
UNIT DISK GRAPH COLORING AND ITS REOPTIMIZATION

by

Arman Boyacı

B.S., Industrial Engineering, Galatasaray University, 2007

Submitted to the Institute for Graduate Studies in

Science and Engineering in partial fulfillment of

the requirements for the degree of

Master of Science

Graduate Program in Industrial Engineering

Boğaziçi University

2009

ii

UNIT DISK GRAPH COLORING AND ITS REOPTIMIZATION

APPROVED BY:

Assist. Prof., Tınaz EKİM AŞICI

(Thesis Supervisor)

Prof., İ. Kuban ALTINEL

Prof., Marc DEMANGE

DATE OF APPROVAL: ... / ... /

iii

ACKNOWLEDGEMENTS

First of all, I am heartily thankful to my supervisor, Assist. Prof. Dr., Tınaz

EKİM AŞICI, whose encouragement, guidance and support from the beginning to the

end provided me perfect conditions to work in such an intensive study. I am grateful

to her for being always accessible and willing to help me. Although it was fatiguing

(for both of us), I must say that I enjoyed myself during all this period.

I thank my fellow friends in Boğaziçi University for their support, stimulating

discussions and all the fun we have had in the last two years.

In addition, I am thankful to TUBITAK for the uninterrupted financial assistance

throughout my master degree.

Finally, I wish to extend my warmest thanks to my parents for their support and

to all who really care about me.

iv

ABSTRACT

UNIT DISK GRAPH COLORING AND ITS

REOPTIMIZATION

A unit disk graph (UDG) is a graph of intersection of a set of unit disks in Eu-

clidean plane. Motivated by frequency assignment problem in telecommunication, we

consider minimum vertex coloring of unit disk graphs (ColorUDG) and its reoptimiza-

tion which are both NP-hard problems. In the first part of the study, the quality of

lower and upper bounds on the optimal value of ColorUDG are investigated by conduct-

ing empirical tests. Maximum clique is a lower bound for the minimum coloring. Based

on some observations, running time improvement is achieved on the existing O(n4.5)

maximum clique algorithm. On the other hand, we derive upper bounds by some

simple heuristics (sequential algorithms). Two new construction heuristics and a new

improvement method are proposed. In the second part, vertex adding/removing reop-

timization problems for ColorUDG are defined. Despite the knowledge of the optimum

solution of the old instance, we showed that both problems remains NP-hard, therefore

some heuristic methods are proposed. The developed reoptimization algorithms, which

perform successfully for many instances when applied to randomly generated graphs.

Moreover, we modified Brelaz’s sequential coloring algorithm to solve exactly vertex

adding reoptimization problem.

v

ÖZET

BİRİM DİSK ÇİZGE BOYAMA VE YENİDEN

ENİYİLENMESİ

Bir takım birim diskin Öklid düzleminde kesişimleri birim disk çizgedir(BDÇ).

Özellikle telekomünikasyondaki frekans atama probleminin çözümü için önemli ve NP-

zor problemler olan birim disk çizge boyama(BDÇBoya) problemini ve yeniden eniyilen-

mesini ele aldık. Çalışmanın ilk kısmında, deneysel testler gerçekleştirerek BDÇBoya

probleminin alt ve üst sınırlarının kalitesi incelendi. Bazı gözlemlere dayanarak, mev-

cut O(n4.5) klik algoritmasının ortalama koşu zamanında iyileştirme sağlandı. Ek

olarak, iki yeni boyama sezgiseli ve Kempe’nin Zincirlerinden ilham alınarak yeni

bir iyileştirme yöntemi önerildi. İkinci kısımda ise, köşe ekle/çıkar yeniden eniyileme

problemleri tanımlandı. Eski örneğe ait eniyi çözüm bilgisine rağmen bu problemlerin

NP-zor kaldıklarını gösterdik ve bu nedenle sezgisel yöntemler önerdik. Bu sezgisel-

lerin ortalama performansları, deneysel çalışmalar ile tayin edildi. Ayrıca Brelaz’ın

ardışık boyama algoritmasını köşe ekle yeniden eniyileme problemini çözebilecek şekilde

uyarladık.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iii

ABSTRACT . iv

ÖZET . v

LIST OF FIGURES . viii

LIST OF TABLES . x

LIST OF SYMBOLS/ABBREVIATIONS . xii

1. INTRODUCTION . 1

1.1. Outline of the thesis . 2

1.2. Contribution of this study . 3

2. BASIC NOTIONS . 4

2.1. Graph Theoretical Definitions . 4

2.2. Frequency Assignment Problem . 5

2.2.1. Preliminaries . 5

2.2.2. Mathematical Models . 7

2.2.3. Graph Theoretical Approaches 8

3. DISK GRAPHS . 10

3.1. Characteristics . 13

3.2. Complexity Results . 17

3.2.1. Recognition Problem . 18

3.2.2. Maximum Clique Problem . 18

3.2.3. Minimum Vertex Coloring . 21

3.2.4. Maximum Independent Set Problem 22

3.3. Approximation Algorithms . 23

3.3.1. Max Independent Set . 24

3.3.2. Minimum Vertex Coloring . 25

4. COLORING UNIT DISK GRAPHS . 27

4.1. Exact Coloring . 28

4.1.1. Mixed Integer Programming . 28

4.1.2. Exact Sequential Algorithm . 29

vii

4.2. Lower Bound: Clique Number . 30

4.3. Upper Bound . 33

4.3.1. Construction Heuristics . 33

4.3.1.1. Scanning Coloring . 35

4.3.1.2. Clique Coloring . 35

4.3.1.3. Decreasing Order . 37

4.3.1.4. Balanced Coloring . 38

4.3.2. Improvement Heuristic . 39

4.3.2.1. Chains . 39

4.3.2.2. Remarks for the implementation 39

4.4. Design of Experiment . 40

4.5. Results & Discussion . 43

5. REOPTIMIZATION OF COLORING UNIT DISK GRAPHS 49

5.1. Problem Definition . 50

5.1.1. Adding a New Vertex . 50

5.1.2. Removing a Vertex . 50

5.2. Complexity Results . 51

5.3. Reoptimization Algorithms . 52

5.3.1. Algorithms for ColorUDG+ . 53

5.3.2. Algorithms for ColorUDG- . 53

5.4. Theoretical Analysis of Reoptimization Algorithms 56

5.5. Empirical Results . 59

5.5.1. Discussion for ColorUDG+k Algorithms 60

5.5.2. Discussion for ColorUDG-k Algorithms 63

5.6. Exact Sequential Algorithm For ColorUDG+ 64

6. CONCLUSIONS . 66

6.1. Open Questions . 67

APPENDIX A: GAMS Code for Solving Vertex Coloring Problem 69

APPENDIX B: Empirical Results for Bounds of ColorUDG 71

REFERENCES . 82

viii

LIST OF FIGURES

Figure 3.1. Subclasses of Disk Graphs . 11

Figure 3.2. Grid Graph and Fully Triangulated Grid Graph 12

Figure 3.3. Neighbors of the central vertex for a grid graph and a fully trian-

gulated grid graph . 12

Figure 3.4. Representation of two crossing edges for a non-planar graph 15

Figure 3.5. A unit disk having six neighborhood disks 15

Figure 3.6. Distance between two disks A and B 18

Figure 3.7. Region of intersection of two fictive disks: lens(AB) 19

Figure 3.8. Two partitions of lens(AB) . 19

Figure 3.9. Transformation for the reduction from Planar Graphs 3-colorability

to UDG 3-colorability . 22

Figure 3.10. 3-approximation coloring algorithm for UDG. 25

Figure 4.1. Geometrical proof for Observation 4.2.1 31

Figure 4.2. Plot of a UDG . 32

Figure 4.3. Worst-case examples of Scanning Coloring for (a) ω = 2 and (b)

ω = 3 . 36

ix

Figure 4.4. Clique Coloring Algorithm . 37

Figure 4.5. Balanced Coloring Algorithm . 38

Figure 4.6. Cj
i (v) and Ci

j(v) . 40

Figure 4.7. Chains Algorithm . 40

Figure 4.8. Improvement Algorithm . 41

Figure 4.9. Two Instances of Type (a) Uniform (b) Normal having same density

value . 42

Figure 4.10. Plots of instances: Very Low, Low, Medium and High density . . . 43

Figure 5.1. A bad example for rFF . 54

Figure 5.2. An application of CCC algorithm for ColorUDG- where the white

vertex is v−. 55

Figure 5.3. A bad example for CheckColorClass algorithm 55

Figure 5.4. Worst-case example construction for ColorUDG+ algorithm 57

Figure 5.5. Worst-case example construction for CCC 59

Figure 5.6. An ordering for sequential exact coloring algorithm 65

x

LIST OF TABLES

Table 3.1. Complexity results for Unit Disk Graphs 18

Table 4.1. Running time results (seconds) for maximum clique algorithms . . 34

Table 4.2. Sequential coloring heuristics for ColorUDG 35

Table 4.3. Average percentage deviations from χ on test set of type uniform . 45

Table 4.4. Average percentage deviations from χ on test set of type normal . 45

Table 4.5. Percentage of hitting the optimal value on test set of type uniform 46

Table 4.6. Percentage of hitting the optimal value on test set of type normal . 46

Table 4.7. Percentage of being best construction heuristic on test set of type

uniform . 47

Table 4.8. Percentage of being best construction heuristic on test set of type

normal . 47

Table 4.9. Percentage of being best improvement heuristic on test set of type

uniform . 48

Table 4.10. Percentage of being best improvement heuristic on test set of type

normal . 48

Table 5.1. Possible situations for solving ColorUDG+ with any algorithm . . 53

Table 5.2. Possible situations for solving ColorUDG- with any algorithm . . . 54

xi

Table 5.3. Average percentage of deviations from χ on test set of

ColorUDG+k . 60

Table 5.4. Percentage of hitting the optimal value on test set for

ColorUDG+k . 61

Table 5.5. Percentage of being best upper bound on test set for

ColorUDG+k . 61

Table 5.6. Average percentage of deviations from χ on test set of

ColorUDG-k . 62

Table 5.7. Percentage of hitting the optimal value on test set for

ColorUDG-k . 62

Table 5.8. Percentage of being best upper bound on test set for

ColorUDG-k . 63

xii

LIST OF SYMBOLS/ABBREVIATIONS

Cj
i (v) Maximal connected component of G containing vertex v and

vertices colored i and j such that NCi
j
(v) has only vertices of

color j.

χ(G) Chromatic number of G

ω(G) Clique number of G

FAP Frequency Assignment Problem

DG Disk Graph

UDG Unit Disk Graph

CG Coin Graph

GSM Global system for mobile

TSP Traveling salesman problem

SC Scanning coloring algorithm

DC Decreasing Order coloring algorithm

CC Clique coloring algorithm

BC Balanced coloring algorithm

iSC Scanning coloring followed by the improvement algorithm

iDC Decreasing Order coloring followed by the improvement algo-

rithm

iCC Clique coloring followed by the improvement algorithm

iBC Balanced coloring followed by the improvement algorithm

CCC Check color class algorithm

iCCC Check color class followed by the improvement algorithm

rFF First-fit for reoptimization algorithm

irFF First-fit for reoptimization followed by the improvement algo-

rithm

1

1. INTRODUCTION

Nowadays, wireless communication is indispensable, since it is used in many im-

portant domains such as mobile telephones, wireless LANs, satellite communication

and military operations. A frequency assignment problem (FAP) arises in each of

these applications. In the literature, different modeling approaches are available. Since

there is no known polynomial time algorithm to solve FAP, various solution techniques

are proposed. Some researchers have suggested modeling and solving FAP with graph

theoretical tools. Then, FAP is modeled in the following way: transmitters/receivers

are represented by vertices, there exist an edge between two vertices if there is a pos-

sible interference between the signals of the corresponding transmitters/receivers. The

objective of FAPS being to minimize the number of frequencies used, it can be reduced

to the minimum vertex coloring problem on this graph; vertices having the same color

indicate transmitters/receivers that will be assigned the same frequency. However, it is

known that minimum vertex coloring on an arbitrary graph is NP-hard (1). It is known

that NP-hard problems may possibly become polynomially solvable under some restric-

tions. For FAP, we typically work on hexagonal graphs or on disk graphs(DG). A disk

graph is the graph of intersection of a set of disks in the Euclidean plane. Therefore,

this simplification requires the following assumption: each transmitter has a circular

area of effect as a function of its power. If we also assume that all the transmitters

have the same power, corresponding graph is a unit disk graph (UDG). Due to this

motivation, UDG are one of the well-studied graphs in the literature.

However, it is known that vertex coloring problem in UDG remains NP-hard

(2). One of the ways to handle an NP-hard problem is to find good lower and upper

bounds for the value of its optimum solution. The optimum value of the vertex coloring

problem, chromatic number can be bounded with clique number and a feasible coloring.

It is shown that clique number of a UDG can be determined in polynomial time. On

the other hand, various heuristics can be used to generate a feasible coloring. The

quality of a bound can be assessed according to two criteria: (1) worst-case and (2)

average-case. For the worst-case analysis, theoretical bounds and worst-case example

2

constructions are used. On the other hand, empirical tests can be conducted to predict

the average performance of an algorithm in practice.

In this thesis, we will also be interested in some reoptimization problems related

to unit disk graph coloring. In general, reoptimization of a problem can be defined as

follows. Given an instance with an optimum solution and a local modification on the

instance, we try to determine the optimum solution of the new instance. In that case,

optimum solution of the old solution could be helpful to find the new one. Intuitively,

this additional information should help us to develop better algorithms.

1.1. Outline of the thesis

Section 2 begins with some basic graph theoretical definitions, which will be

necessary throughout the thesis. Then, we continue with defining frequency assignment

problem and giving its mathematical formulation. Finally, a short survey on graph

theoretical approaches for FAP is presented.

Section 3 is dedicated to UDG. We first start by presenting some properties of

UDG and state some basic observations which will be useful in the next sections. Then,

we focus on graph problems in UDG; complexity results on the principal problems we

deal with are presented. For NP-hard problems, we present existing approximation

algorithms.

Since the coloring problem in UDG is NP-hard, in Section 4, we mainly investigate

the quality of bounds for the chromatic number. Knowing that the clique number

provides us a lower bound, some improvements on the polynomial time maximum

clique algorithm are presented. Besides, for generating feasible colorings, construction

and improvement heuristics are developed and implemented. Lastly, the details on

instance generation process and empirical results on the test set are given.

In Section 5, reoptimization of unit disk graph coloring is considered. First, two

reoptimization problems, one dealing with vertex addition, the other one with vertex

3

removal, are formally defined and their NP-hardness are shown. Since the problems

remains NP-hard, heuristic methods are developed and empirical tests are conducted

on a new test set. Moreover, a modified exact sequential coloring algorithm is proposed

for the reoptimization.

1.2. Contribution of this study

We mainly consider two problems: UDG coloring and its reoptimization. In the

first part, based on some observations, we give a modified maximum clique algorithm

for UDG, which is significantly faster on empirical tests. We propose new construction

heuristics. In addition, an improvement method inspired from Kempe’s Chains is de-

veloped. According to the empirical study conducted, our implementation of improved

heuristic outperforms construction methods. Optimality is mostly reached on sparse

graphs. In the second part of the study, we focused on reoptimization of UDG coloring.

Vertex adding and removing situations are considered. We showed that both problems

are NP-hard and heuristic methods are proposed. According to the empirical study,

we can say that our improvement method performs well. Lastly, we also modified an

exact sequential coloring algorithm for the reoptimization case.

4

2. BASIC NOTIONS

This section starts with some standard definitions on graph theory. For a com-

plete source, we recommend to look at the book about graph theory by Berge (3). In

the second part, some basic informations are given about frequency assignment which

we consider as the primary motivation for the minimum vertex coloring in UDG.

2.1. Graph Theoretical Definitions

A graph G = (V,E) is a set of vertices V and edges E. An edge between two

vertices u and v is denoted edge uv. We note n = |V | and m = |V |. We say u is

adjacent to v if uv exists. N(v), the neighborhood of a vertex v is the set of all vertices

adjacent to v. Degree of v is defined as the number of adjacent vertices to v. An

isolated vertex is a vertex with degree zero.

An induced subgraph of G is a subset of vertices of G together with any edges

whose endpoints are in this subset. We define NH(v) as the neighborhood of v in the

induced subgraph H. Complement graph G of a graph G = (V,E) is a graph having

same vertex set V and two vertices are adjacent in G if and only if they are not adjacent

in G.

A graph is called dense if the number of edges is close to the maximal number of

possible edges which is n(n−1)
2

. On the other hand, a sparse graph contains relatively

few edges. Density of a graph is calculated as follows: 2m
n(n−1)

.

