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Aras and Erinç Dikici, for the the loving, friendly, and supportive atmosphere that any

kind of product requires to flourish. I am deeply grateful to Oya for offering a fresh

air at the times I stacked at a local minimum, and for reminding me the ways to make

life easier and more balanced, joyful, fruitful and meaningful. I thank Doğaç a lot for
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ABSTRACT

MULTIVARIATE MODELING AND DIAGNOSTIC

CLASSIFICATION OF PULMONARY SOUNDS

Computerized pulmonary sounds analysis has become prevalent in the recent

decades as it provides means for quantitative and objective evaluation, contrary to the

limited and subjective nature of stethoscope auscultation. Multi-variate methods dis-

close the inherent spatial information in the multi-channel measurements and enable

to explore the system characteristics altered due to pathological conditions that have

developed in the lungs. In this study, a multi-variate mathematical model, namely,

vector auto-regressive (VAR) model, has been considered, and the optimal VAR model

to represent the pulmonary sounds data is pursued through new goodness of fit criteria

proposed specifically for the data and the application. The estimated model parame-

ters are employed in classification using the k-nearest neighbor (k-NN), support vector

machine (SVM), and Gaussian mixture model (GMM) classifiers, with an eventual aim

to develop a diagnostic classifier for clinical setups. Various classifier schemes are ex-

perimented with different data sets in the quest for the most useful classifier design.

The healthy and the pathological groups are discriminated successfully. In the classi-

fication of conditions including the healthy group and the obstructive and restrictive

types of pathologies, a hierarchical framework is suggested. Generally, the healthy and

the restrictive groups are discriminated more successfully than the obstructive group.

GMM is generally the most competent classifier among all, however, SVM is also suc-

cessful for certain feature arrangements. The improvement of the diagnostic classifier

so as to make it appropriate for clinical setups is still open for exploration, especially

with additional features to enhance the distinctive characteristics further as to prevent

the confusion of the obstructive diseases.
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ÖZET

SOLUNUM SESLERİNİN ÇOK DEĞİŞKENLİ

MODELLENMESİ VE TANIYA YÖNELİK

SINIFLANDIRILMASI

Bilgisayarlı solunum sesleri analizi, stetoskop ile dinlemenin aksine nicel ve nes-

nel değerlendirme imkanı sunması ile, son bir kaç onyılda öne çıkmıştır. Çok değişkenli

yöntemler, çok kanallı ölçümlerin barındırdığı uzamsal bilgiyi açığa çıkararak, akciğerler-

de gelişmiş patolojik koşullardan dolayı değişen sistem özelliklerini araştırmaya olanak

sağlar. Bu çalışmada, çok değişkenli matematiksel bir model olan vektör öz-bağlanımlı

(VÖB) model ele alınmış, solunum ses verisini ifade eden eniyi VÖB model, veri ve

uygulama için özel olarak önerilen yeni başarım kriterleri kullanılarak araştırılmıştır.

Kestirilen model parametreleri, klinik ortamlar için tanıya yönelik bir sınıflandırıcı

geliştirme nihai amacı ile, k-en yakın komşu (k-EYK) algoritması, destek vektör makine-

leri (DVM) ve Gauss karışım modelleri (GKM) kullanılarak sınıflandırılmıştır. En işe

yarar sınıflandırıcıyı tasarlamak amacı ile farklı veri kümeleri üzerinde çeşitli sınıflandı-

rıcı tasarımları denenmiştir. Sağlıklı ve hasta gruplar başarılı bir şekilde ayrışmaktadır.

Sağlıklı grubu ve tıkayıcı ve sınırlayıcı hastalık tiplerini içeren durumların sınıflandırıl-

masında hiyerarşik bir yapı önerilmiştir. Genel olarak, sağlıklı ve sınırlayıcı gru-

plar tıkayıcı gruptan daha başarılı şekilde ayrışmaktadır. GKM genel olarak tüm

sınıflandırıcılar içinde en yetkini olmakla birlikte, belirli öznitelik düzenlemeleri için

DVM de başarılıdır. Tanısal sınıflandırıcının klinik ortama uygun hale gelecek şekilde

geliştirilmesi problemi halen, özellikle tıkayıcı hastalıkların karıştırılmasını önleyecek

şekilde ayırdedici özellikleri daha da vurgulayan ek öznitelikler ile, araştırılmaya açıktır.
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1. INTRODUCTION

A pathological condition developed in the lungs is usually revealed in the altered

characteristics of pulmonary sounds heard at the chest wall. Therefore, auscultation

provides invaluable information about the condition of the lungs, and stethoscope aus-

cultation is still the common and primary practice in clinics for the diagnosis of pul-

monary diseases. On the other hand, stethoscope auscultation is subjective by nature,

because it depends on the hearing ability and the experience of the physician, and

objective comparison is not possible due to the lack of the opportunity to quantify the

acoustic information. Besides, a stethoscope attenuates the frequencies above approx-

imately 120 Hz, thereby filtering out the frequency band that is most relevant [1].

Computerized pulmonary sounds analysis techniques that have developed over

the past decades enable quantitative and objective analysis. These techniques can

be summarized as acquiring the sounds on the chest wall and analyzing them us-

ing mathematical methods. They provide means to express the information residing

in pulmonary sounds that can not be perceived by ear, to assess the characteristics

through signal processing and pattern recognition methods, and to produce numerical

and visual outputs to compare and follow pulmonary conditions.

The studies conducted so far to understand the thoracic system using the acoustic

data can be summarized in a few categories in terms of their objectives:

(i) Modeling: Fitting a physical model for human lungs [2–5], or exploring the char-

acteristics of sound transmission within the lungs [6–13],

(ii) Detection - Estimation: Detection of abnormal sound components (adventitious

components such as crackle and wheeze) which are associated with certain dis-

eases [14–27] and their separation from the background pulmonary sounds [28–30],

or estimation of flow cycle from pulmonary sounds data [31, 32],

(iii) Classification: Classification of types of adventitious sound components [33–35],

or, classification into pulmonary conditions (e.g., healthy versus pathological)
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[36–41],

(iv) Mapping: Building visual representations of the chest based on the acoustic in-

formation provided by the acquired pulmonary sounds data [42–44].

There is also an effort to develop a set of standards for the terminology special

to respiratory studies, and a set of guidelines about acquisition and processing of the

data. European Respiratory Society (ERS) published a review as a task force report

covering the above issues in 2000 [45]. Some basic definitions can also be found in the

nomenclatures published by American Thoracic Society (ATS) earlier in 1977 [46].

In the analysis of pulmonary sounds, the most common approach is to handle each

channel of the measured signals separately, i.e., to extract some mathematical features

on the individual channel signal and to employ the features according to the particular

purpose. Although this approach is not wrong, it is insufficient since the inter-channel

relationships are thereby neglected. The simultaneous channel measurements are not

independent from each other and the mutual relationships are expected to differ as the

pulmonary condition alters. Multi-variate analyses of the multi-channel measurements

provide means to include in the features the spatial relationships between the channels

as well, which takes the altered transmission characteristics into account. For these

reasons, a multi-variate mathematical model is considered in this thesis study.

Auto-regressive (AR) models are known to be useful in single-channel analyses

of pulmonary sound signals [32, 36, 37, 39–41, 44]. Therefore, its multi-variate version,

namely, vector AR (VAR) model, is adopted here. The AR model has been widely used

in the analysis of pulmonary sounds with the particular purpose to estimate flow-cycle

from the sounds acquired at the chest wall [32], to classify into healthy and pathological

conditions [36,37,39–41], or to model the crackles to build their distribution maps [44],

however the VAR model has only been recently employed in the analysis of pulmonary

sounds [41]. The model parameters are employed in classification in [41] as in this

study, however, the proper model is determined via one of the conventional goodness

of fit criteria defined in the literature in the minimum prediction error sense. In this

study, on the other hand, new goodness of fit criteria are proposed specifically for
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pulmonary sounds as to enhance the inherent discriminative characteristics, and the

classification is performed using the optimal model determined accordingly.

The first part of this study, Chapter 3, is devoted to find the optimal VAR model

of pulmonary sounds for diagnostic purposes. Since it aims to find a useful model

to describe the condition of the lungs, it belongs under the scope of item (i) in the

above list. However, it differs from the other studies under item (i) in the following

aspect. The studies in [2–5] propose a physical lung model where generally the lungs are

represented by equivalent electrical circuits, and those in [6–12] explore how sound is

transmitted within the lungs. On the other hand, this study focuses on a mathematical

model where the model parameters are intended to be employed in a diagnostic system.

Although the mathematical model subject to this study is not new, the novelty is in the

fact that the criteria to select the best model are proposed specifically to the pulmonary

sounds and to the application (diagnostic classification).

Most of the pulmonary diseases belong to one of two main categories, namely,

obstructive and restrictive. Obstructive diseases (e.g., asthma, chronic obstructive

pulmonary disease (COPD), bronchiectasis, emphysema) are associated with short of

breath due to airway obstruction, and are in some cases caused by bacterial infection

(e.g., bronchiectasis). Restrictive diseases (e.g., interstitial lung disease (ILD), pneu-

monia), on the other hand, are accompanied with a stiffness of the tissue around the

alveoli, and are classified according to the cause (e.g., infection, certain drugs, long

term exposure to materials such as asbestos).

Studies on classification of pulmonary sounds (item (iii) in the above list) are

grouped under two main categories. The first group mainly focuses on adventitious

sound components (e.g., crackle, wheeze), where the aim is either to detect a particu-

lar type of adventitious component [14–27], or to discriminate between various types

of adventitious sounds [33–35]. On the other hand, the focus of the second group is

on pulmonary conditions (e.g., healthy versus pathological, obstructive versus restric-

tive) [36–41]. In the studies in [36, 37, 40], healthy versus pathological classification

schemes are considered, where the pathological classes consist of various diseases from
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obstructive and restrictive groups. In [38] and [41], on the other hand, single types of

pathologies are considered in the healthy versus pathological scheme, namely, ILD and

asthma, respectively. The only study in the literature that addresses the obstructive

versus restrictive distinction in classification (in a three-class classification scheme with

the healthy, obstructive and restrictive classes) is presented in [39]. Moreover, the only

study that approaches a multi-class case is again the one in [39] as the other studies

deal with the binary case.

As addressed above, AR model parameters are widely used as features in the

classification of pulmonary sounds [36,37,39–41], whereas, only one study has adopted

VAR models so far [41]. Other features that are used as inputs to classifiers are

various power spectral parameters [18, 19, 24, 34, 35], wavelet [33, 38] and Fourier [17]

coefficients, percentile frequencies [41], and eigenvalues of covariance matrices [41].

Artificial neural networks (ANNs) are adopted for classification in the majority of the

studies [17, 18, 33, 34, 38, 39, 41], and k-nearest neighbor (k-NN) is also used frequently

[19, 27, 36, 40].

The second and the main part of this study, Chapter 4, is devoted to the use of the

VAR model parameters for diagnostic classification. Various experimental setups with

k-NN, support vector machine (SVM), and Gaussian mixture model (GMM) classifiers

are designed and used with different data sets. The pathological data include asthma,

COPD, bronchiectasis and ILD as the conditions to be diagnosed. In most of the

experiments conducted in Chapter 4, the general case of healthy versus pathological

classification is considered, however, this chapter in general differs from [36] and [40]

both in terms of the features (VAR parameters as opposed to univariate AR) and

the classifier algorithms (SVM and GMM besides k-NN). The studies in [38] and [41]

perform binary classifications into healthy and pathological groups, however, they do

not assume clinical setups as this study does in general since they consider single types

of diseases for the pathological groups against the healthy. The only common point

of [41] with this study is that it employs the VAR model, yet a prominent difference

exists in terms of the selection of the optimal model, as addressed above.
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As the next step in developing a diagnostic classifier, the discrimination between

the obstructive and restrictive classes is considered. In a three-class scheme including

the healthy group besides the two pathological types, a hierarchical framework (i.e.,

healthy versus pathological classification followed by obstructive versus restrictive) is

proposed. Although the most comparable study is the one in [39] with its three-class

schema, the classification is performed for the three classes at once in [39] as opposed to

the hierarchical framework offered by this study. Moreover, the study in [39] addresses

data from a single channel recording thus is limited to a single location on the posterior

chest.

A special case, namely, asthma versus COPD discrimination, is also included in

Chapter 4. Asthma is a complex respiratory disorder characterized by chronic inflam-

mation of the airways, reversible airflow obstruction, bronchial hyper-responsiveness,

and recurrent episodes of wheezing, breathlessness, chest tightness, and coughing [47,

48]. COPD is defined as a disease state characterized by airflow limitation that is not

fully reversible [49], where the airflow limitation is usually progressive and is associated

with an abnormal inflammatory response of the lungs to harmful particles or gases,

primarily caused by cigarette smoking [49]. Since the symptoms of asthma and COPD

overlap, misdiagnosis of the two diseases is not rare in clinical practice [50–53]. The

only objective assessment of the condition can be done through a pulmonary function

test called spirometry. Certain limits of spirometric parameters to differentiate between

asthma and COPD are defined in the literature, however other limits are also used or

have been suggested [50, 54]. Particularly in the absence of wheezing, the spectral

differences between asthma and COPD [55] can hardly be detected via stethoscope

auscultation. The study in [55] proposes that changes in asthma and COPD might

be reflected in pulmonary sounds and can be objectively quantified via computerized

sound analysis techniques. Although the study in [55] reports statistical differences

between asthma and COPD in terms of percentile frequencies and the total spectral

power calculated on pulmonary sound signals, it does not propose a classification al-

gorithm to help diagnosis in clinical setup. Moreover, there does not exist any other

study in the pulmonary literature that proposes a computerized method for acoustic

based discrimination of asthma and COPD. Therefore, the classification into asthma
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and COPD is considered to be the focus of one of the experiments in order to explore

the discrimination of these two diseases based on the acoustic data.

Diagnostic classification implies the correct assessment of the existing pathology,

hence requiring a multi-class framework including the largest possible variety of diseases

besides the healthy group. The final part of Chapter 4 is on building the diagnostic

classifier according to the results of the previous experiments, using the data set at hand

with the largest variety of conditions, namely, healthy, asthma, COPD, bronchiectasis

and ILD. There do not exist any studies in the literature that consider diagnostic

classification where the correct assessment of the pathology is pursued among various

types. Therefore, the final part of the chapter should be put aside from all those

studies discussed here both in terms of the material and the methodology. Moreover,

as the proposed diagnostic classifier is a combination of binary classifiers (healthy

versus pathological and obstructive versus restrictive), the individual results of each

such division step reported at the final part contribute to the novelty of this study as

well in terms of the data sizes.

Finally, none of the studies in literature that deal with pulmonary sounds classi-

fication with the aim to assess pulmonary conditions employs GMM, moreover, none

of them employs SVM at all. The objective of the studies that use GMM [24,26,35] is

to recognize and classify wheezes and crackles, whereas the aim in using GMM in this

study is to recognize and classify different disease conditions.

To summarize, the first purpose of this thesis study is to find the optimal VAR

model of pulmonary sounds data that will eventually provide diagnostic value to the

analysis. The second purpose is to compare classifier algorithms and schemes with

different data sets with the eventual aim to build a diagnostic system for pulmonary

sounds. The novelty of this study lies in the following aspects: (i) The proposal of new

criteria to evaluate the goodness of fit of the VAR model specifically for pulmonary

sounds, (ii) The employment of the VAR model that has been optimized via the pro-

posed criteria in diagnostic classification, (iii) The assessment of the SVM and GMM

classifiers which have not been adopted yet to recognize pulmonary conditions, and (iv)
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The presentation of the diagnostic framework with the largest variety of conditions.

The remaining chapters of the thesis are organized as follows: In Chapter 2, the

multi-channel pulmonary sounds data are introduced and the basic specifications of

the data acquisition system are mentioned. The description of the VAR model, the

definitions of the conventional and the proposed goodness of fit criteria, and the ex-

perimental procedure to find the optimal model are explained in Chapter 3. Chapter

4 gives brief information about the theories of the k-NN, SVM and GMM classifier al-

gorithms, and elaborates on various designs of those classifier algorithms with different

data sets, proceeding from a basic level towards the most developed, in a diagnostic

framework. Finally, the conclusions, and the suggested perspectives for the future

studies, are presented in Chapter 5.
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2. DATA

The database referred to in this study has been acquired using the 14-channel

pulmonary sound data acquisition and processing system that was designed and im-

plemented in the Boğaziçi University Lung Acoustics Laboratory [56,57]. Pathological

data have been acquired mainly in İstanbul Yedikule Teaching Hospital for Chest Dis-

eases and Thoracic Surgery, from subjects who were diagnosed with various diseases by

the adjunct specialists. Healthy subjects were non-smokers who had no history of any

serious lung disease. The data acquisition procedure of this study has been approved

by the Second Ethical Committee on Clinical Research of Istanbul (is in compliance

with the Declaration of Helsinki).

