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ABSTRACT

QUOTIENTS OF HOM-FUNCTORS

Quotients of Hom-functors are functors of the form HomR(P,−)/HomR(P,−)J

where P is a projective R-module and J is a certain ideal of the endomorphism ring of

P . These functors were used by R. Dipper in the articles On Quotients of Hom-Functors

and Representations of Finite General Linear Groups I-II, to obtain a classification of

the irreducible l-modular representations of GLn(q) for primes l not dividing q. In

this thesis, the general properties of these functors are examined following Dipper’s

articles [6] and [7]. Besides, the relation between the quotients of Hom-functors and

the Harish-Chandra theory is investigated.
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ÖZET

HOM-İZLEÇLERİN BÖLÜMLERİ

Hom-izleçlerin bölümleri, projektif bir R-modülü P ve P ’nin endomorfizma

halkasının bir ideali J için HomR(P,−)/HomR(P,−)J şeklinde tanımlanan izleçlerdir.

Bu izleçler R. Dipper’ın On Quotients of Hom-Functors and Representations of Fi-

nite General Linear Groups I-II adlı makalelerinde, q’yu bölmeyen l asal sayıları için

GLn(q)’nun indirgenemez l-modüler temsillerinin sınıflandırılmasında kullanılmıştır.

Bu tezde, Dipper’ın makaleleri ([6] ve [7]) kullanılarak, bu izleçlerin genel özellikleri

incelenmiştir. Ayrıca, Hom-izleçlerin bölümleri ile Harish-Chandra kuramı arasındaki

ilişki çalışılmıştır.
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1. INTRODUCTION

Quotients of Hom-functors are functors of the form Hom(P,−)/Hom(P,−)J

where P is projective and J is a certain ideal of the endomorphism ring of P . Their

terminology and properties were developed by R. Dipper in the articles [6] and [7], and

they were used to obtain a classification of the irreducible l-modular representations

of GLn(q) for primes l not dividing q, and to obtain information on decomposition

numbers in terms of Hecke algebras and q-Schur algebras, in [7].

For a Noetherian commutative ring R, semiperfect R-algebra T with a multiplica-

tive identity, and a projective presentation β : P −→M where P and M are T -modules,

the map

H = HomT (P,−)/HomT (P,−)Jβ

where Jβ is the ideal of EndT (P ) consists of endomoprhisms of P under which kerβ is

invariant, is a functor from the category of T -modules to the category of EndT (M)-

modules. After studying the properties of that functor in [6] and [7], Dipper considered

a more specialized situation; taking a discrete complete valuation ring O with quotient

field K and residue field F , he replaced the algebra T with the R-algebra TR where

R = K, O, F , and constructed H using this TR and obtained results similar to the

general case.

It was stated in Dipper [7] that, for a finite reductive group G and R = F, K,

the irreducible RG-modules are determined using the following method: For any Levi

subgroup L of G, the irreducible RL-modules are found. Then, for any Levi subgroup

L and a cuspidal irreducible RL-module C, the irreducible EndRG(RG
L (C))-modules are

found where RG
L is the Harish-Chandra induction. Then using the bijection between the

isomoprhism classes of the irreducible RG-modules occuring in the head of RG
L (C) and

a set of representatives of the isomorphism classes of the irreducible EndRG(RG
L (C))-

modules, the classification of the irreducible RG-modules is achieved.
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As an aplication to the general theory, it was proved in Dipper [7] that, in the

case G = GLn(q), the endomorphism ring EndRG(RG
L (C)) is isomorphic to a product of

some Hecke algebras associated with symmetric groups. Therefore, the representation

theory of GLn(q) is related to Hecke algebras associated with symmetric groups through

the functor

H = HomRG(PR,−)/HomRG(PR,−)JβR .

Using this method, the classification of non-isomorphic irreducible RGLn(q)-modules

was achieved in [7], and also, a complete set of non-isomorphic cuspidal irreducible

FGLn(q)-modules was given.

The aim of this thesis is to examine the properties of quotients of Hom-functors

and their connection with the Harish-Chandra theory, and to understand the applica-

tion of the theory of Hom-functors to the classification of representations of general

linear groups, using Dipper [6] and [7]. The thesis is organized as follows:

In Chapter 2, some preliminary definitions and results which are required to

construct quotients of Hom-functors are stated.

In Chapter 3, the theory of quotients of Hom-functors is introduced and the

properties of those functors are examined in a detailed way.

In Chapter 4, the connection between quotients of Hom-functors and the Harish-

Chandra theory is studied. Besides, the notion of bisets is introduced and Mackey

Decomposition Theorem (Dipper [7, 2.2.1]) is proved using biset functors.
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2. PRELIMINARIES

We start with defining what a semiperfect ring is. Firstly, we need some prelimi-

nary definitions. A module P over a ring R is said to be projective if given any diagram

of R-module homomorphisms f and g

P
h

��
f
��

A
g // B // 0

with bottom row exact (that is, g is an epimorphism), there exists an R-module homo-

morphism h : P −→ A such that the diagram commutes, that is gh = f . A submodule

S of a module M is superfluous if, whenever L is a submodule of M with L+ S = M ,

then L = M . A projective cover of a module M is an ordered pair (P, ϕ), where P

is a projective module and ϕ : P −→ M is a surjective map with ker ϕ a superfluous

submodule of P .

A ring R is semiperfect if every finitely generated right R-module has a projective

cover.

For a ring R, the category of finitely generated right R-modules is denoted by

modR and the category of finitely generated left R-modules is denoted by Rmod. Let

M ∈ modR, P ∈ modR and P be projective. Let β : P −→ M be an epimorphism of

right R-modules. Then β is called a projective presentation of M .

An R-module M is said to satisfy the ascending chain condition on submodules

(or is Noetherian) if for every chain

M1 ⊆M2 ⊆M2 ⊆M3 ⊆ ...

of submodules of M , there is an integer n such that Mi = Mn for all i ≥ n.
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An R-module N is said to satisfy the descending chain condition on submodules

(or is Artinian) if for every chain

N1 ⊇ N2 ⊇ N2 ⊇ N3 ⊇ ...

of submodules of N , there is an integer m such that Ni = Nm for all i ≥ m.

A ring R is said to be left [resp.right ] Noetherian if R satisfies the ascending

chain condition on left [resp. right] ideals. R is said to be Noetherian if R is both left

and right Noetherian.

A ring R is said to be left [resp.right ] Artinian if R satisfies the descending chain

condition on left [resp. right] ideals. R is said to be Artinian if R is both left and right

Artinian.

Definiton 2.1. Let V be an R-module. The Jacobson radical of V is defined as the

intersection of all maximal submodules of V , denoted by Jac(V ).

The head of V is the factor module V/Jac(V ), denoted by hd(V ). Therefore

hd(V ) is the largest semisimple factor module of V .

The socle of V is the largest semisimple submodule of V, denoted by soc(V ).

Definiton 2.2. Let R be a ring.

(i) A nonzero element e of R is called an idempotent if e2 = e.

(ii) Two idempotents e1 and e2 of R are said to be orthogonal if e1e2 = e2e1 = 0.

(iii) An idempotent is called primitive if it is not the sum of two orthogonal idempo-

tents.

(iv) An idempotent decomposition of 1 in R is a set of pairwise orthogonal idem-

potents e1, ..., er such that 1 =
∑r

i=1 ei. An idempotent decomposition is called

primitive if all the involved idempotents are primitive.

Lemma 2.3. (Fitting’s Lemma) Let R be a ring and M be an R-module. Then there
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is a one to one correspondence between idempotent decompositions of 1 =
∑

i∈I ei in

EndR(M), where I is finite, and decompositions M =
∑

i∈IMi, characterized by the

fact that ej is the projection of M onto Mj with kernel
∑

i 6=jMi.

Proof. See [9, I.1.4].

Proposition 2.4. Let R be a ring.

(i) Let P be a projective R-module and φ be in EndR(P ). Then φ is in Jac(EndR(P ))

if and only if imφ is superfluous in P .

(ii) If R is left Artinian, then Jac(R) is nilpotent.

Proof. (i) See [1, 17.11].

(ii) See [9, I.3.6(i)]

Proposition 2.5. Let R be a right Artinian ring and let {ei} be a set of primitive

idempotents of R. Set Pi = eiR. Then, Pi contains a unique maximal submodule,

namely eiJac(R).

Proof. See [9, I.3.14].

Definiton 2.6. (i) A ring R is called self-injective if the regular R-module R is

injective.

(ii) A ring R is called quasi-Frobenius if it is Noetherian and injective as an R-

module.

(iii) If a ring R is a direct sum of indecomposable modules, say R =
⊕

i Li, then any

module M isomorphic to some Li is called a principal indecomposable module.

Proposition 2.7. If R is quasi-Frobenius, then there is a bijection between its minimal

left ideals and its principal indecomposable modules.
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Proof. See [11, 4.48].

Proposition 2.8. Let R be a ring, and let M and N be R-modules.

(i) We have

Jac(M) =
∑
{L ≤M |L is superfluous in M}.

(ii) If f : M −→ N is an epimorphism and kerf is a submodule of Jac(M), then

Jac(N) = f(Jac(M)).

Proof. (i) See [1, 9.13].

(ii) See [1, 9.15].

Proposition 2.9. Let S and T be rings, U be an S−T -bimodule, N be a left T -module

and P be a projective left T -module. Then, there is a natural homomorphism

η : HomS(P,U)⊗T N −→ HomS(P, (U ⊗T N))

defined by

η(γ ⊗T n) : p 7→ γ(p)⊗T n

where γ ∈ HomS(P,U), n in N and p in P . If P is finitely generated and projective,

then η is an isomorphism.

Proof. See [1, 20.10].

Proposition 2.10. A finitely generated left module over a Noetherian ring is Noethe-

rian.
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Proof. See [5, 3.3].

Proposition 2.11. Let R be a semiperfect ring and consider only finitely generated

R-modules. Let N = Jac(R). Let f : P −→ X be a surjection with P projective. Then

f gives a projective cover if and only if kerf ⊆ NP .

Proof. See [5, 6.25(i)].

Lemma 2.12. (Nakayama’s Lemma) Let R be a commutative ring. Let I be an ideal

of R which is contained in every maximal ideal of R. If M is a finitely generated

R-module and MI = M , then M = (0).

Proof. See [10, X.4.1].
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3. THE QUOTIENTS OF HOM-FUNCTORS

3.1. The Ideal Jβ

Let R be a commutative Noetherian ring and T be a semiperfect R-algebra which

is finitely generated as an R-module. Assume that both T and R have multiplicative

identities, and that T is unital as R-module. Let M be a finitely generated left T -

module. Since T is semiperfect, there exists a projective presentation (β, P ) of M .

In this work, all modules are finitely generated unless stated otherwise. The set of

R-module endomorphisms of M is denoted by EndR(M).

Notation. (EndT (P ))β = {φ ∈ EndT (P ) | φ(kerβ) ⊆ kerβ}

Jβ = {ψ ∈ EndT (P ) | imψ ≤ kerβ}

In [6], it was stated that (EndT (P ))β/Jβ and EndT (M) are isomorphic as R-

algebras. Now, we prove this statement.

Proposition 3.1. Jβ is an ideal of (EndT (P ))β and (EndT (P ))β/Jβ ∼= EndT (M) as

R-algebra canonically .

Proof. Clearly, the set Jβ is a subset of (EndT (P ))β. Also Jβ is nonempty since 0 is an

element of Jβ. Let ψ1 and ψ2 be in Jβ. For any p in P , we have

(ψ1 − ψ2)(p) = ψ1(p)− ψ2(p) ∈ kerβ

since imψ1 and imψ2 are submodules of kerβ. So, the set im(ψ1−ψ2) is also a submodule

of kerβ. Hence the element ψ1 − ψ2 is in Jβ. Let ψ be in Jβ and φ be in (EndT (P ))β.

For p in P , we have φ(ψ(p)) is in kerβ since imψ is a submodule of kerβ and φ(kerβ)

is a subset of kerβ. Hence Jβ is an ideal of (EndT (P ))β.
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Now, define β̃ : (EndT (P ))β −→ EndT (M) as

β̃(φ)(m) := β(φ(p))

for φ in (EndT (P ))β, the element m in M and p in P such that β(p) = m. Such a p

always exists since β is surjective.

For each φ in (EndT (P ))β, the map β̃(φ) is well-defined since for p1 and p2 in P

such that p1 6= p2, if β(p1) = β(p2) then p1 − p2 is in kerβ. This implies φ(p1 − p2)

is in kerβ since φ is in (EndT (P ))β. That means β(φ(p1 − p2)) = 0. Then, we have

β(φ(p1)) = β(φ(p2)), that is β̃(φ)(β(p1)) = β̃(φ)(β(p1)). Also β̃ is well-defined as β is

well-defined.

Now, we are to show that β̃ is an R-algebra homomorphism. Let φ, φ1 and φ2 be

in (EndT (P ))β, the element r be in R, the element m be in M and p be in P such that

β(p) = m. Then

β̃(φ1 + φ2)(m) = β((φ1 + φ2)(p)) = β(φ1(p) + φ2(p)) = β(φ1(p)) + β(φ2(p))

= β̃(φ1)(m) + β̃(φ2)(m)

and

β̃(φ1φ2)(m) = β((φ1φ2)(p)) = β(φ1(φ2(p))) = β̃(φ1)(β(φ2(p)))

= β̃(φ1)(β̃(φ2)(m)) = β̃(φ1)β̃(φ2)(m)

and

β̃(rφ)(m) = β(rφ(p)) = rβ(φ(p)) = rβ̃(φ)(m)

since β is an R-module homomorphism. That proves β̃ is an R-algebra homomorphism.
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Now, we are to prove that β̃ is surjective. To this end, let ψ be in EndT (M).