A clique is a subset of vertices, all pairs of which are adjacent. A k-clique is a

clique of size k. Clique number, ω(G), is the size of the biggest clique in a graph G. A

stable (independent) set is a subset of vertices, no two of which are adjacent. A vertex

coloring is an assignment of colors to the vertices of a graph in a such way that no

two adjacent vertices share the same color. Chromatic number, χ(G), is the minimum

number of colors necessary to color a graph G.

5

A clique is maximal (inclusion wise) if no more vertex can be included to that

clique set. A clique is maximum (size wise) if there is no larger clique in the graph.

Note that a maximum clique is also maximal, but not necessarily vice-versa.

A bipartite graph is a graph whose vertices can be divided into two disjoint sets

A and B such that every edge connects a vertex in A to one in B; that is, A and B are

independent sets. Ka,b is a complete (all possible edges exist) bipartite graph where

two disjoints sets are size respectively a and b. A planar graph is a graph which can

be drawn on the plane in such a way that none of the edges intersect. A perfect graph

is a graph in which the chromatic number of every induced subgraph equals the clique

number of that subgraph.

2.2. Frequency Assignment Problem

Frequency assignment problem(FAP) is first defined in the 1960s (4) and become

popular in 1990s and 2000s mainly due to the fast growing demand on wireless telephone

networks and implementation of satellite communication projects. (5) and (6) are

good literature surveys on FAP which summarize main problems, assumptions and

methods on the topic. Different FAP models having different optimization criteria

and constraints are proposed, however they share following common features: (1) A

set of wireless communication connections must be assigned frequencies from a set of

available frequencies of that connection point. (2) Interference of two signals occur if

connections are geographically close to each other and if the frequencies of the signals

are close on the electromagnetic band. In this part of the study, we will first look at the

practical aspects of Frequency Planning and then different mathematical models and

corresponding assumptions of these models will be discussed. Finally, graph theoretical

approaches for FAP will be stated.

2.2.1. Preliminaries

Wireless communication between two points is established with the use of a trans-

mitter and a receiver. When two transmitters use close frequencies, their signals may

6

interfere. The quality of the signal depends on different parameters such as distance

between transmitters, the geographical position of the transmitters, the power of the

signal and the weather condition.

The commercially usable radio spectrum is very scarce. Therefore, frequencies are

reused by many transmitters. We can say that planning of the frequency assignments

are indispensable for achieving a high performance in a network. The selection of

frequencies such that interference is avoided or minimized is called FAP. There exist

two main approaches to model this problem:

1. The range of the available frequencies is fixed and the interference is minimized,

2. The interference is strictly avoided, the required range of frequencies is minimized.

In this work, we mainly consider the second model.

The availability of frequencies from the radio spectrum is regulated by national

governments and world-wide by International Telecommunication Union(ITU). Fre-

quency bands [fmin, fmax] are usually partitioned in a set of channels of same band-

width ∆. F = {1, . . . , N} denotes available channels where N = (fmax − fmin)/∆.

Some channels can be forbidden for a given transmitter. For instance, if the transmit-

ter is close to the border of a country. As a consequence, the channels available for a

transmitter v forms a subset F (v) of F .

The placement of the base stations as well as the selection and configuration of

antennas are the basis for delivering the desired network coverage. The decision on how

many transmitters to be operated in each cell depends on the capacity requirements of

the network. For instance, a base station can contain 8 antennas having 12 transmitters

on each of them. The level of interference rapidly decreases with distance between

the frequencies (assumed to be inversely proportional to the distance). Therefore,

frequencies of transmitters sharing the same antenna and being in the same base station

must differ by at least some value, referred to co-cell separation and co-site separation,

respectively.

7

2.2.2. Mathematical Models

In the previous section, we stated some practical aspects of FAP. Now, a math-

ematical formulation for FAP will be presented. Depending on the objective function

and the constraints, there exist different formulation for FAP (5). Here, we present

one of the integer programming formulations for FAP, called the Minimum Order FAP.

When mobile phones were first introduced in 70s, frequencies were sold per unit and

they were expensive. As a consequence, researchers have proposed the Minimum Order

FAP formulation where we penalize the usage of frequencies. In other words, the total

number of frequencies used is minimized under the constraint that all interferences

are avoided. This mathematical formulation for FAP consists of the following set of

variables, constraints and an objective function.

xvf =

1 if frequency f ∈ F (v) is assigned to vertex v

0 otherwise

yf =

1 if frequency f ∈ F is used

0 otherwise

8

min
∑

f∈F

yf (2.1)

s.t. xvf ≤ yf ∀v ∈ V, f ∈ F (v) (2.2)
∑

f∈F (v)

xvf = m(v) ∀v ∈ V (2.3)

xvf + xwg ≤ 1 ∀{v, w} ∈ V, f ∈ F (v), g ∈ F (w) : pvw(f, g) > pmax (2.4)

xvf ∈ {0, 1} ∀v ∈ V, f ∈ F (v) (2.5)

yf ∈ {0, 1} ∀f ∈ F (2.6)

Objective 2.1 minimizes the total number of frequencies used in the network.

Constraints 2.2 ensures that used frequencies are accounted in the objective function.

The requirement that m(v) frequencies have to be assigned to a vertex v is modeled

in constraints 2.3. For each pair of frequencies f ∈ F (v) and g ∈ F (w) a penalty

parameter is given pvw(f, g). pmax is the threshold parameter for admissible interference

value. Interference is avoided with constraints 2.4.

Note that, in the frequency assignment problem considered in the following sec-

tions (and which is modeled as a vertex coloring problem in UDG), we always assume

that interference is only possible for pairs of transmitters/receivers located under some

threshold distance d one from another and having exactly the same frequency. More

technically, we assume puw(f, g) = 1 if and only id d(u,w) < d and f = g, in addition

we take pmax = 0 which means 0 interference is tolerated.

2.2.3. Graph Theoretical Approaches

For a given network, the interference can be represented as follows: Let G =

(V,E) be an interference graph; each antenna is represented by a vertex v ∈ V , two

vertices for which the corresponding signals may interfere for at least one pair of fre-

quencies are connected by an edge. Since each antenna consists of multiple transmitters,

9

each vertex can be split into as many vertices as the transmitters carried by the corre-

sponding antenna. This graph is referred to the split interference graph. The optimal

coloring of an interference graph can be considered as a lower bound for FAP, since

we neglect some other requirements of FAP. For instance, not only same frequencies

cannot be assigned to neighboring vertices, but also certain distance between frequen-

cies have to be obeyed. In this manner, a generalization of the vertex coloring problem

called T-coloring is introduced by Hale (7) where the colors of adjacent vertices should

differ by at least T. Another practical aspect that should be considered is the pres-

ence of blocked channels at some transmitters. This version of coloring is known as

list-coloring ; each vertex can take a color from a given list of colors. List coloring is

first discussed by Vizing (8), then Tesman (9) combined T-coloring and list-coloring

problems. See also (6) where different mathematical models for FAP are given and

variants of some traditional coloring heuristics to solve these models are presented.

10

3. DISK GRAPHS

A disk graph(DG) is the graph of intersection of a set of disks in the Euclidean

plane. There are many applications that use disk graph modeling to represent the

corresponding problem. Consequently, different types of graph problems are considered

in these applications. For example,

• in chemistry, testing the physical feasibility of a graph-modeled molecular (recog-

nition problem),

• in telecommunication, making frequency assignments for the transmitter/receiver

stations (coloring problem),

• selecting a minimum number of transmitters so that all other stations are within

the range one of the chosen transmitters (domination problem),

• in facility location, placing facilities to given locations where the proximity of

facilities is undesirable (independent set).

With the high increasing demand in GSM telecommunication, the frequency assign-

ment problem became notably important. This area of research is well-studied in the

literature. (7) and (5) are some surveys in this topic.

In this subclass of graphs, most of the graph problems remain unfortunately NP-

hard. In other words, for such problems there is no known polynomial time algorithm to

solve them optimally in DG. However, since there is a strong motivation to study these

graphs, approximation algorithms are suggested to generate relatively good solutions

in a reasonable time.

Three equivalent models can be defined to represent various problems as DG. In

intersection model, each vertex corresponds to a disk on a plane and an edge appears

between two vertices when the corresponding disks intersect. We assume that tangent

disks intersect. In containment model, n disks in the plane form a graph with n vertices

corresponding to n disks and an edge between two vertices if one of the corresponding

11

Unit Disk Graph Coin Graph 2-Disk Graph

Figure 3.1. Subclasses of Disk Graphs

disks contains the other’s center. Finally, a purely geometric definition is also available.

n points in the plane form a graph with n vertices corresponding to n points and there

is an edge between two vertices if and only if the Euclidean distance between two

corresponding points is at most some specified bound d. This last model is referred

to proximity model. Transforming between intersection and containment models can

be easily done by simply doubling or halving the diameter of disks. Transforming

between the intersection and proximity models requires only an identification of the

disks centers with the points in the plane and the disk diameter with d. Therefore,

given any of the three models, the other two can be produced in linear time. In what

follows, we use intersection model.

Relevant subclasses of DG are the followings: coin graphs (CG), σ-disk graphs

(σ-DG), unit disk graphs (UDG). In CG, disks are not allowed to overlap but to touch.

In σ-DG, diameter ratio of disks is bounded by some constant σ. A disk graph is called

unit disk graph if all disks’ diameters are equal.

Some subclasses of UDG relevant with respect to FAP can be stated as follows. A

grid graph is a unit disk graph in whose intersection model all disks have centers with

integer coordinates and radius 1
2
. On the other hand, a fully triangulated grid graph

is a unit disk graph in whose intersection model all disks have centers with integer

coordinates and radius
√

2
2

, see Figure 3.2.

Given a UDG, we can transform it to (1) a weighted grid graph or (2) a weighted

fully triangulated grid graph by moving all disks to the nearest integer coordinate and

by setting the radius of this super-disks to respectively 1
2

and
√

2
2

. Let G be a UDG.

12

Figure 3.2. Grid Graph and Fully Triangulated Grid Graph

b b b

bb

b b b

b

b b b

bb

b b b

b

Figure 3.3. Neighbors of the central vertex for a grid graph and a fully triangulated

grid graph

We can easily see that the first transformation will add new edges and possibly remove

some existing edges. On the other hand, if we apply the second transformation, all the

existing edges will remain and some new edges will be added. Let G′ be the weighted

fully triangulated grid graph obtained using the second transformation to G, then

χ(G′) can only increase with respect to χ(G). It means that χ(G′) constitutes an upper

bound for the χ(G), see on Figure 3.3. However, according to our implementation, we

observed that this is not a good approximation for our considered problem. Simply

because too many non-existing edges arise. Consequently, we stop our investigation on

the complexity of minimum coloring problem on fully triangulated grid graphs.

We know that most graph theoretical problems are easy to solve in grid graphs

even for weighted situation (2). However, as far as we know, there does not exist any

complexity results for fully triangulated grid graphs. One can easily state that the

maximum weighted clique problem in weighted fully triangulated grid graphs can be

computed in polynomial time since each maximal clique in G has at most 4 vertices.

13

So they can be enumerated in polynomial time. On the other hand, the complexity of

3-colorability of a weighted fully triangulated grid graph is an open question.

Obviously, given a disk graph, there is no unique way to place disks on the

plane. In some applications, coordinates of disks could be available. This additional

information can allow us to develop better algorithms. Given a disk graph with the

coordinates of disks will be referred to a graph with given representation. All of our

analysis will be done for both cases. In other words, complexity results as well as the

performance of algorithms will be analyzed on graphs with and without representation.

Disks and the vertices representing the disks will be used interchangeably when no

confusion arise.

This section is structured in the following way. First, we will enumerate some im-

portant properties of disk graphs. These properties will provide us some tools to make

our analysis for the approximation algorithms. Secondly, we will discuss the complex-

ity of some graph theoretical problems. We will show that most of the problems are

NP-hard in DG. Therefore, next section will cover related approximation algorithms.

Starting by defining what an approximation algorithm is, we will state approxima-

tion algorithms for various problems in DG. Moreover, we will prove the performance

guarantee of these algorithms.

3.1. Characteristics

In the beginning, we will do some basic observations that we will make use of

in our analysis. Therefore, in this section we will specify important properties of DG,

(10).

Property 3.1.1. Unit disk graphs are not perfect.

Proof. Any odd cycle of length five or greater is a UDG. By Strong Perfect Graph

Theorem (11), UDG are not perfect.

Property 3.1.2. Unit disk graphs are not planar. Since a clique of size 5 or greater

14

is not planar, UDG are not planar.

Proof. Any clique of size five or greater is a UDG.

Obviously these properties are true also for DG. It means that DG are not pla-

nar nor perfect. Therefore, unfortunately none of the polynomial time algorithms for

perfect graphs will be available for UDG and clearly nor for DG.

Property 3.1.3. Coin graphs are planar.

Property 3.1.4. Every triangle-free UDG is planar.

Proof. (By contrapositive) Let G be a non-planar UDG. Select two intersecting edges,

ab and cd. Let a,b,c and d centers of these four disks and e be the intersection point.

We denote r(u) as the radius of the disk u.

By triangular inequality:

ac + bd ≤ (ae + ec) + (be + ed) (3.1)

= (ae + be) + (ec + ed) (3.2)

= ab + cd (3.3)

We know that (u, v) ∈ E iff uv ≤ r(u) + r(v). Hence,

ac + bd ≤ ab + cd (3.4)

≤ (r(a) + r(b)) + (r(c) + r(d)) (3.5)

= (r(a) + r(c)) + (r(b) + r(d)) (3.6)

It means that either ac ≤ r(a) + r(c) or bd ≤ r(b) + r(d). So either (a, c) ∈ E or

15

a

b
c

d

e

b

b

b

b

Figure 3.4. Representation of two crossing edges for a non-planar graph

1 2

3 4

5 6

Figure 3.5. A unit disk having six neighborhood disks

(b, d) ∈ E. Similarly ad + bc ≤ ab + cd. So, either (a, d) ∈ E or (b, c) ∈ E. In total

there four possibilities, any of them implies a triangle.

Property 3.1.5. Let C be a disk of radius r and and let S be a set of disks of radius r

such that every disk in S intersects C and no two disks in S intersect each other. Then

card(S) ≤ 5.

Proof. Suppose |S| ≥ 6. Let si, 1 ≤ i ≤ 6, denote the centers of any six disks in S. Let

c denote the center of C. Denote the ray −→csi by ri (1 ≤ i ≤ 6). Since there are six rays

emanating from c, there must be at least one pair of rays rj and rk such that the angle

between them is at most π
3
. Now, it can be verified that the distance between sj and

sk is at most 2r, which implies that disks centered at sj and sk intersect, contradicting

our assumption.

Property 3.1.6. Let G be a unit disk graph, and let v be a vertex such that the unit

disk corresponding to v (in some model for G) has the smallest X-coordinate. The size

16

of a maximum independent set in G(N(v)) is at most 3.

Property 3.1.6 is a natural extension of Property 3.1.5. It can be easily seen on

Figure 3.5 that if a unit disk has a smallest X-coordinate, it cannot have more than 3

independent neighborhood.

Property 3.1.7. Every induced subgraph of a unit disk graph is also a unit disk graph.

Property 3.1.6 and 3.1.7 will be frequently used in analyzing approximation algo-

rithms in the following sections. An example of a graph that is not a unit disk graph

is the star K1,6 with one central vertex connected to six leaves: if each of six unit disks

touches a common unit disk, some two of the six disks must touch each other.

Property 3.1.8. For any vertex v of a UDG, degree of v is bounded by 6ω(G)− 6.

Proof. For a given vertex v, N(v) can be divided into 6 equal regions of π
3
. We already

stated that disks sharing the same region are all intersecting. Then we can place in

each region at most ω(G)− 1 vertices.

Property 3.1.9. Let G be a unit disk graph, v be a vertex and Ni(v) be the neighborhood

of v colored with color i. Then |Ni(v)| < 5.

Property 3.1.9 is a result of Property 3.1.5 and it will be useful in the complexity

analysis of Chains algorithm that will be defined in the following chapter.

Another natural question for UDG is whether for a fixed clique number, there

exist a UDG with arbitrarily large chromatic number. If not it means that there is a

bound χ ≤ c · ω where c is a constant. In such a case the challenge is to determine

the minimum value of constant c. Cycles are UDG, therefore c is at least 3
2
. Mycielski

graphs are well known triangle-free graphs with arbitrarily large chromatic number,

(12). A Mycielski graph of chromatic number i, Mi is constructed iteratively in the

following way:

17

1. Start with a graph consisting of two adjacent vertices and assign j = 2.

2. Replicate all existing vertices and connect replicated vertices with neighbors of

the original vertices.

