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ABSTRACT

METAHEURISTIC APPROACHES TO THE POOLING

PROBLEM

The pooling problem, which has several application areas in chemical industry,

is an extension of the blending problem and aims to find the optimal composition of

materials in a two-stage network while obeying quality limitations for the end products.

The pooling problem has a bilinear structure and it is NP-hard. The exact methods

to solve the pooling problem are inefficient for large instances and a few heuristic

methods exist. In this thesis, our aim is to propose two metaheuristic methods that are

based on particle swarm optimization (PSO) and simulated annealing (SA). Both of the

proposed approaches take advantage of the bilinear structure of the problem. For PSO-

based method, a search variable is selected among the variable sets causing bilinearity

and subjected to particle swarm optimization. For SA-based procedure, a variable

neighboring scheme that is similar to a previously used one for the pooling problem is

employed. Extensive experiments are conducted to evaluate the performances of these

methods and they indicate the success of the proposed solution methods.
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ÖZET

HAVUZLU MALZEME KARIŞIMI PROBLEMİNE

SEZGİSEL YAKLAŞIMLAR

Havuzlu malzeme karışımı problemi kimya endüstrisinde çeşitli uygulama alan-

larına sahiptir ve harmanlama probleminin bir uzantısıdır. Hammaddelerin iki aşamalı

bir ağda, kalite kısıtlamalarına uyarak en iyi karıştırılma oranlarını bulmayı he-

defler. Havuzlu malzeme karışımı problemi ikili-doğrusal bir yapıdadır ve NP-zor olarak

sınıflandırılır. Eniyileyen sonucu garanti eden çözüm yöntemleri büyük boyutlu prob-

lemler için yetersiz kalmaktadır ve problemin çözümü için az sayıda sezgisel yöntem

uygulanmıştır. Bu çalışmada amacımız, parçacık sürü eniyilemesi ve benzetimli tavla-

ma tabanlı iki sezgisel yöntem önermektir ve bu iki yöntem de problemin ikili-doğrusal

yapısından faydalanmaktadır. Parçacık sürü eniyilemesi tabanlı yöntemde ikili-doğru-

sallığa sebep olan değişken kümelerinden bir tanesi seçilmiş ve üzerinde parçacık sürü

eniyilemesi yöntemi uygulanmıştır. Benzetimli tavlama tabanlı yöntemde ise, lit-

eratürde uygulanmış bir yöntem esas alınarak bir değişken komşuluk tanımı uygu-

lanmıştır. Önerilen yöntemlerin başarısını değerlendirmek için uygulanan kapsamlı

testler, uygulanan yöntemlerin başarılı olduğuna işaret etmektedir.
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1. INTRODUCTION

The blending problem in linear programming (LP) is a classical problem con-

cerning mixing a set of raw materials with given quality attributes into final products

with predefined quality limitations while profit is maximized. The pooling problem,

which is the topic of this thesis, is an extension to the blending problem. While the

blending problem finds the optimal composition of materials by directly mixing the

raw materials into final products, the pooling problem incorporates intermediate pools

where intermediary mixes can be prepared out of raw materials and the output mixes

are formed by blending the feeds from pools as well as the raw materials. The pooling

problem has several application areas in chemical industry, such as petroleum refining,

natural gas transportation and wastewater treatment (Misener and Floudas, 2009).

The formulation of the standard pooling problem has a feed-forward network

topology and there are three layers in the network: firstly, raw materials or input

streams that can feed into both intermediate pools and end product mixes, secondly

intermediate pools which can have multiple incoming and outgoing arcs and lastly end

product pools that produce final blends as the output of the system (Audet et al., 2004;

Greenberg, 1995; Misener and Floudas, 2009). Figure 1.1 depicts the general structure

of the problem where triangles are used to represent input streams, circles for pools

and squares for end products. While the blending problem can be formulated as an

LP, the intermediate pools in the pooling problem disturb the linearity of the problem

at different degrees.

