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ABSTRACT

SYNCHRONIZATION OF CONTINUOUS-TIME

OSCILLATORS AND ITS CONTROL

In this thesis, synchronization of continuous-time oscillators with respect to the

effects which are bases on the network structure the properties of the oscillators and its

control are studied. In the context of synchronization, synchronization of the periodic

oscillators in different network topologies is considered. It is observed that the topolog-

ical properties of networks are crucial for synchronization. Then, similarity-dependent

coupling approach is introduced and the effect of this formulation on synchronization

is examined. Furthermore, synchronization in ensembles of chaotic oscillators is ana-

lyzed. In the control part, synchronization control is studied in ensembles of globally

coupled chaotic oscillators. Two different control methods are proposed: time-delayed

feedback and forcing with external periodic action. In the first one, the mean-field

is fed back in a time-delayed manner to all oscillators. In the second one, cases are

studied where an external periodic force is applied both to the mean-field and to all

the oscillators individually. It is observed that depending on the control technique and

related parameters, synchronization can be enhanced, suppressed or destroyed. An-

other contribution of this thesis is a basic user interface for studying synchronization

of continuous-time oscillators in complex networks.
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ÖZET

SÜREKLİ ZAMANLI OSİLATÖRLERİN

SENKRONİZASYONU VE BUNUN KONTROLÜ

Bu tezde, sürekli zamanlı osilatörlerin ağ yapısına ve osilatör özelliklerinin etk-

ileri bağlamında senkronizasyon ve senkronizasyonun kontrolü çalışılmıştır. Senkro-

nizasyon kavramı altında, farklı ağ topolojilerindeki periyodik osilatörlerin durumu

değerlendirilmiştir. Ağın topolojik özelliklerinin senkronizasyon için kritik olduğu gözlenmiştir.

Ardında, benzerliğe dayalı bağlantı yaklaşımı tanıtılmış ve bu formülasyonun senkro-

nizasyon üzerindeki etkisi incelenmiştir. Ek olarak, kaotik osilatör topluluklarının

senkronizasyonu analiz edilmiştir. Kontrol başlığında, global olarak bağlanmış kaotik

osilatörler topluluklarında senkronizasyon kontrolü çalışılmıştır. İki farklı kontrol yöntemi

önerilmiştir: zaman-gecikmeli geribesleme ve harici periyodik kuvvet ile zorlama. İlkinde,

ortak-alan tüm osilatörlere gecikmeli olarak geri beslenilmiştir. İkincisinde, periyodik

bir kuvvetin dışarıdan hem ortak-alana hem de osilatörlerin her birine uygulandığı

durumlar incelenmiştir. Kontrol yöntemine ve ilgili parametrelere bağlı olarak, senkro-

nizayonun iyileştirilebildiği, bastırılabildiği veya ortadan kaldırılabildiği gözlenmiştir.

Bu tezin bir başka katkısı da karmaşık ağlardaki sürekli zamanlı osilatörlerde senkro-

nizasyon çalışmaları için hazırlanmış olan kullanıcı arayüzüdür.
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1. INTRODUCTION

The word “synchronous” is a combination of two Greek word, χρóνς (chronos,

meaning time) and σύν (syn, meaning the same), that can be interpreted as “occurring

or existing at the same time ”, or “recurring or operating at exactly the same periods”.

Thus, the term “synchronization” is used to describe various phenomena in almost all

branches, from engineering to social life, from natural sciences to psychology.

Synchronization, from dynamical systems’ point of view, is the science of coupled

oscillators, such as planets, pacemaker cells and so on. An oscillatory system rotates

automatically that repeat itself over and overall again at more or less time intervals.

Usually such systems are not isolated from their environment, but interact with other

systems. Two or more oscillators are said to be coupled if there exists some mechanism

which allows them influence each other. For example, fireflies interact via light signal,

planets tug on each other via gravity, heart pacemakers transmit electrical currents.

The result of the coupling between such oscillators, is often synchrony, i.e. the state

when all oscillators, or at least a great portion of them, begin to move as one. Neurons

fire together, bacteria colonize, tree crickets sing together, audiences applause rhyth-

mically, biological clocks follow their daily cycles, a violinist play in unison with his

neighbors.

Depending on the system, synchronization of an ensemble may introduce more

robust performance or yield destructive effects in terms of achieving the target of the

system. Thus control of synchronization is required for maintaining the collective

behavior or heading it off.

The essence of this thesis is synchronization defined as the adjustment of rhythms

of oscillating systems due to an interaction among each other. The aim of this thesis is

to investigate synchronization phenomena for different types of oscillators, interacting

in different manners, placed in various networks and endowed with the possibility of
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influencing this collective behavior. The topics can be categorized into two groups:

synchronization and synchronization control. Firstly, synchronization concept is in-

vestigated with respect to the effects which are bases on the network structure the

properties of the oscillators. Then, the performance of different control techniques on

influencing the synchronous behavior of the ensemble is studied.

In the second chapter, after presenting a historical background and different ex-

amples from various scientific fields, the basic concepts of synchronization are intro-

duced, such as an oscillating object, notion of rhythm, interaction and adjustment of

rhythms. In the third chapter, the tools used for qualifying the collective behavior

and a user interface designed via MATLAB are given. The fourth chapter covers the

experimental results. The fifth chapter, contains the discussion and conclusion of the

whole study carried out.
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2. THEORETICAL BACKGROUND OF

SYNCHRONIZATION AND PROBLEM STATEMENT

Since the topic of this thesis combines several fields of investigation theoretical

background of each of them will be provided here: After presenting graph represen-

tation and complex networks in a nutshell, some basic concepts related to dynamical

systems will be given. Then, the phenomena of synchronization and its terminology

will be introduced.

2.1. Graph Representation and Complex Networks

In real world, systems are typically composed of a large number of highly con-

nected dynamical units. Coupled biological and chemical systems, neural networks,

social interacting species, the Internet, and the World Wide Web (WWW), are only a

few examples of such systems. The scientific desire to understand structural issues and

dynamics running on networks generated a whole research field of complex networks.

Complex networks are the networks the structure of which is irregular, complex and

dynamically evolving in time with thousands or millions of nodes. With the possibility

of assessing large databases, this area is very hot and continuing to develop [5].

Networks are generated in different domains by different dynamics with different

number of nodes and with different number of edges. The structures of natural networks

are result of evolution which provides optical functionality in some sense. Indeed, it has

been shown that the coupling architecture has important consequences on the network

functional robustness and response to the external perturbations. Network topology

has a crucial role in determining the emergence of collective dynamical behavior, such

as synchronization and spreading of epidemics, information and rumors. For example,

from neural perspective, synchronization in neural networks are found to be correlated

to many cognitive functions such as information transfer, perception, motor control

and memory [6–8].
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Networks are represented with graphs consist N nodes which are connected with

L edges. Edge lij describes the connection between the node i and node j. The

adjacency matrix, A, is an N × N matrix with entries aij. If two node is connected

aij = 1, otherwise aij = 0. ki shows the number of edges going out of a node, namely

degree of a node. Also some measurements are defined the characterization, e.g. average

shortest-path length, ls =< dij > where dij is the length of the shortest path connecting

node i and node j, and clustering coefficient for accounting the number of triangles.

During the construction of a real network, whatever the systems is, some common

topological aspects exist, such as small-world property, scale-free degree distribution,

correlations, and presence of clustering. Researchers try to understand real complex

networks and model them via these common bases. Here, small world property and

scale-free degree distribution will be introduced after mentioning random graphs.

The term random graph refers to the disordered nature of the arrangement of

the links between different nodes. Erdös and Réyni proposed a model for generating

random graphs with respect to some probabilistic methods [9] and they study the

properties of graphs as a function of the increasing number of random connections.

For such a network, called Erdös-Réyni (ER) network, topological properties depend

on the connection probability between the nodes. They proposed that for large graphs

the degree distribution can be well approximated by a Poisson distribution.

The first topological property to be introduced is the small-world property. In a

D-dimensional regular lattice, the mean number of vertices to be transferred in order

to reach an arbitrary node grows with the lattice size as N1/D. Contrarily, in most of

real networks, despite of their large sizes, there exist short-cuts between nodes which

decrease the average shortest path length of the networks. Although, existence of short-

cuts is an obvious mathematical property in random graphs, real networks are highly

clustered compared to random network. The property of both having high clustering

coefficient and small average shortest-path length value is called small-world property.

Watts-Strogatz (WS) network is a network model with small-world property [4].



5

Another important topological property is the scale-free degree distribution. The

datasets of real networks such as WWW and Internet show that the degree distribution

is not homogeneous as random graphs but heterogeneous ruling by a power law degree

distribution. This property is called scale-free degree distribution property. Barabasi-

Albert (BA) network model is a network model based on two basic ingredients: growth

and preferential attachment [10]. A scale-free degree distribution is an outcome of

preferential attachment of the new coming nodes, where a node prefers to attach to

the one with the highest connectivity. Scale-free degree distribution is associated with

the existence of hubs in a network.

2.2. Some Basic Concepts and Methods Related to Dynamical Systems

A continuous-time dynamical system is represented in terms of differential equa-

tions of the form:

ẋ = f(x). (2.1)

In Equation 2.1, x is a M -dimensional state vector, [x1, x2, . . . , xM ]T where xi are the

states of the system. Behavior of the system can be described completely by the time

evolution of its states.

State space is a M -dimensional space whose coordinated are the states of the

system. A trajectory is a curve in the state space representing a time solution of

the system, x(t), starting with initial conditions x(0). Phase portrait is a geometric

representation of the time solutions of the dynamical system starting from arbitrarily

initial conditions. Phase portrait shows the overall picture of trajectories in the state

space.

In dynamical systems, both “state” and “phase” are used to refer systems vari-

ables, such that state space is also known as phase space. It should be noted that, in

this thesis, the term “state” is used for indicating the system variables as in the control
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theory and the term “phase” is used for to describe angular component of the system

states.

In physical sense, dissipation is related to dissipating the initial energy, eventually

coming to a standstill. From the mathematical point of view, dissipation refers to

shrinking state space (hyper) volume. The trajectories of a dissipative system move

towards the attractors in the state space which characterize the typical behaviors of

the system. An attractor can be of the following types: equilibrium point, limit cycle,

limit tori or strange attractor.

There exist some metrics which are used for characterizing the stability of a

dynamical system. One of them is Lyapunov exponents which describes the rate of

separation of infinitesimally close trajectories. If the two nearby trajectories in the

state space start off with an initial separation δZ0, then the divergence dynamics in

one dimension can be written as in Equation 2.2, where λ is represents the Lyapunov

exponent. Divergence corresponds to a positive Lyapunov exponent, whereas conver-

gence is described with a negative exponent. If the two trajectories neither converge

nor diverge from each other, the corresponding Lyapunov exponent is zero. A M -

dimensional system has M Lyapunov exponents. If a system is dissipative, sum of the

Lyapunov exponents of this system is negative.

‖δZ(t)‖ = ‖δZ0‖eλt (2.2)

The method of Poincaré surface of section is used, in general, to detect the

existence of closed curves in the phase portrait of a dynamical systems and determine

their stability. In this method a (M − 1)-dimensional surface of section, the so-called

Poincaré surface, is constructed in the phase portrait of the M -dimensional system

with a direction of piercing. This surface is supposed to be placed transversal to the

flow of the system. This powerful tool for detecting periodic orbits is also used to define

the concept of phase, as it is done in this thesis.
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Before moving on, a special type of dynamical systems, which have strange at-

tractors, chaotic systems (dissipative chaotic systems), should be mentioned. The

term “chaotic” refers to long-term behavior of a dynamical system which cannot be

predicted even if there are no fluctuations of the system’s parameters or influence of a

noisy environment. Strogatz defined chaos (dissipative chaos) as “aperiodic long-term

behavior in a deterministic system that exhibits sensitive dependence to initial con-

ditions” [11]. This definition reveals the characteristic properties of chaotic systems:

aperiodic behavior, deterministic and sensitivity to initial conditions.

• Having “aperiodic long-term behavior” is related to the existence of infinitely

many unstable periodic orbits (UPOs) embedded within the strange attractor.

Since all of the periodic orbits in the strange attractor is unstable, a chaotic

trajectory does not settle down to any of them. On the other hand, it wanders

incessantly in the vicinity of these orbits. Rich dynamics of a chaotic system is a

result of UPOs.

• A chaotic system is a “deterministic” system, since it have no random parameters

or noisy inputs.

• “Sensitive dependence on initial conditions” means that two trajectory in the

state space of a chaotic systems starting from almost equal initial conditions

eventually diverge from each other. Sensitivity to initial conditions is related to

positive Lyapunov exponent(s) of a chaotic system. Furthermore, since a chaotic

system is dissipative, sum of its Lyapunov exponents is negative.

2.2.1. Definition of the Phase

Consider a M dimensional (M ≥ 2) nonlinear, dissipative, autonomous system

which has a limit cycle with period T

x(t) = x(t+ T ) (2.3)
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and the motion on this limit cycle Figure 2.1 is described by phase φ. Phase φ is a

variable describing the angular part of the motion the limit cycle, which grows mono-

tonically in the direction of motion and gains 2π during each rotation. The phase

dynamics on the limit cycle is neutrally stable, i.e. phase perturbations are maintained

without growing or decaying, which corresponds simply to a time shift on the limit cy-

cle. Contrary to this, the amplitude of oscillations has a definite stable value. Besides,

the phase of an oscillator can be considered as a variable that corresponds to the zero

Lyapunov exponent.

Figure 2.1. A stable limit cycle for two-dimensional dynamical system. Neighboring

trajectories within the basin of attraction are attracted to the limit cycle.

Phase dynamics of a uniform oscillator (Figure 2.2) can be given as

φ̇ = w0. (2.4)

where w0 is the angular frequency on the limit cycle. Equation 2.4 has a time solution

Equation 2.5 with the initial phase φ(0) = φ0

φ(t) = w0t+ φ0. (2.5)
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For such an oscillator the phase grows monotonically and gains 2π over one period

T = w0

2π
(Figure 2.3).

Figure 2.2. Phase portrait of a 2-dimensional uniform oscillator along the limit cycle

with amplitude A and phase φ(t).

The limit cycle of the oscillator can be in an arbitrary shape (Figure 2.4), which is

more general than the one in Figure 2.2. These types of oscillators are called nonuni-

form oscillators. The angular velocity of a nonuniform oscillator varies during one

rotation on the limit cycle. For such an oscillator, the mean angular velocity, i.e.

the frequency, can be calculated by introducing a reference line with a direction (Fig-

ure 2.5). As a particle moving on the limit cycle pierces this line, the monotonically

increasing phase gains 2π at each of these piercings.

After the generalization for a 2-dimensional flows, one can introduce phase for

a M ≥ 2 dimensional nonuniform oscillators, e.g. relaxation oscillators, chaotic oscil-

lators. For this case, Poincaré surface can be used to define phase of such motions.

A suitable Poincaré surface with a direction of piercing in the phase portrait must be

chosen such a way that the flow pierces it at each rotation. A limit cycle of an arbi-

trary shape or a chaotic flow crosses this surface and each successive piercing of the
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Figure 2.3. The phase of an periodic uniform oscillation grows uniformly in time and

gains 2π at each period.

Poincaré surface can be associated with a phase shift of 2π. Furthermore; for the sake

of convenience the phase can be assumed to be linear between successive piercings.

This assumption gives phase as Equation 2.6, where tn is the nth crossing time of the

surface. Figure 2.6 shows a 2-dimensional Poincaré surface for a 3-dimensional flow.

φ(t) = 2π
t− tn

tn+1 − tn
+ 2πn, tn ≤ t ≤ tn+1 (2.6)

Due to the neutral stability of the phase, phase and frequency of self-sustained

oscillations can easily be changes by applying relatively small external inputs. This

adjustment by external inputs is the essence of synchronization.

2.3. Synchronization

Synchronization results in a kind of cosmic balance that arises from our body to

the universe as a whole. As stated before, synchronization is an adjustment of rhythms
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Figure 2.4. Phase portrait of a 2-dimensional nonuniform oscillator along the limit

cycle with amplitude R and phase φ(t).

Figure 2.5. Reference line and its direction.
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Figure 2.6. Reference surface and its direction.

of oscillating objects due to some weak interaction yielding a collective behavior.

The Dutch scientist Christiaan Huygens was the first one to describe the synchro-

nization phenomenon scientifically. He observed that two pendulum clocks hanging on

a common support always oscillate with the same rhythm (Figure 2.7). Although he

became famous for his studies in optics and construction of the telescope, the inven-

tion and design of pendulum clocks was one of Huygens’ most important contributions,

which increased the accuracy of time measurements [1].

Huygens firstly mentioned his discovery in 1665 in a letter to his father [1]. During

his illness, when he confined to bed for several days, he observed “... a wonderful effect

that nobody could have thought before ...”, the fact that the pendula of the two clocks

hanging on the wall always swung together even if he moved them away from each

other, or perturbed them. He claimed that the pendula keep their collective motion

due to a sort of sympathy. He wrote in his own words as “...something so small is

needed to keep them in eternal agreement...”. He made many experiments thereafter,

although he did not give exact description. But he explained qualitatively the effect

of the “mutual synchronization”; the cause for the adjustment of the rhythms of two

clocks had been an imperceptible motion of the beam.
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Figure 2.7. Huygens’ drawing for his experiment done with pendulum clocks hanging

on a common support.

In 1870s, William Strutt described an important issue of synchronization, namely

oscillation death (quenching). He observed that if two distinct but similar organ pipes

mutually interact with a strong coupling, one of the oscillations suppresses the other

one.