3. Add a central vertex and connect it to all replicated vertices.

4. j ← j + 1

5. Repeat 2,3,4 until j = i.

M2 is a K2 (a clique of size 2) and M3 is a C5 (cycle of size 5) which are also

UDG. However Mi for i ≥ 4 are not UDG.

Claim 3.1.10. Mycielski graphs Mi for i ≥ 4 are not UDG.

Proof. M4 is triangle-free but not planar. We know that triangle-free UDG are planar,

see Property 3.1.4. Therefore M4 is not a UDG. For i ≥ 5, Mi contains induced K1,6

which is an obstruction graph for UDG. Therefore Mi, i ≥ 4 are not UDG.

In the next sections, we will introduce some coloring algorithm for coloring UDG.

One of them uses at most 3ω(G) − 2 colors, so, χ(G) ≤ 3ω(G) − 2 and this bound

is tight, see (13). This means that the minimum c value that we are looking for is

at most three. On the other hand this value is at least 3
2

since such a graph can be

constructed using an odd cycle and arbitrarily large chromatic number can be obtained

by replicating all the existing points in the same spot the same number of times. We

can try to construct worst-case examples for higher c values like 2 however the search

for exact value of minimum c value is an open question.

3.2. Complexity Results

Most of the graph problems remain NP-hard in unit disk graphs. Table 3.1

presents a summary of complexity results in this domain. It can be seen that all the

problems stated except maximum clique problem are NP-hard. Note also that there is

no known result for the maximum clique problem in DG in general. In this section, we

18

b bA B
dist(AB)

Figure 3.6. Distance between two disks A and B

will give the sketch of the proofs of some NP-hardness results and of the polynomial

time algorithm for the maximum clique problem.

Table 3.1. Complexity results for Unit Disk Graphs

Problem Complexity

Recognition NP-complete

Independent Set NP-hard

Dominating Set NP-hard

Clique Polynomial

Coloring NP-hard

3.2.1. Recognition Problem

UDG recognition problem can be stated as given a graph G determining whether

G is a unit disk graph or not. Breu and Kirkpatrick (14) showed that this problem is

NP-hard by reducing satisfiability problem to it. A graph that simulates SATISFIA-

BILITY is constructed in the following way: Given an instance of SATISFIABILITY

problem C, the vertices of the graph correspond to the clauses, variables and negated

variables of C, and there is an edge between a literal vertex and a clause vertex if the

literal appears in the clause. Then, it is shown that the obtained graph is UDG if and

only if there is a true assignment for SAT. The relatively long proof of the reduction

can be found in (14).

3.2.2. Maximum Clique Problem

A clique of graph G = (V,E) is a subset of vertices V ′ ⊆ V such that for any

pair of vertices in V ′, there is an edge between them in E. The clique number ω(G) is

defined as the size of a maximum clique in G.

19

b b

A B

Figure 3.7. Region of intersection of two fictive disks: lens(AB)

lens0(AB)

A B

lens1(AB)

Figure 3.8. Two partitions of lens(AB)

20

Theorem 3.2.1. (2) There is a polynomial time algorithm for the maximum clique

problem in unit disk graphs with representation.

Proof. Let OA and OB be the centers of disks respectively A and B. Let dist(AB)

be the distance between OA and OB, see Figure 3.6. If dist(AB) ≤ 2r then A and B

intersects where r is the radius of a disk. Let lens(AB) be the region of intersection

of two fictive disks sharing the same centers as disks A and B and of radius dist(AB),

see Figure 3.7. Let HAB be the induced subgraph defined by the vertex set having the

centers of their corresponding disks in the region lens(AB). We can partition lens(AB)

into two parts lens0(AB) and lens1(AB) as seen in Figure 3.8. We can observe that

every vertex in one of the parts (lens0(AB) or lens1(AB)) is adjacent to every other

vertex in the same part and possibly to some vertices in the other part. Therefore,

HAB is the complement of a bipartite graph. A maximum independent set problem in

a bipartite graph can be solved in time O(|V |2.5).

Observation 3.2.2. (2) A maximum independent set in a bipartite graph on n vertices

can be found in time O(n2.5).

Proof. Given a bipartite graph G, suppose M is a maximum matching of G. Having

M , a maximum independent set can be built as follows:

1. Let I0 be the set of vertices not contained in M . Note that the vertices should

form an independent set otherwise we could find a matching larger than M .

2. We complete I0 in the following way. For each edge in M , we take an endpoint that

is not adjacent to any vertex chosen so far. It can be shown that for each matching

at least one endpoint must satisfy this property, otherwise we can conclude that

there is an augmenting path which will be contradicting with the optimality of

M .

In this way, we construct an independent set of size n−|M | (in linear time). This

is the largest possible since at most one of the endpoints of each edge in the matching

21

can be in an independent set. Moreover, a maximum matching in a bipartite graph

can be found in time O(n2.5) using Edmonds and Karp method (15).

It is also true that the maximum clique problem in G is equivalent to the inde-

pendent set problem in G. So, we can find a maximum clique in HAB in polynomial

time.

Observation 3.2.3. If A and B are maximally distant points in a set V ′, then V ′ ⊆

lens(AB)

Corollary 3.2.4. If C is a vertex set of a maximum size clique in G, then C ⊆ HAB

for some A,B ∈ V with dist(AB) ≤ 2r where r is the radius of a disk.

Finally, due to Corollary 3.2.4, we can find a maximum clique in the whole graph

by taking the clique of maximum size among all maximum cliques searched for all

pairs of adjacent vertices (i.e. intersecting disks). This algorithm will be referred to

MAXCLIQUE.

3.2.3. Minimum Vertex Coloring

A coloring of a graph G = (V,E) is an assignment of colors to each vertex in

V such that no edge in E connects two identically colored vertices. The chromatic

number χ(G) is defined as the minimum number of colors used for coloring all the

vertices of G.

Theorem 3.2.5. (2) Minimum vertex coloring in UDG is NP-hard.

Proof. Planar 3-colorability is NP-complete even if the maximum degree is bounded

above by 4, (16) . We will reduce this problem to UDG 3-colorability. We transform a

planar graph G = (V,E) with maximum degree 4 into a unit disk graph G′ such that

22

u v

Figure 3.9. Transformation for the reduction from Planar Graphs 3-colorability to

UDG 3-colorability

G is 3-colorable if and only if G′ is 3-colorable. G′ is constructed by making use of the

following result.

Lemma 3.2.6. (17) A planar graph G with maximum degree 4 can be embedded in the

plane using O(|V |) area in such a way that its vertices are at integer coordinates and

its edges are drawn so that they are made up of line segments of the form x = i or

y = j, for integers i and j.

We transform G into G′ in the following way: (1) The vertices of G are modeled

by disks of radius 1
2

centered at the location of the vertices in the embedding described

in Lemma 3.2.6, (2) the edges of G are replaced by chains of radius 1
2

disks, see Figure

3.9. Let c[ei] be the chain of disks in G′ that correspond the edge ei in graph G.

We can observe that any proper 3-coloring of c[ei]∪{u, v} assigns u and v different

colors. On the other hand if we assign different colors to u and v, there exists a proper

3-coloring of c[ei] ∪ {u, v}. Therefore the reductions is complete.

3.2.4. Maximum Independent Set Problem

An independent set of a graph G = (V,E) is a subset of vertices V ′ ⊆ V such that

for any pair of vertices in V ′, there is no edge between them in E. The independence

number α(G) is defined as the size of a maximum independent set in G. It can be

easily seen that if V ′ is a vertex cover of G, then V −V ′ is an independent set. In other

words these two problems (minimum vertex cover and maximum independent set) are

polynomially equivalent. We will reduce min vertex cover in planar graphs problem

which is shown to be NP-complete into vertex cover problem in UDG.

23

Theorem 3.2.7. (2) Minimum vertex cover in UDG is NP-hard.

Proof. We will again use the same construction strategy as in the proof of Theorem

3.2.5. Let G be a planar graph with maximum degree 4 and having a vertex cover S

with |S| ≤ k and let G′ be a unit disk graph having a vertex cover S ′ with |S ′| ≤ k′.

We embed G′ in the plane using Lemma 3.2.6. Vertices are modeled as unit disks and

each edge uv by a chain having an even number 2kuv of disks, which is always possible.

We can verify that G has a vertex cover S such that |S| ≤ k if and only if G′ has a

vertex cover S ′ such that |S ′| ≤ k +
∑

uv∈E(G) kuv

3.3. Approximation Algorithms

If a problem belongs to NP-hard class, it means that there is no known polynomial

time algorithm to solve this problem. In this case, we have three options: (a) we can

work in a sub-case where a polynomial time algorithm exists, (b) we can develop a

heuristic method, however, there is no guarantee for the optimality or (c) we can find an

approximation algorithm. Approximation algorithms cannot guarantee the optimality

but at least can give a performance guarantee. We know that the solutions generated

from an approximation algorithm lies on an error bound. This is not true for an

ordinary heuristic method. Formally, an approximation algorithm for an optimization

problem π provides a performance guarantee of ρ if for every instance I of π, the solution

value returned by the approximation algorithm is within the factor ρ of the optimal

value for I (1). ρ < 1 (for a maximization problem) and ρ > 1 (for a minimization

problem). In our study, since we consider minimum vertex coloring problem ρ is defined

as follows ρ = λ
OPT

where λ is the output of the approximation algorithm. In this

section, we will state approximation algorithms for maximum independent set and

minimum vertex coloring problems in UDG.

24

3.3.1. Max Independent Set

We already show that maximum independent set problem in UDG is NP-hard.

The following approximation algorithm is suggested in (18).

1. Set IS = ∅

2. Find a vertex whose neighborhood does not contain an independent set of size

larger than 3.

3. Add such a vertex to IS.

4. Remove all its neighbors.

5. Repeat 2,3,4 until G is empty

We start by finding a vertex whose neighborhood does not contain an independent

set of size larger than 3. This vertex always exists because of Property 3.1.6 in UDG.

We keep this vertex on a list, then we remove all its neighbors. We know from Property

3.1.7 that every induced subgraph of a unit disk graph G is also a unit disk graph.

Therefore, we can keep doing these iterations until we get an empty graph.

Lemma 3.3.1. The performance guarantee of this algorithm is 3.

Proof. Let us define closed neighborhood of a vertex v ∈ V as N(v)∪{v} where N(v) is

the neighborhood of v. The optimal solution of the maximum independent set problem

in G and the output of the algorithm applied to G are respectively referred to OPT (G)

and IS(G). By construction, every vertex in IS(G) is in the closed neighborhood of

at least one vertex in OPT (G), otherwise, we could add that vertex to OPT (G) which

contradicts the optimality. Also by construction, the size of a maximum independent

set in the closed neighborhood of every vertex in IS(G) is at most 3. Therefore, closed

neighborhood of a vertex v ∈ IS(G) contains at most 3 vertices from OPT (G). Hence,

we have |OPT (G)| ≤ 3|IS(G)|.

25

π
3

ω

ω

ω

D

colored region

uncolored region

coloring direction

Figure 3.10. 3-approximation coloring algorithm for UDG.

3.3.2. Minimum Vertex Coloring

Minimum vertex coloring is also NP-hard in UDG. We will consider first-fit algo-

rithm with a descending X-coordinate order. We start with the unit disk at the top

of the representation, and color it with the first available color and consider remaining

graph and repeat this procedure until we color all the vertices. We claim that this

algorithm uses at most 3ω(G) − 2 colors for a given UDG with representation, see

Figure 3.10. First consider a disk D at the time it is assigned its color. Let Nup(D)

be the set of previously colored disks that intersect D and having a X-coordinate that

is not smaller than the X-coordinate of D. We can observe that disks in Nup(D) with

centers in the same region delimited by an angle of π
3

must form a clique (together with

D). Therefore, we can see that previously colored neighbors of D can be partitioned

into most three cliques. In other words |Nup(D)| is at most 3(ω(G) − 1). Suppose

that all these vertices are colored with different colors. So, the algorithm uses at most

3ω(G)− 2 colors. It is always true that ω(G) ≤ χ(G). Therefore this algorithm has an

approximation ratio of 3.

Actually, Malesinska et al. (13) showed that Largest-first order with first-fit

coloring strategy is also a 3-approximation algorithm. Moreover this method does

not require the graph representation. In addition, Malesinska et al. (19) presented

5-approximation algorithms for DG with and without representation.

26

In this section of the study, we focused on disk graphs. We have seen that there

are many applications that can be modeled using DG and UDG. Therefore, UDG are

one of the well-studied graphs in the literature. We started by giving some important

properties of UDG. Then we stated some complexity results. We remarked that all the

problems we consider, except maximum clique, are NP-hard in UDG. Consequently, ap-

proximation algorithms are suggested in the literature. Some properties of DG (UDG)

allow us to derive constant approximation ratios, which is not possible for the general

graphs. Note that (20) prove that minimum coloring cannot be approximated within

a ratio of n
1

ǫ in polynomial time, unless P = NP

There are still some open questions in this domain; for example the complexity of

maximum clique problem in DG. Besides, since all the algorithms presented are simple

in a sense, we can try to improve approximation ratios by developing new complex but

still polynomial time algorithms. As we stated before, the use of the additional graph

representation information can also be a way to obtain better approximation ratios.

27

4. COLORING UNIT DISK GRAPHS

We already mentioned that ColorUDG is NP-hard. One way to deal with an NP-

hard problem is to look for good bounds, which are preferably generated in polynomial

time. Clique number can be considered as a lower bound for the chromatic number

and hopefully can be determined in polynomial time for UDG. Clique number does not

only provide us a lower bound but it is also required for the exact sequential algorithm

and some coloring algorithms that we will present later in this section. Therefore,

some modifications will be made on the original maximum clique algorithm in order

to improve the running time. On the other hand, heuristic methods can generate fea-

sible solutions constituting an upper bound for this minimization problem. Optimum

solutions of the generated test instances will also be calculated in order to assess the

performance of the bounds. To this purpose, an integer programming formulation of

minimum coloring will be solved using CPLEX.

In a theoretical point of view, we know that the ratio χ(G)
ω(G

is bounded. In other

words the chromatic number of any UDG is bounded by its clique number times a

constant, χ(G) ≤ c · ω(G) and the best known c value is 3, see Section 3. There are

some theoretical worst-case results for UDG coloring heuristics. However, in this study

we will investigate the empirical performance of bounds for ColorUDG. We will design

an experiment in which the quality of the bounds will be assessed in terms of some graph

parameters such as number of vertices and density. Besides two construction heuristics,

one improvement method will be proposed. According to the empirical results we can

say that proposed improvement heuristic demonstrates good performance. Moreover, a

sequential exact coloring algorithm for general graphs will be presented. This algorithm

will be modified in Section 5 to solve reoptimization problems.

28

4.1. Exact Coloring

4.1.1. Mixed Integer Programming

In order to asses the real quality of the bounds, we first need to determine the

optimal value of ColorUDG. For this purpose, we start by giving the mathematical

formulation for ColorUDG problem which is a pure integer (binary) programming.

min
∑

k∈K

yk (4.1)

s.t. Eu,v(xu,k + xv,k) ≤ 1 ∀(u, v) ∈ V, k ∈ K (4.2)
∑

k∈K

xu,k = 1 ∀u ∈ V (4.3)

xu,k ≤ yk ∀u ∈ V, k ∈ K (4.4)

xu,k ∈ {0, 1} ∀u ∈ V, k ∈ K (4.5)

yk ∈ {0, 1} ∀k ∈ K (4.6)

If a color k is available then yk takes value 1 (and 0 otherwise) and variable

xu,k takes value 1 if vertex u is colored with color k (and 0 otherwise). Objective 4.1

minimizes the total number of colors used in the graph. Eu,v parameter takes value 1 if

there is an edge between u and v (and 0 otherwise). Constraints 4.2 are necessary for

the feasibility of coloring, in other words, so that adjacent vertices take different colors.

Every vertex takes a unique color thanks to the set of constraints 4.3. Constraints 4.4

ensures that used colors are accounted in the objective function.

GAMS software is one of the most popular mathematical programming tools.

The model presented above is programmed in GAMS and solved using CPLEX solver.

In Appendix A, ColorUDG model code for GAMS can be found. Since the problem is

NP-hard, the optimal solution can be found for a limited size instances in a reasonable

29

time. In our case, our computational resource capacity limits us to work with instances

of 100 vertices and density 0.80. For bigger instances, exact solution cannot be obtained

in a reasonable time interval (2 hours).

4.1.2. Exact Sequential Algorithm

An exact sequential algorithm for graph coloring is proposed first by Brown (21).

For this, we construct the following solution tree : A partial solution of level p is any

assignment in which only vertices x1, . . . , xp have been given a color. Let Kpq be a

coloring of x1, . . . , xp with q colors. Fixing Kqp, we obtain all possible solutions by the

following procedure.

