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ABSTRACT

GA-NN APPROACH FOR ECG FEATURE SELECTION IN

RULE-BASED ARRHYTHMIA CLASSIFICATION

This paper presents rule extraction and feature selection system to detect ab-

normality in ECG signals. Genetic Algorithm-Neural Network (GA-NN) Approach is

used to distinguish between the presence and absence of cardiac arrhythmia and per-

form feature selection. Following this process, rule sets are extracted in order to guide

the diagnosis of cardiac arrhythmia. The rule sets are extracted based on selected

features because rule extraction without feature selection may result in rules to be

more complex than human may realize. C4.5, RIPPER, PART and HotSpot methods

are used to perform rule extraction. The ECG dataset used in this study is obtained

from UCI Arrhythmia Database. In this dataset, all the anomalies are grouped into

one abnormal class and the rest is grouped into one normal class. As a compari-

son, k-Nearest Neighbor (k-NN), Support Vector Machines (SVM), Naive Bayes and

Bayesian Networks have been tested on the arrhythmia dataset. For dimensionality

reduction purpose, recursive feature extractor (RFE-SVM), correlation based feature

selection (CFS), principal component analysis (PCA) and factor analysis (FA) have

been applied. According to test results, GA-NN outperforms other techniques.
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ÖZET

KURAL TABANLI ARİTMİ SINIFLANDIRMASINDA

EKG ÖZNİTELİK SEÇİMİNE GA-YSA YAKLAŞIMI

Bu çalışma, EKG sinyallerindeki anormalliklerin tespiti için kural çıkarım ve

öznitelik seçim sistemi sunar. Kardiyak aritminin varlığı ve yokluğu arasındaki ayrımın

yapılması ve öznitelik seçimi için Genetik Algoritması-Yapay Sinir Ağı (GA-YSA)

Yaklaşımı kullanılmıştır. Bu süreci takiben, aritmi teşhisine rehberlik etmesi amacıyla

kural seti çıkarılmıştır. Bu kural setleri, seçilmiş özniteliklere dayanılarak çıkarılmaktadır;

çünkü öznitelik seçimi olmadan yapılan kural çıkarımı insanın anlayabileğinden daha

karmaşık sonuçlar üretebilmektedir. Kural çıkarımında, C4.5, RIPPER, PART ve

HotSpot metotları uygulanmıştır. Bu çalışmada kullanılan EKG veri kümesi, UCI

Aritmi Veritabanı’ndan elde edilmektedir. Bu veri kümesindeki tüm anomaliler, tek

bir anormal sınıf altında toplanırken geriye kalanlar normal sınıfı oluşturacak şekilde

düzenlenmiştir. Karşılaştırma amacıyla k en yakın komşu (k-NN), Destek Vektör

Makineleri (SVM), Naive Bayes ve Bayes Ağları, EKG veri kümesine uygulanmıştır.

Boyut indirgemek amacıyla ise, özyineli nitelik çıkarımı (RFE-SVM), korelasyon ta-

banlı nitelik seçimi (CFS), temel bileşen analizi (PCA) ve faktör analizi (FA) yöntemleri

kullanılmıştır. Deney sonuçlarına göre, GA-YSA yöntemi, diğerlerinden daha iyi sonuç

vermiştir.
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1. INTRODUCTION

The heart has a unique place among other muscles in terms of being capable of

automatic rhythmic contraction. The impulses that stimulate mascular contraction

arise in the conduction system of the heart. The conduction system consists of the

sino-atrial (SA) node, the internodal atrial pathways, the atrioventricular (AV) node,

the bundle of His, the right and the left bundle branches, and the Purkinje system.

Electrical currents which spread through the entire body is produced by the formulation

and conduction of the impulse. SA node is known as the cardiac pacemaker because

heart beat is controlled by the rhythmic impulses which originate from SA node. The

impulse passes through the internodal atrial pathways to depolarize the atria to pump

the blood to ventricles and reaches the AV node. Then the impulse passes on to the

bundle of His, the right and left bundles, the branches of the Purkinje system into the

ventricles. This part comprises the first phase of the cardiac cycle, namely diastole.

The electrical signal, then traverses through the ventricles causing them to contract.

Blood is pumped to the lungs from the right ventricle and to the rest of the body from

the left ventricle. This part is the second phase of the cardiac cycle which is called

systole. The conduction system is given in Figure 1.1.

Figure 1.1. Cardiac conduction system [1].

Electrocardiogram (ECG) constitutes recording of the heart’s electrical activity

over time. Electrodes are applied to specific positions on the skin. Electrical changes
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detected by the electrodes are transmitted to an electrocardiograph which processes

the changes and outputs on a scaled paper. The position diagram of electrodes is given

in Figure 1.2.

Figure 1.2. Position diagram of electrodes [2].

The standard 12-lead ECG records with 3, 6 or 12 leads simultaneously. Each

lead represents a particular orientation in space as indicated in Table 1.1.

The plot produced by ECG consists of waves which are referred as letters: P,

Q, R, S, T, U. Scaled paper has horizontal and vertical lines. Time is measured

along the horizontal lines and voltage is measured along the vertical lines. Electrical

activity during the cycle is plotted with waves. For example, P wave indicates atrial

depolarization, QRS complex is a ventricular depolarization, and T wave is a ventricular

repolarization. Waves on a normal plot is given in Figure 1.3.
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Table 1.1. Orientation of 12 Lead ECG.

Lead Name Orientation
Lead 1 RA(-) to LA(+)
Lead 2 RA(-) to LF(+)
Lead 3 LA(-) to LF(+)

Lead aVR RA(+) to [LA and LF](-)
Lead aVL LA(+) to [RA and LF](-)
Lead aVF LF(+) to [RA and LA](-)
Lead V1 V1(+) to WCT
Lead V2 V2(+) to WCT
Lead V3 V3(+) to WCT
Lead V4 V4(+) to WCT
Lead V5 V5(+) to WCT
Lead V6 V6(+) to WCT

WCT: Wilson’s Central Terminal is the
average of the three limp leads (aVR, AVL,

AVF).

Figure 1.3. Waves on a normal ECG plot [3].
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1.1. Motivation

Alterations that disrupt the regular functioning of the heart cycle may cause

a cardiac arrhythmia. These anomalies are worth considering in terms of being a

potential reason for a heart disease. Thus, early detection of heart disease can save

lives.

ECG output is just a laboratory test result and must be integrated with a clin-

ical assessment to become more meaningful. For this reason, ECG analysis is a part

of medical evaluation. ECG analysis requires to know the meaning of the waves, com-

plexes, intervals, amplitudes and regularity of the waves. Knowledge in normal ECG

patterns can be a key to detect abnormality in ECG signals.

P wave indicates atrial depolarization and duration of the P wave should not

exceed 0.12 s. for normal rhythm.

P-R interval includes the time required for atrial depolarization and the onset of

ventricular depolarization. This interval is measured from the onset of the P wave to

the beginning of the QRS complex. The normal value is in the range of 0.12-0.20 s.

Longer P-R intervals are seen in the cases of AV block while shorter ones in different

arrhythmias.

QRS complex indicates the total ventricular depolarization time which is mea-

sured from the onset of the Q wave to the offset of the S wave. The upper limit for

normal is 0.10 s. Heart rate can be computed from two successive QRS complexes or

R-R interval. Normally, heart rate ranges from 60 to 90 beats per minute.

S-T segment is the duration between the end of ventricular depolarization which

is indicated by QRS complex and the beginning of the T wave.

T wave indicates the ventricular repolarization.
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Q-T interval represents the duration of electrical systole and it is measured from

the onset of the Q wave to the end of the T wave.

U wave is a deflection which follows the T wave preceding the next P wave and

usually shows the same polarity as the T wave.

The order of the waves is as P-QRS-T-U. An extra or missing wave may indicate

an anomaly.

As well as the knowledge and experience, ECG analysis requires full attention.

Computer-aided ECG analysis is important because of the lack of such human needs

and being a quick advisor. Researches in this area try to find more robust and reliable

methods for automated ECG analysis that detect abnormal patterns.

This research aims to classify arrhythmic patterns in a rule-based manner, and

thus intends to aid the cardiologists.

1.2. Previous Work

In the literature, there are many researches that address arrhythmia classification

problem. The purpose of such studies is to find an accurate and reliable classification

method that can contribute to automated ECG analysis.

UCI Arrhythmia Repository [4] and MIT-BIH [5] are two most commonly used

databases for ECG Analysis. Some researches that use these databases are summarized

in Table 1.2.

MIT-BIH database contains ECG signal data. Therefore, characteristic wave de-

tection in ECG signal is an important preprocessing step before the classification. Pan

and Tompkins [22] developed an algorithm to detect QRS complexes. Algorithm steps

include digital bandpass filtering to reduce noise, differentiation, squaring and moving

window integration. The optimized implementation of QRS detection in C language
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Table 1.2. Previous work using various data.

Ref. Year Protocol Algorithm Results Dataset
Yeap et al.
[6]

1990 5% tra. 5% test.
and 100% test.

ANN BP 98.36% sens.
67.80% sens.

AHA

Hu et al. [7] 1993 3-fold CV 51-25-2 MLP ≈90% acc. MIT-BIH
Silipo and
Marchesi [8]

1998 15% tra. 85% test. ANN with BP ≈90% sens. MIT-BIH and
VALE

Chazal and
Reilly [9]

2000 10-fold CV LDA 69.3-74.7% acc. Frank Lead
ECG Data [10]

Gao et al.
[11]

2005 t-test Bayesian ANN ≈76% sens. UCI

Niwas et al.
[12]

2005 58% tra.42% test. ANN ≈99% acc. MIT-BIH

Zhang and
Zhang [13]

2005 2/3 tra.1/3 test. PCA-SVM ≈99% acc. MIT-BIH

Song et al.
[14]

2005 CV LDA-SVM 99.35% avg.
acc.

MIT-BIH

Uyar [15] 2006 10-fold CV PCA-SVM 83.7% acc. UCI
Kara and
Okan-
dan [16]

2007 24 of 72 normal -
28 of 52 AF signals
test.

ANN BP 100% acc MIT-BIH

Asl et al. [17] 2008 2/3tra. 1/3 test. GDA-SVM ≈99% acc. MIT-BIH
Oliveira et
al. [18]

2010 75% tra. 25% test. Bayesian Net-
works

≈99% sens. MIT-BIH and
QT database

Ozcan [19] 2010 10-fold CV FSVM 85.71% acc. UCI and Real
ECG

Jadhav et al.
[20]

2011 90% tra. 10% test. ANN BP 86.67% sens. UCI

Homaeinezhad
et al. [21]

2012 4035 beats tra.
3150 beats test.

SVM-KNN-
four MLP-BP
(Neuro-SVM-
KNN)

98.06% acc. MIT-BIH
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is presented in [23]. In the study by Niwas et al. [12], parameters like heartbeat in-

tervals, RR intervals are extracted using ECG filtering method. Asl et al. [17] applied

QRS detection algorithm [22, 23]. Wavelet transform analysis is also widely used to

detect P wave, QRS complex and T wave in ECG signal. Song et al. [14] utilized the

wavelet transform based method in detection of the QRS complex which is proposed

by Park et al. [24]. In [24], a wavelet adaptive filter is undertaken to minimize the

distortion of the S-T segment. Kadambe et al. [25] present a dyadic wavelet transform

based QRS detector which computes local peaks across two successive dyadic scales

and determines the presence of the QRS complex. In a subsequent research by Park et

al. [26], a wavelet interpolation filter is designed for the removal of motion artifacts in

the S-T segment of stress ECGs. Homaeinezhad et al. [21] applied an ECG detection

and delineation method implemented by Ghaffari et al. [27] to find out P wave, QRS

complex and T wave. Based on wavelet transform, Lin et al. [28] used Morlet wavelet

to extract features. Benitez et al. [29] present Hilbert based transform with an aver-

age detection rate of 99%. Kara and Okandan [16] extracted features using wavelet

coefficients and Welch method [30]. Hu et al. [7] investigate applications of artificial

neural network in both QRS detection and beat classification. A two layer MLP ANN

is used for QRS complex detection. They compared detection rates of the proposed

method with the linear adaptive filtering [31] and bandpass filtering [22]. In the study

by Oliviera et al. [18], features such as distance between two consecutive QRS com-

plexes, QRS complex shape are provided by hidden Markov model based framework

which is developed by Andreão et al. [32].

1.2.1. NN based approaches

Hu et al. [7] studied QRS complex beat classification feeding QRS beat patterns to

MLP for classification of one normal and 12 abnormal classes. MIT-BIH database was

used. QRS complex templates were extracted using adaptive nonlinear ANN. When

QRS beats in data are examined, variations are seen in morphology of QRS waveforms

belonging to the same class but different patients, and also similarities are observed in

QRS beats of different class and different patients. In the study, two experiments were

performed. First experiment was to classify 13 classes using 51-40-13 structured MLP.



8

The accuracy of 65% was obtained. Second experiment was to combine two MLPs. One

MLP with 51-25-2 structure was employed to classify data for normal and abnormal

classes. Second MLP with 51-30-12 structure categorized data which was classified as

abnormal by the previous MLP, into one of 12 abnormal classes. This cascaded model

of MLPs improved the accuracy rate to 84.4%.

Niwas et al. [12] studied arrhythmia classification using a multilayer feedforward

neural network trained with backpropagation algorithm. In this work, QRS duration,

RR-Interval features which were extracted with the heartbeat detection by Pan and

Tompkins [22] and spectral entropy that describe heart rate variability comprised the

feature set. Including normal beat, 10 different beat types were classified. An overall

accuracy of 99.02% was obtained.

Another study for the use of the neural network with the backpropagation algo-

rithm to classify ECG beats was presented by Yeap et al. [6]. In experiments, AHA

database was used. Before classification, data was preprocessed to extract features.