In 1920s, radio and electrical engineering experiments accelerated the investiga-

tions of synchronization. In the experiments with two coupled triode generators, Eccles

and Vincent showed the effect of the interaction via electrical current which was the

vibration of two slightly different generators with a common frequency. Thereafter,

Appleton and van der Pol pointed out the possibility of entrainment of a generator

using a weak external signal [12,13].

Synchronization of living systems is known for centuries. As early as the fourth

century B.C., Androsthenes, scribe to Alexander the Great, noted that the leaves of

certain trees opened during the day and closed at night. In 1729, French scientist

Jean Jacques D´Ortous de Mairan found that even if heliotrope plants are kept in
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total darkness, they will continue to open and close their leaves on schedule, which

is the proof of having internal biological clocks and alternating its period according

to sun light [14]. For human beings, in fact, the internal circadian period is different

than 24-hours, as some experiments prove. If a person is completely isolated from

sunlight, sound and temperature variations, the individual periods ranges from 13 to

65 hours [15]. But we are all locked to the 24-hours Earth’s daily cycle and this

entrainment regulates the society, everybody wakes up, eats, sleeps at nearly same

times.

Synchronization is not restricted only two elements, but it is also a fundamental

dynamical process in ensembles of coupled oscillators, like fireflies [16], glowworms [16],

snowy tree crickets [17], bacterias [18], applauding audiences [19] and so on. In all these

examples, not all of the entities are not identical oscillators, each firefly has its own

natural frequency of firing, humans have different physical capabilities. But these

oscillators, under necessary conditions, oscillates as one.

In 1917, Philip Laurent wrote an article in Science about his observations of the

collective flashing of fireflies, thousands of fireflies blink on and off spontaneously [11].

By late 1960s, it was understood that each firefly has its own individual clock, which

is one of the basic requirements of synchronization. John Buck and his colleagues

made several laboratory experiments where a firefly was entrained by an artificial light.

The researchers founded that an individual firefly can adjust itself to the cycle of the

stimulus. In a large ensemble of such insects, each of them sends and receive optical

signals, and shifts the others rhythm and has its own rhythm shifted by them. As a

result, without any master, the whole ensemble blinks on and off in perfect harmony.

Another example for population synchrony is a group of people, an audience

in a concert hall [19]. When the audience starts to applause, the sound is totally

irregular, but as time goes by, the interaction via the common sound in the hall cause

simultaneous clapping and finally the audience produce a regular performance. Néda

et al. reported that such a collective behavior is typical in more homogeneous societies
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like the East European, but occurs sporadically in West European and North American

communities.

The reader will find further examples of synchronization in the next chapter. But

before moving on, let us clarify what ” weak interaction“is or how “strong” it should be.

Huygens sensed the necessity of this ” weak interaction“in his own words ” something

so small“. If the coupling is not “weak”, it imposes too strong limitations on motion

of two systems, like two clocks connected with a rigid body from their pendulums.

In such a case, the whole system becomes nondecomposable. So synchronization is

not a problem of a new unified system. The weak interaction of coupling should not

qualitatively change the behavior either one of the interacting systems and should not

deprive the systems of their individuality.

2.3.1. Synchronization of Periodic Oscillators

Systems to be synchronized are typically expected to exhibit self-sustained oscil-

lations, i.e. they have to be autonomous dissipative systems with nondecaying stable

oscillations [1]. Periodic self-sustained oscillators correspond to a limit cycle in the

state space of the dynamical system. The phase φ can be introduced as the variable

parameterizing the motion along this cycle (Section 2.2.1). The notion of phase has a

key role in the theory of synchronization. Synchronization can be achieved by three dif-

ferent coupling schemes: (i) entrainment by an external force; (ii) mutual interaction;

(iii) mean field coupling. In this section, mathematical description of synchronization

of periodic oscillators will be introduced on the basis of these coupling types.

2.3.1.1. Synchronization of a Periodic System by External Force. Entrainment of a self-

sustained periodic oscillator by an external force is the simplest case of synchronization.

Many real world phenomena can be considered as a result of such a unidirectional ef-

fect: influence of the periodic movement of the Earth on organisms [20], entrainment of

pulsatile insulin secretion by oscillatory glucose infusion [21], injection locking of a laser
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array [22], periodically stimulated firefly [23], etc. In all these examples, each periodic

oscillator is subject to a weak external influence and due to this unidirectional coupling

the frequency of the driven oscillator is locked to frequency of the driving oscillator,

yielding a synchronous motion. This phenomenon is called frequency locking [1].

In order to consider the effect of a small external periodic force on a self-sustained

oscillator in Equation 2.1, let us describe the forced system as

ẋ = f(x) + εp(x, t) (2.7)

where p(x, t) is a periodic force with period T , i.e. p(x, t) = p(x, t+ T0) has a period

T0. This force acts on the system proportional to a coupling strength ε. For the sake of

simplicity, assume that the oscillator is a uniform periodic oscillators having a stable

limit cycle with period T = 2π
w

for ε = 0. The phase dynamics on this limit cycle can

be given as in Equation 2.4.

The phase description of the entrained oscillator in Equation 2.7 by a periodic

force with phase Θ and frequency w0 = 2π
T0

with coupling strength ε 6= 0 [24], can be

stated in the form

φ̇ = w + εQ(φ,Θ)

Θ̇ = w0

(2.8)

where Q is the 2π-periodic coupling function of its arguments which depends on the

phases of the oscillator and the external force. This function can be represented as a

double Fourier series as

Q(φ,Θ) =
∑
l,k

al,ke
ikφ+ilΘ. (2.9)

Substitution of time solutions of periodic oscillators in Equation 2.5 in Equation 2.9
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yields

Q(φ,Θ) =
∑
l,k

al,ke
i(kφ0+lΘ0)ei(kw+lw0)t. (2.10)

The coupling function Q in Equation 2.10 includes both fast oscillating ei(kφ0+lΘ0) and

slow oscillating ei(kw+lw0)t terms. The latter are related with the resonance condition

kw + lw0 ≈ 0 (2.11)

which can cause to large shifts of the phase, and is critical for the dynamics [1]. When

Equation 2.10 is averaged leaving the resonant terms to preserve the fundamental

dynamics, the relation between w0 and w is obtained. If the simplest case is considered

with w0 ≈ w, only the terms with k = −l are resonant. The averaged equation is

obtained as

∑
l=−k

al,ke
i(kφ+lΘ) =

∑
k

a−k,ke
i(kφ−kΘ) = q(φ−Θ) (2.12)

where q is a 2π periodic function of (φ−Θ). Substituting q in Equation 2.8, the phase

dynamics of a forced uniform oscillator is obtained as

φ̇ = w + εq(φ−Θ)

Θ̇ = w0.
(2.13)

The effect of the external force on the driven oscillator depends on the phase difference

(φ − Θ). Thus, in order to derive the synchronization condition and determine the

frequency locking region, it is meaningful to define a new variable, namely the phase

difference between the oscillators as follows

ψ = φ−Θ. (2.14)
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The time derivation of ψ is obtained as

ψ̇ = −(w0 − w) + εq(ψ). (2.15)

When a 2π-periodic function q is considered in the simplest form as q = sin(.), Equation

2.15 is called the Adler equation [25]:

ψ̇ = −(w0 − w) + ε sin(ψ). (2.16)

When the driven oscillator adjusts its rhythm to the external force, i.e. frequency

locking, the phase difference remains constant (|φ − Θ| = |ψ| = constant). Equation

2.16 allows the derivation of the conditions for the regime of synchronization, where

the first derivative of Equation 2.14 is zero.

|φ̇− Θ̇| = |ψ̇| = 0 (2.17)

Equation 2.17 gives the stability region of Equation 2.16 and this region is often called

the synchronization region, or Arnold tongue, which is

εqmin < w − w0 < εqmax (2.18)

and corresponds to phase locking in Equation 2.19 and frequency locking in Equation

2.20

φ = wt+ ψe (2.19)

< φ̇ >= Ω = w (2.20)

where ψe is the constant phase difference between the oscillators and Ω is the observed

frequency of the driven oscillator. By looking at Equation 2.18, it is meaningful to
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conclude that there exists a region the width of which is a the function of frequency

mismatch w0 − w and the coupling strength ε. Within this region the phase φ just

follows the phase of forcing Equation 2.19. Figure 2.8 demonstrates the Arnold tongue

and synchronization plateau.

Figure 2.8. From [1]. (a) Schematic view of the Arnold tongue; (b) dependence of the

observed frequency on the external frequency.

Figure 2.9 shows the dynamics of the phase difference ψ in Equation 2.16 as

a function of the coupling strength ε. If ε is large enough, ψ remains constant. In

the vicinity of the critical value of ε (or the critical frequency mismatch value), ψ

remains constant for some time intervals and then increases by 2π; these events are

called phase slips. Between these slips the oscillator is nearly locked by the external

force and during the slip it makes one more rotation with respect to the external force.

This phenomenon is called the beat phenomenon. As one can see in Figure 2.9 higher

coupling strengths result in longer time lapse between phase slips. Eventually for large

enough coupling strengths, phase slips are eliminated and synchronization steps in.

If the natural frequency of the oscillator and the external force fulfill mw0 ≈ nw

condition, then the dynamics of the phase difference ψ = mφ − nΘ is described by a

generalized equation similar to Equation 2.15 as

ψ̇ = −(nw −mw0) + εq̄(ψ). (2.21)

In this case, entrainment occurs with the observed frequency equal to a rational multiple
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Figure 2.9. The dynamics of the phase difference Equation 2.16 for different coupling

strengths ε and for w0 = 1.1, w = 1.

of forcing frequency, Ω = n
m
w, and phase mφ = mwt + ψe, namely higher order

synchronization (locking). Figure 2.10 demonstrates the Arnold tongue for higher order

frequency locking.

Figure 2.10. From [1]. Schematic view of the Arnold tongue for higher order locking.

2.3.1.2. Synchronization of Ensembles of Coupled Periodic Systems. The other widely

studied case in the context of synchronization is collective dynamics of large ensembles

of self-sustained periodic oscillators. Collective dynamics are observed in locally and

globally coupled oscillating objects: interacting pendulum clocks [1], interacting organ

pipes [1], biological oscillators [26], flashing fireflies [16], chemical oscillators [24], a

large applauding audience [19]. In those examples, as a consequence of bidirectional



21

interaction, periodic oscillators with different natural frequencies act at a common

frequency. It appears then as a collective coherent mode in a group of nonidentical

systems and as Wiener [27] posed “...thousands of neurons or fireflies or crickets can

suddenly fall into step with one another, all firing or flashing or chirping at the same

time...”.

Two mutually interacting nonidentical periodic oscillators construct a fundamen-

tal building block for the case of many mutually coupled systems. To describe the

phase dynamics of two coupled self-sustained oscillators with a basic approach similar

to Section 2.3.1.1 will be studied. In order to analyze the effect of bidirectional coupling

of two nonidentical self-sustained oscillators in Equation 2.1, it is possible to construct

a basic model as

ẋ1 = f1(x1) + ε12p1(x1,x2)

ẋ2 = f2(x2) + ε21p2(x2,x1). (2.22)

where the autonomous dynamics fi(xi) are influenced by the interaction function pi(xi,xj)

proportional to the coupling strength εij. Without coupling, for the sake of simplicity,

one can assume that each system has a stable limit cycle with frequencies w1 and w2,

respectively, as described in Equation 2.4, and phase dynamics in the vicinity of these

limit cycles is as follows:

φ̇1(x1) = w1

φ̇2(x2) = w2. (2.23)

A model of two mutually coupled periodic oscillators can be represented similar
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to Equation 2.8,

φ̇1 = w1 + ε12Q1(φ1, φ2)

φ̇2 = w2 + ε21Q2(φ2, φ1) (2.24)

with 2π-periodic coupling functions Qij which can be represented as double Fourier

series

Q1(φ1, φ2) =
∑
k,l

ak,l1 e
ikφ1+ilφ2

Q2(φ2, φ1) =
∑
l,k

al,k2 e
ikφ2+ilφ1 . (2.25)

By replacing the time solutions of Equation 2.23 in Equation 2.25

Q1(φ1, φ2) =
∑
k,l

ak,l1 e
i(kφ1(0)+lφ2(0))ei(kw1+lw2)t

Q2(φ2, φ1) =
∑
l,k

al,k2 e
i(kφ2(0)+lφ1(0))ei(kw1+lw2)t (2.26)

one obtains fast oscillating ei(kφi(0)+lφj(0)) and slow oscillating ei(kwi+lwj)t terms that

satisfy the resonance condition

kw1 + lw2 ≈ 0. (2.27)

If it is assumed that the natural frequencies are nearly in resonance with nw1 ≈ mw2,

then all the terms of the Fourier series with k = nj, l = −mj are resonant and

contribute to the averaged equations

q1(nφ1 −mφ2) =
∑
j

anj,−ml1 eij(nφ1−mlφ2)

q2(nφ2 −mφ1) =
∑
j

anj,−ml2 eij(mφ2−nlφ1). (2.28)
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Finally, with the acceptance of equivalent coupling strengths ε1 = ε2 = ε, Equation

2.24 is put into the following form

φ̇1 = w1 + εq1(nφ1 −mφ2)

φ̇2 = w2 + εq2(mφ2 − nφ1). (2.29)

For two bidirectionally coupled systems like in the case of a driven periodic os-

cillator, the mutual influence of the oscillators depends on the phase difference. Thus,

it is useful to define phase difference as a variable in Equation 2.30 and obtain its time

derivative as in Equation 2.31, where q(ψ) = nq1(ψ)−mq2(−ψ).

ψ = nφ1 −mφ2 (2.30)

ψ̇ = −(mw2 − nw1) + εq(ψ) (2.31)

Since Equation 2.31 has the same form as in Equation 2.15, it can again be

stated that when the oscillators synchronize the phase difference remains constant

(|nφ1 −mφ2| = |ψ| < constant) implying that ψ̇ = 0 and Equation 2.31 has a stable

equilibrium point ψe. The observed frequencies of the oscillators are

Ω1,2 =< φ̇1,2 >= w1,2 + εq1,2(±ψe), (2.32)

and rational multiple of each other

Ω1

Ω2

=
m

n
. (2.33)

The simplest case of coupled oscillators is 1:1 resonance, when the natural fre-

quencies are almost equal to each other (w1 ≈ w2) meaning n = m = 1. If the
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coupling is assumed to be symmetric, i.e. q1(ψ) = q2(ψ) and taken as q = sin(.), the

corresponding basic model for the phase difference dynamics of two mutually coupled

periodic oscillators obtained as

ψ̇ = −(mw2 − nw1) + ε sin(ψ)). (2.34)

In the synchronous status, oscillators move with a constant phase shift ψe = φ1 − φ2.

ψe varies with respect to the sign of ε. If ε < 0, two oscillators attract each other

and in-phase synchronous motion is observed since −π/2 < ψe < π/2. Figure 2.11

demonstrates two coupled identical oscillators for different coupling values. For ε =

−0.1 in-phase motion is observed with ψe = 0, while for ε = 0.1 out-of-phase motion

occurs with ψe = π.

Figure 2.11. Synchronous motion of two coupled identical oscillators with

w1 = w2 = 1 (a) Out-of-phase motion for ε = 0.1; (b) In-phase motion for ε = −0.1;

(c) ψe of the processes (a) and (b).

Generalized form of N locally coupled nonidentical M ≥ 2 dimensional periodic
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systems as in Equation 2.1 can be stated as

ẋi = fi(xi) +
N∑
j=1

aijεijpij(xi,xj) (2.35)

where pij : <M → <M coupling function between the ith and jth oscillators, aij are the

elements of N × N dimensional adjacency matrix A of the network, and εijs are the

coupling strengths between ith and jth oscillators. The generalized phase representation

in the vicinity of the limit cycle of a periodic oscillator in a locally coupled network

can be stated as

φ̇i = wi +
N∑
j=1

aijεijQ(φi, φj). (2.36)

Kuramoto proposed an all-to-all connected purely sinusoidal coupling [24] and

came up with Equation 2.37, one of the most studied equations of globally interacting

oscillators.

φ̇i = wi +
ε

N

N∑
j=1

sin(φj − φi) (2.37)

where the factor 1/N is incorporated to ensure a good behavior of the model in the

thermodynamic limit, i.e. as N → ∞. What he prosed is important for representing

and understanding the phenomenon of collective synchrony, i.e. synchrony extending

to a whole population, or to a large portion of it. An equivalent representation of

all-to-all coupling is the mean field approach, where each oscillator in the ensemble is

driven by a force that is proportional to the sum of the outputs of all the oscillators

in the set (Figure 2.12). To generalize this both to periodic and chaotic oscillators,

one can denote these outputs, representing the oscillating quantity, as xi(t), where

i = 1, . . . , N is the index of an oscillator, and N is the number of elements in the

ensemble. For instance, x can be variation of light intensity like in a population of

flashing fireflies or the acoustic field of an applauding crowd. The effect of the rest of
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the set on each individual oscillator is represented with εX, where X stands for the

mean field in Equation 2.38 and ε for the coupling strength.

X = N−1

N∑
i=1

xi (2.38)

Synchronization of flashing in a population of fireflies [28], applause in a large

audience [19], menstrual cycles of mammals living together [29], glycolytic oscillations

in a population of yeast cells [30] are only a few examples for mean field coupling.

Figure 2.12. From [1]. (a) Each oscillator mutually interacts with others in an

all-to-all coupled ensemble; (b) An equivalent representation of globally coupled

oscillators where each of them is driven by a mean field that is generated by all set.

2.3.2. Synchronization of Chaotic Systems

In dynamical systems theory, the term chaotic is used to define a group of deter-

ministic systems that exhibit aperiodic behavior and that exhibit sensitive dependence

on initial conditions. As these properties, chaotic self-sustained oscillators introduce a

richer and variety of forms of synchronization than periodic oscillators. Thus, synchro-

nization of chaotic systems needs to be studied separately from the case of periodic

oscillators.