1. Introduce a new vertex xp+1.

2. Assign colors 1, 2, . . . , q + 1 to xp+1 successively.

3. Eliminate cases which causes infeasibility.

4. Repeat this procedure for all new partial solutions.

Sequential method with first-fit coloring gives the path the most to the left of the

solution tree. In order to find an exact solution, the enumeration technique used is

called backtrack programming.

The basic idea of the algorithm is the following: first, we construct an order of

vertices by their non-increasing degree. Then, for each vertex, we determine U(xk)

as the set of available colors which are not used in the actual partial solution of level

k − 1 from {1, . . . , min(uk + 1, q − 1)} where xk is the vertex of rank k and uk is the

number of colors used for the actual partial solution of level k − 1 and q is the upper

bound on the number of colors. q is firstly determined with a heuristic method and

when a better feasible solution is obtained, we update q. Then, vertices are colored

one by one according to the order with the first available color. If we achieve to color

all the vertices using q colors then we try with q − 1 colors. If U(xk) is empty then

we call label procedure and backtrack to the maximal ranked vertex among all labeled

vertices. Label procedure labels all the unlabeled vertices which possesses all the

30

following properties: (1) smaller rank than rank of xk (2) adjacent to xk, (3) minimal

rank among all the vertices of their color. The algorithm stops when we backtrack to

the vertex of rank 1.

Later, Brélaz (22) improved this algorithm by observing that a clique can be

colored arbitrarily at the beginning without increasing the number of colors. In other

words, any coloring of a maximum clique with ω(G) colors can be extended to an

optimum coloring. Therefore, we first detect a maximum clique, put it at the top of

the order and color it arbitrarily. During the algorithm if we backtrack to one of the

clique vertices the algorithm stops. Finally Peemöller (23) gave the corrected version

of Brelaz’s algorithm. A modified version of this algorithm will be used to develop an

exact algorithm for the reoptimization of unit disk graph coloring in Section 5.

4.2. Lower Bound: Clique Number

Clique number of a graph, denoted as ω(G), is a natural lower bound for the

chromatic number of that graph, χ(G). It can be easily seen that in order to have a

proper coloring, we need at least ω(G) colors, maybe more. In Section 3, we presented

a polynomial-time algorithm for the maximum clique problem for UDG. The time

complexity of this algorithm is O(n4.5). In this section, we will try to improve this in

terms of running time.

MAXCLIQUE does the following: for each pair of vertices (at most O(n2) times)

it runs a slave algorithm, see Section 3, of complexity O(n2.5) which finds a maximum

clique in a restricted subgraph. Then it is shown that a maximum clique of the whole

graph can be obtained by choosing a clique of maximum size among these cliques, (2).

We will keep the same slave algorithm but try to avoid calling it for all pairs of vertices

so that the performance of the algorithm will be improved in terms of running time.

For this purpose, we will list some observations: situations in which calling the slave

algorithm is avoidable.

Observation 4.2.1. For a pair of vertices (A,B), if dist(AB) ≤ 2r√
3

where r is the

radius of a disk, then all vertices in lens(A,B) induce a clique, hence it is unnecessary

31

b b

R
2

R
r

Figure 4.1. Geometrical proof for Observation 4.2.1

to call the slave algorithm.

Proof. We consider disks whose centers are contained in lens(AB). If maximum dis-

tance in lens(AB) ≤ 2r then it is clear that all disks in that region are touching,

therefore we don’t need to call the slave algorithm. It can be easily observed that

the maximum distance in the region lens(AB) is between north and south poles of

that region. So, let R = dist(AB) and we look for a particular R value, R⋆ such that

the distance between two poles is equal to 2r, see Figure 4.1. With the use of simple

geometry, we can conclude that R⋆ = 2r√
3
.

Observation 4.2.2. For a pair of vertices (A,B), if the number of centers of disks

contained in lens(AB) is less than the clique number already calculated minus two then

it is unnecessary to call the slave algorithm.

Proof. We know that for a pair of disks (A,B) the size of a clique generated by MAX-

CLIQUE could be at most the number of disk centers contained in lens(AB).

Observation 4.2.3. Intuitively, maximum clique should be located in one of the dense

regions of the graph.

This intuition can be easily illustrated visually. Figure 4.2 shows the plot of a

UDG. If one would determine the maximum clique by just looking at the graph then

32

Figure 4.2. Plot of a UDG

it is natural to start with dense regions of it. This idea can be implemented in our

maximum clique algorithm by sorting vertices according to their degree. The algorithm

requires choosing pairs of vertices, therefore we select first the pairs with high degree.

In other words, we consider all pairs of vertices, sum their degrees and sort these sums

decreasingly. Improved algorithm chooses pairs of vertices in this order instead of

choosing them randomly as in MAXCLIQUE.

An experiment can be conducted in order to measure the effect of these obser-

vations on the running time of maximum clique algorithm. Table 4.1 presents average

running times results for three algorithms applied to the test set. For each n value

and d (density) level, test set contains 25 randomy generated instances (UDG). Sec-

tion 4.4 describes in detail how the instances are generated. First algorithm is the

original MAXCLIQUE algorithm. The second algorithm, called MAXCLIQUE-IMP1,

considers Observation 4.2.1 and 4.2.2 in order to reduce running time of MAXCLIQUE.

The last algorithm called MAXCLIQUE-IMP2 considers all improvement strategies of

Observations 4.2.1, 4.2.2 and 4.2.3. Gain is defined by a−b
a

where a is the result of

MAXCLIQUE and b denotes the output from one of the improved maximum clique al-

gorithm (MAXCLIQUE-IMP1/MAXCLIQUE-IMP2). In other words, gain represents

33

time saving percentage of each improved algorithm.

According to this empirical study, MAXCLIQUE-IMP1 and MAXCLIQUE-IMP2

provide in average respectively 20% and 70% time savings. We can observe that the

gain of MAXCLIQUE-IMP1 is increasing as density increases. MAXCLIQUE-IMP2

is significantly better than MAXCLIQUE-IMP1 in terms of running time for all types

of instances. The only difference between two algorithms is the implementation of the

strategy stated in Observation 4.2.3. In other words, sorting vertices by their degree is

definitely speeding up finding a maximum clique.

4.3. Upper Bound

Heuristics are tools for generating feasible (not necessarily optimal) solutions in a

reasonable time. Therefore, the output of a heuristic algorithm is an upper bound for

a minimization problem. Clearly, lower values for an upper bound are preferable. In

other words, among the output of different algorithms, one with the minimum output

value will be better than other algorithms. In this section, four heuristic methods for

ColorUDG will be covered:

1. Scanning Coloring(SC),

2. Clique Coloring(CC),

3. Decreasing Order(DC),

4. Balanced Coloring(BC).

In addition to these construction methods for ColorUDG, inspired from Kempe’s Chain,

an improvement method is proposed.

4.3.1. Construction Heuristics

The algorithms, which will be described in this section are all sequential coloring

algorithms. A sequential coloring algorithm is a generic method to obtain a feasible

coloring, which requires an ordering of vertices and a coloring strategy. According to

34

Table 4.1. Running time results (seconds) for maximum clique algorithms

n d
MAXCLIQUE MAXCLIQUE-IMP1 MAXCLIQUE-IMP2

Time Time Gain Time Gain

50

Very low 0,051 0,046 8,71% 0,039 23,91%

Low 0,284 0,258 9,16% 0,118 58,28%

Medium 2,082 1,657 20,39% 0,618 70,30%

High 5,004 3,714 25,77% 1,566 68,71%

75

Very low 0,198 0,184 6,92% 0,107 45,82%

Low 1,440 1,247 13,40% 0,387 73,13%

Medium 9,707 7,115 26,70% 2,297 76,33%

High 24,832 17,529 29,41% 7,600 69,40%

100

Very low 0,494 0,462 6,56% 0,196 60,38%

Low 4,307 3,544 17,71% 0,887 79,40%

Medium 32,323 23,380 27,67% 9,023 72,09%

High 83,622 59,340 29,04% 28,196 66,28%

150

Very low 2,602 2,338 10,13% 0,565 78,28%

Low 22,255 17,305 22,24% 3,493 84,30%

Medium 153,298 108,621 29,14% 43,486 71,63%

200

Very low 7,912 6,812 13,90% 1,173 85,18%

Low 67,081 49,953 25,53% 9,817 85,36%

Medium 473,609 334,010 29,48% 154,389 67,40%

250

Very low 19,866 16,588 16,50% 2,186 89,00%

Low 166,321 120,978 27,26% 26,531 84,05%

Medium 1278,510 919,981 28,04% 462,409 63,83%

35

Table 4.2. Sequential coloring heuristics for ColorUDG

Method Order Coloring Strategy

Scanning Coloring non-increasing X-coordinate First Fit

Clique Coloring non-increasing clique size First Fit

Decreasing Order non-increasing degree First Fit

Balanced Coloring max clique; non-increasing degree Least used available color

this order, vertices are considered one by one and colored consecutively with one of the

available colors imposed by the coloring strategy. Table 4.2 resumes the corresponding

input (order, coloring strategy) for different sequential algorithms.

4.3.1.1. Scanning Coloring. Scanning coloring algorithm is the most considered method

for ColorUDG in the literature due to its nice geometric property, which enables an

approximation analysis (18; 10). Basically, the algorithm sort the disks by their X-

coordinate in time O(n log n), then disks are considered up-to-down one by one and

take the first available color, which can be achieved in time O(n + m). In Section 3,

we stated that this algorithm has a 3-approximation ratio.

Claim 4.3.1. SC for ColorUDG has a tight 3-approximation.

For ω = 2 and ω = 3, worst-case examples could be generated, see Figure 4.3.

Malesinska et al. (13) gives a construction of graphs with arbitrarily large ω and such

that SC uses exactly 3ω − 2 colors.

4.3.1.2. Clique Coloring. During the empirical study, we noticed that ω(G) is often

equal to χ(G), especially for graphs with lower density value. We can ask the following

question. Given a maximum clique of a UDG, which can be determined in polynomial

time, and assuming that ω(G) = χ(G) holds for this specific instance, is it possible

to use this information in order to find an optimal coloring? For this purpose, an

algorithm, called Clique Coloring, is suggested and does the following: First, MAX-

CLIQUE is called and meanwhile all cliques generated throughout the algorithm are

memorized. Recall that MAXCLIQUE finds a maximum clique in some induced sub-

36

b

b

1

bb

b

b

b
1

b

b

1

1

2
2

2 3

4

(a)

b

7

b1

b
3

b

1

b
2

b
4

b
2

b
5

6
b

b
1

b
2

4
b

b
3

b

1

b
3

b
1

b
2

b

1

b

1

b
2

(b)

Figure 4.3. Worst-case examples of Scanning Coloring for (a) ω = 2 and (b) ω = 3

37

Require: G(V,E), MAXCLIQUE

Ensure: A feasible coloring of G

1: Colors← {1}

2: call MAXCLIQUE, memorize all cliques

3: build an order of cliques: sort all cliques by non-increasing size

4: detect isolated vertices; color them with 1

5: while G is not completely colored do

6: consider the first non-labeled clique C in the order

7: for v ∈ C do

8: if v is not colored then

9: determine available colors from Colors which are missing in N(v)

10: if no available color then

11: Colors ← Colors ∪ {new color}

12: color v with new color

13: else

14: color v with the first available color

15: end if

16: end if

17: end for

18: label C

19: end while

Figure 4.4. Clique Coloring Algorithm

graph HAB for each pair of intersecting disks A and B. This takes time O(n4.5). At

the end, cliques are considered in sequence according to their decreasing size, until all

the vertices are colored in a greedy fashion, (in time O(n + m)). Of course, isolated

vertices will not appear on any maximum clique, which is memorized. Those vertices

can be easily colored with any color available so far. In other words, we try to use

ω(G) colors and add new colors only if it is necessary.

4.3.1.3. Decreasing Order. Decreasing Order (also called Largest First) is one of the

standard methods for graph coloring. Vertices are ordered by their decreasing degree

in time O(n log n). Disks are considered according to this order. Then, the vertices

are colored in a greedy fashion in time O(n+m). The basic intuition of this algorithm

38

Require: G(V,E), MAXCLIQUE

Ensure: A feasible coloring of G

1: determine the maximum clique Cmax of G using MAXCLIQUE

2: build an order of vertices: Cmax then sort remaining vertices by non-increasing degree

3: color Cmax using ω(G) colors

4: Colors← 1 : w

5: for i = (ω + 1) to n do

6: Consider the ith vertex vi

7: determine available colors from Colors which are missing in N(v)

8: if no available color then

9: Colors ← Colors ∪ {new color}

10: color v with new color

11: else

12: determine the size of all color classes for available colors

13: color v with the color of the smallest size color class

14: end if

15: end for

Figure 4.5. Balanced Coloring Algorithm

is that, we first color hard-to-color vertices. No geometric information is required for

this algorithm which is the essential difference from previous methods presented in

this section. Malesinska et al. (13) show that DC is also a 3-approximation coloring

algorithm for UDG.

4.3.1.4. Balanced Coloring. This proposed method also tries to color the graph using

ω(G) colors. First, a maximum clique of the graph is determined in time O(n4.5).

Corresponding vertices are put on the head of the coloring order. Other vertices are

sorted by degree value in a non-increasing fashion in time O(n log n). Based on the

observation that in an optimum solution, classes of colors have usually similar sizes,

instead of first-fit coloring strategy, we use the least used color among available colors.

39

4.3.2. Improvement Heuristic

Given a graph, construction methods generate a feasible solution. Then, an

improvement method tries to improve this solution while keeping it feasible. A well-

known example is 2-OPT method for traveling salesman problem (TSP).

4.3.2.1. Chains. Inspired from Kempe’s Chains method for the famous four-color prob-

lem (24), we propose the following improvement heuristic method. Starting from a

feasible solution, this method tries to decrease the number of colors used. First, we

define the induced subgraph Ci
j(v) as the maximal connected component of G contain-

ing vertex v and vertices colored i and j such that NCi
j
(v) has only vertices of color

j, see Figure 4.6. If the subgraph (Ci
j(v) \ v) ∪ (Cj

i (v) \ v) is disconnected then we

switch the colors i and j in one of the components and give the missing color in N(v)

(either i or j) to v, otherwise we skip this couple of colors and try another one, until

all (i, j) couples are examined. Having a feasible coloring is equivalent to partitioning

the graph into stable sets.

Each stable set corresponds to a color class. A color class CCk which is a set

of vertices all colored with the same color k, is selected and we try to color each

vertex in this color class with an available color different from k. In this manner,

if the color class becomes empty then we can say that the output of the algorithm

gives us a better solution since one less color is used to color the graph. We will refer

improvement heuristic as Chains algorithm applied to all the vertices. Time complexity

of the improvement heuristic is O(nχ2(n + m)). Improvement heuristic applied to the

feasible solutions obtained by SC, CC, DC and BC are respectively called iSC, iCC,

iDC and iBC.

4.3.2.2. Remarks for the implementation. Before Chains algorithm is called, one can

make sure that for the given vertex v, all colors in the given feasible coloring are present

in N(v), otherwise we can trivially change the color of v. This consideration ensures

that no Cj
i is empty. In the implementation, we should consider the following situation

40

v

i

j i

j

j
i

ij

Ci
j(v)

Cj
i (v)

Figure 4.6. Cj
i (v) and Ci

j(v)

Require: G(V,E), a feasible coloring C, v

Ensure: a feasible coloring where v has a different color than in C

1: Colors← colors of feasible coloring

2: for i ∈ Colors do

3: for j ∈ Colors do

4: build C
j
i (v) and Ci

j(v)

5: if (Cj
i (v) ∪ Ci

j(v)) \ {v} is disconnected then

6: switch colors in component C
j
i (v)

7: color v with i

8: end if

9: end for

10: end for

Figure 4.7. Chains Algorithm

in order to reduce the running complexity of the algorithm. If during the process, we

fail to change the color of a vertex, we should skip for the remaining vertices of that

color class because there is no longer a hope to empty that color class. In addition,

color classes should be updated dynamically, each time that a vertex transfers one color

class to the other.

4.4. Design of Experiment

In this part of the study, our aim is to design an experiment where we can assess

the quality of both lower (maximum clique size) and upper bounds (output of heuristic

methods) for the optimum solution of ColorUDG. First, we should form a set of test

41

Require: G(V,E), a feasible coloring with l colors

Ensure: a feasible coloring with possibly less than l colors

1: Colors← colors of feasible coloring

2: sort non-increasingly Color Classes, CC by size

3: for k = 1 to l do

4: for v ∈ CCk do

5: if there exist a missing color in N(v) from {1, . . . , l} \ {k} then

6: color v with the first missing color

7: else

8: Chains(v)

9: end if

10: end for

11: if CCk is empty then

12: Colors \ {k}

13: end if

14: end for

Figure 4.8. Improvement Algorithm

instances; it means that we need a procedure to generate random unit disk graphs.