The width of the QRS, the amplitude of the QRS, the offset of the QRS, T wave slope

and the prematurity were the extracted features. A neural network with two hidden

layers of 20 hidden nodes was employed. Four samples out of 80 were used for training.

98.36% sensitivity was achieved on training set and 67.80% sensitivity was obtained

on complete dataset.

Three different ANN models: multilayer perceptron (MLP) neural network model,

generalized feedforward neural network and modular neural network model were com-

pared for arrhythmia classification byJadhav et al. [20]. UCI arrhythmia dataset was

used in the experiments. All network models were trained with backpropagation al-

gorithm using gradient descent with momentum learning. The original dataset was

grouped into five different data sets. Each data set was partitioned into training set

and test set with different ratio (e.g. data set1 was partitioned into 80% tra. and 20%

test, data set5 was 90%tra. and 10% test.). Among three models, MLP ANN was

better with 86.67% accuracy and 93.75% sensitivity for data set5.
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1.2.2. SVM based approaches

The use of SVM in ECG classification is very popular recently. Uyar et al. [15]

applied SVM with PCA and ICA on UCI Arrhythmia dataset to detect absence or

presence of arrhythmia. According to experiments, SVM result was improved with

PCA from 79% to 84%. The result of SVM was compared to k-NN and DT algorithms.

Experiments showed that SVM outperformed other classifiers.

Song et al. [14] used linear discriminant analysis (LDA) for dimension reduction

before applying SVM on data. 17 extracted features were reduced to four by LDA. Ex-

periments showed that LDA over SVM gives higher performance than PCA over SVM.

Six arrhythmia categories were classified and 99.35% average accuracy was achieved.

Based on heart rate variability, Asl et al. [17] classified six dfferent types of ar-

rhythmias. These arrhythmias were normal sinus rhythm, premature ventricular con-

traction, atrial fibrillation, sick sinus syndrome, ventricular fibrillation and 2◦ heart

block. 15 features were extracted from HRV signal. Using generalized discriminant

analysis (GDA) which is a nonlinear extension to LDA, features were reduced to five.

One-against-all SVM was used as a classifier and obtained high accuracy in the exper-

iments.

Ozcan et al. [19] combined fuzzy approach with SVM for arrhythmia classification.

Problem was defined as a two-class problem: normal or abnormal. Five types of fuzzy

membership techniques were applied.These techniques were one class weighing method

(OCW), distance to class mean (DTCM), distance to one class mean (DTOCM), cardi-

nality (CAR) and fuzzy c-means (FCM) clustering. According to experiments, FSVM-

DTCM provided highest accuracy. Results were compared to k-NN, MLP and SVM.

Proposed method overperformed others with 83.33% accuracy. Based on the classified

data, rule extraction algorithms were applied.
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1.2.3. Other approaches

Homaeinezhad et al. [21] proposed a hybrid approach combining SVM, k-NN and

four different MLP models for arrhythmia classification. A fusion network was created

using median weighted voting. An accuracy of 98.06% was achieved.

Oliveira et al. [18] used Bayesian Networks to detect premature ventricular beats

(PVC) in ECG signal. In experiments, both channels and the information of the last

beat were taken into account to reach the best results. Bayesian Networks comprised

of discrete and continuous variables. The nodes corresponding to the discrete variables

were the PVC Beat, the Premature Beat and the Ventricular Beat while the continuous

variables were R-R interval from two leads and the likelihood of the QRS complexes

of the last normal beat from two leads. Different network topologies were applied and

evaluated. Results showed that networks using both channels were better.

Chazal and Reilly [9] concentrated on different feature sets obtained from wavelet

transform, standard cardiology features described by Chazal and Celler [33] and directly

from time-domain samples. They applied linear, quadratic and logistic discriminants

and compared the results over different feature sets. Frank Lead ECG records were

used. In the study, both feature selection and classifier model selection were performed.

According to accuracy, LDA performed best on time-domain samples.

Based on the previous work in ECG analysis, it is seen that many feature ex-

traction methods and classifiers have been implemented. MIT-BIH database and UCI

Arrhythmia database are two common databases. The original ECG signal and pre-

processed ECG signal have been used. There are many preprocessing methods imple-

mented. For example, bandpass filtering [22], linear adaptive filtering [31], adaptive

nonlinear ANN [7], discrete wavelet transform (DWT), continuous wavelet transform

(CWT) [24], Hilbert transform [29]. In order to improve performance of the classifiers,

dimension reduction methods have been applied such as LDA [14], PCA [13, 15, 19],

GDA [17]. In this thesis, UCI Arrhythmia dataset is used. We aim to model neu-

ral network classifier which eliminate irrelevant features using genetic algorithm (GA)
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technique. The rule set is extracted based on the classification model. The details of

the proposed method are described in the following sections.

1.3. The Use of GA-NN in Medical Diagnosis

A combined form of genetic algorithms and neural networks has increasingly been

used in the literature. The common reason of this increase is the idea that two of them

may provide an efficiency for solving more problems than either of them alone. The

way to use this combination is varying according to the problem. Amma [34] used the

optimization technique of genetic algorithm to select optimal weights for neural network

classifier. In the study, each chromosome was designed as a set of weights and best

chromosome was obtained using the global search ability of the genetic algorithm in the

weight space and thereby avoiding local minima. Selection was performed according

to fitness function which was based on the root mean square errors. The weights

were set to neural network and the neural network was trained with backpropagation

algorithm. The RMSE was calculated using the output of the network. At the end

of this iterative process, the final results were stored in weigth base to be used as

a final classifier. In experiments, 103 out of 303 instances were used for testing set

and obtained 94.17% accuracy. Another use of genetic algorithms for optimization

purpose is seen in the study of Jiang et al. [35]. Neural network structure and weights

were encoded in chromosomes. The encoding of neural network structure was done

as signal bit sequence whilst connection weights and biases were represented as real

valued numbers. Optimization was performed by maximizing the fitness function.

Results of the experiments showed that the neural network achieved 98% accuracy.

Ölmez et al. [36] proposed a neural network which was trained by genetic algorithms

and called GARCE for ECG classification. They used genetic algorithm to design

both network topology and associated connection weights to improve accuracy. In the

study, optimization performed by genetic algorithms was limited with the first layer of

the network for time concerns. The use of genetic algorithm assisted neural network

approach was also seen in the study of Dokur and Ölmez [37]. Genetic algorithms were

used to determine weights and number of nodes in the first layer by optimizing the

location and the radius of the class boundaries. 96% accuracy in beat classification
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was achieved. Genetic algorithms might also be used for learning purpose. Zhou and

Li [38] studied premature ventricular contraction (PVC) detection in ECG signals using

genetic algorithm trained perceptrons. Every weight vector of any single neuron in the

perceptrons was encoded as 16-bit string each representing a real valued number in

range of [-1.0, 1.0]. Model structure was adaptively optimized using genetic algorithm

steps. According to experimental results, 96.96% average accuracy was achieved.

1.4. Proposed Method

In this thesis, we propose genetic algorithm-neural network approach for ECG

feature selection in rule based arrhythmia classification. This proposed system is com-

prised of four main stages: model selection, feature selection, classification and rule

extraction. In this genetic algorithm-neural network combination, genetic algorithm

has an optimizing role whilst neural network plays the role of classifier. Therefore, the

type of this combination might be considered as supportive combination according to

Schaffer et al. [39] because the way to use genetic algorithm is to assist neural network

in feature selection.

Each neural network with the same topology in a population is considered as

a candidate solution. ECG features are represented as inputs to neural network and

output nodes indicate class labels. Each candidate solution is assigned a fitness value

which is an assessment that indicates how good a solution is. Fitness values are calcu-

lated based on the performance of the solutions. The possibility of the solutions to be

in next generation is inversely proportional to their fitness values. It is intended that

the new generation to include solutions better than their ancestors. Parent solutions

are selected using roulette wheel selection. Then crossover is applied to produce off-

springs. These offsprings are mutated so as to provide variation. Additionally, mutate2

operator is applied which prunes the network from irrelevant features by zeroing their

weights and fully described by Sexton et al. [40]. The best offsprings produced as a

result of these operations comprise of the 90% of the next generation. The remaining

part is filled by the best solutions from old generation in order to carry best charac-

teristics from ancestors. The solution with the best fitness value of all its generation is
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compared with the one from old generation. The iteration is stopped when the previus

best solution is still better than the recent solution.

As a candidate solution, a neural network is evaluated according to its perfor-

mance on validation data. The performance is generally related to the error which is

the difference between the actual output and the predicted output. Backpropagation

algorithm is used for training the neural network. Training parameters are predefined.

All networks in a population are trained and tested using the same parameters.

We aim to detect presence or absence of arrhythmia accurately. In order to

achieve this, selection of network parameters improving the accuracy of the classifier

is important. So, using trial-and-error method, some promising parameter sets are

specified and for each parameter set, neural networks are trained and tested so as

to find optimum parameter set. Parameter selection is summarized in Figure 1.4.

Both feature selection and classification are performed simultaneously using the neural

network with selected parameter set. Thereby we obtain classification model with only

relevant features that mostly contribute to the classification.

Figure 1.4. A diagram of parameter selection [41].

The last stage of the proposed system is the rule extraction. As mentioned in
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previous sections, we are mainly interested in producing robust and reliable arrhythmia

classification results to be applicable in diagnostic decision support systems and to aid

cardiologists with medical assessments. Rule extraction from classification output is

important in terms of producing the results in human readable format. Applying

solely rule extraction methods will increase the complexity in rules as fully described

by Halford et al. [42]. So, genetic algorithm-neural network approach is used as a

preclassifier and feature selector to produce rules concisely. Main flow of the system is

summarized in Figure 1.5. C4.5, RIPPER, PART and HotSpot methods are used to

perform rule extraction.

Figure 1.5. Main flow of the system.

As a comparison, k-Nearest Neighbor (k-NN), Support Vector Machines (SVM),

Naive Bayes and Bayesian Networks are tested on the arrhythmia dataset. Dimension-

ality reduction techniques are used such as recursive feature extractor (RFE-SVM),

correlation based feature selection (CFS), principal component analysis (PCA) and

factor analysis (FA). These classifiers are applied both original dataset and the re-

duced data sets to observe the effect of the dimension reduction techniques on the

improvement of the classifiers. The flow diagram of the comparison is given in Figure

1.6. The performance of these techniques on original dataset and reduced data sets are

compared with the proposed approach.
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Figure 1.6. Flow diagram of the comparative classifiers.

1.5. Dataset

The dataset used in this study is obtained from UCI Repository [4]. UCI Ar-

rhythmia dataset originally contains 452 instances with 279 attributes. There are 16

arrhythmia cases associated with each instance. 15 of them indicate anomalies and one

of them is normal rhythm. 206 attributes are numeric and the rest is nominal.The first

four features are about personal information such as age, sex, heigth and weight. The

rest presents different measurements from the ECG paper.

About 0.33% of the feature values in the dataset are missing. Class distribution

of this dataset is very unfair and instances of classes 11, 12 and 13 do not exist in the

dataset while instances of class 01 which indicates normal rhythm is frequent.

Dataset is preprocessed to have better sensitivity rates. All anomalies are grouped

into one class as abnormal rhythm and the resulting dataset contains inputs of two

groups: Normal and Abnormal. Missing values among the features are removed. This
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leads a reduction to 278 features and 420 instances. The official dataset description of

the UCI Arrhythmia dataset can be found in APPENDIX A.

The second dataset is a set of real ECG data. This data is obtained from Kardiosis

ECG Tool of the manufacturing firm TEPA [43]. This dataset is smaller than UCI

Arrhythmia dataset. There are 20 records, 13 of them are normal and the rest is

abnormal. Only relevant features which are obtained as a result of the GA-NN approach

are computed from these records because this dataset is intended to verify the proposed

method.

1.6. Outline

In previous sections, medical information about cardiac arrhythmia and ECG is

briefly mentioned. A summary of the literature works on arrhythmia classification and

ECG analysis is provided. The proposed method and the data used in this study are

described in detail.

Chapter 2 explains dimension reduction techniques which are applied on original

dataset for comparative classifiers.

Chapter 3 presents the technical details of the proposed method, other classifiers

used for comparison and rule extraction methods.

In Chapter 4, experiments and experimental results are described. Comparative

performance results of the proposed approach with other classifiers are given. The

resulting rule sets are presented.

Chapter 5 states the experimental results for real life ECG dataset.

In Chapter 6, the thesis is concluded with a summary of the empirical results.
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2. DIMENSION REDUCTION

Dimensionality reduction is the search for a small set of features to describe a

large set of observed dimensions. Reducing the number of dimensions can separate

the important features from the less important ones, thus providing insight into the

nature of the data that may otherwise be left undiscovered. In addition, dimensionality

reduction is useful in decreasing space complexity and computational processing time

[44,45].

There are two main methods for reducing dimensionality: feature selection and

feature extraction. Feature selection aims to find a subset of the original dataset which

give us the most information. Feature extraction transforms the original features into

a new set of features which are the combinations of the original features.

A high dimensional dataset is used in this thesis. There are 278 features for each

instance. The dimension reduction has impact on the results. Four techniques are

applied to the dataset. Classification results of reduced datasets are then compared

with each other. The following subchapters explain dimension reduction techniques

used in this study.

2.1. Feature Selection

In feature selection, dimension of the original dataset is reduced by elimination

of unnecessary features. To determine the necessity of features, ranking is performed

among them and all features are sorted in decreasing importance. This ranking and

elimination are done either at one step or iteratively. Feature selection can be formed as

forward and backward. In forward selection, the most important features are selected at

each iteration whereas in backward selection, the least important features are removed

at each step. The resulting set consists of a subset of the original features.

In this study, two feature selection techniques are applied: Recursive Feature



18

Elimination with Support Vector Machine (RFE-SVM) and Correlation Based Feature

Selection (CFS). These algorithms are explained in detail in the following sections.