The system is composed of 14 air-coupled electret microphones (SONY ECM-

44 BPT) attached on the posterior chest wall (see Figure 2.1), an analog amplifier-

filter unit (with a gain of 100 and a pass-band of 80 to 4000 Hz), a Fleisch type

pneumatachograph (Validyne CD379) to measure the flow-cycle simultaneously for

synchronization, a data acquisition card (NI DAQCard-6024E, 12-bit) for digitization,

and a laptop computer to control the process (via an interface program implemented

in LabVIEW) and to store the data. The data are sampled at a rate of 9600 samples

per second, and an acquisition session lasts 15 seconds. A sample waveform is given

in Figure 2.2. During the recording sessions, the subjects were sitting upright and

wearing a nose clip while breathing through the mouthpiece of the flowmeter. The

database has been formed over time, therefore the data sets used in the successive

sections are augmented accordingly at each step. Moreover, they are arranged as to

fit the aim of the particular experimental setup. The list of the data sets summarizing

their properties is given below.

• DS0: 15 healthy and 15 pathological subjects (bronchiectasis common, 4 of them

had also asthma, 2 of them COPD, 1 of them pneumonia).

• DS1: 20 healthy and 20 pathological subjects (bronchiectasis is the common

diagnosis, 6 of them also have asthma, 3 have COPD and 1 has pneumonia
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Figure 2.1. Microphone locations on the posterior chest wall.

besides bronchiectasis). This data set is the augmented version of DS0 by newly

acquired data.

• DS2: 20 healthy (same healthy subjects as in DS1), 10 bronchiectasis (selected

among the pathological subjects of DS1 such that the diagnosis is limited to

bronchiectasis only), 10 ILD (no other accompanying diagnosis).

• DS3: 30 asthma (10 of DS2 + 20 selected among the newly acquired data), 20

COPD (10 of DS2 + 10 selected among the newly acquired data).

• DS4: 25 healthy, 60 asthma, 35 COPD, 15 bronchiectasis, 15 ILD. This data set

is the augmented version of DS2+DS3 by newly acquired data.

As a pre-processing step for Chapters 3 and 4, the flow signal is divided into
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Figure 2.2. Sample waveform of one channel of pulmonary sound signals together

with the flow rate signal.
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Figure 2.3. The scheme for the division of the flow-cycle into six respiratory

sub-phases. E: Early, M: Mid, L: Late.

respiratory sub-phases, namely, early/mid/late inspiration/expiration. Early and late

phases of inspiration (or expiration) represent 30 percent of total air volume inhaled (or

exhaled) during one inspiration (or expiration) period, while the mid phase represents

the remaining 40 percent (see Figure 2.3). Thereby, one complete inspiration-expiration

cycle is composed of six respiratory sub-phases (flow-phases hereafter). The start and

end indices of inspiration and expiration are determined automatically, such that the

positive portions of the flow rate signal denote inspiration while the negative portions

denote expiration. In order to avoid errors due to noise, a dead band of one per cent

of maximum amplitude deviation is allocated around the zero level, hence positive and

negative signs imply being above and below this band, instead of the zero level. The

start and end indices of the flow-phases (early/mid/late) are in turn calculated using

the area under each inspiration and expiration. Once these indices are determined on

the flow signal, the 14-channel pulmonary sound data are labeled accordingly for each

subject.
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3. MULTIVARIATE MODELING

The sound production within the lungs with respiration does not obey a simple

mechanism and is highly complicated due to physical reasons such as turbulence in

the airways and different sound speeds as per tissue type. However, assuming a simple

model to approach a complex system, especially when both the system and its inputs

are unknown such as in this case, provides means to understand its general behavior

and to adjust for the next evolutionary step with more complexity.1

Auto-regressive (AR) models are known to be useful in single-channel pulmonary

sound signal analyses [32, 36, 37, 39–41, 44]. The mathematical assumption behind the

ordinary univariate AR model is that the measured signal is a realization of a stochastic

process that is auto-regressive in nature, i.e., each time sample of the signal can be

written as a combination of the previous time samples up to an error term. The

error term is assumed to be statistically white and Gaussian-distributed, and is to be

minimized for model estimation. Physically, an AR filter is a finite impulse response

(FIR) filter whose input is a previous snapshot of the signal, and whose output is the

signal itself, plus white Gaussian noise (WGN) with the smallest possible variance.

Equivalently, an AR filter is also an infinite impulse response (IIR) filter, whose input

is small-variance WGN, and whose output is the measured signal.

Basically, the sound signal acquired at each microphone location on the chest wall

is a filter output, where the filter is the path the sound follows in the thorax from the

point that it is produced to the point that it is recorded. Since the sounds are sourced

from multiple points within the lungs, the actual filter associated with each measure-

ment point is a combination of path filters. If those filters are assumed to be linear, as

in the AR model, a combination of them is reduced to a single linear filter that accepts

as input a combination of sounds produced at multiple locations. According to the

central limit theorem, additive combination of statistically independent distributions

converges to normal (Gaussian) distribution as the number of components increases,

1“Essentially, all models are wrong, but some are useful” George E. P. Box
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therefore the input signal of such a linear path filter would approximate Gaussian noise.

Moreover, it would also tend to be white due to the superposition of independent nat-

ural phenomena. These two inferences verify that the WGN assumption with the AR

model is a suitable assumption for the mechanism at hand, where an exception may

occur in the existence of adventitious pulmonary sound components.

The ordinary univariate AR model estimates the linear filter associated with

each microphone location on the chest wall individually. In multi-channel analysis of

pulmonary sounds, it is still a possible approach to model each channel individually

and then combine the model parameters for further processing. However, this approach

ignores the inter-channel relationships, thereby losing a certain amount of the spatial

information. When a set of time-correlated univariate time series is also interrelated

in multivariate sense such as in this case, the improved approach is to replace the AR

process assumption with its multivariate or vector version, namely, vector AR (VAR)

process. Then in the model, each time sample of any of the channels is written as a

linear combination of the previous time samples of both itself and the other channels.

Throughout this study, VAR schema is adopted to model multi-channel pulmonary

sounds data. By doing so, the model is improved to include the spatial relationships

between the channel measurements on the chest wall, even though the actual internal

filters still can not be estimated (due to the fact that the actual internal signals are

unknown).

VAR processes are adopted in economy and meteorology to model trends and to

predict future behaviors, and also have recently been employed in the analysis of pul-

monary sounds [41] as multi-channel measurements have become prevalent. Two free

arguments should be determined cautiously for the VAR model to be useful, namely,

the model order and the sample size. Traditionally, these arguments are selected using

several goodness of fit criteria defined in the literature (see Section 3.2.1) based on

prediction error. If the aim of the VAR modeling is to predict the future values of

the signal (as in economics or meteorology), then the conventional criteria are useful.

However, if the aim is not prediction but the employment of the model parameters

in further analysis (as in this case), then the criteria should be redefined accordingly.
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The reason that the classification results are poorer with VAR parameters than with

the other features in [41] might be that the sample size is chosen heuristically and

the model order is chosen according to one of the conventional goodness of fit crite-

ria based on the prediction error, despite the fact that the aim is classification. This

chapter focuses on finding the best VAR model in this sense, and proposes new criteria

specific to multi-channel pulmonary sound measurements with an aim to use the model

parameters in a diagnostic system, namely, in classification.

For the aim of this study, the model that maximizes the ability of the VAR

model parameters to represent the pulmonary sound data characteristics is regarded to

be the most useful model. Accordingly, three new goodness of fit criteria are proposed,

where the associated measures have been defined on calculated model parameters so

as to reveal the inherent structure that pulmonary sounds have. The structure can be

summarized as similar (different) characteristics for the same (different) phases of flow-

cycle within a subject and across different subjects within a subject class, and different

characteristics across two different classes (here, healthy and pathological). Therefore,

the measures are intra-subject, inter-subject (intra-class), and inter-class measures,

respectively, and the maximum scores imply that the model reveals the similarities

and differences most distinctively.

Since a particular choice of sample size corresponds to a particular time duration

depending on the sampling rate directly, the effect of sampling rate on the model

parameters is also examined. This introduces the data sampling rate as the third

argument, together with the model order and the sample size. If the results show

that working with a lower sampling rate does not deteriorate the success of the model,

downsampling is to be adopted to save the computational cost. Moreover, the effect

of changing the sampling rate is still a point of interest for exploratory purposes,

notwithstanding the fact that a single model fit requires significantly less computational

effort once the model order and the sample size are fixed.

Pulmonary sounds are produced by turbulence due to air flow in the lungs, and

flow rate levels are variable from subject to subject (being an habitual behavior and
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depending on the conditions that may restrict the subject) and from data acquisition

session to session (even for the same subject). Although the focus of modeling is on

transfer characteristics of the lungs as a filter system affected by changing conditions

(e.g., existence of a pathology), it still needs to be explored whether different flow

levels affect the model order. The motivation is to be able to compare two model

parameter sets reliably regardless of the fact that the associated flow levels are different.

Accordingly, six flow normalization schemes are defined as divisions by functions of the

flow rate signal, and applied on the acquired multi-channel data prior to the VAR

modeling. Results with and without normalization are evaluated and compared using

the proposed measures mentioned above.

To summarize, the main purpose of this chapter is to find the optimal set of

the three model arguments, namely, the model order, sample size, and the sampling

rate, which yields the most descriptive VAR model of pulmonary sounds data that will

eventually provide diagnostic value to the analysis. The second purpose is to examine

the effect of different flow levels on the model.

The novelty is in proposing new criteria to evaluate the goodness of fit of the VAR

model. Although the proposed criteria are specific to a particular type of data and

application, they can be adapted and employed for other types of data or applications

as well, wherever the aim is to extract distinctive characteristics of the underlying

system.

3.1. Description of VAR Model

A K-dimensional VAR process of order p (VAR(p) process) can be expressed

as [58]

yn = v +A1yn−1 + ...+Apyn−p + un, n = 0,±1,±2, ... (3.1)

where yn , [y1n, ..., yKn]
T is a (K×1) random vector, v , [v1, ..., vK ]

T is a fixed (K×1)

vector of intercept terms allowing for the possibility of a nonzero mean E{yn}, Ai are
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fixed (K ×K) coefficient matrices as

Ai ,




α11,i · · · α1K,i

...
. . .

...

αK1,i · · · αKK,i


 , i = 1, ..., p (3.2)

and finally, un , [u1n, ..., uKn]
T is a K-dimensional white noise, i.e., E{un} = 0 and

E{un1
uT
n2
} =

{
Σu, if n1 = n2

0, otherwise
(3.3)

where Σu can be either diagonal or not, i.e., the noise is not necessarily uncorrelated

in space as it is in time. The process yn is assumed to be stable and stationary, the

latter assumption allowing v and Ai to be accepted as fixed (time invariant).

We have a K-variate time series available at hand (as a result of measuring K

variables at successive time instances), which may be interpreted as a realization of

a K-dimensional stochastic process. Then, VAR(p) modeling means estimating the

model parameters as if the time series is generated by a stationary, stable VAR(p)

process.

One way of estimating the model parameters is the multivariate (generalized)

version of ordinary least squares (LS) solution. Let us assume that a time series

y1, ...,yN of the y variables is available, that is, we have a sample size of N for each

of the K variables for the same sample interval. In addition, assume that p presample

values for each variable, y−p+1, ...,y0, are available. Let us define [58]

Y , [y1, ...,yN ] (K ×N),

B , [v,A1, ...,Ap] (K × (Kp+ 1)),

Zn , [1,yT
n , ...,y

T
n−p+1]

T ((Kp+ 1)× 1), (3.4)

Z , [Z0, ...,ZN−1] ((Kp+ 1)×N),

U , [u1, ...,uN ] (K ×N).
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Then, VAR(p) model in Equation 3.1 can be written compactly as

Y = BZ+U (3.5)

and the multivariate LS estimator of B is [58]

B̂ = YZT (ZZT )−1. (3.6)

The VAR setup assumes statistical stationarity, whereas the pulmonary sound

data is inherently non-stationary (i.e., statistical characteristics of pulmonary sound

data change across the flow-cycle). For the model to be valid, it should be fitted on

short time intervals where the data can be assumed stationary. Accordingly, the sample

size N of the model in Equations 3.4 should correspond to fragments of a second for

pulmonary sound signals.

3.2. Goodness of Fit

As introduced in Section 3, two viewpoints to measure the goodness of model

fit are considered. The traditional approach refers to minimizing the prediction error

and is adopted either in minimum mean squared error (minimum MSE) sense or as

proportion of variance explained. The proposed approach, on the other hand, is referred

here as maximizing the pattern coherence, and corresponds to maximizing the ability

of the model parameters to represent the pulmonary sound characteristics.

3.2.1. Minimizing the Prediction Error

Let the true model order be denoted by p, its estimate by p̂ and the order of the

fitted model by m.

Each one of the following four criterion measures (final prediction error (FPE),

Akaike’s Information Criterion (AIC), Hannan-Quinn criterion (HQ) and Schwarz cri-
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terion (SC)) offers a solution for the problem of estimating the model order, once K

and N are set [58]:

FPE(m) =

[
N +Km+ 1

N −Km− 1

]K

|Σ̂u(m)|, (3.7)

AIC(m) = ln|Σ̂u(m)|+
2mK2

N
, (3.8)

HQ(m) = ln|Σ̂u(m)|+
2lnlnN

N
mK2, (3.9)

SC(m) = ln|Σ̂u(m)|+
lnN

N
mK2, (3.10)

where Σ̂u(m) can be estimated as

Σ̂u(m) =
1

N
(Y− B̂Z)(Y− B̂Z)T , (3.11)

where B̂ is the LS estimate of B (see Equation 3.6).

The estimated error covariance matrix can be written explicitly as

Σ̂u(m) =




σ̂2
u1
(m) σ̂u12

(m) · · · σ̂u1K
(m)

σ̂u21
(m) σ̂2

u2
(m)

...
...

. . .

σ̂uK1
(m) · · · σ̂2

uK
(m)



, (3.12)

and the data covariance matrix as
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Σy =




σ2
y1

σy12 · · · σy1K

σy21 σ2
y2

...
...

. . .

σyK1
· · · σ2

yK



. (3.13)

After estimating the VAR(m) models for m = 1, 2, ...,M and computing the

corresponding measures, p̂ is chosen such that

p̂ = argmin
m

fc(m), (3.14)

where fc(m) stands for the error criterion function that is used in calculation.

The terms with m, N and K in Equations 3.7 - 3.10 imply that there are com-

plexity costs as m and K increase, the effect of which decreases by increasing N .

This allows choosing the p̂ that balances the trade-off between their individual effects.

Without the correction terms, the prediction error reduces to the MSE

MSE(m) = |Σ̂u(m)|, (3.15)

which monotonically decreases with increasing model order m. In modeling K - di-

mensional data, this implies that for a fixed N the best model is the one with the

highest model order m. Although this observation is straightforward, with an aim to

compare the errors over different combinations of m, N , and the sampling rate without

the effect of the correction terms, MSE is also examined besides the four measures in

Equations 3.7 - 3.10.

One alternative error measure is the percentage of the data represented by its

estimate, that is, the proportion of variance explained. It is also known as the coefficient

of determination in statistics, and is defined as
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R2(m) = 1−

∑K

k=1 σ̂
2
uk
(m)

∑K

k=1 σ
2
yk

, (3.16)

where σ̂2
uk
(m) and σ2

yk
are the diagonal elements of estimated error covariance and data

covariance matrices, respectively, as shown in Equations 3.12 and 3.13.

MSE(m) should be as small as possible, equivalently, R2(m) should be large

(close to unity), to accept the model as a good fit. Geometrically, MSE corresponds to

the volume that the prediction error vectors enclose in space (consider the determinant

of the covariance matrix), while the coefficient of determination uses the sum of indi-

vidual error variances and ignores the space correlations of the error vectors (consider

the trace of the error covariance matrix). Except for this detail, both are equivalent in

meaning, that is to say, they both accept that the information is carried in variance.

