
SOLVING INTEGRATED BERTH ALLOCATION AND CRANE ASSIGNMENT

PROBLEM USING A TABU SEARCH METAHEURISTIC

by

Zeynep Şuvak

B.S., Industrial Engineering, Boğaziçi University, 2010

Submitted to the Institute for Graduate Studies in

Science and Engineering in partial fulfillment of

the requirements for the degree of

Master of Science

Graduate Program in Industrial Engineering

Boğaziçi University

2013

ii

SOLVING INTEGRATED BERTH ALLOCATION AND CRANE ASSIGNMENT

PROBLEM USING A TABU SEARCH METAHEURISTIC

APPROVED BY:

Prof. Necati Aras

(Thesis Supervisor)

Prof. İ. Kuban Altınel

Assist. Prof. Yavuz Boğaç Türkoğulları

DATE OF APPROVAL: 01.02.2013

iii

ACKNOWLEDGEMENTS

I would like to express my special thanks to my supervisor Prof. Necati Aras for

his valuable guidance and encouragement throughout my undergradutae and graduate

studies. I feel really fortunate to work with him and this work is not completed without

his precious support and inspiring suggestions.

I am very grateful to Assist. Prof. Yavuz Boğaç Türkoğulları for his help during

my research and Prof. İ. Kuban Altınel for his time and effort to take part in my

thesis committee. Moreover, I would like to acknowledge to Düzce University for the

concerned and understanding attitude during my thesis study.

I am also very thankful to all my friends and work fellows for their endless support,

encouragement and the great times we had together.

No words can be found to express my gratitude for my family. My mother always

give me peace with his affectionate presence and I can be just thankful for her being

my mother. Also, I would like to thank my father who has the lion’s share for all

successes I had, throughout my life. I could not be the person who I am if I do not

have them. Murat and Şevval you are the best brother and sister ever. I am extremely

lucky to have you.

Finally, my heart is too full to tell my feelings about my husband, Vedat. You

have always been by my side with your patient, considerate and encouraging attitude.

You made it possible, thank you.

iv

ABSTRACT

SOLVING INTEGRATED BERTH ALLOCATION AND

CRANE ASSIGNMENT PROBLEM USING A TABU

SEARCH METAHEURISTIC

The volume of container transportation and the throughput rate at terminals

has been increased vastly in recent years. Container terminal operators have to utilize

their limited resources efficiently in order to cope with the rising demand while sat-

isfying the expectations of vessel operators. The management of integrated quayside

operations is the primary concern of this study. Hence, two models one of which inte-

grates berth allocation and quay crane (number) assignment problems (BACAP), and

the other unifies berth allocation and specific quay crane assignment problems (BA-

CASP) are provided. A tabu search algorithm and local improvement procedures are

implemented to solve BACAP and the method is tested on 3 different instance groups

which are generated where vessels arrive with changing frequencies. A quay crane

schedule is obtained by solving the shortest path problem on the graph representation

of a BACAP solution. As a consequence, TS algorithm given for BACAP is modified

to a solution method for BACASP by incorporating the shortest path problem into the

metaheuristic. The TS algorithm for BACASP is justified on the test instances which

are previously generated for BACAP.

v

ÖZET

BÜTÜNLEŞİK RIHTIM ATAMA VE VİNÇ ATAMA

PROBLEMİNİN BİR TABU ARAMA METASEZGİSELİ

İLE ÇÖZÜLMESİ

Konteyner taşımacılığı ve limanlardaki konteyner trafiği son yıllarda büyük

artış göstermiştir. Artan talebi ve deniz taşımacılığı yapan şirketlerin beklentilerini

karşılayabilmek amacıyla, liman işletmeleri ellerindeki kısıtlı kaynakları etkili bir şekilde

kullanmak zorundadırlar. Bu çalışmanın asıl konusu bütünleşik kıyı operasyonlarının

yönetilmesidir. Sonuç olarak, bu raporda bütünleşik rıhtım ve vinç sayısı atama prob-

lemi (RAVAP) ile bütünleşik rıhtım ve özellikli vinç atama problemi (RAÖVAP) ol-

mak üzere iki model verilmiştir. RAVAP için önerilen tabu arama (TA) algoritması

ve yerel iyileştirme yöntemleri gemilerin geliş sıklığını değiştirerek elde edilen 3 farklı

veri grubuyla denenmiştir. Bir RAVAP çözümünün çizge gösterimi üzerinde en kısa

yol problemi çözülerek bir vinç çizelgesi elde edilebilir. Bundan hareketle, RAVAP için

önerilen TA algoritması en kısa yol problemini de içine dahil ederek RAÖVAP için bir

çözüm yöntemine dönüştürülmüştür. RAÖVAP için önerilen TA algoritması daha önce

bahsedilen veri grupları üzerinde denenmiştir.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iii

ABSTRACT . iv

ÖZET . v

LIST OF FIGURES . viii

LIST OF TABLES . ix

LIST OF SYMBOLS . xi

LIST OF ACRONYMS/ABBREVIATIONS . xiii

1. INTRODUCTION . 1

2. LITERATURE SURVEY . 4

3. INTEGRATED BERTH ALLOCATION AND QUAY CRANE ASSIGNMENT

PROBLEM . 14

3.1. Model Assumptions . 14

3.2. Cost Structure . 18

3.3. Solution Procedure: A Tabu Search Metaheuristic 20

3.3.1. Solution Representation and Generation 22

3.3.2. Initial Solution . 25

3.3.3. Outer Search . 26

3.3.4. Inner Search . 27

3.4. Local Improvement Algorithms . 28

3.4.1. Smoothing Quay Crane Utilization 28

3.4.2. Spatial Improvement Procedure 31

3.4.3. Temporal Improvement Procedure 34

3.4.3.1. Checking Berthing Times 34

3.4.3.2. Checking Departure Times 36

3.4.4. Integration of Local Improvement Procedures to Tabu Search . 37

3.5. Experimental Results for BACAP . 38

3.5.1. Determination of Tabu Search Parameters 38

3.5.2. Instance Generation . 38

vii

4. INTEGRATED BERTH ALLOCATION AND SPECIFIC QUAY CRANE AS-

SIGNMENT PROBLEM . 50

4.1. Additional Assumptions . 50

4.1.1. Objective Function of BACASP 52

4.1.2. Solution Method . 54

4.1.3. Integration of Shortest Path Problem to Tabu Search Algorithm 57

4.2. Experimental Results for BACASP . 59

5. CONCLUSION . 67

REFERENCES . 69

viii

LIST OF FIGURES

Figure 3.1. A Feasible Solution. 17

Figure 3.2. Solution Obtained from P = {1, 2, 3, 4} and R = {0, 0, 0, 0}. 23

Figure 3.3. Solution Obtained from P1 = {2, 1, 3, 4} and R1 = {0, 0, 0, 0} and

P2 = {2, 1, 3, 4} and R2 = {0, 0, 1, 1}. 24

Figure 3.4. Neighboring Solution Generation of Outer Search. 27

Figure 3.5. Quay Crane Smoothing without Changing Completion Times. . . 29

Figure 3.6. Quay Crane Smoothing Changing Completion Times. 30

Figure 3.7. Different Solutions for Different (P,R) Pairs. 33

Figure 3.8. Optimal Solution After Spatial Improvement. 34

Figure 3.9. Checking and Improving Berthing Times. 35

Figure 3.10. Checking and Improving Departure Times. 36

Figure 4.1. A Feasible Solution for BACASP. 52

Figure 4.2. A Feasible Solution Before Finding Specific Quay Cranes. 56

Figure 4.3. The Directed Graph to Obtain a Quay Crane Schedule. 57

Figure 4.4. The BACASP Solution. 58

ix

LIST OF TABLES

Table 3.1. Parameters of the model. 16

Table 3.2. Decision variables of the model. 16

Table 3.3. Cost coefficients in the objective function. 19

Table 3.4. A sample. 20

Table 3.5. A sample instance with three vessels. 32

Table 3.6. TS parameters. 38

Table 3.7. The instance given in (Zhang et al., 2010) with ci4 = 0. 40

Table 3.8. Test results for data given in (Zhang et al., 2010) with ci4 = 10. . . 40

Table 3.9. Test results for loose arrival times with ci4 = 0. 43

Table 3.10. Test results for moderate arrival times with ci4 = 0. 44

Table 3.11. Test results for tight arrival times with ci4 = 0. 45

Table 3.12. Test results for loose arrival times with ci4 = 10. 46

Table 3.13. Test results for moderate arrival times with ci4 = 10. 47

Table 3.14. Test results for tight arrival times with ci4 = 10. 48

x

Table 3.15. Test results for some instances with ci4 = 50. 49

Table 3.16. Test results for some instances with ci4 = 100. 49

Table 4.1. Decision variables of the BACASP. 51

Table 4.2. Cost coefficients of the objective function in BACASP. 53

Table 4.3. The instance given in (Zhang et al., 2010) with c4 = 0. 61

Table 4.4. Test results for loose arrival times with c4 = 10. 62

Table 4.5. Test results for moderate arrival times with c4 = 10. 63

Table 4.6. Test results for tight arrival times with c4 = 10. 64

Table 4.7. Test results for some instances with c4 = 50. 65

Table 4.8. Test results for some instances with c4 = 100. 66

xi

LIST OF SYMBOLS

ACj Number of idle cranes in period j

B Number of berth sections

ci1 Cost of one unit deviation from the desired berthing section

for vessel i

ci2 Cost of berthing one period later than the arrival time for

vessel i

ci3 Cost of departing one period later than the due time for vessel

i

ci4 Cost of changing the number of assigned cranes by one unit

for vessel i

c4 Cost of moving a specific quay crane

C1 Maximum number of successive iterations in the outer search

without improvement

C2 Maximum number of successive iterations in the inner search

without improvement

di Due time of vessel i

ei Arrival time of vessel i

K Number of vessel clusters to gernerate random priority list

ki Minimum number of cranes that can be assigned to vessel i

k
i

Maximum number of cranes that can be assigned to vessel i

li Length of vessel i

lmi Leftmost crane assigned to vessel i

n1 Number of generated neighboring solutions in one iteration of

the outer search

n2 Number of generated neighboring solutions in one iteration of

the inner search

N Number of total quay cranes

pi Berthing position of vessel i

Parr Priority list ordered according to increasing arrival time

Pdue Priority list ordered according to increasing due times

xii

Prand Priority list ordered randomly

Px Priority list corresponding to solution x

Rx Rule list corresponding to solution x

R0 Rule list corresponding to zero vector

rmi Rightmost crane assigned to vessel i

qi Departure time of vessel i

Si
s The set of vessels which are simultaneously served with at

least one vessel from V i
s

si Desired berthing position of vessel i

T Number of time periods

ti Berthing time of vessel i

ttempi The earliest time period that vessel i can berth at its desired

berthing position

TL1 Tabu list of outer search

TL2 Tabu list of inner search

TT1 Tabu duration of outer search

TT2 Tabu duration of inner search

V Number of vessels

V i
s The set of vessels which prevent vessel i to prevent earlier

vmaxi The maximum number of allocated quay cranes to vessel i in

any solution

wi Handling time of vessel i in QC-hours

yij Number of cranes assigned to vessel i in period j

z Objective value

θijkl 1 if crane k is moved from i to j between periods l and l + 1

xiii

LIST OF ACRONYMS/ABBREVIATIONS

BACAP Berth Allocation and Quay Crane Assignment Problem

BACASP Berth Allocation and Quay Crane (Specific) Assignment

Problem

BAP Berth Allocation Problem

CPU Central Processing Unit

EDD Earliest Due Date

FCFS First Come First Served

GA Genetic Algorithm

MA Memetic Algorithm

MILP Mixed Integer Linear Program

NP Nondeterministic Polynomial Time

QC Quay Crane

QCAP Quay Crane Allocation Problem

QCAP-number Quay Crane Assignment (Number) Problem

QCAP-specific Quay Crane Assignment (Specific) Problem

SA Simulated Annealing

SPP Shortest Path Problem

TEU Twenty-foot Equivalent Unit

TS Tabu Search

VNS Variable Neighborhood Search

1

1. INTRODUCTION

Beginning from the year 1951 when the earliest version of container ship is intro-

duced, the share of containerized transportation is increased eventually. The container

volume is expressed as TEU’s. A TEU is equal to the capacity of a standard con-

tainer of 20-ft (length)× 8-ft (width) × 8-ft 6-in (height). The container volume in

global trade has reached 13.5 million TEU in 1980, 28.7 million in 1990, 68.7 million

in 2000, 140.9 million 2010 and 151 million in 2011 (UNCTAD, 2012). In parallel with

the development of containerization, the capacity of container ships is also increased.

The first prototype which is called converted cargo vessel is 135m long with 500 TEU

capacity. Today, the largest container ship, New Panamax, has reached to the length

of 397m with the capacity of 14,500 TEU. This increase in the share of container

transportation gives rise to throughput rate of container terminals. Since investing to

resources in a container terminal such as berths, cranes, transportation vehicles and

handling equipment is very costly, the efficient utilization of the available instruments

gains importance in order to meet the growing demand while optimizing a performance

measure.

The operations handled in a container terminal can be divided into two basic

categories: Quayside and yardside operations. Although there exist a number of differ-

ent problems both in the quayside and in the yard, this work focuses on the quayside

problems. These problems arise from due to the allocation of limited resources. Berths,

quay spaces where vessels are loaded and unloaded, are critical resources and optimal

assignment of berths and service time intervals to vessels is an important issue at quay-

side, which is known as Berth Assignment Problem (BAP). Containers are unloaded

from vessels by quay cranes and placed onto trucks, while containers are loaded to

vessels following the reverse process. Quay cranes can move along the quayside usually

on a rail system and trucks transfer the containers from the quayside to the storage

area in the yard. Determining the number of quay cranes allocated to vessels for load-

ing/unloading is called Quay Crane (Number) Assignment Problem (QCAP-number)

2

and the allocation of specific cranes to vessels is named as Quay Crane (Specific) As-

signment Problem (QCAP-specific). If both number and set of cranes are determined

in a single problem, then it is called QCAP.

Although the initial works about container terminals tackles with these problems

one by one in a sequential manner, these problems are noticed to be strongly related.

The recent papers mostly consider the integrated solution approaches for two or more

problems in ports. Our main goal is to develop a procedure which produces near

optimal results in a reasonable amount of time for the integrated problem of BAP

and QCAP-number (BACAP) and the integrated problem of BAP and QCAP-specific

(BACASP).

Container terminal related problems are mostly characterized by the model as-

sumptions and these assumptions are the main factors which determine the difficulty

of the problem. For instance BAP with static arrival times can be solved at optimality

easily whereas the variant with dynamic arrival times are proved to be NP-hard in the

literature. Similarly,the version with discrete berth layout is known to be less compli-

cated than the version with continuous layout. Our problems assume continuous berth

layout with dynamic arrival times. Quay crane allocation is variable in time and the

handling times are dependent on the assignment of quay cranes. Each vessel is defined

with a due time for departure and a desired berth segment. The exact methods pre-

sented in (Türkoğulları et al., 2012a) and (Türkoğulları et al., 2012b) are capable to

find optimal values up to 60 vessels for BACAP and BACASP respectively. Due to

the fact that required computational time and the allocated working memory are quite

high for exact methods, a heuristic approach is applied here.

In this study, a tabu search algorithm is developed and a few local improvement

procedures are provided to solve BACAP. In addition to tabu search and local proce-

dures, a shortest path problem is solved to gain the quay crane schedule in BACASP.

The experiments are carried out with different instances. The results are compared

with the optimum or the best integer solution found by the method of (Türkoğulları

3

et al., 2012a) and (Türkoğulları et al., 2012b).

The remaining of the thesis is organized as follows: A literature review about

quayside operations is given in Chapter 2. The problem assumptions of BACAP and

the proposed tabu search algorithm are elaborated and the experimental results are

given in Chapter 3. In Chapter 4, BACASP model is introduced and the solution

approach employing tabu search and Dijkstra’s algorithm is presented. The numerical

results are tabulated at the end of the section. Finally, the concluding remarks are

stated in Chapter 5.

4

2. LITERATURE SURVEY

The problems encountered in container terminals have been studied in a signifi-

cant amount of research papers. In the beginning, these problems are treated separately

and solution approaches are proposed ignoring the effect of other problems. However,

the interaction between the problems was taken into consideration and integrated so-

lution approaches for two or more problems have been developed throughout the last

decade.

In the BAP, a berth layout of the container terminal and the number of vessels

to be served are given and the aim is to assign a berthing position and berthing time

to each vessel within a planning horizon. The berth layout may consist of discrete

berths where only one vessel can moor to one berth. Alternatively, the layout can be

a continuous berth where each vessel can be positioned at any position of the quay.

