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ABSTRACT

NETWORK-CENTRIC WARFARE COMMUNICATIONS

WITH WIRELESS SENSOR NETWORKS AND DATA

FUSION

In this thesis we aim to design efficient algorithms for wireless ad hoc sensor

networks that are supporting network-centric warfare operations. These algorithms

should conform to the hard end to end QoS requirements. They should be energy

efficient. They should fuse and aggregate data to reduce the network traffic and obtain

more accurate assessment of the environment. A particular challenge in the wireless

sensor network setting is the need for distributed estimation algorithms which balance

the limited energy resource at a node with the cost of communication and sensing.

Distributed processing strategies that use a subset of sensor measurements directly

mitigate the volume of inter-node communication thereby conserving power. The chal-

lenge is to decide in an intelligent manner which sensor measurements to use. In other

words, to select a sensor that is likely to provide the greatest improvement to the

estimation at the lowest cost.

For target tracking applications, wireless sensor nodes provide accurate informa-

tion since they can be deployed and operated near the phenomenon. These sensing

devices have the opportunity of collaboration among themselves to improve the target

localization and tracking accuracies. An energy-efficient collaborative target tracking

paradigm is developed for wireless sensor networks (WSNs). A mutual information-

based sensor selection (MISS) algorithm is adopted for participation in the fusion pro-

cess. MISS allows the sensor nodes with the highest mutual information about the

target state to transmit data so that the energy consumption is reduced while the

desired target position estimation accuracy is met. In addition, a novel approach to

energy savings in WSNs is devised in the information-controlled transmission power
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adjustment (ICTP), where nodes with more information use higher transmission pow-

ers than those that are less informative to share their target state information with the

neighboring nodes. Simulations demonstrate the performance gains offered by MISS

and ICTP in terms of power consumption and target localization accuracy.

A fully-distributed collaborative multi-target tracking framework that eliminates

the need for a central data associator or a central coordinating node for wireless sensor

networks is defined. Details of the distributed data association architecture, which is

more feasible than the ones relying on a coordinating entity, is described. It is shown

that for target tracking applications, the collaboration improves the target localization

performance of the distributed data collecting devices. In order to reduce the commu-

nication energy exhausted for collaboration, the performance of the collaboration logic

manager is examined. Simulation results show that collaborating about a single target

information is a rational decision. The problem of deciding which target information

to collaborate among the detected targets arises. A mutual information based met-

ric is shown to be a good candidate for deciding on the target which the sensor will

collaborate about with the network.

A fuzzy network association algorithm (FUNA) for associating the target report

from the neighboring sensor node with a track in the track list is described. The rule

base of FUNA is created by consulting to the result of a voting mechanism among

the fuzzy variables to support the association decision. Euclid distance, direction

difference, and speed difference between the track report from the neighboring sensor

node and the track in the track list are the fuzzy variables that support FUNA. It

is shown by simulation that FUNA reduces the number of false network associations

for the meandering targets. Moreover, better target localization accuracies achieved

by FUNA when compared to the Euclid, likelihood, and Mahalanobis distance based

network association metrics.
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ÖZET

AĞ DESTEKLİ HARP İÇİN TELSİZ DUYARGA DESTEĞİ

VE TAKTİK VERİ BİRLESTİRME

Hedef tespit ve izleme uygulamalarında, telsiz muhabere yeteneğine sahip küçük

algılayıcılar harekat sahasına çok yakın olarak yerleştirilebildikleri için doğru bilgi

sağlarlar. Bu küçük algılayıcılar hedef tespit ve izleme hassasiyetlerini arttırmak için

birbirleri ile ortak çalışma yeteneğine sahiptirler. Telsiz muhabere yeteneğine sahip

küçük algılayıcılar için enerjilerini verimli olarak kullanabildikleri dağıtık bir hedef

izleme algoritması geliştirilmiştir. Bu algoritma ile hedefi tespit eden algılayıcılar

arasında en fazla bilgiye sahip ve mükerrer bilgi taşımayan algılayıcıların bu bilgi-

lerini komşu algılayıcılar ile paylaşması ile hedef takip doğruluğundan çok fazla kay-

betmeden algılayıcı ağın yaşam süresi uzatılmıştır. Dağıtık veri birleştirme mimarisi,

algılayıcıların ortak çalışabilmeleri için gerekli altyapıyı sunar. Bu küçük algılayıcıların

enerji tahditleri nedeni ile genel bir eğilim, bazı algılayıcıları geçici olarak pasif duruma

getirmektir. Enerji tasarrufunu arttırmak amacı ile, karşılıklı en fazla bilgi içeriğine

dayalı seçici bir algılayıcı etkinleştirme algoritmasına ek olarak, bilgi içeriği ile kontrol

edilen sinyal gönderme gücü ayar düzeni geliştirilmiştir. Müşterek hedef izleme için

geliştirilen güç ayar düzeni algoritmasının özü, hedef hakkında daha fazla bilgiye sahip

olan algılayıcıların daha az bilgiye sahip olan algılayıcılara göre daha fazla çıkış gücü

kullanarak bilgilerini etraflarındaki algılayıcılarla paylaşmaları esasına dayanır. Tek bir

hedefin izlenmesi için yapılan çalışmalar birden fazla hedefin izlenmesi için geliştirilmiş

ve dağıtık çoklu hedef izleme mimarisi önerilmiştir. Önerilen mimariye ait performans

testlerinde birden fazla hedefi tespit eden algılayıcıların sadece hakkında en fazla bilgiye

sahip olduğu hedef bilgisini komşu algılayıcılarla paylaşmasının enerji tüketimi ve hedef

izleme doğruluğu performansları için en doğru karar olduğu sonucuna ulaşılmıştır.

Komşu algılayıcılar tarafından rapor edilen temas bilgilerinin, algılayıcıya ait iz



vii

listesinde mevcut temaslar ile ilişkilendirme probleminin çözümüne yönelik olarak bu-

lanık mantık kullanan bir ağ iz ilişkilendirme algoritması önerilmiştir. Önerilen algorit-

mada bulanık kurallar, temas ilişkilendirme kararı için kullanılan bulanık değişkenler

arasında bir oylama mekanizması kullanılarak oluşturulmuştur. İz listesindeki temas

ile komşu algılayıcı tarafından rapor edilen temas arasındaki Euclid mesafesi, olabilir-

lik ve Mahalanobis mesafesi ilişkilendirme kararını destekleyen bulanık değişkenler

olarak kullanılmışlardır. Önerilen algoritmanın, zikzaklı yolalan hedefler için temas

ilişkilendirme performansını Euclid, olabilirlik ve Mahalanobis metrikleri kullanılarak

yapılan ilişkilendirmelere göre arttırdığı, bunun sonucu olarak hedef takip doğruluğunu

arttırdığı benzetim ile gösterilmiştir.
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1. INTRODUCTION

Network-Centric Warfare(NCW) is an attempt to effectively link all the elements

of the warfighting enterprise to achieve the improved situation awareness, rapidity, and

accuracy. NCW provides broader vision of the vicinity for the warfighting platforms

than the one Platform Centric Warfare provides. Even a missile, contributes to the

situation observations of the enterprise, until the time of its explosion at the target.

Today’s missiles have their own sensors on board to cruise towards the target and to

improve the probability of hit. In NCW, the data that the missile observes during its

travel towards the target is conveyed to the command and control center and fused

with the existing information about the vicinity. Improved situation information is

sent back to the missile and other related entities in the enterprise. Main difficulty in

achieving the NCW is the problem of interoperability. Most modules aiming Network-

Centric Warfare exists. However, a Network-Centric Warfare enterprise is envisioned

in 2010 and beyond [1].

Advances in wireless communication, digital electronics, and embedded systems

have led to the development of new generation ad hoc networks, namely wireless sensor

networks (WSNs). Emerging WSNs with hundreds to several thousands of small sized,

low cost, low power micro-sensor nodes deployed into an area of interest, enables us to

sample the parameters of interest throughout the sensor field in a distributed manner.

Micro-sensor nodes in a WSN are capable of collecting, processing, and storing the

ambient information and communicating with the neighboring nodes in the wireless

medium. A micro-sensor node is mainly comprised of a sensing unit, a processing unit,

a transceiver unit, and a power unit. A typical micro-sensor processor board has a pro-

cessor at 4 megahertz, 8 bit microcontroller, 128K on board flash memory, and 512K

nonvolatile flash memory [4]. A sample micro-sensor processor board as compared in

size with a coin is shown in Fig. 1.1. Wireless micro-sensor devices, with the duty of

tracking a target, have two main functionalities. The first one is the distributed detec-

tion of the presence of a target and the estimation of the parameters of interest related

with the target state. The second task involves wireless networking to organize and
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Figure 1.1. A micro-sensor processor board as compared in size with a coin.

carry information. Distributed detection and estimation have long been studied in the

literature. Problems related to the wireless networking issues are also addressed exten-

sively. However, there are not much work done on how wireless networking constraints

affect the distributed detection and estimation duty of the wireless smart sensor net-

working devices. We aim to address this issue and to derive a formal understanding

of how wireless networking constraints affect the distributed detection and estimation

task and derive algorithms remedy the deficiencies.

Wireless sensors observing the diverse properties of the environment form an

ad hoc network to convey their observations towards an evaluator entity. Diverse

observations from the phenomenon provide better accuracies. For example, a radar

sensor provides accurate range but poor angle data while infrared provides accurate

angle but poor range data. Moreover, altitude information of the target can best be

obtained from an optic sensor. Fusing these range, bearing, and elevation information

from diverse sensors provides more accurate positioning of a track. Even for the similar

sensor types, the different viewing angles of the physically distributed sensors can

provide better target localization data. Furthermore, multiple sensors provide more

robust performance due to their inherent redundancy.
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It is crucial for the real time decision support systems, especially for a tactical

defense system, to make fast decisions with limited resources. Though the evidences

may be collected from many possibly allocated sensors with varying capabilities, it is

important to avoid unnecessary or unproductive sensor actions and computations [5].

The more informative evidence is the one that decreases the uncertainty of the hy-

pothesis more. Access to the information requires costs such as the cost of information

retrieval, time delay and extra computation time.

Selecting a sensor that is likely to provide the greatest improvement to the es-

timation at the lowest cost is named as the sensor selection problem or the sensor

scheduling problem in the literature. Reducing sensing interference for active sensors,

reducing communication interference, improving sensor lifetime are the motivations for

the sensor selection or scheduling algorithms. Sensor scheduling problem was cast as a

non-linear deterministic control problem and shown to be solvable by a tree-search in

general [6]. Also dynamic programming and gradient method for obtaining a solution

were proposed. To deal with the complexity of tree-search, greedy algorithms have

been proposed [7, 8, 9].

Compared to the centralized fusion, distributed fusion is a much less mature area

of research. It is well known that in standard non-cooperative distributed detection

problems correlation in the input statistics can both help and hurt the detection per-

formance [10]. The goal of this work was to characterize general methods which exploit

helpful statistical dependencies with the overall aim of further developing the under-

standing of distributed cooperative detection, classification, and tracking systems.

In [11], the information graph is introduced as a way of modeling information flow

in distributed fusion systems. One of the central issues for Collaborative Signal and

Information Processing (CSIP) to address is the energy constrained dynamic sensor

collaboration.

Given the current belief state, we wish to incrementally update the belief by

incorporating measurements of other nearby sensors. However, among all available
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sensors in the network, not all provide useful information that improves the estimate.

Furthermore, some information might be useful, but redundant. The task is to select

an optimal subset and decide on an optimal order of how to incorporate these measure-

ments into our belief update. Due to the distributed nature of the sensor networks, this

selection has to be done without the explicit knowledge of the measurement residing

at each individual sensor. The decision has to be made based on the sensor character-

istics such as the sensor position or sensing modality, and the predicted contributions

of these sensors.

Example sensor selection strategies from the literature are minimizing the Euclid

distance (nearest-neighbor), blind, minimizing the Mahalanobis distance, minimizing

the entropy, maximizing the Kullback-Leibner distance (relative entropy) between pre-

dicted belief and expected belief [12]. In [13, 14], authors propose a sensor selection

methodology based on fuzzifying the sensor characteristics and sensor reliability. They

show that by choosing more reliable sensors, less error in the mobile robot localization

problem is achieved when compared to using all the sensor contributions.

Previous work on data aggregation for wireless sensor networks focuses on the

networking aspect like minimizing the total network flow. Aggregation trees are formed

to remedy the problem. We examine the approaches to the data fusion/aggregation

problem in Section 1.5. We also discuss in the same section, how emerging wireless

sensor devices benefit from data fusion.

Without insight into questions like,”What should the detectors transmit and to

whom?” the design of sensor networks will likely remain ad-hoc. This work ultimately

aims to provide insight into these types of problems.

Target tracking, or processing of the measurements obtained from a target in

order to maintain estimates of its current and future states, has major importance

in Command, Control, Communications, Computer, Intelligence, Surveillance and

Reconnaissance (C4ISR) applications [15, 16]. Due to environmental perturbations,

data collected near the phenomenon are more reliable than those obtained far from
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it. Emerging wireless sensor technologies facilitate the tracking of targets just within

the phenomenon. In Fig. 1.2, small-sized, battery-operated, wireless communicating

sensor devices are deployed very close to the hostile environment, and they are used

for distributed sampling of signals from the target of interest in a C4ISR application.

An unmanned aerial vehicle (UAV) patrolling above the area of surveillance relays the

target position that is obtained from the sensor network towards the command and

control center, where the Threat Evaluation, Weapon Assignment and Sensor Alloca-

tion (TEWASA) function takes place [17, 18]. If the reported target is evaluated as

a threat, then the most appropriate weapon is assigned to that target. At that mo-

ment, a firing channel between the wireless sensor network (WSN), UAV, command

and control center, and the weapon is formed. The target position, where the weapon

is to be directed, is fed continuously to the weapon via the firing channel. Command

and control center monitors the communication delay in the firing channel in order to

maintain the appropriate extrapolation about the target position. In the area of oper-

ation, units such as the soldier in Fig. 1.2 may need rapid and roughly accurate target

position information. The soldier near the sensor field has limited communication ca-

pability when compared to the rocket launcher truck. Hence, the best the soldier can

do is to ask a sensor node nearby him about the target position. The sensor node,

with its current knowledge of the target state, immediately responds to the soldier’s

query. In this scenario, the rocket launcher truck obtains the target state information

from the communication link composed of a sink node, UAV, and the command and

control center. The target state information obtained by the rocket launcher truck is

more accurate than that collected by the soldier. However, the soldier has the target

state information more rapidly than the rocket launcher truck. With a distributed

data fusion (DDF) architecture, benefiting from the far-reaching communication range

of the sensor node compared to its detection range, we aim to have an acceptable target

position information to be available at every sensor node. The reason is that the soldier

may query any one of the sensor nodes that is close to him for an immediate and accept-

ably accurate target position information. The wireless communication characteristics

of the emerging wireless sensor nodes provide an excellent distributed coordination

mechanism to improve the global target localization accuracies in the WSN. Sensor

nodes in the surveillance area, collaboratively monitor the tracks in the vicinity using
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Figure 1.2. C4ISR scenario with wireless sensor devices.

distributed target tracking algorithms. Moreover, collaborated target position informa-

tion is sent continuously to the command and control center for further investigation,

analysis, and integration with other information sources. Collaborated target position

information at each sensor node is also available for an interested querying unit.