The pooling problem can be categorized into five classes as the standard pooling

problem, the generalized pooling problem, the extended pooling problem, the nonlin-

ear blending problem and the crude oil operations. The standard pooling problem

optimizes the flows between sources, intermediate pools and output pools subject to

quality constraints with linear blending assumption. The generalized pooling problem

allows between-pool flows. The extended pooling problem integrates relevant legislative
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Figure 1.1. The General Structure of the pooling problem.

bounds into constraint sets. The nonlinear blending problem incorporates nonlinear

blending rules instead of assuming linear blending. The crude oil operations deal with

the front-end of a refinery plant and add a scheduling component to the problem. The

standard pooling problem can be formulated as a bilinear program. On the other hand,

the generalized pooling problem can be modeled as mixed-integer bilinear program, the

nonlinear blending program can be modeled as a nonconvex nonlinear program, and

the extended pooling problem and the crude oil operations are modeled as mixed-

integer nonconvex nonlinear problems (Misener and Floudas, 2009). In this study, the

standard pooling problem is considered and it is mentioned as the pooling problem

throughout the study.

Pooling problem can be summarized as the following: There is a set of input

streams and each raw material has a set of quality attributes. Also, there are upper

and lower limits on these quality attributes that should be satisfied for the end products.

When different products are mixed in intermediate pools and final product pools, it

is assumed that the quality attributes of the output are calculated as the weighted
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average of the quality attributes of the incoming materials by their volume (Audet et

al., 2004; Greenberg, 1995; Gupte et al., 2012; Misener and Floudas, 2009).

Pooling problem belongs to the class of bilinear programming problems (BLP),

which is a subset of nonconvex quadratic program. In BLPs, nonlinearities occur such

that the optimization problem reduces to an LP if one of the two variable sets that

cause nonlinearities is fixed. The most general form of BLPs is given in Equations 1.1,

1.2 and 1.3 (Al-Khayyal, 1992). BLPs can be classified as strongly NP-Hard problems

since it includes NP-hard linear maxmin problem (Audet et al., 2004).

min cT0 x+ xTA0y + dT0 y (1.1)

s.t. cTi x+ xTAiy + dTi y ≤ bi∀i (1.2)

(x, y) ∈ S = {(x, y) : Cx+Dy ≤ b, x ≥ 0, y ≥ 0} (1.3)

In this thesis, pooling problem is examined and two metaheuristic approaches,

namely particle swarm optimization and simulated annealing, are adapted for the prob-

lem. In order to evaluate the performances of these methods, a number of problem

instances in the literature are experimented and some new instances are fabricated

while general purpose solvers and heuristic procedures in the literature are used as

benchmark methods.

The rest of this thesis is organized as follows: Chapter 2 presents a literature

review on pooling problem, particle swarm optimization (PSO) and simulated annealing

(SA) concepts. In Chapter 3, the two proposed solution methods are presented in detail.

Chapter 4 covers the numerical experiments and comparisons of proposed methods. In

the last chapter, Chapter 5, concluding remarks are provided.
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2. LITERATURE REVIEW

This chapter provides a brief literature survey on the pooling problem in Section

2.1, its formulations and solution methods. Then, Section 2.2 and Section 2.3 outline

particle swarm optimization and simulated annealing concepts that are used in this

thesis.

2.1. Pooling Problem

2.1.1. Model Formulations

There are several different formulations for the pooling problem that are math-

ematically equivalent but varying in terms of relaxation tightness and problem size.

Haverly (1978) formulated the original pooling problem, denoted as P-formulation.

This formulation explicitly keeps track of flows between raw materials to pools and

end products, and flows between pools and end products. Ben-Tal et al. (1994) pro-

posed the Q-formulation, which replaces the variables that represent the flow from

the input streams to intermediate pools by proportion variables identifying the pro-

portion of flow from input streams to intermediate pools. A third formulation, which

is denoted as PQ-formulation, is developed by Tawarmalani and Sahinidis (2002).

This formulation incorporates some valid inequalities on top of the Q-formulation. It

should be noted that these constraints were derived by Quesada and Grossman (1995)

for the applications in process networks. The equivalence of these three formulations

is formally proved in Gupte et al. (2012). Other than those three; recently, Alfaki

and Haugland (2012) proposed two new formulations denoted as TP-formulation and

STP-formulation. TP-formulation uses a similar logic that Q-formulation does, but

defines proportion variables regarding the proportion of the flow from intermediate

pools to end products to replace the flow variables between intermediate pools and

end products in P-formulation. It also includes the analogous valid inequalities that

are used in PQ-formulation. Therefore it can be claimed that PQ-formulation and
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TP-formulations are symmetric. Finally, STP-formulation combines PQ-formulation

and TP-formulation by including both source proportion and end product proportion

variables and corresponding constraints in the model.