2.1.1. Recursive Feature Elimination with Support Vector Machine

Recursive feature elimination is a recursive backward elimination technique. At

each iteration, weights are assigned to all features in the dataset. Based on the mag-

nitude of the weights, features are ranked. In this ranking, features with the lowest

weight are eliminated and the algorithm is run with the rest of the features until de-

sired dimension is met. As feature ranking criterion, weights can be produced by several

ways. Usage of classifiers is one option. Recursive Feature Elimination combined with

Support Vector Machine is developed in [46].

The criteria estimate the effect of removing one feature at a time on the objective

function. The first step of this iterative procedure is to train SVM model with all

features and then compute the weight vector of dimension length. The weight vector

is calculated with the following function:

w =
l∑

k=1

akykxk (2.1)

The weight vector w is a linear combination of training patterns. l is the count

of input. xk is the kth input and yk is the corresponding class label of the xk. ak is

the dual coefficient. Based on the weight vector, the ranking criteria is computed for

all features where wk is the weight of the kth feature.

rankCriteriak = (wk)2 (2.2)
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According to the ranking criteria, feature with smallest ranking score is eliminated

from the feature set. This process is iterated until the desired number of resulting

features is met. This algorithm can be applied to remove one feature per step or can

be generalized to eliminate more than one feature at each iteration. The latter is

preferred for speed reasons.

2.1.2. Correlation Based Feature Selection

Correlation Based Feature Selection is a feature selection algorithm which is pro-

posed in [25]. This algorithm ranks feature subsets according to a correlation based

heuristic evaluation. The evaluation is performed in feature subsets rather than indi-

vidual features. The aim of the evaluation is to end up with a subset which contains

features highly correlated with a class value but uncorrelated with each other.

Ranking is done in a search space for all possible feature subsets. The ranking

scores are computed with the following heuristic function:

Merits =
krcf√

k + k(k − 1)rff
(2.3)

Merits represents the heuristic ”merit” of feature subset S which contains k

features. rcf is the mean feature-class correlation, and rff is the mean feature-feature

correlation. The feature subset with the highest heuristic merit is the output of this

algorithm.

In order to apply Equation 2.3 it is important to compute feature-class and fea-

turefeature correlations. Hall, [47] proposes, two methods for computing the inter-

correlation between two features: Relief and MDL.

Relief is an instance based attribute ranking scheme which is proposed in Kira

et al. [48]. This algorithm iteratively samples an instance from the data and locates
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its nearest neighbour from the same and the different class. The difference between

the values of the attributes of the nearest neighbours and the sampled instance states

the relevance scores of each attribute. The idea behind this algorithm is to find useful

attribute which should have different scores between instances from different classes

and the same value for instances from the same class.

MDL is the abbreviation for the minimum description length algorithm which is

proposed in Rissanen et al. [49]. MDL is defined in Kononenko et al. [50] as below:

MDL =
PriorMDL − PostMDL

n
(2.4)

PriorMDL = log2

 n

n1, ...nc

 + log2

 n+ C − 1

C − 1

 (2.5)

PostMDL =
∑
j=1

log2

 n.j

n1j, ...ncj

 +
∑
j=1

log2

 n.j + C − 1

C − 1

 (2.6)

Above equations give definition of MDL. In these equations, n is the number of

training instances, C is the number of class labels. ni is the number of instances in

class Ci. n.j states the number of instances with the jth value of the given feature and

nij is the number of instances from class Ci which have the jth value of the feature.

2.2. Feature Extraction

The aim of feature extraction is to map the original dataset to a new fewer

dimensional dataset with minimum loss of information. As a difference from feature
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selection, the resulting feature set of feature extraction is a combination of the original

features instead of a feature subset. The concern is to combine features in a group to

decrease the processing cost without losing information.

In this study, two feature extraction techniques are applied: Principal Compo-

nent Analysis (PCA) and Factor Analysis (FA). These algorithms are explained in the

following subchapters.

2.2.1. Principal Component Analysis

PCA is well-known and widely used feature extraction technique. PCA tries

to maximize variance of features by changing the rotation of the axes of the original

coordinate system to a new set of orthogonal axes on which the difference between the

sample points becomes most apparent.

In PCA, features are transformed into a smaller group of uncorrelated set called

principal components. For the first step of this transformation, the mean of every

feature is subtracted from each dimension. As a result, a feature set with zero mean

is obtained. Then, covariance matrix of this feature set is calculated. The eigenvec-

tors and the corresponding eigenvalues are computed from the covariance matrix. The

eigenvalues are sorted in descending order. The eigenvector associated with the highest

eigenvalue has the same direction as the first principal component. The higher eigen-

value is the more significant the corresponding eigenvector. The resulting set is the

multiplication of the selected set of eigenvectors and the input data.

The optimum number of dimension of the resulting set is determined according to

the proportion of variance. Proportion of variance is the proportion of sum of highest

k eigenvalues to sum of all eigenvalues. The optimum value for k is the one where

the proportion of variance is greater than a predefined threshold value. Once k is

computed, the linear projection is applied to principal components of the dataset in

order to obtain k dimensional reduced data.
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2.2.2. Factor Analysis

Factor Analysis is a method to describe the variability among the correlated,

observed variables in the dataset in terms of fewer unobserved variables which are

called factors. In other words, in factor analysis, it is assumed that observed variables

are linear combinations of underlying factors and error terms. FA assumes that each

observed variable can be expressed as a weighted sum of factors plus the error term.

If two variables are highly correlated, then they are related through a factor whereas

if two variables are uncorrelated, then they are related through different factors.

Once the number of factors are determined, features are then rewritten as a linear

combination of these factors plus the error term.

xi = a1f1 + a2f2 + a3f3 + ...+ anfn + ei, ∀Xi ∈ S (2.7)

X = AF + ε (2.8)

Equation 2.7 depicts a rewritten feature in terms of factors and the error term.

In Equation 2.8, a matrix form of features is presented. Error terms, ei, are assumed

to be independent from each other. F and ε are also assumed to be independent from

each other. Factors are standardized to have 0 mean and 1 variance.

As the new features are defined in terms of factors, the smaller the number of

factors result in the smaller dimension the resulting feature set.
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3. ECG ANALYSIS

Among the most important sources of diagnostic information, ECG signals and

the improvements in their analysis have been essential by means of telling consequences.

Hence, the progress in the area of signal processing, classification, and interpretation

has been a great deal. In order to classify the ECG signal, a reliable extraction of the

characteristic ECG parameters is needed. A set of algorithms for signal conditioning,

QRS detection, measurement of wave amplitude, duration, area and regularity are

applied to perform the parameter extraction.

In order to detect anomalies in ECG signal for better sensitivity, focusing on

the key features is essential. Hence, as a first step in preprocessing, dimension re-

duction techniques are applied to the dataset. Given the selected attributes as input,

classification techniques are applied and their results are compared.

For better understanding of the performance of a classifier, the dataset is sep-

arated into train and test segments. The train segment is used to extract model

parameters of the classifier and given the test segment as input, the classifier is run

with the extracted parameters to predict the classes of the input. According to the

results calculated in terms of the performance metrics, classifiers are compared with

each other.

On basis of correctly classified data, rules are generated in terms of the features

that mostly contribute to the classification.

3.1. ECG Classification

In ECG analysis, recognition of the features in order to gain insight of the data is

very important. As a part of this process, ECG classification helps analyze the features

in terms of their effects in the existence of the target class.
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In this study, all anomalies in the UCI Arrhythmia dataset [4] are considered

as abnormal class. ECG Classification is responsible to assign the test data to either

normal class or abnormal class. Since the objective of this study is to detect anomalies,

the target class is considered as the abnormal class.

In addition to the proposed technique, four other classifiers are applied to the

UCI Arrhythmia dataset to compare the classifiers. As distance based classifiers, k-NN

and SVM algorithms are used in order to experiment local based and globally based

classifier performance. For probabilistic approach to the problem: Naive Bayes and

BayesNet classifiers are applied.

3.1.1. k-Nearest Neighbor

k-Nearest Neighbor (k-NN) is a nonparametric distance based classifier which

assumes similar inputs have similar outputs. Based on this assumption, inputs having

nearest distance to neighbors are considered to belong to the similar class. k-NN

classifies a new instance according to class of k closest training inputs which has the

majority of inputs. All neighbors have equal vote, and the class having majority of

voters among the k neighbors is chosen. k is generally chosen as an odd number in

order to minimize confusion between two neighboring classes [45].

The distance calculations are performed over the training instances. There are

different distance metrics used in this technique: Euclidian, Mahalanobis, Minkowski,

Manhattan, or some other distance measurements. Most generally used distance metric

is Euclidean. In Euclidean, a linear distance between two points is calculated. Maha-

lanobis calculates the distance between two points by variation in each component of

the points [51].

3.1.2. Support Vector Machine

Support Vector Machine (SVM) is an algorithm of machine learning, introduced

by Vapnik, based on the Structural Risk Minimization principle from Statistical Learn-
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ing Theory [52].

SVM tries to find a hyperplane that separates data points of each class while

maximizing the minimum distance between the hyperplane and the data points. SVM

maps the input space into a higher dimensional feature space by using appropriate

kernel functions where each coordinate corresponds to one feature in the dataset. In

SVM, there are four basic kernels:

• linear

• polynomial

• radial basis function (RBF)

• sigmoid

The mathematical formulation of SVM is a quadratic programming problem.

Assume a set S of n labeled training set is given in the following form:

S = (x1, y1), (x2, y2), ..., (xn, yn) ∀xi ∈ Rn, yi ∈ 1, 2, ...k (3.1)

Each data point, xi is a member of either of k classes which is represented as yi.

Training data is mapped to higher order feature space Z to make search for optimal

hyperplane easier. This mapping is done by a kernel function. The separating hyper-

plane is computed by maximizing the distance of the closest patterns, namely margin

maximization. The distance from the hyperplane on each side is called margin. The

hyperplane is rewritten as:

w × z + b = 0 (3.2)
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yi(w × xi + b) ≥ 1 (3.3)

The parameters w is the weight vector, and x is the input. Maximum margin is

calculated for the minimum value of w.

3.1.3. Naive Bayes

A Naive Bayes classifier is a simple probabilistic classifier based on applying

Bayes’ theorem. The term naive is because this classifier relies on two important

simplifying assumptions. First assumption is that the predictive attributes are condi-

tionally independent given the class, and as a second, it posits that no hidden or latent

attributes affect the prediction process [53].

Naive Bayes is based on Bayes’ rule. Suppose that C is a variable denoting the

class of an instance while c indicates a particular class and X is a vector of variables

holding observed attribute values while x represents a particular observed attribute

value vector. Given an x to classify, the probability of each class given x can be

expressed in the following form:

p(C = c|X = x) =
p(C = c)p(X = x|C = c)

p(X = x)
(3.4)

Equation 3.4 predicts the most probable class. Because the observed attributes

are assumed to be conditionally independent, the following equation helps classify test

data x from the training data:

p(X = x|C = c) =
∏
i

p(Xi = xi|C = c) (3.5)
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In Naive Bayes, model parameters are approximated using maximum likelihood

estimates assuming distribution of the features is a known distributions such as Gaus-

sian distribution or kernel density estimation. Estimation of the density of each at-

tribute can be written:

p(X = x|C = c) = g(x, µc, σc) (3.6)

When kernel estimation is considered using Gaussian kernels, the following equa-

tion is obtained:

p(X = x|C = c) =
1

n

∑
i=1

g(x, µi, σi) (3.7)

where n is the number of attribute X in class c, and µi = xi.

3.1.4. Bayesian Networks

A Bayesian Network, also known as belief network, is a graphical model for prob-

ability relationships among a set of features. The structure of the Bayesian Network

is a directed acyclic graph where the nodes represent random variables and the arcs

represent conditional independence assumptions. In directed model, a Conditional

Probability Distribution (CPD) is defined at each node which hold the data about the

conditional probability of child node given the current node as parent [54].

Bayesian Networks mainly provides two advantages: one is that bayesian networks

provides visualizing the process which give better understanding and secondly, Bayes’

rule is applicable making use of graph operations [45].

The most common task for Bayesian networks is to probabilistic inference. Bayes’
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rule is used to compute the posterior probability of θ given the data D:

p(θ|D) =
p(θ)p(D|θ)
p(D)

(3.8)

3.1.5. Genetic Algorithm-Neural Network (GA-NN) Approach

Genetic Algorithm integrated Neural Network classifier is the part of the proposed

system which performs both feature selection and classification simultaneously. As a

result of this process, it is aimed to select relevant features which mostly contribute to

the classification. Based on the resulting classification model with relevant features,

rules are intended to be produced in human readable format.

As mentioned in the previous sections, a population is comprised of neural net-

works with the same topology. Therefore, each candidate solution represent a neural

network. These neural networks are created with the same parameter set which is

predefined.

Algorithm is run iteratively. At each iteration, a new generation is produced and

its best solution is put aside to be evaluated. Assume that current iteration number is

i and xi indicates the best solution of ith iteration. The iteration is stopped when the

performance of xi+1 is not better than the performance of xi.

Performance of the neural networks is based on the fitness value [40]. The fitness

value is obtained from the fitness function is as below:

Min{f =
∑

(Oi − Ôi)
2 + C

√∑
i=1(Oi − Ôi)2

N
} (3.9)
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where O is the target class, Ô is the estimated class of the instance i and N is

the number of the instances. Here, C represents the number of nonzero weights in the

network. Each network is assigned a probability based on its fitness value [40]. The

probability is computed as in Equation 3.10

P (X = x) =
fcur − fbad∑
i=1 fi − fbad

(3.10)

where fi indicates the fitness value of the solution i, fbad is the worst fitness value

which is greater than the rest of the fitness values in the population and fcur is the

fitness value of the current solution.

3.2. Rule Extraction

The output of the classification phase is the input to the rule base development.

In rule base development, the pattern in correctly classified data is extracted and, thus

rule set is generated as output. The extracted rule set gives the definition of the dataset

in readable form.

