a goal. This goal generally depends

on the type of the application. In a border area surveillance application, the goal of

intruders is to pass through the region without being detected. In a cultural site area

monitoring application, the goal of the tourists is to visit the historical places and

see the ancient items. In this thesis, while studying the mobility models, we focus

on border surveillance applications and study their properties, but the mathematical

models we use are represented in a generic form and can be easily applied to other

kinds of applications merely by changing the parameters in the proposed model.

In a border surveillance scenario, there are many factors that affect the system.

Some of these factors are the existing security measures such as watch towers, sentries,

razor wires and fences. The disadvantages of such security measures are that they are

generally static and can be easily overcome or tricked by the intruders. The effective

observable area from a watch tower is generally limited by the terrain and a path not

seen from it can be easily explored. The schedules and routes of patrolling sentries

can be easily determined and necessary precautions to avoid them can be taken. The

fences and razor wires need constant maintenance to be kept in shape and they can be

easily broken or cut off. The trespassers try to avoid these and other similar measures

by preferring some advantageous regions over others which are also geographically

feasible [52]. An example of this behavior is shown in Figure 1.2. In this figure, the

trails of the intruders are seen clearly on the US side of the border where the terrain

is grassy.

The TFP phenomenon is also being utilized in the current border watch applica-

tions. An example can be given from video cameras installed to monitor the US-Mexico

border. The locations of these cameras are being chosen according to the observed tres-

passing behavior in the past. In a recent project, the feeds of these video cameras are

opened to the public access over Internet. The volunteers who sign up for this free ser-
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Figure 1.2. Trails of intruders along the US-Mexico border [2].

vice can access and watch the live streams from different points of the border. If they

detect an activity as described within the site, they notify the officials [3]. In other

words, a volunteer based watch system is being used for border surveillance. Some

samples of the feeds watched by the volunteers can be found in Figure 1.3. Compared

to a wireless sensor network, such a watch system has clear disadvantages. First of all,

it is based on volunteering system and may not be always available. The coverage of

the area is based on a watch system with unreliable quality. In addition to this, the

cameras are generally mounted on high poles, thus easy to spot. The whole system can

be avoided by choosing paths that are not in the visual range of the cameras or it can

easily be disabled by an attack to the cameras. Furthermore, the website is accessible

to everyone over the web without any restriction, hence the whole system is open to

Internet based attacks. Another disadvantage of an open-to-everyone web-based sys-

tem is that the intruders can learn insider information easily by just signing up to the

service. The camera locations and their coverage can be easily determined by watching

the feeds. Once this information is obtained, safe paths that are not in the detection
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range of the cameras can be easily planned and other kinds of measures can be taken

to avoid detection.

(a) (b)

Figure 1.3. Camera feeds from the BlueServo surveillance system [3]. (a) An area

frequently used by drug smugglers. (b) A path frequently used by the trespassers.

Wireless sensor networks are appropriate tools for surveillance applications. How-

ever, there are many issues that may arise during the design of a SWSN. The specific

problems we address in this thesis and our contributions can be summarized as follow-

ing:

• The mobility of the targets in a SWSN is generally not random. It is based on the

application type and the environmental conditions. In this thesis, we define the

travelers’ favorite path (TFP) and TFP region notions. The region that most of

the trespasses are made through is referred to as TFP region. The localization of

TFP region or regions within the border area and determining the properties is

an important problem due to the effects on the detection quality of the network.

Statistical and image processing based algorithms can be applied for finding the

TFP regions.

• The essential function of a SWSN is the detection of the targets within the mon-

itored zone. Hence, we choose the detection probability of a target as the main

problem addressed in this thesis. The detection probability of a target by a SWSN

is reduced to line-set intersection problem by bijection. A general closed form rep-

resentation of the detection probability that can be applied for any convex regions

is presented along with its proof and simulations.

• The mobility pattern affects the location, the width and the preference probability

of a TFP region existing in a border area. We explore the effect of some factors to
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the performance of a SWSN deployed in a border area with a single TFP region

by the analytical models and simulations. The analyzed factors are border area

width, sensor count, TFP region width and preference probability.

• The border area with a single TFP region scenario is generalized to a generic

SWSN scenario consisting of multiple regions and an analytical detection quality

measure is developed to calculate the performance of the network. Moreover,

the detection model used in the analytical metric is applied to different detection

models and the effects of detection model parameters on the quality metric are

examined.

• Different applications based on the generic SWSN scenario are devised and the

detection quality of the network is investigated. The effects of various factors on

a SWSN performance are inspected using an analysis of factors and their impact

on the result are shown. Furthermore, an optimized distribution of the sensor

nodes based on the analytical detection quality measure is developed and its

performance increase in the detection quality is demonstrated by the analytical

methods and simulations.
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2. TRAVELERS’ FAVORITE PATH PROBLEM

In this chapter, we describe the travelers’ favorite path (TFP) problem. Using dif-

ferent image processing methods, we present how to determine TFP and TFP regions.

The travelers’ favorite paths are the most preferred passing channels in the monitored

area. The preference criteria is generally based on the environmental conditions and

specific to the wireless sensor network deployment scenario. In border surveillance sce-

narios, the favorite paths are selected based on the terrain conditions such as valleys,

mountains, bridges and rivers, the locations of the security measures such as watch

towers, barbed wires, and sentries [2, 3, 52].

In cultural heritage scenarios, the favorite paths are generally selected based on

the location of the statues, pictures and other cultural items, the archeological work

sites where access is restricted to regular visitors and predetermined tour paths of

local guides. Although there are differences between various scenarios, they have some

common properties. The favorite paths are generally located close to each other and

can be bounded within a region. We call these regions as travelers’ favorite path

regions. It is assumed that these regions are not known by the network operators.

In this section, we present how the travelers’ favorite path problem is formulated.

The sensors are deployed to the area using random deployment. Assuming that the

travelers’ are not aware of the sensors, target mobility models are constructed based

on the travelers’ favorite path scenarios. Travelers whose mobility patterns are based

on these models traverse the monitored area and the detection data are obtained at

the end of the simulation runs. Using these detection data, we formulate and calculate

the detection of travelers’ favorite paths.

2.1. Network Model

The sensor nodes are deployed to the field in a random manner by an airplane or

the artillery. The deployment area is modeled in a grid structure in which the points of

the grid are connected to each other along x and y dimensions. A sample field model

is given in Figure 2.1. The horizontal axis is divided into (m− 1) and the vertical axis

is divided into (n − 1) equal parts, thus, there are (m · n) grid points. The distance

between each grid point is equal in both axis and there is no elevation. The direction
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of the intrusion is from the insecure side to the secure side of the region.
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Figure 2.1. A sample field represented using grid structure.

The location of the sensor nodes are assumed to be known. The localization of

wireless sensor nodes is a well studied topic and there are various solutions both in

hardware and software to calculate the location of a sensor node. Placing a number of

source signals, also with unknown locations, can be used to localize sensor nodes [53].

Each source in turn emits a calibration signal, and a subset of sensor nodes measures

the time of arrival and direction of arrival of the signal emitted from that source. From

these measurements, the locations and orientations of the nodes can be computed.

Another method is to use a node with a known location as a reference point. A single

mobile node that is aware of its own location, with the help of an integrated GPS device,

can be used for localization [54, 55]. Sensor nodes receiving the beacon packets infer

proximity constraints to the mobile beacon and use them to construct and maintain

position estimates. The connectivity information of each sensor node, who is within

communications range of whom, can also used for determining the locations of sensor

nodes [56]. In addition to the connectivity information, additional information such as

estimated distances between neighbors or known positions for anchor nodes can also

be integrated to the localization process. A central method can be used to construct

a global map whereas the distributed method constructs smaller local maps and these

local maps can be patched to form a global map. Another method is to use the spatio-

temporal properties of well controlled events to localize the sensor nodes [57]. Since the

time and location of the controlled event is known, using the information of time the

event is perceived by the sensor node the location can be calculated. The sensor nodes

detect the events and report back to the base station. The base station computes the
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locations of the nodes. More information on the localization of wireless sensor nodes

can be found in [58–65].

There are Nt TFP regions within the border area whose locations are known

by the intruders but not by the network operators. These regions are assumed to be

rectangular and TFPs are bounded by these regions. The TFP regions lie across the

border between insecure and secure sides. The width of each region may be different

from each other and are generally narrow relative to the width of the whole field

denoting narrow safe passages with respect to the intruders. If the width of the TFP

region ti is denoted with wti , the ratio of TFP region to total width is

Wt =

Nt
∑

i=1

wti

w
(2.1)

where w is the border area width. The value of Wt is dependent on the scenario type

and properties. It is generally low in the border surveillance scenarios. An intruder

that will trespass through TFP selects one of the TFP regions, region ti, with the

probability pti . The probability of selecting at least one of the TFP regions is

pt =

Nt
∑

i=1

pti (2.2)

where the value of pt is also dependent on the scenario type and properties. It is

generally high in the border surveillance scenarios because of travelers’ bias towards

these regions. A sample border area with two preferred regions is shown in Figure 2.2.

In the simulations, we assume that sensors operate according to the binary detec-

tion model, but the statistical tools that are presented can be easily applied to other

sensing models, too. The binary detection model is a good approximation for the type

of sensors which have sharp sensing ranges such as PIR sensors [66]. Many studies use

the binary sensing model due to its simplicity. In this model, there is a range which

determines the sensing probability in a certain manner. The detection probability of
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Figure 2.2. A sample field with two preferred regions.

the binary sensing is

PD =







1 if d ≤ r

0 otherwise
(2.3)

where r is the sensing range of the sensor and d is the distance between the target and

the sensor.

2.2. Region Identification Problem

The travelers’ favorite problem can be defined as dividing the border area into

disjoint regions according to the preference probability by the travelers. The monitored

zone is modeled as a grid and we know the positions of all sensors. The detection count

of each sensor will be used for statistical analysis. We propose some methods that can

be used in the identification of these regions and calculating the preferences of each

region.

We assume that the sensors are distributed uniformly over the monitored zone.

The number of detections made by a sensor that is located in region i is proportional

to the preference rate of the region. If a target is detected at a point, this data

can be stored and used for preference probability analysis. In that case, the region
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identification problem can be stated as

Find S = t1
⋃

t2
⋃

. . .
⋃

ti (2.4)

s.t. ti
⋂

tj = ∅, i 6= j

Nd,pm ∼ Nd,pn, m 6= n, pm ∈ ti, pn ∈ ti

where t1, t2, . . . , ti are the regions within the monitored zone, pm and pn are grid points

andNd,pm andNd,pn are the number of detections belonging to these points, respectively.

There are some issues in this approach. First of all, the storage of all detection statistics

with location information in the sensor node requires a large amount of memory, which

is a scarce resource. The transmission of this data to a central station for storage and

processing requires large bandwidth and causes the sensor node to consume much of

its limited and precious power supply. Even if the nodes have large amount of memory

and an unlimited power supply such as a solar cell, the sensor network should have a

complete coverage over the area to obtain reliable information about all points within

the border area. For a wireless network to provide complete coverage, it should be

densely deployed and all sensor nodes should be functioning without failure. This is

generally far from the real life conditions. Another weak point of this problem is that,

the detected locations of targets may not be accurate or the location of the target may

not be calculated due to the capability restrictions of the sensor node. For the sake of

applicability in real life conditions, we assume that we only have the detection count

of each sensor and nothing else available. The detection count is an easy to collect

and store statistics. It requires only a few bytes in the sensor node’s memory storage

and it is easy to transmit to the base station. Applying these restrictions, our original

problem is transformed into

Find S = t1
⋃

t2
⋃

. . .
⋃

ti (2.5)

s.t. ti
⋂

tj = ∅, i 6= j

Nd,sm ∼ Nd,sn, m 6= n, sm ∈ ti, sn ∈ ti

where sm and sn are sensors that are located in the same region. Before further
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inspecting this problem we will look at the mobility of intruders and the effects of their

paths on the general detection distribution.

2.3. Effects of Mobility on the Detection Count

In our scenario, the intruders move from the insecure side to the secure side

of the border area. A sample border surveillance scenario is shown in Figure 2.3.

There is a watch tower and some part of the border area can be seen from the tower.

Hence, most of the intrusions are being made through the region that is not observable

from the watch tower. We assume that all intruders follow a straight path, which has

more advantages compared to a segmented path for the benefit of the intruder. These

advantages are explained and proved via simulations in the next chapter of the thesis.
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Figure 2.3. A border area with a watch tower.

This scenario can be represented as in Figure 2.4. The width of the observable

area from the watch tower is denoted as w1 and the width of the remaining area is

w2 = w − w1. We draw some of the intruder paths represented with lines. We draw

more lines in the region out of the visible range of the watch tower to represent its high

preference ratio.

The direction and entry and exit point restrictions on the possible set of lines

cause the intersection of the possible intruder paths to be denser in the center of the

region. The probability of an intruder passing through a point in the center of the field

is higher than passing through a point close to the side borders of the region. In order

to show this effect more clearly, a heat map representing the density of lines passing

through a region is prepared. For demonstrative purposes the dimensions of the heat
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Figure 2.4. The graphical representation of intruder paths in a border area.

map region is selected to be w = h = 100m. The distance between each grid point

is selected to be 1m. The upper and lower sides of the heat map denotes the secure

and insecure regions, respectively. All possible set of lines are drawn and the density

corresponding to each grid point is calculated. The resulting heat map is shown in

Figure 2.5. The heat map will help in understanding the shape of the statistical results

to detect the region boundaries.
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Figure 2.5. The heat map of possible intruder paths in a region.

2.4. Detection of the Region Boundaries

The heat map clearly shows that the expected number of detections will be most

within the center of the region and will be less near the left and right side boundaries
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of the region. The detection statistics of the sensor nodes is represented such that

Nd,s = {Nd,s1, Nd,s2, . . . , Nd,si} (2.6)

where Nd,si is the number of detections made by the sensor node si located at si(xi, yi).

The size of the statistics set Nd,s is equal to the total number of sensors deployed

which is Ns. The border area is divided into regions orthogonal to the x-axis and

each region may have different preference probabilities as mentioned before in this

chapter. It is important to estimate the boundaries of these regions and corresponding

preference probabilities with minimum error in order to analyze the detection quality

of the network correctly. In this section, we will provide two different methods that

can be used for detection of the region boundaries.