Since ψβ is an R-module homomorphism, the map β is surjective and P is projective,

there exists a φ in EndT (P ) such that the diagram

P

φ

��

β
��
M

ψ
��

P
β //M

commutes. That is, we have βφ = ψβ. Then,

β(φ(kerβ)) = ψ(β(kerβ)) = ψ(0) = 0.

So, the set φ(kerβ) is a subset of kerβ. Hence, the map φ is in (EndT (P ))β, and it is

mapped to ψ under β̃ since for m in M and p in P such that β(p) = m, we have

β̃(φ)(m) = β(φ(p)) = ψ(β(p)) = ψ(m).

Therefore, the map β̃ is surjective.

Finally, we are to show that Jβ = ker β̃. Let φ be in (EndT (P ))β. By definition,

φ is in Jβ means imφ is a submodule of kerβ, and that means β(φ(p)) = 0 for all p

in P , and so β̃(φ)(m) = 0 for all m in M , or equivalently, the map φ is an element of

kerβ̃.

Therefore, using the First Isomorphism Theorem, we conclude that

EndT (P )/Jβ ∼= EndT (M).

That proves the proposition.
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3.2. Definition of the Functor H

Using a projective presentation (β, P ) ofM , a functorH from modT to modEndT (M)was

defined in [6]. We state this definition and prove that H is a covariant functor.

Proposition 3.2. Assume (EndT (P ))β = EndT (P ). The mapping

H := Hβ := Hβ
M : modT −→ modEndT (M)

defined for V ∈ modT by

H(V ) = HomT (P, V )/HomT (P, V )Jβ

is a covariant functor.

Proof. HomT (P, V ) is an EndT (P )-module via the action δθ(p) = δ(θ(p)) for θ in

EndT (P ) and δ in HomT (P, V ) and p in P . Thus, there is an induced EndT (P )-

action on H(V ) = HomT (P, V )/HomT (P, V )Jβ. Also, we have Jβ(H(V )) = 0 since for

δ + HomT (P, V )Jβ in H(V ) = HomT (P, V )/HomT (P, V )Jβ and θ in Jβ, we have

(δ + HomT (P, V )Jβ)θ = δθ + HomT (P, V )Jβ = HomT (P, V )Jβ.

Then EndT (P )/Jβ acts on H(V ) via the action (θ+ Jβ)δ = θδ for θ in EndT (P ) and δ

in HomT (P, V ). Hence H(V ) is an EndT (P )/Jβ-module. By Proposition 3.1, we have

EndT (P )/Jβ ∼= EndT (M), then H(V ) is also an EndT (M)-module.

Let V and V ′ be in modT , and f : V −→ V ′ be a T -module homomorphism. Then

f∗ = HomT (P, f) : HomT (P, V ) −→ HomT (P, V ′), φ 7→ fφ

is an EndT (P )-homomorphism, so an (EndT (P ))β-homomorphism.

Also, the set f∗(HomT (P, V )Jβ) is a subset of HomT (P, V ′)Jβ since if φ is an element
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of HomT (P, V )Jβ, then φ = αγ for some α in HomT (P, V ), some γ in Jβ, and so

f∗(φ) = fφ = f(αγ) = (fα)γ ∈ HomT (P, V ′)Jβ.

Then f∗ induces an EndT (M)-homomorphism H(f) : H(V ) −→ H(V ′) defined for

ψ + HomT (P, V )Jβ in H(V ) as

H(f)(ψ + HomT (P, V )Jβ) = f∗(ψ) + HomT (P, V ′)Jβ.

Also, we have H(1V ) = 1H(V ) since for ψ + HomT (P, V )Jβ in H(V ) we have

H(1V )((ψ + HomT (P, V )Jβ) ∈ H(V )) = 1V ψ + HomT (P, V )Jβ

= 1H(V )(ψ + HomT (P, V )Jβ)

and for elements V, V ′ and V ′′ in modT , and morphisms f : V −→ V ′ and g : V ′ −→ V ′′,

we have H(gf) = H(g)H(f) since for ψ + HomT (P, V )Jβ in H(V ) we have

H(gf)(ψ + HomT (P, V )Jβ) = (gf)ψ + HomT (P, V ′′)Jβ

= g(fψ) + HomT (P, V ′′)Jβ

= H(g)(fψ + HomT (P, V ′)Jβ)

= H(g)(H(f)(ψ + HomT (P, V )Jβ))

= H(g)H(f)(ψ + HomT (P, V )Jβ)

Therefore H is a covariant functor from modT to modEndT (M).

3.3. The Functors for Different Projective Presentations

The functor H depends on the projective presention (β, P ) we choose. We are to

investigate what happens if we change (β, P ) with the minimal projective cover (β1, P1)

of M . In [7], a necessary and sufficient condition for the equivalence of Hβ and Hβ1 was

stated and a sketch of a proof for that statement was given. Here, we give a detailed
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proof following the sketch in [7].

Definiton 3.3. Let S be a ring. For S-modules V1 and V2 and for a submodule U of

V1, the S-module HomS(V1, V2)U defined as the submodule of V2 spanned by all images

imφ for restrictions φ of U of homomorphisms from V1 to V2. In the case U is equal to

V1, the T -module HomS(V1, V2)V1 is called trace of V1 in V2 and denoted as trV1(V2).

Since P and P1 are both projective, we have P = P1⊕P2 where P2 = kerβ/kerβ1

and β2 : P2 −→M is the zero map. Then kerβ = kerβ1 ⊕ P2 and we may express β as

β = β1 ⊕ 0.

Hence, we have the following short exact sequence:

0 −→ kerβ1 ⊕ P2 −→ P1 ⊕ P2
β1⊕0−−−→M −→ 0 (3.1)

Proposition 3.4. Let β = (β1, 0) : P1 ⊕ P2 −→M be given as in the exact sequence in

(3.1). Then (EndT (P ))β = EndT (P ) if and only if trP2(P1) is a submodule of kerβ1.

Moreover, for a T -module V we have

Hβ(V ) ∼= Hβ1(V )/HomT (P2, V )Hom(P1, P2).

Thus Hβ = Hβ1 if and only if every homomorphism from P1 to P2 factors through a

linear combination of endomorphisms of P1 whose image is contained in kerβ1, that is,

Hβ1(P2) = (0).

If this condition does not hold, then Hβ is a proper quotient of Hβ1.

Proof. Since P = P1 ⊕ P2, we can write the elements of P as column vectors with two

components, the first one from P1 and the second one from P2. Consequently, we can

represent the endomorphisms of P as 2 × 2 matrices with entries in the appropriate
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Hom-spaces, hence we have

EndT (P ) =

HomT (P1, P1) HomT (P2, P1)

HomT (P1, P2) HomT (P2, P2)

 .

Then, since EndT (P1) = (EndT (P1))β1 and

(EndT (P2))β2 = {φ ∈ EndT (P2) | φ(kerβ2) ⊆ kerβ2}

= {φ ∈ (EndT (P2))β2 | φ(P2) ⊆ P2}

= EndT (P2)

we have

EndT (P ) =

(EndT (P1))β1 HomT (P2, P1)

HomT (P1, P2) (EndT (P2))β2

 .

Then we have

EndT (P )kerβ =

(EndT (P1))β1 HomT (P2, P1)

HomT (P1, P2) (EndT (P2))β2

kerβ1

P2


=

(EndT (P1))β1kerβ1 + HomT (P2, P1)P2

HomT (P1, P2)kerβ1 + (EndT (P2))β2P2


⊆

kerβ1 + trP2(P1)

P2

 (3.2)

Now, we are to prove that (EndT (P ))β = EndT (P ) if and only if trP2(P1) is a submodule

of kerβ1. If trP2(P1) is a submodule of kerβ1, then kerβ1 + trP2(P1) = kerβ1, thus, by

the inclusion in (3.2), we have (EndT (P ))β = EndT (P ). Conversely, assume that

(EndT (P ))β = EndT (P ). Let ψ be in HomT (P2, P1). Define

φ : P1 ⊕ P2 −→ P1 ⊕ P2, (α1, α2) 7→ (ψ(α2), 0).
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Clearly, φ is well-defined since ψ is. Since (EndT (P ))β = EndT (P ), the set φ(kerβ) is

a submodule of kerβ. Then φ(kerβ1 ⊕ P2) is a submodule of kerβ1 ⊕ P2. That means

for any α1 in kerβ1 and α2 in P2 we have φ(α1, α2) in kerβ1 ⊕ P2, that is, (ψ(α2), 0) in

kerβ1 ⊕ P2. Then we have ψ(α2) in kerβ1. Since α2 is arbitrary, we conclude that imψ

is a submodule of kerβ1, and consequently trP2(P1) is a submodule of kerβ1. Therefore

(EndT (P ))β = EndT (P ) if and only if trP2(P1) is a submodule of kerβ1, or equivalently,

(EndT (P ))β = EndT (P ) if and only if HomT (P2, P1) is a subset of HomT (P2, kerβ1).

The first part of the proposition is proved.

Now, we are to prove the second part. Assume (EndT (P ))β = EndT (P ). Let

θ =
(
θ1 θ2
θ3 θ4

)
be in Jβ. Then for any γ = ( γ1γ2 ) in kerβ we have

θ1 θ2

θ3 θ4

γ1
γ2

 ⊆ kerβ,

that is,

θ1(γ1) + θ2(γ2)

θ3(γ1) + θ4(γ2)

 ⊆ kerβ = kerβ1 ⊕ P2.

Then θ1(γ1) + θ2(γ2) is in kerβ1. Since θ2 is in HomT (P2, kerβ1), we have θ2(γ2) in

kerβ1. So θ1(γ1) is in kerβ1. As γ1 is arbitrary, we have imθ1 a submodule of kerβ1.

Hence we obtain

Jβ =

 Jβ1 HomT (P2, kerβ1)

HomT (P1, P2) (EndT (P2))β2

 .

We represent homomorphisms from P into a T -module V as row vectors δ = (δ1, δ2),

where δi is in HomT (Pi, V ) for i = 1, 2. Then, we have

HomT (P, V )Jβ =
(

HomT (P1, V ), HomT (P2, V )
) Jβ1 HomT (P2, P1)

HomT (P1, P2) (EndT (P2))β2


= ( HomT (P1,V )Jβ1+HomT (P1,V )HomT (P1,P2), HomT (P1,V )HomT (P2,P1)+HomT (P2,V )(EndT (P2))β2 )
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Clearly, the T -module HomT (P1, V )HomT (P2, P1) + HomT (P2, V )(EndT (P2))β2 is a

submodule of HomT (P2, V ). Also, any ξ in HomT (P2, V ) can be written as ξ =

ξ ◦ id(EndT (P2))β2
, hence it is an element of HomT (P2, V )(EndT (P2))β2 . Thus, the set

HomT (P2, V ) is a submodule of HomT (P2, V )(EndT (P2))β2 . Then we have

HomT (P, V )Jβ =
(

HomT (P1, V )Jβ1 + HomT (P1, V )HomT (P1, P2), HomT (P2, V )
)
.

Now, we can write Hβ(V ) as

Hβ(V ) =
HomT (P, V )

HomT (P, V )Jβ

=
(HomT (P1, V ),HomT (P2, V ))

(HomT (P1, V )Jβ1 + HomT (P2, V )HomT (P1, P2),HomT (P2, V ))

∼=
HomT (P1, V )

(HomT (P1, V )Jβ1 + HomT (P2, V )HomT (P1, P2))
(3.3)

∼=
HomT (P1, V )/HomT (P1, V )Jβ1

HomT (P2, V )HomT (P1, P2)

∼=
Hβ1(V )

HomT (P2, V )HomT (P1, P2)

Finally, we are to show that Hβ = Hβ1 if and only if Hβ1(P2) = (0). First, assume

Hβ1(P2) = (0). Then HomT (P1, P2) = HomT (P1, P2)Jβ1 . Hence, we have

HomT (P2, V )HomT (P1, P2) = HomT (P2, V )HomT (P1, P2)Jβ1

⊆ HomT (P1, V )Jβ1

Then, by Equation 3.3, we have

Hβ(V ) ∼= HomT (P1, V )/HomT (P1, V )Jβ1 = Hβ
1 (V ).

Conversely, assume Hβ = Hβ1 . Then, we have

Hβ1(V ) =
Hβ1(V )

HomT (P2, V )HomT (P1, P2)
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for any T -module V . Then, we obtain HomT (P2, V )HomT (P1, P2) = (0). For V = P2,

we have HomT (P2, V ) = HomT (P2, P2) 6= (0). Hence HomT (P1, P2) = (0). Therefore,

we have Hβ1(P2) = (0).

Now, we prove a relevant lemma. First we need a definition:

Definiton 3.5. Let P and V be in modT and assume that P is projective.

(i) The P-torsion submodule torP (V ) is the sum of all submodules X of V with

respect to the property HomT (P,X) = (0). If torP (V ) = (0), then V is called

P -torsionless.

(ii) The kernel kerP is the full subcategory of modT whose objects are the T -modules

V with HomT (P, V ) = (0). Therefore, the T -module V is in kerP if and only if

torP (V ) = (0).

Lemma 3.6. Let β = (β1, 0) be as in Lemma 3.4. Then (EndT (P ))β = EndT (P ) if

and only if HomT (P2,M) = (0). In this case, M is P -torsionless if and only if it is

P1-torsionless.

Proof. Assume (EndT (P ))β = EndT (P ). Then by Lemma 3.4, we have trP2(P1) a sub-

module of kerβ1. Let φ be in HomT (P2,M). Since P2 is projective and β is surjective,

there exists a homomorphism ψ in HomT (P2, P1) such that φ = βψ. Then we have

φ = 0 as

imψ ⊆ trP2(P1) ⊆ kerβ1.