Moreover, we need a control mechanism over the density parameter for the randomly

generated UDG. A random graph of n vertices and density value of d is generated as

follows (25): for each pair of vertices an edge is put with a probability d. Note that,

the graphs that are generated in this way are not necessarily UDG. In addition, the

recognition of a UDG is NP-hard. Consequently, we are convinced that we should have

another approach to generate random UDG. For this purpose, following procedure is

proposed: First, a geometrical area is defined where disks will be put in. This area

can be defined as follows: [0 : xmax] × [0 : ymax]. The X-coordinate and Y -coordinate

of a disk is selected according to uniform distribution. There is no incertitude that a

graph generated in this way is UDG, it remains to calibrate the density of the graph,

since the quality of the bounds will probably be affected by this parameter. For a

fixed number of points to be placed, it is clear that if the area gets smaller, the density

of the graph increases. Different area values are tried and instances are aggregated

according to their density levels: very low(0.06,0.10) low(0.15,0.25), medium(0.39,0.55),

42

(a)

(b)

Figure 4.9. Two Instances of Type (a) Uniform (b) Normal having same density value

high(0.62,0.78). One can notice that the exact density of our generated graphs are not

decided beforehand, but rather calculated after the construction as in (25). For each

n value (50,75,100) and d category (very low, low, medium, high) 25 instances are

generated.

One can notice that in a real life scenario the distribution of disks on the plane

is not homogeneous. Some part of the corresponding graph could be dense/sparse if

the corresponding zone is respectively urban/rural. In order to simulate this situation,

another set of sample instances are generated using normal distribution instead of

uniform distribution. In order to have UDG of different density values we tried different

variance values for the normal distribution. Algorithms will be run on both type of

instances, and we will try to infer conclusions according to the empirical results. Figure

4.9 (a) and (b) represent instances of type Uniform and Normal respectively.

Another consideration for a real application can be stated as the coverage. It

means that a well functioning GSM network should cover the defined area. Figure 4.10

shows the coverage of instances of very low, low, medium and high density respectively.

In the figure, all of the instances have the same number of vertices therefore in order

to increase the density value; vertices are put in a smaller area. For the sake of

visualization, disks are bigger for higher density values. Note that we could not afford

43

Figure 4.10. Plots of instances: Very Low, Low, Medium and High density

to make some tests for large n =(75 or 100) and high density. However this is not

really a drawback knowing that even with the low density, the network has usually a

good coverage. Therefore, we can assume that even for low-density value, the coverage

requirement is satisfied. Moreover, in practice networks are designed with an objective

of good coverage. It means that in real-life applications even a very low-density value

for UDG can be sufficient to meet the coverage requirement of the network.

4.5. Results & Discussion

In this section, the quality of the computed lower bounds and upper bounds for

ColorUDG is analyzed. All the algorithms mentioned above are run on test sets of

type uniform and normal. Detailed empirical results can be found in Appendix B.

Table 4.3 and Table 4.4 contain the average of the results on test sets of type uniform

and normal respectively. We observed that in some cases bounds were tight, in other

words give the exact optimal values. For each algorithm the number of times hitting

the optimal value are presented in Table 4.5 and in Table 4.6 for Uniform and Normal

type test sets respectively. Four construction heuristic methods give an upper bound

44

for each instance. Among these three upper bounds, the minimum will be considered

the best upper bound for a specific instance. For each heuristic the number of times

being best upper bound is counted and presented in Table 4.7 and in 4.8 for test sets

of type Uniform and Normal respectively.

According to the results, clique number is a good lower bound especially on sparse

graphs. Deviations from χ is below 2% on all type of instances. We can observe that

the lower bound is worse in normal type instances than instances of type uniform.

DC and BC outperforms other construction methods. Although SC and DC are both

3-approximation algorithms SC has a poor average performance especially on large

instances (20% deviation on n = 75, d =’High’). However, even the worst empirical

results are far from the theoretical worst-case result (200%). On ther other hand, DC

and BC outperforms other construction heuristics. There is no significant difference

between the performances of DC and BC. However, recall that the time complexity of

BC is higher.

When we apply improvement heuristic to any construction heuristic, we observe

that percentage deviations from χ consistently and significantly decreases. Optimality

is almost always reached on sparse graphs. Remark that improvement heuristic applied

to a better construction heuristic leads to a better performance as could be expected.

Consequently, iDC and iBC outperforms other methods. There is no significant differ-

ence between iDC and iBC. We also observe that the performance of iSC consistently

worse than the other improved algorithms.

45

Table 4.3. Average percentage deviations from χ on test set of type uniform

n d ω χ DC CC SC BC iDC iCC iSC iBC

50

Very low -0,72 5,52 0,72 2,17 4,35 1,45 0,00 0,00 0,00 0,72

Low -0,45 8,92 4,04 6,28 6,28 3,59 0,45 0,00 1,79 0,90

Medium -2,33 17,16 4,90 5,36 11,89 3,03 0,23 1,17 1,40 0,23

High -5,16 25,56 1,88 3,76 8,14 1,56 0,16 0,47 0,78 0,47

75

Very low -0,55 7,28 2,75 2,75 4,40 3,30 0,00 0,00 0,00 0,00

Low -3,30 12,12 3,30 5,61 10,23 3,63 0,66 0,33 1,98 0,33

Medium -4,22 23,72 5,06 6,58 8,94 3,20 0,51 0,51 1,35 0,34

High -1,33 33 10,55 12,36 18,91 9,82 6,30 7,15 8,73 6,42

100

Very low -1,92 8,32 2,40 6,25 10,10 2,40 0,00 0,00 0,00 0,00

Low -2,67 15 5,60 10,13 12,27 5,60 1,33 0,80 1,60 0,53

Medium -9,52 30,24 7,41 10,19 12,96 5,82 1,19 1,85 2,78 0,93

Table 4.4. Average percentage deviations from χ on test set of type normal

n d ω χ DC CC SC BC iDC iCC iSC iBC

50

Very low -1,88 6,40 3,12 3,75 8,12 3,75 0,00 0,00 0,00 0,00

Low -1,88 10,64 3,01 6,39 11,28 3,01 0,00 0,75 0,75 0,38

Medium -4,48 17,84 2,24 2,91 13,00 2,02 0,00 0,45 1,35 0,00

75

Very low -1,39 8,64 1,85 5,56 8,80 3,24 0,00 0,00 1,39 0,46

Low -3,05 14,44 3,60 5,54 8,86 3,60 0,28 0,55 1,39 0,28

Medium -6,02 24,60 2,28 3,09 10,57 2,44 0,33 0,49 1,63 0,33

100

Very low -2,40 10,00 3,60 6,40 8,40 2,80 0,40 0,40 1,20 0,00

Low -4,84 18,20 3,52 7,25 11,65 4,40 0,88 1,98 2,64 0,22

Medium -8,09 29,16 3,98 4,94 13,44 3,29 0,69 1,23 3,16 0,27

46

Table 4.5. Percentage of hitting the optimal value on test set of type uniform

n d ω DC CC SC BC iDC iCC iSC iBC

50

Very Low 96 96 88 80 92 100 100 100 96

Low 96 64 56 56 68 96 100 84 92

Medium 72 32 36 4 52 96 84 76 96

High 28 56 36 4 60 96 88 80 88

75

Very Low 96 80 80 68 76 100 100 100 100

Low 68 64 56 12 64 92 96 76 96

Medium 28 4 32 16 44 88 92 80 92

High 12 8 8 0 8 64 40 20 56

100

Very Low 84 80 52 28 80 100 100 100 100

Low 68 40 32 16 44 80 88 76 92

Medium 8 4 12 0 8 64 56 52 60

Table 4.6. Percentage of hitting the optimal value on test set of type normal

n d ω DC CC SC BC iDC iCC iSC iBC

50

Very low 88 80 76 56 76 100 100 100 100

Low 80 68 44 24 68 100 92 92 96

Medium 48 60 60 0 64 100 92 80 100

75

Very low 88 84 64 40 72 100 100 88 96

Low 64 52 48 16 56 96 92 84 96

Medium 24 52 48 12 44 92 88 68 92

100

Very low 76 68 48 48 72 96 96 88 100

Low 40 44 40 4 40 84 72 56 88

Medium 12 32 28 0 32 80 68 32 92

47

Table 4.7. Percentage of being best construction heuristic on test set of type uniform

n d DC CC SC BC

50

Very low 96 88 80 92

Low 84 68 68 88

Medium 60 64 8 92

High 84 48 8 88

75

Very low 84 84 72 80

Low 80 60 20 76

Medium 36 44 24 80

High 60 36 0 76

100

Very low 92 60 36 92

Low 80 40 28 76

Medium 44 20 8 80

Table 4.8. Percentage of being best construction heuristic on test set of type normal

n d DC CC SC BC

50

Very low 84 80 60 80

Low 76 48 24 76

Medium 68 64 0 72

75

Very low 92 72 44 80

Low 72 56 28 72

Medium 60 52 12 60

100

Very low 72 52 52 80

Low 72 48 12 56

Medium 56 48 0 68

48

Table 4.9. Percentage of being best improvement heuristic on test set of type uniform

n d iDC iCC iSC iBC

50

Very low 100 100 100 96

Low 96 100 84 92

Medium 96 84 76 96

High 96 88 80 88

75

Very low 100 100 100 100

Low 92 96 76 96

Medium 92 92 80 96

High 80 60 28 76

100

Very low 100 100 100 100

Low 84 92 80 96

Medium 76 60 44 80

Table 4.10. Percentage of being best improvement heuristic on test set of type normal

n d iDC iCC iSC iBC

50

Very low 100 100 100 100

Low 100 92 92 96

Medium 100 92 80 100

75

Very low 100 100 88 96

Low 100 96 84 100

Medium 96 92 68 96

100

Very low 96 96 88 100

Low 88 72 56 100

Medium 84 72 36 96

49

5. REOPTIMIZATION OF COLORING UNIT DISK

GRAPHS

In operations research, we are interested in solutions of optimization problems.

Traditionally, instances of these problems contain only parameters, such as vertices and

edges in graph problems. However, in some real-life applications we could have a prior

knowledge about similar problem instances and their solutions. For example, assume

that we are given a GSM network with a current optimal frequency assignment for its

transmitters and imagine that one or more transmitters will be added to the existing

network. Instead of solving the problem instance from scratch, we should intuitively

use the prior information, in other words the existing assignment. Therefore, our

new problem instance contains not only parameters but also an optimal solution of

the original instance. The main idea to preserve the old solution is that for small

modifications in the original instance, one can make the hypothesis that the solution

of the new instance will not change too much. We should check this idea: in which

type of problems is this old solution helpful to find the new optimum solution? How

much does it help in terms of runtime and quality of the solution? We will start by

defining formally reoptimization problems and then we will state current results about

this topic. Finally, we will focus on the reoptimization of vertex coloring problem in

UDG.

A reoptimization problem can be defined as follows: for a given instance I of a

problem U , an optimal solution S of I and a locally modified instance I ′, find an opti-

mal solution of the instance I ′. Local modifications in graph theoretical problems can

be stated as follows: inserting or deleting vertices or edges, modifications on edge costs

etc. Clearly, if U is polynomially solvable, we can also solve in polynomial time the

instance I ′ by omitting the old optimal solution. On the other hand, for an NP-hard

problem, the knowledge of an optimal solution for I could help to solve U on instance

I ′. For example, in metric Traveling Salesman Problem(TSP), we get a better con-

stant factor 1.4-approximation against the non reoptimization case 1.5-approximation,

50

Böckenhauer et al. (26) design a 1.5-approximation algorithm for the reoptimization

of the Steiner Tree problem which is an improvement over the old best known approx-

imation algorithm which achieves an approximation ratio of 1.55. On the other hand,

for metric TSP with deadlines, there is no known improvement, see (26). This kind of

approach is not new; it is firstly applied in 1980s to polynomial time solvable problems

such as minimum spanning tree (27), shortest path (28). Since the considered prob-

lems are polynomial time solvable, the main aim is to reduce the time complexity of

the existing algorithms. In the literature, applications appears recently for NP-hard

problems such as: TSP (29) (30), Steiner Trees (31), scheduling (32). As far as we

know the reoptimization of vertex coloring problem is not considered in the literature.

Therefore, we first start by showing complexity results on reoptimization version of

vertex coloring problem in unit disk graphs.

5.1. Problem Definition

5.1.1. Adding a New Vertex

When an optimal solution (chromatic number and an optimal coloring) for Col-

orUDG is available for a unit disk graph G and a new vertex has to be added, related

reoptimization problem is referred to ColorUDG+. This problem can be formally

described as follows: Given a unit disk graph G(V,E), an optimal coloring of G, a

new vertex v+ with corresponding coordinates/edges, determine an optimal coloring of

G+(V +, E+) where V + = V ∪ {v+} and E+ = E ∪ E+ where E+ is the set of edges

incident to v+.

5.1.2. Removing a Vertex

When an optimal solution for ColorUDG is available and a vertex has to be

removed from the unit disk graph G, related reoptimization problem is referred to

ColorUDG-. This problem can be formally described as follows. Given a unit disk

graph G(V,E), an optimal coloring of G, a vertex v ∈ V , determine an optimal coloring

of G−(V −, E−) where V − = V \ {v−} and E− is the set of edges induced by V − in G.

51

We can also define edge adding/removing reoptimization problems. From practi-

cal point of view, these situations can be encountered when the power of the transmit-

ters can be changed. This application suggests that edges can not be added/removed

arbitrarily, the addition/removal of edges should satisfy the intersection rules imposed

by disk representation. If the power of all transmitters is required to be the same then

corresponding graph is still a UDG and the corresponding problem can be stated as

follows: Given a UDG with an optimal coloring, determine the chromatic number of

the new graph for a modified radius value. On the other hand, if the power of trans-

mitters can be changed independently from each other, then we deal with the problem

of reoptimization related to (not unit) disk graphs. Note that edge addition/removal

reoptimization problem are not studied in the framework of this thesis; they can be

considered as a possible extension.

5.2. Complexity Results

Theorem 5.2.1. ColorUDG+ is NP-hard.

Proof. Suppose that there exists a polynomial time exact algorithm for solving Col-

orUDG+. Let G be a UDG and Hi be an induced subgraph of G with i vertices.

Starting from one vertex (with trivial optimum coloring with one color), the algorithm

is applied to find an optimal solution of ColorUDG for H2. Since an optimal solution

of ColorUDG for H2 is available, the algorithm can generate an optimal solution for

H3. Algorithm can be applied repeatedly until we obtain an optimal solution of Col-

orUDG for Hn which is isomorphic to G. Thus, an optimal solution of ColorUDG for

G can be obtained in polynomial time by applying n− 1 times that algorithm. On the

other hand, we know that ColorUDG is NP-hard. Therefore, there cannot exist such

an algorithm unless P=NP.

Theorem 5.2.2. ColorUDG- is NP-hard.

Proof. Given a unit disk graph G(V,E) with n vertices as an instance of ColorUDG,

we define an instance G′ of ColorUDG- as follows: Let G′ = G ∪Kn where Kn is an

52

independent clique of size n. G′ is still a UDG since every clique is UDG and indepen-

dent union of two UDG is a UDG. By independence, χ(G′) = max(χ(G), χ(Kn)). It

is clear that χ(Kn) = n and χ(G) 6 n. Therefore, χ(G′) = n and an optimal coloring

of G′ can easily be obtained by giving a different color to each vertex in G and in Kn.

Suppose that there is a polynomial time algorithm, say A-, to solve ColorUDG-. We

define G′
i = G∪Kn−i, in other words the graph obtained from G′ by removing i vertices

from Kn. Starting from i = 1, A-(G′
i, G

′
i−1,A-(G′

i−1)) is called and we increase i by one

until χ(G′
i) > n− i. The optimal solution of ColorUDG for G, χ(G) = n− i⋆ +1 can be

obtained in polynomial time where i⋆ is the last iterated i value. On the other hand,

we know that ColorUDG is NP-hard. Therefore, there cannot exist such an algorithm

unless P=NP.

5.3. Reoptimization Algorithms

We defined two reoptimization problems related to mimimum coloring in UDG:

ColorUDG+ and ColorUDG-. In this section we will suggest polynomial-time (not

exact) algorithms for these problems which will be tested on generated instances in

Section 4. We showed that both problems are NP-hard to answer. This means that

there exist no polynomial time algorithm to solve these problems optimally unless P =

NP . If one could generate all optimal colorings of a graph then it will be an easy task

to add/remove a vertex to the original graph and find an optimal coloring of the new

graph. Unfortunately, given an optimal coloring, there is no known polynomial time

algorithm to generate all optimal colorings. Although we cannot generate all optimal

colorings, our main idea for developing algorithms for ColorUDG+ and ColorUDG- will

be generating some of them in a smart way. When we add/remove a vertex to/from G,

we will try to switch colors on some vertices on the optimal coloring by not harming the

feasibility in a such a way that the total number of colors does not increases/decreases.