Collaborative target tracking brings along questions such as how to dynamically

determine who should sense, what needs to be sensed, and whom the information must

be passed on to [19]. Sensor collaboration improves

1. Detection quality: Detection resolution, sensitivity, dynamic range, missed and

false alarms, response latency.

2. Track quality: Tracking errors, track length, robustness against sensing gaps.

3. Scalability: Size of network, number of events, number of active queries.

4. Survivability: Robustness against node/link failures.
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5. Resource usage: Power/bandwidth consumption.

As an example, collaborative beamforming is used in [20] to localize acoustical

sources. A Bayesian approach to detecting and tracking multiple targets using acoustic

data from multiple passive arrays is presented in [21]. In [22], a circular detection re-

gion is obtained by equipping each sensor node with several ultrasonic sensors. Sensor

nodes in WSNs are battery-operated, which puts an energy constraint on their opera-

tion lifetimes. Reducing the energy exhausted by the nodes improves the duration of

the time over which the sensor network’s surveillance duty is carried out. In order to

conserve the valuable battery power of the wireless devices, a common trend is to put

some of the sensor nodes into a dormant state, which is controlled by a sleep sched-

ule [23, 24]. Moreover, only a subset of the sensor nodes are active at any instant of

time to also avoid redundant data flow in the network. Sensor activation strategies can

be listed as naive activation in which all the sensor nodes are active, randomized acti-

vation in which a random subset of the sensor nodes are active, selective activation in

which a subset of the sensor nodes are chosen according to some performance measure,

and duty-cycled activation in which the sensor nodes are active for some duty cycle

and in dormant state thereafter. There is an inevitable trade-off between the energy

expenditure and the tracking quality in sensor networks [25].

Distance of the sensor node to the target is used in the activation decision in

[26]. In information driven sensor querying (IDSQ) [19, 27], the so-called clusterheads

decide on the sensor nodes that are to participate actively in the tracking task. In

[28], a dual-space paradigm is presented in which the subset of nodes towards whom

the target is approaching are selected to be active. Clusters are formed dynamically

around the high-capability sensor nodes in [29]. In the location-centric approach to

collaborative sensing and tracking, addressing and communication is performed among

geographic regions within the network rather than individual nodes [30,31]. This makes

localized selective-activation strategies simpler to implement. In [32], a selective sensor

activation scheme is proposed in which the activation decision is based on the adaptive

activation radius around the predicted position of the target. The proposed activation

radius in [32] is inversely proportional to the tracking quality. Prediction-based target
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tracking techniques such as the Pheromones, Bayesian, and Extended Kalman Filter

are presented in [33, 34], and a real implementation can be found in [35]. Multiple

target tracking is examined in [36,37,38,39].

Censoring sensors [40,41,42,43,44] is one approach to control the network traffic

load. Sensor nodes that are deemed as non-informative do not send their decisions or

observations if their local likelihood ratio falls in a certain single interval. A special

case of this phenomenon occurs when the lower bound of the no-send interval is zero.

In this particular case, the problem reduces to sending the local decision/observation

if the local likelihood ratio is above some threshold. A deficiency with this approach

occurs for tracking applications if all the sensor node local likelihood ratios fall in the

no-send region, and no belief about the target state is shared among the nodes.

We concentrate on the WSN part of the C4ISR application depicted in Fig. 1.2.

Sensor nodes try to collaboratively maintain accurate target position and speed esti-

mates to report to the UAV or to an interrogator in an energy efficient manner. We

first consider the problem of tracking a single target using immobile sensor nodes that

collaborate with each other through a broadcast communication mechanism. With col-

laboration among the sensor nodes, we aim to improve the target localization accuracy

achieved by each sensor node. Moreover, we try to retrieve the target location from

the network with low delay by querying any one of the nodes in the network. Collabo-

rative target tracking makes it possible for each sensor node in the network to have an

acceptable localization accuracy. As an extreme case, if there were no communication

constraints, in other words, if every sensor node could communicate with every other

node in the network, then the posterior target position information after the collabo-

ration would be the same value for all nodes. The above-mentioned capability of the

collaborative target tracking framework eliminates the need for a sink node inside the

sensor network to collect the target position estimates of the neighboring sensor nodes.

Any node that can be communicated within a single hop is a neighbor.

Previous research [45,46,47] has focused on how to provide full or partial sensing

coverage in the context of energy conservation. Nodes stay in a dormant state as long
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as their neighbors can provide sensing coverage for them. These solutions regard the

sensing coverage of a certain geographic area as binary, i.e., coverage is either provided,

or not [23]. They consider the sensor selection problem only in terms of coverage and

energy-saving aspects, without paying attention to detection and tracking quality. In

tracking applications, when selecting the subset of sensor nodes to contribute to the

global decision, we have to consider how informative the sensor nodes are about the

state of the target.

In [27, 48], the sensor node which will result in the smallest expected posterior

uncertainty of the target state is chosen as the next node to contribute to the decision.

Specifically, minimizing the expected posterior uncertainty is equivalent to maximizing

the mutual information between the sensor node output and the target state [48]. An

entropy-based sensor selection heuristic is proposed for target localization in [49] where

a sensor node is chosen in each step and the observation of that node is incorporated

into the target location distribution using sequential Bayesian filtering. An information

utility description for bearing-only sensors is proposed in [50,51]. The proposed method

does not require the estimation of the posteriori distribution of the target state and

thus reduces the computational overhead.

The information state is a function of the real target state and the information

matrix is a function of the target state uncertainty, i.e., target state covariance. The

contribution of the sensor node to the information state is called its information state

denomination. Similarly, the contribution of a sensor node to the information matrix

is called its information matrix denomination.

Multiple sensor nodes usually perceive similar observations about the target state,

which results in an inherent redundancy of sensory data. We develop an energy-efficient

collaborative target tracking paradigm for wireless sensor networks (WSNs). To that

end, the network lifetime is prolonged and the desired tracking accuracy is maintained

by selecting a subset of sensor nodes that are the most informative in the mutual

information sense. In addition to the selective sensor activation strategy based on the

maximum mutual information, with a novel approach to energy savings in WSNs, we
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devise a transmission power adjustment scheme whose essence lies behind the idea that

the sensor nodes with more information should use higher transmission powers in order

to share their information about the target state with their neighbors than those that

are less informative.

Sensor nodes share with the other nodes in the WSN their information state and

the information matrix denomination values, which are obtained from the collected

target location data. With this mechanism, a collaboration among the sensor nodes is

maintained in order to improve the target location estimate. Another possibility is to

share the location of the target with the WSN after local information filtering. The

latter paradigm in the sensor collaboration requires more complicated fusion operations

as described in [52,53], whereas the former provides a simple additive fusion framework

within the distributed architecture.

The multi-target tracking problem differs from the standard state estimation

problem by the fact that the measurement origin is also uncertain. Problems related

with the multi-target tracking phenomenon mainly focus on the association problem.

There are several types of associations to deal with. The sensor-to-track association

is studied in [54] as the Focus of Attention (FOA) problem, plot-to-plot association is

named as the track initiation, plot-to-track association is named as track update/track

continuation, and finally track-to-track association is named as track fusion [55]. Track-

to-track association deals with how to decide whether two tracks coming from different

sensors represent the same target, and if so the next problem is how to combine (fuse)

the two track estimates together.

Data association algorithms in the literature can be classified as follows: nearest

neighbor (NN) hypothesis testing, multiple hypothesis testing (MHT) [56] [57], and

joint probabilistic data association (JPDA) [58, 59]. NN hypothesis testing assumes

that the measurement closest to the center of the validation gate represents the target.

MHT exhaustively enumerates all the possible hypotheses over a number of most recent

frames and chooses the most likely one. JPDA makes the assumption that the nearest

detection from the extrapolated target estimate may not always originate from the
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target and that other detections which are farther away may be the real measurement.

To account for this, the JPDA algorithm assigns certain probabilities to the latest

set of measurements within a gate. The distributed versions of the JPDA algorithm

for a hierarchical architecture and that of MHT are given in [60] and [61, 62], respec-

tively. Monte Carlo (MC) implementation of JPDA algorithm is presented in [63] as a

simplified version of JPDA for WSNs.

The optimal track-to-track fusion formula derived in [64] to combine the local

estimates is a maximum likelihood (ML) estimator [65], and it has larger error than

the optimal method with centralized configuration [66]. It was shown in [66] that as the

number of sensors increases, the performance of distributed tracking keeps degrading

in comparison to the centralized one. In this context, distributed tracking describes

the local sensors’ data processing capability. In centralized configuration, sensors send

their observation to a data collecting center. Association, based on the received sensor

measurements, is carried out at the center. In the distributed configuration, local

sensors process their observations to form their local tracks and local associations.

The sensor-level processor outputs are sent to the data collecting center, which further

processes these preprocessed data.

Track initiation problem and associating the sensor measurements with the target

tracks are the main difficulties in the multi-target tracking phenomena. The problem

is even more challenging in the context of sensor networks, since association is cou-

pled across the network. Chen et al. [39] propose a solution to the distributed data

association based on the graphical models by means of the message passing algorithm

in which iterative, parallel exchange of information among the neighboring nodes is

required. Zhu et al. [67] applied this graphical model for the solution of the track to

track association problem. In [61], the problem of jointly tracking and classifying sev-

eral targets within a sensor network is examined. The solution requires only one sensor

to be active and focused on a target. However, possible existence of other targets is

ignored.

In existing research, the distributed data association takes place in a center to
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which the distributed units send their collected and processed data. We envision a

fully distributed data association architecture in which every single node collaborates

with its neighbors and does data association. In other words, sensor nodes share the

data association task. This approach is more feasible than the ones that rely on a

coordinating entity for the sensor network applications.

In Section 1.1, we briefly discuss the Network-Centric Warfare, in Section 1.2,

we examine the problem of physical deployment of the sensing entities, in Section 1.3

unique identity assignment problem is examined, in Section 1.4, routing for sensor

networks is examined, Section 1.5, describes the data fusion/aggregation problem,

in Section 1.6, we describe the sensing options and the sensor model, in Chapter 2,

we describe the DDF architecture. Then, in Chapter 3, mutual information-based

sensor selection algorithm (MISS) for participation in the fusion process is defined.

Information-controlled transmission power (ICTP) scheme is introduced in Chapter 4.

In Chapter 5, we describe the multi-sensor multi-target tracking system architectures.

In Chapter 6, we describe our multitarget tracking framework for WSNs. Performance

of the collaboration logic in the proposed framework is examined in Section 6.1, in

Section 6.2, we discuss the association problems of the multi-target tracking architec-

tures, in Section 6.3, we describe a fuzzy network association algorithm (FUNA), in

Section 6.4, we evaluate the performance of FUNA. In Chapter 7, we conclude our

work, and give some directions towards future research.

1.1. Network-Centric Warfare

The Network-Centric Warfare (NCW) concept calls for an autonomous rather

than hierarchic, decision making process, based on ubiquitous access to information by

distributed entities [1]. NCW is an approach to the conduct of warfare that derives its

power from the effectively linking or networking of the warfighting enterprise. NCW

provides shared battlespace awareness and shared commander intend.

Command and control consists of six main phases these are; sensing, fusing, un-

derstanding, deciding, conveying the decisions, and acting (execution). Battlespace
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entities to serve these phases of the command control are the sensing entities, deciding

entities, and acting entities. Sensing entities consist of every kind of diverse sensors

from high capacity, high performance phase array radars to disposable, low power, low

cost mote sensors. Deciding entities have the common situation information. Using this

situation information, deciding entity is responsible for the threat evaluation weapon

assignment and sensor a allocation (TEWASA) [17, 18]. Also, fire control problem is

solved at the deciding entities. Physical positioning of the deciding entities is another

design problem. The weapons are the acting entities. Today’s platform centric warfare,

tightly couples the sensing entities to the acting entities. In other words certain sen-

sors are related to the certain actuators. Sensors on one platform provide the situation

awareness to its own platform. Actuators on the platform can develop engagement

to the targets obtained from the own platform sensors. In contrast, network-centric

warfare decouples the sensors and the actuators. Any actuator on any platform can

develop engagement to any target obtained from any sensor. Network-centric warfare

obviously increases the engagement capability of any platform. The actuators on the

platform can now engage any target even if it is not obtained from the own platform

sensors. Actuator can receive the track information from the remote platform sensors.

Network-centric warfare also provides enhanced situation awareness to all the plat-

forms and remote command and control center namely headquarter. The information

source is now diverse and shared among the warfighting entities. Dimensions of the

information are the relevance, accuracy, and timeliness. Hence, timely, relevant, and

accurate information is too valuable to the warfighting entities.

In [68] a hierarchical communication architecture to convey the battlefield aware-

ness information towards headquarters is proposed. This architecture also conveys the

headquarters intention and commands to the actuators in the battlefield. Sensors and

actuators at the battlefield form the mobile subsystem of the communication architec-

ture. Above the mobile subsystem, maneuver network in which the special nodes to

form the ad hoc infrastructure. Above the maneuver network tier is the airborne net-

work as an umbrella tier, where the manned or unmanned aerial vehicle exists. Finally,

the satellite network provides ubiquitous coverage for the sensors and the actors.
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Figure 1.3. Information grids for the network-centric warfare operations [1].

Networked sensing offers unique advantages over traditional centralized approaches

[69]. Dense networks of distributed networked sensors can provide improved Signal to

Noise Ratio because of decreased average distance from the target, increased energy

efficiency by multihop topology, in network processing, improved robustness and scal-

ability.

The fog of battle is about the uncertainty associated with what is going on while

the friction of war is about the difficulty in translating the commander’s intend into

actions. The changing character of modern conflicts leads to the need for a network-

centric approach to warfare, in which information, including a timely picture of the

situation, is made available to multiple distributed entities using multiple grids of

differing quality of service.

Fig. 1.3 depicts the multiple information grids envisioned for the network-centric

warfare operations; the engagement grid, awareness grid, and the planning grid [1]. The

engagement grid is the most sensitive grid in terms of Quality of Service (QoS). This

grid forms the joint composite tracking network and it is for weapon direction. Delay
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constraint for engagement grid is in sub-seconds. The middle layer is the awareness

grid. This grid forms the joint data network and it is for common tactical picture.

Delay constraint for awareness grid is in seconds. Finally the least delay sensitive grid

in terms of QoS is the planning grid. This grid forms the joint planning network and

it is for common operational picture. Delay constraint for planning grid is in minutes.

We partition the task of network-centric warfare into subtasks. These subtasks

are; the physical deployment of the sensing entities, unique identity assignment to the

involving entities, routing of situation information from the sensing entities to the de-

ciding entities, data fusion and aggregation on the way to the deciding entity, and data

fusion and aggregation at the deciding entity, deciding to an action according to the

current observed situation, routing of decision from the deciding entities to the acting

entities. There are also some integral tasks like, temporal and spatial synchronization

of the involving entities.

1.2. Physical Deployment of the Sensing Entities

The physical positioning of the sensors effects coverage, communication cost, and

resource management. The easiest technique to deploy sensors is the random deploy-

ment. However, more intelligent techniques for the initial deployment of sensors and

the deployment tuning are required. In [70, 71, 72], the authors propose a tuning al-

gorithm on the random initial sensor deployment based on the virtual attractive and

repulsive forces. In this algorithm, sensors exert a repulsive force to each other if they

are located closer than a threshold distance and an attractive force if they are located

far from a distance threshold. The sensor deployment and sensor planning scheme pro-

posed in [73] is suitable for the cases where we have priori knowledge about possible

targets to be monitored. In the scheme proposed in [74], sensors are deployed in an

incremental manner. That is they are deployed one by one in an adaptive fashion.