For the simulation purposes, we investigated a border area consisting of two

regions, each with equal length of wt1 = wt2 = 500 m and h = 500 m. The simulation

consists of 100 intruder passes. The preference of the first region is pt1 = 0.9 and the

second one is pt2 = 0.1, 90 of the 100 intrusions are made through the first region and

the remaining 10 are made through the second region. The number of sensors is 500

with binary sensing range, r = 20 m, which are deployed to the border area in uniform

random distribution.

2.4.1. Regional Maxima Method

In a typical border area, there are regions with different preference probabilities.

The sensors in the highly preferred region will have high detection count and other

sensors will have low detection count or no detection. To reveal the sensors that are in

the highly preferred region, the initial step of the regional maxima method is to discard

the sensors that have low detection count. For this purpose, we apply the filter

Nd,si =







Nd,si if Nd,si ≥ µ,

0 otherwise
(2.7)

where µ is the mean of the detection data. This filter isolates the sensor nodes that

have a detection count above the average. The elimination of these less critical sensors

enable us to focus on more important sensor locations. Following the initial filtering
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step, to find out the local maxima points, the regional maxima filter is applied. A

regional maximum is a flat zone not adjacent to a flat zone with higher gray value [67].

The result is shown in Figure 2.6. The resulting figure shows only the points that have

significant weight in the detection statistics and eliminates the rest. In our scenario,

this corresponds to the region with the preference ratio of 0.9. The boundaries of

this region can be easily found by fitting the convex region that contains all regional

maxima points.
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Figure 2.6. Detection data after local maxima filter is applied.

2.4.2. Contour Map Method

If the sensor points are represented with heights proportional to their detection

count, we obtain a contour map. But, since the detection data is not based on the

target detection location but the sensor location, the contour map will show only points

corresponding to the locations of sensor nodes similar to the one shown in Figure 2.6.

The detection data is averaged on the sensor coverage area of the sensor node by

applying disk filter, so, the point based detection data is converted to coverage based

2-D detection data. The disk filter returns a circular averaging filter (pillbox) within

the square matrix of side 2∗radius+1 [68]. When the disk filter is applied, a graphical

representation of sensors with their relative detection count is obtained. A sample

simulation result is shown in Figure 2.7 when radius = r = 20 where r is the sensing

radius of sensors used in the simulation. This figure represents the sensor coverage
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areas with an averaged detection value. The detection difference between sensor nodes

are shown by the heat map and it is clear that some of the sensors are hotter than the

others.
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Figure 2.7. The contour map with disk filter radius = 20.

In order to reduce the effect of the physical coverage gaps between the sensors in

the contour map, we need to apply a disk filter with a large enough radius that will

provide an expected coverage ratio. The expected area that randomly placed circles

may cover in a plane has been analyzed before by Hall [69]. He solved the problem

of border effects in such a plane by using torus convention. Torus convention models

the network topology in a way that nodes nearby the border are considered as being

close to nodes at the opposite border. By modeling the deployment region as a torus

a sensor’s sensory region is considered completely within the deployment area. Let

denote the area of the deployment region S with A = w · h. Hall proves that when

Ns/A → κ where 0 < κ < ∞, the ratio of uncovered area in the deployment region

approaches e−κπr2 as r increases [69]. Using Hall’s estimation we can obtain the radius

of the disk filter that will provide a certain coverage degree ς such that

r =

√

−
ln(1 − ς)

κπ
(2.8)

where ln(x) is the natural logarithm of x. We choose the coverage degree as ς = 0.99
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and calculate the corresponding disk radius accordingly. The disk filter is applied to the

detection data using the new radius and the improved contour map of the deployment

area by the disk filter with the modified radius is shown in Figure 2.8. The extended

coverage map also shows similarity with the heat map shown in Figure 2.5, where the

intensity of detection counts are intense on the center of the region. The outer rim of

the contour map is selected as the region boundary.
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Figure 2.8. The contour map with modified disk filter.

In this section, we presented two different methods to calculate the boundaries

of regions. The regional maxima method is effective in the scenarios where there is a

large difference between the preference probabilities of regions. When the difference

gets smaller, there appears some points that are not eliminated by the first filter. In

that case, the final regional maxima figure contains some points that belong to different

regions and an ambiguity between regions can occur. In order to eliminate these points

the cut-off level of the elimination filter can be modified. The contour map method is

a useful tool for representing the distribution of heat points and region centers among

a border area. Using the contour map, a rough idea about the locations of and density

of the regions can be obtained and by using this information, the performance of the

regional maxima method can be improved.
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2.5. Calculation of Preference Probabilities

After detecting the region borders, the preference probability is simply calculated

according to the ratios of detection count of each region to the total detection count.

The preference probability of region ti is:

pti =

∑

si∈ti

Nd,si

Ns
∑

j=1

Nd,sj

(2.9)

where Ns is the total number of the sensors. The calculated preference probabilities

of regions according to the simulation results are given in Table 2.1. As seen from the

table, the calculated probabilities are very close to the actual values.

Table 2.1. Preference probability according to detection count.

Region 1 Region 2 Total

Detection Count 1899 207 2106

Ratio 0.902 0.098

In this chapter, we defined the travelers’ favorite path problem and presented

some methods to solve it. The presented methods that utilize some image processing

and the statistical analysis tools can be used in the identification of the regions in a

border area. In addition to the presented methods, alternative methods may be devised

that can be used in the region identification process and improve its performance. In

addition to this, there are various means to improve the accuracy of the given region

localization method. If the number of sensors in the border area is increased, the

accuracy of the statistics will increase and the segmentation process will be finer. In

addition to this, the size of the collected data and more detailed information such as the

precise coordinates of the detected target within the sensing range may also improve

the quality of the region identification process.
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3. DETECTION QUALITY MEASURE PROBLEM

In this chapter, we describe the detection quality measure problem. Using tools

from the geometric probability, we present how to calculate the detection quality mea-

sure for a given surveillance wireless network.

3.1. Detection Quality Measure Problem in a Field with Single Region

The performance of a SWSN can be measured with its target detection prob-

ability, which is defined as the detection of the target moving inside the monitored

zone by at least one sensor node. We define the detection quality measure problem as

calculating the detection probability of the target moving in the monitored zone from

one side to another.

3.1.1. Network Model

In the detection probability analysis, we assume a convex 2-D border area, S,

which is further simplified to a rectangle that has a width of w and a height of h

for demonstrative purposes. There are Ns sensors deployed randomly within the area.

Each sensor si is assumed to have convex sensing coverage of Si with radius ri, uniformly

and independently distributed within S. The border area separates the secure side from

the insecure side. The direction of the trespassing is from insecure side to the secure

side, thus along the y-axis of the region. There is one TFP region in which the TFPs

reside. The location of the TFP region is not known by the network operators but

known by the trespassers. The probability of selecting the TFP region for trespassing

by an intruder is pt. The width of the TFP region is wt.

We assume that, the intruders have limited or no knowledge about the deployment

of the sensor network similar to the assumptions in [70]. On the other hand, the

intruders have knowledge about other security measures such as the locations of watch

towers, mine fields and highly patrolled areas. They try to avoid these non-sensor

detection measures by selecting preferable paths which they possibly have learnt from

previous experiences. Thus, we can say that the location of the TFP paths are indirectly

determined by the conventional intrusion surveillance methods. The coordinates of the

TFP region that consists of the TFP paths is not known by the network operators.

The sensor deployment is done with an airplane or artillery because of the acces-
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sibility difficulties to the border region. The sensor nodes are distributed in a random

manner over the area. The intruder has no knowledge about the coordinates of the

sensor nodes in the monitored zone. If the intruder had the deployment map of the

sensor network, he could avoid detection by following longer but safer paths around

the sensor nodes. However, the lack of such information prevents the intruder to take

such evasive actions and enforces him to choose the path which will reduce his exposure

probability. The path which minimizes the detection probability under these conditions

is the shortest path from the entry point to the exit point. Such linear paths are the

least detection paths with respect to the intruder. Although this situation limits the

path diversity and excludes the curved and segmented paths, it is a preferred choice

for the benefit of the intruder. One advantage of using a linear trajectory is that, the

worst detection performance of the sensor network can be calculated which is an im-

portant threshold for the network quality. As seen in Figure 3.1, segmented paths are

generally longer than the straight path, and the detection probability of the intruder

following a segmented or curved path increases significantly. In Section 3.1.4, we show

the validity of this statement by the simulations. Other advantage of the straight line

path is the parametrization of linear trajectories which can be easily applied both in

the analytical studies and physical representation of the network model.

The sensors operate using a binary detection model. In this model, if the target is

within the sensing range of the sensor node, it is certainly detected. If the target is out

of the sensing range, it avoids detection. Though it is a simple model, it can be safely

used for micropower impulse radar (MIR) sensors. The MIR sensors are radar-based

low-power sensors that use ultra-wideband (UWB) pulses [71, 72]. Their range are

relatively larger compared to other types of sensors which make them more preferable

in border surveillance sensor networks. There are commercially available MIR sensors

such as SEGA-Node TIMS Radar [33]. In the MIR sensors, a transmitting antenna

radiates a pulse. Reflections from the target are listened by a receiving antenna, and

using the time difference, the distance of the target is calculated [73].

3.1.2. Problem Definition

In this section, we will provide a formal definition of the border SWSN intruder

detection problem with a TFP region. Moreover, we will provide two additional prob-



28

lems which will be mapped to each other to derive a solution for the geometric domain

utilizing metrics and tools from Integral Geometry and Geometric Probability.

Problem 3.1. Border surveillance intruder detection with TFP region prob-

lem: We have a convex deployment area, S, sensed by Ns sensors where each sensor

si has a sensing coverage Si with a radius of ri, uniformly and independently distributed

within S. The deployment area separates the insecure region from the secure one. The

trespassers enter into the deployment area from the insecure side and exit from the

secure side, following a linear trajectory. The trespassers prefer the TFP region with

probability pt and make their passage through this region. They choose any other path

within the border area with probability of pt. What is the probability PD that an intruder

X randomly crossing S is detected by at least one sensor?

A graphical representation of Problem 3.1 is given in Figure 3.1. The probability

PD is defined as the detection quality measure (DetQM) of such a sensor network.
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Figure 3.1. Border surveillance intruder detection with TFP region problem.

The solution of this problem requires the calculation of the probability of detec-

tion for a set of sensors in the network. In order to provide a solution for this problem,

we introduce two additional problems. The first one, Problem 3.2, is the simplified

version of Problem 3.1 which does not consider any TFP regions. The second one,

Problem 3.3, corresponds to the geometric interpretation of such a sensor network. We
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will provide a mapping between these two problems to show that they are equivalent,

so, both can be reduced to each other.

Problem 3.2. Border surveillance intruder detection problem: We have a

convex deployment area, S, sensed by Ns sensors where each sensor si has a sens-

ing coverage Si with a radius of ri, uniformly and independently distributed deployed

within S. The deployment area separates the insecure side from the secure one. The

trespassers enter into the deployment area from the insecure side and exit from the

secure side, following a linear trajectory. What is the probability PD that an intruder

X randomly crossing S is detected by at least one sensor?

Problem 3.3. Constrained Line-Set intersection problem: We have a bounded

convex set C of identical shape with S and Ns sets Ci of identical shape with Si in

Problem 3.2, uniformly and independently distributed inside C. What is the probability

PD that a random line G intersecting C with the same constraints as in Problem 3.2,

also intersects at least one of the sets Ci, i = 1. . .Ns?

Our analytical study relies on the fact that these two problems can be reduced

to each other with a bijection between physical and geometric domains. The following

lemma presents this bijection.

Lemma 3.4. Border surveillance intruder detection problem and the constrained line-

set intersection problem are equivalent, so, they can be reduced to each other with a

bijective mapping.

Proof. We provide our proof extending the method used in [39]. The deployment area

S is represented in the map domain as a collection of points, C, each representing a

coordinate in S. Clearly, the 2-D geometric representation, C, is of identical shape

with S. Hence we map the the deployment area, S, to the bounded and convex set

C. By the same rationale, the sensing area, Si of sensor si is mapped to the bounded

set Ci of identical shape with Si, uniformly and independently distributed in C. The

geometric representation of a linear trajectory of an intruder X is a straight line G(p, φ)

in the plane, defined by p as the shortest distance of G to the origin O of a coordinate

system, and φ as the angle of the line perpendicular to G with respect to the x axis.

Clearly, the intersection constraints of the line G with set C and Ci are the same as the
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trespassing constraints in the geographic domain. This provides a mapping between

the mobile target detection problem for a stochastic sensor network and the line-set

intersection problem. Hence, we conclude that both problems are equivalent.

The mapping stated in Lemma 3.4 between Problem 3.2 and Problem 3.3, pro-

vides a bijection between the physical sensor network domain and the geometric do-

main. In the next section, we will provide a solution for the probability of detection

of a target by a single sensor in the geometric domain since we have shown that Prob-

lem 3.2 and Problem 3.3 can be reduced to each other. The provided solution will be

extended to derive the detection for a given set of sensors. Next, we will integrate the

effect of the TFP region and TFP probability, in this formulation. Finally, we will

provide a closed-form solution for the probability of detection in Problem 3.1.

3.1.3. Detection Quality Measure

In this section, we will find an analytical representation of the DetQM metric for

a border SWSN with TFP region. Since we have shown that the probability of target

detection PD is equivalent to the probability of lines to intersect geometric shapes, the

problem can be simplified as a frequency count of lines intersecting geometric shapes.

In our problem, we consider only the set Υ of all possible linear trajectories crossing the

deployment area from the insecure side to secure side with some constraint. Therefore,

PD is equal to the quotient of the number of lines that intersect any of the sensing areas,

over the number of lines that intersect the deployment area given that these lines are

in Υ. However, the set of lines in Υ intersecting a given convex set is uncountable.

Hence we will introduce the line measure tool from the integral geometry to

derive an analytical solution to the Line-Set intersection problem. For any straight

line G(p, φ), the density of the line is formulated as

dG = dp ∧ dφ (3.1)

The measure m(G) of a set of lines G(p, φ) is the integral of the density of the

line, which is in the differential form, over the set [74]. Hence,

m(G) =

∫

dp ∧ dφ (3.2)
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Our problem requires these lines to cross insecure and secure sides of the de-

ployment area with possibly more constraints. Such lines constitute the subset Υ

of the lines measured in Equation 3.2. Hence we need a geometric interpretation of

the measure of a given set of lines. For this purpose, we introduce the notion of the

thickness of a bounded set for lines determined by angle φ in set Υ, T (Υφ), where

Υφ = {G(p, φ) : G ∈ Υ}.