Note that the LS estimation is to maximize Equation 3.16 by definition, i.e., it

already corresponds to choosing the parameter set that makes the total estimation

error (sum of squares of error terms) minimum, hence the name least squares. In other

words, B̂ is the parameter set that minimizes the estimation (prediction) error for

a particular data set once the model order and the sample size are fixed. There is

an associated prediction error per model estimation, which is the minimum possible

for the particular model fit, and the conventional criteria based on prediction error

are about searching for the minimum of those minimum prediction errors in order to

choose among the various possible model order and sample size combinations. In this

context, the proposed argument is about using alternative criteria to choose among

those combinations, instead of using the prediction error once more.

3.2.2. Maximizing the Pattern Coherence

Spatial and temporal relationships that multi-channel pulmonary sounds data

have are expected to be in different ways for distinct types of flow-phases, for distinct

subjects, or, for distinct conditions (healthy and pathological). Therefore, the com-

puted model parameters are expected to follow some patterns if the model is to be
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considered successful. Three new goodness of fit criteria are proposed and the associ-

ated measures are defined below accordingly. With this point of view, the information

is not accepted to lie in the variance, rather, in the spatio-temporal relationships.

Each measure is defined as the ratio of between-group scatter over within-group

scatter, and should be maximized to validate the success of the model, akin to as in

Fisher’s Linear Discriminant Analysis (LDA).

Let P s
i,j denote one of the six flow-phases of one subject (each full inspiration-

expiration cycle of each subject is divided into six flow-phases, as described in Section

2), where s is the subject index, s ∈ S, i is the full cycle (one inspiration followed by

one expiration will be called a full cycle (FC) hereafter) index, i = 1, 2, ..., (FCN)s,

(FCN)s being the total number of FCs for subject s, and j is the flow-phase index

from early inspiration to late expiration, j ∈ J , |J | = 6 (| · | denotes the size of the

set).

Let (WN)si,j denote the maximum number of N -point segments fitting into P s
i,j.

Estimated parameter matrices B̂ are calculated as in Equation 3.6 and are in the

form of B in Equations 3.4. Suppose the estimated mean vector v̂ is omitted and

the new matrix is in the form of B̂ = [Â1, Â2, ..., Âp]. More precisely, estimated

parameter matrices are denoted as B̂
s

{i,j},w, s ∈ S, i = 1, 2, ..., (FCN)s, j ∈ J , w =

1, 2, ..., (WN)si,j. Note that B̂
s

{i,j},w is a (K ×Kp) matrix.

Let the characteristics of each flow-phase in each FC be summarized by

Ms
i,j =

1

(WN)si,j

(WN)si,j∑

w=1

B̂
s

{i,j},w. (3.17)

Criterion 1: One type of flow-phase (e.g., mid inspiration) should have high

resemblance to the same type of flow-phase throughout the same subject (it should

be similar to every mid inspiration of the same subject from flow-cycle to flow-cycle);
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whereas that type of flow-phase should have low resemblance to any other types (e.g.,

mid inspiration should not resemble early expiration or other types, in any of the

flow-cycles.). This should hold for each subject.

The first measure can be defined mathematically as

µs
1 =

Ss
B,1

Ss
W,1

, (3.18)

where

Ss
B,1 =

1

|J |

∑

j∈J

(EFCN)sj × tr[(Ms
.j −Ms

..)(M
s
.j −Ms

..)
T ] (3.19)

is the between-group scatter and

Ss
W,1 =

1∑
j∈J (EFCN)sj

×
∑

j∈J

(EFCN)sj∑

i=1

tr[(Ms
ij −Ms

.j)(M
s
ij −Ms

.j)
T ] (3.20)

is the within-group scatter for subject s, where |J | is the size of set J and |J | = 6,

tr stands for the trace operator for matrices, Ms
.j indicates averaging Ms

ij over indices

i, and (EFCN)sj is the effective FC number for the jth flow-phase of the sth subject,

such that (EFCN)sj 6 (FCN)s. Inequality occurs if the sound acquisition for subject

s did not start with early inspiration and/or did not end with late expiration, values

of j depending on which flow-phases are lacking.

The maximum score per subject implies that the flow-phases with the same index

are similar and those with different indices are dissimilar to the largest extent, within

the subject.

Criterion 2: One flow-phase of one subject should be more similar to the same

type of flow-phase of any other subject in the same group (Healthy/Pathological) than

it is to any other type of flow-phase (of even himself/herself). (E.g., the mid inspiration

of one subject should resemble the mid inspiration of another subject in the same group,
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but not the early expiration of even himself/herself.) This should hold for each group

(Healthy/Pathological).

Mathematically,

µg
2 =

Sg
B,2

Sg
W,2

, (3.21)

where

Sg
B,2 =

|Sg|

|J |

∑

j∈J

tr[(M.
.j −M.

..)(M
.
.j −M.

..)
T ] (3.22)

and

Sg
W,2 =

1

|J ||Sg|
×

∑

j∈J

∑

s∈Sg

tr[(Ms
.j −M.

.j)(M
s
.j −M.

.j)
T ], (3.23)

where g is the group index, g = 1, 2, denoting the healthy and pathological groups,

respectively, Sg denotes the set of subjects in group g, and |Sg| is the size of the set.

The maximum score per group implies that the flow-phases with the same index

are similar and those with different indices are dissimilar to the largest extent, within

the group.

Criterion 3: Parameter sets of one group (Healthy/Pathological) should be more

similar to each other than they are to those of the other group. (E.g., parameters from

the healthy group should be alike to each other but not alike to the parameters from

the pathological group.)

This corresponds to

µ3 =
SB,3

SW,3
, (3.24)
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where

SB,3 =
1

2

2∑

g=1

|Sg| × tr[(C.
g −C.

.)(C
.
g −C.

.)
T ] (3.25)

and

SW,3 =
1

|S|

2∑

g=1

∑

s∈Sg

tr[(Cs
g −C.

g)(C
s
g −C.

g)
T ], (3.26)

where |S| is the size of the set of subjects, |Sg| is the size of the set of subjects in group g,

andCs
g is formed by concatenating matrices Ms

.j horizontally such thatCs
g = [Ms

.{j∈J}],

where s ∈ Sg.

The maximum score per model fit implies that the representative parameter sets

C with the same group index are similar and those with different indices are dissimilar

to the largest extent. In other words, the two groups (healthy and pathological) are

separable to the largest extent in terms of the representative parameter sets. Since

the aim of VAR modeling is diagnostic classification, the most pertinent criterion is

this one among all, albeit the first two are also necessary to complete the analysis and

strengthen the choice of the third criterion in case of an agreement.

Some pathologies cause changes only in a specific flow-phase, or only in inspiration

or expiration, instead of the whole pulmonary signal. This causes that the representa-

tive parameter sets of the pathological subjects resemble those of the healthy group to

a larger extent than those of the other pathological types, in some portions of the set.

Therefore, the actual values of the second and the third measures are sensitive to the

type of diseases selected for the pathological group. However, that does not affect the

validity of the criterion in the attempt to find the optimal model, because the relevant

question is when the maximum value is reached, rather than what the actual values

are. The similar portions of the parameter sets across the groups affect the measure in

the same manner for each different choice of free variables (m, N and sampling rate),

therefore are neutral elements in the quest for the total maximum diversity between
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the groups.

3.3. Effect of Flow Levels on the Model

As introduced before, the data are segmented into short time intervals for the

VAR model to be valid. Over those intervals, the data can be assumed stationary

and the model parameters are constant. This arises the question how, or whether, the

changes in the statistical characteristics of the data due to different flow levels, such

as changes in the variance, are observed in the model parameters.

With an attempt to investigate the direct effects of different flow levels on the

parameters, six types of normalization schemes are defined as divisions by functions of

air flow rate (in liters per second). For comparison, the case without normalization is

also included in the list as the first item.

(i) No normalization,

(ii) Division by the instantaneous flow rate,

(iii) Division by the absolute instantaneous flow rate,

(iv) Division by the square of the instantaneous flow rate,

(v) Division by the total air volume (in liters) inhaled or exhaled during the flow-

phase,

(vi) Division by the total energy of the flow rate,

(vii) Division by the mean of the flow rate.

The functions are chosen as they are physiologically meaningful, and included

here for a full list of possible normalization schemes, although some of them are math-

ematically equivalent to each other. For example, normalization schemes (v) to (vii)

are actually divisions by scalars, therefore the estimated model parameters should not

be effected by them due to the linearity of Equation 3.6. Moreover, the schemes (ii)

and (iii) are expected to yield equal results since the only difference between them,

which occurs for expiration periods, is effectively a sign change in the data matrices on

both sides of Equation 3.5, leaving the parameter matrix unaffected.
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These schemes are applied on the data prior to the VAR model fit, and the

proposed criteria are calculated on the model parameters to observe the effects. Any of

the normalization schemes ((ii) to (iv), ignoring the ineffective ones) is accepted to be

useful if it decreases the within-class scatters and increases the between-class scatters

so as to increase the value of the corresponding measure. The healthy group is expected

to be relatively more uniform than the pathological group due to the wide variety that

the latter depicts in terms of the type and spatial location of the pathology. Then,

hypothetically, a decrease in the within-class scatter scores associated with the healthy

group is still accepted as a success even if the corresponding pathological scores do

not decrease. To observe the individual effects of normalization, the within-class and

between-class scatters as defined in Section 3.2.2 are handled separately for the healthy

and pathological groups, for the first two measures. The third measure, however, does

not allow separate analysis by nature since it yields only one score for all subjects per

model fit.

3.4. Experiments and Results

Pulmonary sounds data of 15 healthy and 15 pathological subjects (data set DS0,

see Chapter 2) are used for the experiments. Accordingly, |S| = 30, and |Sg| = 15 for

g = 1, 2, referring to the definitions in Section 3.2.2. The subjects and the data

acquisition sessions to be included in the pathological group have been selected such

that adventitious pulmonary sound components are absent, or at least in negligible

amount, with an attempt to satisfy the model assumptions to the largest possible

extent (see the third paragraph in Section 3).

To observe the effect of the data sampling rate, the 14-channel data are down-

sampled by d, d = 1, 2, ..., 10, where d = 1 corresponds to the case of no downsampling.

Downsampling by d implies an equivalent of sampling the data with a sampling rate

of 9600/d samples per second, i.e., keeping one out of every d samples after the data

is digitally processed through a proper anti-aliasing filter.

Considering the solution in Equation 3.6, there is a maximum allowable p value
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per choice of N , or, a minimum allowable N value per choice of p, since the calculation

of the parameter matrix requires ZZT to be non-singular, which in turn requires that

Km+1 < N (see Equations 3.4). The model orders m = 1, 2, ..., 10 are experimented.

Letting K = 14 and m = 10, the constraint is found to be N > 141. Accordingly, the

minimum sample size N is set to 200. Moreover, considering the typical flow-phase

lengths, the maximum N is set to 1900. The step size is set to 50 samples from 200 to

1900.

For each P s
i,j as defined in Section 3.2.2, the data are downsampled by d, d =

1, 2, ..., 10, and a 14-variate N -point VAR(m) model is fitted on the N -point 50%

overlapping segments of the data, where m = 1, 2, ..., 10 and N = 200, 250, ..., 1900.

Calculations for MSE(d,m,N) and R2(d,m,N) together with the other four conven-

tional goodness of fit measures, and the three proposed measures {µ1, µ2, µ3}(d,m,N)

are carried out2 as explained in Section 3.2 for all selected d, m and N values. Please

note that d, m and N are also variable indices of every matrix and scalar beginning

from Section 3.2.2, however dropped for clarity.

The best sets of model arguments according to the conventional goodness of fit

criteria are given in Table 3.1. MSE, R2, FPE and AIC choose the highest model

order m and the smallest sample size N available (m = 10, N = 200), whereas HQ

and SC choose a lower model order m and the largest sample size N possible (m = 6,

N = 1900. Refer to Equations 3.7 - 3.10 for the correction terms that causes this

difference). All those measures deteriorate for d > 1.

The upper two plots in Figure 3.1 depict the three proposed coherence-related

measures in percentage values with respect to their maxima, for selected ranges of d,

m and N (d = 1, m = 1, 2, ..., 5 and N = 200, 250, ..., 850). For each measure, the

maximum occurs at a single point within the range. The sets of model arguments

that yield those measure values above 99% of their maxima are given in Table 3.2, the

figures in bold depicting the best sets. Among the conventional measures, R2 is chosen

2Calculations are done using MATLAB v7.2 running on a Linux workstation with 16 CPUs each
working at 3 GHz and with 32 GB RAM in total
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Table 3.1. The best set of model arguments found using the conventional goodness of

fit measures. d: downsampling ratio, m: VAR model order, N : sample size.

d m N

MSE 1 10 200

R2 1 10 200

FPE 1 10 200

AIC 1 10 200

HQ 1 6 1900

SC 1 6 1900

for comparison since its values can be comprehended more intuitively. R2 values are

also given in the lower plot in Figure 3.1 for m = 2, 3 and the selected range of N

values.

Outside the range of Figure 3.1, all the three proposed measures deteriorate

(therefore, not included in the figure). This implies that, the attempt to choose the

optimal model according to the best values of the conventional measures would lead

to poor values of the proposed measures. On the other hand, the figure verifies that

choosing the optimal model according to the best values of the proposed measures leads

to sufficiently good models in terms of prediction successes as well. To give numerical

examples, if one of the selections given in Table 3.1 is adopted, e.g., d = 1, m = 10 and

N = 200, µ1, µ2 and µ3 drop to 10.5%, 26.4% and 41.5% of their maxima, respectively.

The other selection, d = 1, m = 6 and N = 1900, yields µ1, µ2 and µ3 at 38.9%, 50.3%

and 65.8% of their maxima, respectively. Whereas, the selections given in Table 3.2

yield the minimum R2 value to be 0.9978 (i.e., the selected models represent the data

with a prediction loss of 0.22% at worst), implying that all of the choices in Table

3.2 are preferable both in terms of the conventional and the proposed goodness of fit

criteria. According to the proposed criteria, the acceptable choices for the VAR model

of pulmonary sounds data are limited and should be determined cautiously.

The first measure µ1 reaches its maximum for m = 3 and N = 600, whereas µ2
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Figure 3.1. The proposed coherence-related measures in percentage with respect to

their maxima, for selected ranges of m and N (d = 1). The dotted line is the 99 %

threshold. N = 200, 250, ..., 850 in increasing order for each m lot in the x-axis.

and µ3 reach their maxima for m = 2 (common for both), and N = 200 and N = 250,

respectively. The sample size selection of µ3, N = 250, also yields a µ2 value above 99%

of its maximum, therefore it is also acceptable in terms of µ2 for practical purposes.

Consequently, the best sets of arguments {d,m,N} are determined in this study to

be {1, 3, 600} according to µ1, and {1, 2, 250} according to µ2 and µ3. Among the

two sets, the latter is a better choice because it yields µ1 at 91.3% of its maximum

(a larger percentage than those of µ2 and µ3 when the former is selected, see Table

3.2). Hence, 250-point VAR(2) model is proposed to be an optimal VAR model for

pulmonary sounds data. That is the optimal model selection of the third criterion,

which is also in accordance with the fact that the third criterion is the most relevant
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Table 3.2. Model arguments selected by the proposed goodness of fit criteria (those

that yield the three measures above 99% of their maxima). The best sets are in bold.

All the measures are in percentage values with respect to their own maxima.

Argument selections Measures (%)

d m N µ1 µ2 µ3

µ1 1 3 450, 500, 550, 600, 650, 750 100 86.4 89.2

µ2 1 2 200, 250 89.8 100 96.8

µ3 1 2 250, 300 91.3 99.6 100

criterion for the final aim of subject-based classification using the whole respiratory

cycle.

As a preprocessing step for normalization, flow signals are first smoothed to elim-

inate the quantization noise. For this purpose, a cubic spline interpolator is adopted

after experimental observations, since it proved superior to polynomial fits of order

one to ten. A step size of 100 is chosen, and starting from the time index equal to the

half of the step size, samples are picked to be used for interpolation. The cubic spline

interpolated signal is a smoother version of the former with the same time duration,

mean value, and standard deviation. For early and late inspiration (expiration), the

flow rates below (above) 25% of the maximum (minimum) flow rate of that particular

sub-phase are floored to an empirical threshold flow value (after smoothing). This is a

preventive step against divisions by zero or near-zero values which would cause explo-

sions near the start or end portions of the sub-phase, thus violating the stationarity

assumption.