In [75], an optimal polynomial time algorithm that uses graph theory and compu-

tational geometry constructs is used to determine the best case and the worst case

coverage. Sensor placement on two and three dimensional grids has been formulated

as a combinatorial optimization problem and solved using integer linear programming
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in [76, 77]. The authors in [78] propose a method for optimally locating the radars to

achieve satisfactory surveillance with limited resources. A probabilistic optimization

framework for minimizing the number of sensors for a two dimensional grid has been

proposed in [79].

1.3. Unique Identity Assignment Problem

We should have a way to uniquely address the entities in the network-centric

warfare enterprise. Traditional networks rely on centralized servers like Dynamic Host

Configuration Protocol (DHCP) server. However, in a mobile ad hoc network, the

DHCP functionality should be distributed among the participating units. This frame-

work should support the joining of a node to the network and the departure of a node

from the network. We can classify the approaches to the unique identity assignment

problem in mobile ad hoc networks into three groups; IPV6 stateless auto configuration

mechanism [80], flooding the entire network [81,82], and distributing the IP addresses

to be assigned among the nodes [83,84,85].

Flooding the entire network is a reactive approach. Distributing the IP addresses

to be assigned, among the nodes is a proactive approach. Both approaches have pros

and cons. The former approach suffers from the efficiency and the scalability due to the

extensive flooding in the network. The later approach is vulnerable to the fraudulent

nodes. In the later approach, each participating node in the network has a pool of

identities to assign to a new coming node.

In the flooding approach, again two alternative strategies exists. First, the new

coming node chooses its identification randomly and agrees with the network that it

can use that identification. The second strategy is that the network converges on an

identification to assign to the new coming node.

In the vertical traffic flow, traffic flows towards a sink instead of two peer nodes,

and from sink to downwards. In wireless sensor networks that are in duty of sensing

the close phenomena, we mostly do not need to address sensors uniquely. The sensor
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networks mostly involve in an attribute or location based addressing scheme with a

vertical traffic flow.

1.4. Routing for Sensor Networks

Since, wireless sensing equipments contain limited power capacity, routing al-

gorithms for the wireless sensor networks should be energy aware. Data delivery to

the sink node can be continuous, event driven, query driven, or some combinations

of these. Proposed routing algorithms for the wireless sensor networks can mainly

be classified into three groups; data centric routing, hierarchical routing, and location

based routing.

Data centric routing protocols are query based and they depend on the naming

of the desired data. Data centric routing protocols help in eliminating many redundant

transmissions. Hierarchical protocols aim at clustering the nodes so that the cluster

heads can do some aggregation and reduction of data in order to save energy. Location

based protocols utilize the position information to relay the data to the desired regions

rather than the whole network.

We do not need to give a unique identity to each sensor for the data centric

routing protocols. Routing is done by the attribute based naming. Two approaches

to the data centric routing exist. First, the sensing entities advertise their data and

the sink nodes concerning the advertised data create queries. Second, the sink nodes

generate queries on demand and sensing entities having the queried data send their data

towards the sink node. Former approach is called the Sensor Protocols for Information

via Negotiation (SPIN) [86]. The later approach is called directed diffusion [87]. Many

variants of the directed diffusion approach exist in the literature [27,88,89,90,91,92,93].

The aim of the hierarchical routing is to efficiently maintain the energy con-

sumption of sensor nodes by involving them in multi-hop communication within a

particular cluster and by performing data aggregation and fusion in order to decrease

the number of transmitted messages to the sink. Cluster formation is typically based
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on the energy reserve of sensors and sensor’s proximity to the cluster head [94] [95].

Hierarchical routing protocols proposed in the literature are; Low Energy Adaptive

Clustering Hierarchy (LEACH) [96], Power Efficient GAthering in Sensor Informa-

tion Systems (PEGASIS) [97], Hierarchical PEGASIS [98], Threshold sensitive Energy

Efficient sensor Network protocol (TEEN) [90], Adaptive Threshold sensitive Energy

Efficient sensor Network protocol (APTEEN) [99], Energy aware routing for cluster

based sensor networks [100], self organizing protocol [101].

Location based protocols exploit the advantage of location awareness of the sens-

ing and the querying nodes. Using the location information, these protocols reduce the

number of messages transmitted. Examples of the location based protocols in the liter-

ature are, Minimum Energy Communication Network (MECN) [102], Small Minimum

Energy Communication Network (SMECN) [103], Geographic Adaptive Fidelity [104],

Geographic and Energy Aware Routing (GEAR) [105].

There are some routing protocols proposed for wireless sensor networks that the

route setup is modeled and solved as a network flow problem [27, 106, 107]. Finally,

another group of protocols exist in the literature that consider QoS requirements for

the wireless sensor networks [108,109,110].

1.5. Data Fusion/Aggregation

Data fusion is usually defined as the seamless integration of data from disparate

sources. Data aggregation can be interpreted as a set of automated methods of combin-

ing the data coming from many sensors into meaningful information [96]. An example

of a data fusion system is the human and animal brain. The brain integrates the sensory

information namely taste, smell, touch, sound, and sight to have a better assessment

of the environment and evaluation of threats to increase the chance of survivability.

Sensor fusion approach [111] is used in many engineering problems like, guidance, nav-

igation, and control of vehicles that require large number of information from different

sources [112]. There are also vehicle and target tracking applications employing fused

data for better estimation of the vehicle and target position [113].
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Data fusion techniques combine data from multiple sensors to achieve improved

accuracies and more specific inferences than could be achieved by use of a single sensor

alone [111]. Different sensors measuring the same physical phenomena reduce the

uncertainty with the aid of the redundant data [114]. Different sensors measuring

different aspects of the sensed environment reduce the uncertainty by means of the

data diversity. An example of the data diversity is seen in an optical sensor and a

radar sensor measuring the distance of an obstacle from a robot on which they are

mounted. Another advantage of data fusion is that different sensors may observe a

different subset of the environment space. Fusing this sensory information provides a

broader environmental vision. In this way, we achieve data complementarity.

The most common data fusion/aggregation functions can be considered as the

suppression (eliminating duplicates), minimum, maximum, average, count and sum.

In a network-centric warfare environment, we need the tracking information about the

threats. A track involves the history information about a reported contact. With the

knowledge of the state history about a track, we can infer the estimates of the future

states of the track. This future estimation has the crucial importance for the solutions

of the fire control problems and for reducing the state observation noise. Hence, the

sensors of the network-centric warfare should report not only the existence of a threat

but also the exact position of the thread. New threat detection has three possibilities

concerning the data association. First, the new observation can be the new state of an

existing track. Second, the new observation can be a totally new thread; finally, the

new observation can be false/fake detection.

Data fusion is performed based on one of the following approaches [112]; the prob-

abilistic models like Bayesian reasoning, evidence theory, robust statistics, or recursive

operators, the least-squares techniques like Kalman filtering, optimal theory, regular-

ization, or uncertainty ellipsoids, and the intelligent fusion using fuzzy logic [115],

neural networks [116], or genetic algorithms [117].

There are two main approaches in triggering the data gathering process. In the

first approach, the sink node disseminates its interest to the sensing nodes. This is also
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known as querying [118]. The sensing nodes in reply, send their data to the sink node

[87]. In the second approach, sensing nodes advertise their information and any sink

node interested in that information requests the data [86]. The place of the aggregation

provides another classification of the data aggregation techniques [119]. Aggregating

the data in the interior router sensors on the way to its destination sink node is called

as in-network aggregation. Aggregating the data from different sensors only at the

sink node and forwarding the information received from other sensors towards the sink

node without any processing is called out-of-network aggregation. Former reduces the

network traffic, however requires some processing capability at the sensor nodes and

introduces some processing delay at the sensor nodes. The node, which will perform

an aggregation, should wait for the information from the other sensors. This also

introduces a data collection delay at the aggregation node. In the later approach,

simpler sensor nodes may be employed and the sensor routing delay decreases. However,

the network traffic increases due to the redundant data. The sink node that will perform

the out-of-network aggregation should have more processing capability to aggregate

massive amount of data. The in-network data aggregation in which every intermediate

node performs an aggregation on its received data has better performance in terms of

the network communication cost than the out-of-network aggregation in which only

the sink node performs the aggregation on the received data. This phenomenon has

been shown theoretically in [120] and experimentally in [121]. The power consumption

of each sensor node tends to be dominated by the cost of transmitting and receiving

messages. In terms of power consumption, transmitting a single bit of data is equivalent

to processing 800 instructions [122]. In the out-of-network aggregation approach, nodes

close to the root send more data than the leaf nodes so that the power of the nodes

closer to the sink node are drained off much earlier than the leaf nodes in the hierarchy.

In-network aggregation provides fixed length transmission regardless of the depth of

the sensor nodes in the aggregation tree.

In [87], authors introduce directed diffusion, where the sink node sends its interest

to the network. Sensor nodes in response send their data to the sink node along

the optimum path produced during the interest dissemination phase. The approach

followed in digest diffusion is as follows; sensors do not send the data directly to the
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sink node; instead network converges on the aggregate value by exchanging data and

current aggregate with one-hop neighbor sensors [123].

Another approach for collecting the desired data at any sink node is; sensor nodes

only send their measurement data to the sink node throughout the network. In this

approach, no local processing of the sensed data takes place. Upon receipt of the sen-

sor measurements, the sink node aggregates all the data it receives. This approach

requires high capacity sink nodes due to the large amount of sensory information to

be aggregated. Another approach is that sensor nodes perform a fusion on their ob-

servations. The former approach is called centralized fusion where the later approach

is called decentralized fusion. For some applications, a mixture of the centralized and

decentralized fusion is employed. The place of the fusion affects the level of fusion.

In the centralized fusion approach, the sink node performs signal level fusion. Sink

node aggregates only raw signal data it received from the sensors. In the decentralized

approach, each sensor performs a signal level fusion on its measurements. This fusion

may be on the time series measurement of the environmental phenomena. The sink

node in the decentralized approach performs a feature level or symbol level fusion. In

the feature level fusion, sensors aggregate diverse data; where as in the symbol level

fusion sensors aggregate complementary data. Another fusion level is the fusion of

probabilities in which the detection reports are related with their accuracy probabil-

ities in the fusion center [124]. Fusion of likelihood ratios related to the detection is

another class of fusion level [125] [126]. Deciding the level of fusion is a design criterion

between the accuracy of fusion and the communication bandwidth exhausted. If the

signal level fusion is performed, detecting entities should communicate all the volume of

their detection signals. Hence, high amount of communication bandwidth is exhausted,

however accuracy of the fusion is high. If the decision is fused, communicated data is

only the decisions of the sensing entities. This phenomena results in low bandwidth

consumption in the expense of decision units participated in the sensing entities. Also,

due to the information loss in the decision process at the local sensing entities accuracy

of the global decision decreases.

The factors affecting sensor network performance are; the performance of com-
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ponent sensors, the locations of the sensors with respect to each other, the velocity of

information, fusion capabilities, tasking capabilities.

1.6. Sensing Options and the Sensor Model

This section reviews a subset of sensors that are well suited for wireless sensor

networks in general. Passive sensors detect and measure various analogues of a target

including its magnetic, thermal, or acoustic signature. Active sensors, such as ultra-

sonic and radar, can measure a target’s presence, range, velocity, or direction of travel

by how the target modifies, reflects, or scatters a signal transmitted by the sensor. In

Table 1.1, we list the strengths and the weaknesses of some sensors [127] [128].

Table 1.1. Strengths and weaknesses of the sensor types.
Sensor

type

Strengths Weaknesses

Magnetic

sensor

-Well defined far-field target phenomenologies. -Poorly defined near-field target phenomenologies.

-Discrimination of ferrous objects. -Limited sensing range.

-No line-of-sight requirement.

-Passive nature.

Radar

sensor

-No line-of-sight requirement. -Active nature.

-Ability to operate through obstacles. -Interference.

-Estimate velocity.

-Resist jamming.

Thermal

sensor

-Excellent sensitivity. -Fresnel lens requirement.

-Excellent selectivity. -Line-of-sight requirement.

-Passive nature.

Acoustic

sensor

-Long sensing range. -Poorly defined target phenomenologies.

-High-fidelity. -Moderately high sampling rates.

-No line-of-sight requirement. -high time and space complexity for signal processing.

-Passive nature.

Chemical

sensor

-No line-of-sight requirement. -Lack of availability for most chemicals.

-Unique ability to detect gaseous compounds.

-Passive nature.

Electric

sensor

-No line-of-sight requirement. -Electrode placement.

-non-contact sensing of non-ferrous, fast or slow-moving,

cool, quiet, odorless, steady, camouflaged objects.

-Nuisance parameters.

-Active nature.

-Interference.

Seismic

sensor

-Long sensing range. -Signal propagation variations due to ground composi-

tion.

-No line-of-sight requirement. -Moderately high sampling rates.

-Passive nature. -high time and space complexity for frequency domain

analysis.

Optical

sensor

-Long sensing range. -Poorly defined target phenomenologies.

-High-fidelity. -Line-of-sight requirement.

-Passive nature. -High pixel sampling rates.

-high time and space complexity for signal processing.

Ultrasonic

sensor

-Multi-echo processing that allows sight beyond small ob-

stacles.

-Signal propagation variations due to temperature and

humidity.

-Line-of-sight requirement.

-Active nature.

-Interference.



23

The sensor observation model is described by O(z|x), where, x is the actual

phenomena, z is the observation. The observation model incorporates observation

uncertainty from all sources, including the noise corruption to the signal, the signal

modeling error of the sensor estimation algorithm, and the inaccuracy of the sensor

hardware [49]. The reason for explicitly representing sensor characteristics is due to

the distributed and heterogeneous nature of the sensor processing tasks.



24

2. DATA PROCESSING ARCHITECTURE

In this section, we first define the process model for the target motion. The next

state of the target is calculated with the knowledge of its current state and the target

state transition matrix. The observation model is defined next to simulate the sensor

behavior when the target’s existence is known. It determines the observable state of

the target by the sensor given the target’s real state. The foundations of the DDF

architecture are presented in Section 2.3.

The following assumptions are in effect regarding the system model:

• Due to the high energy consumption and the cost of the mobile sensor nodes [129],

we assume that immobile sensor nodes are deployed in the surveillance area.

Hostile and hard to access environments may make it necessary to deploy sensors

uniformly randomly from an airplane [130].

• Sensors nodes are deployed and operated in a two-dimensional operation area

in which the effect of the topographical obstructions are omitted. The effects

of the obstructions in the three-dimensional topographical operation areas are

investigated in MS. study of Arslan [131].

• In order to concentrate on the target localization and the energy consumption

performances of the proposed algorithms, we assume that a single target is present

in the environment for the performance evaluation of the MISS and the ICTP

algorithms.

• Sensor nodes communicate with each other using a broadcast communication

mechanism. They receive the broadcasted target location information from every

neighboring node, and update their target state information with a simple ad-

ditive fusion framework. The communicating sensor nodes for collaboration do

not address their information denomination values to any specific sensor node.

Instead, sensor nodes just broadcast their denomination values related with the

information state and the information matrix they have. As a consequence, each

sensor node receiving the denomination values from the neighbors just updates
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its target state information. Broadcasting eliminates the need for a routing algo-

rithm among the sensor nodes. It also helps achieve the aim of having as many

sensor nodes as possible to update their beliefs about the target state.