Let U be the intersection of set C with Υφ, the area of the region traversed by

the lines determined by angle φ in the line set Υ. T (Υφ) is defined as the length of

the projection of U to a line with direction parameter φ [74]. The measure of a set

of lines intersecting with C at a fixed direction φ and in line set Υ is equal to the

thickness T (Υφ) of the set in that direction. Let δ be the event C ∩Υφ 6= ∅ and δ be

the complement of δ, i.e. C ∩ Υφ = ∅. Given that the trajectories are constrained to

be in the set, Υ, the measure of the set of lines in Υ that pass over a bounded convex

set, C, defined by the support function p = p(φ) of the convex set, is given as:

m(G : G ∩ C 6= ∅|G ∈ Υ, δ) =

∫

G∩C 6=∅|G∈Υ,δ

dp ∧ dφ

=

∫ α2

α1

T (Υφ)dφ

= (α2 − α1)E(T ) (3.3)

where α1 and α2 are the minimum and maximum values respectively for parameter

φ of lines in Υ and E(T ) =
∫ α2

α1

1
α2−α1

T (Υφ)dφ. Since the border area is convex and

the trespasser trajectories are linear from the insecure to the secure side, the target

trajectories in Υ are allowed to have parameters in range [α1, α2]. By Equation 3.3,

the average thickness of the set of lines for a given constraint on line-set intersection, Υ

can be used to calculate the intersection of a random line with a convex set Ci within

C, which will be used for the proof of the following lemma.

Lemma 3.5. Let S be the deployment area of a sensor network and let si be any of

the sensors deployed in the area. The probability that an intruder randomly passing

through S with a trajectory from the line set, Υ, is detected by the single sensor, si is
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equal to

Psi =
E(Ti)

E(T )

E(AT )

A
, (3.4)

where E(Ti) is the average thickness of the sensor coverage area, E(T ) is the average

thickness of the deployment area for the given line-set intersection constraint which

determines Υ, E(AT ) is the average area of the deployment site covered by lines in Υ

and A denotes the area of the deployment site.

Proof. The probability that an intruder randomly passing through S with a trajectory

in Υ is detected by a single sensor, si, is derived as follows. By the mapping of the

intruder detection problem to line-set intersection problem provided in Lemma 3.4,

this probability is equivalent to the probability that a line G intersecting C in line set

Υ, also intersects Ci. In terms of the measures, this probability is equal to the ratio

of the measure of the set of lines in Υ that intersect both C and Ci to the measure of

the set of lines that intersect C.

Psi = Pr [G ∩ Ci ∩ C 6= ∅|G ∩ C 6= ∅, G ∈ Υ]

= Pr [G ∩ Ci ∩ C 6= ∅|G ∩ C 6= ∅, G ∈ Υ, δ]Pr [δ]

+ Pr
[

G ∩ Ci ∩ C 6= ∅|G ∩ C 6= ∅, G ∈ Υ, δ
]

Pr
[

δ
]

=
m(G : G ∩ Ci ∩ C 6= ∅|G ∈ Υ, δ)

m(G : G ∩ C 6= ∅|G ∈ Υ, δ)
Pr [δ]

+
m(G : G ∩ Ci ∩ C 6= ∅|G ∈ Υ, δ)

m(G : G ∩ C 6= ∅|G ∈ Υ, δ)
Pr
[

δ
]

(3.5)

The measure of the set of lines is 0 if the convex set does not intersect with the

area AT (Υφ) of the region traversed by the lines determined by angle φ in the line set

Υ. In addition, Ci is known to be inside the convex set C. Hence, Equation 3.5 can be

reduced to

Psi =
m(G : G ∩ Ci 6= ∅|G ∈ Υ, δ)

m(G : G ∩ C 6= ∅|G ∈ Υ, δ)
Pr [δ] (3.6)
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The expected area of the regions determined by φ measured in Υ is given as:

E(AT ) =

∫ α2

α1

1

α2 − α1

AT (Υφ)dφ (3.7)

The probability that a sensor si to reside in this expected area determined by Υ

is found as:

Pr [δ] =
E(AT )

A
(3.8)

Using Equation 3.3 and Equation 3.8, Equation 3.6 becomes

Psi =
(α2 − α1)E(Ti)

(α2 − α1)E(T )

E(AT )

A
=
E(Ti)

E(T )

E(AT )

A
(3.9)

Thus, using the mapping provided in Lemma 3.4, the probability that an intruder

randomly passing through S is detected by a single sensor, si, is found in terms of E(T ),

the expected thickness of deployment area, and E(Ti), the expected thickness of the

sensing coverage of a sensor. Now, we need to derive the detection quality of a sensor

network with a trespasser trajectory in line set Υ with no favorite paths, i.e. the

selection of all trajectories are equally likely.

Theorem 3.6. The DetQM of any sensor network with Ns sensors deployed in the

area with a trespasser trajectory pattern determined by the line set Υ with no favorite

paths is

PD = 1−
Ns
∏

i=1

(

1−
E (Ti)

E(T )

E (AT )

A

)

(3.10)

where E(Ti) is the average thickness of the sensor coverage area, E(T ) is the average

thickness of the deployment area for the given line-set intersection constraint which

determines Υ, E(AT ) is the average area of the deployment site covered by lines in Υ

and A denotes the area of the deployment site.
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Proof. By Lemma 3.5, the probability of all sensors to miss the target, PD and the

overall target detection probability, PD are calculated as:

PD =

Ns
∏

i=1

(1− Psi)

=
Ns
∏

i=1

(

1−
E (Ti)

E(T )

E (AT )

A

)

(3.11)

PD = 1− PD

= 1−
Ns
∏

i=1

(

1−
E (Ti)

E(T )

E (AT )

A

)

(3.12)

Next, we will generalize Theorem 3.6 for the cases where trespassers follow favorite

paths in the deployment site.

Theorem 3.7. The DetQM of any sensor network with Ns sensors deployed in the area

with a trespasser trajectory pattern determined by the line set Υ with favorite paths in

the TFP region is

PD = 1− pt ·
Ns
∏

i=1

(

1−
E (Ti)

E(Tt)

E (ATt
)

A

)

− (1− pt) ·
Ns
∏

i=1

(

1−
E (Ti)

E(T − Tt)

E (AT −ATt
)

A

)

(3.13)

where pt is the probability of the trespassers to follow favorite paths, E(Tt) and E(T−Tt)

are the average thickness of TFP and non-TFP regions respectively, whereas E (ATt
)

and E (AT − ATt
) are the average area of the TFP and non-TFP regions respectively

covered by lines in Υ which satisfies the region crossing constraints.

Proof. Since, TFP region is a subset of the deployment area, the target detection

probability in the TFP region is calculated using the subset of lines satisfying the

region crossing constraints, Υt:
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PD|t = 1−
Ns
∏

i=1

(

1−
E (Ti)

E(Tt)

E (ATt
)

A

)

(3.14)

Similarly, for the non-TFP region which is the complement of the TFP region, we

calculate the target detection probabilities using the measure of the set Υt = Υ \Υt:

PD|t = 1−
Ns
∏

i=1

(

1−
E (Ti)

E(Tt)

E
(

ATt

)

A

)

(3.15)

Since Υt and Υt are disjoint, by the definitions of E(Tt) and E
(

ATt

)

,

E(Tt) =

∫ α2

α1

1

α2 − α1
T (Υt,φ)dφ

=

∫ α2

α1

1

α2 − α1

(T (Υφ)− T (Υt,φ)) dφ

= E(T − Tt) (3.16)

E
(

ATt

)

=

∫ α2

α1

1

α2 − α1

AT (Υt,φ)
dφ

=

∫ α2

α1

1

α2 − α1

(

AT (Υφ) − AT (Υt,φ)

)

dφ

= E (AT − ATt
) (3.17)

By the definition of the conditional probability, the detection probability of the

trespasser is found as:

PD = PD|t · pt + PD|t · pt (3.18)

which yields Equation 3.13.

In our derivations, we only require all sets to be convex and bounded. However

for simplicity, we assume circular sensing coverage, and rectangular deployment area.

The following corollary is a demonstrative example for our analysis. Simulations are

based on this corollary.
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Corollary 3.8. If the sensors have identical circular sensing coverage, then the DetQM

of a sensor network with a rectangular deployment area is equal to:

PD = 1− pt ·

(

1−
2r

E (Tt)
·
E (ATt

)

h · w

)Ns

− (1− pt) ·

(

1−
2r

E (Tt)
·
E
(

ATt

)

h · w

)Ns

(3.19)

and

θ = arctan(h/wt)

γ = arctan(h/w)

T (Υπ
2
+α) = w sin(α)− h cos(α)

T (Υt,π
2
+α) = wt sin(α)− h cos(α)

E (Tt) =

∫ π−θ

θ

T (Υt,π
2
+α)

π − 2θ
dα

E (Tt) =

∫ π−γ

γ

T (Υπ
2
+α)− T (Υt,π

2
+α)

π − 2γ
dα

E (ATt
) =

∫ π−θ

θ

T (Υt,π
2
+α)

h
sin(α)

π − 2θ
dα

E
(

ATt

)

=

∫ π−γ

γ

(

T (Υπ
2
+α)− T (Υt,π

2
+α)
)

h
sin(α)

π − 2γ
dα (3.20)

where r is the radius of the sensing coverage of a sensor, wt is the width of the TFP

region, w is the width of the deployment are and h is the height of the deployment area.

Proof. A sample rectangular deployment site is illustrated in Figure 3.2 to be used

throughout this proof. The whole border region is represented with the rectangle

ABCD. The width of the border region is w and the height of the border region is h.

The shaded region within the rectangle KLMN shows the TFP region which includes

the TFPs in the border. The width of the TFP region is wt whereas the height is equal

to h. The sensors deployed within the border area have circular sensing with a radius

of r. On the figure, only one of the deployed sensors is shown as a sample. The rest of

the figure is explained within the analysis.
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Figure 3.2. The representation of a rectangular deployment site.

By the assumption of identical circular sensing coverage for the sensors, the av-

erage thickness of each sensor is equal to the diameter of the circle which is 2r.

The trajectories in Υ are restricted to pass through the deployment site from

the insecure side (bottom side) to the secure side (top side). Hence, the lower bound

of these linear trajectories is the angle γ, which is the angle between the diagonal of

the rectangle and the x axis. Similarly, the upper bound is the angle of the opposite

diagonal which is π − γ. In addition, since the height of the site is h and the width of

the site is w, we have:

γ = arctan(h/w) (3.21)

In the same way, trajectories in the subset Υt pass through the TFP region of

width wt and are bounded by the angles, θ and π − θ, where

θ = arctan(h/wt) (3.22)

The thickness of the lines with slope α is determined by measuring the set of lines

in Υφ and Υt,φ where φ = π
2
+α since these lines are parameterized by the slope of the

perpendicular line passing from the origin. The thickness of Υφ and Υt,φ are equal to

the height h′ and h′t of the parallelograms respectively formed by the lines with slope
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α. Clearly

h′ = T (Υπ
2
+α) = w sin(α)− h cos(α)

h′t = T (Υt,π
2
+α) = wt sin(α)− h cos(α) (3.23)

The average thickness of the TFP region is equal to the average of the thicknesses,

h′t, of the parallelograms formed by lines in all directions between θ and π − θ.

E (Tt) =

∫ π−θ

θ

T (Υt,π
2
+α)

π − 2θ
dα (3.24)

Since the TFP trajectories does not belong to Υt,φ, the thickness of the non-TFP

region can be found by subtracting the measure of lines in Υt,φ from the measure of

Υφ. This is equivalent to subtracting the thickness h′t from thickness of the deployment

area, h′. Hence, the average thickness of the non-TFP region is equal to the average of

the thicknesses, h′ − h′t, of the parallelograms formed by lines in all directions between

γ and π − γ. Note that, h′t = 0 if α /∈ [θ, π − θ], since Υt,π
2
+α = ∅.

E (Tt) =

∫ π−γ

γ

T (Υπ
2
+α)− T (Υt,π

2
+α)

π − 2γ
dα (3.25)

The average area of the TFP region covered by Υt is equal to the average of the

areas, AT (Υt,φ), of the parallelograms formed by lines in all directions between θ and

π − θ. The thickness h′t of the region formed by trajectories with slope α is the height

of the parallelogram. The length of these trajectories in TFP region is equal to h
sin(α)

.

Hence the average area E (ATt
) is equal to:

E (ATt
) =

∫ π−θ

θ

h′ · h
sin(α)

π − 2θ
dα

=

∫ π−θ

θ

T (Υt,π
2
+α) ·

h
sin(α)

π − 2θ
dα (3.26)
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Similar to the derivation of E (Tt), the area of the non-TFP region covered by

Υt,φ is derived by subtracting the area of the TFP region covered by Υt,φ from the area

of the deployment area covered by Υφ. Hence the average area E
(

ATt

)

is equal to:

E
(

ATt

)

=

∫ π−θ

θ

(

AT (Υπ
2
+α) − AT (Υt, π

2
+α
)
)

π − 2γ
dα

=

∫ π−θ

θ

(

h′ · h
sin(α)

− h′t ·
h

sin(α)

)

π − 2γ
dα

=

∫ π−θ

θ

(h′ − h′t) ·
h

sin(α)

π − 2γ
dα

=

∫ π−γ

γ

(

T (Υπ
2
+α)− T (Υt,π

2
+α)
)

h
sin(α)

π − 2γ
dα (3.27)

We provide the derivations for the list of equations in Equation 3.20. By substi-

tuting these equations in Equation 3.13, we provide Equation 3.19.

In this section, we derived a formulation for the probability of intruder detec-

tion in a border surveillance sensor network using the line measure and thickness tools

from the geometric probability. The initial formulation covers the heterogenous sensing

coverage and convex bounded condition. The closed form formulation is further simpli-

fied by the assumption of homogenous and circular sensing coverage and a rectangular

deployment site.