Conversely, assume that EndT (P ) 6= (EndT (P ))β. Then trP2(P1) is not a submodule

of kerβ1. That means there exists a homomorphism θ in HomT (P2, P1) whose image

is not contained in kerβ1. Then, the map β1θ in HomT (P2,M) is nonzero. Hence

HomT (P2,M) = (0).
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Now, assume that HomT (P2,M) = (0). Let X be a submodule of M . Then

HomT (P2, X) = (0). Hence, we have

HomT (P,X) = HomT (P1 ⊕ P2, X) = HomT (P1, X)⊕ HomT (P2, X) = HomT (P1, X).

Therefore, we conclude that M is P -torsionless if and only if it is P1-torsionless, as

claimed.

Corollary 3.7. Suppose P2 is a projective T -module such that HomT (P1, P2) = (0)

and that trP2(P1) is a submodule of kerβ1. Then, for

β = β1 ⊕ 0 : P1 ⊕ P2 −→M

we have (EndT (P ))β = EndT (P ), and Hβ = Hβ1.

Proof. If HomT (P1, P2) = (0) then Hβ1(P2) = (0), hence the result follows by Lemma

3.4.

3.4. Right Inverse of H

The functor H has a right inverse. Before proving this statement, we need some

definitions and lemma which were stated and proved in [6].

Lemma 3.8. Let V and V ′ be in modT and let P be projective T -module. Then torP (V )

is the unique maximal submodule X of V such that HomT (P,X) = (0). Moreover,

torP (V/torP (V )) = (0) and for a T -module homomorphism f : V −→ V ′ we have

f(torP (V )) is a subset of torP (V ′).

Proof. First, we are to prove that torP (V ) is the unique maximal P -torsion submodule

of V with respect to the property HomT (P,X) = (0). We need only to show the unique-

ness part. Assume there exists another maximal submoduleN of V satisfying the condi-
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tion HomT (P,N) = (0). Then, we have HomT (P,N/(torP (V )∩N)) = (0) since, if there

would exist a nonzero morphism in HomT (P,N/(torP (V )∩N)), then, by projectivity of

P and surjectivity of the natural projection from N onto N/(torP (V )∩ N), there would

exist a nonzero morphism in HomT (P,N), which is not the case. Hence, by the Sec-

ond Isomorphism Theorem, we conclude that HomT (P, (torP (V ) +N)/torP (V )) = (0).

Then, for any homomorphism φ in HomT (P, torP (V ) +N), we have the T -module imφ

is a submodule of torP (V ). Then, since HomT (P, torP (V )) = (0), the map φ must

be the zero map. Hence, we obtain HomT (P, torP (V ) + N) = (0). However, this

result is contradicting the maximality of torP (V ) since torP (V ) is a submodule of

(torP (V ) + N). Therefore, we must have torP (V ) as the unique maximal P -torsion

submodule of V .

Next, we are to show that torP (V/torP (V )) = (0). To this end, we have to prove

that for any submoduleW/torP (V ) of V/torP (V ), we have HomT (P,W/torP (V )) 6= (0).

We prove by contradiction; assume that there exists a submodule W0/torP (V ) of

V/torP (V ) such that HomT (P,W0/torP (V )) = (0). Then we have HomT (P,W0) = (0)

since HomT (P, torP (V )) = (0). But, that contradicts maximality of torP (V ) since

torP (V ) is a subset of W0. Hence, we obtain torP (V/torP (V )) = (0).

Finally, we are to establish the last statement; for any T -module homomorphism

f : V −→ V ′, we have f(torP (V )) as a submodule of torP (V ′). Our goal is to prove

the equality HomT (P, f(torP (V ))) = (0), then, since torP (V ′) is maximal, the result

follows. If there would be a nonzero homomorphism in HomT (P, f(torP (V ))), then by

projectivity of P and surjectivity of the map f |torP (V ) : torP (V ) −→ f(torP (V )) which

is obtained by restricting f to torP (V ), there would exist a nonzero homomorphism in

HomT (P, torP (V )), which is not the case. Therefore HomT (P, f(torP (V ))) = (0).

Using the above result f(torP (V )) ⊆ torP (V ′) , we can conclude that for V

and V ′ in modT , any T -module homomorphism f : V −→ V ′ induces a T -module

homomorphism from V/torP (V ) to V ′/torP (V ′). Now, we define a functor AP which

has an intermediate role in the definition of right inverse of H:
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Definiton 3.9. Define the functor

AP : modT −→ modT , V 7→ V/torP (V )

for V in modT and define AP (f) as the induced morphism from V/torP (V ) to V ′/torP (V ′)

for any T -module homomorphism f : V −→ V ′ .

Now, we are ready to define inverses of H:

Definiton 3.10. Assume (EndT (P ))β = EndT (P ). We define four functors from

modEndT (M) to modT as

FM = ⊗EndT (M) M

F̃M = AP ◦ ( ⊗EndT (M) M)

GM = ⊗EndT (P ) P

G̃M = AP ◦ ( ⊗EndT (P ) P )

Before stating the proposition on inverses of H, we state a lemma which shall be

used in the proof of that proposition. The sketch of the proof was given in [6]. Here,

we give a detailed proof.

Lemma 3.11. Assume (EndT (P ))β = EndT (P ). Then EndT (M) ∼= HomT (P,M) as

EndT (M)− EndT (M) bimodules.

Proof. Firstly, we observe that, given a morphism α in HomT (P,M), by projectivity

of P and surjectivity of β, we have a morphism φ in EndT (P ) such that α = βφ,

Then, since we assume that (EndT (P ))β = EndT (P ), by Proposition 3.1, there exists

a morphism ψ in EndT (M) such that for m in M ψ(m) = β(φ(p)) where β(p) = m.

Combining these two results, we obtain for any α in HomT (P,M), a ψ in EndT (M)

given by ψ(m) = α(p) for m in M where p is in P such that β(p) = m.
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Now, we define

Φ : HomT (P,M) −→ EndT (M)

mapping α in HomT (P,M) to ψ in EndT (M) where ψ is defined as above. Well-

definedness of Φ is clear since even if different morphisms φ1 and φ2 satisfy the property

α = βφ, the resulting morphims ψ1 and ψ2 are the same, as we have

ψ1(m) = β(φ1(p)) = α(p) = β(φ2(p)) = ψ2(m)

for any m in M and p in P such that β(p) = m. The map Φ is an EndT (M)-module

homomorphism since, for ψ ∈ EndT (M) and α ∈ HomT (P,M),

Φ(ψα)(m) = ψα(p) = ψ(α(p)) = ψΦ(α)(m).

Also Φ is surjective since, by Proposition 3.1, for ψ in EndT (M), there exists a φ in

EndT (P ) such that β̃(φ) = ψ and we have βφ in HomT (P,M), and for all m in M and

p in P such that β(p) = m we have Φ(βφ)(m) = βφ(p) = ψ(m). Finally, Φ is injective

since if α is in kerΦ, then Φ(α) = 0, and as β̃ in the proof of Proposition 3.1 is an

isomorphism, the corresponding φ in (EndT (P ))β is in Jβ, that is imφ is a subset of

kerβ, hence α = βφ = 0. Therefore Φ is an isomorphism and the lemma follows.

The following proposition gives right inverses for H. The proof is taken from [6].

Proposition 3.12. Assume (EndT (P ))β = EndT (P ). Let Ĥbe one of the four functors

defined in Definition 3.10. Then Ĥis a right inverse of the functor H.

Proof. Let X be an EndT (M)-module. Firstly, we observe that, by Proposition 3.1,

EndT (M)-module M is also an EndT (P )/Jβ-module. Besides, the ideal Jβ acts on M

trivially, that is Jβ ·M = (0) since the action of any element of EndT (P )/Jβ on M is

defined as the action of the corresponding element in EndT (M) and Jβ is mapped to
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the zero element of EndT (M), therefore

Jβ ·M = 0 ·M = 0.

Hence, we have

X ⊗EndT (P ) M ∼= X ⊗EndT (M) M.

Also, by Proposition 2.9, we know that

HomT (P,X ⊗EndT (P ) M) ∼= X ⊗EndT (P ) HomT (P,M).

Thus, using Lemma 3.11, we obtain

HomT (P,X ⊗EndT (M) M) ∼= HomT (P,X ⊗EndT (P ) M)

∼= X ⊗EndT (P ) HomT (P,M)

∼= X ⊗EndT (P ) EndT (M)

∼= X ⊗EndT (M) EndT (M)

∼= X

Besides, by Proposition 2.9, any morphism φ in HomT (P,X ⊗EndT (M) M) can be writ-

ten of the form φx,β for some x in X such that φx,β(p) = x⊗ β(p) for p in P . Thus we

have

HomT (P,X ⊗EndT (M) M)Jβ = 0

since for ψ in Jβ and φx,β in HomT (P,X ⊗EndT (M) M) and p in P ,

φx,βψ(p) = x⊗ β(ψ(p)) = x⊗ 0
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as imφ is a submodule of kerβ.

Therefore we have

HM(FM(X)) = HomT (P,X ⊗EndT (M) M)/HomT (P,X ⊗EndT (M) M)Jβ

∼= HomT (P,X ⊗EndT (M) M)

∼= X

and hence FM is a right inverse of H.

Obviously, for V in modT , we have HomT (P, V ) ∼= HomT (P,AP (V )). Thus

H(V ) = H(AP (V )). Then, using the above result we get

H(F̃M(X)) = H(AP (FM(X))) = H(FM(X)) = X.

Therefore F̃M is also a right inverse of H. The statement can be proved similarly also

for GM and G̃M .

3.5. Correspondence between (IrrT )H and IrrEndT (M)

Our next aim is to maintain a correspondence between certain irreducible T -

modules and non-isomorphic irreducible EndT (M)-modules. First, we need some lemma.

Proofs of those lemma are taken from [6].

Lemma 3.13. Assume (EndT (P ))β = EndT (P ). Let V be an irreducible T -module.

Then H(V ) = (0) or HomT (P, V )Jβ = (0), and H(V ) = HomT (P, V ) 6= (0) is an

irreducible EndT (M)-module.

Proof. First note that if HomT (P, V ) 6= (0) then HomT (P, V ) is an irreducible EndT (P )-

module. For proof, see [2, 6.3].

Assume H(V ) 6= 0. Then HomT (P, V ) 6= 0 and HomT (P, V )Jβ 6= HomT (P, V ). Then
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HomT (P, V )Jβ is a proper submodule of HomT (P, V ). But, since HomT (P, V ) is an

irreducible EndT (P )-module, we have HomT (P, V )Jβ = (0). So H(V ) = HomT (P, V )

is an irreducible EndT (P )-, hence EndT (M)-module.

Lemma 3.14. Let X be an EndT (M)-module. Then trP (X⊗EndT (M)M) = X⊗EndT (M) M

and trP (X ⊗EndT (P ) P ) = X ⊗EndT (P ) P .

Proof. We know by Lemma 3.11 and Proposition 2.9 thatX ∼= HomT (P,X ⊗EndT (M) M)

via the map x 7→ φx,β where x is in X and φx,β is in HomT (P,X ⊗EndT (M) M) de-

fined as φx,β(p) = x ⊗ β(p) for p in P . Let x ⊗ m be an arbitrary generator of

X ⊗EndT (M) M . As β is surjective, there exists a p in P such that β(p) = m, hence

φx,β(p) = x ⊗ m. Thus x ⊗ m is in trP (X ⊗EndT (M) M). Then, since x ⊗ m is arbi-

trary, we obtain X ⊗EndT (M) M ⊆ trP (X ⊗EndT (M) M). Also we have, by definition,

trP (X ⊗EndT (M) M) ⊆ X ⊗EndT (M) M . Therefore we proved

trP (X ⊗EndT (M) M) = X ⊗EndT (M) M.

Since X is also an EndT (P )-module, the same proof provided M replaced by P gives

us the second statement, trP (X ⊗EndT (P ) P ) = X ⊗EndT (P ) P .

Lemma 3.15. Let X be an irreducible EndT (M)-module. Then F̃M(X) 6= (0), and

F̃M(X) is an irreducible T -module, and we have F̃M(X) = G̃M(X).

Proof. By Proposition 3.12 we know that HM(F̃M(X)) ∼= X 6= (0). Hence, we have

F̃M(X) 6= (0).

Now, we are to show that F̃M(X) is irreducible. Let U be a submodule of FM(X)

which is equal to X⊗EndT (M)M . Then, the EndT (P )-module HomT (P,U) is canonically

embedded into HomT (P,X ⊗EndT (M) M) ∼= X. Since X is an irreducible EndT (M)-

module, hence irreducible EndT (P )-module, we have either HomT (P,U) = (0) or

HomT (P,U) = X ∼= HomT (P,X ⊗EndT (M) M). If the latter holds, then the image

of every homomorphism from P to X ⊗EndT (M) M is contained in U . That means
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trP (X ⊗EndT (M) M) is a submodule of U . Then, by Lemma 3.14 X ⊗EndT (M) M is a

submodule of U . Hence U = X⊗EndT (M)M . This shows that if U is a proper submodule

of X⊗EndT (M)M , then HomT (P,U) = (0). Then, by definition of torP (X⊗EndT (M)M),

for all proper submodules U ofX⊗EndT (M)M , U is a submodule of torP (X ⊗EndT (M) M).

So torP (X⊗EndT (M)M) is the unique maximal submodule of X⊗EndT (M)M , hence, we

obtain that T -module F̃M(X) = X ⊗EndT (M) M/torP (X ⊗EndT (M) M) is irreducible.

Since X is also irreducible as EndT (P )-module, substituting M with P in the

above argument gives that G̃M(X) = X⊗EndT (P )P/trP (X⊗EndT (P )P ) is also irreducible.