In general, the problems with discrete berth assumption are regarded as simpler than

the ones with continuous berth layout. However, the former may be more suitable and

realistic for some container terminals. Apart from these, hybrid berth layout where

one berth can be allocated to more than one smaller vessel or more than one berth

is allocated to one large vessel is also studied in the literature. Regardless of the

layout type, no two vessels can occupy the same quay space simultaneously. All vessels

must be served within the boundaries of the quay respecting the planning horizon

to optimize an objective function. The objective can be minimizing waiting times,

service times, tardiness, completion times, deviation from desired berthing positions

etc. or a weighted sum of these measures. An extensive survey of container terminal

related works can be found in (Bierwirth and Meisel, 2010) with a detailed classification

scheme.

(Edmond and Maggs, 1978) and (Schonfeld and Frank, 1984) can be stated as

the initial works about container terminal operations. These papers differ from the

works following them in terms of the methods they use and the objective they pursue.

5

The main goal in (Edmond and Maggs, 1978) is to decide how to invest in berth

construction and container handling equipment with the aid of simple queue models.

The overall costs related to berths, cranes, storage yard, labor, and containers are

minimized by providing an analytical model in (Schonfeld and Frank, 1984). Besides,

(Lai and Shih, 1992), which is another early work, proposes three berth allocation

policies and provides a measurement strategy using heuristics and computer simulation.

Also, a mathematical model is developed in (Brown et al., 1994) to obtain an optimal

berth plan minimizing berth shifts of vessels during service.

The authors in (Imai et al., 2001) use discrete berth layout and the handling time

of a vessel depends on the berth it moors. They provide two models minimizing the

total waiting and handling times of vessels. In the first model, vessels are ready at the

port and can berth at any time, i.e., arrival times of vessels are static. This problem

is reduced to classical assignment problem which can be solved to optimality. The

second model assumes dynamic arrival times, where vessels cannot berth earlier than

their arrival times. Since the second problem, which is formulated as a mixed integer

linear program (MILP), cannot be solved at a reasonable amount of time, Lagrangean

relaxation based heuristic is proposed.

The formulation with dynamic arrival times of (Imai et al., 2001) is upgraded to

more compact MILP model in (Hansen and Oğuz, 2006) so that the new model can

find the optimal solution for larger instances. Additionally, the dynamic BAP with a

single berth is proved to be NP-hard by reducing it to the problem of minimizing the

total completion time of jobs on a single machine with release dates.

The vessels are directed to an external port in (Imai et al., 2008b) after a pre-

determined due time is reached. Assumptions are almost the same with those of (Imai

et al., 2001), except that the objective is to minimize the number of rejected/directed

vessels, given maximum acceptable waiting times for each vessel. A genetic algorithm

is provided to solve BAP with dynamic arrival times.

6

Instead of minimizing the loss time due to waiting or tardiness, (Hansen et al.,

2008) proposes to minimize the total weighted costs for the same problem in (Hansen

and Oğuz, 2006). Dynamic arrival times, discrete berth layout and berth dependent

operation times are the assumptions. Each vessel is defined with a desired berthing

position and deviation from that berthing position causes transportation costs within

the terminal. The terminal operator wins premium for early completion times and

pay fine for overdue. Moreover, the cost of dissatisfaction because of waiting times

is included. The authors provide several solution approaches: Variable Neighborhood

Search (VNS), Genetic Algorithm (GA) and Memetic Algortihm (MA). They conclude

that VNS outperforms the other two heuristics.

The dynamic version of BAP is also studied in (Cordeau et al., 2005), to minimize

the weighted sum of waiting and handling times by assuming berth dependent opera-

tion times. MILP formulations are given for both discrete and continuous berth cases.

Although the models can be solved optimally for small instances, a tabu search heuris-

tic is developed to solve instances with realistic size. For discrete case, tabu search

algorithm gives better solutions than CPLEX within a time window. For continuous

case, tabu search is compared with a first-come-first-served (FCFS) based constructive

algorithm. (Mauri et al., 2008) applies a column generation approach for the same

problem with discrete layout and reports that this new method produces better results

in shorter times than the tabu search algorithm applied in (Cordeau et al., 2005).

Each discrete berth is defined with a length and depth in (Han et al., 2006)

in addition to berth dependent operation times. Vessels can moor to a berth if and

only if the berth is in appropriate physical condition for that vessel in terms of length

and depth. A nonlinear program is developed for dynamic BAP. Two heuristics, one

of which is GA, are offered. The other method is the hybrid of GA and Simulated

Annealing (SA). The hybrid method is shown to be superior. The authors in (Zhou

et al., 2006) also use similar arguments for berths. However they assumed that arrival

times and operation times of vessels are stochastic variables since they might be affected

by weather, crane productivities, container distribution in the vessel etc. in real life.

7

Continuous berth layout is introduced in (Li et al., 1998) by generalizing the BAP

to “multiple-jobs-on-one-processor” pattern where jobs are vessels and processors are

berths. According to this pattern, multiple jobs can be processed on a processor as long

as they do not exceed the capacity of the processor. First-Fit-Decreasing heuristic is

provided for static BAP with fixed handling times to minimize the schedule makespan.

(Guan et al., 2002) solves the same problem to minimize the total weighted completion

times. In the solution approach, vessels are ordered according to a priority rule and

groups of vessels are allocated to berth segments greedily.

The weighted sum of waiting and operation times is minimized in (Guan and

Cheung, 2004), assuming dynamic arrival times and continuous berth layout. Handling

times of vessels are fixed. A hybrid heuristic approach is adopted where a tree-search

procedure and pair-wise exchange heuristic are combined. The same problem with a

different objective can be found in (Wang and Lim , 2007). The aim is to minimize the

weighted sum of rejected vessels, deviation from desired berthing position and waiting

time of vessels before berthing. Stochastic beam search is shown to be more accurate

than the deterministic beam search in solving BAP. Also the authors use real-life data

taken from Singapore Port to test their proposed solution.

In (Park and Kim, 2002), BAP with fixed handling times, continuous berth layout,

and dynamic arrival times is formulated as MILP and Lagrangean relaxation of the

model is solved by subgradient optimization technique. The objective is to minimize the

total weighted tardiness and the distance from the favorite berthing position of vessels.

The same problem is solved using SA in (Kim and Moon, 2005). A different method

which combines mathematical modeling and discrete event simulation is proposed in

(Briano et al., 2005).

The problem mentioned in (Park and Kim, 2002), is introduced with a pecu-

liar objective function in (Lim, 1998). The vessels’ berthing times are determined as

their arrival times. Given the arrival and handling times, the minimum quay crane is

searched satisfying the schedule within the planning horizon allowing no overlapping

8

of vessels. This problem is proved to be NP-complete by reducing it to set partitioning

problem. In the graph representation of the problem, nodes stand for the vessels and

there is an arc between two nodes if the corresponding vessels stay together at the port

in any time period. The problem is extended by adding the constraint which forces

vessels to respect the berth depths in (Lim, 1999) and solved by applying a greedy

construction heuristic and a post optimal algorithm.

Total handling and waiting times of vessels are minimized in (Imai et al., 2005).

The berth layout is continuous, arrival times are dynamic and the handling times

changes according to the berthing position of vessels. This problem is also proved to

be NP-hard by reducing it to two dimensional cutting stock problem. This problem

tries to obtain rectangular pieces from a sheet of stock material minimizing the trim

loss. A vessel can be represented as a rectangle: one side stands for the length of the

vessel and the other side represents the duration it spends at the berth.

BAP variants with dynamic arrival times mentioned above are studied also for

hybrid berth layouts in the literature. Fixed handling times assumption is used to

minimize the weighted sum of waiting times and deviation from desired berth position

in (Moorthy and Teo, 2006). The case, where handling times are affected by berthing

positions, is explored in (Imai et al., 2007) minimizing the total waiting and operation

times. Here, BAP is formulated for indented berths that are constructed perpendicular

to the quay. Vessels can be served from both sides in this special berth type. Lastly,

the version with berth depths can be found in (Nishimura et al., 2001).

In QCAP, the quay cranes (QCs) are assumed to be identical and move along a

rail track. They are allocated to vessels knowing where and when the vessel berths. By

construction of rail system, QCs are prohibited to pass over each other. The aim is to

fulfill the loading/unloading operations of all vessels in the schedule. If the berth layout

is discrete, QCAP may not be a challenge since each berth has its own distinct cranes.

Otherwise, the handling times of vessels are strongly correlated with the number of

QCs allocated. This interdependence is considered in many research papers and the

9

workload of a vessel is expressed in terms of QC-hours. This problem targets to find

either the number or the specific set of QCs. For simplicity, it can be assumed that

the number or set of QCs is never changed within the service duration of vessel. This

is called “time invariant” assignment in (Bierwirth and Meisel, 2010). Alternatively,

“variable-in-time” assignment allowing changes can be used to increase the flexibility of

operational decisions. Moreover, the number of allocated QCs may be bounded below

by contracts between the vessel and terminal operators as well as bounded above by the

length of the vessel. The objective is mostly to minimize the number of crane setups.

QCAP is not regarded as a difficult problem so it is usually studied in the literature

together with either BAP or Quay Crane Scheduling Problem (QCSP) that tries to

schedule detailed operational tasks of loading/unloading.

As mentioned before, the integration of two or more problems has gained pop-

ularity in recent years. BAP and QCAP are integrated in (Lokuge and Alahakoon,

1999) so that the output of one problem is input to the other one in a feedback loop.

Hybrid berth layout is used and handling times of vessels vary with the number of

allocated QCs and berthing position. Each vessel is defined with an arrival time and

a multi-agent system is proposed to minimize total waiting time and total tardiness

separately.

BAP and QCAP-number are unified in a MILP formulation in (Meisel and Bier-

wirth, 2009). The berth layout is continuous and arrival times are dynamic. Operation

times depend on the number of cranes utilized but QC productivity does not increase

linearly. Each added QC has a decreasing marginal effect, since interference among QCs

slows down the work performance. The crane assignment is “variable-in-time” and the

distance between berthing position and storage area affects the handling time of ves-

sels due-to internal truck traffic. The pursued objective is to minimize the weighted

sum of tardiness, distance from desired berthing position, QC productivity loss and

the speed-up cost to berth earlier than the expected arrival time. The authors present

several procedures: a construction heuristic with local refinements, squeaky wheel op-

timization meta-heuristic and a tabu search meta-heuristic. Finally, the results are

10

compared with each other and with the method of (Park and Kim, 2003).

A MILP formulation, which aims to minimize the maximum crane capacity

needed for each time window when vessels arrive periodically, is given in (Hendriks

et al., 2008). Each vessel has an acceptable waiting time before berthing and the han-

dling times are related to the output of QC allocation. (Giallombardo et al., 1978) also

gives two mathematical formulations where the discrete berth layout is used. However

it is reported that even small instances cannot be solved to optimality and further

procedures are needed.

In (Park and Kim, 2003), BAP, QCAP-number and QCAP-specific are solved in

two stages. In the first stage, Lagrangean relaxation of MILP model, which integrates

BAP and QCAP-number, is solved utilizing subgradient optimization. The goal is to

minimize the weighted sum of tardiness, speed-up cost, deviation from desired berthing

position and waiting times. The output of the first stage, berth plan and number of

assigned cranes, is used to specify the set of cranes in the second stage. The QCAP-

specific problem tries to minimize the number of crane setups and a dynamic program

is developed for this stage .

The approach in (Imai et al., 2008a) is quite similar to the one in (Park and

Kim, 2003). Here, BAP and QCAP-number is solved by a GA. The obtained berth

plan and QCAP-number solution is used to check whether a feasible QCAP-specific

solution exists. Otherwise, the infeasible solution is modified to make it feasible. These

two problems work in a feedback loop until they give the minimum service time with

a feasible crane schedule.

The container terminal management issues are decomposed into two parts in a

case study of (Meier and Schumann, 2007). BAP is solved by berth planners minimizing

total service times, QCAP and QCSP are solved by crane planners maximizing crane

productivity. Since the service times are directly related to crane schedule, an iterative

information flow is built between these two planning modules. The feedback loop is

11

ended after a pre-determined number of iterations.

Another integration approach is given in (Ak, 2008) with the goal of minimiz-

ing the sum of the total waiting times, handling times and tardiness. A monolithic

MILP formulation is provided integrating these three problems. Since the model is not

solvable in polynomial time, a nested tabu search algorithm is given which decides on

the berth plan and specific crane assignment to the holds of vessels, where QCs are

assigned to holds and leaves only when it finishes the work of that hold. The results

are compared with a rule-of-thumb solution which can be generated by a terminal op-

erator. These kind of monolithic solution procedures are accepted as a deeper way of

integration than feedback loops.

In the literature, in some works BAP is excluded and only QCAP and QCSP

are integrated. This approach originates in (Daganzo, 1989). The vessels arrive at

different times and wait in a queue until a berth becomes available. QCs are allocated

to holds of vessels and a vessel cannot depart before all its holds are processed. The

paper presents an exact method which can solve instances with a few ships to minimize

aggregate costs of vessel delay. For larger instances, an approximation method is also

provided. A branch-and-bound method is given for the same problem in a later work

of the author in (Peterkofsky and Daganzo, 1989). QC schedule, for a given set of

parallel vessels, is obtained through applying a GA in (Tavakkoli-Moghaddam et al.,

2009) to minimize the sum of weighted finishing times of cranes and sum of weighted

vessel tardiness.

A recent work deeply integrating BAP, QCAP-number and QCAP-specific can

be found in (Zhang et al., 2010). This paper stands apart from other works due to

the assumptions it made. Cranes cannot operate at every berth segment because

of cable lengths, so each crane is defined with a coverage range. Although the crane

assignment is “variable-in-time”, the number of adjustments is limited. Since too many

adjustments reduce the applicability of the allocation, such a restriction makes sense.

An MILP formulation is developed and a subgradient optimization algorithm is applied

12

to solve the problem. The problem instances are taken from real-life data.

BAP and QCAP-number is modeled in a monolithic binary integer program in

(Türkoğulları et al., 2012c). The crane assignment is assumed to be “time invariable“

and the problem can be solved optimally up to 60 vessels. The same objective function

presented in (Zhang et al., 2010), is also used here. Another formulation including

QCAP-specific is proposed but optimal solution cannot be obtained for all instances.

Instead, a post-processing procedure, that checks whether the optimal solution of the

first model satisfies the sufficient and necessary conditions for the optimality of the

second model, is applied. If this condition is not satisfied, a cut is added to the model

and the first formulation is solved iteratively until a solution which obeys the given

optimality condition is obtained. The authors give a similar formulation integrating

BAP and QCAP-number in (Türkoğulları et al., 2012a), allowing “variable-in-time”

crane assignment this time. Setup cost is incurred if the number of assigned cranes

to a vessel is changed by one unit between two consecutive time periods. The model

is solved optimally up to 60 vessels. A heuristic giving a QC schedule to the optimal

plan is applied with the aim of minimum specific crane shift. The heuristic is proved

to find optimal schedule if the input has a special characteristic.

In (Türkoğulları et al., 2012b), the problem presented in (Türkoğulları et al.,

2012a) with a different QC setup definiton, is decomposed into a master and subprob-

lem and cutting plane algorithm is applied. The setup cost is incurred if an idle QC

begins to serve a vessel or a QC moves from a vessel to another or a QC goes idle

after serving a vessel. The master problem solves BAP and QCAP-number and the

subproblem solves QCAP-specific. The optimal value of the master problem is up-

dated after the subproblem is solved and the master problem is run again with this

new information. This feedback loop stops when the minimum total objective value

is reached. The subproblem is modeled as a minimum cost network flow problem and

solved by a branch-and-bound algorithm initially. However the second approach which

develops a new graph and finds shortest path on it is proved to be a more efficient

way to solve the subproblem. The optimal objective values obtained outperforms the

13

results of existing heuristics.

14

3. INTEGRATED BERTH ALLOCATION AND QUAY

CRANE ASSIGNMENT PROBLEM

The problem of assigning berthing positions and service durations to vessels with

the aim of optimizing a performance measure is called the berth assignment problem

(BAP). The volume of international trade and particularly the share of containerized

sea transportation have increased in recent years. This upward trend forces terminal

operators to manage their vessel handling schedule efficiently. Otherwise, an ineffi-

cient schedule might cause longer waiting times, delays in service and consequently

disappointment of vessel operators. Clearly, solving BAP alone does not guarantee

an applicable schedule in real life. In practice, the quay crane assignment problem

(QCAP-number), which allocates cranes to vessels at the port, is solved following the

berth related decisions. However, the service duration and the departure times of ves-

sels are directly related to the number of allocated quay cranes. Placing a vessel into

an available berthing position does not mean that an idle quay crane is ready to serve

that vessel. So, the restrictions imposed by quay cranes should be taken into account

while allocating berths to obtain more implementable plans. The intimate nature of

these two resources inspired the idea of integrating BAP and QCAP-number. The

integrated problem of BAP and QCAP-number is called BACAP (Berth Allocation

and Quay Crane Assignment Problem) in this report, following the naming convention

used in (Türkoğulları et al., 2012b).