3.1.4. Straight Trajectory vs. Segmented Trajectory

We assume that the intruder follows a straight path within the monitored zone.

This assumption is made to observe the worst case performance of the network. If the

intruder follows a segmented path instead of a straight path, the detection probability

increases and so the performance of the network. The performance difference between

two cases are shown using simulations.

Straight and segmented trajectory simulations are run within a border area with

uniform random deployment using the same dimension and deployment parameters.

Two sample trajectories are depicted in Figure 3.1. In the straight trajectory case, the

intruder X follows the straight path L between the entry point P and the exit point

R. In the segmented trajectory case, the intruder follows a path L′ with ψ waypoints
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between the entry point P ′ and exit point R′ such that:

L′ ={(P ′(x0, 0), ψ1(x1, y1), ..., ψi(xi, yi), R
′(xi+1, h)} (3.28)

where

1 ≤ i ≤ ψmax

0 ≤ y1 ≤ ... ≤ yi ≤ h

The simulations are run in a single region border scenario with height h = 2000m

and width w changing between 2000 m and 10000 m. There are 100 sensors deployed

to the region. The maximum number of waypoints is ψmax = 5. This means that an

intruder moving along a segmented trajectory will change direction at most 5 times

following a path consisting of maximum 6 segments until reaching the other side.

The number of waypoints is selected to be uniform random between 1 and 5 for each

trajectory. The direction change at each waypoint is limited to forward direction, there

is no turning back in the followed path.
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Figure 3.3. Detection probability using straight and segmented trajectories.

Another set of simulations are done in order to see the effect of the segment
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count on the detection probability. In this scenario, the height and width of the region

are kept constant, h = 2000 m and w = 10000 m, respectively. There are 100 sensors

deployed to the region. The number of segments within the segmented path is increased

from 1 to 8, and kept constant at each simulation set. The detection probability is

measured and plotted for different segment counts. The result is shown in Figure 3.4.

The initial point of the figure in which there is only one segment within the trajectory

also corresponds to the straight trajectory case. The detection probability increases

with each segment count and reaches to the certain detection probability of PD = 1 at

6 segments.
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Figure 3.4. Detection probability at different number of segmented trajectory.

The comparison of trajectory simulations clearly shows that the detection prob-

ability in the segmented path scenario is always larger than the straight path scenario.

It can be concluded that, in terms of detection performance, our straight path analysis

gives the worst performance of the sensor network. For the network operators, esti-

mating the worst case performance is generally more important than the average case,

especially in SWSN applications.

3.1.5. Analytical and Simulation Results

We provide a comparison between the analytical and the simulation results to

present the validity of our analytical estimation. In order to observe the effects of the
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individual parameters in the model, the following assumptions are made to minimize

the effects of external parameters on our results.

• A binary sensing model is assumed, where for a given sensor s located at zs,

probability of detection PD(s) of a point x is:

PD(s) =







1, if d(x, zs) < Rs

0, otherwise
(3.29)

• A circular sensing range is assumed, on a 2-D flat world deployment region.

• Intruders prefer the TFP region more than the other for trespassing.

• TFP region consists a small ratio of the deployment area.

• Intruders follow a straight line while they are trespassing the deployment area.

• Sensing equipments of sensors are awake and able to detect the intruders at all

times.

For testing the validity of analytical results, simulations are run and tested against

different parameter sets in the MATLAB platform. The simulations are repeated for

different parameter sets. For each set, 1000 random sensor network deployments and

TFP region placements are performed. For each random sensor network deployment,

10000 lines, each representing one trespassing, are generated. Thus, for each parameter,

we have a result set in the size of 107 detection logs and the probability of detection is

calculated using these logs. The results represented in the graphs are the mean values

of these simulation runs.

In Table 3.1, the values indicated with * are used as the default values for the

simulations. The region dimensions extend from 2000 m x 2000 m that represents a

square border region to 2000 m x 20000 m that represents a long narrow border region.

By executing simulations using different dimensions, various border region shapes are

analyzed. For the sensor count, two different parameter sets (low and high) are defined

to simulate low and high density sensor deployment networks. Since the aim of the

study is to analyze the effect of the TFP region and its properties, sensing range is

selected as constant and fixed at 25 m which is a plausible value for MIR type sensor

networks.
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Table 3.1. Tested parameters for different TFP scenarios.

Parameter Tested Values

Border Width 2000, 4000, 6000, 8000, 10000, 12000,

14000, 16000, 18000, 20000* (m)

Border Height 2000 m

TFP Region Width 200*, 400, 600, 800, 1000,

1200, 1400, 1600, 1800, 2000 (m)

TFP Region Preference 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9*, 1.0

Sensor Count (low) 50, 100, 150, 200*, 250, 300, 350, 400, 450

Sensor Count (high) 500, 600, 700, 800*, 900, 1000

Sensing Range 25 m

We analyzed the effects of simulation parameters and compared the simulation

results and analytical predictions to evaluate the accuracy of the analytical model.

The combined effect of sensor count and TFP probability on DetQM values : In

these simulations, the sensor count deployed is increased step by step for different

TFP preference probabilities to see its effect on the DetQM values. In all simulations,

the width of the border region is 20000 m and the width of the TFP region is 200

m and the height of the border region is 2000 m. The negligible gap between the

simulation results and analytical results show the accuracy of the theoretical model

proposed in the previous section. The gap is at most 12.08 % for the low density

deployment scenarios and 1.54 % for the high density deployment scenarios. As a

general observation, it can be said that the differences between the simulation and

analytical values get smaller with the increasing sensor count. Both the analysis and

simulation results show that, when the TFP preference probability is increased, the

detection ratio falls. This behavior is more clear in the low density deployment scenarios

compared to high density deployment scenarios. For example, when 50 sensors are

deployed to the border region, the detection ratio falls from PD = 0.158 for the pt = 0

to PD = 0.118 for the pt = 1. This represents a 25.3 % fall in the detection performance

of the system. When the sensor count is increased to 450, the corresponding PDs are

0.787 and 0.676 for the respective TFP probabilities. This difference means 14 %

decrease in the detection performance of the system. Hence, the rate of performance

degradation due to increasing TFP preference decreases with the increase in the sensor
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Figure 3.5. Effect of sensor count and TFP preference probability on analytical and

simulated DetQM values. Low density sensor deployment (50 - 450).

count. The results are shown in Figure 3.5. The part (a) shows the DetQM values for

the respective sensor counts and the part (b) shows the performance decrease in the

DetQM.

The simulations are repeated for the high density sensor deployment scenarios.

The border region and TFP region width parameters are kept constant, but the sensor

count is increased from 500 to 1000 in steps of 100. For each step the DetQM for

different TFP probabilities are measured and the decrease in the DetQM performance

is noted as similar to the low density sensor deployment scenarios. The results are

plotted in Figure 3.6. Only some of the simulation and analysis results are shown in

the figures for the clarity of figures. All results can be found in Table A.2

The combined effect of border width and TFP probability on DetQM values with

fixed TFP region ratio : In these simulations, the effect of the width of the border

region and the TFP preference probability on the detection probability are measured.

The ratio of the TFP region width to the whole border region width is kept constant

at 0.01. The simulations are executed for two different sensor density scenarios. The
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Figure 3.6. Effect of sensor count and TFP preference probability on analytical and

simulated DetQM values. High density sensor deployment (500 - 1000).

part (a) of Figure 3.7 represents the sensor detection quality values for high density

deployment whereas the part (b) represents the values for the low density deployment.

As seen in the part (a), the width of the border region has a drastic effect on the

detection probability in the low sensor deployment density. When the region width

is 2000 m, the detection probability is PD = 0.9987 and PD = 0.9982 for pt = 0 and

pt = 1, respectively. When we increase the region width to 20000 m, i.e. increase the

deployment area 10 fold, hence decrease the sensor density, the detection probability

decreases to PD = 0.563 and PD = 0.485 for pt = 0 and pt = 1, respectively. Although

the gap is small, our analysis matches with the simulation results. It is also observed

that, decreasing the sensor density increases the importance of TFP width on detection

quality. DetQM metric falls 13.9 % when the trespassers prefer the TFP region instead

of the non-TFP region.

The comments given are also valid with similar effects for the high sensor deploy-

ment (800 sensors) scenario. For the smallest area scenario where the border region

width is 2000 m, there is no significant difference between the detection performance
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(a) Low density sensor deployment (200 sensors).
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(b) High density sensor deployment (800 sensors).

Figure 3.7. Effect of border width with fixed TFP region ratio and TFP probability

on DetQM values.

of opposite TFP preference scenarios. For both scenarios, the significant part of the

detection probability metric converges to 1.00. If we increase the border region width

to 20000 m, the detection probability values decrease to 0.917 and 0.863, respectively.

In the small area scenario, there is no difference between the different TFP preference

value simulations. In the large area scenario, the difference is 0.053, thus representing
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(a) Low density sensor deployment (200 sensors).
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(b) High density sensor deployment (800 sensors).

Figure 3.8. Effect of border width with fixed TFP region width and TFP preference

ratio on detection probability.

a 5.86 % fall in the detection probability performance.

The combined effect of border width and TFP preference on DetQM values with

fixed TFP region width : In these simulations, the effect of the width of the border

region and the TFP preference probability on the detection probability are measured.

On the contrary of the simulations executed in the previous section, the ratio of the
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TFP region width to the whole border region width is not constant, but the width of

the TFP region is kept constant, 200 m. The simulations are executed for two different

sensor density scenarios. The part (a) of the Figure 3.8 represents the sensor detection

quality values for high density deployment whereas the part (b) represents the values

for the low density deployment.

Similar to experiments performed with fixed TFP ratio, the border region width

has a drastic effect on the detection probability performance. When the border region

width is 2000 m and the TFP width is 200 m, the analytical detection probabilities are

PD = 0.9987 and PD = 0.9982 for pt = 0 and pt = 1, respectively. When the border

width is increased to 20000 m, the detection probability decreases to PD = 0.576 and

PD = 0.465 for pt = 0 and pt = 1, respectively. These values are taken from the low

sensor deployment scenario, 200 sensors. When the sensor count is increased to 800

sensors, as in the previous section, we observe the same behavior with less drastic effects

on the detection probability, PD = 1.00 for pt = 0 and pt = 1. The same probability

values fall to 0.924 and 0.847 when the width of the border region is increased to 20000

m while the TFP region width is kept constant at 200 m. The DetQM fall ratios,

in the low density sensor scenarios, are 42.34 % and 53.37 % for pt = 0 and pt = 1

whereas in the high density scenarios, they are 7.63 % and 15.28 % for pt = 0 and

pt = 1, respectively.

DetQM vs TFP Preference : In order to perceive the effect of TFP preference on

the detection performance, we measure the DetQM of the system with all parameters

are fixed except the pt. The border region width is 20000 m and the TFP width is 200

m. The pt which denotes the TFP preference is increased from 0 to 1 with steps of 0.1.

The result of the simulation is seen in Figure 3.9. The DetQM value for pt = 0 is 0.497

and for pt = 1, it is 0.394. This fall means about 20.7 % degradation in the DetQM

performance between the values pt = 0 and pt = 1 which indicates the importance

of the TFP preference on the detection quality. Although, no parameter is changed

within the network including the deployed sensor count and sensor node configurations,

the network performance deteriorates with increasing pt. Another consequence of the

TFP region is the inequality among the nodes in terms of duty and usefulness. Most

of the detections are being achieved by a small subset of all sensors which cover TFP
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paths. This means a heavy load on a small part of the network whereas the rest of

the sensor network remains idle most of the time and rarely used. This setting results

in early exhaustion of active sensors and potentially creating detection holes in those

areas. Thus, it can be concluded that network operators should carefully inspect the

network deployment area, uncover TFP paths within the border region and deploy

sensors accordingly for an efficacious surveillance network.
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Figure 3.9. DetQM vs TFP preference (pt).

3.2. Detection Quality Measure in a Field with Multiple Regions

In this section, the formal definition of the detection quality metric of an area

with a heterogeneous intrusion pattern problem is stated and its analytical solution is

given with the corresponding proof.

3.2.1. Network Model

In this subsection, we will present the network model briefly. We define a simi-

lar network model used in the previous section which discusses the detection quality

metric problem with a single region. The differences between the models given in this

subsection and the one given in Section 3.1.1 will also be mentioned.

We assume a convex 2-D border area, S, which is further simplified to a rectangle

that has a width of w and a height of h for demonstrative purposes. There are Ns

sensors deployed randomly within the area. Each sensor si is assumed to have convex

sensing coverage of Si with radius ri, uniformly and independently distributed within
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S. The border area separates the secure side from the insecure side. The direction of

the trespassing is from insecure side to the secure side, thus along the y-axis of the

region. There are Nt regions within the monitored zone. Each of the region has a width

of wti and intrusion probability of pti . The intruders may prefer some of the regions

due to security related issues, thus, the vales of the pti may not be equal. The graphical

representation of the network is shown in Figure 3.10. Sensors are not included in the

figure for the sake of clarity.
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Figure 3.10. Graphical representation of the border SWSN model with multiple

trespassing regions.

We employ the same assumptions about the knowledge of the intruder about the

border area and the intrusion behavior given in the previous section. The deployment

method and properties of the distribution are also same with the ones given in the

previous section. The sensors operate according to binary detection model which is

explained in detail in the previous section.

3.2.2. Problem Definition

In this section, we will provide a formal definition of the border SWSN intruder

detection problem in a field with a multiple regions. Moreover, we will provide two

additional problems which will be mapped to each other to derive a solution for the

geometric domain utilizing metrics and tools from Integral Geometry and Geometric

Probability.
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Problem 3.9. Intruder with heterogeneous intrusion pattern detection prob-

lem : We have a border area on which sensors are deployed. It is assumed that the

border area, S, which is in convex form, have Ns sensors distributed uniformly and

independently on it. Each sensor has a sensing radius of ri and sensing coverage area

of Si = πr2. The border area lies between the insecure side and the secure side and

consists of regions with different intrusion patterns resulting in an heterogeneous intru-

sion pattern over the whole border area. The trespassers prefer one of the Nt regions

with probability pti and make their passage through this region. What is the probability

PD that an intruder X randomly crossing the border area S is detected by at least one

sensor?