In this study, C4.5 decision tree, Repeated Incremental Pruning to Produce Error

Reduction (Ripper), Partial Decision Tree (Part) techniques are applied to the correctly

classified data. Furthermore, HotSpot rule extraction algorithm is employed in order

to observe effective rules on arrhythmia detection. The methods are described in detail

in the following sections.

3.2.1. C4.5 Decision Tree

C4.5 decision tree algorithm is proposed by Quinlan in [55]. In this study, J48

method which is Java implementation of C4.5 in Weka [56] is used.

Decision tree is a hierarchical tree which is composed of two main elements:
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decision nodes and leaves. At each decision nodes, a test function is implemented and

regarding the evaluated value, the branch to be taken is decided. The aim is to obtain

the best split and the goodness of a split is quantified by an impurity measure [45]

which is entropy based measure in [55]. The root node with maximum entropy is

selected as the root node and the path from the root node is defined according to

features having maximum entropy and which is not used in the path from the root.

This process continues recursively until a leaf node is reached. In classification tree,

leaf nodes represent the class labels. In order to avoid constructing the tree too specific

to the training data, tree is pruned. Pruning is done by replacing a sub-tree by a leaf

node. This replacement is performed whether the expected error rate in the sub-tree

is greater than in the leaf node.

As a result of the tree construction and pruning, the pruned decision tree is

produced which represent a rule base. Each rule in the rule base can be rewritten by

adding the conditions on each path from each leaf node to the root node.

3.2.2. Repeated Incremental Pruning to Produce Error Reduction

Repeated Incremental Pruning to Produce Error Reduction (Ripper) is proposed

by William W. Cohen [57]. This algorithm greedily builds a rule selecting features

with highest information gain. After growing, pruning is performed on each rule. This

algorithm has a post-processing stage in which each rule is replaced or removed for

optimization. The criteria for optimization is the minimum description length. Java

implementation of this algorithm is used which is called JRip in Weka.

3.2.3. Partial Decision Tree

Part Decision Tree uses separate-and-conquer technique which builds a partial

C4.5 decision tree in each iteration and turns the ”best” leaf into a rule [58]. At each

iteration, a pruned C4.5 decision tree is constructed and the leaf node having maximum

coverage is taken as the rule of that iteration. When the rule is decided, instances which

are covered by that rule is removed and this iteration is continued until all instances in
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input dataset is processed. In this study, Java implementation of this method which is

called Part method is used in Weka.

3.2.4. HotSpot

HotSpot is a rule extraction algorithm which is implemented in Weka. This

algorithm inspects the training data and generates the association rules corresponding

to class labels in a tree-like structure. In this study, a set of rules for the abnormal

class is generated using Weka.



32

4. EXPERIMENTS AND RESULTS

4.1. Performance Metrics

Classification efficiency has been widely used as the main criterion for comparing

the classification quality of classifiers [59]. This efficiency may be defined in terms

of performance of the classifier. In order to measure performance of a classifier, test

data is applied to the classifier model which has learnt parameters from training data.

Examining the confusion matrix of the test results may be an informative indicator

for performance. Confusion matrix is a square matrix where the rows represent the

actual class and the columns indicate the predicted class of the input data. The basic

performance metrics can be obtained from the confusion matrix. The cells of the

confusion matrix have special names, as shown in Table 4.1.

Table 4.1. Confusion matrix for two class.

Actual/Predicted Positive Negative
Positive True Positive (TP) False Negative (FN)
Negative False Positive (FP) True Negative (TN)

The cells in the confusion matrix have the following meanings:

TP: The number of unhealthy incidents classified as unhealthy (Correct predic-

tion that patient has arrhythmia)

FN: The number of unhealthy incidents classified as healthy (Incorrect prediction

that patient has normal rhythm)

FP: The number of healthy incidents classified as unhealthy (Incorrect prediction

that patient has arrhythmia)

TN: The number of healthy incidents classified as healthy (Correct prediction

that patient has normal rhythm)
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Healthy incidents indicate incidents having normal rhythm; unhealthy incidents

indicate incidents having arrhythmia. In this study, positive (target) class is considered

as arrhythmia.

Classification sensitivity assumes equal misclassification costs. This assumption

is problematic as for most real world problems, one type of classification error is much

more expensive than another [60]. For instance, classifying arrhythmia incidents to

have normal rhythm (FN) will be cost more than classifying normal rhythm incidents

to have arrhythmia (FP) since the first case could cost patient’s life.

Other performance metrics are calculated based on these four criteria. In this

study, the main performance measure is sensitivity. Sensitivity is also called recall, or

the positive rate or hit rate. It is the proportion of exact detection of the target class

to the total inputs in target.

Recall =
TP

TP + FN
(4.1)

The second important metric is f-score which is the harmonic mean of Recall and Pre-

cision. Precision is the ability of producing the same results under changing conditions.

Precision =
TP

TP + FP
(4.2)

Since f-score is a summary of both Recall and Precision, the equation for f-score is as

below:

F − score =
2× Precision×Recall
Precision+Recall

(4.3)

In addition to these, Matthews Correlation Coefficient (MCC) measure is chosen which

indicates the quality of classifier for two class problem taking both positive and negative
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measures into account.

Mcc =
TP × TN − FP × FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
(4.4)

Specificity is also considered in experiments. Specificity is related to the performance

of the classifier to identify negative class which is normal class in this study.

Specificity =
TN

TN + FP
(4.5)

4.2. Experimental Results For Dimensionality Reduction

Dimensionality reduction is the process of choosing a reduced set of original fea-

tures to minimize the time and space complexity. Another aim of this process is improv-

ing the performance of the classifiers. In this study, Recursive Feature Elimination with

Support Vector Machine (RFE-SVM) and Correlation based Feature Selection (CFS)

are used for feature selection while Principal Component Analysis (PCA) and Factor

Analysis (FA) are getting used for feature extraction.

Because the original dataset is high dimensional with 278 features, both fea-

ture selection and feature extraction algorithms are applied on normalized form of the

dataset.

4.2.1. Experimental Results For Feature Selection

In feature selection, the aim is to find the best subset of features. The best subset

contains the least number of dimensions that most contribute to sensitivity [45]. In

order to achieve this, unnecessary features are removed from the dataset. Features to

be removed are selected by ranking. The resulting dataset is expected to consist of the

most informative features.
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4.2.1.1. RFE-SVM. Weka platform is used for this method. SVMAttributeEval algo-

rithm in WEKA corresponds to RFE-SVM. Ranker is selected as search method. 10

features are eliminated at each iteration. Seven sets with different feature counts are

constructed and labeled as RFE-SVMi where i represents the number of features. RFE-

SVM3, RFE-SVM5, RFE-SVM7, RFE-SVM10, RFE-SVM13, RFE-SVM20 and RFE-

SVM30 are the resulting datasets.

4.2.1.2. CFS. CfsSubsetEval method in WEKA platform is used for this algorithm.

Backward selection is applied and 10 features are eliminated at each iteration. Seven

sets with different feature counts are constructed. The datasets are labeled as CFSi

where i is the number of features. CFS3, CFS5, CFS7, CFS10, CFS13, CFS20 and CFS30

are the resulting datasets.

4.2.2. Experimental Results For Feature Extraction

In feature extraction, the original dataset is transformed using a linear transfor-

mation to a reduced dimension space [44]. In this study, PCA is used to reduce the

input data dimension and the resulting dataset is compared to Factor Analysis results.

4.2.2.1. PCA. The purpose of PCA is to derive new variables that are linear combi-

nations of the original variables and which are uncorrelated [44]. In PCA, covariance

matrix of the input data is used to obtain eigen vector and corresponding eigen val-

ues. We choose the eigen vector with the largest eigen value for the variance to be

maximum [45]. To determine the number of dimensions, proportion of variance is used

which is preferred to be higher than a defined threshold. Proportion of variance is

the proportion of sum of the highest k eigen values to sum of all eigen values. The

principal component is the eigenvector of a covariance matrix with the highest k eigen

values which meet the proportion of variance. PCA algorithm is applied to data which

is implemented in Matlab. The resulting datasets are PCA3, PCA5, PCA7, PCA10,

PCA13, PCA20 and PCA30 where the numbers in the label represent the feature count.
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4.2.2.2. FA. The object of factor analysis is to find a lower-dimensional representation

that accounts for the correlations among the features [61]. In this study, factoran

function in Matlab is used [62]. The original dataset is huge for being a parameter for

factoran function. Hence, a smaller set is used as an input to FA. The largest RFE-

SVM output is selected as the starting dataset for FA. factoran function is executed

on RFE-SVM30. Factor Loadings represent the correlation coefficients between the

variables and factors. ’promax’ is used to rotate the factor loadings and the scores. The

reduced dataset is obtained by projection of factor loadings and estimated covariance on

observed variables. The resulting datasets are FA3, FA5, FA7, FA8 where the numbers

in the label represent the feature count. Considering the initial dataset is 30-featured

RFE-SVM dataset then maximum number of factors revealed can be 8. Extracted

factors are given in Table 4.2.

Table 4.2. Factors extracted from RFE-SVM30.

Factor1 V5 Amplitude JJ wave, V2 Existence Diphasic Derived P wave,

DI Amplitude Q wave, AVF Avg width S2 wave and V6 Amplitude JJ wave

Factor2 V1 Avg width R2 wave, V2 Avg width R2 wave,

V1 N intrinsic deflections and V2 N intrinsic deflections

Factor3 V6 Amplitude T wave, DI Avg QRSTA,

weights, DI Amplitude T wave, V3 Avg QRSTA and AVR Existence Ragged R wave

Factor4 QRSduration, DI N intrinsic deflections and Tinterva

Factor5 DII Amplitude S wave, AVR Existence Diphasic Derived P wave and AVF Avg width R wave

Factor6 AVF Amplitude Q wave, DIII Amplitude Q wave,

AVF Avg width S wave and DI Existence Diphasic Derived P wave

Factor7 V3 Avg width Q wave and V2 Avg width Q wave

Factor8 V3 Avg width Q wave and V2 Avg width Q wave

4.3. Experimental Results For ECG Classification

All of the experiment results that belong to each of the techniques can be found

in relevant Appendix section.
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4.3.1. k-Nearest Neighbor

The k-nn classifier assigns an instance to the class having most examples among

the k neighbors. In the experiments, 6 different k values are used which are 5, 7, 9, 13,

and 15. For each k value, k-nn is applied to each dataset and performance metrics of

every trial is computed.

When sensitivity results are considered, Figure 4.1, KNN5 is found to be consis-

tent among the trials. The highest sensitivity rates are reached by KNN13 and KNN15

which provide 75.64% for CFS5. KNN5 and KNN9 provide 71.79% for RFE-SVM13 and

CFS5 respectively. On the other hand, when overall performance is taken into account,

which can be calculated by averaging the sensitivity results for the datasets, KNN5

becomes more accurate. KNN5 provides an average of 61.60% sensitivity for the ECG

datasets whereas the average sensitivity is 60.11% for KNN7 and 58.42% for KNN9.

Figure 4.1. Sensitivity test results of k-NN.

F-score results are demonstrated in Figure 4.2. KNN5 is shown to outperform

other k-NN trials. When CFS5 dataset is considered, 76.13% is scored by KNN13

whereas 75.16% is scored by KNN15. However, KNN5 outperforms KNN13 and KNN15
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with average score. The average f-score value for KNN5 is 0.6239 which is higher than

0.603 for KNN13 and 0.59 for KNN15.

Figure 4.2. F-score test results of k-NN.

When Mathew’s Correlation Coefficient is considered, KNN13 has better perfor-

mance than others. MCC result of KNN13 is 0.622 for CFS5. When average MCC

result is considered, KNN13 performs better with result 0.417. As a result, average

MCC result of KNN5 is 0.409.

When all three performance metrics are taken into account, KNN5 is found to be

the leading k-NN trial. In the inter-comparison of the classification methods, KNN5 is

used to represent k-NN method.

A consensus on the behavior of experiments with k-NN on datasets can be drawn

when the three graphs are considered together. The highest values are obtained for

RFESVM and CFS datasets. FA results come the second whilst k-NN values for PCA

are not as good as the other datasets. Furthermore, k-NN results for original dataset

is also not satisfying. These results show that RFE-SVM and CFS datasets have a

more concentrated distribution in their feature space by means of their contribution to
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Figure 4.3. MCC test results of k-NN.

classification.

4.3.2. Support Vector Machine

Support Vector Machines map data points to a high dimensional feature space

where a separating hyperplane can be found. This mapping can be carried on by trans-

forming the input space into high dimensional feature space using appropriate kernel

functions. The optimal hyperplane is found by maximizing the distance between data

points between different classes. The smallest distance between the decision boundary

and the closest data points is called as margin and the location of the boundary is

determined by support vectors.

In this study, Radial Basis Function is chosen as kernel function. The optimum

cost and gamma parameters are experimented by performing grid search and cross-

validation for each dataset. These parameters are given in Table 4.3. Parameters

which give the best sensitivity are chosen to train SVM models for each dataset.

In MATLAB libSVM tool is used for SVM classification [63, 64]. The whole
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Table 4.3. Optimum cost and gamma values for SVM.

Dataset Cost Gamma
Original 8 0.03125

SVMRFE3 32768 0.002
SVMRFE5 2 8
SVMRFE7 2 8
SVMRFE10 2 2
SVMRFE13 0.5 2
SVMRFE20 2 2
SVMRFE30 512 0.0078

CFS3 8192 2
CFS5 512 0.5
CFS7 32 2
CFS10 512 0.5
CFS13 128 2
CFS20 2 8
CFS30 8 2
PCA3 0.5 2
PCA5 0.5 0.1250
PCA7 32 0.1250
PCA10 32 0.1250
PCA13 512 0.0313
PCA20 2 0.5
PCA30 512 0.002

FA3 0.5 0.5
FA5 0.5 0.1250
FA7 32768 1.2207e-04
FA8 128 0.0078
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dataset is split as 50% for training the SVM model and 50% for testing.