In terms of number of variables, Q-formulation is smaller than P-formulation.

However, for most of the cases, convex relaxations of P-formulation are tighter. On

the other hand PQ-formulation, by the addition of the valid inequalities, provides a

smaller problem with a tight relaxation (Misener and Floudas, 2009). Gupte et al.

(2012) provides the comparison on the sizes of these formulations and a discussion

on the relaxations of the problem and their tightness, and conclude the relaxation

of the PQ-formulation is tighter than both P-formulation and Q-formulation. Alfaki

and Haugland (2012) empirically compared the TP-formulation to PQ-formulation

and claimed that the formulations do not have equal strength but no formulation

dominates the other one. They also proved that the STP-formulation is not weaker

than TP-formulation or PQ-formulation in the sense of their convex relaxations.

In this study, since a solution method that requires no relaxation is used and

the smallest formulation is preferred, the Q-formulation which is given as in the study

of Misener and Floudas (2009) is used with a few modifications. This is the same

model defined in Ben-Tal et al. (1994) except it contains lower bound constraints on

input material availability, end product demand and product quality as well as hard

upper bounds on the variables. Also in this thesis, raw material cost parameters are

defined with respect to their destination nodes. The summary for definitions of sets,

parameters and decision variables used in the formulation is as follows:
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Table 2.1. Sets, parameters, and decision variables for Q-formulation.

Sets

I Set of input streams (raw materials)

L Set of pools

J Set of output streams (end products)

K Set of quality attributes

TX Set of (i, l) pairs for which input to pool connection exists

TY Set of (l, j) pairs for which pool to output connection exists

TZ Set of (i, j) pairs for which input to output connection exists

Parameters

cil Unit cost of raw material i sent to pool l

cij Unit cost of raw material i sent to output j

dj Unit revenue for product j

ALi Minimum required usage of raw material i

AUi Maximum availability of raw material i

Sl Capacity of pool l

DL
j Minimum required production of end product j

DU
j Demand upper limit of end product j

Cik Level of quality attribute k in raw material i

PL
jk Lower limit of quality attribute k in end product j

PU
jk Upper limit of quality attribute k in end product j

Decision variables

qil Proportion of flow from input stream i to pool l among all flows into pool l

ylj Flow from pool l to output j

zij Flow from input stream i to output j

Then the Q-formulation of the pooling problem can be given as the BLP defined

in Equations 2.1 − 2.10. In this formulation the objective function (2.1) minimizes the

negative profit. Constraints (2.2) provide upper and lower limits on the raw material
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usages. Constraints (2.3) define the intermediate pool capacities. Minimum and maxi-

mum production limits of the end products are given in constraints (2.4). Constraints

(2.5) and (2.6) impose the upper and lower quality requirements for linear blending.

Constraints (2.7) provide that the proportion of flows to a pool add up to exactly one.

Finally, constraints (2.8), (2.9) and (2.10) define the hard bounds on variables to tighten

the feasible space. It should be noted that the bilinearities in the model occur in the

objective function (2.1), the raw material limitation constraints (2.2) and the quality

limitation constraints (2.5) and (2.6). The P-formulation and the STP-formulation of

pooling problem are provided in Appendix A and Appendix B, respectively.

Q-formulation:

min
qil,ylj ,
zi,j

∑
(i,l)∈TX
(l,j)∈TY

cilqilylj −
∑

(l,j)∈TY

djylj −
∑

(i,j)∈TZ

(dj − cij)zij (2.1)

s.t.