3.2.3. Detection Quality Metric

In Section 3.1, we analyzed the detection probability in an area with single region

and uniform intrusion probability. We also have provided Theorem 3.10.

Theorem 3.10. The DetQM of any sensor network with Ns sensors deployed in the

area with a trespasser trajectory pattern determined by the line set Υ with a single

region is

PD = 1−
Ns
∏

i=1

(

1−
E (Ti)

E(T )

E (AT )

A

)

(3.30)

where E(Ti) is the average thickness of the sensor coverage area, E(T ) is the average

thickness of the deployment area for the given line-set intersection constraint which

determines Υ, E(AT ) is the average area of the deployment site covered by lines in Υ

and A denotes the area of the deployment site.

In this section, we analyze the DetQM of a sensor network for the cases where

there are more than one disjoint trespassing regions with a heterogeneous intrusion

pattern in the border area. This is explained formally in Problem 3.9. In order to

find a solution to this problem, we generalize Theorem 3.10 and provide Theorem 3.11

along with its proof.

Theorem 3.11. The DetQM of any sensor network with Ns sensors deployed in the

area, consisting of Nt disjoint regions that have pt preference probabilities, with a tres-
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passer trajectory pattern determined by the line set Υ, consisting of Υti subsets, is

PD =
Nt
∑

j=1

ptj



1−

Ns,j
∏

i=1

(

1−
E (Ti)

E(Ttj )

E
(

AT,tj

)

A

)



 (3.31)

where E(Ti) is the average thickness of the sensor coverage area, E(Ttj ) is the average

thickness of the trespassing region for the given line-set intersection constraint which

determines Υtj , E(AT,tj ) is the average area of the region covered by lines in Υtj , A is

the area of the region and ptj denotes the preference probability of the region tj.

Proof. Since, each region is a subset of the deployment area, the target detection

probability in one of the regions is calculated using the subset of lines satisfying the

region crossing constraints, Υti :

PD|ti = 1−

Ns,ti
∏

i=1

(

1−
E (Tti)

E(Tt)

E (AT,ti)

A

)

(3.32)

Since the regions are disjoint, by the definition of conditional probability, the

detection probability of the network is found as:

PD =

Nti
∑

i=1

PD|ti · pti (3.33)

which yields Equation 3.31.

In our derivations, we only require all sets to be convex and bounded. However,

for the simplicity, we assume circular sensing coverage, and rectangular deployment

area which are more applicable for a real life border region scenario. The following

corollary is an applied example for our analysis and simulations are based on this

corollary.

Corollary 3.12. If the sensors have identical circular sensing coverage, then the De-

tQM of a sensor network with a rectangular deployment area is equal to:
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PD =
Nt
∑

i=1

pti ·

(

1−

(

1−
2r

E (Tti)
·
E (AT,ti)

h · wti

)Ns,ti

)

(3.34)

and

γti = arctan(h/wti)

T (Υti,
π
2
+α) = wti sin(α)− h cos(α)

E (Tti) =

∫ π−γti

γti

T (Υπ
2
+α)− T (Υti,

π
2
+α)

π − 2γti
dα

E (AT,ti) =

∫ π−γti

γti

(

T (Υπ
2
+α)− T (Υti,

π
2
+α)
)

h
sin(α)

π − 2γti
dα (3.35)

where r is the radius of the sensing coverage of a sensor, wti is the width of the region

ti and h is the height of the region.

Proof. A sample rectangular deployment site is illustrated in Figure 3.11 to be used

throughout this proof. One of the trespassing regions, ti, is represented with the

rectangle ABCD. The width of the region is wti and the height of the region is h. The

sensors deployed within the region have circular sensing with a radius of r. On the

figure, only one of the deployed sensors is shown as a sample. The rest of the figure is

explained within the analysis.

By the assumption of identical circular sensing coverage for the sensors, the aver-

age thickness of each sensor’s sensing area is equal to the diameter of the circle which

is 2r.

The trajectories in Υti are restricted to pass through the region from the insecure

side (bottom side) to the secure side (top side). Hence the lower bound of these linear

trajectories is the angle γti , which is the angle between the diagonal of the rectangle

and the x axis. Similarly, the upper bound is the angle of the opposite diagonal which

is π − γti . The thickness of the lines with slope α is determined by measuring the set

of lines in Υti,φ where φ = π
2
+ α since these lines are parameterized by the slope of

the perpendicular line passing from the origin. The thickness of Υti,φ is equal to the
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Figure 3.11. The representation of a region.

height h′ti of the parallelogram formed by the lines with slope α. Clearly

h′ti = T (Υti,
π
2
+α) = wti sin(α)− h cos(α) (3.36)

The average thickness of the region ti is equal to the average of the thicknesses,

h′ti , of the parallelograms formed by lines in all directions between γti and π − γti .

E (Tti) =

∫ π−γti

γti

T (Υti,
π
2
+α)

π − 2γti
dα (3.37)

The average area of the region ti covered by Υti is equal to the average of the

areas, AT (Υti,φ
), of the parallelograms formed by lines in all directions between γti and

π−γti . The thickness h
′
ti
of the region formed by trajectories with slope α is the height

of the parallelogram. The length of these trajectories in the region is equal to h
sin(α)

.
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Hence, the average area E (AT,ti) is equal to:

E (AT,ti) =

∫ π−γti

γti

h′ · h
sin(α)

π − 2γti
dα

=

∫ π−γti

γti

T (Υt,π
2
+α) ·

h
sin(α)

π − 2γti
dα (3.38)

We provide the derivations for the list of equations in Equation 3.35. By substi-

tuting these equations in Equation 3.31, we provide Equation 3.34.

In this section, we derived a formulation for the probability of intruder detection

in a border surveillance sensor network using the line measure and thickness tools from

the geometric probability. The initial formulation covers the heterogenous sensing cov-

erage and convex bounded condition. The closed form formulation is further simplified

by the assumption of homogenous and circular sensing coverage and a rectangular de-

ployment site. In the next section, we will present our simulation scenarios and provide

a comparison between the analytical and simulation results.

3.3. Analytical and Simulation Results

In this section, we present our analytical and simulation results. In order to

minimize the effects of external parameters on the presented results, following simpli-

fications are applied.

• A binary sensing model is assumed, where for a given sensor s located at zs,

probability of detection PD(s) of a point x is:

PD(s) =







1, if d(x, zs) < Rs

0, otherwise
(3.39)

• A circular sensing range is assumed, on a 2-D flat world deployment region.

• Intruders follow a straight line while they are trespassing the deployment area.

• Sensing equipments of sensors are awake and able to detect the intruders at all

times.
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For testing the validity of analytical results, we define different sensor network

scenarios and run the simulations against different parameter sets in the MATLAB

platform. The simulations are repeated for different parameter sets. For each set,

1000 random network deployment schemes are performed. For each random network

deployment, 10000 travel trajectories are generated within the simulation area. Thus,

for each parameter, we have a result set in the size of 107 detection logs and the

network’s detection performance is calculated with these logs. The results represented

in the graphs are the mean values of these simulation sets.

3.3.1. Border Area with Multiple Regions
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Figure 3.12. Graphical representation of the field used for comparative analysis.

The relative distribution of the sensors within a border zone can influence the

detection quality drastically. The effect of the region preference can be measured

best if other parameters are taken constant. For that purpose, a border zone with

different trespassing preferences is simulated. The zone is made up of two equal width,

wt1 = wt2 = wt, and height, h, regions as shown in Figure 3.12. The probability

that an intruder passes through each region is pt1 and pt2 , respectively. The detection

probability of the network in this scenario is:

PD =pt1 ·

(

1−

(

1−
2r

E (Tt1)
·
E (AT,t1)

h · wt1

)Ns,t1

)

+

pt2 ·

(

1−

(

1−
2r

E (Tt2)
·
E (AT,t2)

h · wt2

)Ns,t2

)

(3.40)
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Table 3.2. Detection performance in different region preference probabilities.

pt1 = 0.1 pt1 = 0.5 pt1 = 0.9

Ns,t1 An. Sim. An. Sim. An. Sim.

0 0.8275 0.8151 0.4597 0.4481 0.0919 0.0927

10 0.829 0.8097 0.5595 0.5514 0.2901 0.2905

20 0.8196 0.8037 0.6313 0.6267 0.4429 0.4316

30 0.7987 0.8105 0.6794 0.6625 0.5602 0.5456

40 0.765 0.7447 0.7072 0.7211 0.6494 0.6551

50 0.7162 0.7034 0.7162 0.7066 0.7162 0.7271

60 0.6494 0.6316 0.7072 0.6965 0.765 0.7624

70 0.5602 0.5557 0.6794 0.6612 0.7987 0.7791

80 0.4429 0.4299 0.6313 0.6217 0.8196 0.8289

90 0.2901 0.2944 0.5595 0.5441 0.829 0.8182

100 0.0919 0.0901 0.4597 0.4576 0.8275 0.8149
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Figure 3.13. Detection performance in different region preference probabilities.

Since the regions are equal width and height regions, E(Tt1) = E(Tt2) = E(Tt)

and E(AT,t1) = E(AT,t2) = E(AT,t) which clearly shows that the detection quality in

this case depends on the region preference probability and the sensor count deployed

in the region. Simulations are run compared with the analytical results. In these

simulations, the sensor count deployed is kept constant at Ns = 100. The number of

sensors deployed to the first region, t1, is increased from 0 to 100 whereas the remaining

ones are deployed to the second region, t2. The simulations are run for different intruder
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behavior scenarios. The numerical results of the analytical calculation and simulations

are listed in Table 3.2. The results are plotted in Figure 3.13. It can be seen from

the results that the analytical calculation matches with the simulation. In addition

to this, it can be deduced that when the preferences are not equal, i.e. one region

is preferred over another, the equal distribution of sensors perform poorly in terms

of detection probability. Deploying more sensors into the more preferred region gives

better detection results. Uniform random deployment gives the best performance if

the intruders’ behavior is uniform, too. Non uniform intruder behavior cases require

different deployment schemes.
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4. ANALYSIS OF DETECTION QUALITY MEASURE

In this chapter, we will analyze different properties of the DetQM and derive

results based on this analysis. First of all, the closed form of the DetQM will be used

to derive a method to find the optimal distribution of available sensors to a monitored

zone. The performance of this optimized sensor distribution will be compared with the

uniform random distribution of the sensors. In addition to this, the effects of different

sensor detection models on the DetQM will be investigated with specific examples.

The binary detection and Elfes detection models will be presented as specific cases.

The parameters of each detection model will be listed and their effects on the general

DetQM will be analyzed. Furthermore, different application scenarios from real life

examples will be examined and scenario specific critical regions will be defined. The

properties of the application scenarios and their effects on the DetQM will be measured.

Moreover, we will inspect the parameters of different application scenarios and will

perform a statistical factor analysis to find out their percentage of impact on the

DetQM. Using the analysis results, we will summarize our findings about the effect of

scenario parameters.

4.0.2. Optimization of Sensor Allocation

The allocation of the sensors among the regions affects the performance of the

network drastically. Network operators should take the region properties into consid-

eration while determining the number of sensors being deployed into a region. This

problem can be expressed as the determination of the optimum number of sensors al-

located per region. The definition of this optimization problem and the related criteria

is

Maximize

Nti
∑

i=1

PD|ti · pti (4.1)

s.t.

Nti
∑

i=1

Ns,ti = Ns, i = 1, ..., Nti

Ns,ti ≥ 0, i = 1, ..., Nti
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This problem is an instance of the problem

Minimize
n
∑

i=1

fi(xi) (4.2)

s.t.

n
∑

i=1

xi = N and xi : non-negative integers

which is called as a simple resource allocation problem and stated as NP-complete [75].

There are various algorithms proposed for the solution of such problems [76]. As

an example, the border zone with a two-region scenario is simulated. The regions are

defined to have intruder preference probabilities of pt1 = 0.1 and pt2 = 0.9, respectively.

The width of each region is wt = 2000 m. The total number of sensors deployed to

the whole area is chosen to be changing between 10 and 100 with steps of 10. At each

step, the allocation of sensors between the regions that is maximizing the detection

probability is found using an exhaustive search. This improved distribution is compared

with the scenario in which available sensors are distributed among the whole zone

using uniform distribution. The comparison of the performances corresponding to the

optimized and uniform distribution is given in Figure 4.1 and the distribution of sensors

for these cases are shown in Table 4.1. The DetQM values for different levels of pt1 are

listed in Table A.7 in the Appendix. In order to observe the effect of the region width to

the detection performance, the same simulation is repeated with constant sensor count

and variable region width. The sensor count is kept constant at 100, and the region

width wt is increased from 2000 m to 20000 m with steps of 2000 m. At each region

width, the optimum number of sensors and the corresponding DetQM for the optimized

distribution is calculated. In the uniform distribution, 50 sensors are deployed to each

region, and the DetQM of the whole network is calculated. The comparison of the

network performance between each scenario is given in Figure 4.2. Both of the figures

clearly show the performance difference between two distributions. It is also important

to note that when the sensor deployment is sparse, there is a significant performance

difference in terms of detection capability. It can be safely concluded that the optimal

allocation of sensors is critical especially for low budget deployments.
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Figure 4.1. The detection performance comparison between uniform and optimized

distributions.
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Figure 4.2. The detection performance comparison between uniform and optimized

distributions.

4.1. Detection Quality Measure with Different Sensing Models

In this section, we investigate the effect of various wireless sensor network pa-

rameters on the detection quality measure of the network. The DetQM of any sensor
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Table 4.1. Allocation of the sensors to regions using optimized allocation formulation.

Total Uniform Optimized

Nt Nt1 Nt2 PD Nt1 Nt2 PD

10 5 5 0.195 0 10 0.316

20 10 10 0.351 0 20 0.521

30 15 15 0.478 0 30 0.654

40 20 20 0.579 0 40 0.741

50 25 25 0.661 0 50 0.797

60 30 30 0.727 5 55 0.836

70 35 35 0.780 10 60 0.868

80 40 40 0.823 15 65 0.894

90 45 45 0.857 20 70 0.914

100 50 50 0.885 25 75 0.931

network with Ns sensors deployed in the area, consisting of Nt disjoint regions that

have pt preference probabilities, with a trespasser trajectory pattern determined by the

line set Υ, consisting of Υti subsets, is

PD =
Nt
∑

j=1

ptj



1−

Ns,j
∏

i=1

(

1−
E (Ti)

E(Ttj )

E
(

AT,tj

)

A

)



 (4.3)

where E(Ti) is the average thickness of the sensor coverage area, E(Ttj ) is the average

thickness of the trespassing region for the given line-set intersection constraint which

determines Υtj , E(AT,tj ) is the average area of the region covered by lines in Υtj , A is

the area of the region and ptj denotes the preference probability of the region tj.