53

Table 5.1. Possible situations for solving ColorUDG+ with any algorithm

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

XX

Output of Algorithm

χ(G+)
χ(G) χ(G) + 1

χ(G) Optimal Not Possible

χ(G) + 1 Non-Optimal Optimal

5.3.1. Algorithms for ColorUDG+

An instance of ColorUDG+ contains a UDG, say G, an optimal coloring of G

and a new vertex v+. When a new vertex is added to a graph, clearly the chromatic

number could remains the same or increases at most by one. Table 5.1 shows all

possible situations when we try to solve an instance of ColorUDG+. If the output

of the reoptimization algorithm is χ(G) then it is optimal. Otherwise, the solution

could be optimal or not depending on the chromatic number of the new graph, which

is unknown.

Naturally, the first idea for an algorithm would be first-fit. This greedy algorithm

checks all the neighbors of v+ and color it with the first available color. If existing colors

are not sufficient to color it then we create a new color; so the number of used colors

increases by one. Figure 5.1 illustrates a situation where this algorithm fails to find

the optimal solution. First-fit for reoptimization (rFF) is a linear time algorithm, only

neighbors of v+ are considered. Another and more time consuming approach could be

applying first rFF and then Chains Algorithm to all added vertices (irFF). The running

time complexity of this method is definitely smaller than Chains Algorithm applied to

all vertices.

5.3.2. Algorithms for ColorUDG-

An instance of ColorUDG- contains a UDG G, an optimal coloring of G(V,E) and

a vertex v− ∈ V . When we remove v− from G, the chromatic number could remains

the same or decreases at most by one. Table 5.2 shows all possible situations when

we try to solve an instance of ColorUDG-. If the output of the algorithm is χ(G)− 1

54

b b b

b b b b

b b b b

1 12

1 123

1 2 1 2

Graph G and an optimal solution

rFF applied to the new graph

An optimal coloring of the new graph

Figure 5.1. A bad example for rFF

Table 5.2. Possible situations for solving ColorUDG- with any algorithm

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

XX

Output of Algorithm

χ(G−)
χ(G)− 1 χ(G)

χ(G)− 1 Optimal Not Possible

χ(G) Non-Optimal Optimal

then clearly the solution is optimal. Otherwise the solution could be optimal or not

depending on the chromatic number of the new graph.

We will suggest two algorithms for ColorUDG-. Suppose that, in the given opti-

mal coloring of G, the color class containing v− has no other vertices then the chromatic

number decreases by one and the optimal coloring of G reduced to G− gives us an opti-

mal coloring of G−. Otherwise, the idea is to look at all the other vertices in the same

color class as v−. The procedure CheckColorClass(CCC) tries to change the color of

these vertices greedily. For this purpose, every vertex in that class, CCC checks all

the neighbors of v−. Whenever it is possible, it changes the color of that vertex to an

already used color. If all the vertices in the color class of v− can be moved to other

color classes, then an optimal coloring of G− using χ(G) − 1 colors is obtained. Oth-

erwise, we get a χ(G)-coloring of G−. The idea is illustrated in Figure 5.2. Note that

this algorithm can fail to find the optimal solution, see Figure 5.3. A more complex

algorithm (iCCC) can be developed by applying Chains Algorithm for all vertices in

the color class containing v− in order to empty the color class under consideration.

55

b b

b bc b

33 3

1 2

b b

b b

2 1

1 2

Figure 5.2. An application of CCC algorithm for ColorUDG- where the white vertex

is v−.

b

bc

b

b

b

b

b

b

b

3

1

3

2

1

3

2

1

2 b b

b

b

b

b

b

b

1

3

2

1

3

2

1

2

b b

b

b

b

b

b

b

1

2

1

2

1

2

1

2

G and an optimal coloring Output of CCC

An optimal coloring of G−

Figure 5.3. A bad example for CheckColorClass algorithm

56

5.4. Theoretical Analysis of Reoptimization Algorithms

From approximation point of view, any polynomial time reoptimization algorithm

for ColorUDG+ and ColorUDG- admits respectively χ+1
χ

and χ

χ−1
as approximation

ratios where χ = χ(G). Due to the NP-hardness of these problems, we cannot expect

to have a better constant ratio because this would mean that we can solve them in

polynomial time. On the other hand, for practical reasons the following scenarios

also need to be considered. In the same setting, instead of one vertex, k vertices are

added/removed (given together with the set of edges incident to each one in G+/G−),

corresponding graphs are referred to G+k/G−k and related problems are referred as

ColorUDG+k and ColorUDG-k.

A natural question to ask is whether the approximation results remain the same.

In other words, can we say that for any algorithm for ColorUDG+k, the approximation

ratio is χ+k

χ
?

First, let us denote ColorG+k as the reoptimization of minimum coloring problem

of the following input: a given graph (not necessarily a UDG) with an optimal coloring

and k vertices to be added together with corresponding edges.

Proposition 5.4.1. Any algorithm for ColorG+k where k ≤ ω(G) that does not change

the optimum coloring of the original graph has a tight approximation ratio of χ+k

χ
.

Proof. Since k vertices are added to the graph then chromatic number can increase

at most by k. Consequently, any algorithm for ColorG+k is a χ+k

χ
-approximation

algorithm. In order to prove the tightness we do the following. Let G be a graph

containing ω(G) independent cliques (i.e. no two vertices from different cliques are

adjacent), each of size χ(G). Let’s define ui
k as the ith vertex in clique k. Color ui

k

with color i for i = 1, . . . , ω(G) and k = 1, . . . , ω(G). Assume this is the given optimal

coloring of G. Let vj be the vertices to be added with j = 1, . . . , k to obtain G+k.

Connect vj to ut
l where t = l − 1 + j (mod ω(G)) for j = 1, . . . , k and l = 1, . . . , ω(G)

and by convention n (mod n) = n. The output of any algorithm which does not change

57

b

b

b

b

b

b

u1
1

u2
1

u1
2

u2
2

uω
1

uω
2

u1
ω

u2
ω

uω
ω

b

b

b

b

b

v1
v2

vk

b

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

Figure 5.4. Worst-case example construction for ColorUDG+ algorithm

the original optimal coloring of G will be ω(G)+k, since every vertex vj has neighbors

of all ω(G) colors in G. However χ(G+k) = ω(G) which can be obtained by reversing

the coloring of the vertices of the last clique. Formally, color ui
ω with ω(G) − i + 1

for i = 1, . . . , ω(G) and then color vj with the color ω(G) + j − 1 (mod ω(G)) for

j = 1, . . . , k

Constructed graph G+k, represents worst case for the first fit algorithm with an

input of a general graph. However G+k is not a UDG for ω(G) > 5 since it contains

K1,6 as a induced subgraph.

Corollary 5.4.2. Any algorithm for ColorUDG+k where k ≤ ω(G) ≤ 5 that does not

change the optimum coloring of the original graph has a tight approximation ratio of

χ+k

χ
.

Corollary 5.4.3. rFF is a tight (χ+k

χ
)-approximation algorithm for ColorUDG+k

where k ≤ ω(G) ≤ 5.

Similarly, for ColorUDG-k theoretical bound for the approximation ratio is χ

χ−k
.

Let us denote ColorG-k as the reoptimization of minimum coloring problem of the

58

following input: a given graph (not necessarily a UDG) with an optimal coloring and

k vertices to be removed from G together with the corresponding edges.

Proposition 5.4.4. CCC is a tight (χ

χ−k
)-approximation algorithm for ColorG-k where

k ≤ ω(G−k).

Proof. Since we remove k vertices from the graph, the chromatic can decrease at most

by k. Consequently, any algorithm for ColorG+k is a χ

χ−k
-approximation algorithm.

In order to prove the tightness we do the following. Let G contain a (ω+k)-clique, Kk,

another independent clique of size k and a stable set of size kω, where ω = ω(G−k).

Let’s define vi as the ith vertex of Kk for i = 1, . . . , k. Let Si
j be the vertices of

independent set for i = 1, . . . , k, j = 1, . . . , ω. Moreover, N(vi)\Kk = {Si
j|j = 1, . . . , ω}

for i = 1, . . . , k, see Figure 5.5. χ(G) = ω + k since k ≤ ω. Color vi with the color

(ω + i) for i = 1, . . . , k and Si
j with color j for i = 1, . . . , k, j = 1, . . . , ω. Assume this

is the given optimal coloring of G.

Let G−k be the instance of ColorUDG-k obtained by removing vertices of colors

ω + 1, . . . , ω + k in Kω+k from G. Note that vertices Kk can be colored using k colors

and each vertex in the stable set can take color from {1, . . . ω} different from the color

of the vertex connected in Kk. Therefore, χ(G−k) = ω with k ≤ ω.

On the other hand, the output of the algorithm with the input G−k is ω+k, since

no color change is possible because CCC check vertices of color ω + i and they have all

neighbors colored with {1, . . . , ω + k}.

Described input is a worst case for the CCC with where G and G−k are general

graphs. G and G−k are not UDG for ω(G−k) > 5, since they contain K1,6 as a induced

subgraph.

Corollary 5.4.5. CCC is a tight (χ

χ−k
)-approximation algorithm for ColorUDG-k

where k ≤ ω(G) ≤ 5.

59

Kω+k

Kk

b

b

b

ω + 1
ω + 2

ω + k

b b b
1 ω2

b

b

b

1

ω

2

b

b

b

1

ω
2

bc bc bc

bc
bc
bc

bc
bc

bc

Figure 5.5. Worst-case example construction for CCC

For a next step, we should investigate in order to generalize these theoretical

worst-case results of rFF/CCC for ColorUDG+k/ColorUDG-k to be valid for any clique

number.

Clearly, optimal coloring of the original graph will help us to rapidly generate

feasible solutions compared to starting from nothing. However, another interesting

question is whether the optimal solution of original graph only decreases the running

times or does it also increase the output quality. We will try to answer these questions

by commenting the results of our algorithms on the generated test instances.

5.5. Empirical Results

In the previous part of the study, we have already generated test instances for

ColorUDG. These instances are used as original graph for our reoptimization instances.

For generating ColorUDG+k instances some new vertices will be added. The coordi-

nates of an added vertex on the existing area of the graph are determined according to

uniform distribution. On the other hand, for generating ColorUDG-k instances some of

the existing vertices will be removed. Removed vertices are selected randomly accord-

ing to uniform distribution. As we have already mentioned, the case where only one

vertex is added/removed is not very interesting. Therefore, we will add/remove p per-

centage of the existing vertices to generate respectively ColorUDG+k and ColorUDG-k

instances. Our aim is not only to assess the performance of reoptimization algorithms

60

Table 5.3. Average percentage of deviations from χ on test set ofColorUDG+k

n Density p χ rFF irFF DC

50

Very low
10 5,96 4,02% 1,34% 1,34%

20 6 11,33% 1,33% 2%

Low
10 9,64 6,66% 1,25% 4,16%

20 10,24 9,76% 2,73% 4,29%

Medium
10 18,44 4,98% 1,95% 4,77%

20 19,72 7,50% 3,65% 6,69%

High
10 27,76 3,02% 0,86% 1,72%

20 30,32 5,01% 1,45% 2,50%

100

Very low
10 8,8 5,90% 1,36% 2,27%

20 9,44 8,89% 0,42% 3,38%

Low
10 15,92 8,29% 2,76% 6,78%

20 17,32 10,16% 3,23% 6,00%

but also to try to answer the question of how the optimum solution of the original graph

is helping to find the optimum solution of the new graph. Intuitively, it will help, how-

ever empirical tests will check if it is true and how much it helps. For this purpose,

a ColorUDG heuristic will be applied to the reoptimization instances. This heuristic

solves the problem from the scratch, in other words it does not use the optimum so-

lution of the original graph as additional information. Decreasing Order method is

chosen as the ColorUDG heuristic because of its good time complexity and empiri-

cal output performance. If a fast ColorUDG heuristic is as good as ColorUDG+k /

ColorUDG-k heuristics then we can conclude that there is no need to use the reopti-

mization algorithms we developed. However, our results will show that this is not the

case.

5.5.1. Discussion for ColorUDG+k Algorithms

According to the empirical study, DC is better than rFF. However, irFF is better

than DC on all type of instances. We can interpret this results as follows: Although

rFF uses the knowledge of optimal coloring of old instance, it does not benefit from

61

Table 5.4. Percentage of hitting the optimal value on test set forColorUDG+k

n Density p rFF irFF DC

50

Very low
10 76% 92% 92%

20 40% 92% 88%

Low
10 44% 92% 64%

20 20% 72% 60%

Medium
10 36% 64% 32%

20 12% 44% 16%

High
10 32% 76% 56%

20 16% 64% 44%

100

Very low
10 48% 88% 80%

20 32% 96% 68%

Low
10 16% 60% 40%

20 12% 56% 32%

Table 5.5. Percentage of being best upper bound on test set forColorUDG+k

n Density p rFF irFF DC

50

Very low
10 80% 96% 96%

20 40% 92% 88%

Low
10 48% 100% 72%

20 36% 96% 84%

Medium
10 48% 92% 56%

20 28% 88% 40%

High
10 40% 88% 64%

20 24% 92% 64%

100

Very low
10 56% 96% 88%

20 36% 100% 72%

Low
10 24% 92% 52%

20 24% 96% 52%

62

Table 5.6. Average percentage of deviations from χ on test set ofColorUDG-k

n Density p χ CCC iCCC DC

50

Very low
10 5,12 1,56% 0% 0%

20 4,88 0,81% 0% 0%

Low
10 8,24 4,39% 0,48% 2,92%

20 7,88 2,04% 1,02% 1,53%

Medium
10 15,84 2,77% 1,01% 3,78%

20 14,56 3,57% 0,82% 3,84%

High
10 23 2,43% 0,34% 1,56%

20 20,96 3,43% 0,95% 2,67%

100

Very low
10 7,88 2,03% 0% 2,03%

20 7 6,28% 0,57% 6,85%

Low
10 13,8 4,05% 1,15% 3,76%

20 12,76 5,64% 0,31% 4,70%

Table 5.7. Percentage of hitting the optimal value on test set forColorUDG-k

n Density p CCC iCCC DC

50

Very low
10 92% 100% 100%

20 96% 100% 100%

Low
10 68% 96% 76%

20 84% 92% 88%

Medium
10 64% 84% 48%

20 52% 88% 48%

High
10 52% 92% 64%

20 48% 84% 48%

100

Very low
10 84% 100% 84%

20 56% 96% 52%

Low
10 48% 84% 56%

20 40% 96% 52%

63

Table 5.8. Percentage of being best upper bound on test set forColorUDG-k

n Density p CCC iCCC DC

50

Very low
10 92% 100% 100%

20 96% 100% 100%

Low
10 72% 100% 80%

20 92% 100% 96%

Medium
10 72% 100% 60%

20 60% 96% 56%

High
10 52% 92% 64%

20 52% 96% 60%

100

Very low
10 84% 100% 84%

20 60% 100% 56%

Low
10 64% 100% 64%

20 44% 100% 52%

this information because we obtain better results by solving from scratch with DC.

However, irFF outperforms other methods, this means that the optimal coloring of old

instance is helpful to find a good coloring for the new instance. We can observe that

when we add more vertices, performance of all algorithms consistently decrease. This

result is not surprising since when more and more vertices are added, we loose the

relative importance of having an optimum coloring of the old instance.

5.5.2. Discussion for ColorUDG-k Algorithms

Empirical results show that DC is better than CCC. However, iCCC outperforms

both methods with an average deviation from χ which is less than 1%. In addition,

optimality is almost always reached. However, additional empirical study is required

to check the performance of iCCC. As in results for ColorUDG+k, the performance of

iCCC can be interpreted as follows: An optimal coloring of the old instance is helpful

to find a coloring of good quality for the new instance.

64

5.6. Exact Sequential Algorithm For ColorUDG+

In Section 4, we described an exact sequential coloring algorithm for ColorUDG.

Coudert (33) stated that exact coloring of graphs is easy if χ(G) = ω(G). According

to this empirical study, Brelaz’s algorithm can solve exactly most of the graph coloring

instances by backtracking for a limited number of times. Inspired from this result,

we try to develop an exact sequential algorithm for ColorUDG+. Since we have the

knowledge of old instance’s optimal coloring in hand, instead of fixing only ω(G) colors

(which is done in Brelaz’s algorithm), in our case we start by fixing the coloring of the

old instance and hope that this algorithm developed for ColorUDG+ does less number

of backtracking compared to the Brelaz’s algorithm.