Finally we are to show that F̃M(X) = G̃M(X). Since the functor X ⊗EndT (P ) −

is right exact, the morphism

1⊗ β : X ⊗EndT (P ) P −→ X ⊗EndT (P ) M ∼= X ⊗EndT (M) M

induced by β is an epimorphism. So the induced mapping

AP (1⊗ β) : G̃M(X) −→ F̃M(X)

is also an epimorphism. As AP (1⊗ β) is nonzero and kerAP (1⊗ β) is a submodule of

the irreducible module G̃M(X), we have kerAP (1 ⊗ β) = (0). Therefore, by the First

Isomorphism Theorem, F̃M(X) ∼= G̃M(X).

Now we state the correspondence theorem mentioned before. The proof is partly

taken from [6].

Notation. Let R be a ring. The complete set of non-isomorphic irreducible R-modules

is denoted by IrrR.
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Theorem 3.16. Assume (EndT (P ))β = EndT (P ) Define the set

(IrrT )H = {V ∈ IrrT | HM(V ) 6= (0)}.

Then HM induces a bijective correspondence

HM : (IrrT )H −→ Irr(EndT (M))

and the inverse of HM is

F̃M : Irr(EndT (M)) −→ (IrrT )H .

On Irr(EndT (M)), the functors F̃M and G̃M coincide.

Proof. We proved before in Proposition 3.12 that F̃M is a right inverse for HM . So if

we show that F̃M is also a left inverse for HM we obtain the required correspondence.

To this end, let V be in (IrrT )H . Then X := HM(V ) 6= (0) and so, by Lemma 3.13,

we have HM(V ) = HomT (P, V ) and HM(V ) is irreducible. Now we define the map

φ : HomT (P, V )⊗EndT (P ) P −→ V , for f in HomT (P, V ) and p in P , as φ(f ⊗ p) = f(p).

Clearly, φ is well-defined. Now, we are to show that φ is surjective. First, observe that

any nonzero f in HomT (P, V ) is surjective since otherwise imf is a proper submodule of

V and that contradicts the irreducibility of V . Now let v be in V . As HomT (P, V ) 6= (0)

there exists a nonzero f in HomT (P, V ) and since f is surjective there exists p in P such

that f(p) = v. Then φ(f ⊗ p) = f(p) = v. Since v is arbitrary, we have φ surjective.

Observe that, by Lemma 3.13, we have torP (V ) = (0) as HomT (P, V ) 6= (0) and

V is irreducible. Also, by Lemma 3.8, φ(torP (X ⊗EndT (P ) P )) ⊆ torP (V ) = (0). Then

torP (X⊗EndT (P )P ) = (0). Then, since G̃M(X) is irreducible, φ induces an isomorphism,

and by Lemma 3.15, we have

F̃M(X) ∼= G̃M(X) = X ⊗EndT (P ) P/torP (X ⊗EndT (P ) P ) ∼= V/torP (V ) ∼= V.



27

Definiton 3.17. Let Y ⊆ EndT (M). Define YM as the ideal of M generated by the

images of homomorphisms in Y , that is, YM = 〈imφ : φ ∈ Y 〉. The below theorem

was stated and partly proved in [6]. We give a full proof here.

Theorem 3.18. Let Y be a right ideal of EndT (M). Then F̃M(Y ) = AP (YM) and

HM(YM) = Y . In particular, if M is P -torsionless, then F̃M(Y ) = YM .

Proof. First, observe that, by general theory and Lemma 3.11, we have the isomor-

phisms

Y ∼= Y ⊗EndT (M) EndT (M) ∼= Y ⊗EndT (M) HomT (P,M)

via maps y 7→ y ⊗ 1 7→ y ⊗ β, and by Proposition 2.9 the isomorphism

Y ⊗EndT (M) HomT (P,M) ∼= HomT (P, Y ⊗EndT (M) M)

via the map y ⊗ β 7→ φy,β where φy,β(p) = y ⊗ β(p) for p in P . Hence the elements

of HomT (P, Y ⊗EndT (M) M) are of the form φy,β. By the definition of YM the map

γ : Y ⊗EndT (M) M −→ YM defined by γ(y ⊗m) = y(m) is surjective.

So the induced map

γ∗ : HomT (P, Y ⊗EndT (M) M) −→ HomT (P, YM)

is also surjective. Now we are to prove the injectivity of γ∗: For φ in kerγ∗ we have

γ∗(φ) = 0, that is γφ(p) = 0 for all p in P . Then, since any φ in HomT (P, Y ⊗EndT (M) M)

can be written as y ⊗ β for some y in Y , we have γ(y ⊗ β(p)) = 0 for some y in Y , for

all p in P . Then, by surjectivity β, we have γ(y⊗m) = 0 for all m in M . By definition

of γ, that means y(m) = 0 for all m in M . Then y = 0, hence φ = y⊗β = 0. Therefore

kerγ∗ = (0). So γ∗ is an isomorphism and we obtain Y ∼= HomT (P, YM).

In particular, HomT (P, YM)Jβ = (0) since for φ in Jβ, ψ in HomT (P, YM), p in

P , using the isomorphism γ∗, ψ can be written as y ⊗ β for some y in Y and hence
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ψφ(p) = ψ(φ(p)) = y ⊗ β(φ(p)) = y ⊗ 0 = 0.

Thus,

HM(YM) = HomT (P, YM)/HomT (P, YM)Jβ = HomT (P, YM) ∼= Y.

Second, we are to prove F̃M(Y ) = AP (YM). Since γ : Y ⊗EndT (M) M −→ YM is

surjective, it is enough to show that kerγ is a submodule of torP (Y ⊗EndT (M) M) and

γ(torP (Y ⊗EndT (M) M)) = torP (YM). Then, by general theory, we can conclude that

F̃M(Y ) = Y ⊗EndT (M) M/torP (Y ⊗EndT (M) M) ∼= YM/torP (YM) = AP (YM).

Now, applying the functor HomT (P,−) to the exact sequence

0 −→ kerγ
ι−→ Y ⊗EndT (M) M

γ−→ YM −→ 0

we obtain the exact sequence

0 −→ HomT (P, kerγ)
ι∗−→ HomT (P, Y ⊗EndT (M) M)

γ∗−→ HomT (P, YM) −→ 0

Then, since γ∗ is an isomorphism, ι∗ is the zero map. So HomT (P, kerγ) = (0). Hence

kerγ ⊆ torP (Y ⊗EndT (M) M).

Since the restriction γ|torP (Y⊗EndT (M)M) of γ to torP (Y ⊗EndT (M) M) is surjective

and P is projective, the induced morphism

(γ|torP (Y⊗EndT (M)M))∗ : HomT (P,torP (Y ⊗EndT (M) M)

−→ HomT (P, γ(torP (Y ⊗EndT (M) M)))

is also surjective. Then, we have HomT (P, γ(torP (Y ⊗EndT (M)M))) = (0). Now, assume

there is a submodule W of YM such that γ(torP (Y ⊗EndT (M)M)) is a submodule of W
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and HomT (P,W ) = (0). Then there exists a submodule Z of Y ⊗EndT (M) M such that

torP (Y⊗EndT (M))M is a submodule of Z and γ(Z) = W since γ is surjective. For any η

in HomT (P,Z), we have η in HomT (P, kerγ) since γη is in HomT (P, torP (Y⊗EndT (M))M)

and HomT (P, torP (Y⊗EndT (M))M) = (0). However, we know that HomT (P, kerγ) = (0),

hence we obtain HomT (P,Z) = (0), but this contradicts the maximality of the P -

torsion submodule torP (Y ⊗EndT (M) M). Hence we conclude that

γ(torP (Y ⊗EndT (M) M)) = torP (YM).

Therefore we have F̃M(Y ) ∼= AP (YM).

Finally, if M is P -torsionless, so is YM since otherwise, if there would exist a

submodule W of YM such that HomT (P,W ) = (0), then as YM is a submodule of

M , W is also a submodule of M and that would contradict the assumption that M is

P -torsionless. Thus, we have

F̃M(Y ) ∼= AP (YM) = YM/torP (YM) = YM.

The proof of the following theorem was given in [6].

Theorem 3.19. Assume (EndT (P ))β = EndT (P ). Let X and Y be right ideals of

EndT (M). Suppose M is P -torsionless. Then H induces an isomorphism, also denoted

by H, from HomT (XM,YM) onto HomEndT (M)(X, Y ).

Proof. Using functoriality of HM we define

H : HomT (XM,YM) −→ HomEndT (M)(X, Y ), φ 7→ H(φ)

where H(φ) : H(XM) −→ H(YM). Since M is P -torsionless, we have H(XM) = X

and H(YM) = Y by Theorem 3.18. Then H(φ) is a map from X to Y . Since H is a
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functor, for φ and ψ in HomT (XM,YM), we have H(φψ) = H(φ)H(ψ). Hence H is a

homomorphism. Clearly H is R-linear.

Now, we are to show thatH is surjective. Let α be an element of HomEndT (M)(X, Y ).

Consider the map α ⊗ 1M : X ⊗EndT (M) M −→ Y ⊗EndT (M) M . This map induces a T -

linear map

γ :
X ⊗EndT (M) M

torP (X ⊗EndT (M) M)
−→

Y ⊗EndT (M) M

torP (Y ⊗EndT (M) M)

By Theorem 3.18, we have AP (X ⊗EndT (M)M) = XM and AP (Y ⊗EndT (M)M) = YM .

Hence γ is a T -linear map from XM to YM . Also, we have

H(γ) = H(AP (α⊗ 1M)) = H(AP (FM(α))) = H(Ĥ(α)) = α.

Therefore H is surjective.

H is also injective: Let f : XM −→ YM be a nonzero T -linear map. We are

to show that H(f) is also nonzero. Set U := imf . U is a submodule of M . Then

since M is P -torsionless, so is U . Then HomT (P,U) 6= (0). By Lemma 3.11 we have

HomT (P,M) ∼= EndT (M). Then, by projectivity of P and Proposition 3.1, we conclude

that HomT (P,M)Jβ = (0). So, since HomT (P,U) is a submodule of HomT (P,M), we

have HomT (P,U)Jβ = (0) as well. Hence H(U) = HomT (P,U). Since P is projective

and f : XM −→ U is surjective, the map f∗ : HomT (P,XM) −→ HomT (P,U) is also

surjective. Then, for each nonzero element ρ of HomT (P,U), there exists an element τ

of HomT (P,XM) = H(XM) such that ρ = fτ . Then, we have

H(f)(τ) = HomT (P, f)(τ) = fτ = ρ 6= 0.

So H(f) : H(XM) −→ H(YM) is not the zero map. Therefore H is injective.

Thus, we have shown that H is bijective, hence an isomorphism.
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3.6. Correspondence between (IrrT )H and Constituents of hd(M)

Now we are to give the exposition of the proof for one of the main theorems of

this thesis. Firstly, we need a lemma which were proved in [6]:

Lemma 3.20. Assume (EndT (P ))β = EndT (P ). Let X be an EndT (M)-module and

Y be a maximal submodule of X. Let i : Y −→ X be the canonical embedding. Let V

denote FM(X) = X ⊗EndT (M) M , and U be the image of the T -linear map

i⊗ 1M : Y ⊗EndT (M) M −→ X ⊗EndT (M) M.

Then torP (V/U) is the unique maximal submodule of V/U and the factor module

AP (V/U) is canonically isomorphic to the irreducible T -module F̃M(X/Y ).

Proof. Applying the right exact functor −⊗EndT (M) M to the exact sequence

0 −→ Y
i−→ X −→ X/Y −→ 0

we obtain the exact sequence

Y ⊗EndT (M) M
i⊗1M−−−→ X ⊗EndT (M) M −→ X/Y ⊗EndT (M) M −→ 0,

hence the exact sequence

0 −→ U −→ V −→ X/Y ⊗EndT (M) M −→ 0.

Then we have V/U ∼= X/Y ⊗EndT (M) M and therefore

(V/U)/torP (V/U) ∼= X/Y ⊗EndT (M) M/torP ((X/Y )⊗EndT (M) M).

By definition, the left hand side is equal to AP (V/U) and the right hand side is equal to

F̃M(X/Y ). Hence, we obtain AP (V/U) = F̃M(X/Y ). Since Y is maximal, the quotient
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module X/Y is irreducible. Then, by Lemma 3.15, we have F̃M(X/Y ) irreducible and

hence torP (V/U) is maximal.

We are to state a corollary of Lemma 3.20. Let X be an EndT (M)-module and

X = X0 ⊇ X1 ⊇ X2 ⊇ ... be a filtration of X such that Yi := Xi−1/Xi is an irreducible

EndT (M)-module for i ≥ 1. Let V := FM(X) = X ⊗EndT (M) M , and let Vi be the

canonical image of Xi ⊗EndT (M) M in V for i ≥ 0.

Corollary 3.21. Assume (EndT (P ))β = EndT (P ) and let Xi be an EndT (M)-module

for i ≥ 0 and X = X0. For the induced filtration

V = V0 ⊇ V1 ⊇ V2 ⊇ ...

where Vi = FM(Xi), let Ui be the factor module Vi−1/Vi. Then torP (Ui) is the unique

maximal submodule of Ui and the irreducibe T -module AP (Ui) = Ui/torP (Ui) is canon-

ically isomorphic to F̃M(Yi) for all i ≥ 0.

The next theorem gives us a correspondence between (IrrT )H and constituents

of hd(M). In the proof, we follow the sketch given in [6].

Theorem 3.22. Let R be a field. Assume (EndT (P ))β = EndT (P ). Then, (IrrT )H is

a complete set of non-isomorphic irreducible constituents of head of M hd(M). Every

indecomposable direct summand of M has a simple head and factoring out the Jacobson

radical induces a bijection between the isomorphism classes of indecomposable direct

summands of M and the elements of (IrrT )H .