3.1. Model Assumptions

Container terminal related problems are not uniform and the variants of the same

problem with different assumptions can be very distinct from each other. Likewise, our

BACAP model is characterized by the following assumptions:

• The berth layout is continuous and it is discretized by dividing it into equal

berthing segments. Each berth segment corresponds to 50 meters.

15

• The planning horizon is discretized by dividing it into equal time periods. Each

time period corresponds to an hour.

• A berth segment cannot be occupied by more than one vessels in a time period,

i.e. overlapping is not allowed.

• Handling times depend on the number of cranes allocated and they are expressed

in QC-hours.

• A quay crane can be assigned to only one vessel in a time period.

• A vessel cannot berth before its arrival time and the loading/unloading operations

begin as soon as a vessel berths. The vessel departs upon the termination of

loading/unloading operations.

• A vessel cannot change its berthing position during service and preemption is not

allowed. However, the number of allocated quay cranes can be adjusted in time.

• The number of cranes that can be assigned to a vessel in a time period is limited

from below by contracts and from above by the vessel length.The total number

of allocated QCs cannot exceed the total number of QCs at the port.

• Each vessel is defined with a desired berthing position and a due time for depar-

ture.

The BACAP parameters and their concise definitions can be seen in Table 3.1.

Also, Table 3.2 reveals the decision variables to be determined.

Once a problem is solved, the obtained berth plan can be represented in a time-

space diagram as shown in Figure 3.1, where the horizontal and the vertical axes

stand for time periods and berth segments, respectively. Each vessel is represented

by a rectangle whose height is equal to the length of the vessel and width is equal

to the time interval it stays at the berth. The berth sections occupied by a vessel

and the berthing time of a vessel can be determined by only detecting the left-lower

grid square of the corresponding rectangle. The y coordinate of the left-lower grid

square represents the berthing position pi of vessel i, and the x coordinate gives the

berthing time, ti. Furthermore, the number of cranes allocated to a vessel is shown

by the number inside the rectangle. Dividing the rectangle by a vertical line means

16

Table 3.1. Parameters of the model.

Parameter Definition

V number of vessels

T number of time periods

B number of berthing segments

N number of quay cranes available

ki minimum number of cranes that can be assigned to vessel i

k
i

maximum number of cranes that can be assigned to vessel i

li length of vessel i

ei arrival time of vessel i

si desired berthing section of vessel i

di due time of vessel i

wi handling time of vessel i in QC-hours

Table 3.2. Decision variables of the model.

Decision Variable Definition

pi berthing position of vessel i

ti berthing time of vessel i

qi departure time of vessel i

yij number of cranes assigned to vessel i in period j

17

that the number of cranes is adjusted in that time period. The last time period that

any QC is assigned to a vessel, i.e. the x coordinate of the right end of the rectangle

gives the departure time qi. In this example, V = 4, T = 26, B = 16, N = 7. Thus,

it can be concluded that vessel i occupies berth segments [pi, pi + 1, . . . , pi + li − 1]

for the time interval [ti, . . . , qi]. Consider the feasible solution in Figure 3.1 where

overlapping of rectangles is prohibited. The berthing times are t1 = 2, t2 = 2, t3 =

4, t4 = 9; berthing positions are p1 = 11, p2 = 7, p3 = 4, p4 = 7 and completion times

are q1 = 8, q2 = 5, q3 = 13, q4 = 14. We can also read quay crane allocations, for

the first vessel: y12 = y13 = y14 = 3, y15 = y16 = y17 = 4; for the second vessel:

y22 = y23 = 3, y24 = 2, y25 = 1; for the third vessel: y34 = y35 = ... = y3,13 = 2; and

lastly for the fourth vessel: y49 = y4,10 = 4, y4,11 = y4,12 = 3, y4,13 = y4,14 = 4.

Figure 3.1. A Feasible Solution.

The objective of BACAP is to minimize the total cost emerging from berth and

crane schedule. The cost structure and the objective function are elaborated in the

next section.

18

3.2. Cost Structure

The vessels arrive at the port and they berth whenever an appropriate berth

section and necessary quay cranes are available. If it cannot berth upon the arrival, then

the vessel has to wait until the conditions are fulfilled for service provision. Waiting

before service is not welcomed by the vessel operators and cause dissatisfaction of

terminal customers. Besides, vessels are mostly used in international transshipments

and they plan to visit at many ports throughout their voyage. Vessel operators usually

establish a due time to depart from each harbor to catch up their pre-determined

schedule. Therefore, departure after due date is another source of dissatisfaction for

transshipment companies. Considering the facts mentioned above, waiting times before

berthing and departure after due time are penalized and counted as cost items.

Containers unloaded from a vessel are transferred to storage areas by yard trucks

and they are stored with the help of yard cranes. Similarly, the containers in storage

area follow the reverse path to be loaded to a vessel at the berth. Desired berthing

position of a vessel is specified by selecting the nearest berthing segment to the area

where its containers are/will be kept. Provided that the vessel berths at a farther

position, trucks have to travel a longer way, and the interior traffic created by many

trucks slows down the loading/unloading operations. In the BACAP model proposed

in this study, the trucks are assumed to be idle whenever needed so that the handling

times are not affected by the distance to the storage areas. However the deviation from

desired berthing position is penalized in the objective function.

Another component of the cost structure is the setup costs of quay cranes. As

mentioned above, cranes slide over a rail track and setup of a crane requires moving

to the proper berth section. This movement probably pushes the other cranes to move

since crossing of cranes is not allowed. In BACAP, we are only interested in the number

of cranes so whenever the number of QCs allocated to a vessel varies, a setup cost is

incurred. The definition of cost coefficients and their brief explanations can be found

in Table 3.3.

19

Table 3.3. Cost coefficients in the objective function.

Parameter Definition

ci1 Cost of one unit deviation from the desired berthing section for vessel i

ci2 Cost of berthing one period later than the arrival time for vessel i

ci3 Cost of departing one period later than the due time for vessel i

ci4 Cost of changing the number of assigned cranes by one unit for vessel i

To sum up, all the terms contributing to the total cost constitutes the following

objective function:

min z =
V∑
i=1

ci1 |pi − si| +
V∑
i=1

ci2 max(ti − ei, 0)

+
V∑
i=1

ci3 max(qi − di, 0) +
V∑
i=1

T∑
j=2

ci4 |yij− yi,j−1|
(3.1)

Suppose that the parameter list in Table 3.4 is given for the feasible solution in

Figure 3.1. Then the resulting objective value is calculated below:

• The total cost of deviation from the desired berthing position:

10× |11− 10|+ 10× |7− 7|+ 10× |4− 7|+ 10× |7− 8| = 40.

• The total cost of waiting before berthing:

10×max(0, 2−2)+10×max(0, 2−2)+10×max(0, 4−4)+10×max(0, 9−7) = 20.

20

Table 3.4. A sample.

Parameter 1 2 3 4

ki 3 1 2 3

k
i

4 3 2 4

li 5 4 3 5

ei 2 2 4 7

si 10 7 7 8

di 10 8 18 16

wi 25 9 20 22

ci1 10 10 10 10

ci2 10 10 10 10

ci3 10 10 10 10

ci4 1 1 1 1

• The total cost of departing after due time:

10×max(0, 8−10)+10×max(0, 5−8)+10×max(0, 13−18)+10×max(0, 14−16) = 0.

• The total setup cost of QCs:

(3 + 1 + 4) + (3 + 1 + 1 + 1) + (2 + 2) + (4 + 1 + 1 + 4) = 28.

The overall cost of the given solution in Figure 3.1 is z = 50 + 20 + 0 + 28 = 98.

3.3. Solution Procedure: A Tabu Search Metaheuristic

A metaheuristic is a solution method which combines the tools of local improve-

ment processes with intelligent search strategies in order to avoid get stuck in local

optima. In complex solution spaces, local improvement procedures like ascent, descent

21

methods may result in bad solutions in terms of proximity to the optimum. A process,

which helps move from one solution to another utilizing a well-defined neighborhood

structure, is coupled with the classical local search algorithms in metaheuristics so

that the search can be done in a wide area while avoiding the risk of trapping in local

optima.

The metaheuristic term is first used in (Glover, 1986) where tabu search algorithm

is also introduced. Tabu search metaheuristic, which is elaborated, later on (Glover

and Laguna, 1997), exploits local search methods with a short-term memory in the

simplest version. A tabu list is kept for a number of iterations to avoid cycling back

to previously visited solutions. As an additional feature, a long-term memory is also

employed to detect more promising areas in the search space.

The BAP with dynamic arrival times is proved to be NP-hard in (Hansen and

Oğuz, 2006), (Lim, 1998) and (Imai et al., 2005). Also, MILP formulations are con-

structed for BAP or BACAP in a number of papers and most of them can only be

solved for a few vessels which are of no practical use. A recent work, (Türkoğulları

et al., 2012a), developed a BACAP model and succeeded to reach optimality up to

60 vessels. Since exact algorithms require longer times, different metaheuristics are

used such as genetic algorithm, tabu search, simulated annealing or hybrid methods to

find near optimal values in shorter amount of times for these problems. Particularly,

(Cordeau et al., 2005) proposes a tabu search for BAP while (Meisel and Bierwirth,

2009) and (Ak, 2008) modifies the tabu search for BACAP.

The tabu search (TS) algorithm presented in this study is similar to the work of

(Ak, 2008) in terms of TS structure. The neighborhood search is done in two nested

layers. At the outer layer, the algorithm switches from one vessel priority list to another

by swap operations. While the priority list is kept unchanged, the inner layer searches

a binary vector which holds two different rules for placing the corresponding vessel.

These two arrays, priority list and rule vector, represent a feasible solution to the

problem.

22

3.3.1. Solution Representation and Generation

Each feasible solution is encoded by a vector pair of size V . The first vector is the

priority list P which is a sequence of vessels, the other one is the binary-valued rule list

R. Suppose that a solution is represented by x. Then, (Px, Rx) pair generates a unique

feasible solution according to the following instructions: Pick vessels from P beginning

with the first vessel. Let i be the vessel with kth highest priority i.e. P (k) = i. Check

the rule list R. R(i) = 0 means that the vessel i prefers berthing as soon as a berth

segment of length equal to li becomes available after its arrival ei. Finding available

berth section is not sufficient. The rectangle corresponding to vessel i must not overlap

with the other k − 1 pre-scheduled rectangles in order to maintain feasibility. So, the

selected berth sections should be unoccupied by another vessel throughout the time

the vessel i stays at the berth. The service duration cannot be exactly known without

allocating quay cranes but an upper bound can be calculated assuming that the vessel

is assigned ki many QCs in every time period. Denote the number of idle QCs in period

j by ACj. A better upper bound can be found by assigning the min(ki, max(ACj, k
i))

for each time period but additional computation is necessary. The earliest time after

ei when vessel i can berth without overlapping is determined as the berthing time ti.

The berthing position satisfying these conditions at ti are listed as candidate berthing

positions. If there are multiple candidates for berthing, the berth segment with the

smallest distance from the desired berthing position of vessel, si, is chosen as the

berthing position pi.

Although berthing at the earliest time seems rational, this kind of First-Fit re-

placement is not always intelligent enough to find the optimal schedule. At optimality,

some vessels might prefer to wait until a nearer berthing position to si becomes avail-

able instead of berthing immediately. So, an alternative rule is implemented which is

denoted by 1 in R vector. R(i) = 1 means that the vessel prefers to berth obeying

the feasibility conditions so that the berthing position pi and time ti minimizes its

individual cost of waiting time and deviation from si. This process may seem unprac-

tical since it requires many comparisons. However, this challenge can be handled by

23

finding the earliest time, say ttemp
i , that vessel i can berth at si without overlapping.

Checking the time periods after ttemp
i is meaningless because we cannot find a better

berthing position than si. So our search is confined to the berthing positions in the

time interval: [ei, t
temp
i].

Following the determination of pi and ti, QC allocation must be done. Then

for each time period j, assign min(ACj, k
i
) cranes to vessel i as long as it stays at the

berth. If min(ACj, k
i
) is less than ki, then the difference ki- min(ACj, k

i
) is transferred

from another vessel l which is being served at time j and uses more than kl QCs. If

there are more than one vessel using more QCs than its minimum number of needed

cranes, pick the vessel with the highest number of QC allocation in time period j. If

the difference ki- min(ACj, k
i
) is more than one, cranes are taken one by one from the

vessel with the highest number of QCs in each turn. While transferring cranes, the

completion time of vessel l can be changed since its QC usage is decreased in period j.

The vessel l is not allowed to give its cranes to vessel i if the new completion time, ql

exceeds its due date dl. Non-overlapping of rectangles must be maintained, lower and

upper bounds for QC usage must be respected during this step. The last period that

the vessel i gets service, is assigned as the completion time, qi, of vessel i.

Figure 3.2. Solution Obtained from P = {1, 2, 3, 4} and R = {0, 0, 0, 0}.

Consider the instance given in Table 3.4 with P = {1, 2, 3, 4} and R = {0, 0, 0, 0}

where V = 4, B = 16, T = 26, N = 7. Vessel 1 can berth as soon as it arrives at its

favorite berthing position regardless of the R list. Since the R list is composed of 0’s

24

in this example, each berth prefers to berth upon the arrival. Vessel 1 berths in time

period 2 at its desired berth section 10. At most, 4 craness can be allocated to vessel

1. Except for the last period, 4 QCs are assigned. Although the minimum number of

cranes is 2, only one crane is given in the last time period. The reason is that there

remains only1 QC-hour workload to be handled. Since the service of vessel 1 is finished

in time period 8, the completion time is determined to be 8. Vessel 2 berths in a similar

fashion, however it berths 1 berth section away from s2 to avoid overlapping as can be

seen in Figure 3.2. At the arrival time of vessel 3, berth sections are available but there

is no idle crane. According to the solution decoding given above, vessel 3 can berth

and some cranes can be transferred to vessel 3 from vessels 1 and 2 in time period 4.

The assigned QCs to vessel 3 after transfer is equal to the minimum number of QCs

which vessel 3 needs. Also, vessels 1 and 2, which give their cranes out, must update

their crane distribuiton and renew their completion times if necessary. Vessel 4 has to

wait two time periods before berthing since there is no available berth segment at e4

fitting vessel 4. Now, the total objective value can be calculated as 96.

Figure 3.3. Solution Obtained from P1 = {2, 1, 3, 4} and R1 = {0, 0, 0, 0} and

P2 = {2, 1, 3, 4} and R2 = {0, 0, 1, 1}.

A neighboring list to P1 = {2, 1, 3, 4} can be obtained by swapping the vessels

1 and 2 in P . Keeping the rule list R1 = {0, 0, 0, 0} the same, the solution shown

in the left chart of Figure 3.3 can be obtained from these two lists and the resulting

objective value is computed as 86. As mentioned earlier, a neighboring solution can

either be obtained modifying P or R. By changing some zero values to one in R1, the

25

new rule list R2 = {0, 0, 1, 1} is constructed. P2 = {2, 1, 3, 4} is the same vector as P1.

The objective value of the corresponding solution of (P2, R2) pair is found as 76. The

resulting solution can be visualized in the right chart of Figure 3.3.

3.3.2. Initial Solution

A feasible solution can be obtained by applying the solution generation procedure

described above from a pair of priority and rule list (P,R). This initial solution is

denoted by x0 and the vectors producing x0 are called P0 and R0, respectively. Our

candidates for P0 vector are produced as follows:

• The priority list ordered according to the increased arrival times i.e. the list

constructed using First Come First Served (FCFS) rule: Parr

• The priority list ordered according to the increased due times i.e. the list con-

structed using Earliest Due Date (EDD) rule: Pdue

• The priority list ordered randomly: Prand

The first two candidates are also proposed in (Ak, 2008), since they can be con-

structed intuitively by any terminal operator. For most heuristic approaches, beginning

from a sufficiently good solution improves the quality of the final result and speed of

the algorithm. So, these two vectors are expected to produce satisfactorily good initial

solutions due to the fact that waiting times and tardiness are both minimized in the

objective function.

The third candidate is a randomly ordered priority list. However, the vessels are

not selected by a pure random process. Suppose K is a positive integer less than the

number of vessels, V . Parr is taken and divided into dV/Ke groups such that, first K

vessels of Parr is in the first group, second K vessels of Parr is in the second group and

so on and the remaining vessels of Parr are in the last group. Each group is randomly

ordered within itself and new randomized groups are concatenated respecting the initial

order of groups in the Parr list. This kind of randomization prevents giving very high

26

priorities to late arriving vessels and very low priorities to early arriving vessel and

leads to better quality solutions than the pure random process does.

R0 is initially set to zero vector of length V . The pair producing the solution with

the smallest objective function among (Parr, R0), (Pdue, R0) and (Prand, R0) is assigned

as the initial priority and rule vectors (P0, R0) and the corresponding solution is set as

the initial solution x0.