The six normalization procedures listed in Section 3.3 are applied on the data,

after the segmentation into early/mid/late inspiration and expiration phases, prior to

the model fit. Here the focus is on how the coherence-related measures change with

flow normalization. To observe each one of the three measures, the maximizing set of

arguments is used, i.e., the set of arguments {d,m,N} that makes the measure maxi-

mum without normalization. Accordingly, after applying each normalization scheme,
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three models are fitted on the data with different sets of arguments. When the set of

arguments is {1, 3, 600}, µ1 is calculated only. Similarly, when the set of arguments is

{1, 2, 200}, µ2 is calculated, and when it is {1, 2, 250}, µ3 is calculated. The percent-

age changes of all scores with respect to their values before normalization are given

in Table 3.3. In the table, the values in bold depict the most meaningful percentage

changes, i.e., the maximal decreases in within-scatter scores, and the maximal increases

in between-scatter scores and the three measures). An explanation about handling the

healthy and pathological scores separately is given in Section 3.3.

The schemes (v) to (vii) yield results that are exactly equal to each other and also

to the case without normalization as deduced in Section 3.3, therefore are not reported

in Table 3.3. The schemes (ii) and (iii) are reported together since they yield exactly

equal results. Observations on Table 3.3 reveal that all of the within-class scatters

decrease with normalization, with maximum decrease when scheme (iv) is applied,

making it the best in terms of within-class scatters. The between-class scatters on

the other hand do not increase with normalization except for the two bold figures in

the table. Yet, µ1 and µ2 improve with normalization, using normalization schemes

(ii) (therefore (iii)) and (iv), respectively. The most consistent improvement occurs in

terms of µ2, and the most proper normalization scheme is (iv) accordingly. The third

measure, µ3, does not improve upon normalization although the associated within-class

scatter decreases, therefore it is concluded that flow normalization does not increase

the discriminative ability of the model parameters into healthy and pathological cases.
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Table 3.3. Effect of normalization on the three measures in percentage changes with

respect to the case without normalization. H: Healthy, P: Pathological, O: Overall,

SB: Between-class scatter, SW : Within-class scatter, µ = SB/SW .

Normalization schemes

(ii),(iii) (iv)

∆SW,1

H -0.69 -1.09

P -1.31 -2.22

O -1.14 -1.91

∆SW,2

H -0.02 -0.07

P -0.07 -0.23

O -0,05 -0,16

∆SW,3 O -0.08 -0.22

∆SB,1

H -0,47 -0,94

P -1,24 -2,79

O -0.98 -2.16

∆SB,2

H -0,01 -0,03

P 0,20 0,67

O 0,04 0,14

∆SB,3 O -0,17 -0,61

∆µ1

H 0,06 -0,41

P 0,29 -0,25

O 0,15 -0,35

∆µ2

H 0,01 0,04

P 0,27 0,91

O 0,07 0,23

∆µ3 O -0,09 -0,40
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3.5. Summary and Discussion

According to both the conventional and the proposed criteria, the case without

downsampling has been determined to be the best choice in terms of the sampling

rate. The reason for obtaining the highest scores for the original sampling rate can

be explained as that the data are represented with more detail as the sampling rate

increases, hence yielding a more correct modeling.

The conventional goodness of fit criteria select quite different m and N values

from those selected by the coherence-related criteria, which yield models that perform

poorly in terms of the latter. On the other hand, selecting the model arguments

using the proposed coherence-related criteria causes only a slight deterioration in the

conventional measures, therefore, is preferable in both respects.

The first measure differs from the second and the third in terms of the best set

of arguments {d,m,N} it chooses. The reason is that the former is a within-subject

measure while the latter two are between-subject measures (see the definitions given

in Section 3.2.2). Among the two sets, the simultaneous maximization of all the three

measures is obtained for the latter, namely, {1, 2, 250}. In other words, 250-point

VAR(2) model applied without downsampling has been determined to be the optimal

VAR model to represent 14-channel pulmonary sound data. This selection coincides

with the one optimized by the third criterion, which is the one that enhances the

ability of the model to discriminate between the pulmonary conditions (healthy and

pathological) by definition.

Flow normalization does not seem to improve the third proposed measure, i.e.,

the discriminative ability of the model parameters. The first and the second measures

depict minor improvements, however, they do so for different normalization schemes.

In general, the improvements, if any, are so small that normalization with respect to the

flow rate is shown to be a non-crucial step before the VAR modeling of the pulmonary

sounds data.
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Any comparison of the results of this chapter with the literature can not be

made since any study that proposes goodness of fit criteria specific to VAR modeling

of pulmonary sounds is not available. However, a discussion on the results of two

studies, [36] and [41], is included here to emphasize the importance of choosing the

model order cautiously.

In [41], a binary classification problem into healthy and pathological groups (in-

terstitial pulmonary disease only) is addressed. Four methods of feature extraction

have been explored, two of which are univariate AR (referred as UAR) and multivari-

ate AR (referred as MAR, same as VAR in this study) modeling. Model parameters

have been used as inputs of a neural network classifier. The results with VAR have

been shown to be the worst among the four, in terms of the thresholded final decisions.

As a difference in [41] from this study, there are 25 microphones, each inspiratory pe-

riod is divided into 30 temporal windows (therefore each segment is of varying length

depending on the duration of the inspiration), and only the inspiration cycles are used.

The VAR model order is chosen to be four according to Akaike’s criterion. The best

classification success is obtained using univariate AR, where the model order is chosen

to be four as that of VAR, this time by observing the residual correlations.

In [36], binary classification into healthy and pathological (mixed group of both

obstructive and restrictive types) groups is performed using univariate AR parameters

with k-NN classifier. The microphone count is two, the model is fitted on data segments

of 256 samples-long (fixed), and both the inspiration and expiration periods are used.

The best order for the model is proposed to be six according to the resulting classifi-

cation successes. The explicit correct classification rates for healthy and pathological

classes for the other model orders are not presented separately. Moreover, the overall

success rates are not written explicitly for the other model orders, however those are

given in a graphical figure.

A direct comparison between the two studies is impossible to make since the

channel counts, sampling rates, data segmentation procedures, contents of the subject

groups (especially the variations in the pathological groups), and the classifier algo-
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rithms are all different. However, the following discussion on the results of [36] and [41]

with univariate AR would still give an idea about the importance of choosing the op-

timal model in accordance with the purpose of the analysis: The correct healthy and

pathological classification rates in [41] for model order four (optimal based on residual

correlations) are 75% and 93%, respectively. In [36], the correct healthy and patholog-

ical classification rates for model order six (optimal based on classification successes)

are 85.7% and 100%, respectively, with an overall correct classification rate of 93.75%.

The overall correct classification rate for model order four, on the other hand, can be

read in the graphical figure to be 85%-90%, a lower score than that with the sixth order

model. These results show that it is crucial to choose the optimal model according to

the discriminative power of the parameters.

The proposed criteria are specific to pulmonary sounds analysis, nevertheless they

can be adapted and employed for other types of data or applications as well, wherever

the aim is to extract distinctive characteristics of the underlying system. Even though

these criteria are to be used for pulmonary signals, where they can be employed without

adaptation, one should note that the optimal set of model arguments would possibly

turn out to be different, since the one suggested in this study is specific to the channel

count and sampling rate of our data, possibly to the transfer characteristics and design

of the hardware as well.
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4. DIAGNOSTIC CLASSIFICATION

The aim of this chapter is to explore various classification schemes with differ-

ent data sets with the eventual aim to build a diagnostic classifier. The features are

the VAR model parameters estimated for the pulmonary sounds data using the opti-

mal model proposed in the previous chapter. For clinical purposes, the detection of

a deviation from the healthy case is valuable, therefore the binary classification prob-

lem into healthy and pathological cases is sufficiently interesting. Moreover, diagnosis

requires differentiation between distinct types of pathologies, hence making the multi-

class classification problem even more pertinent. This chapter follows a progressive

route in terms of both methodology and material, i.e., it begins with the basic healthy

versus pathological classification with the smallest data set and proceeds towards the

diagnostic (multi-class) classification with the largest data set. Accordingly, at each

intermediate step, the data set is augmented by enlarging with the newly acquired data

and/or dividing into subsets for a particular experimental setup. Besides, the classifier

algorithms are compared and/or improved.

In pattern recognition, k-NN classifier is a simple non-parametric method, which

is widely used in biomedical data classification. As it predicts the unknown class label

of a new instance depending on its closest neighbors in the labeled feature set, it does

not assume any statistical models for the distributions of the classes, or does not impose

any structured discriminants to separate them. Therefore it is preferable in cases where

the data size is small, or where any assumptions on the distribution of the features in

space are not available yet. Here, k-NN is adopted since it is widely used in pulmonary

sounds analyses [19, 27, 36, 40].

As a second method, a kernel based discriminative classifier, namely, SVM algo-

rithm is adopted. Although its basic linear version is already useful in many applica-

tions, the actual power comes from the usage of kernel functions, which provides the

ability to handle linearly non-separable cases. SVM algorithm with a nonlinear kernel

is equivalent to transferring the data to a higher dimensional space and performing



36

the linear separation there. Although SVM is already popular in speech and image

recognition, bioinformatics, and various biomedical signal classification applications, it

has not been adopted for classification of pulmonary sounds yet.

Finally, the GMM classifier is included as the third method. Unlike k-NN and

SVM classifiers, GMM classifier is parametric (generative), assuming statistical models

for features to yield probabilistic values for class memberships. The features are as-

sumed to lie in space as a combination of distinct Gaussian-distributed subsets (rather

than obeying a single Gaussian distribution) and the class labels are predicted us-

ing maximum likelihood or maximum a posteriori decision rules. GMMs have re-

cently begun to be adopted to classify and label adventitious pulmonary sound compo-

nents [24, 26, 35] rather than pulmonary conditions (e.g., healthy versus pathological).

In this chapter, Section 4.3.1 is on the binary scheme of healthy versus patho-

logical classification with a relatively small data set. All the classifier algorithms are

incorporated with some basic preferences to explore the comparative successes. Using

the classifier algorithms selected according to the results of Section 4.3.1, Section 4.3.2

includes the obstructive versus restrictive discrimination in a three-class schema includ-

ing the healthy group as well, with the data set augmented accordingly. Section 4.3.3

introduces the special case of asthma versus COPD discrimination with the classifier

that has been observed to be the most successful in the previous two experiments. Since

the symptoms of the two diseases overlap, they are often confused in clinical diagnosis

(see Chapter 1), and there does not exist any study in the literature that proposes a

method for their differential diagnosis using computerized pulmonary sounds analysis.

Therefore, the inclusion of this special case in this chapter embodies particular im-

portance. Finally, Section 4.3.4 presents the diagnostic classification scheme with the

largest variety of conditions, namely, with the healthy, asthma, COPD, bronchiectasis

and ILD classes, with some additional improvements in the classifier design. This final

part of the chapter contributes to the novelty of this study at different levels, first,

it proposes a diagnostic framework with multiple disease conditions together with the

healthy case contrary to the studies in the literature, second, each binary classification

step is novel in terms of the data size and the classifier (see Chapter 1).



37

To summarize, the purpose of this chapter is to compare and improve classifier

algorithms with the eventual aim to build a diagnostic system for pulmonary sounds,

and to assess their performances on particular data sets. The novelty lies in the fol-

lowing aspects: (i) The employment of the VAR model that has been optimized for

pulmonary sounds for diagnostic purposes, (ii) The assessment of the SVM and GMM

classifiers which have not been adopted yet to recognize pulmonary conditions, (iii)

The inclusion of the special case of asthma versus COPD classification, and (iv) The

observation of the diagnostic framework with the largest variety of conditions.

4.1. Classifier Algorithms

4.1.1. k-NN

Given a set X of class-labeled data vectors x, k-NN algorithm predicts the class

label of a new vector y by looking at the neighboring instances of x. Let the distance d

between two vectors a and b be defined as d = ||a−b||, where the distance metric can

be any suitable choice. To predict the label of y, the distances ||xt−y|| are calculated

for each xt ∈ X , t = 1, 2, ..., |X |, then they are sorted in the ascending order, such

that d1(y) = mint||xt − y||. The labels of vectors xt with the closest k distances,

d1, d2, ..., dk, are considered, and the label of y is predicted by majority voting over

those labels (therefore, k should be an odd number for binary classification).

4.1.2. SVM

For binary classification problems, SVM algorithm proposes a method to find the

optimal separating hyperplane. Suppose we have data vectors xt ∈ X , t = 1, 2, ..., |X |,

and the class labels are denoted by rt, rt = +1 if xt ∈ C1 and rt = −1 if xt ∈ C2. Then

the optimal separating hyperplane is such that

rt(w
Txt + w0) > +1, ∀t, (4.1)
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where w is the normal vector of the hyperplane. If there is no hyperplane to separate

the two classes, the one that incurs the least error is searched. Including slack variables

ξt > 0 to represent the deviations from the margin, the relation becomes

rt(w
Txt + w0) > 1− ξt, ∀t. (4.2)

To solve for w, one should minimize

Lp =
1

2
||w||2 + F

∑

t

ξt −
∑

t

αt[rt(w
Txt + w0)− 1 + ξt]−

∑

t

µtξt (4.3)

where αt and µt are the Lagrange multipliers for the two constraints (for the one in

Equation 4.2 and for ξt > 0, respectively), and F is the penalty factor to trade off

complexity and data misfit [59] (the letter F is used here to represent the penalty

factor, since the conventional letter C is reserved to stand for class).

For those cases where the separating boundaries are nonlinear, the idea behind

SVM classification is to map the data to a new space through a nonlinear transfor-

mation and to find a separating hyperplane in this new space. The nonlinear trans-

formation is done using a suitably chosen basis function. Let the d1-dimensional x

space be mapped to the d2-dimensional z space as z = φ(x), where zi = φi(x),

i = 1, 2, ..., d2 (d2 is usually much larger than d1). Then the new discriminant is

written as g(z) = wTz = wTφ(x), where now w0 is inside w with the assumption that

z1 = φ1(x) ≡ 1. The constraint rt(w
Txt + w0) > 1− ξt in Equation 4.3 is replaced by

rtw
Tφ(xt) > 1− ξt, except for which the problem is the same. In the solution of this

problem, inner product of these basis functions φ(x)Tφ(y) appear. The idea in kernel

machines is to replace this inner product by a kernel function K(x,y), which provides

means for direct application in the original space instead of mapping the two instances

to the new space and perform the inner product there [59].

It is a convex quadratic optimization problem to solve for w in Equation 4.3.

Throughout this study, LIBSVM [60] is used to solve for w, in other words, to train
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(and validate) the SVM classifiers. For multi-class problems, LIBSVM follows one-

against-one approach, which can be summarized as considering two of the classes at

each time to predict a label for the instance, then deciding on the true label by majority

voting. As the basis functions, linear, polynomial, and radial basis functions as defined

in [60] are considered.

4.1.3. GMM

In the single Gaussian case the likelihood of vector x ∈ X under class r is

p(x|Cr) ∼ N (µr,Σr) where the mean vector µr and the covariance matrix Σr are

maximum likelihood (ML) estimates calculated over Xr, such that X =
⊔

r Xr, where
⊔

denotes the exclusive union of sets (the intersections are empty).

In the GMM case, on the other hand, the likelihood p(x|Cr) is written as

p(x|Cr) =

M∑

m=1

P (Cm
r )p(x|Cm

r ) (4.4)

where M is the total number of components in the mixture, P (Cm
r ) is the probability of

the m-th component, and p(x|Cm
r ) ∼ N (µm

r ,Σ
m
r ) is the likelihood of x under the m-th

component (µm
r andΣm

r are ML estimates calculated over Xm
r , such thatXr =

⊔
mXm

r ).

Then, given a vector y lying in the same space, the posterior probability of class

r is calculated by Bayes’ rule as

p(Cr|y) =
p(y|Cr)P (Cr)

p(y)
=

p(y|Cr)P (Cr)∑
r p(y|Cr)P (Cr)

, (4.5)

where P (Cr) and p(y) are called the class prior probability and the evidence, respec-

tively, and the likelihood p(y|Cr) is calculated using the mixture model in Equation

4.4.

The components in the GMM are estimated using unsupervised learning (cluster-
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ing) methods, the most popular being the expectation maximization (EM) algorithm,

which is the one adopted in this study as well. To search for the best fit, mixtures with

various component counts are considered for class distributions.