Proof. Let {e1, ..., ek} be a complete set of non-conjugate, primitive idempotents of

EndT (M), that is eiEndT (M) 6= ejEndT (M) for i 6= j. Then, by Lemma 2.3, the set

{eiM |1 ≤ i ≤ k} is a complete set of non-isomorphic, indecomposable direct summands

of M . Hence, there is a bijective correspondence between the indecomposable direct

summands of M and projective indecomposable EndT (M)-modules.
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We may consider β : P −→ M as the projective cover of M . Then kerβ is

superfluous in P . Clearly, any submodule of kerβ is also superfluous. Then, since the

module imφ is a submodule of kerβ for any φ in Jβ, by Proposition 2.4(i), we have Jβ

is an ideal of Jac(EndT (P )). As EndT (P ) is finitely generated, it is right Artinian.

Then, by Proposition 2.4(ii), the Jacobson radical Jac(EndT (P )) is nilpotent. Then,

Jβ is also nilpotent as it is an ideal of Jac(EndT (P )).

As EndT (P )/Jβ ∼= EndT (M) by Proposition 3.1, and Jβ is nilpotent, the non-

conjugate primitive idempotents of EndT (P ) are in one-to-one correspondence with

the non-conjugate primitive idempotents of EndT (M). Hence, we can lift idempotents

from EndT (M) to EndT (P ). Therefore, we have a one-to-one correspondence between

the indecomposable direct summands of P and those of M , given by restricting β to

indecomposable direct summands of P . In particular, the projective cover PN of any

indecomposable direct summand N of M is an indecomposable projective T -module.

Then, by Proposition 2.5, PN has a unique maximal submodule, namely Jac(PN).

As indecomposable direct summands of P are in one-to-one correspondence with

those of M , hence with projective indecomposable EndT (M)-modules, the EndT (M)-

modules

hd(eiEndT (M)) = eiEndT (M)/Jac(eiEndT (M))

are simple for each i ∈ 1, ..., k. Then the set

{hd(eiEndT (M))| 1 ≤ i ≤ k}

is a complete set of non-isomorphic irreducible EndT (M)-modules. Since this set is

equal to Irr(EndT (M)), by Theorem 3.16, the set (IrrT )H can be written as

(IrrT )H = {F̃M(eiEndT (M)/Jac(eiEndT (M)))| 1 ≤ i ≤ k}.

By the assumption in the theorem, R is a field, T a finite dimensional algebra, so, all
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T -modules and EndT (M)-modules being finitely generated, have composition series,

and the multiplicities of Y ∈ IrrEndT (M) a a composition factor of eiEndT (M) equals

to the multiplicity of F̃M(Y ) as a composition factor of F̃M(X). Applying the functor

FM to the filtration

eiEndT (M) ⊇ Jac(eiEndT (M)) ⊇ ...

we obtain

eiM ⊇ Jac(eiM) ⊇ ...

Then, by Corollary 3.21, the irreducible T -module eiM/Jac(eiM) is canonically iso-

morphic to F̃M(eiEndT (M)/Jac(eiEndT (M)). Therefore, the set (IrrT )H consists of

precisely the direct summands of the head M/Jac(M) of M .

Now, we state a more specific version of the previous theorem. In the proof, we

use the sketch given in [7].

Theorem 3.23. Let R be a field. Assume (EndT (P ))β = EndT (P ), the T -module M

is P -torsionless, and EndT (M) is self-injective. Then

(i) Every element of Irr(EndT (M)) is isomorphic to XM for some minimal ideal X

of EndT (M).

(ii) The set (IrrT )H is up to isomorphism a complete set of irreducible constituents

of soc(M) as well as hd(M).

(iii) Every indecomposable direct summand of M has a simple socle and a simple head,

and taking socles, respectively heads, induce bijections between the isomorphism

classes of indecomposable direct summands of M and the elements of (IrrT )H .

(iv) Socle and heads of the indecomposable direct summands of M are isomorphic if

in addition EndT (M) is a symmetric algebra.

Proof. As EndT (M) is self-injective, by Proposition 2.7, minimal ideals of EndT (M)
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correspond to principal indecomposable direct summands of the module EndT (M).

Thus, part (i) of the theorem follows from Theorem 3.18.

The parts (ii) and (iii) are proved for hd(M) in Theorem 3.22, so, it is enough

to prove the statements for soc(M). Consider the projective cover (β1, P1) of M . By

definition of the projective cover, kerβ1 is superfluous. Then, by Proposition 2.8(i),

kerβ1 is a submodule of Jac(P1). Then, since β1 is an epimorphism, by Proposition

2.8(ii), we have

β1(Jac(P1)) = Jac(M).

Then, we obtain

P1/Jac(P1) ∼= M/Jac(M).

Thus, using Theorem 3.22, we conclude that the set (IrrT )H is, up to isomorphism,

precisely the set of the irreducible constituents of hd(P1).

Let S be a simple submodule of M . Then there exists a surjective map φ from P

onto S. Since φ is surjective, kerφ is maximal. Then Jac(P ) is a submodule of kerφ.

Thus, we have

S ∼=
P

kerφ
⊂ P

Jac(P )
= hd(P ).

Therefore, every simple submodule of M , or equivalently, every constituent of soc(M)

is isomorphic to an irreducible constituent of hd(P ).

We use the notation of (3.1). By assumption, M is P -torsionless. Then, by

Lemma 3.6, it is P1-torsionless, that is, we have HomT (P2,M) = (0). Since R is a field,

T is a finite dimensional algebra. So, every T -module has a composition series. Since

HomT (P2,M) = (0), no composition factor of hd(P2) occurs as a composition factor of

M . In particular, no simple submodule of hd(P2) occurs as a simple submodule of M .
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Then, we conclude that, every constituent of soc(M) is isomorphic to an irreducible

constituent of hd(P1), hence to an element of (IrrT )H .

Now, let S be an element of (IrrT )H . Then, by Lemma 3.15 and Theorem 3.16

we have S = Ĥ(X) for some irreducible EndT (M)-module X. By the part (i), we

may assume X to be a minimal right ideal of EndT (M). M is P -torsionless, hence

by Theorem 3.18, we have S = XM . Then, the T -module S is contained in the socle

of M . Therefore, the set (IrrT )H is, up to isomorphism, a complete set of irreducible

constituents of soc(M).

Finally, for part (iv), we refer to [9, I.8.6] which enables us to obtain a correspon-

dence between heads and socles of EndT (M)-modules in the case that EndT (M) is a

symmetric algebra.

Recall that the functor H depends on P . The functor F̃M also depends on the

choice of P since it is the composition of the functor ⊗EndT (M)M and the functor AP

that is determined by P . As in the case of H we are to compare functors F̃ β
M and F̃ β1

M

where β1 : P1 −→ M is the minimal projective cover of M. The following lemma was

stated in [7]. Here, we give a proof.

Lemma 3.24. Let X be an EndT (M)-module. Then there is a natural epimorphism

from F̃ β1
M (X) onto F̃ β

M(X).

Proof. Since F̃ β
M(X) = AP (X⊗EndT (M)M), it is enough to show that for any T -module

V , AP1(V ) is an epimorphic image of AP (V ).

Firstly observe that if HomT (P, torP (V )) = (0), then HomT (P1, torP (V )) = (0),

hence torP (V ) ≤ torP1(V ). Now, since 1V : V −→ V is surjective and

1V (torP (V )) = torP (V ) ≤ torP1(V ),
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1V induces an epimorphism

1̄V : AP (V ) −→ AP1(V ) v + torP (V )) 7→ v + torP1(V )

where v is in V . Hence AP1(V ) is an epimorphic image of AP (V ) and lemma follows.

For later use, we are to show that the ideal Jβ1 of the endomorphism ring

(EndT (P1))β1 is contained in the Jacobson radical Jac((EndT (P1))β1) of (EndT (P1))β1 ,

under the assumption that T is Noetherian. The proof is taken from [7].

Lemma 3.25. Suppose that T is Noetherian. Then Jβ1 is a subset of Jac((EndT (P1))β1).

Proof. Since P1 is a finitely generated module over the Noetherian ring T , it is Noethe-

rian. Then every surjective endomorphism of P1 is actually an isomorphism. For details

see [5, 3.3] and [5, 5.8]. Using this fact, we observe that for a maximal submodule V

of P1, the set

{φ ∈ (EndT (P1))β1 | imφ ⊆ V }

is a maximal right ideal of (EndT (P1))β1 , and every maximal right ideal of V is obtained

in this way.

Since β1 : P −→ M is a minimal projective cover of M and T is semiperfect, by

[5, 6.25(i)], we conclude that kerβ1 is a submodule of Jac(P1). Then, we have

Jβ1 = {φ ∈ (EndT (P1))β1 | imφ ≤ kerβ1}

⊆ {φ ∈ (EndT (P1))β1 | imφ ≤ Jac(P1)}

= Jac((EndT (P1))β1)
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Since Ĥ has a left inverse, it is injective on objects. Moreover, decomposable

EndT (M)-modules are taken to decomposable T -modules by Ĥ. However, it does not

preserve indecomposability in general. Next lemma concerns with these facts. In the

proof , we use the sketch given in [7].

Lemma 3.26. Let X be an indecomposable EndT (M)-module, and let Ĥ(X) = V . Let

V = V1 ⊕ V2 ⊕ ... ⊕ Vk be a decomposition of V into a direct sum of indecomposable

T -modules. Then there is an index i in {1, ..., k} such that the following holds (viewing

X if needed as an EndT (P )-module via the epimorphism β̃ : EndT (P ) −→ EndT (M) in

the proof of Proposition 3.1):

(i) H(Vi) = X and H(Vj) = (0) for j 6= i in {1, ..., k}

(ii) Vi � Vj for i 6= j in {1, ...k}

(iii) HomT (P1, Vi) 6= (0) and HomT (P1, Vj) = (0) for i 6= j in {1, ..., k}.

Proof. Since H is a left inverse for Ĥ(X) = V , we have H(V ) = H(Ĥ(X)) = X. Then,

since X is indecomposable by assumption, so is H(V ). Observe that H preserves direct

sums since the functor HomT (P, ) does. Then

X = H(V ) = H(V1 ⊕ V2 ⊕ ...⊕ Vk) = H(V1)⊕H(V2)⊕ ...⊕H(Vk)

and since X is indecomposable, we have H(Vi) = X for some i and H(Vj) = (0) for all

j 6= i. That proves part (i).

Part (ii) follows from part (i) as H is well-defined, so if it would be the case

Vi ∼= Vj for some j in {1, ...k} and j 6= i, then we must have had H(Vi) = H(Vj) which

is not the case.

Part (iii) is proved first for the two choices of V obtained using the functors FM

and GM stated in Definition 3.10, since they are mapped to X under the functor Hβ1 .

We have Hβ(V ) = Hβ1(V ). Then, by part (i), we have Hβ1(Vi) 6= (0), and hence

HomT (P1, Vi) 6= (0). Also, we obtain by part (i) that Hβ1(Vj) = (0) for all j 6= i. That
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means

HomT (P1, Vj)/HomT (P1, Vj)Jβ1 = (0).

Then by Lemma 3.25 and Lemma 2.12, we have HomT (P1, Vj) = (0). Hence, we have

HomT (P1, Vj) = (0) for all j 6= i.

Before proving part (iii) for the remaining two choices of V which obtained using

the functors F̃M and G̃M , we need to show that the functor AP preserves direct sums.

Now, let W1 and W2 be T -modules. Assume that HomT (P,W1 ⊕W2) 6= (0). Since

HomT (P, torP (W1)) = (0) and HomT (P, torP (W2)) = (0), we have

HomT (P, torP (W1)⊕ torP (W2)) = HomT (P, torP (W1))⊕ HomT (P, torP (W2)) = (0).

Then, we have torP (W1)⊕torP (W2) is a submodule of torP (W1⊕W2). Since we assume

that HomT (P,W1⊕W2) 6= (0), we have one of the statements HomT (P,W1) 6= (0) and

HomT (P,W2) 6= (0) true. Then, we have either HomT (P,W1/torP (W1)) 6= (0) or

HomT (P,W2/torP (W2)) 6= (0). Then, we have

(0) 6= HomT

(
P,

W1

torP (W1)
⊕ W2

torP (W2)

)
= HomT

(
P,

W1 ⊕W2

torP (W1)⊕ torP (W2)

)

Hence, we conclude that torP (W1)⊕ torP (W2) = torP (W1 ⊕W2). Then, we obtain

AP (W1 ⊕W2) = (W1 ⊕W2)/torP (W1 ⊕W2)

= (W1 ⊕W2)/torP (W1)⊕ torP (W2)

= W1/torP (W1)⊕W2/torP (W2) = AP (W1)⊕ AP (W2).

For V = F̃M(X), we have V = AP (FM(X)) = AP (V1) ⊕ AP (V2) ⊕ ... ⊕ AP (Vk) for

some decomposition of FM(X) = V1 ⊕ V2 ⊕ ... ⊕ Vk of FM(X) into a direct sum of

indecomposable T -modules. Set V ′l = AP (Vl) for all l ∈ {1, ..., k}. Since there does not
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exist any T -module homomorphism from P to torP (Vs) for all s ∈ {1, ..., k}, we have

HomT (P, Vs) = HomT (P, Vs/torP (Vs)) = HomT (P, V ′s ).

In particular, we have H(V ′s ) = H(Vs).

Since part (iii) is proved for the functor FM , we have HomT (P1, Vi) 6= (0) and

HomT (P1, Vj) = (0) for i 6= j in {1, ..., k}. Then we obtain HomT (P1, V
′
j ) = (0) for

j 6= i in {1, ..., k}. Even if V ′j for j 6= i is decomposable, for each indecomposable

constituent W ′ of V ′j , we have HomT (P1,W
′) = (0).