ALi ≤
∑

l:(i,l)∈TX
(l,j)∈TY

qilylj +
∑

j:(i,j)∈TZ

zij ≤ AUi ∀i (2.2)

∑
j:(l,j)∈TY

ylj ≤ Sl ∀l (2.3)

DL
j ≤

∑
l:(l,j)∈TY

ylj +
∑

i:(i,j)∈TZ

zij ≤ DU
j ∀j (2.4)

∑
l:(l,j)∈TY
i:(i,l)∈TX

Cikqilylj +
∑

i:(i,j)∈TZ

Cikzij ≤ PU
jk

 ∑
l:(l,j)∈TY

ylj +
∑

i:(i,j)∈TZ

zij

 ∀j, k (2.5)

∑
l:(l,j)∈TY
i:(i,l)∈TX

Cikqilylj +
∑

i:(i,j)∈TZ

Cikzij ≥ PL
jk

 ∑
l:(l,j)∈TY

ylj +
∑

i:(i,j)∈TZ

zij

 ∀j, k (2.6)

∑
i:(i,l)∈TX

qil = 1 ∀l (2.7)

0 ≤ qil ≤ 1 ∀(i, l) ∈ TX (2.8)

0 ≤ ylj ≤ min

Sl, DU
j ,

∑
i:(i,l)∈TX

AUi

 ∀(l, j) ∈ TY (2.9)

0 ≤ zij ≤ min
{
AUi , D

U
j

}
∀(i, j) ∈ TZ (2.10)



8

2.1.2. Solution Methods

As mentioned before, the general bilinear programming problem is strongly NP-

hard. Also, Alfaki and Haugland (2012) formally proved that the pooling problem is

strongly NP-hard in particular, by a polynomial reduction from the Maximum Inde-

pendent Vertex Set Problem.

Many exact and heuristic solution techniques are suggested for the pooling prob-

lem. One can refer to Misener and Floudas (2009), Gupte et al. (2012) and Alfaki

(2012) for a review of the solution methods. Obviously, all techniques that are suitable

for nonlinear programming problems can be used to solve pooling problem. Some of

the methods that are used to solve the pooling problem are summarized as follows,

separated as exact and heuristic methods. Foulds et al. (1992) suggested a branch

and bound algorithm based on convex underestimations which are achieved by re-

placing bilinear occurrences by new variables and bounding them. Also, Audet et al.

(2004) provided a branch and cut algorithm by improving this technique. Liberti and

Pantelides (2006), Wicaksono and Karimi (2008) and Gounaris et al. (2009) also pro-

vide more advanced relaxation techniques that are incorporated in branch and bound

scheme. Moreover, apart from branch and bound variants, there are lagrangian relax-

ation based techniques. Floudas and Aggarval (1990) and Visweswaran and Floudas

(1990) suggested lagrangian relaxation based approaches. Also, Ben-Tal et al. (1994),

Adhya et al. (1999) and Almutairi and Elhedhli (2009) used lagrangian relaxation

techniques to provide lower bounds on their global optimization algorithms. Moreover,

Frimannslund et al. (2010) suggested a method that is based on linear matrix inequality

relaxations.

Since exact methods can provide solutions to small sized problems, heuristic

methods are used to find good enough solutions in reasonable time. The earliest inexact

solution method is the iterative approach suggested by Haverly (1978), which estimates

and fixes the quality attributes in pools and solves the remaining linear program. The

new quality attributes are calculated by the flow values obtained by the results of the
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previous linear program and the procedure repeats until convergence occurs. Lasdon

et al. (1979) used Successive Linear Programming (SLP) to solve pooling problem,

which linearizes the problem using first order Taylor expansion at a point and solves

the remaining LP, and repeats until convergence.

Audet et al. (2004) proposed a more general iterative heuristic named alternate

heuristic (ALT), which uses the pooling problem’s bilinear nature, becoming linear

when one of the variable sets is fixed. The procedure starts with an initial feasible

variable vector and solves the remaining LP by fixing this vector. Then the output is

fixed on the next iteration and the procedure iterates until improvement stops. ALT

converges to a local optimum if the solutions of the LPs are unique at each iteration

of the algorithm.

Audet et al. (2004) also suggested a variable neighborhood search (VNS) which

uses ALT as the local improvement method and a neighboring scheme that is suitable

for the pooling problem. In this procedure, neighboring solutions are generated by

fixing one of the variable sets that cause bilinearity and setting a number of basic

variables as nonbasic in the remaining LP. The number of basic variables that will

be forced to be nonbasic is given by the neighborhood size and at each iteration the

variable that is fixed (the search subspace) is altered.