With some modifications, Brelaz’s exact sequential coloring algorithm can also be

used to solve ColorUDG+ instances. Let G be a UDG with a known optimum coloring,

we add a new vertex v+ and call the new graph G+. As an input for the exact coloring

algorithm, an ordering of vertices should be determined. Moreover maximum clique

should be placed at the head of the order. In our case, there are two possibilities: either

ω(G+) = ω(G) or ω(G+) = ω(G)+1 is true. In the first case, since the maximum clique

is not changed, we can use the ordering specified in Figure 5.6. On the other hand, if

ω(G+) = ω(G) + 1 is true then it means that clique number is changed and v+ is in a

maximum clique. Here, we have also two possibilities if χ(G) = ω(G) then definitely

χ(G+) = χ(G) + 1 and we can obtain an optimal coloring by using the old coloring

and by giving to v+ the color (χ(G) + 1). In all remaining cases, once vertex ordering

is determined, all the vertices of G+ except v+ is colored using optimal coloring of G

and we try to color v+ with one of the χ(G) colors. If it is not possible, backtracking

is done as defined in Section 4.1.2.

This algorithm is implemented and compared with Brelaz’s implementation. We

observed that contrary to our expectations the optimal solution of the old instance is

not helpful to find the new one faster. Most of the time, Brelaz’s algorithm was faster

than our implementation.

65

b b b b b b b

maximum clique

1 2 3 ω n v+

Figure 5.6. An ordering for sequential exact coloring algorithm

66

6. CONCLUSIONS

In this study, minimum vertex coloring of UDG and its reoptimization are consid-

ered. Since both problems are NP-hard, we mainly focus on the quality of the bounds.

Maximum clique is a lower bound for the chromatic number. Firstly, according to

some basic observations, an improved maximum clique algorithm is implemented. Em-

pirical results show that the running time performance of the proposed algorithm is

significantly better than the original algorithm. Then, some coloring heuristics are

considered to derive upper bounds. In the literature, Scanning Coloring with first-fit

coloring strategy is the most analyzed heuristic method. One of the reasons is that this

algorithm allows us to make a worst-case analysis due to its nice geometric structure.

However, empirical results show us that other coloring algorithms such as Largest First

outperforms Scanning Coloring. It means that from a practical point of view, Scanning

Coloring is not a good choice for UDG coloring. During empirical studies, we observed

that many of the generated instances have ω(G) = χ(G), especially those having a

low density value. Consequently, we investigated the problem of coloring a UDG opti-

mally, given that its chromatic number is equal to its clique number. As ω(G) can be

determined in polynomial time, we proposed two new algorithms based on this idea.

Beside these construction methods, we also proposed an improvement method based

on Kempe’s Chains. Given a feasible solution generated from a construction heuristic,

Chains algorithm tries to decrease the number of used colors. According to the empir-

ical results, the output of the algorithm hits the chromatic number in average for 80%

of the instances up to 100 vertices.

In the second part of the study, reoptimization of coloring UDG is considered.

Four reoptimization problems are defined and two of them are analyzed. We showed

that ColorUDG+ and ColorUDG- are NP-hard. Then, we proposed simple heuristic

methods. Empirical results show that these heuristics followed by Chains improvement

method are promising good performance. Our last challenge was to develop an exact

exponential-time coloring algorithm for reoptimization. We presented Brelaz’s modified

sequential exact coloring method to solve ColorUDG+. However, according to the

67

empirical results, we observed that the optimal solution of the old instance is not

helpful to find the new one faster. Most of the time, starting from beginning was faster

than using the old instance’s optimal coloring information as an input.

6.1. Open Questions

This study arises several interesting future research directions:

• We know that ColorUDG is NP-hard. However, during empirical study we ob-

served that most of the instances for which ω(G) = χ(G) holds are solved exactly.

Therefore one may question the complexity of the following problem: Given a

UDG G and the information that χ(G) = ω(G), can we find an optimum coloring

of G in polynomial time? If the case fails to rise (i.e., if this problem remains NP-

hard), does the additional information that χ(G) = ω(G) helps to derive better

approximation algorithms? If this problem is polynomial time solvable then the

following question can also be interesting to investigate. Given a UDG G, can we

check whether χ(G) = ω(G) in polynomial time.

• UDG are not perfect. On the other hand, it is shown that for a given ω value,

we cannot construct graphs with arbitrarily large χ. Of course the inequality

χ(G) ≤ c ·ω(G) holds for large c values. However finding the lowest c value for all

UDG can be an interesting research direction. We know that c is between 3
2

and

3. In order to have a better lower bound, a construction should be proposed, on

the other hand, for an upper bound one should come up with an approximation

algorithm with a factor better than 3.

• Maximum clique problem in UDG is solvable in polynomial time, the existing

MAXCLIQUE algorithm runs in time O(n4.5). This algorithm does the follow-

ing: checks all pairs of vertices and call a slave algorithm which finds a maximum

matching in a bipartite graph in time O(n2.5). Based on some simple obser-

vations we improved MAXCLIQUE by avoiding checking all pairs. According

to our empirical study, we gain in average 70% in terms of running time. It

would be interesting to show that this empirical improvement can be also proved

theoretically, by making a theoretical complexity analysis which is better than

68

O(n4.5).

• We presented theoretical worst-case results of some simple algorithms for vertex

adding/removing reoptimization problem. Results presented are valid for general

graphs. However, constructed graphs are UDG if ω ≤ 5. Therefore, as a next step

we should investigate the generalization of these results for any clique number in

UDG.

• In this study, we consider adding/removing vertex case reoptimization for Col-

orUDG. As we mentioned before, adding/removing edges by increasing/decreasing

radius of disks reoptimization problem is also interesting from application point

of view. The complexity situation of these reoptimization problems could be the

next step to follow.

69

APPENDIX A: GAMS Code for Solving Vertex Coloring

Problem

$title Vertex Coloring Problem

set K colors /K1*K25/;

$call GDXXRW.exe diskgraph.xls set=V Rdim=1 par=E rng=A1:K11 Cdim=1 Rdim=1

$GDXIN diskgraph.gdx

set V(*) vertices;

$LOAD V

alias(V,Vp);

Display V;

parameter E(V,V)

$LOAD E;

$GDXIN

Display E;

binary variables x(V,K) decision variables for vertives

y(K) decision variables for colors;

variable z objective;

equations

uniqueColor(V)

feasibility(V,Vp,K)

isColorAvailable(V,K)

totalColorUsed;

uniqueColor(V).. sum(K,x(V,K)) =e= 1;

feasibility(V,Vp,K).. E(V,Vp)*(x(V,K)+ x(Vp,K)) =l= 1;

isColorAvailable(V,K).. x(V,K) =l= y(K);

70

totalColorUsed.. z =e= sum(K,y(K));

model coloring Vertex Coloring Problem /all/;

solve coloring minimizinz z using mip;