Since HomT (P1, Vi) 6= (0) for some i ∈ {1, ..., k} and there does not exist any

T -homomorphism from P1 to torP (Vi), we have

HomT (P1, V
′
i ) = HomT (P1, AP (Vi)) = HomT (P1, Vi/torP (Vi)) 6= (0).

Now, assume V ′i is decomposable, say V ′i = W ′
1⊕W ′

2. Since H is a left inverse for F̃M ,

and H(V ′j ) = (0) for all j 6= i, we have

X = H(F̃M(X)) = H(V ′1 ⊕ V ′2 ⊕ ...V ′k) = H(V ′1)⊕H(V ′2)⊕ ...H(V ′k)

= H(V ′i ) = H(W ′
1)⊕H(W ′

2).

Since X is indecomposable, we have either H(W ′
1) = (0) or H(W ′

2) = (0). Assume

H(W ′
2) = (0). Then we have

HomT (P,W ′
2)

HomT (P,W ′
2)Jβ

= (0).

We have shown in the proof of Theorem 3.22 that Jβ is contained in Jac(EndT (P )).

Then, using Lemma 2.12 we conclude that HomT (P,W ′
2) = (0). Hence we have

HomT (P1,W
′
2) = (0).
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Therefore, for a decomposition of F̃M(X) = V ′1 ⊕ V ′2 ...⊕ V ′k′ into indecomposable

T -modules, HomT (P, V ′i ) 6= (0) for some i ∈ {1, ...k′} and HomT (P, V ′j ) = (0) for all

j 6= i. The proof for V = G̃M(X) is exactly the same as the proof for F̃M(X), therefore

is omitted.

The previous lemma has a corollary stated in [7]. Here, we give a proof.

Corollary 3.27. Under the assumption of Lemma 3.26 suppose that Hβ = Hβ1, where

T is a finite-dimensional algebra over some field. Then no composition factor of the

head of P1, hence of M , occurs as a composition factor of Vj for i 6= j{1, ..., k}.

Proof. We have shown in the proof of Theorem 3.23 that P1 and M have the same

head. By Theorem 3.22, we know that the set of constituents of hd(M) isomorphic to

the set IrrTH . However, for any i 6= j ∈ {1, ..., k} Hβ1(V ) = (0). Hence, Vj is not an

element of IrrTH . The result follows.

Now we state an application of Theorem 3.19. The proof is taken from [7].

Corollary 3.28. Asssume that M is P -torsionless. Let X be an indecomposable right

ideal of EndT (M). Then Ĥ(X) = XMisindecomposable.

Proof. Since M is P -torsionless, by Theorem 3.18, we have Ĥ(X) = XM . Also, by

Theorem 3.19, there exists an isomorphism between the endomorphism rings of X and

XM . For a Noetherian R-module M , the endomorphism ring of M is local if and only

if M is indecomposable, for details see [3, VII.1.27]. Then, since X is indecomposable,

its endomorphism ring is local, hence the endomorphism ring of XM is local as well.

Then, we conclude that XM is indecomposable.
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4. APPLICATION OF H TO HARISH-CHANDRA

THEORY

4.1. Harish-Chandra Induction and Truncation

Let G be a finite group and F be a field. For subgroups P and U of G with U nor-

mal in P , we define Harish-Chandra induction from F [P/U ]-modules to FG-modules,

denoted by RG
P/U , as the functor that lifts an F [P/U ]-module to an FP -module by let-

ting U act trivially and then inducing it from P to G. The right adjoint functor of RG
P/U ,

Harish-Chandra truncation, denoted by TGP/U , is defined as the functor that restricts

an FG-module to FP -module and takes U -fixed points to yield an F [P/U ]-module.

Theorem 4.1. (Mackey Decomposition Theorem) Let P,Q, U, V be subgroups of G

with U normal in P and V normal in Q. Suppose that the orders of U and V are

invertible in F . Let M be and F [P/U ]-module. Then

TGQ/V ◦RG
P/U(M) ∼=

⊕
x∈P\G/Q

R
Q/V
(Px∩Q)V
(Ux∩Q)V

Cφ
(Q∩Px)Ux
(V ∩Px)Ux ,

(Px∩Q)V
(Ux∩Q)V

T
Px/Ux

(Q∩Px)Ux
(V ∩Px)Ux

(Mx)

where

Cφ
(Q∩Px)Ux
(V ∩Px)Ux ,

(Px∩Q)V
(Ux∩Q)V

:
(Q ∩ P x)Ux

(V ∩ P x)Ux
−→ (P x ∩Q)V

(Ux ∩Q)V

is an isomorphism, and Mx denotes the conjugate module for the conjugate factor group

x(P/U)x−1, and P\G/Q is a set of P −Q-double coset of representatives in G.

We are to prove Theorem 4.1 using biset functors. At this section, we are to

introduce the notion of bisets and prove some facts about bisets.
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4.2. Biset Functors

Definiton 4.2. Let H and K be groups.

(i) An (H,K)-biset X is both a left H-set and a right K-set such that the H-action

and the K-action commute, that is, for any x ∈ X, for all h ∈ H and k ∈ K, we

have

(h · x) · k = h · (x · k).

(ii) An (H,K)-biset X is called transitive if for any elements x, y in X there exists

(h, k) in H ×K such that

h · x · k = y.

(iii) The stabilizer (H,K)x of x in (H ×K) is the subgroup of H ×K defined by

(H,K)x = {(h, k) ∈ H ×K | h · x = x · k}.

Lemma 4.3. Let H and K be groups, and X be an (H,K) biset. Choose a set H\X/K

of representatives of (H,K)-orbits of X. Then there is an isomorphism of (H,K)-bisets

X ∼=
⊔

x∈H\X/K

(H ×K)

(H,K)x
.

In particular, any transitive (H,K)-biset is isomorphic to (H ×K)/L, for some sub-

group L of H ×K.

Proof. See [4, 2.3.4].

Composition of bisets is defined as follows:
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Definiton 4.4. Let G, H and K be groups. If U is an (H,G)-biset, and V is a (K,H)-

biset, the composition of V and U is the set of H-orbits on the cartesian product V ×U ,

where the right action of H is defined by

(v, u) · h = (v · h, h−1 · u)

for all (v, u) in V × U . It is denoted by V ×H U .

Now, we are to state a lemma which provides us a useful formula for the compo-

sition of bisets:

Lemma 4.5. (Mackey Formula for Bisets) Let G, H and K be groups. If L is a

subgroup of H ×G, and if M is a subgroup of K ×H, then there is an isomorphism of

(K,G)-bisets

K ×H
M

×H
H ×G
L

∼=
⊔

x∈p2(M)\H/p1(L)

K ×G
M ∗(x,1) L

where p2(M)\H/p1(L) is a set of representatives of double cosets and

M ∗(x,1) L = {(k, g) ∈ K ×G | (k, h) ∈M and (h, g) ∈ (x,1)L for some h ∈ H}.

Proof. See [4, 2.3.24].

Let X be a G-set. We define the permutation FG-module with permutation basis

X as FX. That is,

FX =
⊕
x∈X

F · x.

Then, G acts on FX, for g ∈ G, x ∈ X, and λx ∈ F , as

g

(∑
x∈X

λxx

)
=
∑
x∈X

λxgx.
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Similarly, for a (G,H)-biset X, FX is an FG− FH-bimodule.

Lemma 4.6. For a (G,H)-biset X and a (H,K)-biset Y

F (X ×H Y ) = FX ⊗FH FY.

Proof. Firstly, we observe that,

FX ⊗FH FY =

(⊕
x∈X

Fx

)
⊗FH

(⊕
y∈Y

Fy

)

=
⊕

(x,y)∈X×Y

Fx⊗FH Fy

=
⊕

(x,y)∈X×Y
h∈H

Fx× Fy
∼

where ∼ is an equivalence relation on X × Y relating the elements (xh, y) and (x, hy)

for every h in H. Also, we have (xh, y) ∼ (x, hy) if and only if (x, y) ∼ (xh, yh−1).

Then we obtain

FX ⊗FH FY =
⊕

(x,y)∈X×HY

F (x, y) = F (X ×H Y ).

Definiton 4.7. Let G and K be groups. Let H be a subgroup of G and N be a normal

subgroup of G.

(i) The set G is a (H,G)-biset for the actions given by left and right multiplications

in G. It is denoted by resGH .

(ii) The set G is a (G,H)-biset for the actions given by left and right multiplications

in G. It is denoted by indGH .

(iii) The set G/N is a (G,G/N)-biset for the left action of G by projection to G/N , and

then left multiplication in G/N , and the right action of G/N by multiplication.

It is denoted by infGG/N .
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(iv) The set G/N is a (G/N,G)-biset for the left action of G/N by multiplication,

and the right action of G by projection to G/N , and then right multiplication in

G/N . It is denoted by defGG/N .

(v) If f : G −→ K is a group isomorphism, then the set K is an (K,G)-biset for the

left action of K by multiplication, and the right action of G given by taking image

by f , and then multiplying on the right in K. It is denoted by cfK,G.

These five bisets defined in Definition 4.7 are transitive, therefore their orbit sets

have cardinality 1. Then, using Lemma 4.3 we can rewrite those elementary bisets as

follows:

resGH = (H ×G)/R where R = {(h, h) | h ∈ H}

indGH = (G×H)/T where T = {(h, h) | h ∈ H}

infGG/N = (G×G/N)/I where I = {(g, gN) | g ∈ G}

defGG/N = (G/N ×G)/D where D = {(gN, g) | g ∈ G}

cfK,G = (K ×G)/Cf where Cf = {(f(g), g) | g ∈ G}

Now, using Lemma 4.6, we define five elementary biset functors:

Definiton 4.8. Let G and K be groups. Let H be a subgroup of G and N be a normal

subgroup of G.

(i) For an FG-module V , the restriction functor is defined as

ResGHV := F (resGH ×G V ) =FH FGFG ⊗FG V.

(ii) For an FH-module V , the induction functor is defined as

IndGH(V ) := F (indGH ×H V ) =FG FGFH ⊗FH V.
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(iii) For an F [G/N ]-module V , the inflation functor is defined as

InfGG/N(V ) := F (infGG/N ×G/N V ) =FG FGF [G/N ] ⊗F [G/N ] V.

(iv) For an FG-module V , the deflation functor is defined as

DefGG/N(V ) := F (defGG/N ×G V ) =F [G/N ] F [G/N ]FG ⊗FG V.

(v) For an FG-module V and an isomorphism f : G −→ K, the transport of structure

functor is defined as

Cf
K,G(V ) := F (cfK,G ×G V ) =FK FGFG ⊗FG V.

4.3. Mackey Decomposition Theorem

At this section, first, we are to prove Mackey Decomposition Theorem using the

results of the previous section. Then, we are to show the adjointness of TGP/U and RG
P/U

on both sides.

Proof of Theorem 4.1. The equality in the statement of Theorem 4.1 can be rewritten

as

DefQQ/V ResGQIndGP InfPP/U(M)

=
⊔

x∈P\G/Q

Ind
Q/V
(Px∩Q)V

Inf
(Px∩Q)V
(Px∩Q)V
(Ux∩Q)V

Cφ
(Px∩Q)V
(Ux∩Q)V

,
(Q∩Px)Ux
(V ∩Px)Ux

Def
(Q∩Px)Ux
(Q∩Px)Ux
(V ∩Px)Ux

Res
Px/Ux

(Q∩Px)Ux(M
x)

We can write

DefQQ/V ResGQIndGP InfPP/U =
Q/V ×Q

D
×Q

Q×G
R

×G
G× P
T

×P
P × P/U

I
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where

D = {(qV, q)| q ∈ Q}, R = {(q, q)| q ∈ Q}, T = {(p, p)| p ∈ P}, I = {(p, pU)| p ∈ P}.

By Lemma 4.5, we know

Q/V ×Q
D

×Q
Q×G
R

=
⊔

q∈p2(D)\Q/p1(R)

Q/V ×G
D ∗ (q,1)R

where

p1(R) = {q ∈ Q| (q, g) ∈ R for some g ∈ G},

p2(D) = {q ∈ Q| (q′V, q) ∈ D for some q′V ∈ Q/V },

D ∗ (q,1)R = {(qV, g) ∈ Q/V ×G| (qV, q′) ∈ D and (q′, g) ∈ (q,1)R for some q′ ∈ Q}.

For any q in Q, the element (q, q) is in R. Thus, we have p1(R) = Q. Also, for any q in

Q, the element (q, qV ) is in D. So, we have p2(D) = Q. Then, the set p2(D)\Q/p1(R)

contains only one coset and the union consists of only one biset. We can take the

identity element 1 of Q as the coset representative q. Then we have

Q/V ×Q
D

×Q
Q×G
R

=
Q/V ×G
D ∗ (1,1)R

.

Clearly the set (1,1)R is equal to R. Therefore

D ∗ (q,1)R = D ∗R

= {(qV, g) ∈ Q/V ×G| (qV, q′) ∈ D and (q′, g) ∈ R for some q′ ∈ Q}

= {(qV, q) ∈ Q/V ×Q}

= {(qV, q)| q ∈ Q}

= D
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Hence, we obtain

DefQQ/V ResGQ =
Q/V ×Q

D
×Q

Q×G
R

=
Q/V ×G

D
.

Similarly, we have

G× P
T

×P
P × P/U

I
=

⊔
p∈p2(T )\P/p1(I)

G× P/U
T ∗ (p,1)I

where

p1(I) = {p ∈ P | (p, p′U) ∈ I for some p′U ∈ P/U},

p2(T ) = {p ∈ P | (p, g) ∈ T for some g ∈ G},

T ∗ (p,1)R = {(g, pU) ∈ G× P/U | (g, p′) ∈ T and (p′, pU) ∈ (p,1)I for some p′ ∈ P}.