Here, again, synchronization of chaotic systems refers to a process wherein two
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(or many) chaotic self-sustained oscillators (identical or nonidentical) adjust a property

of their rhythms, which ranges from complete agreement of trajectories to locking of

phases, due to forcing or coupling. In the context of synchronization of coupled chaotic

systems, several cases depending on the identity of coupled systems and coupling type,

have been studied: complete or identical synchronization (CS) [31, 32], phase syn-

chronization (PS) [33, 34], imperfect phase synchronization (IPS) [2], lag synchroniza-

tion (LS) [35], intermittent lag synchronization (ILS) [35], generalized synchronization

(GS) [36], and almost synchronization (AS) [37].

In this section, firstly, synchronization of coupled identical chaotic systems will be

investigated, then the cases, except for AS, for nonidentical systems will be introduced.

2.3.2.1. Synchronization of Identical Chaotic Systems. As stated before, the most char-

acteristic property of chaotic systems is their sensitivity to initial conditions. As a

consequence, if two identical chaotic systems start from almost equal initial conditions,

as time goes by, they track totally different trajectories and produce uncorrelated time

solutions which remain in the basin of the same strange attractor. Nevertheless, with

a proper coupling structure, it is possible to drive these systems onto the same chaotic

trajectory [31,32].

In the context of coupled identical chaotic systems, synchronization refers to the

equality of the system states, namely complete synchronization (CS). CS is introduced

by [32] as a state when two state trajectories converge to the same values and continue in

such a relation further in time. In other words, when two chaotic oscillator completely

synchronize, they “forget” their initial conditions. Reference [38] defines CS as follows:

Definition Complete synchronization of two identical chaotic systems represented

with their phase plane trajectories x(t) and y(t), respectively, takes place when for
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all t > 0, for the relation fulfilled as

lim
t→∞
‖ x(t)− y(t) ‖= 0.

Complete synchronization can be achieved by either unidirectional (drive-response)

coupling or bidirectional coupling. In unidirectional coupling, the driver affects the

states of the responding system, while the reverse does not occur. On the contrary, in

the bidirectional case, both systems’ states alter as a consequence of coupling. Under

this classification, there exit several coupling schemes [32,39–42].

One of the unidirectional coupling configurations is introduced by Pecora and

Carroll, a method also referred to as the Pecora-Carroll method [32]. In this config-

uration a chaotic system is separated into two subsystems; drive and response. One

subsystem evolves freely and drives the other one. As a result of this chaotic force, the

response system follows exactly the driver; similar to the case of a periodic oscillator

driven by an external force (Section 2.3.1.1). Communication techniques, which utilize

chaos, take the advantages of the drive-response configuration [41].

In order to describe the essentials of Pecora-Carroll configuration, one can con-

sider a chaotic system as follows

ż = F(z) (2.39)

where z = {z1, z2, ..., zn} is a M -dimensional state vector, with F defining a vector field

F : <M → <M . Under the assumption of Equation 2.39 to be drive decomposable, it

can be separated three subsystems, referring driver and response systems,

u̇ = f(u,v)

v̇ = g(u,v)

 driver,
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ẇ = h(u,w)
}
response,

where u = {u1, u2, ..., un}, v = {v1, v2, ..., vk}, w = {w1, w2, ..., wl} and M = n+ k + l.

The evolution of response system is under the control of the driver systems via chaotic

driving signal u and, by definition, if CS is achieved the response system will track

the same trajectory as the driver does. Moreover, [32] show that in CS all Lyapunov

exponents of the response system are negative.

An example for the Pecora-Carroll method is given in [43], where two identical

Lorenz systems is considered. The first system is the driver and the second system

(the response) is driven by the driver’s x state.

ẋ = 16(y − x)

ẏ = −xz + 45.92x− y

ż = −xy − 4z

 driver,

ẏ′ = −xz′ + 45.92x− y′

ż′ = −xy′ − 4z′

 response.

As shown in Figure 2.13, the response system forgets its initial conditions and tracks

the driver.

As stated above, unidirectional coupling is not the only way of achieving CS.

Mutually coupled identical systems can also synchronize completely. In general, two

mutually coupled identical chaotic systems can be represented as [28]

ẋ = f(x) + Ĉ(y − x)T

ẏ = f(y) + Ĉ(x− y)T . (2.40)

In Equation 2.40, x and y represent the M -dimensional state vectors, with f defining
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Figure 2.13. CS of two identical unidirectionally coupled Lorenz systems. Solid line

represents z(t) and dashed line represents z′(t) of the given example.
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a vector field f : <M → <M . Ĉ is the M ×M dimensional coupling matrix. When CS

is achieved, the systems follow a common chaotic trajectory (x = y) without adhering

to their initial conditions.

An example of CS in bidirectionally coupled chaotic oscillators is constructed

again for two identical Lorenz systems as Equation 2.41 for a particular case where

Ĉ = εI. Figure 2.14 shows the synchronous behavior. As expected from the definition,

the difference between the states approaches to zero.

˙x1,2 = 16(y1,2 − x1,2) + ε(x2,1 − x1,2)

˙y1,2 = −x1,2z1,2 + 40x1,2 − y1,2 + ε(y2,1 − y1,2)

˙z1,2 = −x1,2y1,2 − 4z1,2 + ε(z2,1 − z1,2) (2.41)

Figure 2.14. CS of two identical bidirectionally coupled Lorenz systems for ε = 3.(a)

Solid line represents z1(t) and dashed line represents z2(t); (b) state difference

e(t) = z2 − z1 of the given example.
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2.3.2.2. Synchronization of Nonidentical Chaotic Systems. Completely identical syn-

chronization may not occur in nonidentical chaotic systems, since there does not exist

a synchronization manifold such as x = y because of parameter mismatches and struc-

tural differences [28]. Pazo et al. [44] investigated different synchronization scenario

by increasing the coupling strength between the oscillators from zero up to a specific

value, beyond which oscillations start being suppressed (quenching). It is shown that,

if the coupling strength between the systems is increased, firstly the weakest degree

of synchronization, the so-called phase synchronization occurs, where the phases of

interacting chaotic systems (or the phase of a system and phase of an external force)

are locked to each other, while the amplitudes remain uncorrelated. If the periods

of UPOs embedded in the chaotic oscillator are scatted over a wide range, imperfect

phase synchronization is observed where synchronization epochs are interrupted by

intermittent phase slips. If the coupling strength is increased further, the states of

the chaotic oscillators become correlated with a proper shifting of time, a situation

called lag synchronization. Between PS and LS, systems most of the time exhibit LS,

but intermittent bursts of local nonsynchronous behavior may occur in correspondence

with unlocked UPOs. For a stronger coupling, the time lag approaches to zero, and

two nonidentical chaotic systems become almost completely synchronized.

The term generalized synchronization is used as a generalization of CS [36,41]. In

this case, the states of two nonidentical chaotic systems (ẋ = f1(x) , ẏ = f2(y)) coupled

with a strong enough coupling strength converge to a synchronization subspace of the

combined phase space of the two systems (x,y). Because the systems are nonidentical,

this synchronization subspace has generally a more complicated relationship that x =

y.

Although the synchronization of chaotic oscillators can be observed in terms of

some characteristic changes in the Lyapunov exponents of the combined systems, the

more practical method of phase dynamics is used for the sake of simplicity. As stated

in Section 2.2.1 phase of a chaotic flow can be obtained by constructing an appropriate

Poincaré surface of section (Figure 2.15). With this method, the phase φ(t) is obtained
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as Equation 2.6 and a mean frequency w can be defined for a chaotic oscillator (Equa-

tion 2.42), although the Poincaré return times are nonuniform as opposed to the case

of a periodic oscillator.

w =< φ̇ > (2.42)

Figure 2.15. A single trajectory of Rössler chaotic system with a Poincaré surface

(green plane
∑

).

Phase Synchronization of Chaotic Systems. PS of chaotic oscillators is similar to

the notion of synchronization in periodic oscillators described in Section 2.3.1. Details

of PS are investigated within the scope of bifurcation theory [45], and UPOs [44, 46].

As a consequence of the interaction with a periodic or a chaotic oscillator, it is possible

to suppress the irregularity of the Poincaré return times of the chaotic system. If

the mean observed frequencies of the oscillators coincide, one can speak of frequency

locking, similar to periodic oscillators.
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The effect of PS in chaotic systems can be explained on the example of a Rössler

chaotic oscillator driven by a periodic external force as

ẋ = −y − z + ε sin(vt)

ẏ = x+ 0.04y

ż = 0.2 + z(x− 10)

(2.43)

where v is the frequency of the periodic motion and ε is the coupling strength. [46] states

that as the UPOs construct the skeleton of a chaotic system, PS can be represented in

terms of individual phase locking of these orbits. If v and ε are within the entrainment

region given as in Equation 2.18 of each UPO, PS is obtained for the whole system

(Figure 2.16).

Figure 2.16. Phase difference ψ between the periodic external force and the chaotic

Rössler system in Equation 2.43. As coupling strength ε increases, chaotic oscillator

synchronizes with the external force.
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PS in periodically forced chaotic oscillators is also observed experimentally, e.g.

the frequency entrainment of a chaotic electronic oscillator [47], chaotic gas discharge

by periodic forcing [48].

PS is also possible in mutually coupled chaotic oscillators. Generalized represen-

tation of N locally and mutually coupled chaotic M -dimensional systems can be given

as in Equation 2.44 similar to Equation 2.35, with M -dimensional vector fields Fi, the

coupling functions pij : <M → <M , elements of adjacency matrix aij and the coupling.

strengths εij.

ẋi = Fi(xi) +
N∑
j=1

aijεijpij(xi,xj) (2.44)

To study the effects of mutual coupling on PS, one can consider the example of

two mutually coupled nonidentical Rössler chaotic oscillators in Equation 2.45, which

again demonstrates similar properties to bidirectionally coupled periodic oscillators.

Without synchronization the phase difference between them increases (|φ1−φ2| → ∞).

But with a proper coupling strength and a coupling scheme, this difference remains

constant (|φ1 − φ2| < constant), therefore the systems oscillate with a common mean

frequency (| < φ̇1 > − < φ̇2 > | = |w1 − w2| = 0), while the amplitudes remain

uncorrelated and chaotic (Figure2.17, Figure 2.18).

ẋ1,2 = −(w0 ±∆w)y1,2 − z1,2 + ε(x2 − x1)

ẏ1,2 = (w0 ±∆w)x1,2 + 0.15y1,2

ż1,2 = 0.2 + z1,2(x1,2 − 10) (2.45)

Figure 2.17 shows the transition to synchronization regime as the coupling strength

increases. Two nonidentical Rössler oscillators with a parameter mismatch ∆w = 0.02

oscillate at a common frequency for ε = 0.04, which is very small compared with the
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one in CS. Thus, PS represents a weak degree of synchronization in contrast to CS.

Figure 2.17. Phase differences ψ of Equation 2.45 for different coupling strengths ε.

w0 = 0.995, ∆w = 0.02.

[28, 44, 46] state that PS of chaotic oscillators is a result of entrainment of the

frequencies of UPOs by a periodic or a chaotic oscillator. PS is possible when UPOs

of the systems are locked and have the same frequency ratio. It is underlined that the

distribution of the natural frequencies of UPOs play an important role. For example,

in the Rössler oscillators given above in Equations 2.43 and 2.45, this variation is

rather small, therefore it is easy to synchronize them by a weak forcing with a period

close to their mean frequencies. Because there exists an intersection region of the

Arnold tongue of each UPO and it is possible to find a suitable coupling strength and

forcing frequency within this region. [44, 49] state that this is a generally valid fact

for chaotic systems whose chaotic attractors of which emerge from a phase-doubling

bifurcation sequence. However, for such chaotic oscillators with widely distributed

UPO frequencies, an external effect may not be able to lock all the UPOs. In this case

or when a weak coupling strength is suggested for a period-doubling oscillator, phase

drifts occur while the trajectory of the chaotic oscillator is passing near the unlocked
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Figure 2.18. Amplitudes of Equation 2.45 for the phase synchronized case at ε = 0.04.

UPOs and an imperfect phase synchronization (IPS) is observed.

[2,49] have studied an example of a periodically driven Lorenz oscillator (Equa-

tion 2.46) to show PS and IPS. For a chaotic Lorenz system, r is the critical param-

eter. If r = 210, chaotic oscillations emerge from a period-doubling bifurcation, and

Equation 2.46 can synchronize to a periodic force with a frequency close to its mean

frequency. But if r = 28 frequencies of the UPOs are widely distributed, and there exist

certain unstable orbits which are not locked. These unlocked orbits cause the phase

slips in the phase difference dynamics and make synchronization plateau disappear

(Figure2.19, Figure 2.20).

ẋ = 10(y − x)

ẏ = rx− y − xz

ż = xy − 2.667z + εcos(Ωt) (2.46)
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Lag Synchronization of Chaotic Systems. Mutually coupled chaotic oscillators

can adjust their time scales with relatively weak coupling, which corresponds to PS. For

stronger coupling strengths oscillators can also track nearly the same chaotic trajectory

with a time shift. This behavior is called lag synchronization [35]. In this case, not

only the phases but also the amplitudes become correlated with a time delay τ , i.e.

x1(t) ≈ x2(t + τ) . [44] claims that the onset of LS is preceded by the disappearance

of UPOs which are geometrically incapable of LS.

Considering the previous example of two mutually coupled nonidentical Rössler

chaotic oscillators in Equation 2.45, under the usage of stronger enough coupling

strength ε, the relation between the states can be written as follows

x1(t) ≈ x2(t+ τ0), y1(t) ≈ y2(t+ τ0), z1(t) ≈ z2(t+ τ0). (2.47)

To characterize LS, similarity function S(τ) has been introduced in Equation 2.48 and

S(τ0) = 0 gives the lag time τ0. In Figure 2.21, S(τ) is plotted for different coupling

values of Equation 2.45. Note that for the strengths providing PS, S(τ) has a minimum

above zero. Increase in the coupling strength yields a decrease in τ and minimum of

S(τ) goes down to zero. For example, if ε = 0.14, minimum value of S(τ) reaches zero

for τ0 and the whole system undergoes a transition to LS. Figure 2.22 shows the states

x1, x2 and the amplitudes of the oscillators in the case of LS.

S2(τ) =
< (x2(t+ τ)− x1(t))2 >√

< x2
1(t) >< x2

1(t) >
(2.48)

One should note that further increase in the coupling strength lets the time lag

in Equation 2.45 approach to zero. With vanishing τ0, the two nonidentical oscillators

tend to be synchronized almost completely, i.e. x1(t) ≈ x2(t).
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Figure 2.19. From [2]. PS and IPS in Equation 2.46; solid line: r = 28, ε = 6; dotted

line: r = 210, ε = 3.

Figure 2.20. From [2]. Phase slips of IPS in Equation 2.46 for r = 28, ε = 6.
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Figure 2.21. Similarity function S(τ) obtained for two coupled Rössler oscillators

(Equation 2.45) for different values of the coupling strength ε. In PS regime

(ε = 0.04), min(S(τ)) 6= 0 when LS is obtained (ε = 0.14), min(S(τ)) = 0.

Figure 2.22. LS of Equation 2.45 for ε = 0.2. (a) x1(t) vs x2(t) shows systems do not

completely synchronize; (b) x1(t) vs x2(t+ τ0) shows LS exits between the systems for

τ0 = 0.21.
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Intermittent lag synchronization occurs during the transition from PS to LS,

where LS of the oscillators is interrupted by intermittent burst of large synchroniza-

tion error x1(t) − x2(t + τ0) [28]. The reason of ILS is explained in terms of the

changes in the Lyapunov exponents of whole system. In PS of two mutually coupled

3-dimensional chaotic oscillators, one of the two zero Lyapunov exponents becomes

negative. When the coupling strength is increased, before LS, one of the two positive

Lyapunov exponents also becomes negative. With this change, ILS is observed for the

coupling strengths within this region.

Generalized Synchronization of Chaotic Systems. In Section 2.3.2.1 it is claimed

that coupled identical systems can lock to a common chaotic trajectory in the state

space (xi = xj) and CS is achieved. But this situation is not valid is the cou-

pled systems are nonidentical. Thus, the synchronization concept needs to be gen-

eralized for the asymmetric case. [36, 50] introduce generalized synchronization con-

cept for unidirectionally coupled nonidentical chaotic systems in Equation 2.49, where

F : <n → <n,G : <m → <m and the driving function h : <n → <m If GS is satisfied,

there exists a transformation ξ : x → y which maps drivers trajectories into the ones

of response y(t) = ξ(x(t)).

ẋ = F(x)

ẏ = G(y,h(x)) (2.49)

[50] also introduces necessary and sufficient conditions for GS in Equation 2.49

and expresses that GS is about the asymptotic stability of the response systems. The re-

sponse system is asymptotically stable if limt→∞‖y(t,x(0),y1(0))−y(t,x(0),y2(0))‖ =

0, where (x(0),y1(0)) and (x(0),y2(0)) are two initial conditions for the system in

Equation 2.49 in the basin of the synchronization attractor. In other words, if the

chaotic driving signal provides the oblivion of initial conditions of the response, there

exists a mapping y(t) = ξ(x(t)). This property leads to a nice approach for detecting
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GS by generating a replica of the response system (y′ = G(y′,h(x))). In this frame-

work, it is concluded that GS is satisfied if y(t) and y′(t), which start from different

initial conditions, synchronize completely.

[51] construct a system in which a Lorenz oscillator and its replica are driven by

a Rössler oscillator in Equation 2.50. Figure 2.23 visualizes the CS between the Lorenz

and its replica as an evidence for GS between the Rössler and the Lorenz.