display x.l,y.l,z.l

71

APPENDIX B: Empirical Results for Bounds of ColorUDG

instance # n density ω χ DC CC FC BC iDC iCC iFC iBC

1 50 7,59 5 5 5 5 5 5 0 0 0 0

2 50 7,35 6 6 6 6 6 6 0 0 0 0

3 50 7,27 6 6 6 6 6 6 0 0 0 0

4 50 8,08 7 7 7 7 7 7 0 0 0 0

5 50 6,20 4 4 4 5 5 5 0 4 4 4

6 50 7,76 5 5 5 6 7 5 0 5 5 5

7 50 7,92 6 6 6 6 6 6 0 0 0 0

8 50 7,43 5 5 5 5 5 5 0 0 0 0

9 50 7,51 5 5 5 5 5 5 0 0 0 0

10 50 6,86 5 5 5 5 5 5 0 0 0 0

11 50 6,37 6 6 6 6 6 6 0 0 0 0

12 50 7,27 6 6 6 6 7 7 0 0 6 0

13 50 7,84 6 6 6 6 6 6 0 0 0 0

14 50 6,61 4 4 4 5 4 4 0 4 0 4

15 50 9,06 6 6 6 6 6 6 0 0 0 0

16 50 7,27 5 5 5 5 5 5 0 0 0 0

17 50 7,35 6 6 6 6 6 6 0 0 0 0

18 50 8,73 5 6 6 6 7 6 0 0 6 0

19 50 8,73 5 5 6 5 5 5 5 0 0 0

20 50 7,51 5 5 5 5 5 5 0 0 0 0

21 50 7,84 5 5 5 5 5 5 0 0 0 0

22 50 8,08 6 6 6 6 6 6 0 0 0 0

23 50 7,27 6 6 6 6 7 6 0 0 6 0

24 50 7,27 6 6 6 6 6 6 0 0 0 0

25 50 8,41 6 6 6 6 6 6 0 0 0 0

72

instance # n density ω χ DC CC FC BC iDC iCC iFC iBC

1 50 18,37 8 8 8 8 8 8 0 0 0 0

2 50 17,96 9 9 9 9 9 9 0 0 0 0

3 50 19,59 10 10 10 10 10 10 0 0 0 0

4 50 18,94 11 11 11 11 12 11 0 0 11 0

5 50 16,98 7 7 7 8 8 8 0 7 7 7

6 50 21,14 8 8 9 9 8 9 8 8 0 8

7 50 19,59 8 8 9 10 9 9 8 8 8 8

8 50 26,20 11 11 11 13 12 11 0 11 11 11

9 50 19,51 8 8 8 8 8 8 0 0 0 0

10 50 18,94 8 8 9 9 10 9 8 8 9 8

11 50 19,10 9 10 10 10 10 10 0 0 0 0

12 50 18,04 10 10 10 10 10 10 0 0 0 0

13 50 17,96 8 8 9 9 9 9 8 8 8 8

14 50 17,80 8 8 8 9 8 8 0 8 0 8

15 50 19,18 9 9 9 9 9 9 0 0 0 0

16 50 17,71 10 10 10 10 10 10 0 0 0 0

17 50 19,51 8 8 9 9 9 9 9 8 9 9

18 50 19,59 7 7 8 8 9 7 7 7 8 7

19 50 20,82 10 10 10 10 10 10 0 0 0 0

20 50 17,71 9 9 10 9 9 9 9 0 0 0

21 50 23,18 9 9 10 11 11 10 9 9 9 9

22 50 19,76 12 12 12 12 12 12 0 0 0 0

23 50 17,71 8 8 9 8 9 9 8 0 9 0

24 50 19,84 9 9 9 9 10 9 0 0 9 0

25 50 15,59 8 8 8 9 8 8 0 8 0 8

73

instance # n density ω χ DC CC FC BC iDC iCC iFC iBC

1 50 52,82 19 19 21 20 20 20 19 19 19 19

2 50 50,12 21 21 21 21 23 21 0 0 21 0

3 50 45,63 15 16 17 17 19 17 16 16 16 16

4 50 39,18 15 15 16 15 17 15 16 0 15 0

5 50 51,76 18 19 20 21 21 19 19 19 20 0

6 50 44,33 14 14 15 15 16 15 14 15 14 15

7 50 52,49 17 17 17 20 20 18 0 19 17 17

8 50 49,88 17 17 18 18 19 18 17 17 18 17

9 50 45,88 16 16 18 17 19 17 16 16 17 16

10 50 42,45 16 17 18 18 19 18 17 17 17 17

11 50 43,51 17 17 17 17 18 17 0 0 17 0

12 50 43,51 16 16 16 17 16 16 0 16 0 0

13 50 49,80 16 16 16 17 18 17 0 16 16 16

14 50 53,47 18 19 19 20 20 19 0 19 19 0

15 50 45,80 17 17 18 17 18 17 17 0 17 0

16 50 47,59 15 15 16 16 18 16 15 16 15 15

17 50 51,92 18 18 19 18 20 18 18 0 18 0

18 50 46,78 15 16 17 16 19 16 16 0 16 0

19 50 47,67 17 17 18 19 19 18 17 17 17 17

20 50 54,69 17 20 21 20 22 20 20 0 20 0

21 50 44,08 16 16 18 18 19 17 16 16 17 16

22 50 51,76 18 18 18 18 20 18 0 0 18 0

23 50 49,63 16 16 18 19 19 18 16 17 17 16

24 50 46,53 17 17 18 18 19 17 17 17 17 0

25 50 50,78 18 20 20 20 22 20 0 0 21 0

74

instance # n density ω χ DC CC FC BC iDC iCC iFC iBC

1 50 62,12 22 22 22 23 23 22 0 22 22 0

2 50 73,14 26 27 28 29 28 28 27 27 27 27

3 50 69,80 24 24 25 24 25 24 24 0 24 0

4 50 71,10 25 28 28 29 29 28 0 28 28 0

5 50 74,86 24 26 27 27 29 27 27 26 27 27

6 50 67,67 24 24 25 24 27 25 24 0 24 24

7 50 71,92 27 27 29 27 29 27 27 0 27 0

8 50 69,47 25 25 25 27 29 25 0 25 26 0

9 50 68,33 24 24 24 25 27 24 0 24 25 0

10 50 65,71 24 25 25 25 26 25 0 0 25 0

11 50 66,86 24 25 25 25 26 25 0 0 25 0

12 50 78,12 27 28 28 29 31 29 0 28 28 28

13 50 67,67 21 23 24 24 27 24 23 23 23 23

14 50 66,12 23 24 24 26 25 25 0 24 24 24

15 50 65,80 24 25 25 25 25 25 0 0 0 0

16 50 78,94 28 30 31 31 32 31 30 30 30 30

17 50 71,59 25 27 27 27 29 27 0 0 27 0

18 50 74,94 24 29 29 30 30 29 0 29 29 0

19 50 68,82 22 25 26 26 26 25 25 25 25 0

20 50 75,76 28 29 29 29 32 29 0 0 29 0

21 50 71,84 23 24 25 26 26 25 24 25 24 25

22 50 67,02 22 24 24 24 26 24 0 0 24 0

23 50 73,80 26 26 26 27 28 26 0 26 26 0

24 50 70,94 23 24 25 27 29 25 24 25 25 24

25 50 71,67 21 24 25 27 27 25 24 25 25 25

75

instance # n density ω χ DC CC FC BC iDC iCC iFC iBC

1 75 8,04 7 7 7 7 7 7 0 0 0 0

2 75 7,78 7 7 8 7 7 8 7 0 0 7

3 75 8,43 7 7 7 7 7 7 0 0 0 0

4 75 9,51 8 8 8 8 8 8 0 0 0 0

5 75 7,32 8 8 8 8 8 8 0 0 0 0

6 75 7,86 6 6 6 6 6 6 0 0 0 0

7 75 7,35 5 5 6 6 6 6 5 5 5 5

8 75 8,29 7 7 7 8 7 8 0 7 0 7

9 75 7,39 7 7 7 7 7 7 0 0 0 0

10 75 7,82 7 7 7 7 8 8 0 0 7 7

11 75 7,93 8 8 8 8 8 8 0 0 0 0

12 75 7,78 7 7 7 7 8 7 0 0 7 0

13 75 7,96 8 8 8 8 9 8 0 0 8 0

14 75 6,59 7 7 8 7 8 8 7 0 7 7

15 75 7,24 7 7 7 7 7 7 0 0 0 0

16 75 7,57 8 8 9 8 8 8 8 0 0 0

17 75 7,78 7 7 7 7 7 7 0 0 0 0

18 75 7,57 7 7 8 7 8 8 7 0 7 7

19 75 7,64 8 8 8 9 8 8 0 8 0 0

20 75 8,14 8 8 8 8 9 8 0 0 8 0

21 75 7,39 7 7 7 8 7 7 0 7 0 0

22 75 7,10 6 7 7 8 7 7 0 7 0 0

23 75 9,73 11 11 11 11 12 11 0 0 11 0

24 75 8,04 7 7 7 7 7 7 0 0 0 0

25 75 7,75 6 6 6 6 6 6 0 0 0 0

76

instance # n density ω χ DC CC FC BC iDC iCC iFC iBC

1 75 19,57 12 12 12 12 12 13 0 0 0 12

2 75 19,17 12 12 13 13 14 13 12 12 13 12

3 75 19,64 11 12 12 14 14 12 0 12 12 0

4 75 19,82 14 14 14 14 16 14 0 0 15 0

5 75 18,45 11 11 12 12 12 11 11 11 12 0

6 75 20,94 11 11 13 14 13 13 12 11 12 12

7 75 17,91 12 13 13 13 14 13 0 0 13 0

8 75 20,07 12 12 13 12 14 12 12 0 12 0

9 75 19,14 12 13 13 13 14 14 0 0 13 13

10 75 21,80 13 15 15 15 15 15 0 0 0 0

11 75 19,68 11 11 12 11 12 12 11 0 12 11

12 75 18,99 12 13 13 13 15 13 0 0 13 0

13 75 18,27 11 11 11 12 12 11 0 11 11 0

14 75 18,13 13 13 13 13 15 13 0 0 13 0

15 75 18,02 10 10 10 12 10 10 0 10 0 0

16 75 18,67 10 11 11 12 12 11 0 11 11 0

17 75 21,80 12 12 12 13 13 12 0 12 12 0

18 75 18,95 12 12 13 12 13 13 12 0 12 12

19 75 20,04 12 14 14 14 16 14 0 0 14 0

20 75 21,26 12 13 13 13 14 13 0 0 13 0

21 75 21,33 12 12 13 12 13 13 13 0 12 12

22 75 18,95 12 12 12 12 13 12 0 0 12 0

23 75 18,59 11 11 11 12 12 11 0 11 11 0

24 75 20,90 11 11 12 13 12 12 11 11 12 11

25 75 22,05 12 12 13 14 14 14 12 13 12 12

77

instance # n density ω χ DC CC FC BC iDC iCC iFC iBC

1 75 45,44 22 22 23 26 23 23 22 22 22 22

2 75 46,63 24 25 26 26 25 26 25 25 0 25

3 75 45,73 25 25 26 25 27 25 25 0 25 0

4 75 45,12 25 25 26 25 25 25 25 0 0 0

5 75 51,57 28 29 30 29 31 29 29 0 29 0

6 75 45,12 21 22 23 25 25 23 22 22 22 22

7 75 46,77 23 25 27 25 29 27 25 0 26 25

8 75 43,60 20 22 23 24 23 22 23 22 22 0

9 75 43,28 20 20 22 23 24 23 21 20 22 20

10 75 45,73 23 25 26 25 26 25 25 0 25 0

11 75 45,30 25 26 27 26 28 26 26 0 26 0

12 75 47,32 21 22 24 24 25 24 22 22 22 23

13 75 44,25 19 20 21 25 24 21 21 22 22 21

14 75 47,35 25 25 26 25 26 25 25 0 25 0

15 75 41,77 21 21 22 23 21 22 21 21 0 21

16 75 44,54 20 22 23 24 23 22 22 22 22 0

17 75 45,51 21 21 22 24 25 22 21 22 21 21

18 75 42,67 21 22 22 23 24 22 0 22 22 0

19 75 46,20 22 25 26 26 29 26 25 25 26 25

20 75 44,50 22 23 24 24 23 24 23 23 0 23

21 75 50,09 23 24 25 26 27 24 24 24 24 0

22 75 51,03 26 27 28 27 29 27 27 0 27 0

23 75 56,14 27 28 30 29 31 29 28 28 28 28

24 75 47,06 22 23 25 25 27 24 23 23 25 23

25 75 47,82 22 24 26 28 26 26 24 24 24 24

78

instance # n density ω χ DC CC FC BC iDC iCC iFC iBC

1 75 67,75 35 37 38 38 40 38 37 37 37 37

2 75 68,04 31 32 35 35 36 36 34 33 34 33

3 75 69,62 32 35 37 38 39 36 35 35 36 36

4 75 65,44 31 31 35 34 34 33 31 32 33 32

5 75 65,26 30 32 33 35 36 34 33 33 33 33

6 75 74,56 32 37 39 39 42 39 38 38 40 37

7 75 73,33 35 39 39 39 43 39 0 0 39 0

8 75 72,79 36 38 39 40 41 39 38 39 39 38

9 75 64,47 31 32 34 33 37 34 32 32 34 33

10 75 66,81 28 30 32 33 37 33 30 32 32 31

11 75 72,04 40 40 41 40 43 40 40 0 41 0

12 75 72,90 32 35 38 39 42 36 35 36 36 35

13 75 62,52 27 28 31 31 34 31 29 29 30 29

14 75 71,53 37 37 37 38 42 38 0 37 37 37

15 75 69,95 30 33 36 36 38 34 34 34 34 34

16 75 66,09 30 33 35 34 37 34 33 33 34 33

17 75 70,02 32 34 37 37 38 36 35 34 35 35

18 75 72,00 35 36 37 39 42 37 36 37 37 36

19 75 66,16 29 31 33 35 36 32 32 32 34 31

20 75 71,53 34 35 36 38 41 36 35 35 36 35

21 75 70,88 32 35 36 38 39 36 35 36 36 35

22 75 70,13 32 36 38 37 40 37 36 36 36 36

23 75 71,89 30 34 35 37 40 37 34 35 35 34

24 75 76,29 39 0 43 44 44 43 43 43 44 43

25 75 72,11 34 35 38 40 40 38 36 37 35 36

79

instance # n density ω χ DC CC FC BC iDC iCC iFC iBC

1 100 7,45 7 7 8 8 8 8 7 7 7 7

2 100 7,74 7 7 8 9 8 8 7 7 7 7

3 100 8,04 8 8 9 9 10 9 8 8 8 8

4 100 8,00 9 9 9 9 9 9 0 0 0 0

5 100 7,62 8 8 8 8 9 8 0 0 8 0

6 100 6,67 8 8 9 8 9 8 8 0 8 0

7 100 6,97 8 8 8 8 8 8 0 0 0 0

8 100 7,52 7 7 7 8 8 7 0 7 7 0

9 100 7,45 8 9 9 10 10 9 0 9 9 0

10 100 7,72 9 9 9 10 9 9 0 9 0 0

11 100 7,54 7 8 8 9 9 9 0 8 8 8

12 100 7,21 8 9 9 10 10 9 0 9 9 0

13 100 9,17 12 12 12 12 14 13 0 0 12 12

14 100 8,06 8 8 8 8 10 8 0 0 8 0

15 100 6,89 8 8 8 8 9 8 0 0 8 0

16 100 7,17 8 8 8 8 9 8 0 0 8 0

17 100 7,19 7 7 7 8 8 7 0 7 7 0

18 100 7,64 7 8 8 8 9 8 0 0 8 0

19 100 7,94 9 9 9 9 9 9 0 0 0 0

20 100 7,09 8 8 8 8 9 8 0 0 8 0

21 100 7,90 11 11 11 11 11 11 0 0 0 0

22 100 7,60 8 8 9 9 9 8 8 8 8 0

23 100 6,46 7 7 7 8 7 7 0 7 0 0

24 100 6,93 8 8 8 8 9 8 0 0 8 0

25 100 7,68 9 9 9 10 9 9 0 9 0 0

80

instance # n density ω χ DC CC FC BC iDC iCC iFC iBC

1 100 18,87 13 13 14 16 14 15 13 13 13 13

2 100 21,86 13 14 15 18 18 16 15 15 15 15

3 100 19,66 15 15 17 17 17 16 16 16 15 15

4 100 19,86 13 14 15 16 16 15 14 14 14 14

5 100 20,42 15 15 16 16 18 15 15 15 16 0

6 100 20,16 16 16 16 16 18 16 0 0 16 0

7 100 18,83 15 16 16 16 16 16 0 0 0 0

8 100 23,01 17 17 19 19 20 19 17 17 17 17

9 100 19,23 14 16 17 16 16 17 16 0 0 16

10 100 19,47 14 15 16 16 19 16 15 15 15 15

11 100 19,07 13 13 14 15 15 14 13 13 14 13

12 100 20,32 14 14 16 18 16 16 15 14 15 14

13 100 18,61 17 17 17 17 18 17 0 0 17 0

14 100 19,98 18 18 18 19 21 18 0 18 19 0

15 100 18,79 14 16 16 16 17 16 0 0 16 0

16 100 19,35 14 15 15 16 17 15 0 15 15 0

17 100 19,15 16 16 16 16 16 17 0 0 0 16

18 100 19,45 14 14 16 16 17 14 14 14 14 0

19 100 18,71 13 13 14 15 15 14 13 13 13 13

20 100 17,82 16 16 16 16 17 16 0 0 16 0

21 100 20,20 14 14 15 17 16 16 15 14 14 14

22 100 20,44 14 15 15 16 17 15 0 15 16 0

23 100 18,79 14 14 15 16 16 15 14 14 14 14

24 100 19,78 16 16 16 16 16 16 0 0 0 0

25 100 19,86 13 13 16 18 15 16 14 14 13 14

81

instance # n density ω χ DC CC FC BC iDC iCC iFC iBC

1 100 43,25 24 26 28 29 28 28 26 27 26 26

2 100 42,69 27 27 30 30 33 29 29 27 28 27

3 100 51,58 28 35 35 35 42 35 0 0 37 0

4 100 49,27 28 33 34 33 34 33 33 0 33 0

5 100 49,60 28 32 33 35 36 35 32 32 32 32

6 100 46,06 25 30 34 33 34 32 30 30 31 30

7 100 45,64 27 28 31 29 32 31 28 28 28 28

8 100 50,22 28 32 35 36 36 33 33 33 33 32

9 100 42,53 25 26 29 30 29 28 27 26 26 26

10 100 45,31 31 32 33 32 34 33 32 0 32 32

11 100 48,53 27 29 30 38 32 30 29 31 29 30

12 100 47,15 25 28 32 32 33 30 30 29 31 29

13 100 47,60 27 28 32 33 33 30 28 29 30 29

14 100 49,84 25 30 33 35 34 33 30 31 30 29

15 100 52,93 28 32 34 35 37 34 33 34 34 34

16 100 52,75 31 33 34 35 36 34 33 33 33 33

17 100 51,45 25 30 32 33 38 32 31 31 33 31

18 100 48,24 30 31 34 35 34 33 31 32 31 31

19 100 45,90 28 28 30 31 30 30 28 28 29 29

20 100 48,46 30 31 32 33 35 33 32 31 32 31

21 100 51,27 30 34 36 37 39 36 34 34 34 35

22 100 51,88 31 34 37 36 38 37 34 35 36 34

23 100 48,28 27 30 32 33 32 31 29 30 30 29

24 100 47,92 24 29 31 33 32 30 29 29 29 29

25 100 47,62 25 28 31 32 33 30 29 30 30 29

82

REFERENCES

1. Garey, M. R. and D. S. Johnson, Computers and Intractability, A Guide to the

Theory of NP-Completeness , W.H. Freeman and Company, New York, 1979.

2. Clark, B. N., C. J. Colbourn, and D. S. Johnson, “Unit disk graphs”, Discrete

Mathematics , Vol. 86, No. 1-3, pp. 165–177, December 1990.

3. Berge, C., Graphs and hypergraphs, North-Holland Pub. Co.; American Elsevier

Pub. Co., Amsterdam, New York,, [rev. ed.] translated by edward minieka. edition,

1973.

4. Metzger, B. H., “Spectrum Management Technique”, 1970, presentation at 38th

National ORSA meeting (Detroit, MI).

5. Aardal, K. I., C. P. M. van Hoesel, A. M. C. A. Koster, C. Mannino, and A. Sas-

sano, “Models and Solution Techniques for the Frequency Assignment Problem”,

ZIB-report 01–40, Konrad-Zuse-Zentrum fur Informationstechnik Berlin, Berlin,

Germany, 2001, http://www.zib.de/Publications/abstracts/ZR-01-40/.

6. Eisenblätter, A., M. Grötschel, and A. M. C. A. Koster, “Frequency Assignment

and Ramifications of Coloring”, Discussiones Mathematicae Graph Theory , Vol. 22,

pp. 51–88, 2002, http://www.zib.de/Publications/abstracts/ZR-00-47/.

7. Hale, W. K., “Frequency Assignment: Theory and Applications”, Proceedings of

the IEEE , Vol. 68, pp. 1497–1514, 1980.

8. Vizing, V. G., “Critical graphs with a given chromatic class”, Diskret , 1965.

9. Tesman, B. A., T -colorings, list T -colorings, and set T -colorings of graphs , Ph.D.

thesis, Department of Mathematics, Rutgers University, 1989.

10. Marathe, M. V., H. Breu, H. B. H. Iii, S. S. Ravi, and D. J. Rosenkrantz, “Simple

83

Heuristics for Unit Disk Graphs”, Networks , Vol. 25, pp. 59–68, 1995.

11. Chudnovsky, M., N. Robertson, P. Seymour, and R. Thomas, “The strong perfect

graph theorem”, Annals of Mathematics , Vol. 164, pp. 51–229, 2006.

12. Mycielski, J., “Sur le coloriage des graphs”, Coloqium Mathematicum, Vol. 3, pp.

161–162, 1955.

13. Malesinska, E., S. Piskorz, and G. Weißenfels, “On the chromatic number of disk

graphs”, Networks , Vol. 32, No. 1, pp. 13–22, 1998.

14. Breu, H. and D. G. Kirkpatrick, “Unit Disk Graph Recognition is NP-hard”, Com-

putational Geometry. Theory and Applications, Vol. 9, pp. 9–1, 1998.

15. Edmonds, J. and R. M. Karp, “Theoretical Improvements in Algorithmic Efficiency

for Network Flow Problems”, J. ACM , Vol. 19, No. 2, pp. 248–264, 1972.

16. Garey, M. R., D. S. Johnson, and L. Stockmeyer, “Some simplified NP-complete

problems”, STOC ’74: Proceedings of the sixth annual ACM symposium on Theory

of computing , pp. 47–63, ACM, New York, NY, USA, 1974.

17. Valiant, L. G., “Universality Considerations in VLSI Circuits”, IEEE Trans. Com-

puters , Vol. 30, No. 2, pp. 135–140, 1981.

18. Fishkin, A. V., Approximation and Online Algorithms, chapter Disk Graphs: A

Short Survey, Springer Berlin / Heidelberg, 2004.

19. Malesinska, E., Graph-Theoretical Models for Frequency Assignment Problems ,

Ph.D. thesis, Technische Universitat Berlin, 1997.

20. Feige, U. and J. Kilian, “Zero Knowledge and the Chromatic Num-

ber”, IEEE Conference on Computational Complexity , pp. 278–287, 1996,

citeseer.ist.psu.edu/feige96zero.html.

84

21. Brown, J., “Chromatic Scheduling and the Chromatic Number Problem”, Man-

agement Science, Vol. 19, No. 4, pp. 456–463, 1972.

22. Brélaz, D., “New methods to color the vertices of a graph”, Commun. ACM ,

Vol. 22, No. 4, pp. 251–256, 1979.

23. Peemöller, J., “A correction to Brelaz’s modification of Brown’s coloring algo-

rithm”, Commun. ACM , Vol. 26, No. 8, pp. 595–597, 1983.

24. Wikipedia, “Five Colour Theorem”, http://en.wikipedia.org/wiki/Five%5Fcolour%5Ftheorem

25. Erdös, P. and A. Renyi, “On the Evolution of Random Graphs”, Publ. Math. Inst.

Hungar. Acad. Sci., Vol. 5, pp. 17–61, 1960.

26. Böckenhauer, H.-J., J. Hromkovic, T. Mömke, and P. Widmayer, “On the Hardness of

Reoptimization”, SOFSEM , pp. 50–65, 2008.

27. Frederickson, G. N., “Data structures for on-line updating of minimum spanning trees”,

STOC ’83: Proceedings of the fifteenth annual ACM symposium on Theory of computing ,

pp. 252–257, ACM, New York, NY, USA, 1983.

28. Rohnert, H., “A dynamization of the all pairs least cost path problem”, Proceedings

on STACS 85 2nd annual symposium on theoretical aspects of computer science, pp.

279–286, Springer-Verlag New York, Inc., New York, NY, USA, 1985.

29. Archetti, C., L. Bertazzi, and M. G. Speranza, “Reoptimizing the traveling salesman

problem”, Networks, Vol. 42, No. 3, pp. 154–159, 2003.

30. Böckenhauer, H.-J. and D. Komm, “Reoptimization of the Metric Deadline TSP”, MFCS

’08: Proceedings of the 33rd international symposium on Mathematical Foundations of

Computer Science, pp. 156–167, Springer-Verlag, Berlin, Heidelberg, 2008.

31. Bilò, D., H.-J. Böckenhauer, J. Hromkovič, R. Královič, T. Mömke, P. Widmayer, and

A. Zych, “Reoptimization of Steiner Trees”, SWAT ’08: Proceedings of the 11th Scandi-

navian workshop on Algorithm Theory , pp. 258–269, Springer-Verlag, Berlin, Heidelberg,

85

2008.

32. Bartusch, M., R. H. Mohring, and F. J. Radermacher, “Scheduling project networks with

resource constraints and time windows”, Ann. Oper. Res., Vol. 16, No. 1-4, pp. 201–240,

1988.

33. Coudert, O., “Exact coloring of real-life graphs is easy”, DAC ’97: Proceedings of the

34th annual conference on Design automation, pp. 121–126, ACM, New York, NY, USA,

1997.