For any p in P , the element (p, pU) is in I. Thus, we have p1(I) = P . Also, for any p

in P , the element (p, p) is in T . So, we have p2(T ) = P . Then, the set p2(T )\P/p1(I)

contains only one coset and the union consists of only one biset. We can take the

identity element 1 of P as the coset representative p. Then we have

G× P
T

×P
P × P/U

I
=
G× P/U
T ∗ (1,1)I

.

Clearly the set (1,1)I is equal to I. Therefore

T ∗ (p,1)I = T ∗ I

= {(g, pU) ∈ G× P/U | (g, p′) ∈ T and (p′, pU) ∈ I for some p′ ∈ P}

= {(p, pU) ∈ P × P/U}

= {(p, pU)| p ∈ P}

= I
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Hence, we obtain

IndGP InfPP/U =
G× P
T

×P
P × P/U

I
=
G× P/U

I
.

Now, by Lemma 4.5, we obtain

Q/V ×G
D

×G
G× P/U

I
=

⊔
g∈[p2(D)\G/p1(I)]

Q/V × P/U
D ∗ (g,1)I

where

p1(I) = {p ∈ P | (p, p′U) ∈ I for some p′U ∈ P/U}

p2(D) = {q ∈ Q | (q′V, q) ∈ D for some q′V ∈ Q/V }

For any p in P , we have (p, pU) in I, and hence p in p1(I). Thus, we have p1(I) = P .

Also, for any q in Q, we have (qV, q) in D, and hence q in p2(D). Thus, we have

p2(D) = Q. Then, we obtain

p2(D)\G/p1(I) = Q\G/P.

Also, for any g in p2(D)\G/p1(I), we have

(g,1)I = (g, 1)I(g−1, 1) = {(g, 1)(p, pU)(g−1, 1) | p ∈ P}

= {(gpg−1, pU) | p ∈ P}

and

L := D ∗(g,1) I = {(qV, pU) ∈ Q/V × P/U | (qV, g) ∈ D (g, pU) ∈ (g,1)I for some g ∈ G}

= {(qV, pU) ∈ Q/V × P/U | q = gpg−1}
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Now, by [4, 2.3.25] and [4, 2.3.26] we have

Q/V × P/U
L

∼= Ind
Q/V
p1(L)

Inf
p1(L)
p1(L)/k1(L)

Cf
p1(L)/k1(L),p2(L)/k2(L)

Def
p2(L)
p2(L)/k2(L)

Res
P/U
p2(L)

where

p1(L) = {qV ∈ Q/V | (qV, pU) ∈ L for some pU ∈ P/U}

= {qV ∈ Q/V | q = gpg−1 for some p ∈ P}

k1(L) = {qV ∈ Q/V | (qV, U) ∈ L} = {qV ∈ Q/V | q = gug−1 for some u ∈ U}

p2(L) = {pU ∈ P/U | (qV, pU) ∈ L for some qV ∈ Q/V }

= {pU ∈ P/U | q = gpg−1 for some q ∈ Q}

k2(L) = {pU ∈ P/U | (V, pU) ∈ L} = {pU ∈ P/U | v = gpg−1 for some v ∈ V }

and

f : p2(L)/k2(L) −→ p1(L)/k1(L), (pU)k2(L) 7→ (gpg−1V )k1(L)

On the other hand,

(P g ∩Q)V = {qV ∈ Q/V | q = g−1pg for some p ∈ P} = p1(L)

(U g ∩Q)V = {qV ∈ Q/V | q = g−1ug for some u ∈ U} = k1(L)

(Q ∩ P g)U g = {(pU)g | g−1pg = q for some q ∈ Q} = (p2(L))g

(V ∩ P g)U g = {(pU)g | g−1pg = v for some v ∈ V } = (k2(L))g

and, by Butterfly Lemma [10, 3.3], there is an isomorphism

φ : (Q ∩ P g)U g/(V ∩ P g)U g −→ (P g ∩Q)V/(U g ∩Q)V
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Therefore, we obtain

TGQ/VR
G
P/U(M) = DefGQ/V ResGQIndGP InfPP/U(M)

=
⊔

g∈p2(D)\G/p1(I)

Ind
Q/V
p1(L)

Inf
p1(L)
p1(L)
k1(L)

Cf
p2(L)
k2(L)

,
p1(L)
k1(L)

Def
p2(L)
p2(L)
k2(L)

Res
P/U
p2(L)

(M)

=
⊔

g∈p2(D)\G/p1(I)

Ind
Q/V
p1(L)

Inf
p1(L)
p1(L)
k1(L)

Cf

(
p2(L)
k2(L)

)g ,
p1(L)
k1(L)

Def
(p2(L))g

(
p2(L)
k2(L)

)g
Res

(P/U)g

(p2(L))g
(M g)

=
⊔

g∈P\G/Q

Ind
Q/V
(P g∩Q)V Inf

(P g∩Q)V
(Pg∩Q)V
(Ug∩Q)V

Cφ
(Q∩Pg)Ug
(V ∩Pg)Ug ,

(Pg∩Q)V
(Ug∩Q)V

Def
(p2(L))g

(Q∩Pg)Ug
(V ∩Pg)Ug

Res
(P/U)g

(V ∩P g)Ug(M
g)

=
⊕

g∈P\G/Q

R
Q/V
(Pg∩Q)V
(Ug∩Q)V

T
(P/U)g

(Q∩Pg)Ug
(V ∩Pg)Ug

Let P be a subgroup of G and U be a normal subgroup of P . The quotient P/U

is called a subquotient of G.

Lemma 4.9. For a subquotient P/U of G, if the order of U is invertible in F , the

functor TGP/U is adjoint on both sides of RG
P/U .

Proof. By Definition 4.8, for an FG-module A, we have

TGP/U(A) = DefPP/UResGP (A)

and, for an F [P/U ]-module B, we have

RG
P/U(B) = IndGP InfPP/U(B).

Clearly, IndGP is adjoint on both sides of ResGP . So, to prove the statement, it is enough

to examine left and right adjoints of InfPP/U .

The left and right adjoints of InfPP/U is not necessarily equal. However, in our
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case, we are to prove that they are isomorphic. Firstly, we are to show that the functor

DefPP/U : modFP −→ modF [P/U ], M 7→MU

where MU = {m ∈M | Um = m}, is the left adjoint of InfPP/U .

Let M be an FP -module and N be an F [P/U ]-module. We define a map

Φ : HomFP (M, InfPP/U(N)) −→ HomF [P/U ](DefPP/U(M), N), φ 7→ φ̃

where φ̃ is defined as

φ̃ : DefPP/U(M) −→ N, m 7→ φ(m).

φ̃ is an F [P/U ]-module homomorphism since

φ̃(pUm) = φ̃(pm) = φ(pm) = pφ(m) = pUφ(m) = pUφ̃(m)

for p in P and m in MU . Now, we define a second map

Ψ : HomF [P/U ](DefPP/U(M), N) −→ HomFP (M, InfPP/U(N)), ψ 7→ ψ̂

where ψ̂ is defined as

ψ̂ : M −→ InfPP/U(N), m 7→ ψ

(
1

|U |
∑
u∈U

um

)
.
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The map ψ̂ is an FP -module homomorphism since, for p in P and m in M ,

ψ̂(pm) = ψ

(
1

|U |
∑
u∈U

upm

)
= ψ

(
1

|U |
∑
u∈U

pum

)
= ψ

(
p

1

|U |
∑
u∈U

um

)

= pψ

(
1

|U |
∑
u∈U

um

)
= pψ̂(m).

Now, we are to show that Ψ is the inverse of Φ. For ψ in HomF [P/U ](DefPP/U(M), N)

and m in MU , we have

ΦΨ(ψ)(m) = Φ(ψ̂(m)) =
˜̂
ψ(m) = ψ̂(m) = ψ

(
1

|U |
∑
u∈U

um

)
= ψ

(
1

|U |
∑
u∈U

m

)
= ψ(m)

Also, for φ in HomFP (M, InfPP/U(N)) and m in M , we have

ΨΦ(φ)(m) = Ψ(φ̃(m)) = ˆ̃φ(m) = φ̃

(
1

|U |
∑
u∈U

um

)
= φ

(
1

|U |
∑
u∈U

um

)

=
1

|U |
∑
u∈U

uφ(m) = φ(m)

Therefore, we obtain

HomFP (M, InfPP/U(N)) ∼= HomF [P/U ](DefPP/U(M), N),

that is, the functor DefPP/U is the left adjoint of InfPP/U .

Secondly, we are to show that the functor

CodefPP/U : modFP −→ modF [P/U ], M 7→MU

where MU = {
∑

u∈U um |m ∈M}, is the right adjoint of InfPP/U .
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We define a map

Θ : HomFP (InfPP/U(N),M) −→ HomF [P/U ](N,CodefPP/U(M)), θ 7→ θ̃

where θ̃ is defined as

θ̃ : N −→ CodefPP/U(M), n 7→
∑
u∈U

uθ(n).

The map θ̃ is an F [P/U ]-module homomorphism since

θ̃(pUn) =
∑
u∈U

uθ(pn) =
∑
u∈U

puθ(n) = p
∑
u∈U

uθ(n) = pθ̃(n) = pUθ̃(n)

for p in P and n in N . Now, we define a second map

Γ : HomF [P/U ](N,CodefPP/U(M)) −→ HomFP (InfPP/U(N),M), γ 7→ γ̂

where γ̂ is defined as

γ̂ : InfPP/UN −→M, n 7→ 1

|U |
γ(n).

The map γ̂ is an F [P/U ]-module homomorphism since

γ̂(pn) =
1

|U |
γ(pn) = p

1

|U |
γ(n) = pγ̂(n)

for p in P and n in N .

Now, we prove that Γ is the inverse of Θ. For γ in HomF [P/U ](N,CodefPP/U(M))
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and n in N , we have

ΘΓ(γ)(n) = Θ(γ̂(n)) = ˜̂γ(n) =
∑
u∈U

uγ̂(n) =
∑
u∈U

u
1

|U |
γ(n)

=
1

|U |
∑
u∈U

uγ(n) =
1

|U |
∑
u∈U

γ(n)

= γ(n).

Also, for θ in HomFP (InfPP/U(N),M) and n in InfPP/U(N), we have

ΓΘ(θ)(n) = Γ(θ̃(n)) = ˆ̃θ(n) =
1

|U |
θ̃(n) =

1

|U |
∑
u∈U

uθ(n)

=
1

|U |
∑
u∈U

θ(un) =
1

|U |
∑
u∈U

θ(n) = θ(n)

Therefore we obtain

HomFP (InfPP/U(N),M) ∼= HomF [P/U ](N,CodefPP/U(M)),

that is, CodefPP/U is the right adjoint of InfPP/U .

Now, we are to show that, for an F [P/U ]-module M , the FP -modules DefPP/U(M)

and CodefPP/U(M) are isomorphic. To this end, we define two maps

ζ : DefPP/U(M) −→ CodefPP/U(M), m 7→
∑
u∈U

um

and

ξ : CodefPP/U(M) −→ DefPP/U(M),
∑
u∈U

um 7→ 1

|U |
∑
u∈U

um.

ζ and ξ are F [P/U ]-module homomorphisms since for m in MU and
∑

u∈U un in MU ,
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we have

ζ(pUm) = ζ(pm) =
∑
u∈U

upm = p
∑
u∈U

um = pU
∑
u∈U

um = pUζ(m)

and

ξ(pU
∑
u∈U

un = ξ(p
∑
u∈U

un) = ξ(
∑
u∈U

upn) =
1

|U |
∑
u∈U

u(pn)

= p

(
1

|U |
∑
u∈U

un

)
= pU

(
1

|U |
∑
u∈U

un

)
= pUξ(

∑
u∈U

un)

Also, we have

ζξ(
∑
u∈U

um) = ζ

(
1

|U |
∑
u∈U

um

)
=

1

|U |
∑
u∈U

uξ(m) =
1

|U |
∑
u∈U

u
∑
u∈U

um

=
1

|U |
∑
u∈U

∑
u∈U

um =
∑
u∈U

um

for m+ UM in MU , and

ξζ(n) = ξ(n+ UM) =
1

|U |
∑
u∈U

un = n

for n in MU . Therefore DefPP/U(M) and CodefPP/U(M) are isomorphic.

Now, for an FG-module N and FP -module M , we have

HomFP (TGP/U(N),M) = HomFP (DefPP/UResGP (N),M)

∼= HomFP (ResGP (N), InfPP/U(M))

∼= HomFP (N, IndGP InfPP/U(M))

= HomFP (N,RG
P/U(M))
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and

HomFG(N, TGP/U(M)) = HomFG(N,DefPP/UResGP (M))

∼= HomFG(N,CodefPP/UResGP (M))

∼= HomFG(InfPP/U(N),ResGP (M))

∼= HomFG(IndGP InfPP/U(N),M)

= HomFG(RG
P/U(N),M)

Thus, TGP/U is adjoint on both sides of RG
P/U .

4.4. Mackey System

Recall that, for a subgroup P of G and a normal subgroup U of P , a subquotient

of G is the quotient P/U . A system M of subquotients of G is called a Mackey system,

if it contains G, is closed under conjugation and the operation

P/U uQ/V = (P ∩Q)U/(P ∩ V )U

for P/U and Q/V in M.

For a prime p, the system M is called p-modular, if for all P/U in M, U is p-

regular, that is, the order of U is not divisible by p. Thus, if F has characteristic p

and M is p-modular, we may apply Theorem 4.1 to the elements of M.