3.3.3. Outer Search

Neighborhood Structure: Suppose that the current priority list is denoted by Pc and

the current solution produced by (Pc, R0) is labeled as xc. The priority and rule list

of the best solution found, xbest, is denoted by (Pbest, Rbest). At the beginning of the

algorithm (Pbest, Rbest) = (P0, R0) and Pc = P0 .Here, the same neighborhood structure

provided in (Ak, 2008) is employed as follows: Choose a vessel k among m selected

vessels from Pc. Find the r closest vessels to vessel k, where closeness is defined in

terms of the absolute difference of indices in Pc. Pick a vessel, say vessel l, among the

n randomly selected vessels of r closest ones to vessel k. Swap vessels k and l, and

name the new neighboring priority list as Pn. Produce n1 many neighboring lists of

Pc and if (k, l) swap move is not in the tabu list of the outer search (TL1), run the

inner search procedure for each of the neighboring priority lists. The inner search will

return a rule list Rn for each of Pn. Now, the pair (Pn, Rn) is a neighboring pair for

outer search (see Figure 3.4). The best (smallest) cost neighbor (P ∗
n , R

∗
n) is labeled as

(k∗, l∗).

Solution Update: The best valued neighboring solution is set as the current solution:

xc = x∗n and Pc = P ∗
n . If the solution, x∗n, of (P ∗

n , R∗
n) has a better objective value

than the best solution, then the latter is updated: xbest = x∗n and (Pbest, Rbest) =

(P ∗
n , R

∗
n).The swap move (k∗, l∗) is added into the tabu list of the outer search and

delete the moves whose tabu tenure is passed are deleted. Tabu duration of the outer

search, (TT1), is dynamically determined at each iteration. It is distributed with a

27

Figure 3.4. Neighboring Solution Generation of Outer Search.

uniform distribution on the interval (a1, b1).

Termination Criterion: The outer search is stopped if the best solution is not improved

for a pre-determined number (C1) of successive iterations.

3.3.4. Inner Search

Neighborhood Structure: A priority list, P , is input to the inner search. Keeping P

unchanged, we aim to find a rule vector which gives the best possible solution when

combined with P . The initial rule vector for the inner search, R0, is a vector of zeroes.

Initially, (P,R0) pair is set to (P,Rc) and (P,Rbest). Also, u0 which is the initial solution

of inner search is set to uc and ubest. Since P is not changed during inner search, we

can store the best and current solutions of inner search by keeping the necessary rule

vectors. A neighboring rule vector of Rc is obtained by changing the rule of only one

vessel from 1 to 0 or from 0 to 1. So there can be at most V neighboring rule list at one

iteration of the inner search i.e n2 ≤ V . The neighboring rule vector Rf is obtained

by altering the value of the f th vessel, i.e, the f th index of Rc. The objective value of

solution related to pair (P,Rf) is computed. If move f is not in the tabu list of the

inner search, TL2, or if f is in the TL2 but (P,Rf) produces a better objective value

than ubest does, then Rf is kept as candidate for new Rc in the next iteration. The

smallest cost neighboring solution (P,R∗
f) is labeled as f ∗.

28

Solution Update: The best valued neighboring solution is set to current solution: uc =

u∗f and Rc = R∗
f . If the solution, u∗f , of (P,R∗

f) has a better objective value than the

best solution, then the latter is updated: ubest = u∗f and (P,Rbest) = (P,R∗
f). The move

f ∗ is added into the tabu list of the inner search and the moves whose tabu tenure is

passed are deleted. Tabu duration of the inner search, (TT2), is dynamically determined

at each iteration. It is distributed with a uniform distribution on the interval (a2, b2).

Termination Criterion: The inner search is stopped if the best solution is not improved

for a pre-determined number (C2) of successive iterations. Then Rn which is equal

to Rbest is returned as the result of this procedure. The pair (P,Rn) generates a

neighboring solution in the outer search.

3.4. Local Improvement Algorithms

According to the solution generation approach described in Section 3.3.1., the

vessels with high priorities are capable of both berthing in the earliest possble time

and gain as much QCs as possible. However, the low priority-vessels are contented

with a feasible berthing position and they can only be assigned the remaining QCs.

In short, priority of vessels determine both berth assignment decisions and quay crane

allocation decisions. The optimal solution of BACAP might be a solution which can

never be obtained by this solution generation method. For instance, at optimality,

there may be some vessels with low priority in berthing decisions but high priority

in QC allocation decisions. Moreover, no control mechanism is presented up to now,

minimizing the setup cost of cranes. These shortcomings are aimed to be repaired by

local improvement algorithms presented in this section.

3.4.1. Smoothing Quay Crane Utilization

Smoothing or leveling the QC usage is a necessary procedure to decrease the

setup cost incurred by QCs. Smoothing operation can be done as follows:

29

• If QCs of a vessel are adjusted, i.e., the number of assigned QCs are changed many

times, the setup cost clearly increases. Instead, QCs may be distributed homoge-

neously, without changing the completion time of a vessel. New QC distribution

must obey the availability of cranes.

• Suppose the service of a vessel is completed by assigning at most v QCs in a

time period. This maximum number can be reduced to, say v − 1 or less by

postponing the completion time. The new completion time can only be extended

until coming across to another vessel or its own due time.

Figure 3.5. Quay Crane Smoothing without Changing Completion Times.

The first case can be visualized in Figure 3.5. The first vessel has many QC

adjustments and the setup cost of vessel 1 calculated as: 4 + 1 + 1 + 2 + 2 = 10. After

smoothing, the vessel’s QC usage is distributed over the same time periods minimizing

the number of adjustments. The new setup cost of vessel 1 is computed as: 3+1+4 = 8.

The second case is materialized in Figure 3.6. Consider the left chart of Figure

3.6. The completion time of the first vessel cannot be changed due to the fact that

vessel 4 occupies some of the berth sections of vessel 1 as soon as vessel 1 departs. Also,

no smoothing can be done on vessel 3 since the QC utilization is at its minimum level

(2 QCs) for that vessel. On the other hand, maximum QC allocation is four for vessel

4 and 3 for vessel 2. The setup cost of vessel 2 is 3 + 1 + 1 + 1 = 6 and that of vessel

4 is 4 + 2 + 2 = 8. We can lower the QC usage per period and the completion times of

these vessels can be postponed. Recall that postponing can be done until due times as

30

Figure 3.6. Quay Crane Smoothing Changing Completion Times.

long as the minimum number of QC requirements are respected and overlapping does

not occur. All feasibility conditions are satisfied in the new berth plan and the new

setup costs for vessel 2 is 2 + 1 + 1 = 4 and that for vessel 4 is 3 + 2 + 1 = 6 as shown

in the right chart.

Given a solution obtained from priority list P , the complete smoothing procedure

can be implemented beginning with the first vessel in P by following the steps below:

• Step1: Denote the maximum number of allocated QCs to vessel i as vmax
i . Detect

the time periods with vmax
i QC usage and if there are multiple periods label the

earliest one as j. Beginning from the berthing time of vessel i, find periods that

vessel i uses less than vmax
i − 1 cranes and label the earliest one as h. If QCs are

not fully utilized in period h, decrease the QC consumption at j by one unit and

increase the QC usage at h by one unit. Update vmax
i and repeat this process

until maximum and minimum values of QC usage get close enough. If no time

period with label h is found go to the step 2.

• Step2: Check whether any of the berth sections occupied by vessel i is assigned to

another vessel just after i departs or whether qi ≥ di. If so, end this step. If not,

detect the time period with vmax
i QC usage and if there are multiple periods label

the earliest one as j. If the QC usage in qi is less than vmax
i and there are idle

cranes in period qi, decrease the QC consumption at j by one unit and increase

31

the QC usage at qi by one unit. If QC usage in qi is not less than ki and there are

unassigned QCs in period qi + 1, decrease the QC consumption in j by one unit

and increase the QC usage at qi + 1 by one unit and update the completion time

as qi = qi + 1. Repeat this step until the conditions are met to end this step or

the QC usage of vessel i reaches at its minimum level. Remember that allocated

QC number cannot be less than ki in any time period except for qi and the total

crane usage of all vessels cannot exceed N in a time period.

In (Ak, 2008), another layer, which makes tabu search iterations to find the best QC

allocation, is added to the model. However, adding another layer to this model will

lead to longer computational times and make the heuristic inefficient. We already know

that setup cost of cranes is much less compared to berth dependent costs, so leveling

the QC utilization with an intuitive approach is expected to produce near optimal

results in shorter times. A similar QC leveling procedure can be found in (Meisel and

Bierwirth, 2009) which assigns limited number of cranes to each vessel initially and

distribute the remaining cranes to vessels following a priority list.

3.4.2. Spatial Improvement Procedure

In our solution generation approach, the vessels with higher priority are more

likely to berth to their berthing positions while the lower priority ones berth at the

possible best berthing positions. At the end, the difference of individual costs of vessels

may differ a lot. However, vessels with nearly equal costs may produce better results

than the greedily replaced vessels. Spatial improvement procedure only modifies the

berthing positions of vessels without changing berthing and completion times or QC

allocation.

Consider the instance given in Table 3.5. Assume that ci1 = ci2 = ci3 = 10 and

ci4 = 0. Also, V = 3, B = 16, T = 26, N = 7. Trying different (P,R) pairs we can

obtain different solutions for BACAP (see Figure 3.7). In part A, P = {1, 2, 3} is given

and the best rule list, which gives the smallest objective value when combined with

32

Table 3.5. A sample instance with three vessels.

Parameter 1 2 3

ki 2 2 2

k
i

4 3 4

li 5 4 5

ei 2 2 4

si 10 9 7

di 23 24 25

wi 23 40 30

PA = {1, 2, 3}, is found as RA = {0, 0, 0}. For this case whatever the rule list is, the

same solution is obtained. As a matter of fact, even totally different (P,R) pairs may

generate the same solution in some situations. The objective value of this berth plan

is found to be 90. The solution in part B is obtained from the pair PB = {1, 3, 2}

and RB = {0, 1, 0}. Here, only the second vessel berths according to the rule denoted

by 1. RB is selected in such a way that the rule vector produces the best solution

when combined with PB. The solutions in other parts are also generated similarly.

Although, all possible candidates are tried according to our solution decoding method,

the optimal solution is not met for this tiny instance. Actually whatever the problem

size is, such a challenge can always be the case if more than two large vessels prefer

berthing at very near sections in almost the same time periods.

The optimal solution can be generated by shifting three vessels in part A spatially

upwards. The new objective value is found to be 70 and the new solution is presented

in Figure 3.8. In this solution, none of the vessels individually minimizes its cost but

the total cost is minimized. Since none of the vessels has higher priority than the others

in terms of berthing position selection, no priority list can produce this solution. Given

a solution, spatial improvement procedure can be outlined as follows:

33

Figure 3.7. Different Solutions for Different (P,R) Pairs.

34

• Find the clusters consisting of spatially adjacent vessels in the time-space dia-

gram. For example, in Figure 3.7, all three vessels in parts A,B,C,E and F

constitute a cluster. Except that, in Part D, only vessels 2 and 3 constitute a

cluster because vessel 1 is not adjacent to any vessel. It can move in the vertical

direction freely. If the clusters contain at least 3 vessels, move this cluster up

and down to see if there is any improvement in the objective value. We eliminate

the clusters with 2 vessels because if only 2 vessels have conflicting desired berth

segments, the best solution can be found by simply altering the priorities in the

tabu search.

Figure 3.8. Optimal Solution After Spatial Improvement.

3.4.3. Temporal Improvement Procedure

3.4.3.1. Checking Berthing Times. The priority list P determines the priorities of ves-

sels both for berthing decisions and QC allocations simultaneously. Suppose that two

vessels are served during the same time periods and the first vessel can choose its

35

desired berth segment while the second one has to berth at the best available berth

section. Since the first vessel has higher priority, it would get the highest possible

number of QCs while the second only can get the remaining or minimum necessary

QCs for itself. What if the berth segments of the second vessel are also desired for

other vessels and the berth sections of the first vessel are less popular? Then, a better

solution is to assign the maximum number of QCs to the second vessel. However, such

a solution cannot be generated in the tabu search algorithm. Some local refinements

are necessary.

For the purpose of reaching a better solution, berthing times of every vessel

located in the time-space diagram is checked. If ti > ei for any vessel i, then the

vessel(s) which prevent vessel i to berth earlier is (are) detected and put in the set

V i
s . If the QC allocation of vessels in V i

s are not at its maximum level for any period

j, some QCs are transferred to vessels in Vs from other vessels (the set Si
s) which are

served simultaneously with V i
s . First it should be controlled whether the completion

times of vessels in Si
s can be put off or not. If the completion times can be postponed,

we can transfer some vessels from Si
s to V i

s respecting minimum-maximum restrictions

of QC assignment. As a result, the service of vessels in V i
s is finished earlier while the

ones in Si
s depart later when compared to the beginning. If V i

s is finished earlier, then

vessel i can berth in an earlier time period, too.

Figure 3.9. Checking and Improving Berthing Times.

The described procedure is implemented in Figure 3.9. Consider the vessel 4

36

shown in the left berth plan. It berths in time period 9. However, the arrival time of

vessel 4 is given as 7. In this case, the vessel 4 has to wait because the vessel 1 is still

being served at the arrival of vessel 4. So we can check whether the service of vessel

1 can be finished earlier. We can increase the number of allocated QCs to vessel 1

and decrease the number of QCs assigned to vessel 2. Vessel 2 can give out its QCs

because postponing the completion of vessel 2 does not lead to overlapping or overdue.

After updating berthing times, the new solution will clearly have a smaller objective

function value.

3.4.3.2. Checking Departure Times. In some solutions, the vessels with low priorities

may be assigned very early due times, i.e, the time interval between the arrival and due

times may be too short. To recover the costs incurred by such a situation, checking

whether the departure times of vessels exceed the due times is helpful. If a vessel

departs after its due time, then the number of QCs allocated is increased by transferring

from other concurrently served vessels as described in the previous section.

Figure 3.10. Checking and Improving Departure Times.

Consider the solution in the left chart of Figure 3.10. Vessel 5 departs in time

period 16, whereas the due time parameter of vessel 5 is determined as 15. The service

of vessel 5 could not be finished earlier because the most of the QCs was utilized for

vessel 1, which is also at the berth. The overdue of the vessel 5 can be recovered by

assigning more QCs to it. Since there is no idle crane, the number of QCs assigned

to vessel 1 is decreased by one unit between periods 9 and 13. Vessel 1 can give out

37

its QCs because we can put off the departure time of vessel 1. We would not put off

the completion time of vessel 1, if there is any possibility that vessel 1 departs after its

due time or there occurs an overlapping with another vessel in the time-space diagram.

The new solution, which is presented on the right chart of Figure 3.10 shows that vessel

5 now departs in period 15 without any overdue and hence with a lower total cost.

In conclusion, temporal shifts of vessels only adjust the berthing or completion

times and never modify the berthing positions. Changes on QC allocation is inevitable

since temporal improvement can only be done by playing with QC distribution. A

strong assumption which guarantees that the temporal improvement processes produce

better objective values is that costs related to berth assignment are much important

than QC setup costs.

3.4.4. Integration of Local Improvement Procedures to Tabu Search

The local refinement policies described above is applied to every solution gener-

ated from any (P,R) pair in the following order:

• A solution is obtained from a (P,R) pair and pi, ti, qi and yij are found for j =

1, . . . , T and i = 1, . . . , V .

• Berthing times are checked and improved and ti, qi and yij are updated for j =

1, . . . , T and i = 1, . . . , V .

• Completion times are checked and improved and ti, qi and yij are updated for

j = 1, . . . , T and i = 1, . . . , V .

• Spatial improvement procedure is applied and pi is updated for i = 1, . . . , V .

• Assigned QCs are smoothed beginning with the first vessel in P . yij and qi are

updated for j = 1, . . . , T and i = 1, . . . , V .

38

3.5. Experimental Results for BACAP

3.5.1. Determination of Tabu Search Parameters

In heuristic approaches, the choice of parameters has a significant effect on the

quality of the solution method. A parameter set is determined through a preliminary

study. Different trials has proven that the parameters in Table 3.6 produce good quality

solutions preserving the speed advantage of the heuristic.

Table 3.6. TS parameters.

Parameter Value

Number of groups to produce Prand (K) 5

Number of neighbors produced in outer search (n1) (5V/6)

Number of neighbors produced in inner search (n2) (V)

Tabu tenure of outer search (TT1 ∼ (a1, b1)) ∼ U(3, 5)

Tabu tenure of inner search (TT2 ∼ (a2, b2)) ∼ U(3, 5)

Max # of successive outer iterations without improvement (C1) 5

Max # of successive inner iterations without improvement (C2) 10

Except for the termination criterion of outer and inner iterations, all TS param-

eters is set either as a function of V or a random variable. K is selected as 5 so, Prand

will be generated after all vessels are divided into clusters of 5 vessels. n1 is determined

as a function of V and n2 is assigned to its upper bound to balance the diversification

and time usage.

3.5.2. Instance Generation

The tabu search algorithm with local improvement procedures (TS) is experi-

mented on 106 different instances. It is initially applied to the instance with 21 vessels

given in (Zhang et al., 2010). Six more instances are derived from that instance by

39

taking the first 3, 6, 9, 12, 15, 18 vessels which arrive earlier than the others.