The sensitivity result show that SVM performance is better with CFS dataset.

The highest sensitivity rate which is 35.71% is provided for CFS20 dataset. An average

sensitivity of 30.90% is achieved with CFS datasets and RFE-SVM comes the second

with 29.44%.

Figure 4.4. Sensitivity test results of SVM.

According to average f-score, CFS datasets come first with 0.3667 and RFE-SVM

come the seconds with 0.365. Individually, FA5 dataset has the highest f-score which

achieved 0.4121.

In this performance metric, the highest MCC result, 0.0634 is achieved for RFE-

SVM20 dataset.

4.3.3. Voted Combination of SVM and k-NN

Voted combination of SVM and k-NN is experimented using Vote classifier in

Weka. Combination rules that are applied are: average of probabilities, product of
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Figure 4.5. F-score test results of SVM.

Figure 4.6. MCC test results of SVM.
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probabilities, majority voting, minimum probability, and maximum probability. Ma-

jority Voting has worse performance among others. Besides the original dataset, this

combination is applied to datasets RFE-SVM13 and CFS20 that k-NN and SVM has

better performance in terms of sensitivity for target class: abnormal. For ”weak” base-

learner, k-NN where k=5, is used as it is more consistent among other trials for k

value. Cost and gamma parameters of SVM are set to optimum values for original,

RFE-SVM13 and CFS20 datasets respectively. 10-fold cross-validation is used to test

the combination model.

In experiments, for voted combination of SVM and k-NN, the highest sensitivity

result which is 73.77% is provided with CFS20 dataset. RFE-SVM13 dataset is the

second with 65% and the original dataset is the last with 60.70%.

As a consensus on the comparative result of voted combination of SVM and k-NN

experiment with SVM and k-NN, it can be said that, combination of classifiers draw

more consistent performance than individual performance. k-NN as a local classifier

with smaller featured dataset may give general idea about the case and SVM as a

global classifier with a few greater featured dataset may give more details. The voted

combination of them can draw a more consistent picture which may help identify the

case.

Figure 4.7. Sensitivity test results of voted combination of SVM and k-NN.



44

4.3.4. Stacked Generalization of SVM and k-NN

Stack meta-classifier in Weka is used to perform stacked generalization of SVM

and k-NN. As a combiner, C4.5 decision tree algorithm is chosen which is called J48

in Weka. Optimum parameters for both of the base learners are chosen based on their

individual performance. Datasets are also chosen which provide best performance on

behalf of both classifiers. Thus, RFE-SVM13 and CFS5 datasets are used in addition

to the original dataset in experiments.

According to results, the highest sensitivity is achieved with CFS20 which is

73.20%. RFE-SVM13 has provided 63.90% sensitivity and the original dataset has

given sensitivity of 61.20%.

A consensus on the performance of stacked generalization of SVM and k-NN

versus performance of SVM and k-NN individually may be said that combination of

classifiers with stacked generalization is better than the individual performance. For

instance, SVM achieves 58.97% for RFE-SVM13 but is improved in stacked combination

with k-NN and increases to 63.9%.

Figure 4.8. Sensitivity test results of stacked combination of SVM and k-NN.

As it can be seen from Table 4.4, combination usage of SVM and k-NN5 has
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Table 4.4. Classifier sensitivity comparison.

Method Original RFE-SVM13 CFS20

k-NN5 0.3718 0.7179 0.5897
SVM 0.3061 0.3163 0.3571

Voted Comb. of SVM and k-NN5 0.6066 0.6503 0.7377
Stacked Comb. of SVM and k-NN5 0.6120 0.6393 0.7322

increased the sensitivity results. On original dataset, Stacked Combination of SVM

and k-NN5 performs better while Voted Combination of SVM and k-NN5 achieves

better results for RFE-SVM13 and CFS20 datasets.

4.3.5. Naive Bayes

The naive bayes is a simple probabilistic classifier based on Bayes’ theorem. Naive

Bayes classifier assumes inputs are independent given class. It ignores possible depen-

dencies, namely, correlations, among the inputs and reduces a multivariate problem to

a group of univariate problems [45].

In this study, Naive Bayes classifier is applied to each dataset using Matlab tool-

box. Kernel density estimation is used to model the input attributes.

In experiments, FA5 dataset has the highest sensitivity achieving 72.45%. An

average sensitivity of 65.82% is achieved with FA datasets, and CFS comes the second

with 54.22% sensitivity and PCA follows with an average sensitivity of 50.29%.

FA datasets outperform others. The average f-score value for FA is 0.735 which

is higher than 0.684 for CFS and 0.592 for RFE-SVM. Individually, FA5 dataset has

the highest f-score result which is 0.789.

MCC results are similar to f-score results. The highest MCC result, 0.6404, is

achieved by FA5 dataset. In the ranking for average MCC results, CFS dataset comes

the first with 0.5732 MCC result, and FA has the second highest result with 0.5707,
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Figure 4.9. Sensitivity test results of Naive Bayes.

Figure 4.10. F-score test results of Naive Bayes.
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whereas PCA is the last with 0.3515 MCC result.

Figure 4.11. MCC test results of Naive Bayes.

4.3.6. BayesNet

The sensitivity results show that BayesNet has better performance with CFS

datasets whilst has least performance with PCA datasets. The highest average which

is 65.05% is provided for CFS. In this ranking, RFE-SVM is in the second order with

average sensitivity of 64.44% and FA is the third with average sensitivity of 62.50%.

However, FA8 is the one which has achieved the highest sensitivity, 71.28% individually.

Maximum f-score which is 0.790 is provided for CFS20 dataset. CFS datasets also

have the highest average f-score results among the others. The average f-score result

of 0.749 is provided for CFS datasets. According to this order, RFE-SVM comes the

second with average f-score result of 0.714 and FA follows with average f-score result

of 0.702. PCA datasets have the least f-score result.

Similar to the f-score results, PCA is the last with average MCC result of 0.464
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Figure 4.12. Sensitivity test results of BayesNet.

Figure 4.13. F-score test results of BayesNet.
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whereas CFS is the first with average MCC result of 0.619. Individually, CFS20 dataset

is the one which has the highest MCC result, 0.670.

Figure 4.14. MCC test results of BayesNet.

4.3.7. Genetic Algorithm-Neural Network

In this proposed approach, genetic algorithm is used to assist neural network

for performing feature selection and classification simultaneously. A population of

neural networks with the same parameter set is initially created. The structure of the

neural networks is comprised of one input layer, one hidden layer and one output layer.

Each of them is trained with scaled conjugate gradient backpropagation algorithm,

namely ’trainscg’. Mean squared error with regularization is used for performance

function.Then genetic algorithm steps are applied to the population iteratively. A new

generation is produced per iteration. During each cycle, neural network weights are

applied crossover, mutation and mutation2 operators. Parent selection is performed

based on roulette wheel selection. In experiments, crossover and mutation rates are

chosen as 90% and 10% respectively. Fitness value of the offsprings is obtained from

objective function and based on fitness value evaluation, probability of each solution

to be in the next generation is computed. 90% of the new population is populated by
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the offsprings with the highest probability. The rest of the population is completed by

the best solutions from the old generation in order to carry the best characteristics of

the ancestors.

In the experiments, 5% of the whole data is separated to be used as validation set

for the final model. The algorithm is executed on various parameter sets to find out

the optimal parameter set. 10-fold cross-validation is used per execution. As a result

of each experiment, 10 candidate models are produced and an average and standart

deviation of the accuracy are obtained. Thus, the parameter set and number of neurons

in hidden layer are determined by evaluating the overall accuracy. The effect of the

parameter changes on the overall accuracy is shown in Figure 4.15 and 4.16.

Figure 4.15. Max. fail selection versus overall accuracy.

The models with the selected parameter set are trained and tested using whole

data. The model with the best performance is selected. This model selection is per-

formed with the validation set which is separated before and without validation set.

According to the experiments, 86.75% of accuracy is obtained with the resulting
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Figure 4.16. Number of neurons in hidden layer versus overall accuracy.

model. There is also approximately 95% decrease in the number of features. The

original input feature number is 278 while the resulting input feature is 12. The list of

the relevant features which are left unpruned in the final neural network is as follows:

• heartrate

• QRSduration

• V3 Avg width S wave

• V1 Avg QRSA

• V3 Amplitude S wave

• AVL Amplitude T wave

• V2 Amplitude R wave

• DI Avg QRSTA

• V2 Avg width S wave

• V1 N intrinsic deflections

• V2 N intrinsic deflections

• Tinterval
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As representative datasets for each dimension reduction method: RFE-SVM13,

CFS20, PCA13 and FA8 are selected. Sensitivity results for the abnormal class of

classifiers are listed in Table 4.5.

Table 4.5. Classifier sensitivity comparison.

Method RFE-SVM13 CFS20 PCA13 FA8 Original
k-NN5 0.7179 0.5897 0.5897 0.6410 0.3718
SVM 0.3163 0.3571 0.2959 0.3061 0.3061

Naive Bayes 0.5102 0.6186 0.5102 0.7143 0.7158
BayesNet 0.6596 0.7021 0.4468 0.7128 0.6702
GA-NN - - - - 0.9646

According to the results, classifiers obtain their higher sensitivity result mostly

with FA and CFS datasets. For 13-featured RFE-SVM dataset, k-NN5 performs highest

sensitivity. On original dataset, sensitivity results of SVM and k-NN5 have increased

when they are combined. Voted combination of SVM and k-NN5 obtain 0.6066 and

Stacked generalization of SVM and k-NN5 achieve 0.6120 in terms of sensitivity. GA-

NN obtains highest result on original dataset by reducing irrelevant features while

performing classification. The classifiers with their best performance are summarized

in Table 4.6.

Table 4.6. Classifier+Dataset sensitivity comparison.

k-NN5 + RFE-SVM13 SVM+ CFS20 Naive Bayes5 + Original BayesNet+ FA8 Proposed+Original

0.7179 0.3571 0.7158 0.7128 0.9646

Table 4.7 shows that GA-NN approach scores the highest value among other

classifiers. BayesNet comes the second with 0.7904 f-score value. The highest score

that the classifiers obtain is given in Table 4.8.

In terms of MCC results given in Table 4.9, GA-NN approach provides the highest

performance with 0.7375. As overall; GA- NN, Naive Bayes and BayesNet perform
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Table 4.7. Classifier f-score comparison.

Method RFE-SVM13 CFS20 PCA13 FA8 Original
k-NN5 0.7044 0.6715 0.5823 0.6329 0.4328
SVM 0.3875 0.3933 0.3558 0.3750 0.3681

Naive Bayes 0.6667 0.7317 0.6135 0.7778 0.7083
BayesNet 0.7425 0.7904 0.5957 0.7701 0.7636
GA-NN - - - - 0.8916

Table 4.8. Classifier+Dataset f-score comparison.

k-NN5 + RFE-SVM13 SVM+ CFS20 Naive Bayes5 + FA8 BayesNet+ CFS20 Proposed+Original

0.7044 0.3933 0.7778 0.7904 0.8916

Table 4.9. Classifier MCC comparison.

Method RFE-SVM13 CFS20 PCA13 FA8 Original
k-NN5 0.5247 0.5281 0.3305 0.4117 0.1827
SVM 0.0432 -0.0459 -0.0275 0.0223 -0.0069

Naive Bayes 0.5691 0.5942 0.4061 0.6209 0.4562
BayesNet 0.5897 0.6701 0.4816 0.6151 0.6320
GA-NN - - - - 0.7375
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better for MCC than others. The highest MCC results of the classifiers are shown in

Table 4.10.

Table 4.10. Classifier+Dataset MCC comparison.

k-NN5 + CFS20 SVM+ RFE-SVM13 Naive Bayes5 + FA8 BayesNet+ CFS20 Proposed+Original

0.5247 0.0432 0.6209 0.6701 0.7375

Table 4.11. Classifier accuracy comparison.

Method RFE-SVM13 CFS20 PCA13 FA8 Original
k-NN5 0.7762 0.7857 0.6857 0.7238 0.6381
SVM 0.5333 0.4857 0.5000 0.5238 0.5095

Naive Bayes 0.7619 0.7895 0.7000 0.8095 0.7295
BayesNet 0.7952 0.8333 0.7286 0.8095 0.8143
GA-NN - - - - 0.8675

When we consider the ratio of correctly classified instances, GA-NN comes the

first achieving 86.75% accuracy. BayesNet follows with an accuracy of 83.33%. The

highest accuracy rates captured by the classifiers are given in Table 4.12.

Table 4.12. Classifier+Dataset accuracy comparison.

k-NN5 + CFS20 SVM+ RFE-SVM13 Naive Bayes5 + FA8 BayesNet+ CFS20 Proposed+Original

0.7857 0.5333 0.8095 0.8333 0.8675

4.4. Experimental Results For Rule Extraction

We obtain 12-featured classified dataset as a result of the GA-NN approach.

Based on the output, rules are extracted using C4.5, RIPPER, PART and HotSpot

algorithms.
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4.4.1. C4.5 Decision Tree

Decision tree results are obtained from J48 method in Weka which is a C4.5

decision tree implementation in java. This algorithm is applied to the dataset which

has been correctly classified by the proposed method. The resulting rules are given in

Table 4.13.

Table 4.13. C4.5 rule set.