In this study, the general form of the thickness of sensor coverage area are applied

to different detection models and their difference in terms of the detection quality is

investigated. If the probability distribution function of the detection model is denoted

with f(d) where d is the distance between the sensor and the target, the average

thickness of the sensor coverage is the part of the cumulative distribution function

of the sensor detection probability that is located within the trespassing area. The

cumulative distribution function is equal to
∫

f(d).
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4.1.1. Binary Detection Model

The binary model is a good approximation for the type of sensors which have

sharp sensing ranges such as PIR sensors [66]. Many studies use the binary sensing

model due to its simplicity. In this model, there is a range which determines the

sensing probability in a certain manner. The detection probability function of the

binary sensing is:

PD =







1 if d ≤ r

0 otherwise
(4.4)

where r is the sensing range of the sensor and d is the distance between the target and

the sensor. The detection probability function of the binary sensor with respect to the

distance between the target and the sensor is plotted in Figure 4.3.

r− r0

1

dP

d

Figure 4.3. Detection probability function of the binary sensing.

The expected thickness of the sensor coverage area for the binary detection model,

which corresponds to the shaded area in Figure 4.3 is:

E(Ti) =

r
∫

−r

dx

= 2r (4.5)

Substituting the E(T ) in Equation 4.3 gives us the DetQM of a sensor network
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consisting of binary sensors:

PD =

Nt
∑

j=1

ptj



1−

Ns,j
∏

i=1

(

1−
2r

E(Ttj )

E
(

AT,tj

)

A

)



 (4.6)

4.1.2. Elfes Detection Model

Elfes detection model can be applied to a large variety of range of sensors, includ-

ing infrared and laser scanners, sonar sensors, and stereo systems [77]. The detection

probability of the Elfes sensing is:

PD =



















1 if d ≤ re

e−λ(d−re)β if re < d < r

0 if r ≤ d

(4.7)

where the region between re and r denotes the uncertain detection range. The detection

probability is determined by an exponential function within this range. λ and β are

used to model sensor properties, d is the distance between the sensor and the target.

The detection probability of Elfes sensing is plotted in Figure 4.4. The x-axis represents

the distance between the target and the sensor and the y-axis represents the detection

probability of the target.

rr− erer− 0

1

dP

d

Figure 4.4. Detection probability of Elfes sensing.

The expected thickness of the sensor coverage area for the Elfes detection model,

which corresponds to the integral of detection probability of Elfes detection, denoted
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with the shaded area in Figure 4.4 is:

E(Ti) =

re
∫

−(re)

dx+

r
∫

re

e−λ(x−re)βdx+

−r
∫

−re

e−λ(x−re)βdx (4.8)

The integration of the exponential function in Equation 4.8 can be expanded as:

r
∫

re

e−λ(x−re)βdx =
(re − x)(λ(x− re)

β)(−1/β)Γ( 1
β
, λ(x− re)

β)

β
+ C (4.9)

where Γ(a, x) is the incomplete gamma function which is a generalized form of the

gamma function [78]. In our simulations, we evaluate the integral numerically using

the adaptive Simpson quadrature method provided in MATLAB [79].

4.1.3. Analytical and Simulation Results

In this section, we analyze the effects of some network parameters on the DetQM.

The detection model is selected as the first parameter set. Two different detection

models, binary detection and Elfes detection, are examined in terms of their impact

on the DetQM. Following the detection model, two different surveillance scenarios are

depicted and the critical regions are defined. Their differences in terms of intrusion

patterns are also given. The significance of the different environmental conditions are

investigated using these scenarios and they are compared to each other to find out a

relation between the scenario properties and DetQM. In addition to this, the critical

regions which are defined within the scenarios are also evaluated. The importance of

their distribution within the whole border area is studied using different combinations

and the results are presented in a comparative manner. In the last part of this sec-

tion, the shape of the border area is inspected by defining different levels of height to

width ratios. For each level, the DetQM of the network is calculated and the result is

presented in a plot along with its interpretation.

4.1.3.1. Binary Detection. The binary detection probability is dependent only on the

sensing range of the sensor which acts as a threshold between the detection and the

non-detection areas. The effect of the sensing range on the detection probability is

tested using a constant width single region border scenario. The dimensions of the
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border area selected to be w = 2000 m and h = 500 m. Three levels of the desired

detection probability are defined and required number of sensors to achieve the desired

level for different sensing ranges are calculated. The results are plotted in Figure 4.5.
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Figure 4.5. Effect of sensing range, r on the required sensor count.

The figure can be used for determining the required number of sensors to obtain

a desired detection quality. If the sensors have variable sensing ranges, it may be useful

in comparing the advantages and disadvantages of various sensing ranges [36, 80].

4.1.3.2. Elfes Detection. The Elfes sensor behaves as a binary sensor within its inner

range. On the outer rim, the detection is expressed with an exponential probabil-

ity. Within this region, the detection probability is dependent on the sensor specific

parameters which are represented as the λ and β as shown in Equation 4.7. These

parameters have different degrees of effects on the single node detection probability

and the overall network detection probability. The single sensor node detection per-

formance measurements are done with a sensor node that have an inner sensing radius

of 10 meters and an outer sensing radius of 20 meters. The target is stationed at 18

meters. The detection probability is calculated for different combinations of λ and β

values.

The effect of λ on the single sensor detection probability is given in Figure 4.6.
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Figure 4.6. Effect of λ on the detection.

As can be seen from the figure, when λ is 0, the sensor behaves like a binary sensor and

the target is certainly detected. The detection probability is monotonically decreasing

with respect to λ. The detection probability of the system for three different β levels

are given in the figure in order to see the relationship between λ and β. The same
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simulation is repeated for the effect of β on the single sensor detection probability as

given in Figure 4.7.
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Figure 4.7. Effect of β on the detection.

One of the most important observations from the results is that, the parameters

affect the detection quality of single sensor node significantly. On the other hand, this
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situation is not valid for a network consisting of Elfes nodes. For the cases studied, the

effect of Elfes parameters on a single sensor node is clearly diminished on a network

wide scale. The DetQM differences between each level of the parameter value is not as

significant as the single sensor node results.

4.2. Detection Quality Metric in Different Deployment Scenarios

The efficiency of the proposed closed form representation of the DetQM is exam-

ined using two different surveillance scenarios. In this part, we explain scenarios and

define the critical and the non-critical regions according to environment properties.

Border Area Surveillance Scenario: In the border area surveillance (BAS) sce-

nario, the sensor network is deployed to a border zone and it is used to monitor illegal

intrusions through the border. The aim of the system is to detect and inform the

network operators about these intrusions. The shape of the border zone is in the form

of long rectangular area which separates two countries. The intruders trespass from

one country to another. When doing so, they do not randomly select a path and follow

it, but favor some regions over others due to environmental conditions such as security

measures and terrain [3, 52]. The border area contains narrow regions through which

most of the trespassers pass and wide regions which are not preferred very much. We

mark these regions which are highly preferred by the intruders as the critical regions

of the BAS scenario and the remaining regions as the non-critical ones.

Figure 4.8. An archeological site in the pyramids area.

Cultural Heritage Area Scenario: The monitoring of cultural heritage using wire-

less sensor networks is investigated in [81, 82]. In the cultural heritage area (CHA)

scenario, monitoring a similar area is simulated. In this scenario, the sensor network
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Figure 4.9. (a) Adjacent placements (A1, A2, A3, A4) of the critical regions. (b)

Segregated placements (S1, S2, S3, S4) of the critical regions.

is deployed to a historical city site to monitor the visitors. The area contains wide

regions which tourists pass through to visit ancient remains and narrow regions which

are restricted to general access due to ongoing archeological work. In contrast to the

BAS scenario, most of the traffic is distributed over the larger portion of the moni-

tored zone, whereas a tiny fraction of the traffic is restricted to smaller portion of the

monitored zone. For example, as seen in Figure 4.8, there is an ongoing work at the

archeological site which is a restricted area, whereas the pyramids seen on the back-

ground of the picture are open to the visitor access [83]. We mark the regions where an

active archeological work takes place as the critical regions of the CHA scenario and

the remaining regions as the non-critical ones.

The dimensions of the simulation areas in both scenarios are chosen identical

in order to simplify the comparison between them but they can be modified easily.
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The distribution of the regions over the whole area is differentiated using two different

distribution schemes, each of them with four different region counts. For the sake of

simplicity, we define the favorite trespassing areas in BAS scenario and the excavation

sites in CHA scenario as critical regions. In the layout graphics, these critical regions

are denoted with dotted rectangles and non-critical regions are denoted with diagonal

lined rectangles.

By the definition of the DetQM, the direction and angular mobility of the intrud-

ers are affected by the region count within the area. The rationale behind the disjoint

regions is the existence of natural or artificial barriers between the regions which enforce

the travelers to remain within the current region and the desire to pass the monitored

zone using the shortest path available to reduce the detection probability. This is a

frequently observed behavior in nature and also represented as ant paths or similar

phenomena in the computer science. The relation between the number of regions and

the detection probability of the network can give tools to network operator to improve

the performance of the network by deploying the network according to geographical

conditions or if possible by modifying the deployment area. By shaping the expected

traffic pattern, the network detection performance can be increased without redeploy-

ments and additional sensor cost. The effect of the region shape is inspected using two

different combinations of regions according to the placement of the critical regions.

Adjacent Placement: In this placement type, the critical region that is lying be-

tween two non-critical regions is divided into smaller equal width regions while keeping

them physically together.

Segregated Placement: In this placement type, the critical region that is lying

between two non-critical regions is divided into smaller equal width regions and each

region is placed between non-critical regions such that they are separated from each

other with equal width non-critical regions.

The resulting region placements are shown in Figure 4.9. The adjacent placements

are named as Ai and the segregated placements are named as Si where i is the number

of critical regions. In the figures, the diagonal shaped blocks represent the non-critical

regions and dotted blocks represent the critical regions. The same type regions have

equal width in each placement. The intrusion probabilities are distributed to each part
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equally according to its region type. For example, in the BAS scenario, the intrusion

probability of the critical region is 0.8 and for the case in which the critical region is

divided into two parts, i.e. in A2 and S2 placements, the intrusion probability of each

part is set to 0.4. In a similar manner, the intrusion probability of the non-critical

region is divided into equal parts.
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Figure 4.10. Network detection performance in BAS scenario adjacent critical regions.

4.2.1. Analysis of Factors

The numerical results of the experiments presented clearly show the relation-

ship between different factors affecting the detection quality of the network. While

keeping the sensor count constant, the effect of the region parameters on the network

performance is examined using the factor analysis method. The 2k factorial design is

selected for the factor analysis which is explained in [84]. Here, we define the factors

and present the method used for the analysis. In our case, we used three factors each

defined at two levels. The factors and their corresponding levels are listed in Table 4.2.

The detection probability for each level of each factor is given in Table 4.3.
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Figure 4.11. Network detection performance in BAS scenario segregated critical

regions.
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Figure 4.12. Network detection performance in CHA scenario adjacent critical

regions.
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Figure 4.13. Network detection performance in CHA scenario segregated critical

regions.

Table 4.2. List of symbols.

Symbol Factor Level -1 Level 1

A Scenario Type BAS CHA

B Critical Reg. Dist. Adjacent Segregated

C Critical Reg. Count 2 4

Table 4.3. Detection probability values used in our analysis.

BAS CHA

2 Reg. 4 Reg. 2 Reg. 4 Reg.

Adjacent 0.913 0.947 0.813 0.851

Segregated 0.943 0.988 0.898 0.975

We define three variables xA, xB and xC for each factor as follows:

xA =







−1 if the scenario type is BAS

1 if the scenario type is CHA
(4.10)

xB =







−1 if the critical regions are adjacent

1 if the critical regions are segregated
(4.11)
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xC =







−1 if the critical region count is 2

1 if the critical region count is 4
(4.12)

The performance y in detection probability can now be regressed on xA, xB and

xC using a nonlinear regression model of the form

yi =q0 + qAxAi + qBxBi + qCxCi + qABxAixBi + qACxAixCi + qBCxBixCi+

qABCxAixBixCi (4.13)

where i is the observation index. Substituting our eight observations in the model, we

get eight equations which can be solved uniquely for the eight unknowns. The sign

table method described in Table 4.4 enables a simple solution for these equations.

Table 4.4. The sign table used in the 2k factor analysis.

I A B C AB AC BC ABC y

1 -1 -1 -1 1 1 1 -1 0.913

1 1 -1 -1 -1 -1 1 1 0.813

1 -1 1 -1 -1 1 -1 1 0.943

1 1 1 -1 1 -1 -1 -1 0.898

1 -1 -1 1 1 -1 -1 1 0.947

1 1 -1 1 -1 1 -1 -1 0.851

1 -1 1 1 -1 -1 1 -1 0.988

1 1 1 1 1 1 1 1 0.975

7.328 -0.255 0.280 0.193 0.140 0.036 0.049 0.028 Total

0.916 -0.032 0.035 0.024 0.017 0.005 0.006 0.004 Total / 8

q0 qA qB qC qAB qAC qBC qABC

The importance of a factor is equal to the proportion of the total variation in the

experiment results that is explained by the factor. If a factor has a larger component

on the variation of the result, it is considered more important. The sample variance of



76

y, denoted as s2y is:

s2y =

23
∑

i=1

(yi− ȳ)2

23 − 1
(4.14)

where ȳ is the mean of results from all eight observations. The numerator of the division

that is given on the right-hand side of the equation is called the total variation of y or

sum of squares total (SST ). It consists of seven parts for a 23 factorial design:

SST =
23
∑

i=1

(yi− ȳ)2

=23q2A + 23q2B + 23q2C + 23q2AB + 23q2AC + 23q2BC + 23q2ABC

=SSA+ SSB + SSC + SSAB + SSAC + SSBC + SSABC (4.15)

where each part represent the portion of the total variation explained by the effect of

A, B, C, and their interaction with each other, respectively. Each portion of the factor

is called the sum of squares due to that factor. Their ratio to SST , when expressed

as a percentage, gives an easy way to gauge the importance of that factor. Thus,

the importance of each factor on the results can be easily calculated. For example,

the importance of the scenario type which is denoted as factor A in our analysis is

SSA/SST . The fraction values for each factor and their interaction are calculated in

a similar manner. The results are listed in Table 4.5.