4.2. Performance Evaluation

The estimated VAR parameter matrices are denoted (in Section 3.2.2) as B̂
s

{i,j},w,

where s ∈ S is the subject index, i = 1, 2, ..., (FCN)s is the FC index, (FCN)s being

the total number of FCs for subject s, j ∈ J is the flow-phase index from early inspira-

tion to late expiration (|J | = 6), and w = 1, 2, ..., (WN)si,j is the index of the N -point

segments in one flow-phase, (WN)si,j being the maximum number of such segments

fitting into the flow-phase. The 14-channel pulmonary sounds data are divided (auto-

matically) into the six flow-phases, then further divided (automatically) into 250-point

50% overlapping segments, and a VAR(2) model is fitted on each segment. Accordingly,

B̂
s

{i,j},w is in the form [Â1, Â2] and is a (14×28) matrix. To build the feature space for

classification, the matrices are converted to their vector forms, i.e., each matrix B̂
s

{i,j},w

is converted to a row vector b̂
s

{i,j},w ∈ R
d, where d = 14× 28 = 392. Suppose a set Bs

j

is defined as the set of these row vectors concatenated over w and i for a fixed j per s.

Mathematically, Bs
j , {b̂

s

{i,j},w : 1 6 w 6 (WN)si,j, 1 6 i 6 (FCN)s}.

Classifiers are trained on combinations of these Bs
j and validated on the comple-

menting data set, which is also a combination of Bs
j , where the rule of combination is

determined by the particular classification scheme. At the lowest level, there are only

feature vectors, and the success rate associated with each validation set corresponds to

the percentage of correctly classified vectors (equivalently, correctly classified segments

of the data). At the next level, the predicted labels (or, probabilistic scores) of all the

vectors in Bs
j are combined to predict a label for Bs

j , which bears the notion of correctly

classified flow-phases. Finally, at the upmost level, the predicted labels (or, probabilis-

tic scores) of the six flow-phases are combined to predict a single label for the subject.

The three perspectives to evaluate the classification performances are explained below

in more detail.
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Note that the classifiers are trained for the six flow-phases separately in order to

observe their relative pertinences. Since the data size is not large enough to partition

the data as to have separate and sufficiently large training, validation and test sets,

K-fold cross validation scheme is adopted throughout the experiments.

• Perspective 1 (P1) - On the level of segments: Each data segment, i.e., each one of

the 250-point segments of the sound data that the VAR model is fitted on, is assigned

a class label and successes are calculated at this level. Algorithmically, one class

label is predicted for every vector b̂ (dropping the indices of b̂
s

{i,j},w for simplicity)

in the validation set, the percentages of correctly and incorrectly classified vectors

are calculated per j per fold, and the averages over the folds yield the entries of the

confusion matrix for j.

For k-NN and SVM, the classifier yields a class label per vector directly. For

GMM on the other hand, the outcome is a probability value (likelihood). Then, the

decision rule for a single b̂ is the maximum a-posteriori (MAP) decision rule

log p(C1|b̂) >
C1 log p(C2|b̂), (4.6)

or, equivalently (refer to Equation 4.5)

log p(b̂|C1) + log p(C1) >
C1 log p(b̂|C2) + log p(C2), (4.7)

where the likelihoods are calculated as in Equation 4.4 and the prior probabilities are

calculated as the frequencies of classes in the training set.

• Perspective 2 (P2) - On the level of flow-phases: Segment decisions are combined to

produce one common decision per flow-phase per subject and successes are calculated

at this level. Algorithmically, one class label is predicted for Bs
j for every j and s, and

the percentages of correctly and incorrectly classified Bs
j ’s per j yield the entries of the

confusion matrix for j.
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For k-NN and SVM, the common decision for a flow-phase is taken by majority

voting over the labels of segments in the flow-phase. However, for GMM, this is done by

comparing the class posterior probabilities given the flow-phase. That is, the decision

rule is

log p(C1|B
s
j ) >

C1 log p(C2|B
s
j ), (4.8)

in other words

log p(Bs
j |C1) + log p(C1) >

C1 log p(Bs
j |C2) + logP (C2). (4.9)

Assuming statistical independency between observations (segments), we have

log p(Bs
j |Cr) = log

∏

b̂∈Bs
j

p(b̂|Cr) =
∑

b̂∈Bs
j

log p(b̂|Cr), r = 1, 2. (4.10)

Then the MAP decision rule for this perspective becomes

∑

b̂∈Bs
j

log p(b̂|C1) + log p(C1) >
C1

∑

b̂∈Bs
j

log p(b̂|C2) + log p(C2). (4.11)

Successive segments of pulmonary sound signals are not necessarily independent from

each other, however, assuming statistical independence in Equation 4.10 is still appro-

priate because absolute entities are not aimed here. Rather, sums of log-likelihoods are

used for comparison, as measures of superimposed distances from the class means.

• Perspective 3 (P3) - On the level of subjects: The six flow-phase decisions are com-

bined to produce one common decision per subject, and successes are calculated at this

level. That yields one confusion matrix for the overall classification.

For k-NN and SVM, the common decision for a subject is taken by majority

voting over the flow-phases of the subject. For GMM, on the other hand, this is done

by comparing the combined class posterior probabilities of flow-phases. As methods of
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combination, four possibilities are considered:

(i) The combined decision for subject s is basically made by comparing the sums of

class posterior probabilities over the flow-phases. The decision rule is then

∑

j∈J

p(C1|B
s
j ) >

C1

∑

j∈J

p(C2|B
s
j ). (4.12)

For discriminative purposes, this is called P3-SOP (sum of posteriors) hereafter.

In the extreme case that all posterior probabilities are either zero or one (the case

sufficiently far from the class boundaries), this is equivalent to majority voting.

Except for this extreme case, this combination method, as well as the succeeding

ones, promises higher classification scores since it reduces the indecisive cases.

(ii) The combined decision for subject s is made by comparing the sums of log-

posterior probabilities. The decision rule is then

∑

j∈J

log p(C1|B
s
j ) >

C1

∑

j∈J

log p(C2|B
s
j ). (4.13)

This method is expected to increase the success scores in cases where the extreme

case mentioned above (all probabilities are either zero or one) equates P3-SOP to

majority voting, which is apt to create indecisive cases. Besides, the addition of

log-posteriors is equivalent to the multiplication of posteriors, which corresponds

to the probability that the six events occur at the same time if the events are

statistically independent, the events being that all the six class indices are r given

all the six flow-phases. (Note that the above decision rule is not equivalent to

comparing sums of joint likelihoods of flow-phases, if the priors are not equal.)

This combination method is called P3-SOLP (sum of log-posteriors) hereafter.

(iii) P3-SOP assumes equal weights for the class posterior probabilities of the six flow-

phases. However, the flow-phases may be unequal in pertinence to predict the

true class label of the subject, and assigning larger weights to those which are

consistently more successful may increase the overall classification success. As

a systematic way of determining the optimal weights, the SVM algorithm with
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linear basis function is adopted.

The weighted version of the rule in Equation 4.12 is

∑

j∈J

ujp(C1|B
s
j ) >

C1

∑

j∈J

vjp(C2|B
s
j ). (4.14)

Substituting 1− p(C1|Bs
j ) for p(C2|Bs

j ), it is reduced to

∑

j∈J

wjp(C1|B
s
j ) >

C1

∑

j∈J

vj (4.15)

where wj = uj + vj . Note that it is equivalent in form to

wTx >C1 τ, (4.16)

where

w = [w1, w2, ..., w6]
T , (4.17)

x = [p(C1|B
s
1), p(C1|B

s
2), ..., p(C1|B

s
6)]

T ,

τ =
∑

j∈J

vj .

The vector w of weights in Equation 4.16 is the normal vector w of the separating

hyperplane in Equation 4.2, and τ in Equation 4.16 is found by LIBSVM as a

result of the solution of Equation 4.3. This combination method is called P3-

SVM hereafter. In the extreme case that all the weights turn out to be one, it is

equivalent to P3-SOP.

(iv) As P3-SOLP is the logarithmic version of P3-SOP, the logarithmic version of

P3-SVM, namely, P3-SVML is also worth mentioning. That is,

∑

j∈J

uj log p(C1|B
s
j ) >

C1

∑

j∈J

vj log p(C2|B
s
j ), (4.18)

where Equation 4.16 still holds with
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w = [u1, u2, ..., u6,−v1,−v2, ...,−v6]
T , (4.19)

x = [log p(C1|B
s
1), ..., log p(C1|B

s
6), log p(C2|B

s
1), ..., log p(C2|B

s
6)]

T ,

τ = 0.

A reduction as done from Equation 4.14 to Equation 4.15 is not valid in this case

because of the nonlinearity, therefore the dimensionality of the feature space is

kept twice higher.

The format of the confusion matrix for the binary classification scheme with C1

and C2 is given in Table 4.1. In the table, n stands for the number of instances, and

f for the frequency of instances. For example, n2|1 denotes the number of instances

misclassified as in C2 while they are actually members of C1, and f2|1 is the frequency

of those instances such that

f2|1 = 100×
n2|1

n1|1 + n2|1 + nX|1

(%), (4.20)

where X is for indecisive cases when applicable.

Two success metrics are defined to summarize the whole confusion matrix in one

single value with the aims to assess the performance of a classifier and to compare

several classifiers. These are η and ζ , respectively, the former being the simple total

correct classification rate, and the latter being the harmonic mean of the two class

correct classification rates. Mathematically,

η , 100×
n1|1 + n2|2

n1|1 + n2|1 + nX|1 + n1|2 + n2|2 + nX|2

(%), (4.21)

and

ζ ,
√
f1|1f2|2 (%). (4.22)
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Table 4.1. The format for confusion matrices. C/Ĉ: True/Predicted class label,

C1/C2: Class 1/2, X:Indecisive.

Ĉ = C1 Ĉ = C2 Ĉ = X

C = C1 n1|1 (f1|1) n2|1 (f2|1) nX|1 (fX|1)

C = C2 n1|2 (f1|2) n2|2 (f2|2) nX|2 (fX|2)

The rationale behind defining two different metrics for the same purpose (to sum-

marize the confusion matrix in a single value) is the following. The first metric η is

defined especially for the first two of the three evaluation perspectives (P1 and P2)

explained above. To examine the total correct classification rates of a particular clas-

sifier in box-plots with respect to different flow-phases and different GMM component

counts, a linear metric is chosen. The second metric ζ on the other hand is defined

especially for the third perspective (P3) and to compare different classifier schemes.

Harmonic mean is chosen because the correct classification rates of both classes are de-

sired to be high simultaneously. When used for P1 and P2 to complement the analysis

with P3, ζ is calculated on the average confusion matrix over the six flow-phases.

Two more success measures are worth mentioning, namely, recall and precision

rates, which are used in information retrieval. These are evaluated separately per class,

and are intuitively appealing, therefore are incorporated here to observe the behavior

of a particular classifier in more detail than with the scores η and ζ . For C1, the recall

rate is

Recall(C1) = 100×
n1|1

n1|1 + n2|1 + nX|1

(%), (4.23)

and is equal to the correct classification rate of C1 (f1|1). On the other hand, the

precision rate for C1 is

Precision(C1) = 100×
n1|1

n1|1 + n1|2

(%), (4.24)

and interpreted as the proportion of true members of class C1 in all those instances
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Table 4.2. The confusion matrix for SE and SP calculation. C/Ĉ: True/Predicted

class labels, C1/C2: Class 1/2, T/F: True/False, N/P: Negative/Positive.

Ĉ = C1(N) Ĉ = C2 (P)

C = C1 (N) TN FP

C = C2 (P) FN TP

classified as C1. While the recall rate implies success in recognition, the precision

rate implies reliability of claim. In medical applications such as the detection of an

abnormal case, i.e., normal versus abnormal classification, a high prediction rate for

the normal class should especially be pursued, since there should be as little doubt as

possible when a subject passes the diagnostic test.

In the medical field, the popular success measures are sensitivity (SE) and speci-

ficity (SP). Either one corresponds to the correct classification rate of one of the two

classes, the attributions depending on which class is defined as the positive one. Re-

ferring to Table 4.2, SE and SP are defined as

SE = 100×
TP

TP + FN
(%) (4.25)

SP = 100×
TN

TN + FP
(%) (4.26)

where TP/FP and TN/FN denote the numbers of true/false positives and negatives, re-

spectively. In healthy versus pathological classification, since the existence of a pathol-

ogy is a deviation from the normal situation, which is to be detected, the pathological

class is usually the positive one. The co-evaluation of Tables 4.1 and 4.2 reveals the

following equalities

SE =Recall(C1) = f1|1,

SP =Recall(C2) = f2|2,
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the equalities of SE and SP holding if indecisive cases are ignored or included in the

denominators in the definitions, and

Precision(C1) =100×
TN

TN + FN
,

Precision(C2) =100×
TP

FP + TP
,

for which the counterpart in medical nomenclature is called the positive predictive value.

Although the confusion matrices and the definitions are given here for binary

classification, they can also be extended to the multi-class case. While the extension is

straightforward for η, ζ , and the recall and precision rates, it is not for SE and SP since

they form a complementary pair per classification. To be adapted, SE versus SP needs

to be defined for each class versus all others, in which case they contradict the aim of

multi-class classification. Therefore, SE and SP are mentioned here for the reader who

is more comfortable with the medical nomenclature, however, they are only calculated

for the healthy versus pathological classification, where the measures adhere to their

true nature.

4.3. Experiments and Results

4.3.1. Binary Classification: Healthy/Pathological

For the first experiment, pulmonary sounds data of 20 healthy and 20 pathological

subjects (data set DS1, see Chapter 2) are used. The first aim is to validate the ability

of VAR parameters to discriminate between healthy and pathological groups. The

second aim is to compare different algorithms and schemes of classifiers and assess the

most successful ones that can be employed for further experiments.

At each validation fold, features of one subject are omitted from the data set

and the classifier is trained on the remaining data, then the omitted subset is used to

validate the classifier performance at that fold (K = 40 in the K-fold cross validation



49

scheme). All the classification schemes are performed for the six flow-phases separately.

In k-NN, values of k = 1, 3, 5, ..., 99 are experimented. Euclidean and Maha-

lanobis distances are adopted for the distance metric. In calculation of the Mahalanobis

distance, two viewpoints are considered: (i) Two separate covariance matrices for the

two classes, (ii) One covariance matrix for the overall data set. Moreover, both the

diagonal and full versions of them are considered for exploratory purposes, increasing

the total number of schemes to four. For SVM, linear, polynomial (of orders two to

five), and radial basis function (RBF) are tested. GMMs are fitted with component

counts from one (equivalent to the conventional single Gaussian fit) to ten.

Figure 4.1 summarizes the performances of five selected classifiers. Since the aim

is to compare different classifiers, the success score ζ defined in Equation 4.22 is used

in the bar plot. The five selected classifiers are:

(i) k-NN with Euclidean distance measure (kNN(E)),

(ii) k-NN with Mahalanobis distance measure using full class covariances (kNN(M)),

(iii) SVM with linear basis function (SVM(Lin)),

(iv) SVM with radial basis function (SVM(RBF)), and

(v) GMM.

In calculating the Mahalanobis distances, considering two separate class covariances

and using them in their full form (rather than diagonal) maximizes the scores, therefore

is coded briefly by kNN(M) as the representative of the four Mahalanobis schemes.

SVM(Lin) and SVM(RBF) are the two SVM schemes selected to be the best among

all after many experiments, therefore the two are included in the list while the others

are omitted.

Note that the figure depicts the best versions of the five classifiers, i.e., the best k

for k-NN, the best F (and γ) for SVM, and the best component count for GMM. The

best k-NN performances are yielded with k = 1. The optimal penalty factor is F = 1000

(optimization range is F = 10−5, 10−4, ..., 105) for SVM(Lin). For SVM(RBF), the
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Figure 4.1. Bar-plot of ζ scores from P1, P2 and P3, for the five most successful

schemes in healthy versus pathological classification.

optimal F = 100, 1000 (exactly equal confusion matrices for the two) and the optimal

γ = 0.1 (optimization range is γ = 10−5, 10−4, ..., 102). The values for GMM in the

figure are for component count five.