Recently, Alfaki (2012) proposed a greedy construction heuristic (GCH) that

begins with choosing the most profitable end product node by considering only the

raw materials and intermediate pools that can reach to that end product node, which

corresponds to a linear program. Then for the next best end product, the subproblem

that contains the pools and the input streams that can reach to that node is constructed

and solved while preserving the previously allocated flows. The algorithm proceeds by

augmenting the flows if they are profitable and terminates after all end product nodes

are explored. In this method, although bilinearity exist in the subproblems that are

solved in all of the iterations except the first, the number of bilinear terms are small

and this may result in short run times for the solution of these subproblems by using
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general purpose solvers or appropriate methods.

Set i := 1

repeat

Fix qi (or yi) and solve the resulting LP, retrieve yi (or qi)

Fix yi (or qi) and solve the resulting LP, retrieve qi+1 (or yi+1)

i := i+ 1

until stability is reached

Figure 2.1. Pseudo code of ALT.

Find an initial feasible solution S

Determine stopping condition maxIter, maximum neighborhood size kmax

Set i := 1 and subspace δ

repeat

nSize := 1

repeat

Generate S ′ using k and δ

δ := δ

Generate S ′′ using ALT with S ′ as initial solution

if S ′′ better than S

S := S ′′

nSize := 1

else

nSize := nSize+ 1

until nSize > kmax

i := i+ 1

until i > maxIter

Figure 2.2. Pseudo code of VNS.
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Solve subproblem P j
0 ∀j and sort in increasing order

Initialize S as flow vector containing the flows of the best P0

Set i := 1

repeat

Solve ithsubproblem Pi

if Pi is profitable

Augment flows of Pi into S

i := i+ 1

until i ≥ |J |

Figure 2.3. Pseudo code of GCH.

Pseudo codes of ALT, VNS and GCH are provided in Figures 2.1, 2.2, and 2.3

for pooling problem using the notation given in Section 2.1.1, since they will be used

as benchmark methods.

2.2. Background on Particle Swarm Optimization

2.2.1. Overview of Particle Swarm Optimization

An evolutionary optimization technique for nonlinear functions, particle swarm

optimization concept is first introduced by Kennedy and Eberhart (1995). The method

is discovered through the study of movements of organisms in a bird flock or fish school.

It uses a very simple concept that can be implemented easily and with little memory

requirements. Basically, a set of particles are initialized randomly in the search space.

Each particle moves in the space by keeping track of coordinates of its own best position

encountered so far, particleBest, and the best position achieved by all of the particles

in the population so far, globBest, with respect to their fitness values. The position

change is determined by the velocity of the particles. Velocity calculation and position

update mechanisms are given in Equations 2.11 and 2.12 respectively, in the notation

used in this study (Eberhart and Kennedy, 1995). In Equations 2.11 and 2.12, V and
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P stands for velocity and position vectors of a particle, and φ1 and φ2 are for two

positive constants. U(0, x) specifies a uniform random vector between 0 and x.

Vi+1 = Vi + U (0, φ1) (particleBest− Pi) + U (0, φ2) (globBest− Pi) (2.11)

Pi+1 = Pi + Vi+1 (2.12)

PSO concept has links to both genetic algorithms and evolutionary programming.

As in evolutionary programming, PSO depends on stochastic processes. Movement to-

wards the personal and global best positions in PSO can be seen similar to the crossover

operation in genetic algorithms. Like all evolutionary computation paradigms, fitness

notion appears in PSO (Eberhart and Shi, 1998; Kennedy and Eberhart, 1995).

The basic PSO has a few number of parameters to determine beforehand. Popu-

lation size is usually selected by considering problem difficulty and dimensions. Usually

values between 20 and 50 are used as the number of particles. Also, φ1 = φ2 = 2 is

quite common in the studies (Poli et al., 2007). Furthermore, the study of Clerc and

Kennedy (2002) provide a theoretical analysis about movements of particles in the

search space and their convergence analytically. Zheng et al. (2003) and Trelea (2003)

provide suggestions on parameter selection along with analytical convergence analy-

sis. Shi and Eberhart (1998a), Shi and Eberhart (1999), Carlisle and Dozier (2001),

Zhang et al. (2005) make suggestions on parameter selection provided by some empir-

ical studies, although in general it is mentioned that the parameters may be problem

specific.