• Sink nodes are not mandatory. Collaborative tracking makes it possible for any

sensor node in the sensor field to respond to the target location queries from

the command and control center. Moreover, the target position may be queried

by the units that cannot reach or that do not have sufficient time to reach the

sink node or to the command and control center. The soldier in Fig. 1.2 is

an example of such a unit. Hence, any node in the sensor field must have an

acceptable target position information available immediately to the querying unit.

Producing the target position information at the sink node by collecting the

information denominations of the detecting sensor nodes introduces a certain

delay due to the data propagation towards the sink node and processing at the

sink. In addition, the sink node is a single point of failure in the network and

consensus is required for its selection. Instead, we distribute the data processing

throughout the network.

• Sensor node coordinates are known. Sensor position estimation is a problem of

its own (see e.g. [132, 133] for sensor localization), and it is beyond the scope of

this thesis.

• Sampling is synchronized among the sensor nodes. Moreover, sampling periods

are long enough to carry out the necessary communication needed for collabo-

ration in the previous sampling period. While the detection signals are sampled

at period s, the information obtained from the target at s − 1 is broadcasted,

as shown in Fig. 2.1. An optimization for the sampling interval is presented

in [134]. Moreover, a particle filter based distributed target tracking methodol-

ogy for asynchronous sensor networks that do not require time synchronization

protocol is proposed in [135]. Efficient sensor network time synchronization pro-

tocols, in which one or more GPS synchronized sensor nodes synchronize the

whole network, are proposed in the literature [136,137].

The collaborative target tracking paradigm implemented by each sensor node is

explained in Chapter 3. In the sequel, we describe the associated components of the
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Figure 2.1. Time synchronization of sampling and communication periods of the

sensor nodes.

system including the fusion procedure, the sensor selection strategy and the trans-

mission power adjustment scheme, which collectively deliver good performance while

simultaneously keeping the energy expenditure low. We consider a field that is put

under surveillance with a total of NT sensors. The reference will be some arbitrary

sensor node Sm.

2.1. Process Model

The process model describes the target motion. The process model finds the state

of the target at time instant k + 1 given the state of the target at time instant k. The

model contains a noise term to account for possible randomness in the target motion.

The target state is a four-dimensional vector that consists of the two-dimensional po-

sition of the target, (ξ, η), and the velocity of the target at each of these dimensions,

(ξ̇, η̇). The target state vector is defined by

x = [ξ η ξ̇ η̇]T , (2.1)

and it evolves in time according to

x(k + 1) = Fx(k) + v(k)

where x(k) is the real target state vector at time k as given in (2.1), F is the transition

matrix and v is the independent, Gaussian distributed process noise with zero mean
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Figure 2.2. Target motion model.

Figure 2.3. Sensor observation model.

and covariance matrix Q. Target motion is modeled as in Fig. 2.2.

2.2. Observation Model

Sensor observation model is shown in Fig. 2.3. Noise is added to the real target

state in order to model the sensor observation uncertainties. Sensor nodes can only

observe the first two dimensions of the target state. The velocity of the target is not

observable. Furthermore, nodes collect range and bearing data, but they do not have

the coordinates of the target directly. Because the target state is observed in polar

coordinates, linear filtering formulations do not help. There are two implementation

alternatives to remedy this problem: (1) by using the inverse transformation, obtain
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directly a converted measurement of the target position; (2) leave the measurement

in its original form. The former yields a purely linear problem, allowing for linear

filtering. The latter leads to a mixed coordinate filter [138]. In [139], the mean and

covariance of the errors of Cartesian measurements, which are obtained by converting

polar measurements, are derived. This conversion provides better estimation accuracy

than the Extended Kalman Filter, in which the nonlinear target state measurements

are utilized without conversion [139].

The range rm,d and bearing θm,d measured by Sm are defined with respect to the

true range rm and bearing θm as

rm,d = rm + r̃m, (2.2)

θm,d = θm + θ̃m,

where the errors in range r̃m and bearing θ̃m are assumed to be independent and

Gaussian distributed with moments

E[r̃m] = 0, E[θ̃m] = 0, E[r̃2
m] = σ2

rm
, E[θ̃2

m] = σ2
θm

,

where the time-dependence is implicit. The mean target state observed after the un-

biased polar-to-Cartesian conversion is given by [139]

ϕm =




ξc
m,d

ηc
m,d


 =




rm,d cos θm,d

rm,d sin θm,d


− µm (2.3)

where µm is the average true bias

µm =




rm,d cos θm,d(e
−σ2

θm − e−σ2
θm

/2)

rm,d sin θm,d(e
−σ2

θm − e−σ2
θm

/2)


 .
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The covariance matrix Rm of the observation errors in ϕm is [138,139]

Rm =




Rm11 Rm12

Rm21 Rm22


 (2.4)

where

Rm11 = r2
m,de

−2σ2
θm [cos2 θm,d(cosh 2σ2

θm
− cosh σ2

θm
)

+ sin2 θm,d(sinh 2σ2
θm
− sinh σ2

θm
)]

+ σ2
rm

e−2σ2
θm [cos2 θm,d(2 cosh 2σ2

θm
− cosh σ2

θm
)

+ sin2 θd(2 sinh 2σ2
θm
− sinh σ2

θm
)],

Rm22 = r2
m,de

−2σ2
θm [sin2 θd(cosh 2σ2

θm
− cosh σ2

θm
)

+ cos2 θm,d(sinh 2σ2
θm
− sinh σ2

θm
)]

+ σ2
rm

e−2σ2
θm [sin2 θm,d(2 cosh 2σ2

θm
− cosh σ2

θm
)

+ cos2 θm,d(2 sinh 2σ2
θm
− sinh σ2

θm
)],

Rm12 = Rm21 = sin θm,d cos θm,de
−4σ2

θm

[
σ2

rm
+ (r2

m,d + σ2
rm

)(1− eσ2
θm )

]
.

2.3. Distributed Data Fusion Architecture

In the information filter formulation, the information state ŷm and the informa-

tion matrix Ym associated with the state estimate x̂m and the posterior estimation

error covariance Pm of sensor node Sm, m = 1, 2, . . . , NT , at time instant k are given

by

ŷm(k) = P−1
m (k)x̂m(k),

Ym(k) = P−1
m (k).
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Figure 2.4. Information state calculation.

In [140], it is shown that by means of sufficient statistics, the observation ϕm con-

tributes im(k) to the information state ŷm, and Im(k) to the information matrix Ym

where the denomination values are computed as

im(k) = HT
mR−1

m (k)ϕm(k), (2.5)

Im(k) = HT
mR−1

m (k)Hm

with Hm being the observation matrix of Sm that relates the target state estimate x̂m

to the sensor measurement ϕm(k). The node updates its own belief upon receiving its

own sensory observation according to

ŷm(k|k) = ŷm(k|k − 1) + im(k), (2.6)

Ym(k|k) = Ym(k|k − 1) + Im(k)

where ŷm(k|k− 1) represents the information state estimate at time k given the obser-

vations up to and including time k− 1.

Instead of sending the measurements related to the target state to the collaborat-

ing sensor nodes, sharing the information form of the observations results in a simple

additive fusion framework that can be run on each of the tiny sensing devices. The

distributed data fusion process for the information state is given in Fig. 2.4 and for the

information matrix is given in Fig. 2.5. Locally extracted or network received informa-

tion state and the information matrix denomination values are added to the current

information state and the information matrix respectively as they arrive.
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Figure 2.5. Information matrix calculation.

Other advantages of the information form of filtering over the canonical form

are [138]:

• Saving the limited energy resources of sensor nodes by reducing the computational

load of the processors.

• In the canonical form of filtering, updates in the state covariance matrix may

cause loss of symmetry and positive definiteness as a result of rounding errors.

Information filtering improves the numerical accuracy by preserving the symme-

try and positive definiteness property of the state covariance matrix.

• Information filtering provides a means for the start-up of the estimation without

an initial estimate.

Note that the fusion of posterior information requires the extraction of the infor-

mation denomination values. This procedure, which should be done for every received

posterior information, leads to a drastic growth in the amount of processing, especially

with increasing number of sensor nodes in the network. Define Sm(k) to be the set of

nodes that are neighbors with Sm at time k. Letting in(k) and In(k) denote the nth

neighboring node’s contribution to ŷm and Ym, respectively, the DDF equations are

ŷm(k|k) = ŷm(k|k − 1) +
∑

n:Sn∈Sm(k)

in(k), (2.7)

Ym(k|k) = Ym(k|k − 1) +
∑

n:Sn∈Sm(k)

In(k).
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Just before the data at time k are collected, if we are given the observations up

to k− 1, the predicted information state and the information matrix at time k can be

calculated as

ŷm(k|k − 1) = Ym(k|k − 1)FmY−1
m (k − 1|k − 1)ŷm(k − 1|k − 1),

Ym(k|k − 1) = [FmY−1
m (k − 1|k − 1)FT

m + Qm]−1 (2.8)

where Qm is the noise covariance matrix for node Sm, m = 1, 2, . . . , NT .

The state estimate of the target given the observations up to and including the

time k can be found from

x̂m(k|k) = Y−1
m (k|k)ŷm(k|k). (2.9)

The information state and information matrix denominations in (2.6) are func-

tions of ϕm as in (2.5). However, in the DDF paradigm described by (2.7), these are

obtained from the neighboring sensor nodes by means of wireless communication. A

sensor’s own observation and the information received from the neighboring nodes have

similar means for updating the belief about the target state. The ease of the belief

update in the target position estimation is another reason for utilizing the information

filtering while distributing the target tracking process throughout the network.

2.4. Energy Model

Our energy model for the sensor nodes is based on the first order radio model

described in [96, 106, 141]. A sensor node consumes εelec = 50nJ/bit to run the trans-

mitter or receiver circuitry and εamp = 100pJ/bit/m2 for the transmitter amplifier.

Thus the energy consumed by a sensor node i in receiving a b-bit data packet is given
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by

RXi = εelecb

While the energy consumed in transmitting a b-bit data packet to sensor j is given by

TXi,j = εelecb + εampd
2
i,jb

where, di,j is the distance between the sensor nodes i and j and b is the number of

transmitted bits.
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3. MAXIMUM MUTUAL INFORMATION-BASED

SENSOR SELECTION ALGORITHM

Mutual information measures how much uncertainty is removed by one random

variable about another one. By computing the mutual information between the target

state and the measurement, one can gain insight as to how much the current observation

tells about the current target state. The unit of the mutual information measure is in

bits [142].

The mutual information gained with the last observation of the mth sensor can

be formulated as

Jm(k, ϕm(k)) = Jm(k) =
1

2
log

[ |Ym(k|k)|
|Ym(k|k − 1)|

]
, (3.1)

where Ym(k|k) is the information matrix at time instant k after the target state is

observed, m = 1, 2, . . . , NT [140].

In the data fusion paradigm described by (2.7), the number of neighboring nodes,

which is counted by the cardinality |Sm(k)| ≤ NT , is usually too large, causing excessive

data communication in the network and a strain on the energy resources. To alleviate

this problem, we introduce the Maximum Mutual Information-Based Sensor Selection

(MISS) algorithm, where node Sm shares its own information about the target state

with all its neighbors at time k only if the mutual information gain Jm(k) is high enough

to participate in the current cycle. Otherwise, Sm withholds transmission. To that

end, all neighboring nodes of Sm are ranked in decreasing mutual information order.

Let Jm(k) = {Jm,1(k), Jm,2(k), . . . , Jm,|Sm(k)|} be the ordered set of mutual information

values as predicted by Sm at time instant k. Thus, Jm,n(k) is Sm’s estimate of Jn(k), and

Jm,1 ≥ Jm,2 ≥ . . . ≥ Jm,|Sm(k)|. Define J ′
m(k) = {Jm,1(k), Jm,2(k), . . . , Jm,Nmax(k)} ⊂

Jm(k), where Nmax < |Sm(k)|, as the ordered subset that keeps the first Nmax elements
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of Jm(k). Let S ′m(k) ⊂ Sm(k) denote the set of nodes that are sufficiently informative1

to contribute to data fusion at Sm in the kth cycle.

For Nmax < |Sm(k)|, the MISS algorithm can be formulated as follows.

1. If Sm detects the target, and Jm(k) > minJ ′
m(k), then Sm broadcasts its in-

formation state and the information matrix denominations, im(k), Im(k), to the

network, and

S ′m(k) = {Sn ∈ Sm(k), n = 1, 2, . . . , |Sm(k)| : Jm,n ∈ J ′
m(k)} − SNmax .

2. If Sm detects the target, and Jm(k) ≤ minJ ′
m(k), or if Sm does not detect, then

Sm withholds, and

S ′m(k) = {Sn ∈ Sm(k), n = 1, 2, . . . , |Sm(k)| : Jm,n ∈ J ′
m(k)}.

The algorithm tries to limit the maximum number of sensors that communicate in

the neighborhood (in the sense defined by Assumption A3) of each node to Nmax.

Revisiting (2.7), the current belief is updated with the received information from the

nodes in S ′m(k) according to

ŷm(k|k) = ŷm(k|k − 1) +
∑

n:Sn∈S′m(k)

in(k), (3.2)

Ym(k|k) = Ym(k|k − 1) +
∑

n:Sn∈S′m(k)

In(k).

In the event that Nmax ≥ |Sm(k)|, all nodes in Sm(k) simply transmit their data.

The MISS algorithm, implemented by each sensor node, is presented in an algorithmic

fashion in Fig. 3.1.

1The informativeness of a sensor node will be associated with a quantitative measure in (3.3).
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Figure 3.1. Target tracking algorithm employed by a detecting sensor node.
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For some sensor node Sm to implement the MISS algorithm in the kth cycle,

Sm has to locally create Jm(k). That is, every node needs to estimate the mutual

information values of all its neighbors. Assuming that Yn(k|k − 1) ≈ Ym(k|k −
1),∀Sn ∈ Sm(k), due to the past collaboration among the neighboring nodes, and

Hn = Hm, ∀Sn ∈ Sm(k), because neighboring sensor nodes observe the same properties

of the target, we define

Jm,n(k) =
1

2
log

[ |Ym,n(k|k)|
|Ym(k|k − 1)|

]
(3.3)

where

Ym,n(k|k) = Ym(k|k − 1) + Im,n(k)

with

Im,n(k) = HT
mR−1

m,n(k)Hm. (3.4)

being the information matrix denomination estimate of Sn by Sm. The informativeness

of a node is measured by (3.3), which assesses the reduction in the target state uncer-

tainty with the incoming new data. The higher the value obtained from (3.3), the more

informative the sensor about the target state. Rm,n is the estimate of Sm about the co-

variance matrix of the observation errors by Sn. Consequently, Ym,n is the information

matrix estimate of Sn by Sm. Therefore by (2.4), to have the estimate Rm,n in (3.4)

(and hence the estimate Ym,n(k|k) in (3.3)), it is required that each sensor node holds

a list whose elements are the standard deviations of the target range observations, σrn ,

and the standard deviations of the target bearing observations, σθn , for all Sn ∈ Sm(k).

Moreover, Sm needs to find rn,d, θn,d, which can be determined from rm,d, θm,d and Sn’s

position information, which is assumed to be known. Note that before the observation

at time instant k arrives, node Sm already has the prediction Ym(k|k − 1) about the

target state information at k.



38

The list Jm(k) is formed using the estimated mutual information values of its

neighbors. During the simulation studies, which are reported in Section 3.1, we also

examine the number of times the actual mutual information list differs from the esti-

mated list.