Mahalanobis distance measure in k-NN yields equivalent results to Euclidean. As

for the SVM basis functions, the RBF has higher scores than the linear. Observation of

the figure reveals that k-NN is in general poor in separating the two classes, whereas,

SVM is considerably successful. The highest success is observed for GMM, especially

in P2 and P3, the latter being the most pertinent perspective for the evaluation of

performances since it is subject-level. Therefore, the best classifier algorithm among

all is concluded to be the GMM. Table 4.3 depicts the numerical values explicitly (the

confusion matrices from P1 to P3, together with the recall and precision rates of the

two classes, SE and SP values, and the two success scores η and ζ , all of which are

calculated on the confusion matrix from P3). kNN(E) and kNN(M) are comparable

to each other in terms of η and ζ , albeit in opposite tendencies in terms of recall,

precision, SE and SP. Since η and ζ are rather low, a further comparison including

the two is skipped. SVM(RBF) has all the scores higher than SVM(Lin). While that
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Table 4.3. Healthy versus pathological classification results. P1, P2 and P3: Perspectives 1, 2 and 3. C / Ĉ: True / Predicted class

label, H : Healthy, P : Pathological.

k-NN (E) k-NN (M) SVM (Lin) SVM (RBF) GMM

Ĉ = H Ĉ = P Ĉ = H Ĉ = P Ĉ = H Ĉ = P Ĉ = H Ĉ = P Ĉ = H Ĉ = P

P1
C = H 80.3 19.7 47.5 52.5 76.8 23.2 81.7 18.3 78.9 21.1

C = P 61.1 38.9 31.3 68.7 38.5 61.5 32.8 67.2 33 67

P2
C = H 90.8 9.2 46.7 53.3 83.3 16.7 86.7 13.3 85 15

C = P 65.8 34.1 27.5 72.5 32.5 67.5 25.8 74.2 17.5 82.5

P3
C = H 100 0 35 65 90 10 95 5 90 10

C = P 75 25 20 80 35 65 20 80 5 95

Recall Precision Recall Precision Recall Precision Recall Precision Recall Precision

Healthy 100 57 35 63.6 90 72 95 82.6 90 94.7

Pathological 25 100 80 55.2 65 86.7 80 94.1 95 90.5

SE/SP 25 / 100 80 / 35 65 / 90 80 / 95 95 / 90

η / ζ 62.5 / 50 57.5 / 52.9 77.5 / 76.5 87.5 / 87.2 92.5 / 92.5

ipek
Rectangle
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renders SVM(RBF) more appealing, two drawbacks render it dispensable for further

experiments: (i) A high computational cost even for learning a single classifier, (ii)

Two hyper-parameters to optimize (γ as well as the penalty factor F ). Therefore, the

linear basis function is also considered for the next experiment together with the RBF,

to observe the performances with a different data set.

SVM algorithm is used here in its original form, i.e., it predicts class labels for

instances according to which side of the hyperplane they lie (either in the original space

or in the kernel space). Alternatively, the individual distances of support vectors to the

hyperplane can be considered, even, can be turned into probabilities, which would give

more information than two discrete class labels, which in turn would possibly increase

the success of the method. Nevertheless, these are still derivations of the original

algorithm, with more other assumptions and estimations. As the Gaussian approach is

already probabilistic and its flexibility is increased with the mixture model approach,

a search for other variants of SVM than those included here is kept out of scope of this

thesis study.

As GMM proved to be the most successful classifier, additional observations for

healthy versus pathological classification can be done using the GMM results. Calcu-

lating η values for the six flow-phases, we have η as a function of j, and also of m

(m being the index for the GMM component count hereafter). Figure 4.2 depict the

box-plots of η(m, j) for P1 (upper) and P2 (lower), versus m (left) and j (right). The

clear observation made in Figure 4.2a is that the first, second, fourth and sixth flow

phases (early and mid inspiration, and early and late expiration) are notably more

successful compared to the third and fifth (late-inspiration and mid-expiration), and

the clear observation made in Figure 4.2b is that the GMM component counts greater

and equal to four are notably more successful than the smaller ones. In the lower

subfigure, although the first, second, fourth and sixth flow-phases do not depict the

same breakthrough as in the upper, a closer observation reveals that the median scores

of the four flow-phases are greater and equal to a threshold (80%) while those of the

remaining two are below.
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(a) η from P1 (the segment-level evaluation perspective).
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(b) η from P2 (the flow-phase-level evaluation perspective).

Figure 4.2. Box-plots of η scores, versus GMM component count (on the left), and

versus flow-phase index (on the right).
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Figure 4.3. The ζ scores from P1, P2 and P3 versus GMM component count.

Figure 4.3 plots ζ(m) versus m from the three perspectives, P1 to P3. From P3,

the most successful models are those with four and five mixture components, the latter

being the best in terms of P1 and P2 as well. For component counts above five the

successes decrease or stay more or less constant, and for those below four (or five for

P1 and P2) the successes also decrease as the component count decreases. Moreover,

the scores increase as we go from P1 to P3, i.e., combining the individual decisions to

reach a single decision on behalf of the group increases the diagnostic ability of the

classifier. This is also the case with SVM, leaving k-NN as the only exception among

the algorithms that are subject to this experiment (see Figure 4.1).

This experiment verifies that VAR parameters are successful to model pulmonary

sounds data, and reveals that the GMM classifier is successful to separate the healthy

and pathological classes represented by VAR parameters. However, one should keep in

mind that the optimal component count is specific to the distribution of the classes in

the feature space, therefore may turn out to be different for other diagnostic classifica-

tion setups with different pathological groups.
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4.3.2. Three-class Classification: Healthy/Obstructive/Restrictive

Most of the pulmonary diseases accompanied with auscultation findings are group-

ed under two main categories, namely, obstructive and restrictive (see Chapter 1).

Before proceeding to the problem of differentiating between diseases within the same

category, differentiating between these two distinct categories is considered. For the

experiments, bronchiectasis (of obstructive type) and interstitial pulmonary disease

(of restrictive type) are selected as the representative diseases of their categories. Ac-

cordingly, 40 subjects are used, 20 of them being healthy, 10 of them being diagnosed

with bronchiectasis and the remaining 10 with interstitial lung disease (ILD) (DS2, see

Chapter 2). The aims of this section are to observe the classification performance in

general with the two sub-categories of pathology, and to compare different designs of

classifiers to obtain the best scores. Accordingly, eight different schemes in total, as

variants of SVM and GMM, are defined and experimented.

First, the healthy versus pathological classification is considered for a comparison

of the results with those of the previous section, and the scores are updated for the

new data set. For the comparison, the three most successful classifiers of the previous

section, namely, SVM(Lin), SVM(RBF) and GMM, are employed in the 40-fold cross

validation scheme as before. The resulting confusion matrices and all the related success

scores are given in Table 4.4. With the new data set, the scores of SVM(Lin) are

observed to be improved, approaching those of SVM(RBF). Moreover, the confusion

matrices of both SVM schemes are observed to be more balanced (compare SE versus

SP). GMM yields the highest scores among all, as before. Since the performances of

the two SVM schemes are comparable to each other, only one of them is to be chosen

besides GMM for further experiments.

Although the power of SVM is based on the usage of kernel functions, one of the

most popular being the RBF, basic linear SVM is also useful in certain applications,

especially with high dimensional feature spaces. Actually, the superiority of the RBF

over the linear is expected to get more subtle as the dimensionality increases. Here, the

linear basis function is almost equally successful as RBF, and SVM(RBF) introduces
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Table 4.4. Healthy versus pathological classification results for the three-class classification scheme. P1, P2 and P3: Perspectives 1, 2

and 3. C/Ĉ: True/Predicted class label, H : Healthy, P : Pathological.

SVM (Lin) SVM (RBF) GMM

Ĉ = H Ĉ = P Ĉ = H Ĉ = P Ĉ = H Ĉ = P

P1
C = H 78.5 21.5 79.5 20.5 82.3 17.7

C = P 31.5 68.5 32.8 67.2 29.1 70.9

P2
C = H 88.3 11.7 87.5 12.5 87.5 12.5

C = P 21.7 78.3 26.7 73.3 20 80

P3
C = H 90 10 90 10 90 10

C = P 20 80 15 85 10 90

Recall Precision Recall Precision Recall Precision

Healthy 90 81.8 90 85.7 90 90

Pathological 80 88.9 85 89.5 90 90

SE/SP 80 / 90 85 / 90 90 / 90

η / ζ 85 / 84.9 87.5 / 87.5 90 / 90

ipek
Rectangle
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a minor improvement over SVM(Lin) at the expense of a much higher computational

cost (see the drawbacks mentioned in the previous section). Therefore, SVM(RBF) is

abandoned in the subsequent analyses, and the code “SVM” simply refers to SVM(Lin)

hereafter. In the following paragraphs, the design of the various classifier schemes is

explained in more detail.

As the number of classes is three, the following two approaches are possible: (i)

Treating all the classes at once and perform a multi-class classification, (ii) Classifying

the data into healthy versus pathological, then the pathological group into obstructive

and restrictive (into bronchiectasis and ILD), which corresponds to performing two

successive binary classifications. The former will be referred to as all at once and

coded with an “O”, and the latter will be referred to as hierarchical and coded with

a “T” of tree (see Figure 4.4). In the all at once case, SVM follows one-against-one

approach (see Section 4.1.2).

Combining the six flow-phases in the feature space prior to the classification is

also considered. Although in all of the experiments, the classifiers are trained separately

for the six flow-phases to inspect their relative pertinences, the combination is done

here for exploratory purposes. Accordingly, the two approaches are: (i) Training the

classifier for each respiratory flow-phase separately, with a later combination at the

decision level, (ii) Combining the flow-phases at the feature level and training the

classifier on the new feature space (whenever applicable). The former is in the original

feature space (of dimensionality 392), therefore is coded with number “1”. The latter,

on the other hand, is coded with number “6” since the feature space has six times higher

dimensionality (392x6). For GMM, the higher dimensionality version is not applicable

since the number of feature vectors are insufficient to estimate the covariance matrices.

SVM on the other hand is expected to work even better as dimensionality increases.

For the pre-combination of the six flow-phases at the feature-level, another pair of

assumptions is considered: (i) Concatenating the feature vectors directly, i.e., by direct

concatenation of vectors having the same order indices in the subsequent flow-phases,

or, (ii) Concatenating the averages of the feature vectors in the flow-phases. Averaging
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Figure 4.4. The diagram depicting the design of the classifiers and the corresponding

letter codes.

is also done for exploratory purposes, as a precaution to prevent the concatenation of

asynchronous instances erroneously, and also to see whether the average vectors are

sufficient to summarize the classes. Direct use of vectors will be referred to as self

and coded with an “S”, and averaging them will be referred to as average and coded

with an “A”. All pairs of assumptions make 2× 2× 2 = 8 schemes in total, which are

summarized in the diagram in Figure 4.4.

The bar plot of ζ is given in Figure 4.5 for the eight classifier schemes, in the

order from top to bottom in the diagram of Figure 4.4. Note that P2 becomes irrele-

vant for those cases where pre-combination of flow-phases is performed, therefore the

corresponding bars are absent in the figure. The results of GMM schemes are for com-

ponent count five for GMM1SO and seven for GMM1ST. The optimal SVM penalty

factors are searched over the range F = 10−7, 10−6, ..., 107. In the figure, F = 105 for

the first two SVM schemes (SVM1SO and SVM1ST), and they are in various values in

the range F = 0.001 to F = 0.1 for the remaining four (SVM6-SO/ST/AO/AT).
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Figure 4.5. Bar-plot of ζ scores from P1, P2 and P3, for the eight classifier schemes in

the three-class classification.

Considering that the average features are used, the last two classifiers perform

better than expected, and they are comparable to their counterparts where the dimen-

sionality is again 392x6 yet feature vectors are used directly as themselves (no averages

are taken). The reason might be that the average feature vectors are sufficient to sum-

marize (or imitate) the distribution of the classes in the feature space. In other words,

they lie in the feature space in such a manner that the optimal separating hyperplane

is not distorted to the extent of violating the boundary. SVM schemes with dimen-

sionality code 6 are rather successful, having the highest P1 and P3 scores of all except

for P3 of GMM1ST. Recalling that the maximum optimal penalty factor is F = 0.1

for these four schemes whereas it is F = 105 for the other two SVMs (those with the

dimensionality code 1), one can conclude that when the flow-phases are pre-combined

at the feature-level, the discrimination of the two classes by SVM is easier.

An important observation is that the hierarchical versions are consistently better

than the counterparts, where the only exception is holding for P3 of SVM1ST (P1 and

P2 of SVM1ST obey this general tendency). A closer observation on the predicted

class labels of subjects (not reported here explicitly) reveals that the indecisive cases
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Table 4.5. Three-class (HBI) classification confusion matrix for GMM1ST (7

components). C/Ĉ: True/Predicted class label, H : Healthy, B: Bronchiectasis, I:

ILD

Ĉ = H Ĉ = B Ĉ = I

P1

C = H 82.3 11.9 5.8

C = B 45.2 31.4 23.4

C = I 12.8 15.3 71.9

P2

C = H 87.5 8.3 4.2

C = B 36.7 36.7 26.6

C = I 3.3 10.0 86.7

P3

C = H 90 10 0

C = B 20 60 20

C = I 0 0 100

Recall Precision

Healthy 90 90

Bronchiectasis 60 75

ILD 100 83.3

η / ζ 85 / 81.4

in the combined decisions of flow-phases are incidentally very frequent for this scheme.

Although GMM1ST has comparable P1 and P2 scores with its three neighbors

(the moderately successful schemes GMM1SO, SVM1-SO/ST), it makes an apparent

breakthrough at P3, attaining the highest score among all. Although the last four

SVM schemes (those with the dimensionality code 6) are considerably more successful

than GMM1ST in P1, the discriminative ability of GMM1ST increases at each step

of decision combination, eventually surpassing the others in P3. The power of GMM

comes from that it is a probabilistic model, and going from P1 to P3 corresponds to

combining the probabilistic scores rather than the discrete decisions.

As discussed above, GMM1ST is selected to be the most successful among all
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Table 4.6. Three-class (HAI) classification confusion matrix for GMM1ST (7

components). C/Ĉ: True/Predicted class label, H : Healthy, A: Asthma, I: ILD

Ĉ = H Ĉ = A Ĉ = I

P1

C = H 83.9 11.6 4.4

C = A 31 46.6 22.4

C = I 10.7 3.1 86.2

P2

C = H 89.2 6.7 4.2

C = A 18.3 53.3 28.3

C = I 1.7 0 98.3

P3

C = H 95 0 5

C = A 20 60 20

C = I 0 0 100

Recall Precision

Healthy 95 90.5

Asthma 60 100

ILD 100 76.9

η / ζ 87.5 / 82.9

the eight classifiers. The confusion matrices and the success scores calculated for P3

corresponding to this selection (GMM1ST with component count seven) are given in

Table 4.5. Although the majority of the bronchiectasis instances are labeled correctly,

the recall rate is still low, moreover, bronchiectasis is observed to be confused equally

with the other two classes. Healthy and ILD recall and precision rates are rather high,

which validates that the classifier is competent in general, except in the discrimination

of bronchiectasis.

GMM1ST with seven components is also trained for an alternative data set,

where bronchiectasis is replaced with another obstructive disease, namely, asthma (10

subjects as with bronchiectasis). The confusion matrices together with the success

scores are given in Table 4.6. The precision rate of asthma turns out to be 100% due

to the fact that none of the other two classes are confused with asthma. However, the
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general picture is not different from the case with bronchiectasis, and asthma is equally

confused with the other two classes, with the same recall rate as bronchiectasis.

In this section, the hierarchical form of the GMM classifier is determined to be

the best among the eight schemes. General observation is that the two obstructive

diseases are confused with the healthy and the restrictive classes, which causes a low

recall rate for the obstructive disease, and lower precision rates for the other classes

than they could have had without this confusion.

4.3.3. Special Case: Asthma/COPD

Pulmonary sounds data of 50 subjects are used in this section, where 30 of them

are diagnosed with asthma and 20 of them with COPD (DS3, see Chapter 2). As

addressed above, asthma and COPD are often confused in clinical diagnosis due to the

overlap in their symptoms. The primary aim of this section is to explore the diagnostic

ability of the GMM classifier in this special case. Besides, this section is introduced

as an intermediate step, from the one on the quest of a useful classifier and a useful

algorithm design, to the next on the diagnostic classification with the widest data

set at hand. Therefore, while the diagnostic ability of the GMM classifier is being

explored, additional perspectives as variants of P3 are considered as well, taking the

unequal pertinences of flow-phases into consideration. Hence, an improvement of the

P3 success scores is the secondary aim of the section.