Standard PSO algorithm does not consider constrained optimization problems.

To deal with constrained problems, Parsopoulos and Vrahatis (2002) used penalty

functions. In this approach maybe the most important factor is the penalty value since

high penalty values can cause the algorithms to get trapped in local optima and low

penalty values can result in problems in having feasible solutions. Hu and Eberhart
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(2002) on the other hand, proposed a method that is based on maintaining feasibility.

They initialize all particles in the feasible space and let the particles search the whole

space. However, they let particles to update their best positions only if they are feasible.

In this structure, it can be said that the biggest challenge is the equality constraints.

Pulido and Coello (2004) suggested a different constraint handling mechanism that

alters the selection of global best particle. This is done by a small change in fitness

functions so that when comparing two particles, the feasible one is selected and if both

particles are infeasible the one with the smallest infeasibility is selected.

The motivation to use PSO in this thesis is that it naturally handles continuous

variables and performs well. However, variants of PSO to operate on discrete space are

proposed as well. For such a variation, one can refer to Kennedy and Eberhart (1997)

among others.

One can refer to Eberhart and Kennedy (1995) for the algorithmic steps of the

original PSO. Some of the several extensions that were suggested on top this standard

PSO are discussed in the next section. The papers of Schutte and Groenwold (2005)

and Poli et al. (2007) should be referred for a more detailed survey on such extensions

since in this study only the most important aspects are discussed.

2.2.2. Extensions on Original PSO

When updating the velocity of a particle, using its velocity in the former iteration

provides the particle with the ability to explore search space and the procedure gains

global search property (Shi and Eberhart, 1998b). However, leaving particle speed

unattended can be harmful to the process, and the balance between global and local

exploration abilities should be controlled. Mainly, this can be done by using bounds

on velocities, inertia weight and constriction coefficients.

To prevent excessively large steps, velocity of a particle can be restricted to a

range [−Vmax,+Vmax] with a proper choice of Vmax. By setting Vmax too small, global
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search ability is restricted and process will approach to local search. On the contrary,

for the opposite case intensification may be compromised (Shi and Eberhart, 1998a).

Shi and Eberhart (1998b) proposed inertia weight concept which is basically a

multiplier of the first term, previous velocity, in the velocity update Equation 2.11.

Inertia weight can be utilized with or without Vmax and can be a constant value or a

time dependent function. They asserted that using inertia weight improves performance

of the PSO. Also, it is stated that instead of using a fixed value, a linearly decreasing

inertia weight increases the quality of the solution. Velocity calculation for the case

where inertia weight is utilized can be seen in Equation 3.2 in Section 3.1.4, where

inertia weight is denoted as ω.

Apart from constant and linearly decreasing inertia weight suggestions, Zheng

et al. (2003) proposed linearly increasing inertia weight along with particle trajectory

analysis. Chatterjee and Siarry (2006) studied nonlinearly decreasing inertia weight.

Eberhart and Shi (2001) introduced a random component in inertia weight. Kent-

zoglanakis and Poole (2009) proposed oscillating inertia weight by utilizing a cosine

term. Also, Yang et al. (2007), Jiao et al. (2008) and Alfi (2011) proposed dynamic

adaptation for inertia weight value.

Clerc (1999) proposed the addition of a constriction coefficient may be useful

to ensure convergence of the particles. Eberhart and Shi (2000) further explored the

extension empirically and Clerc and Kennedy (2002) studied constriction coefficient

analytically. Clerc and Kennedy (2002) commented that constriction coefficient can be

implemented in many ways. One of the simplest methods of velocity update by using

it is given in Equation 2.13, where Equation 2.14 and Equation 2.15 hold and χ is the

constriction coefficient. When this constriction method is used, φ is usually set to 4.1

and φ1 = φ2 (Poli et al., 2007).

Vi+1 = χ (Vi + U (0, φ1) (particleBest− Pi) + U (0, φ2) (globBest− Pi)) (2.13)
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φ = φ1 + φ2 > 4 (2.14)

χ =
2

φ− 2 +
√
φ2 − 4φ

(2.15)

It should also be noted that PSO with constriction coefficient is algebraically

equivalent to PSO with inertia weight. The mapping can be done be setting ω equal

to χ and multiplying φ values with χ (Poli et al., 2007).