ẋ1 = −λ(x2 − x3)

ẋ2 = λ(x1 + 0.2x2)

ẋ3 = λ(0.2 + x3(x1 − 5.7))

ẏ1 = 10(y2 − y1)

ẏ2 = 28y1 − y2 − y1y3 + εx2

ẏ3 = y1y2 −
8

3
y3

ẏ′ = f(y) (2.50)

2.3.3. Synchronization Control

Synchronization in an ensemble of oscillators is crucial for brain functions, com-

munication, chemical reactions, predator-prey systems and so on. Controlling of this

collective rhythm is important in order to reach the desired motion in the ensemble, e.g.

influencing the phase or frequency, enhancement or suppression of the synchronization.

For instance, the enhancement of synchronous behavior may be desired for obtaining

a more robust behavior of the whole system. Such a requirement is crucial for the of

failure of cardiac or neural pacemakers. On the other hand, extremely strong synchro-

nization may have destructive effects on some brain functions. For example, neurons

located in the thalamus and basal ganglia fire in an uncorrelated manner under healthy

conditions [52], whereas the Parkinsonian tremor is a result of the synchronization of
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Figure 2.23. CS of driven Lorenz systems for λ = 6, ε = 50 (Equation 2.50).(a) Solid

line represents y1(t) and dashed line represents y′1(t); (b) state difference

e(t) = y1 − y′1.
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these neurons. Thus, for such cases, the suppression of synchronization may be crucial.

Some techniques are presented for enhancing or desynchronizing oscillatory networks,

e.g. using phase resetting principles [53, 54], delayed feedback stimulation [55–57] or

demand-controlled method [52].

In order to control synchronization in an ensemble of chaotic oscillators, re-

searchers not only have introduced new methods but also have adapted some techniques

have been used to control single chaotic systems. Due to the rich dynamics of chaotic

systems, there are different methods for control and stabilization of chaos, e.g. chang-

ing the systems parameters, applying a damper, time-delay feedback method (Pyragas’

method), stabilizing UPOs (the Ott-Grebogi-Yorke (OGY) method), occasional pro-

portional feedback (OPF). Even synchronization can be considered as a control method

of chaotic systems [58], which allows the suppression of the sensitivity to the initial

conditions or the modification of the phase of the oscillator. The interaction between

the oscillators certainly increases the complexity of the overall systems, however, some

of these techniques can still give successful outcomes.

Time-delayed feedback method is one of the most studied techniques to control

synchronization. This technique has originally been introduced by Pyragas [59], there-

fore also called Pyragas’ method. It is based on stabilizing one of the UPOs embedded

in a chaotic attractor by feeding back the delayed version of one of the observed system

states in continuous time. Equations 2.51 and 2.52 show the original formalism for this

control approach.

ẏ = P (y,x) + F (t)

ẋ = Q(y,x) (2.51)

F (t) = K[y(t− τ)− y(t)] (2.52)

In Equation 2.51 and Equation 2.52, y(t) represents the output state and the vector

x the remaining states of the dynamic system. Time delay shown by τ is chosen
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equal to the period of the UPO to be stabilized, and K denotes the amplitude of the

feedback signal F (t). Delayed feedback control algorithm has been applied successfully

in experiments in various domains such as electronics, mechanics, and pathological

brain rhythms [60].

Rössler chaotic system in Equation 2.50 is considered to illustrate the Pyragas’

method (Equation 2.53). An approximate period of period-one UPO x0(t) = x0(t+T )

embedded in its chaotic attractor is T ≈ 5.9. Figure 2.24 and 2.25 show the successful

stabilization of the period-one UPO by time-delayed feedback with τ = T = 5.9.

ẋ1 = −(x2 − x3)

ẋ2 = (x1 + 0.2x2) + F (t)

ẋ3 = 0.2 + x3(x1 − 5.7)

F (t) = K(x2(t− τ)− x2) (2.53)

The technique presented above can be applied to a drive-response configuration

in Equation 2.50 as in Equation 2.54. Here, chaotic motion of the Lorenz oscillator is

controlled by a time-delayed feedback control via a chaotic Rössler system. Here, the

frequency of the synchronous motion is effected by this control input, that is equal to

T = 5.9 sec.

ẋ1 = −λ(x2 − x3)

ẋ2 = λ(x1 + 0.2x2) + F (t)

ẋ3 = λ(0.2 + x3(x1 − 5.7))

ẏ1 = 10(y2 − y1)

ẏ2 = 28y1 − y2 − y1y3 + εx2

ẏ3 = y1y2 −
8

3
y3

F (t) = K(x2(t− τ)− x2) (2.54)
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Figure 2.24. x1 − x2 phase portrait of Equation 2.53. (a) Without control input; (b)

in the post-transient regime with control input F (t) for K = 0.2 and τ = 5.9.

Figure 2.25. (a) Dynamics of the output signal x2; (b) continuous control input F (t).

Control is switched on at t = 70 sec.
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Time-delayed feedback control is applied both theoretically and experimentally to

both locally and globally coupled ensembles of periodic and chaotic oscillators [55,61].

Beside this method, some other control methods are applied for controlling synchro-

nization. [62] investigate the synchronization control in a nonlinearly coupled oscillators

by a periodic force. An automatic control method introduced in [63] is applicable to

both coupled periodic and chaotic oscillators.

2.4. Problem Statement

The concept of this thesis can be divided into two: (i) investigation of impacts of

different factors on synchronization; (ii) controlling synchronization.

Firstly, two fundamental points associated with synchronizability are investi-

gated; network structure and individual properties of the oscillators. In this thesis,

three types of artificial networks having different topological properties (Erdős-Rényi,

Watts-Strogatz and Barabasi-Albert networks) are compared with a natural network

(the neural network model of a soil roundworm) on basis of how much they support

synchronization of the oscillators as nodes.

The second factor on synchronization is individual properties of the oscillators.

Different synchronization scenarios are observed for periodic oscillators (phase and fre-

quency locking) and chaotic oscillators (complete synchronization, phase synchroniza-

tion... etc.) depending on the coupling strengths and coupling functions. A coupling

scheme depending on the similarity of the the natural frequencies of the interacting

systems is presented and its effect on synchronization is studied. To eliminate the

randomness in network-structural sense, only globally (all-to-all) coupled networks of

oscillators are considered and because of technical limitations small size networks are

considered.

Synchronization control which is crucial in many applications is studied on an

ensemble of mean-field-coupled chaotic oscillators. Basically, two different approaches
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Figure 2.26. y1 − y2 phase portrait of Equation 2.54. (a) Without control input; (b)

in the post-transient regime with control input F (t) for K = 0.2, τ = 5.9 and λ = 1.

Figure 2.27. Dynamics of the y2 in Equation 2.54. Control is switched on at 70 sec.



49

are studied; time-delayed mean-field feedback control and applying external periodic

force. The performance of these techniques are investigated on basis of influencing

synchronous state of the ensemble.
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3. ANALYSIS TOOLS

In this chapter some indirect analysis methods of synchronization are presented:

power spectral density analysis, variance analysis on the ensemble and the correlation

coefficient. Those methods are useful especially when directly identifying phase is not

possible or its dynamics is hard to analyze. Additionally, the user interface prepared

for the simulation of oscillators networks will be presented.

3.1. Power Spectral Density Analysis

For a given signal, the power spectrum gives a plot of the portion of a signal’s

power (energy per unit time) within each frequency bin. The peak in this plot occurs

at the dominant frequency value of the signal. Power spectrum analysis presented as

a tool for detecting synchronization in [64] can be useful even for the cases where the

coupled oscillators are structurally distinct.

A direct way to track the collective behavior between coupled oscillators is to

define phase for each oscillator properly, then to look for horizontal plateaus in the

phase difference, as it is done in the previous sections. However, assigning phase for

some oscillators, is not an easy task. Phase of a periodic oscillator can be obtained

by constructing a Poincaré surface in the state space of the system. Contrarily, if the

oscillator under consideration is an aperiodic one, like a chaotic system, assigning a

Poincaré surface is not so simple. An inadequate choice of the Poincaré surface leads

to wrong measurements and errors in phase calculation. To avoid confusion, power

spectral analysis can be executed for an appropriate observed state of the oscillator.

This analysis can be performed both on numerical solutions of system models and

experimental results.

Let us consider two mutually coupled Rössler chaotic oscillators in Equation 2.45

as an example for power spectral density analysis. Typically, the power spectrum of
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a chaotic system has a board-band component and a peak at the mean frequency of

oscillations. It should be kept in mind that in case of phase synchronization, the coupled

systems oscillate at the same mean observed frequency. Figure 3.1 demonstrates how

the peaks of the power spectra of the oscillators converge to each other and finally

overlap.

Figure 3.1. Power spectra of coupled Rössler oscillators in Equation 2.45 (a) before

phase synchronization; (b) after phase synchronization is achieved.

Power spectrum analysis of the mean field of a mean-field-coupled network also

gives an idea about whether the synchronization state is achieved. As Figure 3.2 shows

for the mean-field-coupled Rössler oscillators in Equation 2.45, with increasing in the

coupling strengths the power spectrum becomes narrower and a sharp peak shows up

at the mean frequency when the ensemble achieves phase synchronous behavior for

ε = 0.2.

In this thesis, in all experiments with chaotic oscillators, power spectral analysis

is used for assigning the mean observed frequencies.
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Figure 3.2. Evaluation of power spectrum of the mean field of coupled Rössler

oscillators in Equation 2.45 for different coupling strengths.
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3.2. Ensemble Deviation and Correlation Factor

Another strategy of detecting synchronization of mean-field-coupled systems is

by means of analyzing the ensemble variance [65]. Here, ensemble deviation refers to

the largest absolute deviation of the mean field oscillations from zero. The ensemble

deviation of synchronized oscillators is larger than that of unsynchronized oscillators.

Figure 3.3 and Figure 3.4 shows the asynchronous and synchronous states of two mu-

tually coupled identical periodic uniform oscillators.

Is this thesis, inspired by mean field variance, ensemble deviation is used for

quantifying the synchronization of coupled identical oscillators. Ensemble deviation is

the mean of the difference between the mean field and each of the oscillators which

can be calculated as in Equation 3.1. If the oscillators completely synchronize, this

difference approaches zero, since the oscillators’ states follow the same trajectory within

the state space of the overall system.

V (t) =

√∑N
i (X(t)− xi(t))

N
(3.1)

In some cases, such as complete synchronization and lag synchronization, the

correlation between the states can be used as an indirect measurement. The correlation

coefficient between two variables S and T consisting of n samples, also known as

Pearson’s correlation coefficient, is formulated as in Equation 3.2, where si and ti are

the samples, S̄ and T̄ are the mean values, σS and σT are the standard deviations of

S, T vectors. This coefficient ranges between [−1, 1] (Figure 3.5). The meaning of the

value of this correlation coefficient in given in Table 3.1.

corrST =

∑n
i (si − S̄)(ti − T̄ )

(n− 1)σSσT
(3.2)
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Figure 3.3. Two mean-field-coupled periodic oscillators (dash and dash-dot lines) and

their mean (solid line) for asynchronous behavior.

Figure 3.4. Two mean-field-coupled periodic oscillators (dash and dash-dot lines) and

their mean (solid line) for synchronous behavior.
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Figure 3.5. Variation of correlation coefficient between different pairs of variables.

Table 3.1. Ranges of the correlation coefficient and their respective meanings.

Correlation Negative Positive

None (-0.1,0] [0,0.1)

Small (-0.3,-0.1] [0.1, 0.3)

Medium (-0.5,-0.3] [0.3, 0.5)

Strong [-1,-0.5] [0.5, 1]

3.3. An Interface for Coupled Oscillators In Complex Networks

For investigating the collective behavior of coupled oscillators on basis of simula-

tions a user-friendly interface has been designed as part of this thesis (Figure 3.6).

The interface enables the user to:

• investigate behaviors of forced or coupled oscillators of three different types, and

combine them as well,

• assign natural frequencies and some specific parameters of the oscillators as Gaus-

sian distributed random or predefined variables,

• choose among predefined topology types or work on his own network,

• edit the coupling matrix, i.e. delete existing edges or add new ones,

• specify the effect type of interacting oscillators.

After assigning the simulation time and running the system, a new table pop ups

demonstrating the natural and observed frequencies of the oscillators, besides they are
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Figure 3.6. User interface designed for simulations of synchronization in oscillator

networks.



57

showed in the main figure. Finally, the numerical time solutions of the oscillators are

exported in the workspace, so the user can plot or examine them separately. At the

same time, the obtained numerical results can be analyzed by already existing power

spectral density analysis.

The user manual for this simple interface is given in Appendix C.
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4. EXPERIMENTS AND RESULTS

4.1. Synchronization

In this section, synchronization in complex networks, similarity-dependent cou-

pling scheme and synchronization of chaotic Rössler systems will be presented.

4.1.1. Synchronization in Complex Networks

One of the questions to be answered is the effect of network topology on syn-

chronization behavior. For this purpose, a well-studied model of neural network of soil

nematode Caenorhabditis elegans (C. elegans) is studied and compared with other arti-

ficially created networks, e.g. Erdös-Rényi (ER), Watts-Strogatz (WS) and Barabasi-

Albert (BA), having same number of nodes and edges. For the sake of simplicity,

the nodes are considered to be uniform periodic oscillators and only unweighted and

undirected graphs are studied.

C. elegans is a free-living, transparent roundworm (nematode), about 1 mm in

length, which lives in temperate soil environments. Researches in the molecular and

developmental biology of c. elegans begun in 1974 and since then it has been used

extensively as a model organism. C. elegans has a relatively simple nervous system

consisting 302 neurons and all the connections of its neuronal network are well known.

The nervous system is separated into two units as follows. First, the pharyngeal nervous

system is composed of 20 cells. Second, the somatic nervous system consists of the rest

neurons. The long processes from the somatic neurons construct bundles; the nerve

ring, the ventral cord, etc.. The data set of this neural network is obtained from Mark

Newman’s network database [3]. This data had been compiled by Duncan Watts and

Steven Strogatz [4] from original experimental data by White [66].

The network data, which is taken from Newman’s database, includes 297 nodes
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and 2148 weighted, directed edges (Figure 4.1). Newman noted that the nodes in the

original data of White’s were not consecutively numbered, so they had been renumbered

to be consecutive. Furthermore, it is also stated that the original node numbers from

Watts’ data file are retained as the labels of the nodes and edge weights given by Watts.

For simplicity, all edges are treated as undirected and unweighted for this thesis. Table

4.1 shows the analysis of the unweighted and undirected neural network.

Figure 4.1. From [3]. Weighted, directed graph of neural network of c. elegans,

numbered by Watts.

The artificial networks studied in this thesis have been generated with the same

number of nodes and edges of unweighted and undirected neural network of c. elegans.

For the construction of an ER random network model, the crucial value is the average

degree < k >= l
N

, and connection probability p = L
l
, where l is the actual number of

edges in the network and L = N(N −1) is the maximum number of edges in a directed

network with N nodes.
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Table 4.1. Analysis of unweighted and undirected neural network of c. elegans.

# of nodes: N 297

Average node degree: < k > 14.47

Average shortest-path length: 2.46

Average clustering coefficient: 0.292

# of connected components: 1

WS graphs are generated according to the rule proposed by Watts and Strogatz

[4]. They started with a regular N nodes ring graphs, in which each node is connected of

its 2m nearest neighborhoods. Then, for each node, each link connected to a clockwise

neighbor is rewired to a randomly chosen node with a probability p, and preserved with

a probability (1− p). Note that if p = 0, the network is a regular ring, which has high

clustering coefficient but a high average shortest path value. If p = 1, the network is

a random graph, which has very low average shortest path value but a low clustering

coefficient. Whereas, WS network model, also called small-world network, is between

a regular ring an random graph with 0 < p < 1 having a high clustering coefficient and

a low average shortest path value (Figure 4.2).

For constructing of a BA network, one should start with m0 number of isolated

nodes. At each time step, t = 1, 2, . . . , N − m0, a new node j with m ≤ m0 links is

added to the network. The probability that a link will connect j to an existing node i

is linearly proportional to the actual degree of i. Since every new node has m number

of links, at time t, the network will have N = m0 + t nodes and l = mt links. For

large times, the average degree will be < k >= 2m, and the degree distribution will be

scale-free P (k) ∼ k−γ.

The governing dynamics of the nodes in Equation 4.1 are the generalization of

Kuramoto’s globally coupled oscillators in Equation 2.37, where εij are the coupling

strengths between pairs of connected oscillators, aij are the elements of adjacency
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Figure 4.2. Form [4]. Illustration of small world network connectivity with respect to

p.

matrix. The first problem when defining the Kuramoto model in complex networks is

how to state the interaction dynamics properly [67]. The most important point is the

preserving the heterogeneity of a complex network. Yet, there are several approaches,

in this thesis, sum of the coming effects onto a node is divided by the maximum node

degree in a network, kmax. This means that, if an oscillator has more connections, it

has more chance to orient itself to its local environment. Equation 2.36 can be written

as

φ̇i = wi +
ε

kmax

N∑
j=1

aij sin(φj − φi). (4.1)

For statistical accuracy, in this study 20 graphs are generated for each network

model according to the same construction rules. Heterogeneity of a network is measured

via its minimum and maximum node degrees. As Table 4.2 demonstrates, among all

the considered networks the most heterogeneous one is c. elegans’ neural network and

the least heterogeneous ones are WS networks. Note that if the rewiring probability

p of WS network is small, the network is more homogeneous, and this network model

approaches to the random one, ER as p increases.
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Table 4.2. Averaged maximum and minimum node degrees of considered networks.