1 If V1 Avg QRSA ≤ 1 and AVL Amplitude T wave > -0.8
and heartrate ≤ 58 then CLASS = ABNORMAL

2 If V1 Avg QRSA ≤ 1 and AVL Amplitude T wave > -0.8
and heartrate > 94 then CLASS = ABNORMAL

3 If V1 Avg QRSA ≤ 1 and AVL Amplitude T wave > -0.8
and 58 < heartrate ≤ 94 and V1 N intrinsic deflections > 28
then CLASS = ABNORMAL

4 If V1 Avg QRSA ≤ 1 and AVL Amplitude T wave > -0.8
and 58 < heartrate ≤ 94 and V1 N intrinsic deflections ≤ 28
and Tinterval > 218 and DI Avg QRSTA ≤ 25.5 then CLASS = ABNORMAL

5 If V1 Avg QRSA ≤ 1 and AVL Amplitude T wave > -0.8
and 58 < heartrate ≤ 94 and V1 N intrinsic deflections ≤ 28
and Tinterval ≤ 145 and QRSduration > 91 then CLASS = ABNORMAL

6 If V1 Avg QRSA ≤ 1 and AVL Amplitude T wave ≤ -0.8
and V3 Avg width S wave > 56 then CLASS = ABNORMAL

7 If V1 Avg QRSA ≤ 1 and AVL Amplitude T wave ≤ -0.8
and V3 Avg width S wave ≤ 56 and V2 Avg width S wave ≤ 48
then CLASS = ABNORMAL

8 If V1 Avg QRSA ≤ 1 and AVL Amplitude T wave ≤ -0.8
and V3 Avg width S wave ≤ 56 and V2 Avg width S wave > 48
and V3 Amplitude S wave ≤ -14 then CLASS = ABNORMAL

9 If V1 Avg QRSA > 1 then CLASS = ABNORMAL

The root of the resulting C4.5 tree is QRSA of the V1 Lead which is splitted into

two branches according to being greater or less than 1. QRSA, the amplitude of T and

S waves, the width of S wave, duration of T wave, heartrate and number of intrinsic

deflections are determinant features in the resulting rule set.
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4.4.2. Repeated Incremental Pruning to Produce Error Reduction

Repeated Incremental Pruning to Produce Error Reduction (RIPPER) is applied

which is called JRip method in WEKA. Pruning is performed for rule base tree gener-

ation and stopping condition includes control for the error rate to be greater than 0.5.

The generated rules are given in Table 4.14.

Table 4.14. RIPPER rule set.

1 If DI Avg QRSTA ≤ 15.7 and Tinterval ≥ 209 then CLASS = ABNORMAL
2 If QRSduration ≥ 91 and DI Avg QRSTA ≤ 19.7

and V1 N intrinsic deflections ≥ 24 then CLASS = ABNORMAL
3 If V1 Avg QRSA ≥ -6.4 then CLASS = ABNORMAL
4 If heartrate ≤ 58 or heartrate ≥ 103 then CLASS = ABNORMAL
5 If QRSduration ≥ 92 and V3 Avg width S wave ≤ 32 then CLASS = ABNORMAL
6 If Tinterval ≥ 195 and QRSduration ≥ 107 then CLASS = ABNORMAL
7 If V2 Amplitude R wave ≤ 1.2 and AVL Amplitude T wave ≤ -0.3

then CLASS = ABNORMAL
8 If QRSduration ≥ 91 and Tinterval ≤ 143 and heartrate ≥ 66

then CLASS = ABNORMAL

According to resulting rule set, QRSTA of DI Lead, duration of T wave and QRS

complex, amplitude of R and T waves, width of S wave, QRSA of V1 wave, number of

intrinsic deflections and heartrate are selected as distinguishing features.

4.4.3. Partial Decision Tree

Partial Decision Tree is applied to dataset in WEKA. Unpruned tree is con-

structed. The resulting rules are given in Table 4.15.

The resulting rule set consists of 9 rules. QRSA of V1 Lead, amplitude of S and

T waves, heartrate, duration of T wave and QRS complex, width of S wave, QRSTA of

D1 Lead and number of intrinsic deflections are selected features. The resulting rules

seem consistent with C4.5 rules. The rules are not in a successive order because Part
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Table 4.15. PART rule set.

1 If V1 Avg QRSA > 1 then CLASS = ABNORMAL
2 If AVL Amplitude T wave ≤ -0.8 and V1 N intrinsic deflections ≤ 8

then CLASS = ABNORMAL
3 If heartrate ≤ 57 and Tinterval ≤ 165 then CLASS = ABNORMAL
4 If Tinterval > 221 and DI Avg QRSTA ≤ 25.5 then CLASS = ABNORMAL
5 If heartrate > 94 and Tinterval > 148 then CLASS = ABNORMAL
6 If V3 Avg width S wave ≤ 28 and V3 Amplitude S wave > -6.8

and DI Avg QRSTA > 17.7 then CLASS = ABNORMAL
7 If V1 N intrinsic deflections > 24 and V3 Avg width S wave > 40

then CLASS = ABNORMAL
8 If QRSduration > 107 and V1 Avg QRSA ≤ -25 then CLASS = ABNORMAL
9 If V2 Avg width S wave > 44 and V1 N intrinsic deflections > 4

and heartrate > 64 and V3 Avg width S wave ≤ 56 then CLASS = ABNORMAL

produces rules from the repeated generated partial decision trees.

4.4.4. HotSpot

HotSpot algorithm is applied in order to find rules with the item of interest.

The target class is abnormal and the produced rules cover the samples of abnormal

class. In this study, HotSpot algorithm in Weka is used which examines the input data

and learns the association rules corresponding to the target class. The rules are also

displayed in a tree like structure. The produced rule set is given in Table 4.16.

Table 4.16. HotSpot rule set.

1 If Tinterval > 121 and QRSduration > 71
and DI Avg QRSTA ≤ 26.8 then CLASS = ABNORMAL

2 If Tinterval > 126 and DI Avg QRSTA ≤ 26.8
then CLASS = ABNORMAL

3 If DI Avg QRSTA ≤ 40.8 and QRSduration > 82 then CLASS = ABNORMAL
4 If Tinterval > 121 and QRSduration > 82

and DI Avg QRSTA ≤ 42.1 then CLASS = ABNORMAL
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4.4.5. Rule Set Evaluation

The performance measures including accuracy, sensitivity, f-score, precision and

MCC are computed for the rule extraction methods. The comparison of the rule

extraction methods based on the performance measures is given in Table 4.17.

Table 4.17. Performance results of rule sets.

Method Accuracy Sensitivity F-score Precision MCC
C4.5 87.8% 81% 85.2% 89.8% 75%

RIPPER 88.5% 85.6 % 86.6% 87.6% 76.5%
PART 94.2 87.9% 93% 98.7% 88.6%

Among these measures, accuracy indicates the ratio of correctly classified data

to whole data while others focus on target class. The target class in this study refers

to abnormal class. According to the measures, PART povides highest measures for all

metrics. C4.5 and RIPPER have similarities but RIPPER outperforms C4.5 especially

in terms of sensitivity which is related to its ability to identify target class.
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5. EXPERIMENTS WITH REAL ECG DATA

The proposed method is compared with other classifiers using UCI Arrhythmia

dataset in previous sections. Results showed that GA-NN approach outperforms others

in terms of different performance metrics. The proposed method is also validated with

a real ECG dataset. The real ECG data is obtained from Kardiosis ECG Tool of the

manufacturing firm TEPA [43]. This dataset contains 20 instances and provides all the

features of UCI Arrhythmia dataset. In this experiment, 12 selected features which are

obtained as a result of the GA-NN approach are computed for validation. The results

are listed in Table 5.1.

Table 5.1. Performance results on real ECG.

Accuracy Sensitivity F-score Precision MCC
85% 0.57 0.73 1 0.68

According to the results, the proposed method can be applied to real life ECG

data with high accuracy rate.
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6. CONCLUSION

In this study we propose GA-NN approach for feature selection and rule based

arrhythmia classification. Genetic algorithm is used to assist neural network in feature

selection while neural network performs classification. In experiments, UCI Arrhythmia

dataset is used. Diverse classifiers are chosen for comparison. Experiments show that

the proposed approach outperforms others. The number of features is also decreased

from 278 to 12 as a result of feature selection performed by the proposed method.

A real ECG data set is also used for verification. The proposed method is run on

the real data set and we obtain high accuracy rate.

Based on the reduced feature set, rule extraction methods are applied. C4.5,

RIPPER, PART and HotSpot are used to perform rule extraction. PART outperforms

C4.5 and RIPPER methods in terms of performance measures. HotSpot is employed

to observe effective rules on target class which is abnormal class.

The experiments for the classifiers to be used in comparison are performed on

original dataset and reduced data sets. The results show that dimension reduction has

an optimized effect on classification. An increasing trend in sensitivity is seen among

classifiers when reduced data sets are used. In addition to this, it is observed that

performance of k-NN and SVM has increased when these techniques are combined as

voting and stacked. Furthermore, it can be said that probabilistic techniques draw

consistent performance in classification results.

The resulting rule set is considered to include determinant features which mostly

contribute to the classification. For this reason, the generated rules may be useful in

determination about the case to be cardiac arrhythmia.

The significance of data obtained from ECG cannot be undervalued. However,

this is also important that interpretation of ECG in conjunction with the clinical as-
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sessments will be more effective in arrhythmia diagnosis than deciding only on the basis

of ECG data.
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APPENDIX A: THE OFFICIAL DATASET DESCRIPTION

OF THE UCI ARRHYTHMIA DATASET

1. Title: Cardiac Arrhythmia Database

2. Sources:

(a) Original owners od Database:

-- 1. H. Altay Guvenir, PhD.,

Bilkent University,

Department of Computer Engineering and Information Science,

06533 Ankara, Turkey

Phone: +90 (312) 266 4133

Email: guvenir@cs.bilkent.edu.tr

-- 2. Burak Acar, M.S.,

Bilkent University,

EE Eng. Dept.

06533 Ankara, Turkey

Email: buraka@ee.bilkent.edu.tr

-- 3. Haldun Muderrisoglu, M.D., Ph.D.,

Baskent University,

School of Medicine

Ankara, Turkey

(b) Donor: H. Altay Guvenir

Bilkent University,

Department of Computer Engineering and Information Science,

06533 Ankara, Turkey

Phone: +90 (312) 266 4133
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Email: guvenir@cs.bilkent.edu.tr

(c) Date: January, 1998

3. Past Usage:

1. H. Altay Guvenir, Burak Acar, Gulsen Demiroz, Ayhan Cekin

"A Supervised Machine Learning Algorithm for Arrhythmia Analysis"

Proceedings of the Computers in Cardiology Conference,

Lund, Sweden, 1997.

The aim is to determine the type of arrhythmia from

the ECG recordings.

4. Relevant Information:

This database contains 279 attributes, 206 of which are linear

valued and the rest are nominal.

Concerning the study of H. Altay Guvenir: "The aim is to distinguish

between the presence and absence of cardiac arrhythmia and to

classify it in one of the 16 groups. Class 01 refers to ’normal’

ECG classes 02 to 15 refers to different classes of arrhythmia

and class 16 refers to the rest of unclassified ones. For the

time being, there exists a computer program that makes such a

classification. However there are differences between the

cardiolog’s and the programs classification. Taking the

cardiolog’s as a gold standard we aim to minimise this difference

by means of machine learning tools."

The names and id numbers of the patients were recently

removed from the database.

5. Number of Instances: 452
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6. Number of Attributes: 279

7. Attribute Information:

-- Complete attribute documentation:

1 Age: Age in years , linear

2 Sex: Sex (0 = male; 1 = female) , nominal

3 Height: Height in centimeters , linear

4 Weight: Weight in kilograms , linear

5 QRS duration: Average of QRS duration in msec., linear

6 P-R interval: Average duration between onset of P and Q waves

in msec., linear

7 Q-T interval: Average duration between onset of Q and offset

of T waves in msec., linear

8 T interval: Average duration of T wave in msec., linear

9 P interval: Average duration of P wave in msec., linear

Vector angles in degrees on front plane of:, linear

10 QRS

11 T

12 P

13 QRST

14 J

15 Heart rate: Number of heart beats per minute ,linear

Of channel DI:

Average width, in msec., of: linear

16 Q wave

17 R wave

18 S wave

19 R’ wave, small peak just after R

20 S’ wave
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21 Number of intrinsic deflections, linear

22 Existence of ragged R wave, nominal

23 Existence of diphasic derivation of R wave, nominal

24 Existence of ragged P wave, nominal

25 Existence of diphasic derivation of P wave, nominal

26 Existence of ragged T wave, nominal

27 Existence of diphasic derivation of T wave, nominal

Of channel DII:

28 .. 39 (similar to 16 .. 27 of channel DI)

Of channels DIII:

40 .. 51

Of channel AVR:

52 .. 63

Of channel AVL:

64 .. 75

Of channel AVF:

76 .. 87

Of channel V1:

88 .. 99

Of channel V2:

100 .. 111

Of channel V3:

112 .. 123

Of channel V4:

124 .. 135

Of channel V5:

136 .. 147

Of channel V6:

148 .. 159
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Of channel DI:

Amplitude , * 0.1 milivolt, of

160 JJ wave, linear

161 Q wave, linear

162 R wave, linear

163 S wave, linear

164 R’ wave, linear

165 S’ wave, linear

166 P wave, linear

167 T wave, linear

168 QRSA , Sum of areas of all segments divided by 10,

( Area= width * height / 2 ), linear

169 QRSTA = QRSA + 0.5 * width of T wave * 0.1 * height of T

wave. (If T is diphasic then the bigger segment is

considered), linear

Of channel DII:

170 .. 179

Of channel DIII:

180 .. 189

Of channel AVR:

190 .. 199

Of channel AVL:

200 .. 209

Of channel AVF:

210 .. 219

Of channel V1:

220 .. 229

Of channel V2:

230 .. 239
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Of channel V3:

240 .. 249

Of channel V4:

250 .. 259

Of channel V5:

260 .. 269

Of channel V6:

270 .. 279

8. Missing Attribute Values: Several. Distinguished with ’?’.

9. Class Distribution:

Database Arrhythmia

Class code : Class : Number:

01 Normal 245

02 Ischemic changes (Coronary Artery Disease) 44

03 Old Anterior Myocardial Infarction 15

04 Old Inferior Myocardial Infarction 15

05 Sinus tachycardy 13

06 Sinus bradycardy 25

07 Ventricular Premature Contraction (PVC) 3

08 Supraventricular Premature Contraction 2

09 Left bundle branch block 9

10 Right bundle branch block 50

11 1. degree AtrioVentricular block 0

12 2. degree AV block 0

13 3. degree AV block 0

14 Left ventricule hypertrophy 4

15 Atrial Fibrillation or Flutter 5

16 Others 22
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APPENDIX B: ALL PERFORMANCE RESULTS OF K-NN

• Target (Positive) class is abnormal

• Accuracy indicates the ratio of correctly classified instances to total instances

Table B.1.

kNN5 Results
Data set TP FN TN FP Accuracy Precision Recall F-score Spec. MCC
Original 29 49 105 27 0.6381 0.5179 0.3718 0.4328 0.7955 0.1827

RFESVM3 41 37 106 26 0.7000 0.6119 0.5256 0.5655 0.8030 0.3407
RFESVM5 49 29 108 24 0.7476 0.6712 0.6282 0.6490 0.8182 0.4529
RFESVM7 54 24 110 22 0.7810 0.7105 0.6923 0.7013 0.8333 0.5285
RFESVM10 51 27 113 19 0.7810 0.7286 0.6538 0.6892 0.8561 0.5227
RFESVM13 56 22 107 25 0.7762 0.6914 0.7179 0.7044 0.8106 0.5247
RFESVM20 54 24 112 20 0.7905 0.7297 0.6923 0.7105 0.8485 0.5470
RFESVM30 47 31 116 16 0.7762 0.7460 0.6026 0.6667 0.8788 0.5075

CFS3 51 27 97 35 0.7048 0.5930 0.6538 0.6220 0.7348 0.3819
CFS5 55 23 102 30 0.7476 0.6471 0.7051 0.6748 0.7727 0.4704
CFS7 53 25 114 18 0.7952 0.7465 0.6795 0.7114 0.8636 0.5547
CFS10 48 30 118 14 0.7905 0.7742 0.6154 0.6857 0.8939 0.5395
CFS13 50 28 117 15 0.7952 0.7692 0.6410 0.6993 0.8864 0.5512
CFS20 46 32 119 13 0.7857 0.7797 0.5897 0.6715 0.9015 0.5281
CFS30 45 33 114 18 0.7571 0.7143 0.5769 0.6383 0.8636 0.4645
PCA3 51 27 87 45 0.6571 0.5313 0.6538 0.5862 0.6591 0.3035
PCA5 53 25 74 58 0.6048 0.4775 0.6795 0.5608 0.5606 0.2324
PCA7 47 31 87 45 0.6381 0.5109 0.6026 0.5529 0.6591 0.2548
PCA10 45 33 97 35 0.6762 0.5625 0.5769 0.5696 0.7348 0.3102
PCA13 46 32 98 34 0.6857 0.5750 0.5897 0.5823 0.7424 0.3305
PCA20 40 38 100 32 0.6667 0.5556 0.5128 0.5333 0.7576 0.2753
PCA30 35 43 100 32 0.6429 0.5224 0.4487 0.4828 0.7576 0.2139

FA3 50 28 88 44 0.6571 0.5319 0.6410 0.5814 0.6667 0.2990
FA5 52 26 104 28 0.7429 0.6500 0.6667 0.6582 0.7879 0.4523
FA7 51 27 106 26 0.7476 0.6623 0.6538 0.6581 0.8030 0.4581
FA8 50 28 102 30 0.7238 0.6250 0.6410 0.6329 0.7727 0.4117
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Table B.2.

kNN7 Results
Data set TP FN TN FP Accuracy Precision Recall F-score Spec. MCC
Original 30 48 112 20 0.6762 0.6000 0.3846 0.4688 0.8485 0.2644

RFESVM3 41 37 111 21 0.7238 0.6613 0.5256 0.5857 0.8409 0.3883
RFESVM5 54 24 108 24 0.7714 0.6923 0.6923 0.6923 0.8182 0.5105
RFESVM7 54 24 112 20 0.7905 0.7297 0.6923 0.7105 0.8485 0.5470
RFESVM10 52 26 112 20 0.7810 0.7222 0.6667 0.6933 0.8485 0.5244
RFESVM13 51 27 111 21 0.7714 0.7083 0.6538 0.6800 0.8409 0.5036
RFESVM20 51 27 114 18 0.7857 0.7391 0.6538 0.6939 0.8636 0.5323
RFESVM30 43 35 118 14 0.7667 0.7544 0.5513 0.6370 0.8939 0.4838

CFS3 49 29 93 39 0.6762 0.5568 0.6282 0.5904 0.7045 0.3259
CFS5 55 23 108 24 0.7762 0.6962 0.7051 0.7006 0.8182 0.5220
CFS7 55 23 115 17 0.8095 0.7639 0.7051 0.7333 0.8712 0.5867
CFS10 46 32 118 14 0.7810 0.7667 0.5897 0.6667 0.8939 0.5173
CFS13 50 28 117 15 0.7952 0.7692 0.6410 0.6993 0.8864 0.5512
CFS20 45 33 121 11 0.7905 0.8036 0.5769 0.6716 0.9167 0.5393
CFS30 44 34 118 14 0.7714 0.7586 0.5641 0.6471 0.8939 0.4950
PCA3 54 24 81 51 0.6429 0.5143 0.6923 0.5902 0.6136 0.2957
PCA5 42 36 84 48 0.6000 0.4667 0.5385 0.5000 0.6364 0.1707
PCA7 45 33 87 45 0.6286 0.5000 0.5769 0.5357 0.6591 0.2304
PCA10 40 38 94 38 0.6381 0.5128 0.5128 0.5128 0.7121 0.2249
PCA13 41 37 96 36 0.6524 0.5325 0.5256 0.5290 0.7273 0.2536
PCA20 35 43 104 28 0.6619 0.5556 0.4487 0.4965 0.7879 0.2495
PCA30 36 42 102 30 0.6571 0.5455 0.4615 0.5000 0.7727 0.2438

FA3 52 26 89 43 0.6714 0.5474 0.6667 0.6012 0.6742 0.3309
FA5 52 26 105 27 0.7476 0.6582 0.6667 0.6624 0.7955 0.4609
FA7 50 28 109 23 0.7571 0.6849 0.6410 0.6623 0.8258 0.4736
FA8 52 26 105 27 0.7476 0.6582 0.6667 0.6624 0.7955 0.4609

Table B.3.

kNN9 Results
Data set TP FN TN FP Accuracy Precision Recall F-score Spec. MCC
Original 26 52 114 18 0.6667 0.5909 0.3333 0.4262 0.8636 0.2339

RFESVM3 42 36 106 26 0.7048 0.6176 0.5385 0.5753 0.8030 0.3526
RFESVM5 50 28 108 24 0.7524 0.6757 0.6410 0.6579 0.8182 0.4645
RFESVM7 53 25 115 17 0.8000 0.7571 0.6795 0.7162 0.8712 0.5645
RFESVM10 51 27 115 17 0.7905 0.7500 0.6538 0.6986 0.8712 0.5422
RFESVM13 50 28 115 17 0.7857 0.7463 0.6410 0.6897 0.8712 0.5310
RFESVM20 50 28 115 17 0.7857 0.7463 0.6410 0.6897 0.8712 0.5310
RFESVM30 43 35 123 9 0.7905 0.8269 0.5513 0.6615 0.9318 0.5408

CFS3 49 29 99 33 0.7048 0.5976 0.6282 0.6125 0.7500 0.3746
CFS5 56 22 108 24 0.7810 0.7000 0.7179 0.7089 0.8182 0.5334
CFS7 53 25 111 21 0.7810 0.7162 0.6795 0.6974 0.8409 0.5264
CFS10 44 34 117 15 0.7667 0.7458 0.5641 0.6423 0.8864 0.4843
CFS13 48 30 122 10 0.8095 0.8276 0.6154 0.7059 0.9242 0.5832
CFS20 44 34 121 11 0.7857 0.8000 0.5641 0.6617 0.9167 0.5284
CFS30 41 37 120 12 0.7667 0.7736 0.5256 0.6260 0.9091 0.4836
PCA3 53 25 86 46 0.6619 0.5354 0.6795 0.5989 0.6515 0.3204
PCA5 43 35 83 49 0.6000 0.4674 0.5513 0.5059 0.6288 0.1754
PCA7 44 34 89 43 0.6333 0.5057 0.5641 0.5333 0.6742 0.2338
PCA10 41 37 99 33 0.6667 0.5541 0.5256 0.5395 0.7500 0.2788
PCA13 39 39 100 32 0.6619 0.5493 0.5000 0.5235 0.7576 0.2631
PCA20 32 46 100 32 0.6286 0.5000 0.4103 0.4507 0.7576 0.1762
PCA30 34 44 103 29 0.6524 0.5397 0.4359 0.4823 0.7803 0.2280

FA3 48 30 99 33 0.7000 0.5926 0.6154 0.6038 0.7500 0.3627
FA5 48 30 108 24 0.7429 0.6667 0.6154 0.6400 0.8182 0.4414
FA7 50 28 112 20 0.7714 0.7143 0.6410 0.6757 0.8485 0.5017
FA8 53 25 112 20 0.7857 0.7260 0.6795 0.7020 0.8485 0.5357
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Table B.4.

kNN11 Results
Data set TP FN TN FP Accuracy Precision Recall F-score Spec. MCC
Original 25 53 113 19 0.6571 0.5682 0.3205 0.4098 0.8561 0.2096

RFESVM3 41 37 111 21 0.7238 0.6613 0.5256 0.5857 0.8409 0.3883
RFESVM5 49 29 109 23 0.7524 0.6806 0.6282 0.6533 0.8258 0.4621
RFESVM7 51 27 116 16 0.7952 0.7612 0.6538 0.7034 0.8788 0.5522
RFESVM10 48 30 116 16 0.7810 0.7500 0.6154 0.6761 0.8788 0.5187
RFESVM13 50 28 119 13 0.8048 0.7937 0.6410 0.7092 0.9015 0.5721
RFESVM20 47 31 119 13 0.7905 0.7833 0.6026 0.6812 0.9015 0.5392
RFESVM30 39 39 120 12 0.7571 0.7647 0.5000 0.6047 0.9091 0.4610

CFS3 48 30 96 36 0.6857 0.5714 0.6154 0.5926 0.7273 0.3380
CFS5 55 23 108 24 0.7762 0.6962 0.7051 0.7006 0.8182 0.5220
CFS7 50 28 113 19 0.7762 0.7246 0.6410 0.6803 0.8561 0.5114
CFS10 40 38 120 12 0.7619 0.7692 0.5128 0.6154 0.9091 0.4723
CFS13 45 33 120 12 0.7857 0.7895 0.5769 0.6667 0.9091 0.5281
CFS20 41 37 123 9 0.7810 0.8200 0.5256 0.6406 0.9318 0.5190
CFS30 39 39 121 11 0.7619 0.7800 0.5000 0.6094 0.9167 0.4727
PCA3 52 26 90 42 0.6762 0.5532 0.6667 0.6047 0.6818 0.3386
PCA5 41 37 87 45 0.6095 0.4767 0.5256 0.5000 0.6591 0.1815
PCA7 41 37 92 40 0.6333 0.5062 0.5256 0.5157 0.6970 0.2210
PCA10 39 39 95 37 0.6381 0.5132 0.5000 0.5065 0.7197 0.2209
PCA13 37 41 102 30 0.6619 0.5522 0.4744 0.5103 0.7727 0.2561
PCA20 37 41 101 31 0.6571 0.5441 0.4744 0.5068 0.7652 0.2473
PCA30 34 44 107 25 0.6714 0.5763 0.4359 0.4964 0.8106 0.2650

FA3 52 26 94 38 0.6952 0.5778 0.6667 0.6190 0.7121 0.3698
FA5 51 27 112 20 0.7762 0.7183 0.6538 0.6846 0.8485 0.5131
FA7 48 30 116 16 0.7810 0.7500 0.6154 0.6761 0.8788 0.5187
FA8 47 31 113 19 0.7619 0.7121 0.6026 0.6528 0.8561 0.4774

Table B.5.

kNN13 Results
Data set TP FN TN FP Accuracy Precision Recall F-score Spec. MCC
Original 23 55 117 15 0.6667 0.6053 0.2949 0.3966 0.8864 0.2275

RFESVM3 40 38 114 18 0.7333 0.6897 0.5128 0.5882 0.8636 0.4068
RFESVM5 48 30 109 23 0.7476 0.6761 0.6154 0.6443 0.8258 0.4506
RFESVM7 50 28 117 15 0.7952 0.7692 0.6410 0.6993 0.8864 0.5512
RFESVM10 44 34 119 13 0.7762 0.7719 0.5641 0.6519 0.9015 0.5059
RFESVM13 50 28 118 14 0.8000 0.7813 0.6410 0.7042 0.8939 0.5616
RFESVM20 45 33 122 10 0.7952 0.8182 0.5769 0.6767 0.9242 0.5508
RFESVM30 38 40 125 7 0.7762 0.8444 0.4872 0.6179 0.9470 0.5112

CFS3 49 29 100 32 0.7095 0.6049 0.6282 0.6164 0.7576 0.3829
CFS5 59 19 114 18 0.8238 0.7662 0.7564 0.7613 0.8636 0.6217
CFS7 50 28 115 17 0.7857 0.7463 0.6410 0.6897 0.8712 0.5310
CFS10 39 39 118 14 0.7476 0.7358 0.5000 0.5954 0.8939 0.4382
CFS13 45 33 120 12 0.7857 0.7895 0.5769 0.6667 0.9091 0.5281
CFS20 40 38 123 9 0.7762 0.8163 0.5128 0.6299 0.9318 0.5080
CFS30 35 43 123 9 0.7524 0.7955 0.4487 0.5738 0.9318 0.4518
PCA3 52 26 92 40 0.6857 0.5652 0.6667 0.6118 0.6970 0.3541
PCA5 38 40 89 43 0.6048 0.4691 0.4872 0.4780 0.6742 0.1602
PCA7 39 39 93 39 0.6286 0.5000 0.5000 0.5000 0.7045 0.2045
PCA10 35 43 97 35 0.6286 0.5000 0.4487 0.4730 0.7348 0.1882
PCA13 34 44 104 28 0.6571 0.5484 0.4359 0.4857 0.7879 0.2370
PCA20 37 41 109 23 0.6952 0.6167 0.4744 0.5362 0.8258 0.3210
PCA30 32 46 110 22 0.6762 0.5926 0.4103 0.4848 0.8333 0.2693