Collaboration among the sensor nodes in the network results in Yn(k|k − 1) ≈
Ym(k|k − 1),∀Sn ∈ Sm(k), which follows from (3.2). If every node in the network

was able to communicate with the others (i.e., fully connected network topology), the

equality Yn(k|k− 1) = Ym(k|k− 1) would hold. The reason for having Yn(k|k− 1) ≈
Ym(k|k − 1)) lies behind the fact that the communication range is much larger than

the detection range of the sensor node, Sm. With its own observation from the target,

Sm can find Ym(k|k). The decision as to whether Sm should collaborate with Sn or not

depends on the utility of the information that comes from Sn, and it should be made

before Sn transmits. To remedy this, we assume that Sm and Sn detect the target at

the same location. With the aid of this assumption, Sm can predict Ym,n(k|k) and use

it instead of Yn(k|k). Moreover, Sm neglects the discrepancy between Ym,n(k|k) and

Yn(k|k) that is caused by the observation noises of Sm and Sn. A better approach

in terms of precision would be Sm to predict the target position and the uncertainty

estimation of Sn using the mean of L predictions. However, this would incur a delay

and an increase in the processing power requirements.

3.1. Performance Evaluation of the MISS Algorithm

We run Monte Carlo simulations to examine the performance of the proposed

MISS algorithm in terms of power consumption and target localization accuracy. We

examine two scenarios: the first is the sparser one, which consists of 300 sensor nodes

randomly deployed in a 200 m × 200 m area. The second is a denser scenario in which

800 sensor nodes are placed in the same area. All data points in the graphs represent

the means of twenty runs. A target moves in the area according to the process model

described in Section 2.1. We use the parameters of the TWR-ISM-002-I micro-power

impulse radar (MIR) with pseudo-random signaling whose lifetime is up to several

years on AA batteries [143]. The integrated sensor processor board, MIR board, MIR
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Figure 3.2. Integrated processor board, MIR board, MIR antenna board, and

battery [2].

antenna board, and the battery is redrawn from [2] in Fig. 3.2. Fig. 3.3 shows the

picture of this integration and Fig. 3.4 shows the packed MIR. Typical detection range

of a TWR-ISM-002-I is 18 meters [3]. As in [139], we assume constant range and

bearing standard deviation of σrm = 0.1 m and σθm = 1o, respectively, for all sensory

observations.

The sensor node tracks the target locally using the information form of the

Kalman filter [144] as described in Section 2.3. If the sensor does not detect a tar-

get, it updates its belief about the target state according to the track history.

In collaborative information fusion, if a sensor node is eligible to share its belief

about the target state with other sensor nodes, it broadcasts its information state and

the information matrix denominations. Sensor nodes update their belief about the

target state with these received denominations as described in Section 2.3.

The simulations are run for a flat, rural setting where the radio signal propagation

is characterized by the shadow-fading model with parameters given in Table 3.1 [145].
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Figure 3.3. Integrated circuit boards of the MIR [2].

Figure 3.4. Packed MIR [3].
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Table 3.1. Shadow fading communication model parameters.

Carrier frequency 1.8 GHz

Path loss exponent 2

TX & RX antenna height 0.1 m

Shadow-fading standard deviation 4

Sensor node transmission power -30 dB

As the target state transition matrix and the target state transition covariance, we

respectively use

F =




1 0 1 0

0 1 0 1

0 0 1 0

0 0 0 1




, Q = ζ ·




0.1 0 0 0

0 0.1 0 0

0 0 0.1 0

0 0 0 0.1




.

for all sensors where ζ is the target maneuvering index. A lower ζ value means that the

target maneuvers slowly, and vice versa. In the simulations, ζ is set to unity. A sensor

node can only observe the position related with the target. The velocity information

is not directly observable. We therefore use

H =




1 0 0 0

0 1 0 0




as the observation matrix of each sensor node.

Even for the sparse scenario, the mean number of sensor nodes detecting the

target is 14 so that at most 14 sensor nodes can actively participate in the collabora-

tion. Hence, it is assumed that the sampling period of the signals from the target is

sufficiently long to allow for the collaboration of 14 nodes.

On average, 12 per cent of the sensor nodes are located in positions different than

the true mutual information list. Moreover, an inaccurately formed list contains on

the average just two sensor nodes that are ranked in wrong positions in the mutual



42

information list. This deviation from the correct list is acceptable from a practical

standpoint as evidenced by the performance graphs. The reason behind the successful

mutual information score list formation lies in the fact that communication ranges are

more far-reaching compared to the detection ranges of the sensor devices. This re-

sults in consistent posterior target information state and information matrix estimates

with collaboration, which in turn help generate consistent mutual information scores

throughout the sensor network. Inconsistencies in the target information state and

information matrix estimates are caused by sensor nodes which cannot hear each other

primarily due to radio propagation characteristics, including path loss.

Tests show that average target localization errors are on the order of 0.5 meters

based on 20 simulations, each one run for 100 seconds and with a distinct random

seed. The sensor with the worst target position estimation has a localization error

of 3.7 meters. Target localization errors are measured from the weight center of the

target, which results in point target tracking errors. Using the region centroid for the

tracking system is investigated in [146].

The WSN has two modes of operations, namely the searching and the tracking

modes. Any sensor that detects a target or receives a tracking mode alert from a

neighboring sensor node goes into tracking mode and warns the neighboring nodes to

do the same. In the tracking mode, the communication transmitter circuit is activated

according to the selective activation strategy with the maximum mutual information

metric whereas the receiver circuit and the sensor circuit are active all the time. How-

ever, in the searching mode, we utilize a duty-cycled activation in which the sensor

node receiver and sensing circuit is active for some duty cycle and inactive thereafter.

In the simulations, we compare the mean error about the target localization for the

collaborative tracking framework described in Section 2.3. We achieve the maximum

tracking accuracy when all sensor nodes detecting the target participate in the DDF

task. As the number of sensor nodes allowed to participate in the fusion task is re-

duced, the tracking quality deteriorates. This yields higher localization errors about

the distributed target position estimates. However, when fewer sensor nodes take part

in the collaboration, fewer communication packets travel in the network. A reduction
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Figure 3.5. Target trajectory as seen by the sensor node represented with a solid dot

(•) in the 300-sensor scenario.

in the number of sent packets affects the energy expenditure of the wireless sensor

devices directly. Selecting the sensor nodes to actively participate in the fusion task

in an intelligent manner improves tracking quality while allowing the same number

of sensor nodes to communicate. Fig. 3.5 depicts the 300-sensor scenario, target lo-

cation observation errors, Kalman and information-filtered target localization errors,

and cooperative information-filtered target localization errors from the viewpoint of

the sensor node that is marked as a solid dot at the grid point (132,40). As the target

moves away from the sensor node, observation errors increase. Kalman or information-

filtering reduces the observation errors. However, at some target maneuver points, if

the sensor cannot detect the target, the node tracks the target position by resorting

to the target history only. In other words, the Kalman gain is set to zero if the sensor

cannot detect the target. This results in the erroneous linear tracking of the target

until a positive detection is achieved. Poor detection performance results if target ma-

neuvers are missed by the sensor. With the aid of collaboration amongst the sensor

nodes, these target maneuver misses are avoided. We track the target for 100 seconds

in the simulations.
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Figure 3.6. Mean error comparison for the sparse scenario.
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Figure 3.7. Mean error comparison for the dense scenario.

In collaborative target tracking, selecting the participating active sensor nodes

randomly means that a node detecting the target broadcasts its information immedi-
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ately if the maximum number of sensor nodes to participate, Nmax, has not yet been

reached. This can be decided by counting the number of target position announcements

received from the neighboring sensor nodes. The competing approach considered in the

simulations selects the closest sensor nodes to the target location in terms of the Ma-

halanobis distance, which differs from the Euclidian distance in a way that it takes

into account the correlation in the uncertainty over the target position. Mahalanobis

distance between the two random vectors, the observed target position ϕm(k) and the

sensor position LS(k), is defined as

DM

(
ϕm(k),LS(k)

)
=

√(
ϕm(k)− LS(k)

)T
Pm(k)−1

(
ϕm(k)− LS(k)

)

where Pm(k) is the covariance matrix of the sensor observations at time k. If Pm(k)

equals the identity matrix, then the Euclid and Mahalanobis distance measures are the

same [147]. Figures 3.6 and 3.7 show, for the sparse and dense scenarios respectively,

that as the maximum number of sensor nodes allowed to communicate increases, the

mean error occurring throughout a 100-second scenario decreases for all three sensor se-

lection algorithms. Target localization errors are calculated each second. For the cases

studied with the sparse scenario, selecting sensor nodes which improve the global belief

about the target position according to the mutual information measure results in aver-

age tracking quality improvements of 4.7 per cent and 10.8 per cent over the minimum

Mahalanobis distance-based sensor selection and random selection, respectively.

For the dense scenario of 800 sensors, these improvements with MISS respectively

become 8.9 per cent and 19.4 per cent for the two selection strategies.

Fig. 3.8 depicts the total exhausted energy in the network for all three sensor

selection algorithms for the sparse scenario. The consumed energy grows as the max-

imum number of sensor nodes that are allowed to communicate increases. This is a

natural result of the increasing number of communication packets in the network. How-

ever, the sensor selection algorithm does not have any effect on the exhausted energy

of the network. The same arguments are also valid for the dense scenario, However,

due to the broadcast-based communication mechanism among the sensor nodes, incre-
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Figure 3.8. Comparison of the consumed energy for the sparse scenario.
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Figure 3.9. Comparison of the consumed energy for the desired target localization

accuracies for the sparse scenario.
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Figure 3.10. Comparison of the consumed energy for the desired target localization

accuracies for the dense scenario.

menting the number of deployed sensor nodes results in a rise in the total consumed

communication energy. The increase in the mean exhausted energy with the increment

in the number of deployed sensor nodes is caused by the receivers of the sensor nodes.

Broadcast messages are received by more sensor nodes in the dense scenario than in

the sparse one.

For a given target tracking accuracy level, we examine the amount of conserved

energy by selecting the sensor nodes to participate in the collaboration in an intelligent

manner. If we select 0.4 meters as the target tracking accuracy level operating point,

the energy savings attained can go up to 30 per cent for the sparse scenario and 75

per cent for the dense scenario. Figures 3.9 and 3.10 depict the energy savings for the

given target tracking accuracies for the sparse and dense scenarios, respectively.
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4. AN INFORMATION-CONTROLLED TRANSMISSION

POWER ADJUSTMENT SCHEME

In this section, we introduce the Information-Controlled Transmission Power ad-

justment (ICTP) scheme as the energy saving strategy, in addition to the MISS algo-

rithm. The block diagram representation of the sensor node whose task is distributed

target tracking with MISS and ICTP is shown in Fig. 4.1. Sensory observation is

transferred to the information extractor module to retrieve the information state and

the information matrix denomination values from the received observation using (2.5),

which are then passed to the local information filter module where local target tracking

takes place according to the operations in (2.6). The target state belief obtained from

the local information filter is handed over to the collaboration logic and the network

information filter modules. Using the mutual information measure in (3.3), the collab-

oration logic decides if the sensor node is going to share the current target observation

with the network or not. The collaboration logic works as described in Chapter 3. The

network information filter is the place where the information state and the information

matrix denominations received from the neighboring sensor nodes are incorporated to

the current target state estimate of the sensor node according to (3.2). The resulting

collaborated target state estimate is passed to the target next state predictor module

which functions as described by (2.8).

The ICTP scheme is embodied in the power adjustment logic module in which

a node consults the mutual information list index of the sensor node and the preset

power adjustment pattern, and subsequently decides on the transmission power for

communicating its information state and information matrix denominations to the

network. Sample power adjustment patterns are shown in Fig. 4.2. In general, each

pattern consists of an ordered set of transmission power levels, P = {P1, P2, . . . , PNmax}
where P1 ≥ P2 ≥ . . . ≥ PNmax . If the node Sm is such that Jm(k) > minJ ′

m(k) and

if Jm(k) is ranked `th in the ordered set J ′′
m(k) that lists J ′

m(k) and Jm(k) together,

then Sm broadcasts with power P` at k. If Sm is ranked first in J ′′
m(k), then it has the
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Figure 4.1. Block diagram of the sensor node employing the MISS and ICTP

algorithms.

privilege of broadcasting with the maximum power, P1.

Transmitting with a lower power shortens a detecting node’s communication

range, which results in a reduced degree of collaboration for the DDF architecture.

With the ICTP scheme, we aim to decrease the energy expenditure of each sensor

node by regulating its communication transmission power according to its information

content. The higher the mutual information a sensor node has about the target state,

the more the communication transmission power it uses. Low-power transmission of a

sensor node having low information assists the non-detecting sensors to update their

belief about the target state.

The performance of ICTP varies depending on the way the network is queried

about the target location information. In sensor network applications, the data col-

lected by the network are carried to a processing (data collection) center on a periodic

basis or upon a query [148]. The DDF paradigm makes it possible to query any one

of the nodes in the WSN to get an immediate response owing to the communication

ranges that are far-reaching in comparison to the sensing ranges. Alternatively, the

processing center can be informed by the most informative sensor node (MISN), which

is the one with the maximum mutual information J1. There is a delay-accuracy trade-

off in the above-mentioned two query-response mechanisms. Routing the query packets

to MISN increases the query-response time of the WSN. Responding to a query imme-

diately without consulting the MISN, on the other hand, reduces the query-response

time with the cost of reduced target localization accuracy.
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Figure 4.2. Power adjustment patterns.

The experiments in Section 4.1 show that if a sensor network queries any one of

its sensor nodes, then reducing the transmission power deteriorates the overall tracking

quality due to the reduced degree of collaboration. However, if the MISN is queried,

then adjusting the communication transmission powers of the sensing nodes according

to their information content lowers the energy consumption while maintaining the

tracking accuracy.

The MISS algorithm requires that every sensor node be aware of the expected

mutual information content of their neighboring nodes. This facilitates each sensor

node to locate the MISN in its vicinity. The main cost incurred in querying the MISN

is in routing the query packets to that node, and routing the target state informa-

tion packets back to the querying node. The pseudo-code of the algorithm of a sensor

node running the ICTP scheme in the DDF architecture is given in Fig. 4.3. Sensor

nodes obtain the target state observations in Statement 1 of the algorithm in Fig 4.3.

Information state and the information matrix denominations are calculated in State-
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ments 2 and 3. The next information state and the information matrix are predicted

in Statements 4 and 5. In Statements 6 and 7, the local information filter runs for

the predicted information state and the information matrix together with the infor-

mation denominations obtained from the local sensory observations about the target

state. The sensor’s own mutual information value is calculated in Statement 8 with

the last observation. In Statements 9, 10, and 11, the neighboring sensor nodes’ mu-

tual information values are estimated using the current local target state estimate and

the previous collaborated target state estimate. The neighboring sensor nodes and

the sensor node itself are sorted according to the decreasing mutual information scores

in Statement 12. In Statement 13, the index of the sensor node itself in the sorted

mutual information score list is found. In Statements 14, 15, 16, and 17, using the

mutual information score index, the sensor node decides to actively participate or not

to participate in the collaboration cycle. If the index value is smaller than the maxi-

mum number of sensor nodes allowed to communicate, then the sensor node calculates

the transmission power to broadcast the information state and the information matrix

denominations to the WSN using the mutual information score index value and the

transmission power reduction pattern used. In Statements 18, and 19, the sensor node

updates the information state and the information matrix related with the target lo-

cation using the received information state and the information matrix denomination

values from the neighboring sensor nodes. The estimated target position is calculated

in Statement 20 of the algorithm in Fig. 4.3 using the collaborated information state

and the information matrix values.