< kmin > < kmax >

CE 1 134

ER 5 26.45

BA 7 81.6

WS(p=0.1) 9.55 19.3

WS(p=0.2) 7.7 20.8

WS(p=0.3) 6.95 22.5

WS(p=0.4) 5.9 23.25

WS(p=0.5) 5.7 23.35

WS(p=0.6) 5.35 24.35

WS(p=0.7) 5.45 24.55

WS(p=0.8) 5.05 25.35

WS(p=0.9) 4.8 25.8

4.1.1.1. Synchronization of Identical Periodic Uniform Oscillators. As a first step for

capturing the topological effects on synchronization, the nodes are assumed to be identi-

cal, wi = w = 1rad/sec. Irrespective of initial phases and coupling strengths, identical

periodic oscillators can adapt their phases to each other in the long run. The topol-

ogy and coupling strengths dramatically affect how fast phase synchronized state is

reached.

The coupling strength ε is changed between 0.05 and 0.5. The experiments are

conducted for a duration 200 sec. The behavior of V(t) (Equation 3.1) in the un-

weighted and undirected neural network is demonstrated in Figure 4.3. As the coupling

strength increases, the oscillators synchronize faster, but it should be noted that the

final value of V (t) is far from 0, whereas in the artificially created networks V (t) almost

equals to 0 as given in Table 4.3 and plotted in Figure 4.4.
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Figure 4.4 shows the relevance of small-world property of a network for achieving

collective behavior even if the common coupling is so small such as ε = 0.05. For such

a small value, as the rewiring probability increases, the final value of V (t) increases and

approaches to the random ER network, as expected and Figure 4.2 demonstrates. And

also one can observe that the hub structure, the outcome of scale-freeness, negatively

affects the synchronizability. BA network has highest V (t) value among all networks.

Final important note is about the difference between a “intelligently structured

network” and artificial ones. One can observe that V (t) approaches to zero with in-

crease in the coupling strength for most of the artificial networks, as opposed to c.

elegans’ neural network. Even though it is more heterogeneous than the BA network,

it allows better synchronizability. Although c. elegans has small-world properties, its

performance in terms of phase locking is worse than the WS graph. As it is stated

before, for some cases synchronization is not desired and special structure of c. elegans’

network may hamper synchronization of the whole oscillators.

Figure 4.3. V (t) with respect to varying ε in unweighted and undirected neural

network of c. elegans.
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Figure 4.4. Final value of V(t) for different ε values in each network.



Table 4.3. Final value of V(t) for different ε values in each network.

ε=0.05 ε=0.1 ε=0.15 ε=0.2 ε=0.25 ε=0.3 ε=0.35 ε=0.4 ε=0.45 ε=0.5

CE 0.3081 0.2127 0.1652 0.1376 0.1192 0.1056 0.09483 0.0858 0.0781 0.0714

ER 0.1303 0.0386 0.0139 0.0056 0.0024 0.0010 0.0004 0.0002 0.0001 5.13e-05

BA 0.3754 0.2699 0.1911 0.1360 0.0978 0.0713 0.0526 0.0392 0.0294 0.0223

WS(p=0.1) 0.0702 0.0365 0.0230 0.0151 0.0101 0.0069 0.0047 0.0033 0.0023 0.0016

WS(p=0.2) 0.0786 0.0288 0.0154 0.0087 0.0051 0.0030 0.0018 0.0011 0.0007 0.0004

WS(p=0.3) 0.0858 0.0272 0.0123 0.0060 0.0030 0.0015 0.0007 0.0004 0.0002 0.0001

WS(p=0.4) 0.0867 0.0225 0.0084 0.0034 0.0014 0.0006 0.0002 0.0001 5.88e-05 2.66e-05

WS(p=0.5) 0.1075 0.0278 0.0095 0.0038 0.0016 0.0007 0.0003 10.0001 6.67e-05 3.08e-05

WS(p=0.6) 0.1132 0.0288 0.0092 0.0033 0.0012 0.0005 0.0002 8.63e-05 3.67e-05 1.59e-05

WS(p=0.7) 0.0899 0.0206 0.0061 0.0020 0.0007 0.0002 0.0001 3.97e-05 1.53e-05 5.98e-06

WS(p=0.8) 0.1068 0.0284 0.0095 0.0036 0.0014 0.0006 0.0002 0.0001 5.24e-05 2.36-05

WS(p=0.9) 0.1145 0.0308 0.0102 0.0037 0.0015 0.0006 0.0002 0.0001 5.16e-05 2.30e-05
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4.1.1.2. Synchronization of Nonidentical Periodic Uniform Oscillators. The second step

in order to capture the topological effects to synchronization, the nodes are assumed

to consist of nonidentical periodic oscillators. More specifically, the periodic oscilla-

tors that constitute the nodes have been chosen such that they differ from each other

in terms of their natural frequencies. The initial phases are assigned uniformly dis-

tributed manner around π and the natural frequencies are assigned according to a

Gaussian distribution with mean value µ = 1 and variance σ2 = 0.01 (Figure 4.5).

Figure 4.5. The histogram of the natural frequencies of 297 periodic oscillators

distributed according to ℵ(1,0.01).

Two Kuramoto oscillators represented in Equation 2.37 synchronize if and only

if ε > εc. For Equation 2.37, the critical coupling strength equals to the difference

between the natural frequencies of the oscillators. Kuramoto showed [24] that for

relatively small N the critical coupling strength depends on the standard deviation of

the Gauss distribution. To define a proper ε for complex networks, firstly a globally

coupled network has been considered, in order to guarantee synchronization at least

for such an all-to-all coupled case. It should be noted that a globally coupled network
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has a homogeneous structure with kmax = (N − 1) which is identical for all vertices. It

is observed that for ε = 0.2 > σ = 0.1 almost all nodes are frequency locked (Figure

4.6). Consequently, ε in Equation 4.1 has been taken as 0.2 in all other experiments

and the sum of the effects coming from other nodes divided to kmax given in Table

4.2. It should be noted that due to technical limitations the experiments have been

performed only for t = 200 sec.

Figure 4.6. Final frequency distribution in an all-to-all coupled network with ε = 0.2.

Number of nodes having the same frequency is 271 and number of occupied bins is 26.

Note that 282 of the randomly distributed natural frequencies of the oscillators

are in different bins (Figure 4.5). It is expected that coupling will result in decrease in

the number of occupied bins in the final observed frequency histogram. If the network

topology provides optimal conditions for synchronization of the ensemble, like an all-

to-all coupled structure, the number of occupied bars will be small. The sensitivity of

the bin size is 10−3 which is also acceptable for numerical sensitivity of the simulations.

Figure 4.7 shows the final frequency distribution of the oscillators in the c. ele-

gans’ neural network. As expected, the number of occupied bins decreased to 201 as a
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result of synchronization.

Figure 4.7. The final distribution of frequencies of the oscillators in c. elegans’

network.

The final view of the all networks is given in Table 4.4 and the histogram of the

final frequency distribution for some of the networks are shown in Figure 4.8. The ER

networks are much more homogeneous than the c. elegans’ neural network, since the

average maximum degree is 26.45. As a result, the average number of occupied bins

for ER network slightly less than that of c. elegans. In the other more homogeneous

networks, the WS networks, the number of occupied bins is the least among other

models. Moreover, it is clear that for small p values, more oscillators synchronize

better. Increasing p randomizes the WS networks, causing the results to approach

the ER networks. It is meaningful to state that the small-world property, higher

clustering coefficient and lower average path length, allows synchronization. Among

all networks the BA network has the worst synchronizability. So it can be concluded

that hubs in a network hamper synchronization. These results do not contradict with
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the ones obtained for the synchronization of identical periodic oscillators. Here again

structural properties of c. elegans cause different outcomes than the artificial ones. For

instance, [4] showed that the neural network of c. elegans has small-world property, but

synchronization in this network is worse than the WS. Also, it allows synchronization

more that the BA although it is more heterogeneous. This difference can be interpreted

as an evidence for the effect of special structure of natural networks which must have

evaluated in such a way that their structure allows optimal performance in some sense.

Table 4.4. Average number of occupied bins after 200 sec.

# of occupied bins

CE 201

ER 200

BA 202.6

WS(p=0.1) 187.65

WS(p=0.2) 192.10

WS(p=0.3) 197.55

WS(p=0.4) 198.40

WS(p=0.5) 197.25

WS(p=0.6) 197.85

WS(p=0.7) 197.5

WS(p=0.8) 199.05

WS(p=0.9) 198
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Figure 4.8. Final frequency distribution of (a) ER network (b) BA network (c) WS

network for p = 0.1.

4.1.2. Synchronization of Periodic Uniform Oscillators with Similarity-Dependent

Coupling Strengths

In this section coupling strengths will be formulated according to natural frequen-

cies of the coupled oscillators. The impact of this formulation on the synchronization

across an all-to-all coupled network will be investigated.

The oscillator dynamics are stated as in Equation 4.2 that is very similar to

Equation 2.37 except for heterogeneous coupling strength εij(∆wij), which is a func-

tion of the difference between the natural frequencies, and normalizing factor N − 1.

This factor is taken as N by Kuramoto which does not make any difference for large
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networks.

φ̇i = wi +
1

N − 1

N∑
j=1

εij(∆wij) sin(φi − φj) i = 1, ..., N (4.2)

The coupling strength εij(∆wij) between the node i and node j has been formu-

lated as a function of the difference of the natural frequencies in order to account for the

similarity between node dynamics. εij will take the higher values as two nodes are more

similar in terms of their natural frequencies, which is an indicators of synchronizability.

To calibrate and express the similarity numerically a Gaussian-distribution function is

used as in Equation 4.3. This function takes its highest value when |wi − wj| = 0 and

is zero when |wi − wj| → ∞.

f(wi − wj) =
1

σ
√

2π
e(−

(wi−wj)
2

2σ2
) (4.3)

For a fair compression between the homogeneous coupling, where εij = ε for every

i, j, and heterogeneous coupling, the average coupling strengths of both schemes need

to be equal. A scale factor is obtained as follows

(N − 1)ε = ScaleFactori
∑
i 6=j

f ′ij (4.4)

where f ′ij is the normalized fij with the maximum value of fi = [fi1, fi2, ..., fiN ]T vector.

Finally εij(∆wij) equals to

εij(∆wij) = ScaleFactorif
′
ij. (4.5)

To investigate the effect of heterogeneous coupling coefficients on synchronization,

first let us start with an all-to-all coupled networks of 3 nonidentical uniform oscillators
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with natural frequencies at w1 = 0.9, w2 = 1, w3 = 1.1. If considered pairwise, the

entrainment region is satisfied for ε ≥ 0.11 for the first and the second oscillators

and the second and third oscillators, as well. But as Figure 4.9 demonstrates that this

coupling coefficient is not enough to synchronize all 3 oscillators, thus higher coefficients

are needed.

Figure 4.9. Behavior of pairwise phase differences of the all-to-all coupled 3

nonidentical uniform oscillators for (a) ε = 0.1; (b) ε = 0.11; (c) ε = 0.12.

On the other hand, if the weighted coupling strengths are considered as proposed

above and demonstrated in Table 4.5, the oscillators can synchronize for smaller average

coupling strengths,εavg, depending on the variance σ2 in Equation 4.3. If the variance

is small, the difference between the coupling strengths of one oscillator to the other is

increased. Because this scheme of coupling strength assignment encourages the nodes

to be more sensitive to the differences in the internal dynamics of the other nodes

and weight the information coming from them. The effect of σ2 on synchronization is

obvious as Figure 4.10 shows. If the variance is small, the oscillators can synchronize

for a small average coupling strength.

Next, the result of similarity-dependent coupling strengths scheme is studied on

a larger network. This time an all-to-all coupled network of 10 nonidentical periodic
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Figure 4.10. Behavior of pairwise phase differences of the all-to-all coupled network 3

nonidentical uniform oscillators for εavg = 0.1; (a) σ2 = 0.1; (b) σ2 = 0.01.

Figure 4.11. Behavior of pairwise phase differences of the all-to-all coupled network of

3 nonidentical uniform oscillators for the variance σ2 = 0.1; (a) εavg = 0.1; (b)

εavg = 0.11.
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Table 4.5. Heterogeneous coupling strengths εij depending on the variance σ2 for the

3 oscillators for εavg = 0.1.

wi σ2 = 0.1 σ2 = 0.01

w1 = 0.9
ε12 = 0.1075 ε12 = 0.1635

ε13 = 0.0925 ε13 = 0.0365

w2 = 1
ε21 = 0.1 ε21 = 0.1

ε23 = 0.1 ε23 = 0.1

w3 = 1.1
ε31 = 0.0925 ε31 = 0.0365

ε32 = 0.1075 ε32 = 0.1635

oscillators are considered. Table 4.6 gives the first node’s heterogeneous coupling coef-

ficients ε1j(∆w1j) for the average coupling strength εavg = 0.2 and σ = 0.1 in Equation

4.3. As expected, the coupling strength between the most similar ones (first and fifth)

is higher than the least similar ones (first and fifth). As Figure 4.12 demonstrates, the

ensemble reaches phase synchronization for heterogeneous coupling strengths, whereas

the first node could not synchronize properly for standard homogeneous coupling. Fur-

thermore, if the variance is decreased, phase synchronization is obtained for smaller

average coupling strengths.

4.1.3. Synchronization in Ensembles of Chaotic Oscillators Coupled via

Mean Field

In this section, synchronization in an ensemble of N mean-field-coupled noniden-

tical Rössler oscillators is studied. Inspired by [18, 68] a different model is considered

than the one in [69]. It is assumed that the effect of the rest of the oscillators on each

individual oscillator is proportional to the difference between its output and the mean

field. This difference is added to the system equation (Equation 4.6), where X stands
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Table 4.6. Heterogeneous coupling strengths ε1j for σ2 = 0.1 where εavg = 0.2.

wi ε1j(∆w1j)

1.2350 0

0.9384 0.1836

1.0748 0.2507

0.9808 0.2063

1.0889 0.2562

0.9235 0.1755

0.8598 0.1410

0.8578 0.1399

1.0488 0.2397

0.9823 0.2071

for mean field (Equation 2.38), that is the mean of the observed states xi .

ẋi = −wiyi − zi + ε(X − xi)

ẏi = wixi + 0.15yi

żi = 0.4 + zi(xi − 8.5) (4.6)

4.1.3.1. Synchronization of Identical Chaotic Oscillators. As stated in Section 2.3.2.1,

mutually coupled identical oscillators can synchronize completely, which can be inter-

preted as if they forget their initial conditions and eventually converge to the same

chaotic trajectory. One way of detecting synchronization in an ensemble is by observ-

ing the mean difference between the mean field and the oscillator (Equation 3.1), which

approaches to zero as systems synchronize completely (as a result of tracking the same

trajectory without any time delay).
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Figure 4.12. Phase dynamics of the all-to-all coupled network of 10 nonidentical

uniform oscillators for εavg = 0.2; (a) homogeneous coupling (b) heterogeneous

coupling with σ = 0.1.

Figure 4.14 shows how the ensemble deviation (Equation 3.1) behaves with vary-

ing coupling strength ε for N = 6 globally coupled identical Rössler oscillators (Equa-

tion 4.6) with wi = w = 1. Obviously the systems reach complete synchronization as

the coupling strength increases.

4.1.3.2. Synchronization of Nonidentical Chaotic Oscillators. In the phase synchro-

nization of nonidentical oscillators, it is known that the observed frequencies of the

oscillators become equal. If one plots the mean observed frequencies versus the indi-

vidual mean natural frequencies, a synchronization plateau is observed.

Figure 4.15 shows how the synchronization plateau emerges as the coupling

strength ε increases for N = 6 globally coupled nonidentical Rössler oscillators (Equa-

tion 4.6). As one can observe, all nodes start to oscillate at a common frequency for

ε = 0.175. Table 4.7 shows the wi parameters and variation of the mean observed
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Figure 4.13. Phase dynamics of the all-to-all coupled 10 nonidentical uniform

oscillators for εavg = 0.15; (a) homogeneous coupling (b) heterogeneous coupling with

σ = 0.01.

(angular) frequencies Ωi of the considered 6 Rössler oscillators.
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Figure 4.14. Behavior of V (t) of the mean-fielded coupled identical Rössler oscillators

for (a) ε = 0.025; (b) ε = 0.1; (c) ε = 0.2; (d) ε = 0.275.

Figure 4.15. Emergence of phase synchronization in the ensemble of nonidentical

Rössler oscillators with respect to the coupling strength ε.



Table 4.7. wi parameters and variation of the mean observed frequencies Ωi of Rössler oscillators.

wi ε = 0 ε = 0.025 ε = 0.05 ε = 0.8 ε = 0.1 ε = 0.125 ε = 0.15 ε = 0.175 ε = 0.2

1.1407 Ω1 1.1984 1.1505 1.1505 1.1505 1.1505 1.1505 1.1025 1.1025 1.1025

1.1300 Ω2 1.1505 1.1505 1.1505 1.1505 1.1505 1.1505 1.1025 1.1025 1.1025

1.0671 Ω3 1.1025 1.1025 1.1025 1.1025 1.1025 1.1025 1.0546 1.1025 1.1025

0.8793 Ω4 0.9108 0.9108 0.9108 0.9108 0.8629 0.8629 0.8629 1.1025 1.1025

1.0717 Ω5 1.1025 1.1025 1.1025 1.1025 1.1025 1.1025 1.0546 1.1025 1.1025

1.0000 Ω6 1.0546 1.0067 1.0067 1.0067 1.0067 1.0067 1.0067 1.1025 1.1025
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As discussed before, states of the chaotic oscillators become correlated as the

coupling strength increases. [65] showed this correlation via mean field by presenting

the phase portrait of X = 1
N

∑N
i=1 xi and Y = 1

N

∑N
i=1 yi. Increasing correlation

between the states manifests itself as a much more regular structure in this phase

portrait (Figure 4.16).

Figure 4.16. Phase portrait of X and Y (a) ε = 0.175; (b) ε = 0.2.