For P/U in M, the set

MP/U = {P/U uQ/V | Q/V ∈M}

defines a Mackey system in P/U . We give a proof of this fact. Let P/U u Q/V and

P/U uR/Y be two subquotients in MP/U . Then, since U ≤ P and P ∩V U ≤ P ∩QU ,
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we have

(P/U uQ/V ) u (P/U uR/Y ) =
(P ∩Q)U

(P ∩ V )U
u (P ∩R)U

(P ∩ Y )U

=
[(P ∩Q)U ∩ (P ∩R)U ](P ∩ V )U

[(P ∩Q)U ∩ (P ∩ Y )U ](P ∩ V )U

=
(P ∩QU ∩ P ∩RU)(P ∩ V U)

(P ∩QU ∩ P ∩ Y U)(P ∩ V U)

=
(P ∩QU ∩RU)(P ∩ V U)

(P ∩QU ∩ Y U)(P ∩ V U)

=
P ∩RU(P ∩ V U) ∩QU
P ∩ Y U(P ∩ V U) ∩QU

=
[P ∩RU(P ∩ V U) ∩Q]U

[P ∩ Y U(P ∩ V U) ∩Q]U

=
P

U
u RU(P ∩ V U) ∩Q
Y U(P ∩ V U) ∩Q

Hence, MP/U is closed under the operation u. Clearly, it is closed under conjugation.

Also, we have

P/U = PU/U =
(P ∩ P )U

(P ∩ U)U
= P/U u P/U.

So, P/U is an element of MP/U .

If M is p-modular, so is MP/U . To show this statement, assume M is p-modular.

Let Q/V u P/U = (Q ∩ P )V/(Q ∩ U)V be an element of MP/U . If M is p-modular,

then U and V are p-regular. Then, the order of Q∩U is not divisible by p since Q∩U

is a submodule of U and the order of U is not divisible by p. Then p does not divide

the order of the module (Q ∩ U)V . So, the Mackey system MP/U is also p-modular.

Now, assume M is p-modular, where p is the characteristic of F . An FG-module

M is called cuspidal with respect to M, if TGP/U(M) = (0) for all subquotients P/U

of G different from G. For a subquotient P/U in M, an F [P/U ]-module N is called

cuspidal with respect to M if it is cuspidal with respect to MP/U . If M contains

a proper subgroup P/1, then FG does not have any cuspidal modules since for any
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nonzero FG-module M , we have

TGP/1(M) = ResGP (M) 6= (0).

Even if M contains a proper subgroup and hence FG does not have any cuspidal

modules with respect to M, the same might not be true for MP/U , so F [P/U ] might

have cuspidal modules with respect to MP/U .

The following theorem establishes a relation between Harish-Chandra theory and

the results of the first chapter. In [7], a sketch for the proof was given. Here, we give

a full proof using this sketch.

Theorem 4.10. Let F be of characteristic p where p > 0. Let M be a p-modular

Mackey system for G. For P/U in M, let M be an irreducible cuspidal F [P/U ]-module,

and β : X −→M be a minimal projective cover of M . Then we have

EndFG(RG
P/U(X)) = (EndFG(RG

P/U(X))RG
P/U

(β)

where RG
P/U(β) is the map

RG
P/U(β) : RG

P/U(X) −→ RG
P/U(M)

induced from the map β : X −→M .

Proof. We apply the functor HomFG(RG
P/U(X),−) to the map

RG
P/U(β) : RG

P/U(X) −→ RG
P/U(M)

to obtain the map

(RG
P/U(β))∗ : EndFG(RG

P/U(X)) −→ HomFG(RG
P/U(X), RG

P/U(M)), φ 7→ βφ
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Since X is projective it can be written as X =
⊕

n∈N F [P/U ]. Then we have

RG
P/U(X) = IndGP InfPP/UF [P/U ](X) = FG⊗P (FP ⊗F [P/U ] X)

= FG⊗P (FP ⊗F [P/U ]

⊕
n∈N

F [P/U ])

= FG⊗P
⊕
n∈N

(FP ⊗F [P/U ] F [P/U ])

=
⊕
n∈N

(FG⊗P (FP ⊗F [P/U ] F [P/U ]))

=
⊕
n∈N

(IndGP InfPP/UF [P/U ](F [P/U ]))

=
⊕
n∈N

RG
P/U(F [P/U ]).

Also we have

InfPP/UF [P/U ] = InfPP/U Ind
P/U
U/UF = IndPU InfUU/UF = IndPUF.

Therefore we obtain

RG
P/U(F [P/U ]) = IndGP InfPP/UF [P/U ] = IndGP IndPUF.

Since |U | is invertible in F , the field F is a projective FU -module. Also, since induction

preserves projectivity, we have RG
P/U(F [P/U ]) projective, and hence, being the direct

sum of projective modules, RG
P/U(X) is projective.

Then, using projectivity of RG
P/U(X) and surjectivity of β, we conclude that, the

map (RG
P/U(β))∗ is surjective. Also ker(RG

P/U(β))∗ = JRG
P/U

(β) where

JRG
P/U

(β) = {ψ ∈ EndFG(RG
P/U(X)) | imψ is a submodule of kerRG

P/U(β)}.

Then, we have

dimFHomFG(RG
P/U(X), RG

P/U(M)) = dimFEndFG(RG
P/U(X))− dimFJRG

P/U
(β).



62

By Proposition 3.1, we have the isomorphism

EndFG(RG
P/U(M)) ∼= (EndFG(RG

P/U(X)))RG
P/U

(β)/JRG
P/U

(β).

Therefore, we obtain

dimFEndFG(RG
P/U(M)) = dimF (EndFG(RG

P/U(X)))RG
P/U

(β) − dimFJRG
P/U

(β).

Then, these two equations imply that

EndFG(RG
P/U(X)) = EndFG(RG

P/U(X)))RG
P/U

(β)

if and only if

dimFHomFG(RG
P/U(X), RG

P/U(M)) = dimFEndFG(RG
P/U(M)).

By Theorem 4.1, we have

TGP/U ◦RG
P/U(M) =

⊕
x∈P\G/P

R
P/U
(Px∩P )U
(Ug∩P )U

◦ T P
x/Ux

(p∩Px)Ux
(U∩Px)Ux

(Mx).

Applying the functor HomFG(M,−) to this equation, we obtain

HomFG(M,TGP/U ◦RG
P/U(M)) =

⊕
x∈P\G/P

HomF [P/U ](M,R
P/U
(Px∩P )U
(Ug∩P )U

◦ T P
x/Ux

(p∩Px)Ux
(U∩Px)Ux

(Mx)).

Now, using adjointness of the functors RG
P/U and TGP/U we get

HomFG(RG
P/U(M), RG

P/U(M)) =
⊕

x∈P\G/P

HomF [P/U ](T
P/U
(Px∩P )U
(Ux∩P )U

(M), T
Px/Ux

(P∩Px)Ux
(U∩Px)Ux

(Mx)).

Since M is cuspidal, TGP/U(M) = (0) for any proper subquotient of P/U in MP/U .
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Then, we have

T
P/U
(Px∩P )U
(Ux∩P )U

(M) 6= (0)

if and only if (Px∩P )U
(Ux∩P )U

is equal to P/U , and

T
Px/Ux

(P∩Px)Ux
(U∩Px)Ux

(Mx)) 6= (0)

if and only if (P∩Px)Ux
(U∩Px)Ux is equal to P x/Ux. Therefore we have

HomFG(RG
P/U(M), RG

P/U(M)) =
⊕

x∈NG(P,U)∩(P\G/P )

HomF [P/U ](M,Mx)

where NG(P,U) := {x ∈ G | (P x ∩ P )U/(Ux ∩ P )U = P/U}.

Similarly, we have

HomFG(RG
P/U(X), RG

P/U(M)) =
⊕

x∈NG(P,U)∩(P\G/P )

HomF [P/U ](X,M
x)

Since M is irreducible, dimFHomFG(M,Mx) = (0) unless M ∼= Mx in which case that

dimension equals to 1. Also since X is the minimal projective cover of M , similarly

we have dimFHomFG(X,Mx) = (0), unless M ∼= Mx, and it equals to 1 in that case.

Therefore, we have

dimFHomFG(M,Mx) = dimFHomFG(X,Mx)

and hence

EndFG(RG
P/U(X)) = EndFG(RG

P/U(X)))RG
P/U

(β)
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Corollary 4.11. Let F be of characteristic p where p > 0. Let M be a p-modular

Mackey system for G. For P/U in M, let M be a cuspidal F [P/U ]-module, and

β : X −→ M be a minimal projective cover of M . The functors Hβ and Ĥβ provide a

bijection between the isomorphism classes of the irreducible FG-modules occuring in the

head of RG
P/U(M) and a set of representatives of the isomorphism classes of irreducible

EndFG(RG
P/U(M))-modules.
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APPENDIX A: SUMMARY OF RESULTS

In this appendix, we restate some definitions and main theorems of the text to

help the reader to understand the notation and terminology easily.

• (EndT (P ))β = {φ ∈ EndT (P ) | φ(kerβ) ⊆ kerβ}

Jβ = {ψ ∈ EndT (P ) | imψ ≤ kerβ}

• Jβ is an ideal of (EndT (P ))β and (EndT (P ))β/Jβ ∼= EndT (M) as R-algebra canon-

ically, (Proposition 3.1).

• Assume (EndT (P ))β = EndT (P ). The mapping

H := Hβ := Hβ
M : modT −→ modEndT (M)

defined for V ∈ modT by

H(V ) = HomT (P, V )/HomT (P, V )Jβ

is a covariant functor, (Proposition 3.2).

• Let S be a ring. For S-modules V1 and V2, trace of V1 in V2, trV1(V2), is defined

as the submodule of V2 spanned by images of all homomorphisms from V1 to V2,

(Definition 3.3).

• Let P and V be in modT and assume that P is projective. The P-torsion sub-

module torP (V ) is the sum of all submodules X of V with respect to the property

HomT (P,X) = (0). The kernel kerP is the full subcategory of modT whose ob-

jects are the T -modules V with HomT (P, V ) = (0). Therefore, the T -module V

is in kerP if and only if torP (V ) = (0), (Proposition 3.5).

• Define the functor

AP : modT −→ modT , V 7→ V/torP (V )

for V in modT and define AP (f) as the induced morphism from V/torP (V ) to
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V ′/torP (V ′) for any T -module homomorphism f : V −→ V ′, (Definition 3.9).

• Assume (EndT (P ))β = EndT (P ). We define four functors from modEndT (M) to

modT as

FM = ⊗EndT (M) M

F̃M = AP ◦ ( ⊗EndT (M) M)

GM = ⊗EndT (P ) P

G̃M = AP ◦ ( ⊗EndT (P ) P )

Let Ĥ be one of the four functors defined above. Then Ĥ is a right inverse of the

functor H, (Definition 3.10 and Proposition 3.12).

• Assume (EndT (P ))β = EndT (P ) Define the set

(IrrT )H = {V ∈ IrrT | HM(V ) 6= (0)}.

Then HM induces a bijective correspondence

HM : (IrrT )H −→ Irr(EndT (M))

and the inverse of HM is

F̃M : Irr(EndT (M)) −→ (IrrT )H .

On Irr(EndT (M)), the functors F̃M and G̃M coincide, (Theorem 3.16).

• Let R be a field. Assume (EndT (P ))β = EndT (P ). Then, (IrrT )H is a com-

plete set of non-isomorphic irreducible constituents of head of M hd(M). Every

indecomposable direct summand of M has a simple head and factoring out the

Jacobson radical induces a bijection between the isomorphism classes of indecom-

posable direct summands of M and the elements of (IrrT )H , (Theorem 3.22).

• Let R be a field. Assume (EndT (P ))β = EndT (P ), the T -module M is P -



67

torsionless, and EndT (M) is self-injective. Then

(i) Every element of Irr(EndT (M)) is isomorphic to XM for some minimal ideal

X of EndT (M).

(ii) The set (IrrT )H is up to isomorphism a complete set of irreducible con-

stituents of soc(M) as well as hd(M).

(iii) Every indecomposable direct summand of M has a simple socle and a sim-

ple head, and taking socles, respectively heads, induce bijections between

the isomorphism classes of indecomposable direct summands of M and the

elements of (IrrT )H .

(iv) Socle and heads of the indecomposable direct summands ofM are isomorphic

if in addition EndT (M) is a symmetric algebra.

(Theorem 3.23).

• Let P,Q, U, V be subgroups of G with U normal in P and V normal in Q. Suppose

that the orders of U and V are invertible in F . Let M be and F (P/U)-module.

Then

TGQ/V ◦RG
P/U(M) ∼=

⊕
x∈P\G/Q

R
Q/V
(Px∩Q)V
(Ux∩Q)V

Cφ
(Q∩Px)Ux
(V ∩Px)Ux ,

(Px∩Q)V
(Ux∩Q)V

T
Px/Ux

(Q∩Px)Ux
(V ∩Px)Ux

(Mx)

where

Cφ
(Q∩Px)Ux
(V ∩Px)Ux ,

(Px∩Q)V
(Ux∩Q)V

:
(Q ∩ P x)Ux

(V ∩ P x)Ux
−→ (P x ∩Q)V

(Ux ∩Q)V

is an isomorphism, and Mx denotes the conjugate module for the conjugate factor

group x(P/U)x−1, and P\G/Q is a set of P −Q-double coset of representatives

in G, (Theorem 4.1).

• A system M of subquotients of G is called a Mackey system, if it contains G, is

closed under conjugation and the operation

P/U uQ/V = (P ∩Q)U/(P ∩ V )U, for P/U and Q/V in M.
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• For P/U in M, the set

MP/U = {P/U uQ/V | Q/V ∈M}

defines a Mackey system in P/U .

• Let F be of characteristic p where p > 0. Let M be a p-modular Mackey system

for G. For P/U in M, let M be a cuspidal F [P/U ]-module, and β : X −→ M be

a minimal projective cover of M . Then we have

EndFG(RG
P/U(X)) = (EndFG(RG

P/U(X))RG
P/U

(β)

where RG
P/U(β) is the map

RG
P/U(β) : RG

P/U(X) −→ RG
P/U(M)

induced from the map β : X −→M , (Theorem 4.10).
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