The time complexity of the algorithm in Fig. 4.3 is bounded with the cardinality

of the set of neighboring sensors in lines 9-11 and 18-19. Hence, the time complexity

of the algorithm in Fig. 4.3 is O(|Sm(k)|). Assuming 50 cpu cycles for each floating

point operation [149], 156750+8450|Sm(k)| cpu cycles are required for the algorithm in

Fig. 4.3. Moreover, typical 15 neighboring sensor nodes utilize 2.18 per cent cpu of an

xbow sensor node with an Intel PXA271 xscale processor [4] working with 13 MHz in

low frequency mode. The processor frequency can be scaled up to 416 MHz. PXA271

processor exhausts 10.73 nJ per cpu cycle [4]. Using 2 × AA batteries each of which

has 11050 J energy can operate the sensor node running algorithm in Fig. 4.3 with a
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typical of 15 neighbor sensors in tracking mode for 1701 days.

4.1. Performance Evaluation of the ICTP algorithm

We run Monte Carlo simulations to examine the performance of the proposed

ICTP scheme in a 200 m × 200 m area in which 500 sensors are deployed randomly. All

data points in the graphs represent the means of ten runs in which not only the detection

and communication uncertainties but also the random sensor deployment change. A

target moves in the area according to the process model described in Section 2.1. We

utilize TWR-ISM-002-I radar with pseudorandom signaling, whose typical range is 18

meters. The sensor tracks the target locally using the information form of the Kalman

filter as described in Section 2.3. In our simulations, we use the shadow-fading radio

propagation model for the communication signals.

We test the performance of the proposed ICTP scheme according to three power

adjustment patterns depicted in Fig. 4.2. Pattern 3 exhibits the steepest power re-

duction, while Pattern 1 has the softest slope. In Fig. 4.4, we observe that the energy

savings increase proportionally to the steepness in power reduction. On the other hand,

Fig. 4.5 points out that the mean error increases as well with the steepness of the power

adjustment pattern. Lines representing the maximum mutual information present the

case in which no power adjustment is made. If we adjust the transmission powers of

the sensor nodes according to Pattern 3, on average, we achieve 2.14 times less energy

usage with respect to the case in which no transmission power adjustment is made

(Fig. 4.4). However, power adjustment, on average, doubles the target localization er-

rors as observed from Fig. 4.5. We conclude from Fig. 4.6 that the gain in terms of the

exhausted communication energy does not compensate the increase in the target local-

ization error. Hence, reducing the communication transmission power is not desirable.

In Figures 4.4, 4.5, and 4.6, we measure the expected target localization error when the

WSN responds to queries from any sensor node in the network. Another possibility is

to query the MISN in the network, which is the one with the highest mutual informa-

tion about the target state. This querying scheme has the cost of locating the MISN

and routing the target location information query and response packets to and from
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it. The cost of locating the most informative sensor node is negligible as described at

the end of Chapter 4.

When the MISN is queried, as the power reduction pattern becomes steeper, the

exhausted energy drops as shown in Fig. 4.7, and the target localization error decreases

as shown in Fig. 4.8. The reason for this is that the less informative sensor nodes begin

to harm the target localization performance of the more informative nodes with their

marginal information. In Fig. 4.9, we see that the power reduction Pattern 3 consumes

the least amount of energy with ICTP. We observe the ceiling effect in the exhausted

energy when the number of sensor nodes allowed to communicate reaches 14 (Fig. 4.7).

The reason of this ceiling effect lies behind the number of detecting sensor nodes. For

the cases studied in the simulated scenario, the mean number of detecting sensor nodes

is about 14. Even if we allow more than 14 nodes to communicate, the rest will not

have detection information to share with the others. For the cases studied, the mean

distance of the most informative sensor node to the target is 2.17 meters. This results

in very accurate target localization if the MISN is queried. If the most informative

sensor node will be queried, operating at the minimum energy operation point is a

rational decision. The minimum energy operation point is achieved only if the MISN

shares its information with the neighboring nodes as shown in Fig. 4.7. Transmission

power adjustment according to Pattern 3 results in 2.11 times the energy savings on

the average compared to having no power adjustment (Fig. 4.7). On average, 23.7 per

cent improvement is achieved in the target localization as deduced from Fig. 4.8. This

happens due to the filtering of the information coming from the less informative sensor

nodes that corrupt the information of the more informative sensor nodes.

A 2.34-fold energy conservation is possible for a desired target tracking accuracy

over the no power adjustment scheme as deduced from Fig. 4.9.

We also examine the case where only the MISN broadcasts its data. Thus, other

detecting sensor nodes do not transmit, and they consume energy just to process the

incoming information signal from the most informative sensor node. The line with

stars in Fig. 4.7 depicts the low energy exhausted by the sensor nodes if only the
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MISN broadcasts. However, the error of MISN is high as demonstrated with a line

with stars in Fig. 4.8, because the MISN changes in time as the target moves. Low

level of collaboration results in the new most informative sensor node having low prior

information about the target. The prior information obtained by means of collaboration

causes the information-filtering performance of the most informative sensor node to

improve.
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Figure 4.3. Pseudo-code of the MISS/ICTP algorithm running on a sensor node

described in Fig. 4.1
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Figure 4.4. Mean consumed communication energy if any sensor node in the network

can be queried.
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Figure 4.5. Mean target localization error for different power adjustment patterns if

any sensor node in the network can be queried.
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Figure 4.6. Effect of power adjustment on the consumed energy for the desired target

localization accuracies if any sensor node in the network can be queried.
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node is queried.
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Figure 4.8. Target localization error for different power adjustment patterns if the
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5. MULTIPLE SENSOR MULTI-TARGET TRACKING

SYSTEM ARCHITECTURES

In this section, architectures for tracking multiple targets using multiple sensors

are examined according to their communications cost. The local sensor tracks and the

local measurements are the two possible information units to be shared with the sensor

network. Also the place of the track fusion for the former and the composite tracker

for the later is another classification criteria for the multi-sensor multi-target tracking

architectures. In the centralized tracking, local measurements and the local sensor

tracks are send to a central track fusion or composite tracking entity. In network-

centric tracking, there is no need for a central entity for track fusion or composite

tracking. Multiple-sensor multiple-target tracking system architectures are given in

Fig. 5.1.

• Centralized track fusion with reporting responsibility: Local sensor tracker caries

on tracking related with its detections, however only the information related with

the assigned track are send to a central track database. Optionally, local track

database may send the track information in the central track database back to

the sensors. Each track is reported by just one sensor, hence, central database

only appends the track reports from the responsible sensors.

• Centralized track fusion: Differs from the centralized track fusion with reporting

responsibility in the sense that all the local sensor tracks are sent to the central

Figure 5.1. Multi-sensor multi-target tracking architectures.
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track fusion center, where the track-to-track association from different sensors

takes place.

• Centralized tracking with reporting responsibility: The sensor sends the local

sensor measurements related with the target it is responsible for monitoring.

The centralized tracker performs the tracking operations. With the knowledge

of sensor target assignment, the central tracker knows with which target in the

central track database the received sensor measurements are related. Hence, an

associator is not needed in this architecture.

• Centralized tracking: Local Sensor measurements are sent to a central composite

tracker which performs the association and the tracking of the targets. Optionally,

tracks in the central track database may send back to the sensors.

• Network-centric track fusion with reporting responsibility: In this architecture,

each sensor updates all of its tracks with own measurements, however only one

sensor is responsible for reporting about the track state. The responsible sensor

is chosen according to the accuracy of the target state estimate. This architec-

ture, as with the other reporting responsibility architectures, has the problem of

deciding and assigning the responsible sensor for the track.

• Network-centric track fusion: Track information related with all the local tracks

are shared with the network. Track-to-track fusion takes place in all sensors.

• Network-centric tracking with reporting responsibility: Sensor measurements re-

lated with the target that the sensor is responsible for monitoring are shared

with the sensor network. Measurements related with the targets that the sensor

is not responsible for monitoring are used to track the targets locally. The locally

tracked targets are also updated with the measurements received from the other

sensors.

• Network-centric tracking: Local sensor measurement reports related with all the

detected targets are shared with the network. Composite tracking takes place in

every sensor using the remote sensor measurement reports.

We compare the multi-sensor multi-target tracking architectures in terms of their

exhausted energies and mean target localization accuracies. For the composite track-

ing architectures, measurement reports are shared with the network. Information state
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vector size is four. We reserve 32 bits for each element of the information state. 128

bits are required to share the information state with the network. 10 elements of the

4x4 information matrix are enough to share the information matrix with the network

whose each element is represented by 32 bits. A total of 448 bits are needed for a

data packet carrying one track measurement report. We reserve 64 bits for auxiliary

usage in the data packet. 512 bits long data packets are used for composite tracking

architectures. Track fusion architectures require exchange of track position in two di-

mensions and 3 elements of the 2x2 covariance matrix each is represented by 32 bits.

With 64 auxiliary reserved bits 224 bit packets are used for track fusion architectures.

We do not need to exchange the information matrix and the covariance matrix for the

reporting responsibility architectures. Each track is maintained with their responsible

sensors. Hence, the required packet sizes are reduced to 192 and 128 for the composite

tracking and the track fusion architectures respectively. We run Monte Carlo simula-

tions that consists of 900 sensors which are randomly deployed in a 20 m × 200 m area.

Five targets move in the area as in Fig. 6.3. The comparison of the exhausted energies

and the mean target localization errors for the multi-sensor multi-target tracking sys-

tem architectures are presented in Fig. 5.2 and Fig. 5.3 respectively. Network-centric

tracking exhaust most energy among the other architectures. Reporting responsibility

architectures have higher target localization errors. The reason lies behind the lack

of collaboration. Centralized tracking architectures require a center node to exists in

the system. For the sake of simplicity, we assume one center node in the middle of

the surveillance area throughout the scenario, whose energy assumed to be unlimited.

110 meters approximate communication range of a sensor node makes each node in

a 20 m × 200 m area to communicate with the center node. For the practical cases,

the center node may be outside the area or the center node may change over time.

For the communication energy in the centralized architectures, we assume the sensor

nodes transmit with a power sufficient for them to communicate with the center node.

Although the centralized track fusion appears to be a good compromise among the

multi-sensor multi-target tracking system architectures, the problem with the central-

ized track fusion architectures arises when the local trackers use different target motion

models or operate on different target state spaces [150,151]. Moreover, the center node

is the single point of failure and a consensus among the sensor nodes is required for the
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Figure 5.2. Exhausted energy comparison of the multi-sensor multi-target tracking

architectures.

election of the center node. Due to the robustness, reliability, expansibility, modular-

ity, and the distributed operation properties, in Chapter 6, we define a network-centric

tracking framework for the WSN nodes and try to achieve the performance improve-

ments in the network-centric tracking architecture.
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Figure 5.3. Mean error comparison of the multi-sensor multi-target tracking

architectures.
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6. COLLABORATIVE DISTRIBUTED MULTI-TARGET

TRACKING FRAMEWORK

The distributed multi-target tracking framework is presented in Fig. 6.1. Modules

shown at the upper part of the track list manager module belong to the network track

manager part. Modules shown at the lower part of the track list manager module

belong to the local track manager part.

On the local track manager part, the sensor receives the targets range and bearing

data with the aid of its sensory circuit. Information extractor converts the range

and bearing data related to the targets within the sensors detection range into the

information denomination form according to (2.5). These information denominations

are passed to the local plot list manager. Elements of an entry in the local plot list

manager are the information state and the information matrix denomination values.

The local plot list manager can have only one plot related with a track. In other words,

we assume each target can generate at most one plot for the sensor. Since the origins

of the plots in the plot list manager are unknown, we cannot know with which target

the received plot is related. Local track associator takes the current track list from

the track list manager whose elements are the information state and the information

matrix related with the currently tracked targets, and associates the denominations in

the plot list manager with them. In order to carry out the distributed data association,

using (2.8) each sensor calculates the predicted states and the covariances of the targets

in their track-lists using their predicted information state and the information matrix.

Afterwards, a list whose elements are the states of the detections from the targets in

the vicinity is formed. Likelihood of each plot in the plot list to the targets in the

track list is calculated according to the Gaussian distributions whose means are the

predicted states and the covariances as the inverse of the information matrix predicted

in the prediction phase. Each target in the track list can be assigned only one plot

from the plot list. Associated information denomination and track pairs are passed to

the information update filter to update the current track state. Detailed investigations
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Figure 6.1. Distributed multi-target tracking framework.
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related with the track update filter algorithms can be found in MS. thesis by Tolgay

[152]. Information denominations are passed to the collaboration logic manager to

be sent to the neighboring sensors. Collaboration logic manager decides to share or

not to share the denomination values with the neighboring sensors. Denominations

that cannot be associated with the current tracks in the track list are sent to the

local track initiator. New track initiation takes place right after several continuous

detections received from the target. Each information denomination value is assigned

to the track to whom it has the maximum likelihood with the constraint that only

one information denomination can be associated with one track and with one track

at most one information denomination can be associated. In order to satisfy these

constraints, the association of the information denominations in the local plot list to

the tracks in the track list is achieved by evaluating the association likelihoods in a joint

manner. The local track initiator initiates a track and sends the track information to

the track list manager in order to be added to the track list only if the track initiation

criterion is satisfied. e.g., eight continuous detections from the same target have been

received. Detailed investigations of the local track initiation logic by Akduran in his

MS. study [153] show a good compromise with a modified M out of N local track

initiation logic in the cluttered environments.

On the network track manager part; communication circuit of the sensor receives

the information state and the information matrix denominations from the neighboring

sensor which have been decided to be shared with the sensor network by the sensors

that are detecting the target. Different than the local plot list manager, the network

track information denomination list manager may have many plots received from dif-

ferent sensors related with one track. The network track associator, associates the

information denominations in the network track information denomination list man-

ager with the tracks in the track list manager. Shared information between sensors

are the denominations related with the observations, not the target state estimations.

The associator needs target state estimations in order to associate denominations with

them. One solution is to put the burden on the communication and sharing target state

estimates together with the denominations. Instead, by putting the burden on compu-

tation, we update the the local target state estimates with the received denominations
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and afterwards perform the most likely association in a joint manner. The constraint

in the network track associator is that each plot can be assigned at most one target. A

sensor receiving an information matrix and the information state, calculates the target

state information related with the received information from the neighboring sensors.

For each received information, likelihood values according to the local track states are

calculated. As the mean and the covariance values of the local track states, we use the

predicted states and the covariances of them. Associated denomination-track pairs are

sent to the information update filter which updates track states and send them to the

track list manager. Denominations that cannot be associated with the tracks in the

track list manager are sent to the network track initiator to initiate a track immediately

and to send them to the track list manager. Tracks that have not been detected or

reported from the neighbors for the last several cycles (e.g., eight) have been deleted

from the track database in the track list manager.

For both local and the network track manager parts of the distributed multi-

target tracking framework, we use the same validation region definition from [56] given

as;

(ϕ−Hx)TB−1(ϕ−Hx) < 1

where;

B = HPHT + R.

Target-plot pairs are deemed as related if they satisfy the above criterion, and not

related otherwise. Both local and network track associations are done only among

related pairs.

The algorithm of a sensor node that implements the described multi-sensor multi-

target tracking architecture is given in Fig. 6.2.