The remaining instances are produced under three different conditions to see

whether TS is an efficient method under different assumptions. Firstly, interarrival

times of vessels are taken as a random variable uniformly distributed over the interval

(0, 20). The instances in this first group is called as instances with loose arrival times.

The second and the third set of instances are generated assuming that interarrivals

are uniformly distributed over the intervals (0, 15) and (0, 10). These sets are named

as instances with moderate arrival times and tight arrival times respectively. In all

instances, li changes between 3 and 8, ki is assigned to 2 for vessels of length 3, 4 and

5 and assigned to 3 for the remaining larger vessels. Considering the safety distances

between QCs, k
i

is determined as li − 1. wi is considered as a function of li, since the

container carrying capacity of the vessel is proportional to its size. wi is uniformly

distributed between 0.2li and 1.5li. si is another random variable generated from

U(1, B− li). The due time, di, is found by ei +dwi/k
ie+U(5, 15). We want to produce

a similar data set given in (Zhang et al., 2010) to be able to reach parameter values

which make sense in a real life application. Moreover, the same container terminal

environment of (Zhang et al., 2010) is used, i.e., B = 24 and N = 12. The instance

sizes are fixed at 60 vessels, while generating the data. Data sets with less number of

vessels are derived from them by taking first 10, 15, 20,. . . , 55 vessels.

TS algorithm is developed in a C# environment on Microsoft Visual Studio 2010.

The results are compared with the optimal results obtained by the exact model pro-

posed in (Türkoğulları et al., 2012a) with the help of IBM ILOG CPLEX 11.0. All the

experiments are performed on a computer with Microsoft Windows Server 2003 x64

Edition operating system and Intel Xeon CPU X5460 3.16 GHz processor with 27.9

GB RAM.

The program is run for two cases. In the first case the setup cost is ignored by

letting ci4 = 0 and ci4 = 10 in the second case. The results of experiments which is

run with the instance of (Zhang et al., 2010) can be found in Tables 3.7 and 3.8.

40

Table 3.7. The instance given in (Zhang et al., 2010) with ci4 = 0.

V
Opt. Obj.

Value

CPU

time(s)

(Exact)

Best TS Avg TS

CPU

time(s)

(TS)

Best % Avg %

1 3 2,000 10.7 2,000 2,000 0.1 0 0.0

2 6 13,000 64.1 13,000 13,400 1.8 0 3.1

3 9 15,000 120.3 15,000 15,000 6.5 0 0.0

4 12 15,000 182.6 15,000 15,000 12.4 0 0.0

5 15 27,000 209.0 27,000 27,000 38.1 0 0.0

6 18 30,000 350.7 30,000 30,000 61.2 0 0.0

7 21 30,000 342.7 30,000 30,000 87 0 0.0

Avg 18,857 182.9 18,857 18,914 29.6 0 0.4

Table 3.8. Test results for data given in (Zhang et al., 2010) with ci4 = 10.

V
Opt. Obj.

Value

CPU

time(s)

(Exact)

Best TS Avg TS

CPU

time(s)

(TS)

Best % Avg %

1 3 2,160 12.0 2,160 2,160 0.1 0.00 0.00

2 6 13,420 105.7 13,420 13,444 2.4 0.00 0.18

3 9 15,700a 155.1 15,680 15,680 8.1 -0.13 -0.13

4 12 15, 920a 256.5 15,900 15,900 16.8 -0.13 -0.13

5 15 28, 180a 264.7 28,160 28,160 37.8 -0.07 -0.07

6 18 31,400 507.6 31,400 31,400 90.9 0.00 0.00

7 21 31,520 573.6 31,520 31,720 147.8 0.00 0.63

Avg 19,757 267.9 19,749 19,781 43.4 0.00 0.20

aOptimal value is higher then Best TS because the exact method does not allow to use less
than minimum number of cranes in the last period of vessels.

41

TS algorithm is run 3 times for each instance, the best and the average objective

values of TS are reported in the columns represented by Best TS and Avg TS. The

values in the TS Time column is equal to the total duration of three runs in seconds.

The percent deviation of best and average TS values from the optimal solution is

calculated as:

Best% =
(Best TS − Opt)

Opt
× 100. (3.2)

Avg% =
(Avg TS − Opt)

Opt
× 100. (3.3)

The negative values for percent deviation stems from the diffrence in the assump-

tion between TS and the exact solution of (Türkoğulları et al., 2012a) about the QC

usage in the last service period of a vessel. The exact solution prevents assigning less

than ki to vessel i in any time period. In our solution approach, the service given to

vessel i is exactly equal to the workload of that vessel. So, QC allocation may be below

ki in the last period of service. Since no extra QC usage is allowed in our model, setup

costs might be below the optimal solutions for some instances. The negative deviations

are excluded while calculating the average value of percent deviations.

The results of the remaining instances with ci4 = 0 is given in Tables 3.9, 3.10

and 3.11. TS finds optimal values for 31 instances out of 33 in loose arrival times. 29

out of 33 instances and 23 out of 33 instances are found to be optimal in moderate and

tight arrival times, respectively. The worst values for percent deviations are reported

as 6.90% and 8.05% for Best % and Avg %, respectively. Notice that the average

percent deviations for both best and avreage TS values get higher as vessels arrive

at the port more often. This result is expected due to the fact that as vessels arrive

more frequently, the problem becomes more difficult. Furthermore, the rate of increase

in Avg % is more than the rate of increase in Best % as problem gets harder. These

results reveal that the probability of reaching an optimal solution in one TS run is more

42

likely with loose arrival times. Another point is that no integer solution is found for

instances 28, 29, and 32 of tight arrival times in 200,000 seconds. The execution time

of the exact method is limited by 200,000 seconds, thus non-optimal values are marked

with (∗), indicating the best integer solution. All in all, TS results give satisfactory

results that are close to the optimal value in significantly shorter times for all generated

instances.

The results of the remaining instances with ci4 = 10 are given in Tables 3.12,

3.13 and 3.14. 10, 6, 3 instances of loose, moderate and tight arrival times are found

to be optimal. Optimality is not reached in many cases because we are only contented

with a resource leveling heuristic to minimize setups to make advantage of speed. TS

algorithm gives good results provided that setup costs is comparatively much less than

the berthing related costs. Thus, the average percent deviations for best TS values

remain within the range of 1% for all of the three cases.

As a further study, TS is run for 10 instances with different frequency of arrival

times in the case of ci4 = 50 and ci4 = 100. We only select 10 instances due to time

restrictions. The results shown in Tables 3.15 and 3.16 indicate that the average percent

deviation for best values is within 2%, which is an acceptable level. This preliminary

analysis points out that TS algorithm can be an efficient tool to solve BACAP for

different values of ci4 up to some extent.

43

Table 3.9. Test results for loose arrival times with ci4 = 0.

V
Opt. Obj.

Value

CPU

time(s)

(Exact)

Best TS Avg TS

CPU

time(s)

(TS)

Best % Avg %

1 10 15,000 243.8 15,000 15,000 3.6 0.00 0.00

2 10 18,000 155.7 18,000 18,000 11.9 0.00 0.00

3 10 0 40.5 0 0 1.5 0.00 0.00

4 15 27,000 570.0 27,000 27,000 12.6 0.00 0.00

5 15 30,000 314.1 30,000 30,000 35.9 0.00 0.00

6 15 0 75.7 0 0 4.6 0.00 0.00

7 20 30,000 715.2 30,000 30,000 42.3 0.00 0.00

8 20 38,000 498.3 38,000 38,000 78.5 0.00 0.00

9 20 3,000 110.1 3,000 3,000 12.5 0.00 0.00

10 25 39,000 622.6 39,000 39,000 97.5 0.00 0.00

11 25 43,000 1,299.0 43,000 43,000 159.8 0.00 0.00

12 25 4,000 172.5 4,000 4,000 25.8 0.00 0.00

13 30 45,000 1,245.2 45,000 45,000 153.3 0.00 0.00

14 30 56,000 2,067.0 56,000 56,000 403.6 0.00 0.00

15 30 9,000 244.0 9,000 9,000 52.3 0.00 0.00

16 35 57,000 1,484.0 57,000 57,000 299.4 0.00 0.00

17 35 70,000 3,607.0 70,000 70,200 655.2 0.00 0.29

18 35 18,000 333.0 18,000 18,000 115.7 0.00 0.00

19 40 60,000 1,321.7 60,000 60,000 754.2 0.00 0.00

20 40 76,000 2,647.0 76,000 76,200 1,106.9 0.00 0.26

21 40 25,000 481.0 25,000 25,000 234.9 0.00 0.00

22 45 69,000 1,392.9 69,000 69,000 1,056.0 0.00 0.00

23 45 80,000 3,311.0 80,000 80,400 1,237.7 0.00 0.50

24 45 30,000 540.1 30,000 30,200 290.2 0.00 0.67

25 50 75,000 1,612.9 75,000 75,000 1,274.1 0.00 0.00

26 50 83,000 5,836.0 83,000 83,000 1,987.0 0.00 0.00

27 50 30,000 636.8 31,000 31,000 429.3 3.33 3.33

28 55 87,000 2,236.0 87,000 87,000 2,063.4 0.00 0.00

29 55 87,000 7,089.0 87,000 87,200 2,690.8 0.00 0.23

30 55 40,000 3,457.1 40,000 40,800 1,503.0 0.00 2.00

31 60 90,000 5,997.1 90,000 90,000 2,435.7 0.00 0.00

32 60 97,000 7,711.0 97,000 97,800 3,655.7 0.00 0.82

33 60 41,000 8,357.9 42,000 42,000 1,629.8 2.44 2.44

Avg 44,606 2,012.9 44,667 44,752 742.9 0.17 0.32

44

Table 3.10. Test results for moderate arrival times with ci4 = 0.

V
Opt. Obj.

Value

CPU

time(s)

(Exact)

Best TS Avg TS

CPU

time(s)

(TS)

Best % Avg %

1 10 14,000 60.7 14,000 14,000 7.6 0.00 0.00

2 10 1,000 36.4 1,000 1,000 1.0 0.00 0.00

3 10 24,000 72.9 24,000 24,400 7.4 0.00 1.67

4 15 19,000 110.4 19,000 19,000 30.4 0.00 0.00

5 15 4,000 66.4 4,000 4,000 3.5 0.00 0.00

6 15 28,000 152.0 28,000 28,400 15.8 0.00 1.43

7 20 24,000 159.7 24,000 24,000 44.0 0.00 0.00

8 20 4,000 152.8 4,000 4,000 8.4 0.00 0.00

9 20 39,000 235.3 39,000 39,400 45.2 0.00 1.03

10 25 26,000 200.5 26,000 26,000 58.1 0.00 0.00

11 25 8,000 265.0 8,000 8,000 29.5 0.00 0.00

12 25 44,000 323.0 44,000 44,400 88.3 0.00 0.91

13 30 34,000 274.7 34,000 34,000 127.8 0.00 0.00

14 30 17,000 402.6 17,000 17,000 68.5 0.00 0.00

15 30 48,000 540.2 48,000 49,200 174.6 0.00 2.50

16 35 40,000 385.5 40,000 40,000 233.5 0.00 0.00

17 35 38,000 937.4 39,000 39,800 110.1 2.63 4.74

18 35 52,000 764.7 52,000 52,600 240.2 0.00 1.15

19 40 49,000 557.4 49,000 49,000 269.2 0.00 0.00

20 40 48,000 994.2 48,000 49,400 330.6 0.00 2.92

21 40 56,000 800.5 56,000 57,000 580.5 0.00 1.79

22 45 52,000 783.2 52,000 52,000 445.8 0.00 0.00

23 45 57,000 1,691.3 57,000 59,000 578.7 0.00 3.51

24 45 61,000 3,225.0 61,000 62,200 823.9 0.00 1.97

25 50 52,000 944.9 52,000 52,000 502.2 0.00 0.00

26 50 68,000 2,690.5 69,000 70,800 1,230.5 1.47 4.12

27 50 64,000 8,726.0 64,000 64,400 1,394.3 0.00 0.63

28 55 66,000 1,151.0 66,000 66,000 968.3 0.00 0.00

29 55 72,000 3,807.1 73,000 76,200 2,139.4 1.39 5.83

30 55 64,000 10,792.0 64,000 65,200 2,108.1 0.00 1.88

31 60 71,000 1,511.0 71,000 72,200 1,402.0 0.00 1.69

32 60 83,000 11,109.9 85,000 87,000 3,408.0 2.41 4.82

33 60 64,000 20,108.0 64,000 64,800 2,812.7 0.00 1.25

Avg 42,152 2,243.4 42,303 42,921 614.8 0.24 1.33

45

Table 3.11. Test results for tight arrival times with ci4 = 0.

V
Opt. Obj.

Value

CPU

time(s)

(Exact)

Best TS Avg TS

CPU

time(s)

(TS)

Best % Avg %

1 10 8,000 72.2 8,000 8,000 2.2 0.00 0.00

2 10 9,000 71.7 9,000 9,000 3.7 0.00 0.00

3 10 26,000 116.7 26,000 26,000 11.2 0.00 0.00

4 15 18,000 115.6 18,000 18,000 14.2 0.00 0.00

5 15 20,000 107.0 20,000 20,000 34.6 0.00 0.00

6 15 27,000 192.3 27,000 27,667 25.8 0.00 2.47

7 20 27,000 152.2 27,000 27,000 38.4 0.00 0.00

8 20 24,000 228.2 24,000 24,667 47.9 0.00 2.78

9 20 52,000 608.2 52,000 52,667 86.2 0.00 1.28

10 25 38,000 256.3 38,000 38,667 93.6 0.00 1.75

11 25 38,000 319.5 38,000 38,667 147.5 0.00 1.75

12 25 67,000 1,620.0 67,000 67,667 258.5 0.00 1.00

13 30 65,000 1,264.1 66,000 66,667 540.3 1.54 2.56

14 30 46,000 514.8 46,000 47,667 305.5 0.00 3.62

15 30 71,000 1,777.6 71,000 72,000 484.9 0.00 1.41

16 35 80,000 2,069.9 81,000 82,667 920.9 1.25 3.33

17 35 58,000 1,030.4 58,000 59,000 844.8 0.00 1.72

18 35 74,000 4,720.4 76,000 76,667 1,128.6 2.70 3.60

19 40 87,000 2,305.9 87,000 88,333 1,553.0 0.00 1.53

20 40 72,000 1,870.8 72,000 74,667 1,665.5 0.00 3.70

21 40 78,000 8,333.8 78,000 79,333 1,224.5 0.00 1.71

22 45 95,000 5,667.6 95,000 96,333 1,971.0 0.00 1.40

23 45 78,000 2,142.1 79,000 79,667 2,690.2 1.28 2.14

24 45 97,000 5,857.0 97,000 98,333 2,460.2 0.00 1.37

25 50 109,000 22,473.8 111,000 111,333 3,152.1 1.84 2.14

26 50 106,000 36,802.8 109,000 110,667 4,210.2 2.83 4.40

27 50 109,000 9,090.9 112,000 114,667 3,356.4 2.75 5.20

28 55 –a 200,000.0 121,000 121,667 4,892.1 – –

29 55 –a 200,000.0 153,000 155,333 6,645.9 – –

30 55 116,000 15,989.0 124,000 125,333 4,260.9 6.90 8.05

31 60 116,000 89,987.9 120,000 121,000 7,692.9 3.45 4.31

32 60 –a 200,000.0 175,000 178,000 11,289.0 – –

33 60 123,000 10,349.1 128,000 130,000 8,674.2 4.07 5.69

Avg 64,467 25,033.6 73,121 74,162 2,143.2 0.95 2.30

aNo integer solution is returned by CPLEX in 200,000 seconds

46

Table 3.12. Test results for loose arrival times with ci4 = 10.

V
Opt. Obj.