To obtain subject-level classification results, P3-SOP has been the conventional

methodology throughout the experiments conducted so far. In this section, its logarith-

mic version, P3-SOLP, and two SVM-based methods, namely, P3-SVM and P3-SVML,

are considered for the improvement of P3 scores (see Section 4.2 for the definitions).

For the GMM classifier, 10-fold cross validation scheme is adopted such that the val-

idation set is arranged to have three of asthma and two of COPD subjects at each

fold. Moreover, the same 10-fold cross validation scheme is adopted for P3-SVM and

P3-SVML as well, for them to be in accordance with the GMM step. GMM is used

with component counts from one to ten, and the classification is performed for each of
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the six flow-phases separately, as before.

To evaluate the classification results from the first and second perspectives (P1

and P2), success scores η(m, j) are calculated for all m and j. The box-plots of η(m, j)

for P1 and P2 are given in Figures 4.6a and 4.6b respectively, versus m (left) and

j (right). As observed in both of the sub-figures, the success scores do not depict

significant differences across GMM component counts, however they do across flow-

phases, such that the second flow-phase (mid-inspiration) is significantly the most

successful of all and the sixth flow-phase (late-expiration) is significantly the least

successful.

For P3-SVM and P3-SVML, the values for the penalty factor are optimized over

the range F = 10−10, 10−9, ..., 1010. Therefore, the corresponding success score ζ is a

function of m and F for the two variants of P3. The smallest F yielding the maximum

success score is selected to be the optimal penalty factor per m, that is

Fm = min(argmax
F

{ζ(m,F )}).

The classifier is trained on the whole data set once more using Fm to learn the final

weights corresponding to the particular GMM component count selection, i.e., the vec-

tor wm. The final decisions are made using this vector, and the classifier performances

are reported accordingly. Note that this vector turns out to be approximately the av-

erage of the vectors calculated per fold, achieving equal or higher successes in the final

decisions than the average vector does (observation not reported explicitly).

The calculated ζ scores versus m are plotted in Figure 4.7 for P1, P2, and the

variants of P3. Since the most prominent flow-phase is observed to be the second one

(mid-inspiration) in Figure 4.6, the scores based only on the second flow-phase is also

shown for comparison (P3-SP2). In Figure 4.7, a downward trend is observed both for

P1 and P2 (also for P3-SOP and P3-SOLP) as the GMM component count increases,

which is in accordance with Figure 4.6. Moreover, the performances are observed to

improve as proceeding from P1 to P2, and from P2 to P3, as observed in the two
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(a) η from P1 (the segment-level evaluation perspective).
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(b) η from P2 (the flow-phase-level evaluation perspective).

Figure 4.6. Box-plots of η scores, versus GMM component count (on the left), and

versus flow-phase index (on the right)
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Figure 4.7. The ζ scores versus GMM component count from all evaluation

perspectives.

previous sections as well. The explicit confusion matrices for GMM component counts

one to five are also given in Table 4.7 for reference.

P3-SOLP outperforms P3-SOP for all m except m = 1, and P3-SVM in turn

outperforms P3-SOLP for all m, reaching at 100% for m = 4. P3-SVML on the

other hand is comparable to P3-SVM, albeit inconsistent in terms of superiority and

inferiority. The former falls below the latter for m = 2, 3, 8, without an intuitive

explanation. On the other hand, it reaches the 100% success level at m = 1, 4, 5, 6, 7, 9,

hence for the majority of GMM component count selections.

Making the subject-level decisions by depending only on the second flow-phase

(P3-SP2) turns out to be a better approach than P3-SOP and P3-SOLP, except for

m = 1. However, the weighted sums of posterior (P3-SVM) and log-posterior probabil-

ities (P3-SVML) attain even higher (or equal, if not higher, if P3-SVM is considered)

scores than P3-SP2 do. This result emphasizes the importance of taking the unequal

pertinences of flow-phases into account. P3-SVM curve is either above, or coincides

with, the P3-SP2 points. For those component count selections where the former is
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Table 4.7. Confusion matrices for GMM component counts one to five, for all evaluation perspectives. A hat is used to denote the

predicted class label. A: Asthma, C: COPD.

P1 P2 P3-SOP P3-SOLP P3-SVM P3-SVML

Â Ĉ Â Ĉ Â Ĉ Â Ĉ Â Ĉ Â Ĉ

1
A 82.9 17.1 91.1 8.9 100 0 100 0 100 0 100 0

C 29.6 70.4 25.8 74.2 10 90 15 85 10 90 0 100

2
A 83.4 16.6 92.8 7.2 100 0 100 0 96.7 3.3 100 0

C 32.9 67.1 30 70 15 85 10 90 5 95 15 85

3
A 84.9 15.1 96.7 3.3 100 0 100 0 100 0 100 0

C 36 64 33.3 66.7 25 75 10 90 5 95 10 90

4
A 85.5 14.5 95 5 96.7 3.3 100 0 100 0 100 0

C 39.7 60.3 37.5 62.5 25 75 15 85 0 100 0 100

5
A 85.3 14.7 95.6 4.4 96.7 3.3 100 0 100 0 100 0

C 38.1 61.9 39.2 60.8 35 65 20 80 15 85 0 100

ipek
Rectangle
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Table 4.8. The weight vectors wm learned by P3-SVM, and the corresponding ζ

scores, for GMM component counts, m.

m wm1 wm2 wm3 wm4 wm5 wm6 ζ

1 0.33 0.45 0.33 0.26 0.33 0.30 94.9

2 0.00 1.32 0.68 0.00 0.00 0.00 95.8

3 0.32 1.58 0.21 0.11 0.31 -0.11 97.5

4 1.99 1.99 0.00 1.99 0.00 -1.99 100

5 0.40 0.90 0.40 0.30 0.40 0.00 92.2

6 0.53 1.47 0.32 -0.16 0.16 0.00 94.9

7 0.58 0.98 0.37 0.12 0.32 0.07 94.9

8 1.99 1.88 0.35 -0.12 0.00 -0.12 95.8

9 1.99 2.23 0.00 0.00 0.00 0.00 93.3

10 1.99 1.99 0.00 0.00 0.00 0.00 93.3

above (m = 1, 4, 8, 9, 10), an examination of Table 4.8 reveals the other flow-phases

that were taken into account. The case with m = 1 is in accordance with Figure 4.6,

with the weights in the table following the same pattern as that of the median suc-

cess scores in the figure. The common observation with m = 8, 9, 10 is that the first

and second flow-phases are the only pertinent ones. For m = 4, where P3-SVM score

reaches the 100% level making its single maximum, the weights are equal in magnitude

for the first, second, fourth and sixth flow-phases, with a minus sign for the sixth, and

are zero for the remaining (the third and fifth) flow-phases. Except for the case with

m = 1, these observations seem contradictory with the box-plots of Figure 4.6, however

reveal that the first flow-phase has more pertinence, while the third and fifth have less,

to reach the subject-level decisions than they imply in P1 and P2. Moreover, the sixth

flow-phase is almost inversely effective.

The performances reached by P3-SOP and P3-SOLP may be interpreted to be

more consistent and reliable than P3-SVM and P3-SVML since they are basically the

summations of the posterior and log-posterior probabilities calculated once the GMM is

fitted, and they promise good subject-level discrimination to the extent that the GMM
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is successful to model the components of hopefully distinct mixtures. The performances

reached by P3-SVM and P3-SVML, on the other hand, depend both on the outcomes of

the first classifier (GMM) and on the design of the second classifier (SVM), therefore the

weights corresponding to high diagnostic ability for this experiment are not the final

weights that should be used with any GMM classification of asthma versus COPD.

Rather, the experiments of this section are conducted to see whether it is possible to

outperform the simple combination (sum with equal weights) by a proper combination

(weighted sum with proper weights), keeping in mind that the flow-phases may not

be equivalent in pertinence. The considerably high success scores obtained with these

two SVM-based decision combination methodologies verify that it is. Nevertheless, the

final weights to be employed in clinical setup should be learned using a larger data set

and various schemes for cross validation and testing.

Even for a mediocre success level in Figure 4.7, e.g., the common level of P3-SOP

at m = 1 and P3-SOLP at m = 2, the total correct classification rate is 96%, with

the correct classification rates of 100% and 90% for asthma and COPD respectively,

which implies a quite successful classification. The results of this experiment are very

promising in terms of demonstrating that the differential diagnosis of the two obstruc-

tive diseases in clinical practice can benefit from the incorporation of computerized

techniques in pulmonary sounds analysis.

4.3.4. General Case: Diagnostic Classification

The data set of this section is the largest data set used in the experiments,

consisting of 150 subjects, where 25 of them are healthy, 60 of them are diagnosed with

asthma, 35 of them with COPD, 15 of them with bronchiectasis, and the remaining

15 with ILD. Depending on the results of the experiments conducted so far, GMM

classifier with hierarchical setup in K-fold cross validation scheme, and P3-SOP, P3-

SOLP and P3-SVM as decision combination methods, are adopted. The aim of this

section is to experiment with a multi-class data set, with the eventual aim to devise a

methodology for diagnostic classification of pulmonary sounds. The quest for the best

among several possible division schemes for the hierarchical framework is also in the



69

Table 4.9. The best common and distinct GMM component counts for the two classes

and the corresponding ζ scores for H/P classification. Best ζ is given in bold. CC:

Component count, H: Healthy, P: Pathological.

Perspective ζ (Best common CC) ζ (Best distinct CCs)

P1 70.7 (4) 73.1 (H:6, P:2)

P2 75.3 (4) 80.2 (H:5, P:2)

P3-SOP 79.6 (1) 89.6 (H:6, P:2)

P3-SOLP 81.0 (2) 83.9 (H:9, P:2)

P3-SVM 86.5 (3) 92.8 (H:5, P:2)

scope of this section. Besides, a new perspective is considered for the GMM classifier,

namely, assuming a different GMM component count per class and finding the optimal

combination for the classifier.

The intuitive division scheme is to start the hierarchical structure with healthy

versus pathological (H/P hereafter) classification, and to divide the pathological group

into the obstructive and restrictive groups (O/R). Note that the obstructive group

consists of asthma, bronchiectasis and COPD, whereas the restrictive group consists

only of ILD. In Tables 4.9 and 4.10, ζ scores are presented for the binary classifiers for

H/P and O/R classification. In the tables, the left column is for the best scores that

are yielded based on the assumption that the GMM component counts are the same

Table 4.10. The best common and distinct GMM component counts for the two

classes and the corresponding ζ scores for O/R classification. Best ζ is given in bold.

CC: Component count, O: Obstructive, R: Restrictive.

Perspective ζ (Best common CC) ζ (Best distinct CCs)

P1 56.4 (2) 58.7 (O:1, R:4)

P2 63.1 (2) 66.1 (O:1, R:4)

P3-SOP 71.3 (2)) 81.8 (O:1, R:3)

P3-SOLP 71.7 (2) 80.8 (O:1, R:2)

P3-SVM 76.0 (1) 76.0 (O:1, R:1)
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Table 4.11. The best common and distinct GMM component counts for the two

classes and the corresponding ζ scores for U/L classification. Best ζ is given in bold.

CC: Component count, U: Upper airways, L: Lower airways.

Perspective ζ (Best common CC) ζ (Best distinct CCs)

P1 53.9 (2) 55.9 (U:1, L:3)

P2 58.2 (2) 60.4 (U:2, L:3)

P3-SOP 62.9 (1) 72.4 (U:2, L:3)

P3-SOLP 64.9 (1) 72.9 (U:1, L:2)

P3-SVM 66.5 (1) 66.5 (U:1, L:1)

for the both classes. The right column, on the other hand, is for the new perspective

adopted in this section, i.e., different component counts for the mixtures of the two

classes. In parentheses, the optimal GMM component counts are given. On the right

column, the zeta scores are higher than those on the left, but not with large differences.

Nevertheless, a closer observation of the confusion matrices of all reveals that, the

associated confusion matrices (observed but not reported explicitly) are more balanced,

i.e., the correct classification rates of the two classes are closer to each other, when the

new approach is adopted.

As an alternative to the O/R division of the pathological group, another division

is considered as to put asthma and COPD in one group, and bronchiectasis and ILD

into the other. The rationale behind this division is that the former pair is associated

with the upper (U) airways of the lungs, whereas the latter pair is associated with the

lower (L) airways. This division is included for exploratory purposes. If the success

scores turned out to be considerably higher, a new insight would be gained about

how to approach diagnostic (multi-class) classification of pulmonary sounds in clinical

practice.

The scores associated with the U/L division are given In Table 4.11. The con-

fusion matrices for O/R and U/L division schemes are given in Tables 4.12 and 4.13,

respectively. Note that each binary matrix is the matrix that corresponds to the highest
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Table 4.12. The binary confusion matrices for H/P and O/R classifications and the

resulting H/O/R confusion matrix. H: Healthy, O: Obstructive, R: Restrictive.

Ĥ P̂

H 92 8

P 6.4 93.6

Ô R̂

O 83.6 16.4

R 20 80

Ĥ Ô R̂

H 92 8 0

O 7.3 77.3 15.4

R 0 20 80

ζ=82.9 (η=80)

(bold) score in the relevant ζ score table. The 3×3 confusion matrices on the right are

the resulting three-class performances based on the successive decisions of the binary

classifiers. Note that the performance of the U/L division scheme is poorer than that

of the O/R, due to the low recall rate of the L class (bronchiectasis together with ILD).

Therefore, the O/R division scheme is adopted for the rest of the experiment.

To further divide the obstructive group, various schemes are considered:

(i) Asthma versus COPD together with bronchiectasis (A/CB),

(ii) Asthma together with COPD versus bronchiectasis (AC/B),

(iii) Asthma together with bronchiectasis versus COPD (AB/C),

(iv) Asthma, COPD and bronchiectasis as separate classes, to be classified all at once

(A/C/B).

Calculating the ζ scores as with the H/P, O/R and U/L cases, and considering

Table 4.13. The binary confusion matrices for H/P and U/L classifications and the

resulting H/U/L confusion matrix. H: Healthy, L: Lower airways, U: Upper airways.

Ĥ P̂

H 92 8

P 6.4 93.6

Û L̂

U 87.4 12.6

L 40 60

Ĥ Û L̂

H 92 4 4

U 5.3 72.6 22.1

L 10 23.3 66.7

ζ=76.4 (η=74.6)
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Table 4.14. The binary confusion matrices for the first three schemes of obstructive

division

Â ĈB

A 86.7 13.3

CB 44 56

ζ=69.7

ÂC B̂

AC 74.7 25.3

B 53.3 46.7

ζ=59.8

ÂB Ĉ

AB 72 28

C 31.4 68.6

ζ=70.3

the maximum score to select the best component count combination, the confusion

matrices for the binary schemes listed above (the first three) are presented in Table

4.14. Although none of the three is considerably superior to the other two, the third

one (AB/C) has the highest ζ score. The further step for asthma versus bronchiectasis

(A/B) classification is also performed, and the resulting binary and 5×5 confusion

matrices together with the corresponding recall and precision rates are given in Table

4.15. A comparison with the results of A/C/B scheme (see Table 4.16) reveals that

performing the classification with binary schemes at each step results in the highest ζ

score, although with a slight difference.

In the H/O/R scheme (Table 4.12), the healthy correct classification rate is rather

high, and the obstructive and restrictive correct classification rates are low but not

unacceptably, yielding a total correct classification rate of 80%. A comparison of Table

4.12 with the results of Section 4.3.2 reveals that the new confusion matrix is more

balanced, despite having comparable ζ and lower η scores. The healthy class is the least

confused, whereas the obstructive and restrictive classes are confused with each other.

Table 4.16 reveals the details for the confusion pattern of the obstructive diseases (refer

to the 3×3 matrix on the left). Accordingly, asthma and COPD are confused with each

other even though they were successfully separated in the binary classification scheme

of Section 4.3.3. Moreover, bronchiectasis is confused mainly with asthma, which

explains why the AB/C division turns out to be the most successful among the three

binary division schemes.

The observation of Tables 4.15 and 4.16 reveals that the highest recall and pre-

cision rates belong to the healthy class, and the lowest precision rates to the ILD (the
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Table 4.15. The binary confusion matrices for AB/C and A/B classification, and the

resulting 5×5 confusion matrix, together with the corresponding precision and recall

rates.