4.2. Synchronization Control

In this section, the effect and performance of different control methods for con-

trolling the synchronization of globally coupled chaotic oscillators (Equation 4.6). Two

different control techniques are considered: feeding back time-delayed mean field, and

applying external periodic force.

4.2.1. Synchronization Control via Mean Field by Delay Feedback Control

Reference [55] has suggested two different forms for delayed feedback: differential

method and direct method. In the differential method (Equation 4.7) the difference

between delayed and current mean fields is fed back to one of the system variables,

whereas in direct method (Equation 4.8), time-delayed mean field is fed back directly
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to one of the system variables, with the amplitude K and delay time τ .

ẋi = −wiyi − zi + ε(X +K[Xd −X]− xi)

ẏi = wixi + 0.15yi

żi = 0.4 + zi(xi − 8.5) (4.7)

ẋi = −wiyi − zi + ε(X +KXd − xi)

ẏi = wixi + 0.15yi

żi = 0.4 + zi(xi − 8.5) (4.8)

Xd(t) = X(t− τ) (4.9)

These feedback control techniques are applied to both an ensemble of identi-

cal Rössler oscillators (Section 4.1.3.1) and nonidentical Rössler oscillators (Section

4.1.3.2). In the former, the effect of the delayed mean field feedback on the complete

synchronization state has been investigated. In the nonidentical ensemble, undergoing

changes is the phase synchronization state of the ensemble has been studied.

4.2.1.1. Ensemble of Identical Chaotic Oscillators. In this section, it has been investi-

gated whether feeding back the time-delayed mean field can affect the complete synchro-

nization state. Depending on the control scheme, the time delay τ and the amplitude

K, this feedback effect may change the time for achieving complete synchronization,

settling time of V (t), or may destroy the complete synchronization between the oscil-

lators.

The coupling strength is assumed to be ε = 0.2 for the ensemble consisting of

identical Rössler oscillators (Equation 4.6) with wi = w = 1 as in Section 4.1.3.1 Figure
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4.17 demonstrates the ensemble deviation, V (t). As one can observe the ensemble

synchronizes completely at t = 250 sec.

Figure 4.17. Behavior of V (t) of the mean-field-coupled chaotic Rössler oscillators for

ε = 0.2.

The differential feedback method (Equation 4.7) is rewritten for wi = w = 1 as

ẋi = −yi − zi + ε(X +K[Xd −X]− xi)

ẏi = xi + 0.15yi

żi = 0.4 + zi(xi − 8.5). (4.10)

To observe the effects of the control input on the complete synchronization, the dif-

ference between the actual mean field and the delayed mean field is fed back to the

xi states of the oscillators at t = 50 sec, before compete synchronization is achieved,

and t = 300 sec, after complete synchronization is achieved. With the former, it has

been investigated if synchronization is achieved earlier than t = 250 sec. And with the
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control action applied at t = 300 sec, the influence on the complete synchronization

state of the system has been studied. Three different delay times are considered: (i)

τ = T ; (ii) τ = t/2, where T = 24 sec is the period of the mean-field calculated from

the power spectrum of the mean-field; (iii) τ =< Ti > is the average mean natural

frequencies of the oscillators. The difference between T and < Ti > should be noted.

The amplitude K is varied between [−1, 1].

Table 4.8 shows the settling time of V (t) for three different delay values and K.

When τ = T , the control signal accelerate the achievement of the complete synchro-

nization state. Especially for K > 0.5, the system completely synchronizes as soon

as the delayed mean field is fed back (Figure 4.18). It is important to note that the

achievement of the synchronization is delayed by the control signal with positive small

K values. In general, decrease in the settling time is also obtained by the delayed mean

field for τ = T/2, but it is not as effective as the one for τ = T (Figure 4.19). The

time delayed feedback for < Ti > generally shortens the settling time, but for large

values of K the difference between oscillators is suppressed at first, then the collective

behavior is totally destroyed (Figure 4.20).

The direct feedback method (Equation 4.8) is rewritten for wi = w = 1 as

ẋi = −yi − zi + ε(X +KX(t− τ)− xi)

ẏi = xi + 0.15yi

żi = 0.4 + zi(xi − 8.5). (4.11)

The delayed mean field is fed back directly to the xi states of the oscillators at t = 50 sec

and t = 300 sec, again. Time delay τ and feedback amplitude K are equal to the ones

in differential feedback control technique in Equation 4.10).

Table 4.9 shows the effect of the direct feedback control method on the complete

synchronization time. For all τ values, the control signal with 0 < K ≤ 1 does not
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Table 4.8. The impact of differential time-delayed feedback applied at t = 50 sec on

the synchronization time of the ensemble of identical Rössler oscillators.

K τ = T τ = T/2 τ =< Ti >

-1 118 217 >300

-0.9 143 142 213

-0.8 248 265 108

-0.7 91 276 170

-0.6 82 104 97

-0.5 >300 >300 87

-0.4 204 123 117

-0.3 112 112 105

-0.2 124 276 178

-0.1 81 142 111

0.1 232 278 226

0.2 298 111 135

0.3 105 99 99

0.4 93 134 99

0.5 117 122 135

0.6 56 119 >300

0.7 57 108 >300

0.8 57 120 >300

0.9 57 131 >300

1 60 134 >300
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Figure 4.18. Behavior of V (t) of Equation 4.10 for τ = T . The control signal is

applied at t = 50 sec. (a) K = −1; (b) K = −0.5; (c) K = 0.5; (d) K = 1.
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Figure 4.19. Behavior of V (t) of Equation 4.10 for τ = T/2.The control signal is

applied at t = 50 sec. (a) K = −1; (b) K = −0.5; (c) K = 0.5; (d) K = 1.

Figure 4.20. Behavior of V (t) of Equation 4.10 for τ =< Ti >. The control signal is

applied at t = 50 sec. (a) K = −1; (b) K = −0.5; (c) K = 0.5; (d) K = 1.
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significantly affect the settling time, even more, the amplitude of V (t) during the

transition is greater than the one without control (Figure 4.21-4.20). Thus, it can

be stated that the direct feedback method with positive amplitude has a negative

effect on achieving complete synchronization in such a system. On the other hand,

for −1 < K < 0 the ensemble completely synchronizes faster. Especially for τ = T/2

and τ =< Ti > complete synchronization is achieved as soon as the control signal is

applied.

Figure 4.21. Behavior of V (t) of Equation 4.11 for τ = T . The control signal is

applied at t = 50 sec. (a) K = −1; (b) K = −0.5; (c) K = 0.5; (d) K = 1.

Both of the delayed mean field feedback control methods do not affect the syn-

chronous behavior of the identical oscillators when they applied after the systems

reaches synchronization, t = 300 sec. Figure 4.24 and 4.25 demonstrate an exam-

ple for K = 0.5. The reason can be the regular oscillations of the mean field and

tracking the same chaotic trajectory by the oscillators. Figure 4.24 and Figure 4.25

show how ensemble deviation differs for different values of τ and K.
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Table 4.9. The impact of direct time-delayed feedback applied at t = 50 sec on the

synchronization time of the ensemble of identical Rössler oscillators.

Settling time (sec)

K τ = T τ = T/2 τ =< Ti >

-1 171 70 70

-0.9 162 70 69

-0.8 97 70 66

-0.7 122 63 63

-0.6 159 57 57

-0.5 108 57 57

-0.4 216 57 57

-0.3 233 66 66

-0.2 >300 81 81

-0.1 130 118 139

0.1 >300 283 243

0.2 284 62 >300

0.3 254 194 110

0.4 >300 >300 124

0.5 223 116 >300

0.6 163 >300 >300

0.7 145 181 >300

0.8 290 >300 219

0.9 >300 >300 135

1 295 202 261
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Figure 4.22. Behavior of V (t) of Equation 4.11 for τ = T/2.The control signal is

applied at t = 50 sec. (a) K = −1; (b) K = −0.5; (c) K = 0.5; (d) K = 1.

Figure 4.23. Behavior of V (t) of Equation 4.11 for τ =< Ti >. The control signal is

applied at t = 50 sec. (a) K = −1; (b) K = −0.5; (c) K = 0.5; (d) K = 1.
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Figure 4.24. Behavior of V (t) of Equation 3.1 for K = 0.5 (a) τ = T ; (b) τ = T/2;

(c)τ =< Ti >.

Figure 4.25. Behavior of V (t) of Equation 4.11 for K = 0.5 (a) τ = T ; (b) τ = T/2;

(c)τ =< Ti >.
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4.2.1.2. Ensemble of Nonidentical Chaotic Oscillators. In this section, it is investi-

gated whether the delayed feedback of the mean field has any effect on the phase

synchronization of an ensemble of 6 nonidentical Rössler oscillators. As one can re-

member, in the phase synchronization state, the chaotic oscillators oscillate with the

same mean angular frequency while their amplitudes remain uncorrelated. The consid-

ered feedback effects may introduce correlation between the amplitudes of the coupled

chaotic oscillators, or suppress, even destroy the phase synchronization.

Here again two different feedback control methods, Equation 4.7 and Equation 4.8

are applied to the ensemble in Section 4.1.3.2, and the coupling coefficients are assumed

to be ε = 0.2. The amplitude K is varied between [−1, 1] and five different delay times

are considered: (i) τ = T ; (ii) τ = T/2, where T equals to the mean-period of the mean

field of the phase synchronized ensemble for ε = 0.2; (iii) τ =< Ti >, the averaged

mean natural frequencies of the oscillators; (iv) τ = T6, mean natural frequency of the

6th oscillators; (v) τ = T1 mean natural frequency of the 1th oscillators.

To measure the time-delayed feedback effect on correlation between the phase

synchronized oscillators, the Pearson’s correlation coefficient (Equation 3.2) is extended

for an ensemble of chaotic oscillators by taking the mean of the pairwise correlations of

the xi states of the Rössler oscillators. It should be remembered that if the amplitudes

of two coupled nonidentical chaotic oscillators are correlated, they track the same

chaotic trajectory with a time lag, which is the lag synchronization. Furthermore, if

they are highly correlated (zero time lag), the observed states will approach each other

and the y = x line, as well (Figure 4.26). The control effect on the state relations,

correlation coefficient with control corrf (xi, xj) is divided by the correlation coefficient

without control corr(xi, xj) (Equation 4.12), i.e. CorrelationFactor > 1 provides

stronger correlation between the states.

CorrelationFactor =
1

N(N − 1)

N∑
i=1

∑
j=1(i 6=j)

|corrf (xi, xj)|
|corr(xi, xj)|

(4.12)
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Figure 4.26. Plot of x1 and x2 (a) correlation factor is 1.6297 (b) correlation factor is

0.6357 (c) correlation factor is 1.

Figure 4.27, 4.28 and the tables in Appendix A demonstrate the importance of the

control method, choice of K and τ . At the first sight, it is seen that the direct feedback

control has a richer impact, such that in differential feedback control for K > 0 and

τ ∈ {T, T/2, < Ti >, T6} makes a slight difference in the phase and amplitude relation

of the ensemble. Whereas, for direct feedback control the amplitudes of the oscillators

become more correlated for K > 0 and any τ . Furthermore, the direct feedback control

method, except for τ = T1, preserves the common frequency of the ensemble which is

achieved without any control input.

One important point is the possibility of obtaining more correlated amplitudes

by destroying the phase synchronization, which is relevant for differential feedback

method. For example, in Figure 4.27 although the correlation factor reaches its some

of the highest values for K = −1, K = −0.8 and τ = T , but phase synchronization is
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destroyed since all of the mean observed frequencies of the oscillators are not identical

(Table A.1). Another important fact about the same control method is the effect of τ

on the synchronization frequency and correlation factor. For instance, different state

correlations are obtained for the same synchronization frequency for different K and

τ ∈ {T6, T1}.

As a conclusion, one can say that desired behavior and common frequency of

the ensemble can be achieved by choosing the control technique, its amplitude and

delay time. Directly applied delayed mean field with the positive amplitudes provides

better collective behavior in the ensemble by reinforcing the phase synchronization,

whereas differentially applied delayed mean field does not have any significant impact

for the same amplitude range. On the other hand, the same control method suppresses

the synchronization. For some cases, differentially applied delayed mean field brings

less correlated amplitudes but phase synchronized oscillators, or an unsynchronized

ensemble but highly correlated pairs.

Figure 4.27. Correlation factor of Equation 4.7 versus K for different delay values τ .
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Figure 4.28. Correlation factor of Equation 4.8 versus K for different delay values τ .

4.2.2. Synchronization Control via Mean Field by External Periodic Input

The second control technique to be concerned is controlling globally coupled

oscillators via externally forced mean field. Being exposed to external forcing of an

ensemble of coupled oscillators is common in physics, chemistry and biology in which

mutual synchronization competes with forced synchronization [70], in particular the

situation is relevant for modeling of neuronal rhythms in the case when an ensemble

of interacting neurons is influenced by rhythms from other brain regions [62]. In this

thesis, two different system equations are investigated to capture the external effect.

In Equation 4.13 the external force is applied to the mean field of the ensemble. The

next one is Equation 4.14, where each of the external periodic force sin(vi) is able to
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entrain the ith oscillator in the absence of the mean field effect.

ẋi = −wiyi − zi + ε(X + Csin(vt)− xi)

ẏi = wixi + 0.15yi

żi = 0.4 + zi(xi − 8.5) (4.13)

ẋi = −wiyi − zi + ε(X − xi) + Csin(vit)

ẏi = wixi + 0.15yi

żi = 0.4 + zi(xi − 8.5) (4.14)

Here again, periodic external actions are applied to both an ensemble of iden-

tical Rössler oscillators (Section 4.1.3.1) and nonidentical Rössler oscillators (Section

4.1.3.2), to investigate the effect on the complete synchronization and phase synchro-

nization, respectively.

4.2.2.1. Ensemble of Identical Chaotic Oscillators. In this section, the effect of peri-

odic external force on the ensemble of 6 identical all-to-all coupled chaotic Rössler

oscillators is studied. It is observed that complete synchronization is achieved for

ε = 0.2 at t = 250 sec (Section 4.1.3.1). In order to understand the effect of these peri-

odic external actions on synchronization of the identical Rössler oscillators (Equation

4.15, Equation 4.16), an external force is applied to an unsynchronized ensemble with

ε = 0.1, and to a synchronized ensemble with ε = 0.2. Four different external force

frequencies are considered: (i) the frequency of the period-one UPO,v = 1.0134; (ii) the

frequency of the period-two UPO, v = 0.5067; (iii) the frequency of the period-three

UPO, v = 0.3324; (iv) the mean frequency of the identical oscillators, v = 1.0546. The
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rewritten system equations are as follows

ẋi = −yi − zi + ε(X + Csin(vt)− xi)

ẏi = xi + 0.15yi

żi = 0.4 + zi(xi − 8.5), (4.15)

ẋi = −yi − zi + ε(X − xi) + Csin(vit)

ẏi = xi + 0.15yi

żi = 0.4 + zi(xi − 8.5). (4.16)

Figure 4.29 and Figure 4.30 show the correlation factors (Equation 4.12). As

Figure 4.29 shows for Equation 4.15, states become more correlated, especially when

the frequency of the external force equals to mean frequency of the oscillators. None of

the periodic external forces applied to the mean-field provide the necessary conditions

for a fully synchronized ensemble. On the other hand, as Figure 4.30 demonstrates,

the complete synchronization is achieved with the second method in Equation 4.16 for

some C and τ values, where the correlation factor is 1.0304. Even in the worst case, the

number of pairwise completely synchronized oscillators (Figure 4.31) is greater than

the unforced ensemble. Note that if the frequency of the external force is equal to one

of the considered UPO frequencies, synchronization is enhanced better.

Finally, the external force has no effect when it is applied to the fully synchronized

ensemble coupled with ε = 0.2. Correlation factor values for the considered external

force frequencies and action amplitudes of four different cases are given in Appendix

B.

4.2.2.2. Ensemble of Nonidentical Chaotic Oscillators. In this section, the effect of pe-

riodic external force to the ensemble of 6 nonidentical all-to-all coupled chaotic Rössler
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Figure 4.29. Correlation factor for Equation 4.15 where ε = 0.1 versus amplitude C.

Figure 4.30. Correlation factor for Equation 4.16 where ε = 0.1 versus amplitude C.
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Figure 4.31. State differences for Equation 4.16 where v = 0.3324 and C = 0.9 (a)

x6 − x1; (b) x6 − x5.



99

oscillators is studied. Their wi parameters, mean natural frequencies and the mean

observed frequencies in the phase synchronization state for ε = 0.2 are given in Table

4.7. The external force is applied to the ensemble after the phase synchronization is

achieved, at t = 150 sec.

In the first approach, represented in Equation 4.13, the periodic force is applied

to the mean field with five different frequencies: (i) v = 1.08; (ii) v = 1.18; (iii)

v = 1.1; (iv) v = 0.91 (mean natural frequency of a randomly chosen oscillator); (v)

v = 1.03 (period one UPO of a randomly chosen oscillator). As Figure 4.32 shows if the

frequencies of the external input is chosen close to the synchronization frequency of the

ensemble (Ω = 1.1205), e.g. v = 1.1 and v = 1.08, the states of the oscillators become

more correlated. As the difference between the frequency of the external force and the

phase synchronization frequency, the external action suppresses the synchronization. It

should be noted that the application of the external periodic force directly to the mean-

field (Equation 4.13) does not change the common phase synchronization frequency of

the ensemble or break it up.

In the second approach (Equation 4.14), the purpose is to investigate whether the

application of any external action in the entrainment region of the oscillator can destroy

the synchronization in the ensemble. An external periodic force sin(vit) is applied to

the corresponding ith oscillator in ensemble after phase synchronization is achieved.