Table 4.5. Fraction of variation explained by each factor.

Factor Variable Fraction (in %)

Scenario type A 31.7

Region distribution B 38.3

Region count C 18.2

Interaction of A and B AB 9.6

Interaction of A and C AC 0.6

Interaction of B and C BC 1.2

Interaction of A, B and C ABC 0.4
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The results show that region distribution has the greatest impact on the network

DetQM. Its impact factor is about 38.3 %. It can be concluded that the placement

of critical regions among the border area is very important since it shapes the traffic

among the non-critical regions, too. Following the region distribution, comes the sce-

nario type in the fraction of variation ordering. The essential difference between the

given scenarios is the preference probability to the critical regions. Determining the

preference probabilities accurately is critical to the performance of the network since

it is a major component in the variation. These two factors make up about 70 % of

the variation. In the third place comes the region count factor which has about 18.2 %

fraction on the variation. In the total, the single component factors make up about

90 % of the fraction whereas the remaining 10 % is distributed among the interaction

of the factors. As a conclusion, we can say that the distribution of critical regions

and the preference probability of the critical regions are the key factors for the given

scenarios.

4.3. Detection Quality Measure in Different Region Shapes

The DetQM depends on the limit angles of the integral that is calculated using

the tools from the geometric probability. The relationship between the region shape

is analyzed in order to see the relationship between DetQM and height width ratio.

While keeping the total area constant, at 2 · 106m2, the h/w ratio is changed from

0.1 representing a narrow and long border scenario to 1.0 representing a square border

scenario. Four different levels of required detection probability are defined and the

number of sensors that are needed to achieve the required detection level is calculated.

The calculations are done for two sensing models, binary and Elfes sensing models.

The detection range for the binary sensing is set at r = 20 m. The Elfes ranges are set

at r = 20 m and re = 10 m and the detection parameters are λ = 0.2 and β = 0.6.

The required number of sensors for different h/w ratios are shown in Figure 4.15.

The first notable property is the difference between the required number of sensors for

different sensing models. The outer sensing range is chosen to be same for both sensing

models. However, the exponential part of the Elfes model causes the sensor to provide a

lower detection probability. Hence, the network requires more Elfes model sensor nodes

to achieve the same detection probability level the binary sensor nodes can guarantee.
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Figure 4.14. Required number of sensors for binary sensing model.
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Figure 4.15. Required number of sensors for Elfes sensing model.

Another observable property is the relation between the required number of sensors

for different h/w ratios. The required number of sensors that provide the same level

of detection probability falls when the shape of the border area becomes more square

like. At the h/w = 0.1 level, the border area has a shape of a long narrow strip. At

the h/w = 1.0 level, the border area has a shape of a square, since both sides are equal
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in length. The latter case requires much less number of sensors than the previous one

for the same detection level.

It can be deduced that the shape of the region on the network performance is

clear. For the same area size, the number of required sensors change significantly. One

of the reasons of this dramatic change is the directions of the traveler paths and the

limiting angles on the possible set of paths. The network planner should take the

region dimensioning into account besides the terrain structure and try to segment the

monitored zones into more square-like regions in order to achieve better detection ratio

with the limited number of sensors.
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5. CONCLUSIONS

The surveillance wireless sensor networks are mission critical networks that re-

quire a certain detection capability which is measured with detection quality of the

network. On the other hand, the behavior of the intruders within the monitored bor-

der zone has important effects on the detection quality. In this thesis, we studied

the detection quality problem in a border area under different intruder behaviors with

different parameters sets. In doing so, the effects of various scenarios and sensor param-

eters are analyzed. The ultimate goal is to determine the required number of sensors to

forecast the target detection probability, improve the network performance according

to the field properties and to obtain an acceptable detection probability level.

The analysis of the border area according to its trespassing preference differences

can be done using statistical and image processing tools. We propose a method by

applying simple segmentation of data based on the number of detections made by

each sensor. Using this method, the boundaries of regions with different intrusion

frequencies and the respective trespassing probabilities can be easily calculated. The

accuracy of the method is also shown with simulations.

The identification of regions within the border area consists of the initial step of

a SWSN design. According to the properties and locations of these regions, the design

of the SWSN should be modified to achieve the optimum detection quality with limited

sensor resources. The detection quality of a wireless network depends on many general

and scenario specific parameters such as, the number of sensor nodes, the sensing model

and the range, the dimensions and preferences of regions existing within the border

area.

In this thesis, we propose a closed form formulation for the detection quality

measure applicable to any convex region with a preferred region. We apply it to

the rectangular border scenario case and modify the generic formula to be applicable

to the scenario. To test the validity of the theoretical model, we run simulations

with different parameter sets and compare the results with the analytical ones. The

simulation results match with analytical results with a high accuracy, thus proving

its validity and applicability in the realistic scenarios. The single region scenario is
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generalized for the cases where the border area consists of multiple regions with different

widths and preference probabilities and represented using a closed form formulation.

The properties of different regions and their distributions among the border area are

inspected and their impact on the detection quality are inspected. The advantage

of having a closed form formulation is the ability to forecast the performance of a

such system before deployment and give the network operator means to improve the

detection quality in the design phase. The distribution of the available sensors among

different regions is an important problem. Using the proposed closed form, the optimum

number of sensors per region can be easily calculated and so the optimum detection

quality can be achieved.

As a future work of this thesis, the effect of the energy consumption in sensing and

communication in different regions of the border area can be analyzed. If the temporal

effects of such regions can be represented with analytical methods, the expected lifetime

of a SWSN can be easily calculated and its weak points can be diagnosed in the design

phase. Moreover, the effects of different routing strategies and medium access layer

protocols on the detection quality and the network lifetime can be analyzed. Three

dimensional field models with realistic terrains can also be incorporated into the work.
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APPENDIX A: ANALYTICAL AND SIMULATION

RESULT TABLES

All of the simulation results for the given parameter set are not presented within

the figures. These simulation results and the corresponding analytical values are given

in the following tables. These tables can also be used as lookup references for different

border surveillance scenarios.
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Table A.1. Analytical and simulated DetQM values for areas with different border

region width and TFP preference ratio. The border region width is 20000 m and

TFP width is 200 m.

TFP 50 100 150 200 250

Pr. Sim. An. Sim. An. Sim. An. Sim. An. Sim. An.

0.0 0.1798 0.1576 0.3185 0.2904 0.4289 0.4023 0.5186 0.4965 0.5922 0.5759

0.1 0.1739 0.1536 0.3086 0.2835 0.4167 0.3934 0.5063 0.4863 0.5796 0.5648

0.2 0.1664 0.1497 0.2987 0.2767 0.4068 0.3845 0.4935 0.4760 0.5667 0.5538

0.3 0.1589 0.1457 0.2912 0.2698 0.3959 0.3756 0.4817 0.4658 0.5526 0.5427

0.4 0.1549 0.1417 0.2824 0.2629 0.3867 0.3667 0.4695 0.4555 0.5429 0.5317

0.5 0.1529 0.1377 0.2700 0.2560 0.3747 0.3577 0.4466 0.4453 0.5246 0.5206

0.6 0.1475 0.1337 0.2601 0.2491 0.3604 0.3488 0.4448 0.4350 0.5155 0.5096

0.7 0.1324 0.1297 0.2529 0.2422 0.3509 0.3399 0.4294 0.4248 0.5049 0.4985

0.8 0.1307 0.1257 0.2446 0.2353 0.3329 0.3310 0.4215 0.4145 0.4971 0.4875

0.9 0.1216 0.1217 0.2318 0.2285 0.3284 0.3221 0.4130 0.4043 0.4742 0.4764

1.0 0.1123 0.1177 0.2271 0.2216 0.3019 0.3132 0.4051 0.3940 0.4669 0.4654

TFP 300 350 400 450 500

Pr. Sim. An. Sim. An. Sim. An. Sim. An. Sim. An.

0.0 0.6527 0.6427 0.7035 0.6991 0.7460 0.7465 0.7820 0.7865 0.8127 0.8201

0.1 0.6408 0.6313 0.6912 0.6875 0.7345 0.7351 0.7713 0.7754 0.8038 0.8095

0.2 0.6284 0.6199 0.6775 0.6760 0.7246 0.7238 0.7636 0.7644 0.7946 0.7989

0.3 0.6180 0.6084 0.6687 0.6645 0.7085 0.7124 0.7513 0.7533 0.7810 0.7883

0.4 0.6050 0.5970 0.6568 0.6530 0.7034 0.7010 0.7416 0.7423 0.7749 0.7777

0.5 0.5882 0.5855 0.6414 0.6414 0.6988 0.6897 0.7280 0.7313 0.7624 0.7672

0.6 0.5716 0.5741 0.6313 0.6299 0.6840 0.6783 0.7209 0.7202 0.7625 0.7566

0.7 0.5591 0.5626 0.6243 0.6184 0.6611 0.6669 0.7100 0.7092 0.7388 0.7460

0.8 0.5546 0.5512 0.6138 0.6069 0.6639 0.6556 0.6940 0.6981 0.7406 0.7354

0.9 0.5433 0.5398 0.6076 0.5954 0.6414 0.6442 0.6823 0.6871 0.7262 0.7248

1.0 0.5224 0.5283 0.5737 0.5838 0.6286 0.6328 0.6703 0.6760 0.7099 0.7142
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Table A.2. Analytical and simulated DetQM values for areas with different border

region width and TFP preference ratio. The border region width is 20000 m and

TFP width is 200 m.

TFP 600 700 800 900 1000

Pr. Sim. An. Sim. An. Sim. An. Sim. An. Sim. An.

0.0 0.8607 0.8724 0.8958 0.9094 0.9213 0.9357 0.9405 0.9544 0.9552 0.9676

0.1 0.8535 0.8629 0.8895 0.9012 0.9157 0.9287 0.9359 0.9485 0.9519 0.9627

0.2 0.8434 0.8534 0.8815 0.8929 0.9108 0.9216 0.9317 0.9425 0.9468 0.9578

0.3 0.8371 0.8439 0.8755 0.8846 0.9038 0.9146 0.9264 0.9366 0.9431 0.9528

0.4 0.8252 0.8344 0.8709 0.8764 0.9005 0.9075 0.9223 0.9307 0.9406 0.9479

0.5 0.8195 0.8249 0.8614 0.8681 0.8939 0.9005 0.9167 0.9247 0.9374 0.9430

0.6 0.8127 0.8155 0.8604 0.8599 0.8857 0.8934 0.9122 0.9188 0.9329 0.9380

0.7 0.8043 0.8060 0.8481 0.8516 0.8791 0.8863 0.9076 0.9129 0.9280 0.9331

0.8 0.7943 0.7965 0.8325 0.8433 0.8754 0.8793 0.9059 0.9069 0.9212 0.9282

0.9 0.7884 0.7870 0.8336 0.8351 0.8746 0.8722 0.8992 0.9010 0.9256 0.9232

1.0 0.7751 0.7775 0.8210 0.8268 0.8656 0.8652 0.8911 0.8951 0.9144 0.9183
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Table A.3. Analytical and simulated DetQM values for areas with different border

region width and TFP preference ratio. The TFP width is kept constant at 200 m

and the number of sensors deployed is 200.

TFP 2000 m 4000 m 6000 m 8000 m 10000 m

Pr. Sim. An. Sim. An. Sim. An. Sim. An. Sim. An.

0.0 0.9787 0.9951 0.9323 0.9428 0.8562 0.8656 0.7835 0.7898 0.7200 0.7222

0.1 0.9803 0.9949 0.9307 0.9405 0.8529 0.8603 0.7770 0.7823 0.7124 0.7133

0.2 0.9819 0.9948 0.9293 0.9381 0.8473 0.8550 0.7699 0.7748 0.7015 0.7044

0.3 0.9829 0.9946 0.9289 0.9358 0.8414 0.8497 0.7621 0.7673 0.6976 0.6955

0.4 0.9852 0.9945 0.9300 0.9334 0.8406 0.8444 0.7529 0.7598 0.6843 0.6866

0.5 0.9865 0.9944 0.9252 0.9311 0.8409 0.8391 0.7550 0.7523 0.6746 0.6777

0.6 0.9886 0.9942 0.9251 0.9287 0.8312 0.8338 0.7440 0.7448 0.6656 0.6688

0.7 0.9895 0.9941 0.9273 0.9264 0.8274 0.8285 0.7471 0.7373 0.6695 0.6600

0.8 0.9906 0.9940 0.9241 0.9240 0.8243 0.8232 0.7292 0.7298 0.6551 0.6511

0.9 0.9924 0.9938 0.9278 0.9217 0.8185 0.8179 0.7095 0.7223 0.6407 0.6422

1.0 0.9955 0.9937 0.9226 0.9193 0.8172 0.8126 0.7169 0.7149 0.6252 0.6333

TFP 12000 m 14000 m 16000 m 18000 m 20000 m

Pr. Sim. An. Sim. An. Sim. An. Sim. An. Sim. An.

0.0 0.6665 0.6634 0.6210 0.6126 0.5819 0.5686 0.5484 0.5302 0.5186 0.4965

0.1 0.6575 0.6537 0.6102 0.6025 0.5708 0.5583 0.5359 0.5199 0.5068 0.4863

0.2 0.6457 0.6440 0.5988 0.5924 0.5590 0.5480 0.5240 0.5095 0.4937 0.4760

0.3 0.6369 0.6343 0.5915 0.5822 0.5476 0.5377 0.5166 0.4992 0.4837 0.4658

0.4 0.6234 0.6246 0.5792 0.5721 0.5334 0.5273 0.4995 0.4889 0.4679 0.4555

0.5 0.6193 0.6149 0.5666 0.5620 0.5214 0.5170 0.4826 0.4785 0.4622 0.4453

0.6 0.6081 0.6052 0.5584 0.5518 0.5101 0.5067 0.4768 0.4682 0.4454 0.4350

0.7 0.6049 0.5955 0.5501 0.5417 0.4989 0.4964 0.4587 0.4579 0.4414 0.4248

0.8 0.5875 0.5858 0.5412 0.5316 0.5003 0.4861 0.4376 0.4476 0.4158 0.4145

0.9 0.5776 0.5761 0.5275 0.5214 0.4742 0.4758 0.4332 0.4372 0.4184 0.4043

1.0 0.5758 0.5664 0.5134 0.5113 0.4713 0.4655 0.4204 0.4269 0.3993 0.3940
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Table A.4. Analytical and simulated DetQM values for areas with different border

region width and TFP preference ratio. The TFP width is kept constant at 200 m

and the number of sensors deployed is 800.