FA3 46 32 100 32 0.6952 0.5897 0.5897 0.5897 0.7576 0.3473
FA5 48 30 114 18 0.7714 0.7273 0.6154 0.6667 0.8636 0.4986
FA7 46 32 117 15 0.7762 0.7541 0.5897 0.6619 0.8864 0.5067
FA8 49 29 115 17 0.7810 0.7424 0.6282 0.6806 0.8712 0.5198
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Table B.6.

kNN15 Results
Data set TP FN TN FP Accuracy Precision Recall F-score Spec. MCC
Original 26 52 116 16 0.6762 0.6190 0.3333 0.4333 0.8788 0.2562

RFESVM3 42 36 110 22 0.7238 0.6563 0.5385 0.5915 0.8333 0.3903
RFESVM5 46 32 111 21 0.7476 0.6866 0.5897 0.6345 0.8409 0.4464
RFESVM7 50 28 118 14 0.8000 0.7813 0.6410 0.7042 0.8939 0.5616
RFESVM10 44 34 120 12 0.7810 0.7857 0.5641 0.6567 0.9091 0.5170
RFESVM13 47 31 124 8 0.8143 0.8545 0.6026 0.7068 0.9394 0.5956
RFESVM20 44 34 124 8 0.8000 0.8462 0.5641 0.6769 0.9394 0.5636
RFESVM30 37 41 127 5 0.7810 0.8810 0.4744 0.6167 0.9621 0.5273

CFS3 50 28 97 35 0.7000 0.5882 0.6410 0.6135 0.7348 0.3700
CFS5 59 19 112 20 0.8143 0.7468 0.7564 0.7516 0.8485 0.6033
CFS7 48 30 113 19 0.7667 0.7164 0.6154 0.6621 0.8561 0.4887
CFS10 37 41 121 11 0.7524 0.7708 0.4744 0.5873 0.9167 0.4499
CFS13 41 37 122 10 0.7762 0.8039 0.5256 0.6357 0.9242 0.5069
CFS20 38 40 124 8 0.7714 0.8261 0.4872 0.6129 0.9394 0.4983
CFS30 33 45 123 9 0.7429 0.7857 0.4231 0.5500 0.9318 0.4287
PCA3 49 29 88 44 0.6524 0.5269 0.6282 0.5731 0.6667 0.2868
PCA5 36 42 89 43 0.5952 0.4557 0.4615 0.4586 0.6742 0.1354
PCA7 40 38 94 38 0.6381 0.5128 0.5128 0.5128 0.7121 0.2249
PCA10 38 40 96 36 0.6381 0.5135 0.4872 0.5000 0.7273 0.2169
PCA13 35 43 103 29 0.6571 0.5469 0.4487 0.4930 0.7830 0.2404
PCA20 33 45 108 24 0.6714 0.5789 0.4231 0.4889 0.8182 0.2621
PCA30 27 51 110 22 0.6524 0.5510 0.3462 0.4252 0.8333 0.2050

FA3 44 34 103 29 0.7000 0.6027 0.5641 0.5828 0.7803 0.3494
FA5 47 31 114 18 0.7667 0.7231 0.6026 0.6573 0.8636 0.4873
FA7 44 34 122 10 0.7905 0.8148 0.5641 0.6667 0.9242 0.5399
FA8 46 32 116 16 0.7714 0.7419 0.5897 0.6571 0.8788 0.4963
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APPENDIX C: ALL PERFORMANCE RESULTS OF SVM

Table C.1.

SVM Results
Data set TP FN TN FP Accuracy Precision Recall F-score Spec. MCC
Original 30 68 77 35 0.5095 0.4615 0.3061 0.3681 0.6875 -0.0069

RFESVM3 19 79 90 22 0.5190 0.4634 0.1939 0.2734 0.8036 -0.0032
RFESVM5 30 68 83 29 0.5381 0.5085 0.3061 0.3822 0.7411 0.0524
RFESVM7 33 65 77 35 0.5238 0.4853 0.3367 0.3976 0.6875 0.0258
RFESVM10 29 69 78 34 0.5095 0.4603 0.2959 0.3602 0.6964 -0.0083
RFESVM13 31 67 81 31 0.5333 0.5000 0.3163 0.3875 0.7232 0.0432
RFESVM20 31 67 83 29 0.5429 0.5167 0.3163 0.3924 0.7411 0.0634
RFESVM30 29 69 79 33 0.5143 0.4677 0.2959 0.3625 0.7054 0.0014

CFS3 28 70 79 33 0.5095 0.4590 0.2857 0.3522 0.7054 -0.0089
CFS5 28 70 75 37 0.4905 0.4308 0.2857 0.3436 0.6696 -0.0482
CFS7 31 67 75 37 0.5048 0.4559 0.3163 0.3735 0.6696 -0.0150
CFS10 30 68 75 37 0.5000 0.4478 0.3061 0.3636 0.6696 -0.0259
CFS13 28 70 76 36 0.4952 0.4375 0.2857 0.3457 0.6786 -0.0387
CFS20 35 63 67 45 0.4857 0.4375 0.3571 0.3933 0.5982 -0.0459
CFS30 32 66 80 32 0.5333 0.5000 0.3265 0.3951 0.7143 0.0442
PCA3 29 69 83 29 0.5333 0.5000 0.2959 0.3718 0.7411 0.0413
PCA5 26 72 78 34 0.4952 0.4333 0.2653 0.3291 0.6964 -0.0423
PCA7 25 73 81 31 0.5048 0.4464 0.2551 0.3247 0.7232 -0.0245
PCA10 27 71 80 32 0.5095 0.4576 0.2755 0.3439 0.7143 -0.0113
PCA13 29 69 76 36 0.5000 0.4462 0.2959 0.3558 0.6786 -0.0275
PCA20 31 67 74 38 0.5000 0.4493 0.3163 0.3713 0.6607 -0.0244
PCA30 31 67 76 36 0.5095 0.4627 0.3163 0.3758 0.6786 -0.0055

FA3 15 83 84 28 0.4714 0.3488 0.1531 0.2128 0.7500 -0.1198
FA5 34 64 79 33 0.5381 0.5075 0.3469 0.4121 0.7054 0.0560
FA7 30 68 79 33 0.5190 0.4762 0.3061 0.3727 0.7054 0.0125
FA8 30 68 80 32 0.5238 0.4839 0.3061 0.3750 0.7143 0.0223
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APPENDIX D: ALL PERFORMANCE RESULTS OF

VOTED COMB. OF SVM AND K-NN

Table D.1.

Voted Combination Results
Data set TP FN TN FP Accuracy Precision Recall F-score Spec. MCC
Original 111 72 218 19 0.7833 0.8538 0.6066 0.7093 0.9198 0.5646

RFESVM13 119 64 220 17 0.8071 0.8750 0.6503 0.7461 0.9283 0.6131
CFS20 135 48 208 29 0.8167 0.8232 0.7377 0.7781 0.8776 0.6254
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APPENDIX E: ALL PERFORMANCE RESULTS OF

STACKED COMB. OF SVM AND K-NN

Table E.1.

Stacked Combination Results
Data set TP FN TN FP Accuracy Precision Recall F-score Spec. MCC
Original 112 71 217 20 0.7833 0.8485 0.6120 0.7111 0.9156 0.5636

RFESVM13 117 66 220 17 0.8024 0.8731 0.6393 0.7382 0.9283 0.6038
CFS20 134 49 208 29 0.8143 0.8221 0.7322 0.7746 0.8776 0.6206
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APPENDIX F: ALL PERFORMANCE RESULTS OF

NAIVE BAYES

Table F.1.

Naive Bayes Results
Data set TP FN TN FP Accuracy Precision Recall F-score Spec. MCC
Original 68 27 83 29 0.7295 0.7010 0.7158 0.7083 0.7411 0.4562

RFESVM3 27 71 110 2 0.6524 0.9310 0.2755 0.4252 0.9821 0.3726
RFESVM5 33 65 110 2 0.6810 0.9429 0.3367 0.4962 0.9821 0.4269
RFESVM7 36 62 111 1 0.7000 0.9730 0.3673 0.5333 0.9911 0.4693
RFESVM10 45 55 110 2 0.7286 0.9556 0.4388 0.6014 0.9821 0.5118
RFESVM13 50 48 110 2 0.7619 0.9615 0.5102 0.6667 0.9821 0.5691
RFESVM20 58 40 107 5 0.7857 0.9206 0.5918 0.7205 0.9554 0.5957
RFESVM30 56 42 107 5 0.7762 0.9180 0.5714 0.7044 0.9554 0.5789

CFS3 53 44 108 4 0.7703 0.9298 0.5464 0.6883 0.9643 0.5719
CFS5 34 63 112 0 0.6986 1 0.3505 0.5191 1 0.4736
CFS7 49 48 108 4 0.7512 0.9245 0.5052 0.6533 0.9643 0.5381
CFS10 57 40 109 3 0.7943 0.9500 0.5876 0.7261 0.9732 0.6183
CFS13 59 38 108 4 0.7990 0.9365 0.6082 0.7375 0.9643 0.6222
CFS20 60 37 105 7 0.7895 0.8955 0.6186 0.7317 0.9375 0.5942
CFS30 60 37 105 7 0.7895 0.8955 0.6186 0.7317 0.9375 0.5942
PCA3 40 58 89 23 0.6143 0.6349 0.4082 0.4969 0.7946 0.2208
PCA5 48 50 91 21 0.6619 0.6957 0.4898 0.5749 0.8125 0.3211
PCA7 46 52 90 22 0..6476 0.6765 0.4694 0.5542 0.8036 0.2910
PCA10 48 50 91 21 0.6619 0.6957 0.4898 0.5749 0.8125 0.3211
PCA13 50 48 97 15 0.7000 0.7692 0.5102 0.6135 0.8661 0.4061
PCA20 56 42 98 14 0.7333 0.8000 0.5714 0.6667 0.8750 0.4725
PCA30 57 41 93 19 0.7143 0.7500 0.5816 0.6552 0.8304 0.4277

FA3 48 50 98 14 0.6952 0.7742 0.4898 0.6000 0.8750 0.3990
FA5 71 27 101 11 0.8190 0.8659 0.7245 0.7889 0.9018 0.6404
FA7 69 29 101 11 0.8095 0.8625 0.7041 0.7753 0.9018 0.6224
FA8 70 28 100 12 0.8095 0.8537 0.7143 0.7778 0.8929 0.6209
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APPENDIX G: ALL PERFORMANCE RESULTS OF

BAYESNET

Table G.1.

BayesNet Results
Data set TP FN TN FP Accuracy Precision Recall F-score Spec. MCC
Original 63 31 108 8 0.8143 0.8873 0.6702 0.7636 0.9310 0.6320

RFESVM3 61 33 89 27 0.7143 0.6932 0.6489 0.6703 0.7672 0.4194
RFESVM5 51 43 107 9 0.7524 0.8500 0.5426 0.6623 0.9224 0.5118
RFESVM7 59 35 104 12 0.7762 0.8310 0.6277 0.7152 0.8966 0.5510
RFESVM10 65 29 96 20 0.7667 0.7647 0.6915 0.7263 0.8276 0.5258
RFESVM13 62 32 105 11 0.7952 0.8493 0.6596 0.7425 0.9052 0.5897
RFESVM20 63 31 104 12 0.7952 0.8400 0.6702 0.7456 0.8966 0.5882
RFESVM30 63 31 103 13 0.7905 0.8289 0.6702 0.7412 0.8879 0.5775

CFS3 57 37 109 7 0.7905 0.8906 0.6064 0.7215 0.9397 0.5899
CFS5 50 44 110 6 0.7619 0.8929 0.5319 0.6667 0.9483 0.5399
CFS7 62 32 106 10 0.8000 0.8611 0.6596 0.7470 0.9138 0.6006
CFS10 65 29 109 7 0.8286 0.9028 0.6915 0.7831 0.9397 0.6612
CFS13 63 31 107 9 0.8095 0.8750 0.6702 0.7590 0.9224 0.6208
CFS20 66 28 109 7 0.8333 0.9041 0.7021 0.7904 0.9397 0.6701
CFS30 65 29 108 8 0.8238 0.8904 0.6915 0.7784 0.9310 0.6500
PCA3 19 75 116 0 0.6429 1 0.2021 0.3363 1 0.3504
PCA5 22 72 116 0 0.6571 1 0.2340 0.3793 1 0.3800
PCA7 42 52 107 9 0.7095 0.8235 0.4468 0.5793 0.9224 0.4282
PCA10 42 52 107 9 0.7095 0.8235 0.4468 0.5793 0.9224 0.4282
PCA13 42 52 111 5 0.7286 0.8936 0.4468 0.5957 0.9569 0.4816
PCA20 53 41 113 3 0.7905 0.9464 0.5638 0.7067 0.9741 0.6049
PCA30 50 44 113 3 0.7762 0.9434 0.5319 0.6803 0.9741 0.5793

FA3 40 54 107 9 0.7000 0.8163 0.4255 0.5594 0.9224 0.4091
FA5 65 29 101 15 0.7905 0.8125 0.6915 0.7471 0.8707 0.5756
FA7 63 31 101 15 0.7810 0.8077 0.6702 0.7326 0.8707 0.5566
FA8 67 27 103 13 0.8095 0.8375 0.7128 0.7701 0.8879 0.6151
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