The mean observed frequencies Ωi of the chaotic oscillators are given in Table 4.10 for

various amplitudes C. As one can see, the 4th oscillator leaves the group at C = 0.2 and

then the 6th oscillator leaves. As C coefficient increases, some of the oscillators start to

oscillate with some other mean observed frequencies and the correlation between the

states is decreased (Figure 4.33). Here, the required minimum value of C to separate

one of the oscillators from the ensemble is greater than the one for entraining a single

oscillator, because of the mean-field coupling which restrains the group from breaking

up.
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Figure 4.32. Correlation factor of Equation 4.13 versus C for various v.

Figure 4.33. State difference between the 1st and 2nd oscillators; (a) C = 0.2; (b)

C = 0.5; (c) C = 0.8; (d) C = 1.0. External force applied at t = 150 sec (red arrow).
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Table 4.10. Final mean observed frequencies Ωi of the oscillators in Equation 4.14

with the external force sin(vit) for different coupling strengths.

v1 = 1.145 v2 = 1.14 v3 = 1.1 v4 = 0.9 v5 = 1.1 v6 = 1

C Ω1 Ω2 Ω3 Ω4 Ω5 Ω6

0.1 1.1025 1.1025 1.1025 1.1025 1.1025 1.1025

0.2 1.1025 1.1025 1.1025 0.9108 1.1025 1.1025

0.3 1.1025 1.1025 1.1025 1.1025 1.1025 1.1025

0.4 1.1025 1.1025 1.1025 0.9108 1.1025 1.0067

0.5 1.1025 1.1025 1.1025 0.9108 1.1025 1.0067

0.6 1.0546 1.1505 1.1025 0.9108 1.1025 1.0067

0.7 1.1505 1.1505 1.1025 0.9108 1.1025 1.0067

0.8 1.1505 1.1505 1.1025 0.9108 1.1025 1.0067

0.9 1.1505 1.1505 1.1025 0.9108 1.1025 1.0067

1.0 1.1505 1.1505 1.1025 0.9108 1.1025 1.0067
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5. DISCUSSION AND CONCLUSION

Throughout this thesis, synchronization of several types of oscillators in several

different network schemes, coupled according to different principles is studied. Syn-

chronization control and the possibility of influencing the synchronous behavior of an

ensemble are examined.

5.1. Synchronization in Complex Networks

Synchronization of periodic uniform oscillators has been investigated in complex

networks with different structural properties. For this purpose, a model of c. elegans’

neural network is compared with artificially generated networks, such as Erdös-Rényi

networks, Watts-Strogatz networks and Barabasi-Albert networks. It can be stated

that small-world property allows synchronization, whereas, the scale-free degree distri-

bution and existence of hubs in a network hampers synchronization. Compared with

the artificial ones, the specific structure of a natural network, the neural network of

c. elegans, demonstrates itself. Since it is a natural network, it is far from a random

graph. Although it has the highest maximum node degree value, it synchronizes better

than a scale-free network. Despite of having small-world property, it is not a “pure”

small-world network, thus it performs different than a Watts-Strogatz’. Considering

the relatively poor synchronizability of the neural network of c. elegans, it is mean-

ingful to conclude that “functionality” does not mean “synchronizability” . It should

be remembered that synchronization may be harmful in some cases and evaluation of

a natural is based upon optimal functionality in some sense.

It should be noted that, no analytical approach is provided for quantifying syn-

chronization in general complex networks. In this thesis, the number of occupied bins

of the histogram of observed frequencies has been used to analyze the synchronization

of nonidentical oscillators in complex networks. Here, there is a fine border separating

the numerical errors and true analysis for defining the bin size. It is observed that a bin
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size of 10−3 or 10−4 does not make any difference, but this method loses its validity for

larger bin sizes. A better analysis could be “node tracking”, looking at nodes individu-

ally to observe how the form clusters by adjusting their frequencies, which would allow

us to detect the synchronization regions. But of course this method is not applicable

to large networks, such as brain. As known, researchers use macroscopic measurements

for such large networks.

For a further investigation of synchronization in complex networks, weighted and

directed couplings can be studied. Also, different types of oscillators can be consid-

ered. But apart from these, the most important contribution would be developing

analytical tools qualifying synchronizability of complex networks. Also representation

of topological features on the coupling strength would be valuable.

5.2. Synchronization of Periodic Uniform Oscillators with

Similarity-Dependent Coupling Strengths

Similarity dependent coupling is the most important contribution of this thesis.

It is an obvious fact that similars tend to interact more. In this thesis, a special ap-

plication of this idea has been tested in an ensemble of uniform periodic oscillators,

where “similarity ” is defined in terms of the difference between the parameters which

directly effect synchronizability. When the coupling strengths are chosen as an increas-

ing function of similarity, which is measured in terms of natural frequency difference

for our case, it is observed that the overall synchronizability of the network is improved

compared to occurrence of clusters uniform coupling strengths. It can be stated that

similarity-dependent coupling suppresses individual differences between the oscillators

and provides an easily-adapted group.

Certainly, more studies are needed to support this hypothesis. Firstly, larger

network sizes and different network topologies need to be studied. Here, node tracking

may reveal some effects of structural network properties (such as community and motif

formations) on synchronization. Secondly, different types of oscillators should be con-
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sidered, i.e. nonuniform periodic ones and chaotic oscillators. For chaotic oscillators,

defining similarity for the mean frequencies or for certain UPOs may introduce some

other interesting facts.

In this thesis, it has been assumed that the information of natural frequencies

is available. However, in most of real situations individual oscillators may not have a

priori knowledge about each other’s natural frequencies. A more realistic approach can

be obtained by assigning the coupling strengths depending on observed frequencies.

For such a purpose adequate phase observers may be needed.

Some researchers investigated the effect of physical distance between the nodes

on synchronization in complex networks. In this thesis, an all-to-all coupled network is

studied, where physical distance has no meaning. But, from our perspective, physical

distance may not affect the coupling strength not only by rescaling it, but also by

introducing a certain time delay. Formulating couplings strength as a function of this

delay may release some other real world phenomena.

5.3. Synchronization of All-to-All Coupled Chaotic Oscillators and Its

Control

Synchronization of mean-field-coupled chaotic oscillators has been studied. In

an ensemble of identical chaotic oscillators, one can talk of complete synchronization.

Identical oscillators have the same mean frequency, but due to the dependence on initial

conditions they follow different chaotic attractors. If the coupling strength is strong

enough, these oscillators forget their initial conditions and are all locked to a common

chaotic attractor, the synchronization subset of the whole system. On the contrary, if

an ensemble consists of nonidentical chaotic oscillators, the mean field coupling provides

phase synchronization while the amplitudes of the oscillators remain uncorrelated. For

stronger coupling strengths the amplitudes become correlated, and if the oscillators

initially have slight differences they may completely synchronize.
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Next, two different control techniques have been examined for influencing syn-

chronization in these ensembles. In the first method, time delayed mean field is applied

to the ensemble both directly and differentially. It is seen that feeding back the time-

delayed mean field to an ensemble of identical chaotic oscillators may shorten the time

for achieving complete synchronization or to hamper the evolution of the collective

behavior. On the other hand, time delayed mean field does not affect the ensemble if

it is applied to the systems after achieving complete synchronization, where the mean

field oscillations becomes regular. If time delayed mean field is fed back to an ensem-

ble of nonidentical chaotic oscillators after achieving phase synchronization, its effect

becomes more crucial. In such a case delayed mean field may increase the correla-

tion between the oscillators, change the synchronization frequency of the ensemble or

destroy the phase synchronization.

The second control method is applying external periodic forces to ensembles of

identical and nonidentical mean-field-coupled chaotic Rössler systems. In this thesis,

two different methods are considered. In the first one, an external periodic force is

applied to the mean field. In the second one, the external periodic force is applied

directly to the oscillator. Firstly, if an unsynchronized ensemble of identical oscillators

is considered, the application of the external for with a frequency equals to the mean

observed frequency of the oscillators enhances the synchronization by increasing the

number of completely synchronized pairs. Furthermore, if the coupled oscillators are

directly entrained by the external force with a frequency equals to the frequency of

a UPO of the chaotic oscillators, and then complete synchronization is accomplished.

Both of the external forcing methods do not induce any change in a completely syn-

chronized group.

Then phase synchronization of an ensemble of nonidentical chaotic oscillators is

studied. If the mean field is forced by an external periodic action with a frequency close

to the mean observed frequency of synchronized oscillators, the correlation between

the states increases. On the other hand, if the applied frequency is relatively far from

the mean observed frequency, phase synchronization remains but the state correlations
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decrease. When the periodic external forces are chosen among the ones that can entrain

each of the considered oscillators without any mean field coupling and applied directly

to the relevant oscillators, phase synchronization of ensemble is destroyed.

The tools used for analysis of synchronization should be mentioned. The power

spectral density analysis is used to calculate the mean frequencies of the chaotic os-

cillators. In an ensemble of identical chaotic (or periodic) oscillators, the difference

between the mean field and the output states of the oscillators, ensemble deviation,

is investigated for how the state relations evolve as time goes by. Furthermore, the

state relations of the coupled nonidentical chaotic oscillators are examined. As can be

remembered the phase synchronization between the nonidentical chaotic oscillators is

a “weak” synchronization, i.e. the amplitudes remains uncorrelated. But increase in

the coupling strengths or applications of appropriate control inputs have been stud-

ied introduces correlations between the states. The correlation coefficient, which is a

strong statistical tool, has been used to measure this quantity. It should be noted only

a few researchers have used correlation factor for detecting synchronization. Of course,

as all the synchronization analysis tools do, there are several problems in this method.

Depending on structural differences, synchronized chaotic systems may track different

chaotic attractors or may not follow each other with a certain lag. Thus comparison

of the correlation coefficients may not give an exact idea about the amplitude rela-

tions. Phase dynamics of the oscillators can be considered as a better analysis tool.

But defining phase of a chaotic oscillator is restricted by the geometry of the flow in

the state space, and for many cases it is difficult to defining a surface transversally

crossed by all the trajectories. Furthermore, irregular fluctuations of the phase of such

an oscillator may hamper the analysis. As an alternative analysis tool, which has not

been used in this thesis, Lyapunov exponents can be suggested.

Finally, the user interface designed for the experiments of synchronization in com-

plex networks has limited features. Peopled are welcome to improve this interface and

provide a “toolbox” which allows students and researchers to analyze synchronization

of various types of oscillators in complex networks and control this collective behavior.
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Such a toolbox will accelerate the undergoing researches and will help to understand

basis of the synchronization phenomena .
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APPENDIX A: DELAYED FEEDBACK CONTROL

EXPERIMENTS
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Table A.1. Mean observed frequencies of the oscillators in Equation 4.7 for τ = T .

K Ω1 Ω2 Ω3 Ω4 Ω5 Ω6

-1.0 1.1984 1.1505 1.1984 0.9587 1.1984 1.1984

-0.9 0.9587 0.9587 0.9587 0.9587 0.9587 0.9587

-0.8 1.1505 1.1505 1.1984 0.9587 1.1984 1.1984

-0.7 1.1984 1.1984 1.1984 1.1984 1.1984 1.1984

-0.6 1.1505 1.1505 1.1505 1.1505 1.1505 1.1505

-0.5 1.1025 1.1025 1.1025 1.1025 1.1025 1.1025

-0.4 1.1025 1.1025 1.1025 1.1025 1.1025 1.1025

-0.3 1.1025 1.1025 1.1025 1.1025 1.1025 1.1025

-0.2 1.1025 1.1025 1.1025 1.1025 1.1025 1.1025

-0.1 1.1025 1.1025 1.1025 1.1025 1.1025 1.1025

0.0 1.1025 1.1025 1.1025 1.1025 1.1025 1.1025

0.1 1.1025 1.1025 1.1025 1.1025 1.1025 1.1025

0.2 1.1025 1.1025 1.1025 1.1025 1.1025 1.1025

0.3 1.1025 1.1025 1.1025 1.1025 1.1025 1.1025

0.4 1.1025 1.1025 1.1025 1.1025 1.1025 1.1025

0.5 1.1025 1.1025 1.1025 1.1025 1.1025 1.1025

0.6 1.1025 1.1025 1.1025 1.1025 1.1025 1.1025

0.7 1.1025 1.1025 1.1025 1.1025 1.1025 1.1025

0.8 1.1025 1.1025 1.1025 1.1025 1.1025 1.1025

0.9 1.1025 1.1025 1.1025 1.1025 1.1025 1.1025

1.0 1.1025 1.1025 1.1025 1.1025 1.1025 1.1025
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Table A.2. Mean observed frequencies of the oscillators in Equation 4.7 for τ = T/2.

K Ω1 Ω2 Ω3 Ω4 Ω5 Ω6

-1.0 1.1025 1.1025 1.1025 1.1025 1.1025 1.1025

-0.9 1.1025 1.1025 1.1025 1.1025 1.1025 1.1025

-0.8 1.1025 1.1025 1.1025 1.1025 1.1025 1.1025

-0.7 1.1025 1.1025 1.1025 1.1025 1.1025 1.1025

-0.6 1.1025 1.1025 1.1025 1.1025 1.1025 1.1025

-0.5 1.1025 1.1025 1.1025 1.1025 1.1025 1.1025

-0.4 1.1025 1.1025 1.1025 1.1025 1.1025 1.1025

-0.3 1.1025 1.1025 1.1025 1.1025 1.1025 1.1025

-0.2 1.1025 1.1025 1.1025 1.1025 1.1025 1.1025

-0.1 1.1025 1.1025 1.1025 1.1025 1.1025 1.1025

0.0 1.1025 1.1025 1.1025 1.1025 1.1025 1.1025

0.1 1.1025 1.1025 1.1025 1.1025 1.1025 1.1025

0.2 1.1025 1.1025 1.1025 1.1025 1.1025 1.1025

0.3 1.1025 1.1025 1.1025 1.1025 1.1025 1.1025

0.4 1.1025 1.1025 1.1025 1.1025 1.1025 1.1025

0.5 1.1025 1.1025 1.1025 1.1025 1.1025 1.1025

0.6 1.1025 1.1025 1.1025 1.1025 1.1025 1.1025

0.7 1.1025 1.1025 1.1025 1.1025 1.1025 1.1025

0.8 1.1025 1.1025 1.1025 1.1025 1.1025 1.1025

0.9 1.1025 1.1025 1.1025 1.1025 1.1025 1.1025

1.0 1.1025 1.1025 1.1025 1.1025 1.1025 1.1025
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Table A.3. Mean observed frequencies of the oscillators in Equation 4.7 for

τ =< Ti >.

K Ω1 Ω2 Ω3 Ω4 Ω5 Ω6

-1.0 1.1025 1.1025 1.1025 1.1025 1.1025 1.1025

-0.9 1.1025 1.1025 1.1025 1.1025 1.1025 1.1025

-0.8 1.1025 1.1025 1.1025 1.1025 1.1025 1.1025

-0.7 1.1025 1.1025 1.1025 1.1025 1.1025 1.1025

-0.6 1.1025 1.1025 1.1025 1.1025 1.1025 1.1025

-0.5 1.1025 1.1025 1.1025 1.1025 1.1025 1.1025

-0.4 1.1025 1.1025 1.1025 1.1025 1.1025 1.1025

-0.3 1.1025 1.1025 1.1025 1.1025 1.1025 1.1025

-0.2 1.1025 1.1025 1.1025 1.1025 1.1025 1.1025

-0.1 1.1025 1.1025 1.1025 1.1025 1.1025 1.1025

0.0 1.1025 1.1025 1.1025 1.1025 1.1025 1.1025

0.1 1.1025 1.1025 1.1025 1.1025 1.1025 1.1025

0.2 1.1025 1.1025 1.1025 1.1025 1.1025 1.1025

0.3 1.1025 1.1025 1.1025 1.1025 1.1025 1.1025

0.4 1.1025 1.1025 1.1025 1.1025 1.1025 1.1025

0.5 1.1025 1.1025 1.1025 1.1025 1.1025 1.1025

0.6 1.1025 1.1025 1.1025 1.1025 1.1025 1.1025

0.7 1.1025 1.1025 1.1025 1.1025 1.1025 1.1025

0.8 1.1025 1.1025 1.1025 1.1025 1.1025 1.1025

0.9 1.1025 1.1025 1.1025 1.1025 1.1025 1.1025

1.0 1.1025 1.1025 1.1025 1.1025 1.1025 1.1025
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Table A.4. Mean observed frequencies of the oscillators in Equation 4.7 τ = T6.

K Ω1 Ω2 Ω3 Ω4 Ω5 Ω6

-1.0 1.1505 1.1505 1.1505 1.1505 1.1505 1.1505

-0.9 1.1505 1.1505 1.1505 1.1505 1.1505 1.1505

-0.8 1.1505 1.1505 1.1505 1.1505 1.1505 1.1505

-0.7 1.1505 1.1505 1.1505 1.1505 1.1505 1.1505

-0.6 1.1025 1.1025 1.1025 1.1025 1.1025 1.1025

-0.5 1.1025 1.1025 1.1025 1.1025 1.1025 1.1025

-0.4 1.1025 1.1025 1.1025 1.1025 1.1025 1.1025

-0.3 1.1025 1.1025 1.1025 1.1025 1.1025 1.1025

-0.2 1.1025 1.1025 1.1025 1.1025 1.1025 1.1025

-0.1 1.1025 1.1025 1.1025 1.1025 1.1025 1.1025

0.0 1.1025 1.1025 1.1025 1.1025 1.1025 1.1025

0.1 1.1025 1.1025 1.1025 1.1025 1.1025 1.1025

0.2 1.1025 1.1025 1.1025 1.1025 1.1025 1.1025

0.3 1.1025 1.1025 1.1025 1.1025 1.1025 1.1025

0.4 1.1025 1.1025 1.1025 1.1025 1.1025 1.1025

0.5 1.1025 1.1025 1.1025 1.1025 1.1025 1.1025

0.6 1.1025 1.1025 1.1025 1.1025 1.1025 1.1025

0.7 1.0546 1.0546 1.0546 1.0546 1.0546 1.0546

0.8 1.0546 1.0546 1.0546 1.0546 1.0546 1.0546

0.9 1.0546 1.0546 1.0546 1.0546 1.0546 1.0546

1.0 1.0546 1.0546 1.0546 1.0546 1.0546 1.0546
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Table A.5. Mean observed frequencies of the oscillators in Equation 4.7 where τ = T1.