The time complexity of the multi-target tracking algorithm is O(|Sm(k)|ET ).
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Where, |Sm(k)| is the cardinality of the set of neighboring sensor nodes and ET is the

number of targets in the vicinity. Assuming every target in the vicinity is detected,

multi-target tracking algorithm requires 479200ET +18450|Sm(k)|+50 cpu cycles with

the assumption that each floating point operation can be performed in 50 cpu cycles

[149]. Moreover, typical 15 neighboring sensor nodes and five targets utilize 20.56 per

cent cpu of an xbow sensor node with an Intel PXA271 xscale processor [4] working

with 13 MHz in low frequency mode. The processor frequency can be scaled up to 416

MHz. PXA271 processor exhausts 10.73 nJ per cpu cycle [4]. Using 2 × AA batteries

each of which has 11050 J energy can operate the sensor node that runs the multi-

target tracking algorithm depicted in Fig. 6.2 with a typical of 15 neighbor sensors and

five targets in tracking mode for 180.43 days.

6.1. On the Performance of the Collaboration Logic Manager Part of the

Collaborative Distributed Multi-Target Tracking Framework

We run Monte Carlo simulations that consist of 900 sensors which are randomly

deployed in a 20 m × 200 m valley bottom type strip area. Five targets move according

to the process model described in Section 2.1. Fig. 6.3 shows the scenario. We use

the parameters for the TWR-ISM-002-I radar [3], whose typical detection range is 18

meters. In our simulations, we use the shadow-fading radio propagation model for the

communication signals whose parameters are given in Table 3.1. All data points in the

result graphs represent the means of fifteen runs.

The mean target localization error decreases as the number of targets that a sen-

sor is allowed to report to the network increases. This phenomena is shown in Fig. 6.4

which depicts the target localization performance of the three different target selec-

tion strategies. In the random target selection strategy, collaboration logic manager

selects a random subset of the detected targets about whose information denomina-

tion values will be shared with the network. Targets that have the lower Mahalanobis

distance between the estimated target position and the updated target position with

the latest measurement are selected in minimum Mahalanobis distance based target

selection. This selection is done according to the volume of the improvement achieved
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Figure 6.2. The algorithm of a sensor node to implement the distributed multi-target

tracking framework.
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Figure 6.3. Illustration of the valley bottom type strip simulation scenario.
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Figure 6.4. Mean target localization error of a sensor node.
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Figure 6.5. Mean exhausted energy of a sensor node.

in the target state information obtained with the latest observation. Higher the above-

mentioned improvement, higher the mutual information sensor has about the target

state. Information denominations of the targets about whom the sensor has more mu-

tual information are selected to be transmitted to the network. Fig. 6.4 shows that the

best target localization performance is achieved by selecting the targets according to

the mutual information metric. Mutual information equation is given by

J(k, ϕ(k)) =
1

2
log

[ |Y(k | k)|
|Y(k | k − 1)|

]
,

where Y(k | k) is the information matrix at the time instant k after the target state

is observed. The mean exhausted energy by each sensor is depicted in Fig. 6.5. 19 per

cent more accurate target localization is possible by exhausting 36 per cent more energy

by allowing two targets to be reported to the neighboring sensors instead of one. Six

per cent more accurate target localization can be performed by allowing three target

information to be shared with the neighboring sensors instead of two with the expense of

33 per cent more energy exhausting. We can localize targets four per cent more accurate

by allowing four targets information to be shared instead of three. The penalty of
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Figure 6.6. Mean target localization error of a sensor node compared to the

non-collaborative tracking error.

allowing four targets information to be shared instead of three was 24 per cent. Finally,

three per cent more accurate target localization is possible by allowing information

related to five targets to be shared with the neighboring sensors by exhausting 19 per

cent more energy. We have a decreasing pattern of target localization error gain as

the maximum number of targets about whom the information denominations will be

broadcast by a sensor to the network increases. However, the penalty of exhausted

energy paid to transmit more targets’ information denomination values to the network

keeps almost constant for every additional target to report.

Comparison with only the local tracking mode is shown in Figures 6.6 and 6.7.

The zero value of the maximum number of targets to be reported by a sensor in the

x-axis of these graphs corresponds to the case in which the sensors tracking the target

with their local observations without collaborating with the neighboring sensors.

Simulation results showed that the collaboration improves the tracking perfor-

mance. However, improvements achieved by sharing more than one target information
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Figure 6.7. Mean exhausted energy of a sensor node compared to the

non-collaborative exhausted energy.

with the neighboring sensors result in the increased exhausted energy. Hence, shar-

ing only one target information with the neighboring sensors is a rational decision for

the studied cases. Now, the problem is to decide which target information to share

among the detected targets. For a single target, in Chapter 3 it was shown that the

mutual information is a good measure to select the subset of the sensors to collabo-

rate. Our simulations show that sharing the information denominations of the targets

whose mutual information index among the detected targets is higher, results with the

better target localization accuracy among the random and the minimum Mahalanobis

distance based target selection strategies.

Although the focus of our simulations were on the collaboration logic manager

part of the collaborative distributed multi-target tracking framework described in

Fig. 6.1, keeping the number of shared tracks low, reduces the computational com-

plexity of the network track associator modules of the sensors.

We compare the target localization performances of the single-target tracking
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algorithm without sensor selection and power adjustment with the multi-target tracking

algorithm with one target and perfect association in a 100 m × 100 m area for 100

seconds with 50 sensor nodes and 10 sensor nodes. for 50 sensor nodes the mean target

localization error is 0.5723 m for the single-target tracking algorithm and 0.5548 m

for the multi-target tracking algorithm with 50 sensor nodes. With 10 sensor nodes

in the surveillance area, the mean target localization error is 1.9714 m for the multi-

target tracking algorithm and 1.9856 m for the single-target tracking algorithm. Hence,

single-target and the multi-target tracking algorithms perform similar while five times

less sensor node usage results in 3.5 times increase in the target localization error.

6.2. Association Problems for Multi-Target Tracking

In order a sensor node to follow the states of the multiple targets, the major

problem is to associate the sensory observation with the previous targets in the sensor

node’s track list. False associations result in the updating of the track states in the sen-

sor node’s track list with the wrong observations. As will be shown in the performance

evaluation of the association algorithms in Section 6.4, false associations consequently

reduces the target localization accuracies of the sensor nodes drastically. If sensor nodes

collaborate with each other, aiming to increase the target localization accuracies, the

more challenging problem, for associating the neighboring sensor node’s target kine-

matics reports to the tracks in the sensor nodes track list, arises. We call the former

as the local association and the later as the network association. The local association

constitutes the relations between the sensory measurement and the tracks in the sensor

nodes track list, hence it is the measurement-to-track association, whereas the network

association relates the received track reports of the neighboring sensor nodes to the

tracks in the track list of the sensor node, hence it is the track-to-track association.

In [56], hypothesis testing is proposed to solve the local association problem. If sensor

node Sm has two targets in the track list and observes three targets at time k, the

hypotheses can be formed by;

1. The probability that all the three new observations are related with the three

new targets, maximizes the number of targets in the sensor node’s target list.
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In this case, the sensor node will have five targets in the target list. The sensor

node is not detecting the two targets in the target list and detecting the three

new targets. We can number to the old targets in the sensor node’s track list as

1 and 2, and plausible new targets as 3, 4, and 5.

2. Local association hypotheses for the three new observations with the two existing

tracks in the track list of a sensor node are as in Table 6.1. The sensor node has

13 hypotheses to test. The hypothesis with the highest probability will be the

valid association. The hypothesis in the first line (1,2,5) of Table 6.1 states that

the observation 1 is related with the track 1, the observation 2 is related with

the track 2, and the observation 3 is the new track with number 5. The following

hypothesis in Table 6.1 can be interpreted similarly.

3. While calculating the possibility of the hypothesis 1, the sensor node needs three

possibilities. Namely, the possibility of the observation 1 is related with the

track 1, the possibility of the observation 2 is related with the track 2, and the

possibility of the observation 3 is the new track.

4. Summing these three possibilities yields with the possibility of the hypothesis 1.

5. Calculation of the probability that an observation On is related with a track Ts

in the track list can be carried on by estimating the Ts’s state at time k with the

aid of Ts’s state at time k − 1 in the sensor node’s track list. This operation is

called the time update phase of the track. Similarly the covariance Ps, measuring

the reliability of the Ts’s state at time k can be estimated with the track filtering

operations. Finally, the position of the new observation On in the Gaussian

distribution whose mean is the estimated track state and the covariance is the

estimated track covariance is interpreted as the possibility that the observation

is related with the track.

Each track in the track list of the sensor node is updated using the observation

obtained from the association hypothesis with the highest probability. This update of

the track list is called the measurement update phase. In hypothesis of Table 6.1, false

alarms and clutters are not considered.
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Table 6.1. Hypothesis matrix for the association of the three new observations with

the two existing tracks.

observation 1 observation 2 observation 3

1 2 5

1 4 2

1 4 5

2 1 5

2 4 1

2 4 5

3 1 2

3 1 5

3 2 1

3 2 5

3 4 1

3 4 2

3 4 5

network association problem differs from the local association problem in the sense

that the former is related with the target reports received from the communication

circuitry of the sensor node, while the later is related with the sensor node’s own

sensory observation.

The main difference among the local and the network association problems lies

in the fact that one target can be observed at most once with the sensor node’s on

board sensor, where as one target can be reported as many times as the number of

detecting sensors in the communication range of the sensor node. Hence, the constraint

of one target can be associated with at most one observation, is applicable for the local

association, whereas for the network association this constraint is not applicable.
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6.3. Fuzzy Network Association

Sensor node maintains a validation region for each track in the track list. Every

observation report from the neighboring sensor node within this validation region is a

candidate for updating the related track. Observation reports of the neighboring sensor

nodes, that fall outside of the validation regions of all the track’s in the track list, are

deemed as the new track and added immediately to the track list of the sensor node.

Size of the validation region directly affects to the number of false initiated network

tracks.

If the observation report from the neighboring sensor node, lies within the val-

idation region of just one track in the track list, then the target report is associated

immediately with that track. The problem arises if the observation report from the

neighboring sensor node lies within the validation region of more than one tracks in the

track list of the sensor node. One possible solution to break the tie is to associate the

report from the neighboring sensor with the track, which has the minimum distance

according to a metric, in the track list. Candidate metrics for this association are the

Euclid distance, the Mahalanobis distance, and the likelihood measure of the report to

the track.

Instead of relying on just one metric for the network association decision, we

aim to rely on more than one metrics. With this aim, we take the advantage of fuzzy

logic in mapping different metrics into a single crisp value to be used in the network

association decision. Fuzzy logic also has the advantage of modeling the complex real

world with the expertise that can be expressed easily using the rule set defined by a

model similar to the human reasoning.

Fuzzy association of measurements to existing target tracks was investigated in

[154, 155, 156, 157, 158, 159]. Due to the large number of rules in the fuzzy knowledge

base, the fuzzy logic approach in [154] is computationally infeasible for more than

three or four targets. A fuzzy measurement to track association that can handle the

cases, where the measurements are not well described as Gaussian random variables
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is proposed in [115]. In [160] an adaptive neuro-fuzzy inference system with fuzzy

clustering means algorithm is used for measurement-to-track association. A fuzzy

clustering means algorithm is proposed in [161] for track to track association and track

fusion that requires all the sensor track information to be collected in a fusion center

for processing. A voting based fuzzy rule base is proposed in [162] and [163] to support

the handoff decision of the mobile terminals in an environment with the mobile access

points.

A sensor node Sm uses three fuzzy variables in order to associate the target

observation report Tr of a neighboring sensor node Sn with a track Tl in the track list.

These three fuzzy variables are;

1. Euclid distance between Tr and Tl.

2. Direction difference between Tr and Tl.

3. Speed difference between Tr and Tl.

Each of the three fuzzy variables has three fuzzy sets named LOW, MEDIUM,

and HIGH. Membership functions of the three fuzzy variables are depicted in Fig-

ures 6.8, 6.9, and 6.10 for the Euclid distance, direction difference, and the speed

difference respectively.

We design a fuzzy system with the product inference rule and the centroid de-

fuzzifier. A rule base to mimic the real world behavior is designed by consulting to the

voting results among the defined fuzzy variables. Each fuzzy variable votes one of the

high, medium, or low decision in order to express the degree of belief regarding that

Tr is associated with Tl. Three fuzzy variables can reach to the consensus in seven

different ways as shown in Table 6.2. Three good votes, i.e. low Euclid distance, low

speed difference, and low velocity difference, of the fuzzy variables result with the sev-

enth rule class. Likewise three bad votes result with the first rule class. Consensus on

three good, means that it is most likely that Tr reported by the neighboring sensor is

representing the same physical object with Tl in the track list. Similarly, consensus on

three bad means, it is most likely that Tr and Tl are representing different physical ob-
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Figure 6.8. Membership functions of the Euclid distance.

Figure 6.9. Membership functions of the velocity difference.
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Figure 6.10. Membership functions of the direction difference.

Figure 6.11. Output membership function.
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Table 6.2. Rule classes corresponding to the voting results.

Voting result Rule class

3 Bad 1

2 Bad 2

1 Bad 3

Draw 4

1 Good 5

2 Good 6

3 Good 7

jects. Three voters with three different vote types can result in 33 = 27 different types

of voting as in Table 6.3. Using Table 6.2, possible 27 different cases that can happen

with three voters of three different vote types are classified into seven rule classes as in

in Table 6.3. High Euclid distance, high speed difference, and high direction difference

between Tr and Tl as in the first line of Table 6.3 means three bad votes and consensus

on three bad is the first rule class in Table 6.2. 27 lines in Table 6.3 are the fuzzy rules

of the fuzzy inference system.

Euclid distance, speed difference, and direction difference between Tr and Tl are

the inputs of the fuzzy network association algorithm. 22.5 degree direction difference

is interpreted as 40 per cent low, 40 per cent medium 0 per cent high as in Fig. 6.10.

Together with other input fuzzy variables and using the rule base in Table 6.3, the

input variables are mapped to the output fuzzy variable shown in Fig. 6.11. Finally

the output of the FUNA is a real crisp value value between 1 and 7. Unrelated tracks

generate lower crisp values, whereas the related tracks generate higher crisp values.

6.4. Performance Evaluation of FUNA

We investigate the FUNA performance in terms of the number of false network

associations and the target localization error with the simulation scenario in Fig. 6.12.

30 sensors in a 50 m × 50 m area are tracking seven targets for 50 seconds. We com-

pare FUNA performance with the maximum likelihood, the minimum Euclid distance,
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Table 6.3. Fuzzy rules in the knowledge base.

Euclid distance Speed difference Direction difference Rule class

H H H 1

H H M 2

H H L 3

H M H 2

H M M 3

H M L 4

H L H 3

H L M 4

H L L 5

M H H 2

M H M 3

M H L 4

M M H 3

M M M 4

M M L 5

M L H 4

M L M 5

M L L 6

L H H 3

L H M 4

L H L 5

L M H 4

L M M 5

L M L 6

L L H 5

L L M 6

L L L 7
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Figure 6.12. FUNA tracking scenario for seven targets.

and the minimum Mahalanobis distance based network association performances. The

results are in Table 6.4, where the total number of true and false network associations,

the mean target localization error, and the mean sensor track list length for all the

sensors are presented. Each value in Table 6.4 represents the mean of the 50 simu-

lation runs with different random seeds effecting the detection, communication, and

deployment states of the sensor nodes. The total number of true network associations

are presented in Fig. 6.13. The total number of false network associations are presented

in Fig. 6.14. The mean target localization errors are presented in Fig. 6.15. The mean

track list length for each sensor is presented in Fig. 6.16. FUNA performs 15 per cent

less false network association when compered to the Euclid distance based network

association. The Euclid distance based network association performance is better than

the Mahalanobis and the likelihood distance based network association performances in

terms of the total number of false network associations. FUNA 26 per cent reduces the

target localization errors. In Tables 6.5 and 6.6, over 99.99 per cent significance for the

false network association and the target localization error performance improvements

gained with FUNA is shown respectively with the confidence tests.