ÂB Ĉ

AB 72 28

C 31.4 68.6

Â B̂

A 86.7 13.3

B 46.7 53.3

Ĥ Â Ĉ B̂ Î

H 92 4 0 4 0

A 8.3 48.3 21.7 6.7 15

C 0 20 54.3 5.7 20

B 20 13.3 26.7 33.3 6.7

I 0 13.3 0 6.7 80

ζ=57.8

Recall Precision

H 92 74.2

A 48.3 70.7

C 54.3 52.8

B 33.3 38.5

I 80 41.4

Table 4.16. The 3×3 confusion matrix for the third scheme of obstructive division,

and the resulting 5×5 confusion matrix, together with the corresponding precision

and recall rates.

Â Ĉ B̂

A 71.7 21.7 6.6

C 42.8 54.3 2.9

B 40 20 40

Ĥ Â Ĉ B̂ Î

H 92 4 4 0 0

A 8.3 55 18.3 3.3 15

C 0 34.3 42.8 2.8 20

B 20 26.7 13.3 33.3 6.7

I 0 13.3 0 6.7 80

ζ=56.5

Recall Precision

H 92 74.2

A 55 63.5

C 42.8 51.7

B 33.3 55.6

I 80 41.4
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lowest in Table 4.15 and the second lowest in Table 4.16), although ILD has the second

highest recall rate among the five classes. The implication is that a high percentage

of ILD subjects are correctly diagnosed, however, the reliability of the diagnosis is

poor. The result that the highest precision belongs to the healthy class is appropriate,

since the healthy diagnosis is the one that requires the highest reliability. Referring to

Tables 4.15 and 4.16, the probability that the subject is actually healthy is 74.2%, if

s/he is diagnosed as healthy by the classifier. The 5×5 confusion matrices of Tables

4.15 and 4.16 are comparable, with the following prominent differences. The correct

classification rate of asthma is lower than that of COPD in the former, and vice versa

in the latter. Besides, bronchiectasis is mainly confused with COPD in the former,

whereas with asthma in the latter.

The poor scores in the 5×5 confusion matrices are due to the confusion of the

obstructive diseases with each other. A hierarchical framework is suggested for the

diagnostic classification of pulmonary sounds, since it achieves higher success scores

than the all at once point of view does. O/R division is suggested as it outperforms

the alternative U/L division. The poorest scores are yielded by the further division

of the obstructive class, which bears the necessity of incorporating new features as to

capture the specific distinctive characteristics.

4.4. Summary and Discussion

Section 4.3.1 concludes that the GMM classifier is the best among all those exper-

imented with, however, the performance of the SVM classifier can not be neglected as

well. Rather high success scores obtained with the SVM classifier even with the average

feature vectors (see SVM6-AO/AT in Section 4.3.2) are very promising, and the other

variants of SVM with probabilistic outputs are open for exploration. Combining the

flow-phases at the feature level is suggested for SVM classification of VAR parameters,

if the observation of the relative pertinences of flow-phases is not an aim. Adapta-

tion of the hierarchical framework is encouraged for both GMM and SVM, though the

performance improvement is more remarkable with the GMM.
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GMM on VAR parameters is shown to separate asthma and COPD successfully.

Although summing the posterior probabilities of flow-phases (P3-SOP and P3-SOLP) is

an already successful decision combination method to make the subject-level decisions,

a weighted summation where the weights are learned by an SVM classifier (P3-SVM

and P3-SVML) further improves the performances. In asthma and COPD classifica-

tion, the prominent flow-phase seems to be the second one (mid-inspiration) in the

segment and flow-phase performances, while the first and the fourth (early-inspiration

and expiration) appear to be important as well in the combined decisions. The sixth

flow-phase (late-expiration) seems to be the least prevalent. The first three sections

also reveal that the performances always improve as proceeding from the segment level

towards the subject level, which verifies the importance of combining individual deci-

sions to decide for the group.

The diagnostic classifier designed in Section 4.3.4 can not reach acceptable levels

of performance for a clinical setup. Nevertheless, it builds a framework that is to be

adopted for further explorations. First, it verifies the intuitive division of obstructive

versus restrictive for pulmonary sounds classification studies in general. Second, it

verifies the expectation that considering different component counts for classes yields

an improved GMM classifier performance.

The optimal component counts combination for the GMM classifier in Section

4.3.4 is five and two for the healthy and pathological classes. In the obstructive versus

restrictive classification, they are one and three, respectively. Actually, the pathological

class consists of four distinct pathologies, hence is expected to be formed of several

clusters, while the healthy class is expected to fit into one cluster. Similarly, the

obstructive class consists of three distinct pathologies, whereas the restrictive class

consists of a single type of pathology. Therefore, the optimal component counts (smaller

for those classes with more variety) may seem intriguing. However, one should keep in

mind that the component counts that the best classification performances are obtained

with may be different than those that yield the best cluster model for the individual

class. The generalization ability of the model may be the factor that increases the

separability in classification, whereas, the maximum likelihoods for the individual data
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groups would be the measure of the goodness of fit in clustering.

Although considering the results of Section 4.3.4 for physiological reasoning is not

proper with such low success scores, the following real life experience is worth men-

tioning. During the data acquisition sessions held in the hospital environment, cases

where asthma and bronchiectasis coexist have been encountered more often than those

where COPD and bronchiectasis do. The subjects with a report of a mixed diagnosis

have been omitted while building the data sets for the experiments of this study. While

seven subjects with COPD-bronchiectasis have been omitted from the data set, 21 sub-

jects with asthma-bronchiectasis have been omitted, which implies three times higher

field-observation of asthma coexistence. Therefore, the result that the best binary di-

vision scheme of the obstructive group turns out to be AB/C is in accordance with

the subjective expectation, taking into consideration that those instances included in

the study might not be singular pathologies either. If the current complaints of the

subject are prominently due to bronchiectasis (e.g., chest pain) rather than asthma

(e.g., short of breath and wheezing), the diagnosis of asthma, or its reporting to the

data acquisition attendant, might be neglected. The same point also applies to the case

with COPD. In Table 4.15, bronchiectasis is confused with COPD more often than vice

versa, which leads to a suspect that even if the reported diagnosis was ‘bronchiectasis’,

COPD might also have been accompanying, although not reported. Since the obstruc-

tive diseases frequently coexist in other combinations as well, the further division of

the obstructive class for diagnostic pulmonary sounds classification studies should be

handled cautiously. Including singular diagnoses in the study and paying extra atten-

tion to the absence of any accompanying pathologies is suggested besides the quest for

better mathematical models to extract features and for better algorithms or schemes of

classifiers. Defining separate classes for combined pathologies might also be considered,

perhaps at the further steps of improvement of the diagnostic classifier.

In Tables 4.17 and 4.18, the numerical results of the four sections are summarized

together with those of the relevant studies in the literature. The total correct classifi-

cation rates and the methodologies in the tables are given only for the feature-classifier

combinations that yield the best scores among all those experimented in the reference
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work. Note that for [36] and [37] (Table 4.17) the given sample sizes for the healthy

and pathological classes are for respiratory cycles that are employed, not for subjects.

Hence, the data size is very small in this study, in [38] as well, which are the two

points to be taken into consideration while comparing the results. In [40], k-NN with

Euclidean distance measure is found to be successful in healthy versus pathological

classification. The results of Section 4.3.1 for the k-NN classifier, on the other hand,

are not even comparable to this score. Note that the k-NN classifier is known to work

best where the redundancy is the least. Therefore, the poor performance may be at-

tributed to the high feature space dimensionality and the large data size. In [41], the

correct classification rates of the healthy and ILD classes are 0% and 40%, respectively

for the VAR model, while they are 75% and 93%, respectively for the the univariate AR

(rates that are used to calculate the numeric result in Table 4.17). The optimal VAR

model order is determined by Akaike’s criterion, the microphone array is composed

of 25 microphones, the data segmentation is done as to keep the number of segments

constant (rather than the lengths), and only the inspiration phases are included in the

classification (see Section 3.5 for more details). Moreover, the final decisions are made

on the subject level via a thresholding. The low success rates may be attributed to the

listed preferences, rather than the features or the classifier adopted.

In [39] (Table 4.18), the cepstral coefficients are found to be slightly more success-

ful than the univariate AR parameters. By two-stage classification, the authors refer to

a scheme of feature level classification followed by decision combination. Accordingly,

the first stage represents the direct results of the feature vector classifier, whereas the

second stage represents the expert decisions made by a second classifier. Hence, the

two-stage scheme is not equivalent to the hierarchical scheme offered in this study, but

to P3-SOP, P3-SVM, and the like. As in this study, the performances improve upon

decision combination. The best results are obtained for the non-parametric Parzen

window classifier in the second stage. The explicit class correct classification rates are

not given in [39], therefore a comparison of the results is only possible via the total

correct classification rate. Both tables depict that the results of the experiments con-

ducted here are comparable to those of the relevant studies in the literature, though a

direct comparison of the feature extraction and classification methods would only be
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Table 4.17. Summary of the results for the binary case of healthy versus pathological

classification. H: Healthy, P: Pathological, TCC: Total correct classification rate (η),

ANN: Artificial neural network classifier, DWT: Discrete wavelet transform.

Reference Material TCC(%) Methodology

[36], [37] 12 H* / 13 P* 93.75 AR, k-NN (Itakura)

[40] 20 H / 20 P 88 AR, k-NN (Itakura, Euclidean)

[41] 8 H / 19 ILD 87.7** AR, ANN

[38] 10 H / 10 A 98 DWT, ANN

Section 4.3.1 20 H / 20 P 92.5 VAR, GMM

Section 4.3.2 20 H / 20 P 90 VAR, GMM

Section 4.3.4 25 H / 125 P 93.3 VAR, GMM

* Given figures are counts of respiratory cycles, not of subjects

** Not given explicitly in [41], but calculated here from class correct classification

rates and subject counts

Table 4.18. Summary of the results for the classification into healthy, obstructive and

restrictive groups. H: Healthy, O: Obstructive, R: Restrictive, B: Bronchictasis, A:

Asthma.

Reference Material TCC(%) Methodology

[39] 20 H / 18 COPD / 19 R 82.1 Cepstral, ANN, Parzen

Section 4.3.2 20 H / 10 B / 10 ILD 85 VAR, GMM P3-SOP followed

by GMM P3-SOP

Section 4.3.2 20 H / 10 A / 10 ILD 87.5 VAR, GMM P3-SOP followed

by GMM P3-SOP

Section 4.3.4 25 H / 110 O / 15 ILD 80 VAR, GMM P3-SVM followed

by GMM P3-SOP
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possible with the use of the same data sets.

In selection of the data sets DS0, DS1, DS2 and DS3, the subjects with the least

episodes of the adventitious sound components are considered for the VAR model to

adhere to its theory. To enlarge the data set to form DS4, the data having adventi-

tious sound components or some acquisition noise are also included compulsorily. As

addressed in the introduction of Chapter 3, the existence of adventitious sound com-

ponents is prone to disrupt the Gaussianity assumption of the VAR model, moreover,

the existence of crackles in particular is prone to disrupt the stationarity assumption

even within the short segments. This is the most probable reason for the poor dis-

crimination between asthma and COPD in the final experimental setup, whereas the

discrimination was rather successful in the special section with DS3. The performances

of the classifiers may be improved by the inclusion of new features to complement the

VAR parameters, so as to enhance the distinctive information offered by the adven-

titious sound components. Nevertheless, the performance of the H/O/R classifier of

Section 4.3.4 may be considered rather successful regarding the “noise” that the data

set accommodates (i.e., adventitious sound components, undeterred noise, deficient

diagnostic labels reported in the hospital environment).



80

5. CONCLUSIONS AND FUTURE PERSPECTIVES

In this thesis study, the problem of finding an optimal model for multi-channel

pulmonary sounds and applying the model parameters to classify these sounds for

diagnostic purposes is addressed. To this end, new goodness of fit criteria to find

the optimal VAR model have been proposed specifically for pulmonary sounds data

for diagnostic purposes, and the estimated parameters of the optimal model selected

via these criteria have been employed in classification with a final aim to build a

diagnostic system for clinical setups. Various classifier algorithms and schemes have

been designed for different data sets to evaluate and compare the classification successes

and to improve them accordingly for the next step in design.

The VAR model is widely used to predict the future behavior of time series in me-

teorology and economics, where the best model order and sample size are determined

via the conventional goodness of fit criteria. As a multi-variate model to represent

interrelated measurements, the theory applies to the multi-channel pulmonary sound

signals as well, where this time the focus is not on predicting the future behavior but

on learning the distinctive pulmonary system characteristics. Therefore, the measure

of the goodness of fit is not the variance of the prediction error but the discrimina-

tive ability between distinct types of conditions, as shown in this study. Accordingly,

the optimal VAR model to represent pulmonary sounds data for diagnostic purposes

has been shown to be the 250-point VAR(2) model. The proposed measures can be

employed with the same intention for different channel counts and sampling rates of

pulmonary sounds measurements, and even for other types of signals where the aim is

to differentiate between varieties of the underlying system. Through adaptation, the

measures can also be extended to other mathematical models where the selection of the

optimal model requires an exhaustive search over the ranges of free model arguments.

The adaptation is straightforward, since the underlying structure is inspired from the

well known theory of LDA.

This study verifies that the parameters of the optimal VAR model for pulmonary
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sounds data are useful to discriminate between two distinct pulmonary conditions,

namely, healthy and pathological, with a total correct classification rate above 90%.

SVM and GMM classifier algorithms are shown to be competitively successful, the

latter outperforming the former, however k-NN as it is used in this study is poor. To

increase its performance, dimensionality reduction can be performed on the feature

vectors (the VAR parameter matrices in vector forms), and the averages taken in

individual flow-phases can be employed to reduce the redundancy. SVM with the

radial basis function is avoidable due to the long computational time, since it provides

minor improvements over the linear SVM in return. In a future study, the linear SVM

is suggested to be used on the average feature vectors, moreover, on the feature space

formed by combining the six-flow phases if they are not to be examined separately. The

limitation of the SVM classifier as it is used in this study is that it produces discrete

class labels as outputs. That leads to insignificant improvements in the success scores

as proceeding from the segment-level evaluation towards the subject-level, as compared

to the GMM classifier, hence leading to deficiency in the overall classifier success. Using

the SVM classifier with probabilistic outputs for class memberships is encouraged for

future studies.

In a diagnostic setup with multiple pathological conditions, a hierarchical frame-

work has been proposed in this study, as to classify the data first into the healthy

and pathological groups, then the pathological group further into sub-groups. For the

further classification of the pathological group, obstructive versus restrictive discrim-

ination has been suggested. In the case of the three-class scheme with the healthy,

obstructive and restrictive classes, the obstructive class is observed to be confused

with the others more often. Moreover, the distinct diseases in the obstructive class are

also confused with each other in the diagnostic scheme of the final part. Nevertheless,

the total correct classification rate for the hierarchical classification of the healthy, ob-

structive and restrictive classes reaches 80%. The acoustic-based differential diagnosis

of asthma and COPD is observed to be successful with a total correct classification rate

above 95%, which promises a powerful tool for clinical practice. The reason that the

binary classification of asthma and COPD was not as successful in the hierarchical di-

agnostic scheme of the final part as in the special section on asthma and COPD is most
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probably due to the fact that the new data included consisted of adventitious sound

components. The difference in the successes emphasizes the necessity to incorporate

new features to complement the VAR model parameters, which are designed or selected

specifically to represent the distinctive characteristics of adventitious pulmonary sound

components.

In the further development of the diagnostic classifier, GMM classifier algorithm

is strongly suggested to be incorporated in the study, although different classifier algo-

rithms are to be explored as well. As discussed above, it is also suggested to experiment

with the linear SVM to explore new methods to increase its discriminative ability. The

further discrimination between the obstructive diseases should be handled cautiously

due to the overlaps (both in terms of symptoms and the classification results). The spe-

cific acoustic characteristics of distinct obstructive diseases are suggested to be taken

into account in further studies. Accordingly, new features to enhance those charac-

teristics, in particular, to represent adventitious sound components, may be adopted.

In a future study, the discrimination including various disease stages and comparisons

with conventional clinical test results would increase the reliability of the diagnostic

system. The preparation of the data set needs caution as to involve singular diagnoses

if the diagnostic classifier is aimed to assess singular pathologies. To cope with the

co-existence of diseases, new classes may be defined as combinations of multiple pul-

monary conditions. An ideal diagnostic system would eventually accept as inputs the

information such as the age, weight and height of the patient, the current complaints,

the clinical and pathological history, spirometric values and blood test results.
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