Value

CPU

time(s)

(Exact)

Best TS Avg TS

CPU

time(s)

(TS)

Best % Avg %

1 10 15,760 121.9 15,760 15,760 13.5 0.00 0.00

2 10 18,660 181.9 18,660 18,660 15.6 0.00 0.00

3 10 580 46.0 580 580 2.1 0.00 0.00

4 15 28,180 285.0 28,180 28,180 51.3 0.00 0.00

5 15 31,060 314.4 31,100 31,108 61.7 0.13 0.15

6 15 900 68.8 900 900 6.9 0.00 0.00

7 20 31,480 412.3 31,500 32,096 162.6 0.06 1.96

8 20 39,440 498.1 39,480 39,496 120.8 0.10 0.14

9 20 4,180 103.3 4,180 4,180 17.8 0.00 0.00

10 25 40,820 544.5 40,840 40,840 243.9 0.05 0.05

11 25 44,860 793.7 44,900 44,916 179.5 0.09 0.12

12 25 5,460 194.3 5,460 5,460 36.1 0.00 0.00

13 30 47,240 1,010.7 47,260 47,260 427.8 0.04 0.04

14 30 58,300 1,678.4 58,340 58,356 447.4 0.07 0.10

15 30 10,820 248.2 10,820 10,820 61.7 0.00 0.00

16 35 59,660 1,412.3 59,680 59,680 865.2 0.03 0.03

17 35 72,580 2,268.5 72,720 72,720 673.7 0.19 0.19

18 35 20,200 353.2 20,200 20,200 142.0 0.00 0.00

19 40 62,960 1,736.7 63,000 64,208 1,329.3 0.06 1.98

20 40 78,860 5,015.4 78,900 78,980 1,358.8 0.05 0.15

21 40 27,520 715.1 27,520 27,520 274.6 0.00 0.00

22 45 72,300 2,775.5 72,340 72,340 1,816.5 0.06 0.06

23 45 83,060 6,979.0 83,200 83,200 1,741.6 0.17 0.17

24 45 32,780 896.8 32,780 33,580 337.8 0.00 2.44

25 50 78,720 17,830.2 78,760 78,760 2,398.2 0.05 0.05

26 50 86,340 11,220.9 86,480 86,492 2,468.5 0.16 0.18

27 50 33,060 1,115.4 34,060 34,060 509.7 3.03 3.02

28 55 91,140 12,203.9 91,180 93,564 3,085.5 0.04 2.66

29 55 90,700 12,926.0 90,840 90,864 3,539.7 0.15 0.18

30 55 43,380 2,974.9 44,380 44,396 1,726.8 2.31 2.34

31 60 94,440 30,542.1 94,500 95,892 3,980.7 0.06 1.54

32 60 101,140 31,966.6 102,340 103,156 5,028.0 1.19 1.99

33 60 44,680 11,198.4 45,700 45,700 2,237.1 2.28 2.28

Avg 47,008 4,867.6 47,168 47,392 1,071.6 0.31 0.66

47

Table 3.13. Test results for moderate arrival times with ci4 = 10.

V
Opt. Obj.

Value

CPU

time(s)

(Exact)

Best TS Avg TS

CPU

time(s)

(TS)

Best % Avg %

1 10 14,620 61.5 14,620 14,620 10.2 0.00 0.00

2 10 1,520 27.1 1,520 1,520 1.7 0.00 0.00

3 10 24,700 78.1 24,800 24,800 12.2 0.40 0.41

4 15 19,980 107.7 20,000 20,008 37.6 0.10 0.14

5 15 4,740 40.1 4,740 4,740 5.1 0.00 0.00

6 15 29,000 158.1 29,100 30,048 29.1 0.34 3.61

7 20 25,320 110.5 25,340 25,364 47.6 0.08 0.17

8 20 5,120 155.2 5,120 5,120 14.3 0.00 0.00

9 20 40,360 259.6 40,460 40,836 78.0 0.25 1.18

10 25 27,560 170.6 27,580 27,604 75.5 0.07 0.16

11 25 9,400 374.6 9,400 9,400 34.4 0.00 0.00

12 25 45,760 621.7 45,860 46,248 167.3 0.22 1.07

13 30 35,940 405.3 35,950 35,974 148.5 0.03 0.10

14 30 18,800 338.3 18,800 18,800 75.8 0.00 0.00

15 30 50,080 877.4 50,200 50,200 224.4 0.24 0.24

16 35 42,320 619.1 42,340 42,732 260.8 0.05 0.97

17 35 40,080 1,378.1 41,100 41,460 118.1 2.54 3.44

18 35 54,420 1,361.9 54,520 57,020 310.1 0.18 4.78

19 40 51,660 914.4 51,700 51,740 305.3 0.08 0.16

20 40 50,420 3,216.1 52,560 53,293 426.2 4.24 5.70

21 40 58,900 2,022.1 59,020 60,928 292.8 0.20 3.44

22 45 54,940 1,162.8 54,980 55,188 576.0 0.07 0.45

23 45 59,740 5,279.7 61,900 62,887 609.2 3.62 5.27

24 45 64,260 2,695.7 64,320 66,076 596.3 0.09 2.83

25 50 55,260 1,713.9 55,300 55,328 859.4 0.07 0.12

26 50 71,120 7,665.7 72,400 74,020 1,396.4 1.80 4.08

27 50 67,560 3,307.6 67,640 71,404 975.1 0.12 5.69

28 55 69,600 2,172.7 69,660 69,676 1,166.6 0.09 0.11

29 55 75,400 10,961.8 78,540 78,880 2,374.2 4.16 4.62

30 55 67,860 7,148.0 67,980 71,112 1,438.5 0.18 4.79

31 60 74,900 8,928.2 74,960 75,572 1,954.7 0.08 0.90

32 60 86,780 35,464.0 88,000 91,007 4,350.6 1.41 4.87

33 60 68,160 27,100.0 68,280 70,533 1,988.9 0.18 3.48

Avg 44,433 3,845.4 44,809 45,580 635.2 0.63 1.90

48

Table 3.14. Test results for tight arrival times with ci4 = 10.

V
Opt. Obj.

Value

CPU

time(s)

(Exact)

Best TS Avg TS

CPU

time(s)

(TS)

Best % Avg %

1 10 8,640 67.2 8,640 8,640 3.2 0.00 0.00

2 10 9,560 115.5 9,580 9,580 7.2 0.21 0.21

3 10 26,720 130.6 26,840 27,173 15.2 0.45 1.70

4 15 18,980 129.9 18,980 19,007 20.6 0.00 0.14

5 15 20,900 339.4 20,920 20,920 45.6 0.10 0.10

6 15 28,000 174.3 28,120 28,780 33.5 0.43 2.79

7 20 28,260 175.8 28,260 28,293 49.0 0.00 0.12

8 20 25,300 374.5 25,340 25,687 74.3 0.16 1.53

9 20 53,460 2,196.2 53,620 53,713 142.4 0.30 0.47

10 25 39,720 317.3 39,820 40,380 113.1 0.25 1.66

11 25 39,600 707.6 39,700 40,367 183.4 0.25 1.94

12 25 68,820 3,232.9 70,980 71,687 359.6 3.14 4.17

13 30 67,200 1,522.0 68,160 68,213 654.3 1.43 1.51

14 30 47,920 892.9 48,020 48,377 369.9 0.21 0.95

15 30 73,730 4,839.4 74,580 75,860 724.0 1.15 2.89

16 35 82,540 6,142.8 82,620 83,320 1,031.9 0.10 0.95

17 35 60,360 2,727.5 60,520 60,873 941.1 0.27 0.85

18 35 76,560 13,462.7 76,780 77,473 984.1 0.29 1.19

19 40 89,860 42,595.9 90,080 92,080 1,701.1 0.24 2.47

20 40 74,760 2,192.2 75,940 77,273 1,936.5 1.58 3.36

21 40 80,940 39,004.3 81,160 82,473 1,752.7 0.27 1.89

22 45 98,240 50,053.1 99,260 99,287 2,219.0 1.04 1.07

23 45 81,060 3,693.9 81,200 83,920 3,186.9 0.17 3.53

24 45 100,340 166,844.8 100,660 102,033 2,117.6 0.32 1.69

25 50 112,640 134,656.7 114,980 116,740 3,320.4 2.08 3.64

26 50 109,460 46,139.4 111,740 114,107 4,949.7 2.08 4.25

27 50 116, 960∗ 200,000.0 120,100 121,753 2,952.0 2.68 4.10

28 55 120,100 199,240.9 125,320 125,373 7,042.5 4.35 4.39

29 55 161, 140∗ 200,000.0 149,240 154,360 8,928.6 -7.40 -4.21

30 55 –a 200,000.0 127,380 127,393 7,677.3 – –

31 60 120,340 170,020.9 125,600 126,653 8,961.3 4.37 5.25

32 60 –a 200,000.0 172,800 177,247 14,144.4 – –

33 60 –a 200,000.0 137,220 137,540 10,409.1 – –

Avg 63,000 57,333.0 75,581 76,563 2,637.9 0.96 2.03

aNo integer solution is returned by CPLEX in 200,000 seconds

49

Table 3.15. Test results for some instances with ci4 = 50.

V
Opt. Obj.

Value

CPU

time(s)

(Exact)

Best TS Avg TS

CPU

time(s)

(TS)

Best % Avg %

Tight-2 10 11,800 177.8 11,900 11,900 4.0 0.85 0.85

Tight-6 15 32,000 179.5 32,600 33,267 29.2 1.88 3.96

Tight-7 20 33,300 222.9 33,300 33,467 43.3 0.00 0.50

Loose-11 25 52,300 1,591.1 52,500 52,500 273.8 0.38 0.38

Mod-14 30 26,000 700.2 26,000 26,000 104.3 0.00 0.00

Loose-18 35 29,000 358.0 29,000 29,000 192.3 0.00 0.00

Mod-21 40 70,500 2,139.6 72,400 72,467 583.5 2.70 2.79

Loose-22 45 85,450 3,565.1 86,700 87,633 2,039.3 1.46 2.56

Mod-25 50 68,300 1,574.4 68,500 68,500 1,519.0 0.29 0.29

Loose-28 55 107,700 10,361.2 109,800 111,100 4,077.9 1.95 3.16

Mod-31 60 90,500 4,589.3 90,800 90,800 3,978.3 0.33 0.33

Avg 55,168 2,314.5 55,773 56,058 1,167.7 0.89 1.35

Table 3.16. Test results for some instances with ci4 = 100.

V
Opt. Obj.

Value

CPU

time(s)

(Exact)

Best TS Avg TS

CPU

time(s)

(TS)

Best % Avg %

Tight-2 10 14,600 200.9 14,600 14,600 5.5 0.00 0.00

Tight-6 15 37,000 240.0 40,000 40,000 23.9 8.11 8.11

Tight-7 20 39,600 195.5 41,400 42,067 46.4 4.55 4.55

Loose-11 25 61,600 3,066.7 62,000 62,000 307.5 0.65 0.65

Mod-14 30 35,000 866.5 35,000 35,000 121.0 0.00 0.00

Loose-18 35 40,000 901.8 40,000 40,000 257.1 0.00 0.00

Mod-21 40 85,000 3,817.5 86,600 86,600 511.0 1.88 1.88

Loose-22 45 102, 000∗ 40,961.0 105,200 105,267 2,748.8 3.14 3.14

Mod-25 50 84,600 2,530.1 85,000 85,000 1,940.9 0.47 0.47

Loose-28 55 128, 400∗ 25,637.5 131,600 132,533 5,314.5 2.49 2.49

Mod-31 60 110,000 16,643.2 110,600 110,733 5,328.3 0.55 0.55

Avg 67,073 8,641.9 68,364 68,527 1,509.5 1.99 1.99

50

4. INTEGRATED BERTH ALLOCATION AND SPECIFIC

QUAY CRANE ASSIGNMENT PROBLEM

The problem of allocating specific cranes to vessels is known as the QCAP-specific.

In Chapter 3, a BACAP model, which aims to determine a berth plan and a QC

allocation to load/unload vessels, is provided and solved. The total setup cost of quay

cranes is one of the measures to be minimized in that problem. Setup occurs in BACAP

only when the number of allocated QCs to a vessel is changed between two consecutive

time periods. A QC schedule can be obtained from a BACAP solution applying an

intuitive heuristic. However, when we want to obtain a quay crane schedule by a post-

process, we may encounter some additional QC setups. Although the number of QCs

assigned to a vessel remains the same, the group of cranes assigned to it has to be

modified from time to time to be able to reach a feasible quay crane schedule. In this

case, the BACAP solution may not be the most preferred solution in real life, since

the setups emerging from QC schedule is not taken into account. A BACAP solution

gives a feasible quay crane schedule without any additional setup cost if and only if

the solution satisfies a condition presented in (Türkoğulları et al., 2012a). Instead

of applying a post-process to the incumbent solution of BACAP, solving BAP and

QCAP-specific simultaneously would produce better solutions. The integrated problem

of BAP and QCAP-specific is called BACASP in this study, following the convention

in (Türkoğulları et al., 2012b).

4.1. Additional Assumptions

The assumptions made in BACAP about berth related decisions and quay cranes

remain valid for this problem as well. Furthermore, since specific cranes are also aimed

to be found in BACASP some additional assumptions should be made as follows:

• The quay cranes are labeled from 1 to N in the same increasing order as the berth

sections, i.e., the beginning of the berth is labeled as crane 1 and the farthest

51

one is labeled as crane N , where N is the total number of QCs available at the

terminal.

• The crane g is always on the left of crane g + 1, and on the right of crane g − 1.

Therefore, cranes cannot cross each other; they are always in the same order

assuming they move on a rail track.

• If cranes g and g+M are assigned to the same vessel, say i, where M = 1, . . . , N ,

then the cranes between g and g +M are also assigned to vessel i.

Table 4.1. Decision variables of the BACASP.

Decision Variable Definition

pi berthing position of vessel i

ti berthing time of vessel i

qi departure time of vessel i

θijkl 1 if crane k is moved from i to j between periods l and l + 1

The new problem BACASP requires no additional parameters. So, the same

parameters presented in Table 3.1 can also be used for this problem. Although the new

decision variables are presented in Table 4.1, the only difference from BACAP is the last

decision variable since specific QC allocation is seeked: θijkl, where i, j = 0, 1, . . . , V ,

k = 1, . . . , N and l = 1, ..., T . Here, vessel 0 is dummy vessel which is introduced to

represent idle cranes that are assigned to no vessels.

A solution of BACASP can be represented on a time-space diagram exactly fol-

lowing the way described in Chapter 3. The main variation is that only the numbers

of assigned QCs are shown in rectangles in a BACAP solution but here the group of

vessels are written in vessel i in the form of [lmi − rmi]. rmi represents the rightmost

crane and lmi stands for the leftmost crane assigned to i. This notation implies that

the cranes between rmi and lmi are also assigned to vessel i. In the example illustrated

in Figure 4.1, vessel 1 is assigned cranes 4, 5, 6, 7 during periods 2, 3, and cranes 5, 6,

7 between periods 4 and 8. Crane schedules of vessels 2 and 3 also can be seen from

52

the time-space diagram.

Figure 4.1. A Feasible Solution for BACASP.

4.1.1. Objective Function of BACASP

The cost of berthing away from the desired berthing position, berthing after the

arrival time and departing after the due time are included as cost items in BACASP.

The setup of a QC is equal to the “move” of a specific QC here. Hence, the cost of

QC setup is also formulated in a totally different way from the setup cost of BACAP

model. The cost coefficients of the objective function in BACASP can be seen in Table

4.2.

Moving a QC incurs a setup cost denoted by c4. We say that crane k serves vessel

0 if it is idle in any time period. A move occurs if an idle crane k serves vessel i in time

period l and serves vessel j in time period l − 1 where i = 0, 1, . . . , N , j = 0, 1, . . . , N

and i 6= j. In other words if crane k moves to a vessel, or a crane k moves from a vessel

53

Table 4.2. Cost coefficients of the objective function in BACASP.

Parameter Definition

ci1 Cost of one unit deviation from the desired berthing section for vessel i

ci2 Cost of berthing one period later than the arrival time for vessel i

ci3 Cost of departing one period later than the due time for vessel i

c4 Cost of moving a quay crane

to another one or a crane k goes idle after serving a vessel, setup occurs.

The objective function can be written as follows:

min z =
V∑
i=1

ci1 |pi − si| +
V∑
i=1

ci2 max(ti − ei, 0)

+
V∑
i=1

ci3 max(qi − di, 0) +
∑

i=0,1,...,N

∑
j=0,1,...,N

N∑
k=1

T∑
l=1

c4θijkl

(4.1)

All QCs are idle at l = 0. Then we can compute the objective value using the

parameters given in Table 3.5 and the following cost coefficients: ci1 = ci2 = ci3 = 10

and c4=1.

• The total cost of deviation from desired berthing position:

10× |10− 10|+ 10× |6− 9|+ 10× |1− 7| = 70.

54

• The total cost of waiting before berthing:

10×max(2− 2, 0) + 10×max(2− 2, 0) + 10×max(4− 4, 0) = 0.

• The total cost of departing after due time:

10×max(8− 23, 0) + 10×max(16− 24), 0) + 10×max(13− 25, 0) = 0.

• The total setup cost of QCs:

7 + 3 + 5 = 15.

The overall cost of the given solution in Figure 4.1 is z = 70 + 0 + 0 + 15 = 85.

4.1.2. Solution Method

In BACAP model presented in Section 3.3.1, a priority vector P , which keeps a

sequence of vessels in decreasing order of priority is defined. In other words, the first

vessel in P has the highest priority for berthing decisions and QC allocations. Also a

rule array, R, which is a binary vector of length V , is introduced where 0 and 1 represent

two different rules to allocate berths and QCs. In summary, vessels are placed on time-

space diagram beginning with the first vessel on P according to the rule pointed out by

the corresponding element in R. After a solution is generated, some local improvement

procedures are applied and the objective value of the resulting solution is computed.

Different (P,R) pairs are visited by employing a tabu search.