With FUNA, sensor at position (28,16) which has a star in it tracks the seven
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Table 6.4. Number of true and false network associations, mean target localization

error, and mean sensor track list length for the scenario of tracking seven targets.

Euclid Mahalanobis likelihood FUNA omniscient

total number of

true network as-

sociations

59510 57184 55043 62686 80447

total number of

false network as-

sociations

19998 22591 24694 16872 0

mean target lo-

calization error

3.84 4.33 4.39 2.84 0.3

mean sensor

track list length

7.32 8.19 8.28 7.35 6.86

Figure 6.13. Total number of true network associations for the seven targets scenario.
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Figure 6.14. Total number of false network associations for the seven targets scenario.

Figure 6.15. Mean target localization error for the seven targets scenario.



86

Figure 6.16. Mean track list length for the seven targets scenario.

Table 6.5. Significance for the number of false associations.

Euclid Mahalanobis Likelihood FUNA

Euclid 1 1.07x10−4 6.11x10−10 2.39x10−6

Mahalanobis 1 2.9x10−3 5.69x10−15

Likelihood 1 1.36x10−20

FUNA 1

Table 6.6. Significance for the mean target localization error.

Euclid Mahalanobis Likelihood FUNA

Euclid 1 2x10−2 8.6x10−3 3.11x10−7

Mahalanobis 1 0.755 8.53x10−14

Likelihood 1 7.73x10−15

FUNA 1
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targets as in Fig. 6.12. Squares show the true positions of the targets, * symbols show

the estimated position of the target by the sensor with a star in it.

The last line of Table 6.4, shows the mean track list length of each sensor node

throughout the scenario. If the sensor nodes would associate each network track report

with the true track in the track list, each sensor node would follow on the average

6.86 tracks of the seven tracks in the 50 seconds scenario. As the false network track

initiations caused by the false network associations begin, the average number of tracks

followed by each sensor node increases up to 8.28 for the likelihood based network as-

sociation. This situation arises when the association of the neighboring sensor node

track report with an existing track in the track list cannot be established and a new

track is initiated in the track list. These new network track initiations are not always

true network track initiations. Some of them are false network track initiations. This is

the reason behind having more than seven tracks in the track list of a sensor node. For

the examined network association metrics, the number of false network associations

throughout the 50 seconds scenario are shown in Fig. 6.17. In the first 20 seconds of

the scenario, Euclid based network association performance is better, whereas after 20

seconds, FUNA performance is better when the total number of false network associa-

tions are considered. Revisiting the simulation scenario in Fig. 6.12 by considering the

mobility patterns of the seven targets, relative movements seems similar for the first

20 seconds and starts to deviate from each other afterwards. Relative directions and

speeds of the seven targets are similar in the first 20 seconds, dissimilar afterwards.

We can say that FUNA performance is better when the relative directions and speeds

of the tracks in the track list are dissimilar.

Omniscient method shows the case in which none of the network associations are

false. The sensor node always associates the new track report with the correct track

in the track list. Omniscient method is a hypothetical method for determining the

upper limit of the target localization performance if we could have a perfect method

for associating the network track reports from neighboring sensor nodes with the tracks

in the track list.
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Figure 6.17. Total number of false network associations throughout the 50 seconds

scenario.

According to the two-sample t-test [164], the confidences related with the signif-

icance that the total number of false network associations differ among the examined

network association algorithms are as in Table 6.5. The value one in Table 6.5 means

corresponding two algorithms performs the same. The closer the value in Table 6.5

to zero means that the corresponding network association algorithms differs more sig-

nificantly in terms of the number of false associations. We have 0.0000239 significant

difference between the FUNA and the Euclid network association metrics. We conclude

that FUNA and Euclid based network association algorithms are differ from each other

with 99.99 per cent confidence.

Similarly, significance values for the target localization errors are presented in

Table 6.6.

The box and whisker plot [165] with the minimum, the maximum, and the median

values of the number of false network associations obtained from the 50 runs with
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Figure 6.18. Minimum, maximum and median values for the total number of false

network associations in the seven targets scenario.

different random seeds are presented in Fig. 6.18. Horizontal lines in the middle of

the boxes represent the median value of the 50 runs. Upper and the lower boundaries

of the boxes represent the median of the upper and the lower half of the data points

respectively. Horizontal lines at the top and the bottom represent the minimum and the

maximum values in 50 simulation runs. Plus signs below the minimum line and above

the maximum line represent the values labeled as the outlier values. If the notches in

the middle of the boxes do not overlap two data group differs from each other with

0.05 significance (95 per cent confidence).

Similarly, the box and whisker plot for the mean target localization errors are

presented in Fig. 6.19.

We examine the scenario with 300 sensor nodes and 10 targets in a 50 m × 500 m

area for 300 seconds. The mobility patterns of the 10 targets in the 300 seconds sim-

ulation scenario are presented in Fig. 6.20. The total number of true network associa-

tions, the total number of false network associations, the total number of mean target

localization error, and the mean sensor track list lengths for the Euclid, Mahalanobis,
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Figure 6.19. Minimum, maximum and median values for the mean target localization

errors in the seven targets scenario.

likelihood, FUNA, and the omniscient methods are as in Table 6.7. The total number

of false network associations for the examined network association metrics are shown

in Fig. 6.21. The mean target localization errors for the examined network association

metrics are shown in Fig. 6.22. Although FUNA performs 37.56 per cent better that

the Mahalanobis, 36.8 per cent better than the likelihood based network association,

Euclid based network association performs 1.29 per cent better than FUNA in terms

of the number of false network associations. Performance difference in FUNA and the

Euclid based network association in terms of the number of false network associations

is not significant. Fig. 6.23 shows that in the first 160 seconds of the scenario, Euclid

based network association outperforms FUNA, afterwards FUNA outperforms Euclid

based network association. Examining the target mobility patterns in Fig. 6.20 drives

us to the conclusion that, in the first half of the scenario, tracks were moving to the

similar directions with similar speeds with respect to each other, whereas in the second

half of the scenario, where FUNA performance was better, tracks were moving to the

different directions with more speed differences with respect to each other.
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Although FUNA performance was slightly worse that the Euclid based network

association algorithm, the mean target localization error for FUNA was 7.42 per cent

better than the Euclid based network association algorithm. FUNA target localization

performance was also 37.69 per cent better than the Mahalanobis based network asso-

ciation algorithm, 33.89 per cent better than the likelihood based network association

algorithm. Target localization error of the omniscient method shown in the last column

of Table 6.7 is 88.82 per cent better than FUNA. If the sensor node could be able to

associate all the neighboring sensor node’s track reports with the correct tracks in the

track list, 88.82 per cent better target localization accuracy would be possible. Track

list lengths in the last row of Table 6.7 can give intuition about the number of false

network track initiations. If no false network track initiation would happen 5.7867

tracks on the average would take place in the track list of a sensor node. This is the

average track list length of the omniscient method. More the track list lengths means

more the false network track initiations.

The total number of the true network associations throughout the 300 seconds

scenario are as in Fig. 6.24. Omniscient method in Fig. 6.24 represents the upper

limit for the number of true network associations. We conclude from the previous two

simulation scenarios that for the targets which have direction and speed differences

relative to each other, FUNA outperforms the Euclid based network association. In

order to support our conclusion, we design a scenario with meandering targets.

We compare the target localization, the network association, and the network

track initiation performances of FUNA with the Euclid and the likelihood based net-

work association algorithms for the meandering targets whose mobility patterns are

shown in Figures 6.25, 6.26, and 6.27 from the viewpoints of the sensors at location

(10,16), (138,6), and (292,7) respectively. Circles represent the sensor node positions,

squares represent the real target trajectories, * symbols represent the estimated position

of the target by the sensor node. Total number of true and false network associations,

mean target localization error and the mean track list length for the meandering targets

scenario are compared for the FUNA, Euclid, and likelihood based network association

metrics in Table 6.8. The total number of false network associations for the examined
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Figure 6.20. Scenario of 10 targets in the 50 m × 500 m simulation area.

Table 6.7. Total number of true and false network associations, mean target

localization error, and the mean sensor track list length for the 300 seconds scenario.

Euclid Mahalanobis likelihood FUNA omniscient

Total number of true

network associations

2828400 2517100 2525900 2824400 3371600

Total number of false

network associations

506980 822510 812540 513580 0

Mean target localiza-

tion error

6.0698 9.0191 8.5009 5.6200 0.6288

Mean sensor track list

length

6.5360 8.5379 8.4757 6.6918 5.7867
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Figure 6.21. Total number of false network associations for 10 targets scenario.

Figure 6.22. Mean target localization error for the 10 targets scenario.
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Figure 6.23. Total number of false network associations throughout 300 seconds for

the 10 targets scenario.

Figure 6.24. Total number of true network associations throughout 300 seconds for

the 10 targets scenario.
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Figure 6.25. Viewpoint of the sensor at (10,16) for the meandering targets.

network association metrics are compared in Fig. 6.28. The mean target localization

errors for the examined network association metrics are compared in Fig. 6.29. Total

number of false and true network associations throughout the 300 seconds scenario for

the meandering targets are as in Figures 6.30 and 6.31 respectively.

FUNA 83.563 per cent reduces the number of false network associations for the

meandering targets. Reduction in the target localization error is 69.45 per cent with

FUNA w.r.t. the Euclid based network association algorithm.

Simulation scenarios show that for the meandering targets, FUNA drastically out-

performs Euclid based network association algorithm. However, for the targets moving

relatively to the similar direction with similar speeds, Euclid based network association

performance is better. As the future work, we envision a ”Hybrid Association Model”

(HAM) in which if the tracks in the track list of a sensor node moves relatively to a

similar direction with similar speeds, the network association is done according to the

Euclid metric. Just after the relative direction and the speed differences among the

tracks in the track list of the sensor node exceeds a threshold, network association is

done with FUNA.
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Figure 6.26. Viewpoint of the sensor at (138,6) for the meandering targets.

Figure 6.27. Viewpoint of the sensor at (292,7) for the meandering targets.
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Table 6.8. Total number of true and false network associations, mean target

localization error, and the mean sensor track list length for the meandering targets.

Associations Likelihood Euclid FUNA

Total number of false

network associations

203480 201020 33042

Total number of true

network associations

300540 302620 471480

Mean target localiza-

tion error

5.2190 5.3131 1.6234

Mean sensor track list

length

2.8715 1.8843 1.8387

Figure 6.28. Total number of false network associations for the meandering targets

scenario.
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Figure 6.29. Total number of true network associations for the meandering targets

scenario.

Figure 6.30. Total number of false network associations throughout the 300 seconds

for the meandering targets scenario.
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Figure 6.31. Total number of true network associations throughout the 300 seconds

for the meandering targets scenario.
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7. CONCLUSIONS

A mutual information based measure is adopted to select the most informative

subset of the sensor nodes to actively participate in the distributed data fusion frame-

work, where the duty of the WSN is to accurately localize and track the targets. The

DDF architecture takes advantage of the long communication range of the wireless

sensor devices, relative to their sensing range, and facilitates a sensor node to update

its belief about the current state of the target. With the detection reports from its

neighbors, a belief update takes place even if the sensor is not detecting the target. The

information obtained from the neighboring nodes about an approaching target before

it is sensed reduces the target localization error by improving the target state filtering

performance.

A new communication transmission power adjustment scheme is proposed to fur-

ther improve the energy savings while preserving the tracking quality constraints. Sen-

sor nodes adjust their transmission powers in proportion to their knowledge: those that

know more about the target state should use more power to share their information.

Tests indicate that the performance of the proposed power adjustment scheme depends

on the network querying technique. If the application is delay-sensitive and needs an

immediate response from the network, any sensor node in the WSN can respond right

away to the query with an acceptable target localization error. If the application can

tolerate some delay and has strict target localization error constraints, querying just

the MISN improves the target localization performance. The proposed Information-

Controlled Transmission Power adjustment scheme improves the energy savings while

preserving the desired target tracking accuracy when the most informative node is

queried. However, querying any sensor node, while reducing the transmission powers

of the less informative sensor nodes, ends up with drastically worse target tracking

accuracies.

For the cases studied, simulation results show that 75 per cent energy savings

can be achieved for a given tracking quality by selecting the sensor nodes to coop-
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erate according to the mutual information measure. Moreover, if the sensor network

queries are to be routed to the MISN within one hop distance of the query entry node,

2.34 times more energy savings compared to the no power adjustment scheme can be

achievable by adjusting the communication transmission powers of the sensor nodes.

A fully distributed collaborative multi-target tracking framework is described for

the distributed data fusion architecture. With the proposed architecture, the need for

a central data associator node or a central coordinating node is eliminated. Every

node in the network is capable of tracking all the targets in the network. The presence

of multiple targets brings along challenges with measurement-to-measurement associ-

ation, measurement-to-track association track-to-track association and track-to-sensor

association. In the multiple target case, sensor nodes would report only about the

target which they were associated to. Simulation results show that collaborating in-

formation denomination values of the target about whom the sensor has the maximum

mutual information is a rational decision.

A fuzzy inference system is defined to support the network association. Network

association relates the neighboring sensor reports with the tracks in the track list of

the sensor node. A rule base for the fuzzy inference system is formed by consulting

to the voting results among the fuzzy variables. Fuzzy network association (FUNA)

reduces the false network associations 83.5 per cent, the mean target localization error

by 69.45 per cent for the meandering targets.

It is generally assumed that all sensor nodes send reliable data to the network.

In the future work, the detection of faulty and outlier sensor nodes in the network, and

possible precautions that can be taken against them can be investigated. The scenar-

ios which we simulate were not containing the clutter or false alarms on the sensory

observations. Also our scenarios were with the fixed number of targets. Test with sce-

narios containing clutter, false alarm, dynamic target initiation and termination can be

done. Sensors with different sensing modalities (i.e. bearing only acoustic sensor) can

be examined. We initiate a target report from the neighboring sensor node as a track

immediately. This increases the false network track initiations. More sophisticated
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algorithms for deciding the network track initiation are required. Outlier sensor de-

tection can also reduce the false network track initiations. For the meandering targets

FUNA performance is better than the Euclid metric based network association. How-

ever, for the targets moving in relatively similar directions and speeds, Euclid metric

based network association algorithm is better. A Hybrid association model that mon-

itors the direction and speed differences of the targets in the track list of the sensor

node is envisioned for the network association decision. When the relative speeds and

the directions of the tracks in the track list increase, network association is done with

FUNA, otherwise Euclid metric is used for the network association. Monitored rela-

tive speed and direction differences of the tracks in the track list of a sensor node may

help the adaptive fuzzy membership function usage. The type of the target information

may also be used for the adaptive fuzzy membership value determination. Multi-target

tracking architectures other than the network-centric tracking architecture defined in

Chapter 5 can be examined in detail. Besides the effect of 3-D topographical surfaces,

the effect of obstacles and jamming that may cause the tracking system can be exam-

ined. We assume synchronized sampling and communication among the sensor nodes.

Asynchronous algorithms can be investigated in order to get rid of the synchronization

cost among the sensor nodes.
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