K Ω1 Ω2 Ω3 Ω4 Ω5 Ω6

-1.0 1.0546 1.0546 1.0546 1.0546 1.0546 1.0546

-0.9 1.0546 1.0546 1.0546 1.0546 1.0546 1.0546

-0.8 1.0546 1.0546 1.0546 1.0546 1.0546 1.0546

-0.7 1.0546 1.0546 1.0546 1.0546 1.0546 1.0546

-0.6 1.0546 1.0546 1.0546 1.0546 1.0546 1.0546

-0.5 1.0546 1.0546 1.0546 1.0546 1.0546 1.0546

-0.4 1.1025 1.1025 1.1025 1.1025 1.1025 1.1025

-0.3 1.1025 1.1025 1.1025 1.1025 1.1025 1.1025

-0.2 1.1025 1.1025 1.1025 1.1025 1.1025 1.1025

-0.1 1.1025 1.1025 1.1025 1.1025 1.1025 1.1025

0.0 1.1025 1.1025 1.1025 1.1025 1.1025 1.1025

0.1 1.1025 1.1025 1.1025 1.1025 1.1025 1.1025

0.2 1.1025 1.1025 1.1025 1.1025 1.1025 1.1025

0.3 1.1025 1.1025 1.1025 1.1025 1.1025 1.1025

0.4 1.1025 1.1025 1.1025 1.1025 1.1025 1.1025

0.5 1.1025 1.1025 1.1025 1.1025 1.1025 1.1025

0.6 1.1025 1.1025 1.1025 1.1025 1.1025 1.1025

0.7 1.1025 1.1025 1.1025 1.1025 1.1025 1.1025

0.8 1.1025 1.1025 1.1025 1.1025 1.1025 1.1025

0.9 1.1025 1.1025 1.1025 1.1025 1.1025 1.1025

1.0 1.1025 1.1025 1.1025 1.1025 1.1025 1.1025
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Table A.6. Mean observed frequencies of the oscillators in Equation 4.8 where τ = T .

K Ω1 Ω2 Ω3 Ω4 Ω5 Ω6

-1.0 1.1984 1.1984 1.1984 1.1984 1.1984 1.1984

-0.9 1.1984 1.1984 1.1984 1.1984 1.1984 1.1505

-0.8 1.1505 1.1505 1.1505 1.1505 1.1505 1.1505

-0.7 1.1505 1.1505 1.1505 1.1505 1.1505 1.0067

-0.6 1.1505 1.1505 1.1505 1.1505 1.1505 1.0067

-0.5 1.1505 1.1505 1.1505 1.1505 1.1505 1.0067

-0.4 1.1505 1.1505 1.0546 1.1505 1.0546 1.0546

-0.3 1.1025 1.1025 1.0546 1.0546 1.0546 1.0546

-0.2 1.1025 1.1025 1.0546 1.0546 1.0546 1.0546

-0.1 1.1025 1.1025 1.1025 1.1025 1.1025 1.1025

0.0 1.1025 1.1025 1.1025 1.1025 1.1025 1.1025

0.1 1.1025 1.1025 1.1025 1.1025 1.1025 1.1025

0.2 1.1025 1.1025 1.1025 1.1025 1.1025 1.1025

0.3 1.1025 1.1025 1.1025 1.1025 1.1025 1.1025

0.4 1.1025 1.1025 1.1025 1.1025 1.1025 1.1025

0.5 1.1025 1.1025 1.1025 1.1025 1.1025 1.1025

0.6 1.1025 1.1025 1.1025 1.1025 1.1025 1.1025

0.7 1.1025 1.1025 1.1025 1.1025 1.1025 1.1025

0.8 1.1025 1.1025 1.1025 1.1025 1.1025 1.1025

0.9 1.1025 1.1025 1.1025 1.1025 1.1025 1.1025

1.0 1.1025 1.1025 1.1025 1.1025 1.1025 1.1025
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Table A.7. Mean observed frequencies of the oscillators in Equation 4.8 where

τ = T/2.

K Ω1 Ω2 Ω3 Ω4 Ω5 Ω6

-1.0 1.1984 1.1984 0.9587 0.9587 0.9587 0.9587

-0.9 1.1505 1.1505 0.9587 0.9587 0.9587 0.9587

-0.8 1.1505 1.1505 1.0067 0.9587 1.0067 0.9587

-0.7 1.1505 1.1505 1.0067 0.9587 1.0067 0.9587

-0.6 1.1505 1.1505 1.0546 0.8629 1.0546 1.0067

-0.5 1.1505 1.1505 1.0546 0.8629 1.0546 1.0067

-0.4 1.1025 1.1025 1.0546 1.0546 1.0546 1.0067

-0.3 1.1025 1.1025 1.0546 1.0546 1.0546 1.0546

-0.2 1.1025 1.0546 1.0546 1.0546 1.0546 1.0546

-0.1 1.1025 1.1025 1.1025 1.1025 1.1025 1.1025

0.0 1.1025 1.1025 1.1025 1.1025 1.1025 1.1025

0.1 1.1025 1.1025 1.1025 1.1025 1.1025 1.1025

0.2 1.1025 1.1025 1.1025 1.1025 1.1025 1.1025

0.3 1.1025 1.1025 1.1025 1.1025 1.1025 1.1025

0.4 1.1025 1.1025 1.1025 1.1025 1.1025 1.1025

0.5 1.1025 1.1025 1.1025 1.1025 1.1025 1.1025

0.6 1.1025 1.1025 1.1025 1.1025 1.1025 1.1025

0.7 1.1025 1.1025 1.1025 1.1025 1.1025 1.1025

0.8 1.1025 1.1025 1.1025 1.1025 1.1025 1.1025

0.9 1.1025 1.1025 1.1025 1.1025 1.1025 1.1025

1.0 1.1025 1.1025 1.1025 1.1025 1.1025 1.1025
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Table A.8. Mean observed frequencies of the oscillators in Equation 4.8 where

τ =< Ti >.

K Ω1 Ω2 Ω3 Ω4 Ω5 Ω6

-1.0 1.1505 1.1025 1.0067 0.8629 1.0546 0.9587

-0.9 1.1505 1.1025 1.0546 0.8629 1.0546 0.9587

-0.8 1.1505 1.1505 1.0546 0.8629 1.0546 0.9587

-0.7 1.1505 1.1505 1.0546 0.8629 1.0546 0.9587

-0.6 1.1025 1.1025 1.0546 0.8629 1.0546 1.0067

-0.5 1.1025 1.1025 1.0546 0.8629 1.0546 1.0067

-0.4 1.1025 1.1025 1.0546 1.1025 1.0546 1.0546

-0.3 1.1025 1.1025 1.0546 1.0546 1.0546 1.0546

-0.2 1.0546 1.0546 1.0546 1.0546 1.0546 1.0546

-0.1 1.1025 1.1025 1.1025 1.1025 1.1025 1.1025

0.0 1.1025 1.1025 1.1025 1.1025 1.1025 1.1025

0.1 1.1025 1.1025 1.1025 1.1025 1.1025 1.1025

0.2 1.1025 1.1025 1.1025 1.1025 1.1025 1.1025

0.3 1.1025 1.1025 1.1025 1.1025 1.1025 1.1025

0.4 1.1025 1.1025 1.1025 1.1025 1.1025 1.1025

0.5 1.1025 1.1025 1.1025 1.1025 1.1025 1.1025

0.6 1.1025 1.1025 1.1025 1.1025 1.1025 1.1025

0.7 1.1025 1.1025 1.1025 1.1025 1.1025 1.1025

0.8 1.1025 1.1025 1.1025 1.1025 1.1025 1.1025

0.9 1.1025 1.1025 1.1025 1.1025 1.1025 1.1025

1.0 1.1025 1.1025 1.1025 1.1025 1.1025 1.1025
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Table A.9. Mean observed frequencies of the oscillators in Equation 4.8 where τ = T6.

K Ω1 Ω2 Ω3 Ω4 Ω5 Ω6

-1.0 1.1505 1.1505 1.1984 0.8629 1.1984 1.1984

-0.9 1.1505 1.1505 1.1505 0.8629 1.1505 1.1505

-0.8 1.1505 1.1505 1.1505 0.8629 1.1505 1.1505

-0.7 1.1505 1.1505 1.1505 0.8629 1.1505 1.1505

-0.6 1.1505 1.1505 1.1505 0.8629 1.1505 1.1505

-0.5 1.1505 1.1505 1.1025 1.1025 1.1025 1.1025

-0.4 1.1025 1.1025 1.1025 1.1025 1.1025 1.1025

-0.3 1.1025 1.1025 1.0546 1.1025 1.0546 1.1025

-0.2 1.1025 1.1025 1.0546 1.0546 1.0546 1.0546

-0.1 1.1025 1.1025 1.1025 1.1025 1.1025 1.1025

0.0 1.1025 1.1025 1.1025 1.1025 1.1025 1.1025

0.1 1.1025 1.1025 1.1025 1.1025 1.1025 1.1025

0.2 1.1025 1.1025 1.1025 1.1025 1.1025 1.1025

0.3 1.1025 1.1025 1.1025 1.1025 1.1025 1.1025

0.4 1.1025 1.1025 1.1025 1.1025 1.1025 1.1025

0.5 1.1025 1.1025 1.1025 1.1025 1.1025 1.1025

0.6 1.1025 1.1025 1.1025 1.1025 1.1025 1.1025

0.7 1.1025 1.1025 1.1025 1.1025 1.1025 1.1025

0.8 1.1025 1.1025 1.1025 1.1025 1.1025 1.1025

0.9 1.1025 1.1025 1.1025 1.1025 1.1025 1.1025

1.0 1.1025 1.1025 1.1025 1.1025 1.1025 1.1025



118

Table A.10. Mean observed frequencies of the oscillators in Equation 4.8 where

τ = T1.

K Ω1 Ω2 Ω3 Ω4 Ω5 Ω6

-1.0 0.9587 0.9587 0.9587 0.8629 0.9587 0.9587

-0.9 1.0067 1.1025 1.0067 0.8629 1.0067 0.9587

-0.8 1.1025 1.1025 1.0067 0.8629 1.0067 0.9587

-0.7 1.1025 1.1025 1.0546 0.8629 1.0546 0.9587

-0.6 1.0546 1.0546 1.0546 0.8629 1.0546 0.9587

-0.5 1.0546 1.0546 1.0546 1.0546 1.0546 1.0546

-0.4 1.0546 1.0546 1.0546 1.0546 1.0546 1.0546

-0.3 1.0546 1.0546 1.0546 1.0546 1.0546 1.0546

-0.2 1.0546 1.0546 1.0546 1.0546 1.0546 1.0546

-0.1 1.1025 1.1025 1.1025 1.1025 1.1025 1.1025

0.0 1.1025 1.1025 1.1025 1.1025 1.1025 1.1025

0.1 1.1025 1.1025 1.1025 1.1025 1.1025 1.1025

0.2 1.1025 1.1025 1.1025 1.1025 1.1025 1.1025

0.3 1.1025 1.1025 1.1025 1.1025 1.1025 1.1025

0.4 1.1025 1.1025 1.1025 1.1025 1.1025 1.1025

0.5 1.1025 1.1025 1.1025 1.1025 1.1025 1.1025

0.6 1.1025 1.1025 1.1025 1.1025 1.1025 1.1025

0.7 1.1025 1.1025 1.1025 1.1025 1.1025 1.1025

0.8 1.1505 1.1505 1.1505 1.1505 1.1505 1.1505

0.9 1.1505 1.1505 1.1505 1.1505 1.1505 1.1505

1.0 1.1505 1.1505 1.1505 1.1505 1.1505 1.1505
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APPENDIX B: EXTERNAL FORCE CONTROL

EXPERIMENTS

Table B.1. Correlation coefficients for Equation 4.13 where ε = 0.1.

C v = 1.0134 v = 0.5067 v = 0.3324 v = 1.5046

0.1 0.9948 0.9984 1.0007 1.0115

0.2 1.0029 1.0235 1.0124 1.0134

0.3 1.0005 1.0298 1.0058 1.0295

0.4 0.9801 1.0116 1.0301 1.0200

0.5 0.9821 1.0040 1.0305 0.9850

0.6 1.0164 1.0065 1.0195 0.9974

0.7 1.0275 1.0217 1.0287 0.9959

0.8 1.0196 0.9971 1.0085 1.0112

0.9 1.0302 1.0219 1.0258 0.9384

1.0 1.0304 0.9989 1.0170 1.0220
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Table B.2. Correlation coefficients for Equation 4.14 where ε = 0.1.

K v = 1.0134 v = 0.5067 v = 0.3324 v = 1.5046

0.1 1.0008 1.0012 1.0012 1.0013

0.2 0.9992 1.0013 1.0012 1.0013

0.3 0.9987 0.9989 0.9995 0.9992

0.4 0.9971 1.0012 0.9990 0.9992

0.5 0.9979 1.0011 0.9984 0.9990

0.6 0.9978 0.9988 0.9996 1.0031

0.7 1.0043 1.0009 1.0003 1.0028

0.8 0.9984 0.9970 1.0002 1.0057

0.9 0.9951 0.9999 1.0198 1.0113

1.0 0.9948 0.9984 1.0007 1.0115

Table B.3. Correlation coefficients for Equation 4.13 where ε = 0.2.

K v = 1.0134 v = 0.5067 v = 0.3324 v = 1.5046

0.1 1 1 1 1

0.2 1 1 1 1

0.3 1 1 1 1

0.4 1 1 1 1

0.5 1 1 1 1

0.6 1 1 1 1

0.7 1 1 1 1

0.8 1 1 1 1

0.9 1 1 1 1

1.0 1 1 1 1
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Table B.4. Correlation coefficients for Equation 4.14 where ε = 0.2.

C v = 1.0134 v = 0.5067 v = 0.3324 v = 1.5046

0.1 1 1 1 1

0.2 1 1 1 1

0.3 1 1 1 1

0.4 1 1 1 1

0.5 1 1 1 1

0.6 1 1 1 1

0.7 1 1 1 1

0.8 1 1 1 1

0.9 1 1 1 1

1.0 1 1 1 1
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APPENDIX C: MANUAL FOR THE INTERFACE

Algorithm Settings category includes the followings:

• SelectAlgorithm:

(i) ExtForceSync: Algorithm for externally forced oscillators

(ii) 2MutualSync: Algorithm for 2 mutually coupled oscillators

(iii) AlltoAllSync: Algorithm for N coupled oscillators. If this option is selected,

user can edit the topology settings and coupling matrix.

• Coupling Strength: Defines common coupling strength between the oscillators

• Node Type:

(i) Firefly

(ii) ChaoticRösslerOscillator

(iii) ChaoticLorenzOscillator

(iv) Specify: For combining the oscillators mentioned above. If this option is

chosen, a predefined “config.txt ” file including the nodes identity numbers,

type numbers and their parameters.

• NaturalFreqWn & Params

(i) Rand: For assigning random natural frequencies of fireflies and allowed pa-

rameters of the chaotic oscillators. User should define the mean and variance

of the Gaussian distribution.

(ii) Defined: For assigning predefined natural frequencies and parameters. User

can choose one of the variables existing in MATLAB’s workspace.

(iii) SetWn: The box must be filled to confirm the parameters.

(iv) Show W: To show the assigned parameters in the main figure

• CreateConfig: For creating a configuration file in order to specify node types

• UpdateConfig: For updating the configuration file in order to specify node types

Topology Settings category includes the followings:
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• ChooseTopology:

(i) Ring1: A ring topology for coupling with one of the nearest neighbors.

(ii) Ring2: A ring topology for coupling with two nearest neighbors.

(iii) MeanField: A globally coupled network.

(iv) UserDefined: A user defined graph existing in the workspace under the name

“AdjMat”.

• # of Nodes: For defining the network size.

Coupling Matrix category includes the followings:

• Coupling Matrix: A table demonstrates the coupling matrix of the considered

network with respect to the node numbers.

• Set C.M.: If the user desired to edit the displayed coupling matrix, this box must

be filled.

• Set C.M.: After editing the coupling matrix, user must press this button to

confirm. If it proceeds properly, the node colors will change.

• EffectType: To specify how the interacting nodes effect from each other

(i) SelfDeg: Normalizing to total effect to one oscillator according to the degree

of this oscillator

(ii) MaxDeg: Normalizing to total effect to one oscillator according to the max-

imum degree of the network

(iii) MeanDeg: Normalizing to total effect to one oscillator according to the mean

degree of the network

(iv) Similarity: For similarity dependent coupling approach

Analysis category includes the following:

• Power Spectrum: For power spectral distribution analysis of the results

Simulation category includes the followings:
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• Sim Time(sec): Defining the total simulation time in terms of seconds

• Play: The button for starting simulation

Please note that user should type “global PlotPoints” in the command window

of MATLAB to call the time solution to the work space.

Error messages pop up for the following cases:

• Wrong Parameter Dimension: Parameter vector must be a Nx1 vector.

• Wrong Coupling Matrix Dimension: Coupling matrix must be a NxN matrix.

• Unspecified Parameters: User must fill the “SetWn” box.

• Unspecified Topology: If AlltoAllSync option is chosen, topology type must be

selected.

• Unspecified Effect Type: Effect type must be chosen in any case.
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