In BACASP, QC schedule needs to be determined before calculating the objective

function. Given the values of decision variables pi, ti and qi for i = 1, . . . , V and the

number of QCs assigned to each vessel, we can build a directed graph and solve the

shortest path problem on it by applying the method proposed in (Türkoğulları et al.,

2012b). This method returns the QC schedule with the minimum total setup cost.

55

Therefore the proposed tabu search with local improvements for BACAP can easily

be modified to a solution approach for BACASP. After a solution is generated from

any (P,R) pair and local refinement methods are implemented, then we can find a

QC schedule by the method of (Türkoğulları et al., 2012b) and calculate the objective

function following the steps below:

• Find the time periods that a vessel leaves or arrives. As long as a vessel does

not arrive or leave, the QC allocation does not change. In our BACAP model,

we assign QCs in the last period of service in order to finish the remaining work

just in time. For instance, if the remaining workload of a vessel in the last period

is 1 QC-hour, then only 1 QC is assigned. Thus, we have to detect all the time

periods that any change occurs in the number of allocated cranes to any one

of the vessels: arrival times, departure times and last service periods of some

vessels. Define these time periods as stages.

• For each stage, construct nodes as many as “possible QC schedules” for the

corresponding time period. Each node is defined as an array of length N . The

indices of it represent cranes and the values in the array holds the vessels. For

example, the array (1, 2, 2, 3) means that crane 1 is allocated to vessel 1, crane 2

and 3 are allocated to vessel 2 and crane 4 is assigned to vessel 3.

• In this graph suppose that K stages are found, then the graph is constructed

as a K-partite graph such that: The arcs can only be drawn from all nodes of

stage t − 1 to all nodes of stage t, t = 2, . . . , K. A weight is defined for each

arc (a, b) and computed as the number of moves of QCs to go from node a to b.

For instance, suppose that node a is the array (0, 1, 1, 2) and b is (1, 1, 0, 0).

Since the values of the first, third and fourth indices are changed, the weight of

arc from a to b is computed as 3.

• Once all nodes and arcs are defined and the graph is constructed, the source node

whose outgoing arcs go to the nodes of stage 1 and the sink node whose incoming

arcs come from the nodes of stage K is added. The weights of arcs linked to

source and sink nodes are written. Finally, we have a graph whose nodes in stage

m, m = 1, ..., K stands for the possible QC allocations in time period m and

56

whose arcs represent the number of moves between two QC allocations.

• After the whole graph is drawn, the Shortest Path Problem (SPP) between source

and sink nodes can be solved by the well-known Dijkstra’s Algorithm which was

first presented in (Dijkstra, 1959). The length of the obtained shortest path gives

the smallest possible number of QC moves and the path will give the QC schedule

with minimum setup.

Figure 4.2. A Feasible Solution Before Finding Specific Quay Cranes.

Consider the BACAP solution given in Figure 4.2. Suppose that vessels are

ordered in increasing berthing times. We know berthing positions, berthing times,

completion times and the number of allocated QCs. The graph, which is revealed

in Figure 4.3, can be constructed applying the method described above. Dijkstra’s

algorithm provides the following shortest path:

Source→ (0, 0, 1, 1)→ (2, 2, 1, 1)→ (2, 2, 0, 0)→ (2, 3, 0, 0)→ Sink.

Transformation of this path into a QC schedule is as follows: Cranes 3 and 4 are

57

Figure 4.3. The Directed Graph to Obtain a Quay Crane Schedule.

assigned to vessel 1 in time period 1, cranes 1 and 2 are allocated to vessel 2 and cranes

3 and 4 remain in service of vessel 1 in period 3. Cranes 1 and 2 still serve vessel 2 in

period 5. Crane 2 is assigned to vessel 2 and crane 3 is allocated to vessel 3 in period

6. The BACASP solution can be visualized in Figure 4.4.

Solving SPP on the graph representation of a BACAP solution is equivalent to

solving the dynamic program, which is proposed in (Park and Kim, 2003) in order

to find the QC schedule with minimum setup cost. Even though, SPP is known as a

problem that can be solved in a polynomial time, the number of nodes may be huge

for large instances and longer planning horizons. Thus, it must be kept in mind that

SPP might lose its efficiency for larger instances.

4.1.3. Integration of Shortest Path Problem to Tabu Search Algorithm

Each visited BACAP solution is transformed into a BACASP solution by applying

the following processes in the same order:

58

Figure 4.4. The BACASP Solution.

• A solution is obtained from a (P,R) pair and pi, ti, qi and yij are found for j =

1, . . . , T and i = 1, . . . , V .

• Berthing times are checked and improved and ti, qi and yij are updated for j =

1, . . . , T and i = 1, . . . , V .

• Completion times are checked and improved and ti, qi and yij are updated for

j = 1, . . . , T and i = 1, . . . , V .

• Spatial improvement procedure is applied and pi is updated for i = 1, . . . , V .

• Assigned QCs are smoothed beginning with the first vessel in P . yij and qi are

updated for j = 1, . . . , T and i = 1, . . . , V .

• The shortest path problem is solved on the graph which is derived from the

BACAP solution and the minimum cost-QC schedule is found.

• The objective value of the BACASP solution is computed.

As a conclusion, we have a tabu search metaheuristic which explores the solution space

of BACASP.

59

4.2. Experimental Results for BACASP

TS parameters and cost coefficients ci1, ci2 and ci3 are determined as explained

in Section 3.5. The setup cost of BACASP, c4, is set to 10 and the new TS algorithm

with SPP is experimented on 106 instances which are generated for BACAP model.

The construction algorithm of QC schedule graph and the Dijkstra algorithm is coded

and integrated with BACAP solution in C# environment on Microsoft Visual Studio

2010. The results are compared with the optimal results obtained by the exact model

proposed in (Türkoğulları et al., 2012b) with the help of IBM ILOG CPLEX 11.0. All

the experiments are carried out on a computer with Microsoft Windows Server 2003

x64 Edition operating system and Intel Xeon CPU X5460 3.16 GHz processor with

27.9 GB RAM.

TS algorithm for BACASP is run 3 times for each instance, the best and the

average objective values are reported in the columns represented by Best TS and Avg

TS. The values in TS Time column is equal to the total duration of three runs in

seconds. The percent deviation of best and average TS values from the optimal solution

is calculated as:

Best% =
(Best TS − Opt)

Opt
× 100. (4.2)

Avg% =
(Avg TS − Opt)

Opt
× 100. (4.3)

The results are given in Tables 4.3, 4.4, 4.5, 4.6. In some instances, TS produces

better values than the optimal. The source of discrepancy is the different assumptions

of TS and exact method about QC allocation approach in the last period of vessels.

The execution time of exact method is bounded by 200,000 seconds, so non-optimal

values are marked with (∗), indicating the best integer solution. If the best found

integer is not sufficiently close to the optimal, negative percent deviations may emerge.

60

The average value of deviations is calculated ignoring the negative values.

Due to the fact that BACASP is a more difficult problem than BACAP, CPLEX

could not solve 23 out of 106 instances to optimality within the given time limit. In

the group where vessels arrive more frequently, no integer solution is obtained for the

instances above 45 vessels. TS algorithm for BACASP can be advantageous when the

interarrival times of vessels are shorter. In general, the average percent deviations for

best values are within 2% while the average percent deviations for average values do

not exceed 3% for different interarrival times. The highest deviations are recorded as

4.57% and 7.70% for best and average values. Another visible consequence is that

the mean percent deviatons for both incumbent and average TS results for BACASP

are slightly worse than the results for BACAP. Although the QC schedule is found

with minimum setup cost, TS algorithm becomes a bit inefficient when the definition

of setup cost is changed. Nevertheless, the results of TS algorithm for BACASP is

promising for c4 = 10.

Additional experiments are performed for c4 = 50 and c4 = 100 and the results

can be seen in Tables 4.7 and 4.8. The interesting result is that increasing the value of

c4 makes the problem even harder to solve. Because, instances such as Loose-28 and

Mod-31, whose optimal values are found when c4 = 10, cannot be solved by CPLEX

when c4 = 50 and c4 = 100. The average percent deviations for best TS results remain

under 3% and 5% for c4 = 50 and c4 = 100, respectively.

61

Table 4.3. The instance given in (Zhang et al., 2010) with c4 = 0.

V
Opt. Obj.

Value

CPU

time(s)

(Exact)

Best TS Avg TS

CPU

time(s)

(TS)

Best % Avg %

1 3 2,160 48.6 2,160 2,160 2.4 0.00 0.00

2 6 13,330 3,024.2 13,380 13,386 13.7 0.38 0.42

3 9 15,510 655.8 15,600 15,600 50.2 0.58 0.58

4 12 15,670 5,552.6 15,770 15,770 86.4 0.64 0.64

5 15 27,840 7,447.5 27,980 27,980 180.1 0.50 0.50

6 18 30,980 10,338.2 31,130 31,130 341.3 0.48 0.48

7 21 31,100 16,613.9 31,240 31,248 760.7 0.45 0.48

Avg 19,513 6,240.1 19,609 19,611 205.0 0.43 0.44

62

Table 4.4. Test results for loose arrival times with c4 = 10.

V
Opt. Obj.

Value

CPU

time(s)

(Exact)

Best TS Avg TS

CPU

time(s)

(TS)

Best % Avg %

1 10 15,650 2,362.6 15,650 15,650 20.7 0.00 0.00

2 10 18,530 549.1 18,530 18,530 48.8 0.00 0.00

3 10 460 100.5 450 450 6.0 -2.17 -2.17

4 15 27,840 11,026.2 27,970 27,970 87.6 0.47 0.47

5 15 30,810 9,908.9 30,910 30,910 278.0 0.32 0.32

6 15 720 150.5 710 710 34.4 -1.39 -1.39

7 20 31,060 19,691.4 31,210 31,210 291.3 0.48 0.48

8 20 39,070 14,774.7 39,250 39,250 1,648.8 0.46 0.46

9 20 3,940 5,989.6 3,970 3,970 117.9 0.76 0.76

10 25 40,360 22,757.9 40,530 40,536 952.8 0.42 0.44

11 25 44,380 65,880.4 44,620 44,620 2,250.6 0.54 0.54

12 25 5,170 6,385.3 5,220 5,220 304.3 0.97 0.97

13 30 46,630 33,965.1 46,850 46,858 1549.2 0.47 0.49

14 30 57,690 97,016.3 57,990 58,018 5,037.9 0.52 0.57

15 30 10,410 10,145.6 10,500 10,500 667.3 0.86 0.86

16 35 58,960 38,034.4 59,180 59,180 2272.8 0.37 0.37

17 35 72,050 94,601.2 72,280 72,300 4,415.4 0.32 0.35

18 35 19,680 15,423.6 19,780 19,780 951.3 0.51 0.51

19 40 62,120 39,918.2 62,420 62,420 3451.2 0.48 0.48

20 40 78,240 125,033.4 78,490 78,900 7,669.8 0.32 0.84

21 40 26,890 18,690.6 27,020 27,020 2,005.9 0.48 0.48

22 45 71,490 47,900.1 71,740 71,748 5644.8 0.35 0.36

23 45 82, 200∗ 200,000.0 82,690 83,318 8,095.1 0.60 1.36

24 45 32,060 28,034.1 33,220 33,220 3,627.6 3.62 3.62

25 50 77,780 48,566.4 78,070 78,070 7971.6 0.37 0.37

26 50 –a 200,000.0 85,940 86,390 9,447.0 – –

27 50 32,300 35,826.9 33,480 33,480 5,692.0 3.65 3.65

28 55 90,090 168,627.4 90,380 90,388 11676.3 0.32 0.33

29 55 –a 200,000.0 90,070 90,812 10,431.1 – –

30 55 42,710 48,039.1 43,760 43,760 9,231.3 2.46 2.46

31 60 93,180 196,453.7 93,620 93,626 17653.2 0.47 0.48

32 60 –a 200,000.0 101,550 102,384 12,816.0 – –

33 60 43,750 57,500.2 44,920 45,354 11,982.7 2.67 3.67

Avg 40,483 62,525.9 46,757 46,865 4,494.9 0.83 0.92

aNo integer solution is returned by CPLEX in 200,000 seconds

63

Table 4.5. Test results for moderate arrival times with c4 = 10.

V
Opt. Obj.

Value

CPU

time(s)

(Exact)

Best TS Avg TS

CPU

time(s)

(TS)

Best % Avg %

1 10 14,480 3,410.8 14,540 14,540 39.0 0.41 0.41

2 10 1,380 2,376.7 1,400 1,400 53.3 1.45 1.45

3 10 24,510 4,113.5 24,690 25,303 44.1 0.73 3.24

4 15 19,720 4,559.2 19,780 19,798 129.0 0.30 0.40

5 15 4,570 2,743.5 4,670 4,670 253.9 2.19 2.19

6 15 28,740 6,039.6 28,920 30,147 147.2 0.63 4.89

7 20 24,980 6,233.8 25,090 25,102 367.9 0.44 0.49

8 20 4,830 6,021.4 4,950 4,950 485.3 2.48 2.48

9 20 40,000 10,526.2 40,200 41,427 396.0 0.50 3.57

10 25 27,160 8,788.3 27,250 27,934 713.5 0.33 2.85

11 25 9,020 30069,1 9,160 9,180 1,333.6 1.55 1.77

12 25 45,220 16,136.8 45,460 46,387 642.5 0.53 2.58

13 30 35,420 12,017.9 35,440 35,542 1,410.8 0.06 0.34

14 30 18,290 35150,8 18,520 18,527 1,742.9 1.26 1.29

15 30 49,410 20,224.2 49,700 50,627 1,134.6 0.59 2.46

16 35 41,710 23,070.8 41,850 41,882 2,438.2 0.34 0.41

17 35 39,490 49191,4 40,850 41,443 2,670.5 3.44 4.95

18 35 53,630 27,240.7 53,920 54,233 2,046.8 0.54 1.12

19 40 50,970 32,400.4 51,130 51,750 5,845.6 0.31 1.53

20 40 49,690 11,125.0 52,990 53,320 4,335.0 6.64 7.31

21 40 57,970 49,175.7 58,280 58,280 2,769.5 0.53 0.53

22 45 54,190 38,215.1 54,390 55,430 7,565.5 0.37 2.29

23 45 59,110 144058,6 61,290 63,660 6,854.9 3.69 7.70

24 45 63,200 50,222.0 63,560 64,777 4,331.9 0.57 2.49

25 50 54,450 39,015.3 54,550 54,577 10,429.3 0.18 0.23

26 50 118, 380∗ 200,000.0 78,590 78,907 8,545.4 -33.61 -33.34

27 50 66,410 63,606.5 66,770 68,337 7,547.1 0.54 2.90

28 55 68,730 71,513.2 68,840 68,877 10,869.6 0.16 0.21

29 55 –a 200,000.0 81,900 82,240 10,957.2 – –

30 55 66,590 76,862.4 66,990 67,930 11,025.1 0.60 2.01

31 60 74,000 184,331.9 74,100 74,120 17,004.8 0.14 0.16

32 60 –a 200,000.0 92,180 93,887 14,283.3 – –

33 60 66,920 106,020.7 67,220 68,447 17,460.7 0.45 2.28

Avg 43,005 50,896.3 44,823 45,383 4,723.5 1.07 2.22

aNo integer solution is returned by CPLEX in 200,000 seconds

64

Table 4.6. Test results for tight arrival times with c4 = 10.

V
Opt. Obj.

Value

CPU

time(s)

(Exact)

Best TS Avg TS

CPU

time(s)

(TS)

Best % Avg %

1 10 8,480 2,765.6 8,550 8,550 21.7 0.83 0.83

2 10 9,480 539.8 9,500 9,500 71.7 0.21 0.21

3 10 26,510 3,095.3 26,700 27,667 35.7 0.72 4.36

4 15 18,720 5,635.9 18,780 18,780 107.0 0.32 0.32

5 15 20,690 7,180.4 20,770 21,470 257.8 0.39 3.77

6 15 27,750 6,997.0 27,960 29,233 136.0 0.76 5.35

7 20 27,900 7,263.4 28,000 28,000 629.9 0.36 0.36

8 20 24,940 14,204.8 25,090 25,433 515.0 0.60 1.98

9 20 53,030 74,831.5 53,390 54,353 388.2 0.68 2.50

10 25 39,230 11,108.6 40,350 40,350 1,112.8 2.85 2.85

11 25 39,150 18,873.0 39,310 39,653 1,645.7 0.41 1.29

12 25 68,250 178,100.0 68,580 69,590 741.0 0.48 1.96

13 30 66,480 25,262.7 68,640 68,663 4,068.8 3.25 3.28

14 30 47,310 23,450.2 47,540 47,930 2,908.2 0.49 1.31

15 30 –a 200,000.0 73,020 74,637 1,332.1 – –

16 35 –a 200,000.0 82,980 82,980 5,421.4 – –

17 35 59,620 39,851.1 61,860 61,883 5,088.9 3.76 3.80

18 35 –a 200,000.0 77,070 77,427 3,175.5 – –

19 40 –a 200,000.0 89,370 89,970 7,975.7 – –

20 40 73,910 83,323.3 77,290 77,317 4,919.2 4.57 4.61

21 40 –a 200,000.0 82,320 83,053 3,656.0 – –

22 45 –a 200,000.0 98,650 99,987 9,407.2 – –

23 45 80,370 127,332.4 83,560 84,247 12,588.3 3.97 4.82

24 45 –a 200,000.0 98,920 101,110 8,444.5 – –

25 50 –a 200,000.0 112,020 112,680 11,431.2 – –

26 50 –a 200,000.0 112,970 113,670 14,761.0 – –

27 50 –a 200,000.0 117,200 117,800 13,313.0 – –

28 55 –a 200,000.0 124,360 125,020 14,326.1 – –

29 55 –a 200,000.0 156,350 157,343 16,552.0 – –

30 55 –a 200,000.0 120,430 122,780 15,900.5 – –

31 60 –a 200,000.0 129,460 130,423 27,930.0 – –

32 60 –a 200,000.0 173,500 177,630 18,423.7 – –

33 60 –a 200,000.0 129,830 131,007 18,205.6 – –

Avg 40,695 116,055.0 75,282 76,065 6,833.1 1.45 2.56

aNo integer solution is returned by CPLEX in 200,000 seconds

65

Table 4.7. Test results for some instances with c4 = 50.