TFP 2000 m 4000 m 6000 m 8000 m 10000 m

Pr. Sim. An. Sim. An. Sim. An. Sim. An. Sim. An.

0.0 0.9755 1.0000 0.9954 1.0000 0.9967 0.9997 0.9942 0.9980 0.9882 0.9940

0.1 0.9779 1.0000 0.9959 1.0000 0.9969 0.9996 0.9941 0.9976 0.9876 0.9928

0.2 0.9804 1.0000 0.9964 1.0000 0.9971 0.9995 0.9941 0.9971 0.9872 0.9916

0.3 0.9827 1.0000 0.9968 1.0000 0.9973 0.9994 0.9940 0.9967 0.9865 0.9904

0.4 0.9853 1.0000 0.9973 1.0000 0.9977 0.9993 0.9942 0.9962 0.9852 0.9892

0.5 0.9877 1.0000 0.9977 1.0000 0.9978 0.9992 0.9936 0.9957 0.9858 0.9880

0.6 0.9901 1.0000 0.9982 1.0000 0.9979 0.9991 0.9942 0.9953 0.9843 0.9868

0.7 0.9927 1.0000 0.9986 1.0000 0.9979 0.9990 0.9939 0.9948 0.9845 0.9856

0.8 0.9951 1.0000 0.9991 1.0000 0.9987 0.9989 0.9937 0.9943 0.9824 0.9843

0.9 0.9976 1.0000 0.9995 1.0000 0.9988 0.9989 0.9937 0.9939 0.9841 0.9831

1.0 1.0000 1.0000 0.9999 1.0000 0.9987 0.9988 0.9929 0.9934 0.9816 0.9819

TFP 12000 m 14000 m 16000 m 18000 m 20000 m

Pr. Sim. An. Sim. An. Sim. An. Sim. An. Sim. An.

0.0 0.9790 0.9872 0.9675 0.9775 0.9533 0.9654 0.9370 0.9513 0.9218 0.9357

0.1 0.9777 0.9849 0.9647 0.9740 0.9501 0.9607 0.9325 0.9454 0.9164 0.9287

0.2 0.9760 0.9827 0.9625 0.9706 0.9468 0.9560 0.9285 0.9395 0.9113 0.9216

0.3 0.9741 0.9804 0.9604 0.9671 0.9413 0.9513 0.9253 0.9335 0.9065 0.9146

0.4 0.9726 0.9782 0.9582 0.9637 0.9393 0.9466 0.9211 0.9276 0.8975 0.9075

0.5 0.9714 0.9759 0.9541 0.9602 0.9366 0.9419 0.9158 0.9217 0.8946 0.9005

0.6 0.9691 0.9737 0.9513 0.9568 0.9333 0.9372 0.9090 0.9158 0.8882 0.8934

0.7 0.9696 0.9714 0.9497 0.9533 0.9279 0.9325 0.9057 0.9099 0.8799 0.8863

0.8 0.9669 0.9692 0.9456 0.9499 0.9288 0.9278 0.9028 0.9040 0.8830 0.8793

0.9 0.9673 0.9669 0.9437 0.9464 0.9238 0.9231 0.8970 0.8980 0.8714 0.8722

1.0 0.9643 0.9647 0.9414 0.9430 0.9218 0.9184 0.8903 0.8921 0.8703 0.8652
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Table A.5. Analytical and simulated DetQM values for areas with different border

region width and TFP preference ratio. The TFP width ratio is 0.1 and the number

of sensors deployed is 200.

TFP 2000 m 4000 m 6000 m 8000 m 10000 m

Pr. Sim. An. Sim. An. Sim. An. Sim. An. Sim. An.

0.0 0.9792 0.9951 0.9105 0.9410 0.8419 0.8614 0.7824 0.7835 0.7078 0.7142

0.1 0.9809 0.9949 0.9112 0.9389 0.8389 0.8568 0.7764 0.7771 0.7014 0.7068

0.2 0.9826 0.9948 0.9126 0.9368 0.8368 0.8521 0.7691 0.7706 0.6951 0.6993

0.3 0.9838 0.9946 0.9145 0.9347 0.8340 0.8474 0.7632 0.7642 0.6886 0.6919

0.4 0.9853 0.9945 0.9154 0.9326 0.8298 0.8427 0.7573 0.7577 0.6796 0.6845

0.5 0.9870 0.9944 0.9158 0.9304 0.8292 0.8380 0.7526 0.7512 0.6752 0.6770

0.6 0.9885 0.9942 0.9178 0.9283 0.8281 0.8334 0.7491 0.7448 0.6722 0.6696

0.7 0.9900 0.9941 0.9180 0.9262 0.8244 0.8287 0.7372 0.7383 0.6627 0.6621

0.8 0.9917 0.9940 0.9220 0.9241 0.8227 0.8240 0.7338 0.7319 0.6504 0.6547

0.9 0.9928 0.9938 0.9218 0.9219 0.8200 0.8193 0.7316 0.7254 0.6494 0.6473

1.0 0.9948 0.9937 0.9210 0.9198 0.8172 0.8146 0.7214 0.7190 0.6447 0.6398

TFP 12000 m 14000 m 16000 m 18000 m 20000 m

Pr. Sim. An. Sim. An. Sim. An. Sim. An. Sim. An.

0.0 0.6602 0.6541 0.6161 0.6023 0.5777 0.5574 0.5405 0.5184 0.5102 0.4843

0.1 0.6515 0.6462 0.6071 0.5943 0.5674 0.5496 0.5306 0.5108 0.4998 0.4770

0.2 0.6429 0.6384 0.5974 0.5864 0.5586 0.5418 0.5208 0.5032 0.4902 0.4697

0.3 0.6338 0.6305 0.5884 0.5784 0.5472 0.5339 0.5111 0.4957 0.4805 0.4625

0.4 0.6272 0.6226 0.5772 0.5705 0.5369 0.5261 0.4990 0.4881 0.4713 0.4552

0.5 0.6174 0.6148 0.5684 0.5625 0.5288 0.5183 0.4909 0.4805 0.4596 0.4479

0.6 0.6082 0.6069 0.5623 0.5545 0.5187 0.5104 0.4799 0.4729 0.4495 0.4407

0.7 0.6027 0.5990 0.5504 0.5466 0.5066 0.5026 0.4718 0.4653 0.4418 0.4334

0.8 0.5947 0.5912 0.5390 0.5386 0.4980 0.4948 0.4619 0.4578 0.4306 0.4261

0.9 0.5856 0.5833 0.5323 0.5307 0.4887 0.4870 0.4532 0.4502 0.4222 0.4189

1.0 0.5728 0.5754 0.5226 0.5227 0.4754 0.4791 0.4424 0.4426 0.4098 0.4116
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Table A.6. Analytical and simulated DetQM values for areas with different border

region width and TFP preference ratio. The TFP width ratio is 0.1 and the number

of sensors deployed is 800.

TFP 2000 m 4000 m 6000 m 8000 m 10000 m

Pr. Sim. An. Sim. An. Sim. An. Sim. An. Sim. An.

0.0 0.9620 1.0000 0.9856 1.0000 0.9837 0.9996 0.9828 0.9978 0.9666 0.9933

0.1 0.9659 1.0000 0.9870 1.0000 0.9852 0.9996 0.9839 0.9974 0.9683 0.9923

0.2 0.9697 1.0000 0.9885 1.0000 0.9866 0.9995 0.9851 0.9970 0.9701 0.9913

0.3 0.9736 1.0000 0.9899 1.0000 0.9883 0.9994 0.9862 0.9966 0.9719 0.9903

0.4 0.9772 1.0000 0.9913 1.0000 0.9897 0.9993 0.9872 0.9962 0.9735 0.9893

0.5 0.9810 1.0000 0.9928 1.0000 0.9913 0.9992 0.9885 0.9958 0.9750 0.9882

0.6 0.9848 1.0000 0.9942 1.0000 0.9928 0.9991 0.9895 0.9954 0.9769 0.9872

0.7 0.9887 1.0000 0.9957 1.0000 0.9944 0.9991 0.9905 0.9950 0.9782 0.9862

0.8 0.9924 1.0000 0.9971 1.0000 0.9958 0.9990 0.9916 0.9946 0.9802 0.9852

0.9 0.9962 1.0000 0.9985 1.0000 0.9974 0.9989 0.9924 0.9942 0.9813 0.9842

1.0 1.0000 1.0000 1.0000 1.0000 0.9989 0.9988 0.9938 0.9938 0.9828 0.9832

TFP 12000 m 14000 m 16000 m 18000 m 20000 m

Pr. Sim. An. Sim. An. Sim. An. Sim. An. Sim. An.

0.0 0.9765 0.9857 0.9497 0.9750 0.9237 0.9616 0.9165 0.9462 0.9001 0.9293

0.1 0.9757 0.9839 0.9496 0.9723 0.9241 0.9581 0.9151 0.9419 0.8976 0.9243

0.2 0.9747 0.9820 0.9493 0.9696 0.9240 0.9546 0.9134 0.9377 0.8952 0.9194

0.3 0.9739 0.9802 0.9487 0.9669 0.9244 0.9511 0.9124 0.9334 0.8937 0.9145

0.4 0.9728 0.9784 0.9493 0.9642 0.9247 0.9475 0.9107 0.9291 0.8912 0.9096

0.5 0.9721 0.9766 0.9492 0.9615 0.9239 0.9440 0.9093 0.9248 0.8895 0.9047

0.6 0.9712 0.9748 0.9487 0.9589 0.9247 0.9405 0.9084 0.9206 0.8865 0.8998

0.7 0.9694 0.9730 0.9485 0.9562 0.9246 0.9370 0.9063 0.9163 0.8855 0.8949

0.8 0.9695 0.9711 0.9487 0.9535 0.9233 0.9334 0.9052 0.9120 0.8816 0.8899

0.9 0.9688 0.9693 0.9483 0.9508 0.9254 0.9299 0.9029 0.9077 0.8813 0.8850

1.0 0.9677 0.9675 0.9479 0.9481 0.9253 0.9264 0.9028 0.9035 0.8773 0.8801
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Table A.7. DetQM for uniform and optimized sensor allocations for different values of

pt1 .

Total Uniform Optimized (pt1 = 0.1) Optimized (pt1 = 0.2)

Nt Nt1 Nt2 PD Nt1 Nt2 PD Nt1 Nt2 PD

10 5 5 0.195 0 10 0.316 0 10 0.281

20 10 10 0.351 0 20 0.521 0 20 0.463

30 15 15 0.478 0 30 0.654 0 30 0.582

40 20 20 0.579 0 40 0.741 4 36 0.663

50 25 25 0.661 0 50 0.797 9 41 0.729

60 30 30 0.727 5 55 0.836 14 46 0.782

70 35 35 0.780 10 60 0.868 19 51 0.824

80 40 40 0.823 15 65 0.894 24 56 0.858

90 45 45 0.857 20 70 0.914 29 61 0.886

100 50 50 0.885 25 75 0.931 34 66 0.908

Total Uniform Optimized (pt1 = 0.3) Optimized (pt1 = 0.4)

Nt Nt1 Nt2 PD Nt1 Nt2 PD Nt1 Nt2 PD

10 5 5 0.195 0 10 0.246 0 10 0.211

20 10 10 0.351 0 20 0.405 5 15 0.364

30 15 15 0.478 5 25 0.521 10 20 0.488

40 20 20 0.579 10 30 0.614 15 25 0.588

50 25 25 0.661 15 35 0.689 20 30 0.668

60 30 30 0.727 20 40 0.750 25 35 0.733

70 35 35 0.780 25 45 0.799 30 40 0.785

80 40 40 0.823 30 50 0.838 35 45 0.827

90 45 45 0.857 35 55 0.869 40 50 0.860

100 50 50 0.885 40 60 0.895 45 55 0.887
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Table A.8. DetQM for uniform and optimized sensor allocations for different values of

width w.

Width Uniform Optimized (pt1 = 0.1) Optimized (pt1 = 0.2)

w Nt1 Nt2 PD Nt1 Nt2 PD Nt1 Nt2 PD

2000 50 50 0.716 25 75 0.931 34 66 0.908

4000 50 50 0.491 2 98 0.811 20 80 0.748

6000 50 50 0.372 0 100 0.721 7 93 0.643

8000 50 50 0.300 0 100 0.643 0 100 0.571

10000 50 50 0.251 0 100 0.578 0 100 0.514

12000 50 50 0.216 0 100 0.524 0 100 0.466

14000 50 50 0.189 0 100 0.479 0 100 0.426

16000 50 50 0.169 0 100 0.441 0 100 0.392

18000 50 50 0.152 0 100 0.409 0 100 0.363

20000 50 50 0.139 0 100 0.381 0 100 0.338

Width Uniform Optimized (pt1 = 0.3) Optimized (pt1 = 0.4)

w Nt1 Nt2 PD Nt1 Nt2 PD Nt1 Nt2 PD

2000 50 50 0.716 40 60 0.895 45 55 0.887

4000 50 50 0.491 32 68 0.711 41 59 0.691

6000 50 50 0.372 24 76 0.591 37 63 0.563

8000 50 50 0.300 16 84 0.510 34 66 0.476

10000 50 50 0.251 9 91 0.452 30 70 0.414

12000 50 50 0.216 1 99 0.408 27 73 0.367

14000 50 50 0.189 0 100 0.373 23 77 0.330

16000 50 50 0.169 0 100 0.343 20 80 0.300

18000 50 50 0.152 0 100 0.318 17 83 0.276

20000 50 50 0.139 0 100 0.296 13 87 0.256
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