V
Opt. Obj.

Value

CPU

time(s)

(Exact)

Best TS Avg TS

CPU

time(s)

(TS)

Best % Avg %

Tight-2 10 11,400 475.0 11,500 11,500 111.3 0.88 0.88

Tight-6 15 30,750 5,660.3 31,800 32,316 148.5 3.41 5.10

Tight-7 20 31,500 7,800.0 32,000 32,000 829.4 1.59 1.59

Loose-11 25 49,900 29,666.4 51,100 51,150 1,711.8 2.40 2.51

Mod-14 30 23,450 45,797.2 24,600 24,600 2,538.1 4.90 4.90

Loose-18 35 26,400 15,478.0 26,900 26,900 1,778.7 1.89 1.89

Mod-21 40 65,850 37,812.4 67,400 67,866 5,155.8 2.35 3.06

Loose-22 45 81,100 110,287.5 84,850 84,883 5,858.1 4.62 4.67

Mod-25 50 63,850 46,143.4 64,700 64,700 15,521.1 1.33 1.33

Loose-28 55 –a 200,000.0 106,000 107,783 12,886.5 – –

Mod-31 60 –a 200,000.0 85,850 85,900 14,876.3 – –

Avg 42,689 63,556.4 53,336 53,600 5,583.2 2.60 2.88

aNo integer solution is returned by CPLEX in 200,000 seconds

66

Table 4.8. Test results for some instances with c4 = 100.

V
Opt. Obj.

Value

CPU

time(s)

(Exact)

Best TS Avg TS

CPU

time(s)

(TS)

Best % Avg %

Tight-2 10 13,800 484.8 14,000 14,000 72.2 1.45 1.45

Tight-6 15 34,500 5,304.8 36,600 37,333 122.4 6.09 8.21

Tight-7 20 36,000 8,076.0 37,000 37,333 898.5 2.78 3.70

Loose-11 25 56,800 76,854.8 59,200 59,400 1,420.3 4.23 4.58

Mod-14 30 29,900 45,512.9 32,200 32,200 2,589.1 7.69 7.69

Loose-18 35 34,800 14,108.3 35,800 35,800 1,861.8 2.87 2.87

Mod-21 40 75,700 38,991.4 79,600 79,600 3,171.6 5.15 5.15

Loose-22 45 –a 200,000.0 95,900 97,960 6,418.5 – –

Mod-25 50 75,700 49,748.1 77,400 77,400 16,683.3 2.25 2.25

Loose-28 55 –a 200,000.0 123,300 124,333 12,728.4 – –

Mod-31 60 –a 200,000.0 101,700 101,700 15,694.2

Avg 44,650 63,908.1 62,973 63,369 5,605.5 4.06 4.49

aNo integer solution is returned by CPLEX in 200,000 seconds

67

5. CONCLUSION

In this study, we develop a solution approach which integrates a TS algorithm

employing a two-layered neighborhood structure and some local improvement proce-

dures. Local improvement procedures refine the tabu search algorithm in order to visit

the unexplored solutions for BACAP. The solution procedure for BACASP is quite

similar to that of BACAP. Every BACAP solution can be represented as a graph and

a QC schedule is generated by solving a shortest path algorithm on that graph. A BA-

CAP solution with a crane schedule is equivalent to a BACASP solution. Hence, TS

algorithm and local procedures are modified so that the metaheuristic visits BACASP

solutions at each iteration.

Instances are generated under three different conditions assuming that arrival

times are loose, moderate and tight. BACAP is solved on 106 different instances. TS

algorithm is run three times; the average objective value and the incumbent value for

each instance are reported. The performance of the solution approach is measured by

the percent deviation from the optimum or best integer found by the exact method

presented in (Türkoğulları et al., 2012a). Average of percent deviations is found to

be the smallest when arrival times are loose. As the arrivals become more frequent,

the percent deviations become greater. However, the TS algorithm keeps producing

near optimal solutions in shorter times despite the tightening arrival times. Another

important observation is that the TS algorithm is capable of finding the optimal solu-

tions of 85% of the instances when crane setups are ignored. It can be concluded that

as the setup cost of QCs are increased, the quality of the TS algorithm deteriorates.

Additional experiments show that TS algorithm maintains to produce good quality

solutions as setup cost is increased up to some extent. The CPU times for TS are

visibly less than the CPU times for the exact method.

TS algorithm for BACASP is implemented to the same 106 instances. TS algo-

rithm is run three times; the average objective value and the incumbent value for each

68

instance are reported. The TS solutions are compared with optimum or best integer

found by the exact method presented in (Türkoğulları et al., 2012b). Not surprisingly,

the average of percent deviations for loose arrival times is smaller than the average

of percent deviations for moderate and tight arrival times. The percent deviations on

average stay within 3% away from the optimal. TS algorithm is proved to give slightly

better results for BACAP compared to BACASP. Furthermore, the probability of find-

ing optimal solutions by TS is decreased when applied to BACASP. The gap between

the computational times of TS and the exact method are even greater for BACASP.

The performance of TS algorithm can be improved by incorporating a neighbor-

hood structure for QC allocation. The modified neighborhood structure may increase

the flexibility of the algorithm against increasing setup costs. The same problem BA-

CAP and BACASP can be solved by different assumptions such as berth dependent

handling times or quay cranes with coverage ranges. Apart from this, quayside opera-

tions can be integrated with yard operations as a further study since these operations

are closely related by nature.

69

REFERENCES

Ak, A., 2008, Berth and Quay Crane Scheduling: Problems, Models and Solution Meth-

ods, Ph.D. Thesis, Georgia Institute of Technology.

Bierwirth, C. and F. Meisel, 2010, “A Survey of Berth Allocation and Quay Crane

Scheduling Problems in Container Terminals”, European Journal of Operational Re-

search, Vol. 202, pp. 615-627, 2010.

Briano, C., E. Briano, and A. G. Bruzzone, 2005, “Models for Support Maritime Lo-

gistics: A Case Study for Improving Terminal Planning”, Proceedings of the 19th

European Conference on Modelling and Simulation (ECMS), pp. 199-205.

Brown, G. G., S. Lawphongpanich, and K. P. Thurman, 1994, “Optimizing Ship

Berthing”. Naval Research Logistics, Vol. 41, No. 1, pp. 1-15.

Cordeau, J. F., G. Laporte, P. Legato, and L. Moccia, 2005, “Models and Tabu Search

Heuristics for the Berth-allocation Problem”, Transportation Science, Vol. 39, No.

4, pp. 526-538.

Daganzo, C. F., 1989, “The Crane Scheduling Problem”, Transportation Research Part

B, Vol. 23, No. 3, pp. 159-175.

Peterkofsky, R. I., and C. F. Daganzo, 1990, “A Branch and Bound Solution Method

for the Crane Scheduling Problem”, Transportation Research Part B, Vol. 24, No. 3,

pp. 159-172.

Dijkstra, E. W., 1959, “A Note on Two Problems in Connection with Graphs”, Nu-

merische Math, Vol. 1, pp. 269-271.

Edmond, E. D., and R. P. Maggs, 1978, “How Useful Are Queue Models in Port

Investment Decisions for Container Berths”, Journal of the Operational Research

Society, Vol. 29, No. 8, pp. 741-750.

Giallombardo, G., L. Moccia, M. Salani, and I. Vacca, 2008, “The Tactical Berth Allo-

cation Problem with Quay Crane Assignment and Transshipment-related Quadratic

Yard Costs”, Proceedings of the European Transport Conference (ETC), pp. 1-27.

70

Glover, F., 1986, “Future Paths for Integer Programming and Links to Artificial Intel-

ligence”, Computers and Operations Research, Vol. 5, pp. 533-549.

Glover, F., and M. Laguna, 1997, Future Paths for Integer Programming and Links to

Artificial Intelligence, Kluver Academic Publishers.

Guan, Y., and R. K. Cheung, 2004, “The Berth Allocation Problem: Models and

Solution Methods”, OR Spectrum, Vol. 26, No. 1, pp. 75-92.

Guan, Y., W. Q. Xiao, R. K. Cheung, and C. L. Li, 2002, “A Multiprocessor Task

Scheduling Model for Berth Allocation: Heuristic and Worst-case Analysis”, Opera-

tions Research Letters, Vol. 30, No. 5, pp. 343-350.

Han, M., P. Li, and J. Sun, 2006, “The Algorithm for Berth Scheduling Problem by the

Hybrid Optimization Strategy GASA”, Proceedings of the Ninth International Con-

ference on Control, Automation, Robotics and Vision (ICARCV’06), Washington

DC, pp. 1-4.

Hansen, P., and C. Oğuz, 2003, “A Note on Formulations of Static and Dynamic Berth

Allocation Problems”, Les Cahiers du GERAD, Vol. 30, pp. 1-17.

Hansen, P., and C. Oğuz, Mladenovic, N., 2008, “Variable Neighborhood Search for

Minimum Cost Berth Allocation”, European Journal of Operational Research, Vol.

191, No. 3, pp. 636-649.

Hendriks, M. P. M., M. Laumanns, E. Lefeber, and J. T. Udding, 2008, “Robust Peri-

odic Berth Planning of Container Vessels”, Proceedings of the Third German–Korean

Workshop on Container Terminal Management: IT-based Planning and Control of

Seaport Container Terminals and Transportation Systems, pp. 1-13.

Imai, A., H. C. Chen, E. Nishimura, and S. Papadimitriou, 2008a, “The Simultaneous

Berth and Quay Crane Allocation Problem”, Transportation Research Part E, Vol.

44, No. 5, pp. 900-920.

Imai, A., E. Nishimura, M. Hattori, and S. Papadimitriou, 2007, “Berth Allocation

at Indented Berths for Mega-containerships”, European Journal of Operational Re-

search, Vol. 179, No. 2, pp. 579-593.

71

Imai, A., E. Nishimura, and S. Papadimitriou, 2001, “The Dynamic Berth Allocation

Problem for a Container Port”, Transportation Research Part B, Vol. 35, No. 4, pp.

401-417.

Imai, A., E. Nishimura, and S. Papadimitriou, 2008b, “Berthing Ships at a Multi-user

Container Terminal with a Limited Quay Capacity”. Transportation Research Part

E, Vol. 44, No. 1, pp. 136-151.

Imai, A., X. Sun, E. Nishimura, and S. Papadimitriou, 2005, “Berth Allocation in

a Container Port: Using a Continuous Location Space Approach”, Transportation

Research Part B, Vol. 39, No. 3, pp. 199–221.

Kim, K.H., and K. C. Moon, 2003, “Berth Scheduling by Simulated Annealing”, Trans-

portation Research Part B, Vol. 37, No. 6, pp. 541-560.

Lai, K.K., and K. Shih, 1992, “A Study of Container Berth Allocation”, Journal of

Advanced Transportation, Vol. 26, No. 1, pp. 45-60.

Li, C. L., X. Cai, and C. Y. Lee, 1998, “Scheduling with Multiple-job-on-one-processor

Pattern”, IIE Transactions, Vol. 30, No. 5, pp. 433-445.

Lim, A., 1998, “The Berth Planning Problem”, Operations Research Letters, Vol. 22,

No 2, pp. 105-110.

Lim, A., 1999, “An Effective Ship Berthing Algorithm”, Proceedings of the 16th Inter-

national Joint Conference on Artificial Intelligence (IJCAI-99- vol-1), pp. 594-599.

Lokuge, P., and D. Alahakoon, 2007, “Improving the Adaptability in Automated Vessel

Scheduling in Container Ports Using Intelligent Software Agents”, European Journal

of Operational Research, Vol.177, No. 3, pp. 1985–2015.

Mauri, G.R., A. C. M. Oliveira, and L. A. N. Lorena, 2008, “A Hybrid Column Gen-

eration Approach for the Berth Allocation Problem”, Eighth European Conference

on Evolutionary Computation in Combinatorial Optimisation (EvoCOP 2008), pp.

110-122.

72

Meier, L., and R. Schumann, 2007, “Coordination of Interdependent Planning Systems,

a Case Study”, In: Koschke, R., Otthein, H., Rödiger, K.-H., Ronthaler, M. (Eds.),

Lecture Notes in Informatics (LNI) P-109, Köllen Druck+Verlag GmbH, Bonn, pp.

389-396.

Meisel, F., and C. Bierwirth, 2009, “Heuristics for the Integration of Crane Productivity

in the Berth Allocation Problem”, Transportation Research Part E, Vol. 45, No. 1,

pp. 196-209.

Moorthy, R., and C. P. Teo, 2006, “Berth Management in Container Terminal: the

Template Design Problem”, OR Spectrum, Vol. 28, No. 4, pp. 495-518.

Nishimura, E., A. Imai, and S. Papadimitriou, 2001, “Berth Allocation Planning in

the Public Berth System by Genetic Algorithms”, European Journal of Operational

Research, Vol. 131, No 2, pp. 282-292.

Park, K.T., and K. H. Kim, 2002, “Berth Scheduling for Container Terminals by

Using a Subgradient Optimization Technique”, Journal of the Operational Research

Society, Vol. 53, No. 9, pp. 1054-1062.

Park, Y.M., and K. H. Kim, 2003, “A Scheduling Method for Berth and Quay Cranes”,

OR Spectrum, Vol. 25, No. 1, pp. 1-23.

Schonfeld, P., and S. Frank, 1984, “Optimizing the Use of a Containership Berth”,

Transportation Research Record, Vol. 984, pp. 56-62.

Tavakkoli-Moghaddam, R., A. Makui, S. Salahi, M. Bazzazi, and F. Taheri, 2009,

“An Efficient Algorithm for Solving a New Mathematical Model for a Quay Crane

Scheduling Problem in Container Ports”, Computers and Industrial Engineering,

Vol. 56, No. 1, pp. 241-248.

Türkoğulları, Y. B., C. Taşkın, N. Aras, and K. Altınel, 2012, “Berth Allocation and

Specific Quay Crane Assignment in Container Terminals”, Technical Report, Insti-

tute for Graduate Studies in Science and Engineering, Boğaziçi University, Istanbul,

FBE-IE.

73

Türkoğulları, Y. B., C. Taşkın, N. Aras, and K. Altınel, 2012, “Optimal Berth Al-

location, Quay Crane Assignment and Quay Crane Scheduling”, Technical Report,

Institute for Graduate Studies in Science and Engineering, Boğaziçi University, Is-

tanbul, FBE-IE.

Türkoğulları, Y. B., C. Taşkın, N. Aras, and K. Altınel, 2012, “Simultaneous Opti-

mization of Berth Allocation, Quay Crane Assignment and Quay Crane Scheduling

Problems in Container Terminals”, Technical Report, Institute for Graduate Studies

in Science and Engineering, Boğaziçi University, Istanbul, FBE-IE-03/2012-03.

UNCTAD, 2012, Review of Maritime Transport, United Nations Conference on Trade

and Development, http://www.unctad.org, accessed at January 2013.

Wang, F., and A. Lim, 2007. “A Stochastic Beam Search for the Berth Allocation

Problem”, Decision Support Systems, Vol. 42, No. 4, pp. 2186-2196.

Zhang, C., L. Zheng, Z. Zhang, L. Shi, and A. Armstrong, 2010. “The Allocation of

Berths and Quay Cranes by Using a Sub-Gradient Optimization Technique”, Com-

puters and Industrial Engineering, Vol. 58, pp. 40-50.

Zhou, P., H. Kang, and L. Lin, 2006. “A Dynamic Berth Allocation Model Based on

Stochastic Consideration”, Proceedings of the Sixth World Congress on Intelligent

Control and Automation (WCICA 2006), Vol. 2, pp. 7297–7301.