Mendes et al. (2004) suggested a revision on the way a particle interact with other

particles. Unlike the previous cases where only particle’s self best and population best

particle’s information are used and the information from the remaining particles are

ignored, they suggested fully informed particle swarm where each particle is affected

by all of its neighbors. Velocity update of fully informed particle swarm can be given

as in the Equation 2.16, where Np is the number of neighbors that particle p has, and

nbr(n) is the nth neighbor of particle p. It should be noted that if all particles only

has itself and population best particle in its neighborhood, then this formulation is

identical to standard version (Kennedy and Mendes, 2003).

Vp,i+1 = χ

(
Vp,i +

Np∑
n=1

U (0, φ)
(
Pnbr(n),i − Pp,i

)
Np

)
(2.16)

Another discussion on PSO can be made about population topology. Popula-

tion topology determines the set of particles that will affect the motion of a particle.

Basically, population topologies can be characterized into two: static and dynamic

topologies. In static topology neighborhoods remain constant during a run, on the

other hand in dynamic topology neighborhoods can be updated. Static topology can

be divided into two: global best topology, gbest, and local best topology, lbest. Global

best topology can be conceptualized as a fully connected graph, therefore a particle’s

neighborhood is the whole population and the best particle in the population influences

the particles (Poli et al., 2007). Local best topology is introduced by Eberhart and
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Kennedy (1995) in which neighborhood of a particle is defined as the nearest K many

particles in the population array, where K is the neighborhood size. They concluded

that gbest converges faster but there is a higher chance to be caught in local optima

than lbets topology. Kennedy and Mendes (2002) and Kennedy and Mendes (2003)

studied on numerous aspects of static network topologies and evaluated performances

of them with respect to different algorithm versions. Mendes et al. (2004) proposed

their fully informed particle swarm after a discussion on population topologies.

Suganthan (1999) suggested a dynamic topological structure by using the idea

that lbest topology is better in exploring the search space and gbest is faster in conver-

gence. Therefore they proposed to start the iterations with lbest and by dynamically

increasing the neighborhood reaching gbest topology at the end of the run. They also

defined the neighborhood in two ways; the simple way is considering the particles that

are closest in the population array and the alternative way is constructing neighbor-

hoods by considering the distances of particles in the search space. Also, Peram et al.

(2003) and Liang and Suganthan (2005) studied on dynamic topologies.

2.3. Background on Simulated Annealing

A stochastic optimization method, simulated annealing is introduced by Kirk-

patrick et al. (1983) and C̃erný (1985), independently. The technique is originally

based on the connection between the statistical mechanics, which studies the behavior

of systems in thermal equilibrium with high degrees of freedom, and combinatorial or

multivariate optimization. SA metaheuristic is analogous to the physical annealing

process of solids and named as such due to this analogy. The method can be classi-

fied as a random search technique but the key difference is its ability to escape being

trapped at a local optimum by occasionally permitting worsening moves with a finite

probability (Henderson et al., 2003; Zomaya and Kazman, 2010).

In most general terms, the procedure is initialized at a temperature T , and it

is decreased slowly by a cooling scheme. At each temperature level, a neighboring
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solution S ′ is generated from the current solution S by using predefined move functions.

If the objective value of the neighboring solution, F (S ′), is an improved value over

the current objective value F (S), then the move is always accepted. Moreover, the

worsening moves are accepted with the probability function given in the Equation

2.17, for the minimization problem case. Therefore at high temperatures probability of

accepting a worsening move is more than the lower temperature case, and this results

in diversification at the beginning where the temperature is high and intensification at

the end of the procedure. Also, new neighbors can be generated for a number of cycles

at a temperature.

P (acceptance) = exp

(
F (S)− F (S ′)

T

)
(2.17)

During the course of the SA procedure, a neighboring solution is generated by

performing a move on the current solution and it is independent of the previous solu-

tions, therefore the algorithm can be interpreted as a series of Markov chains. By using

this property and the fact that a sufficient number of iterations at a given temperature

result in a stationary state distribution for an irreducible Markov chain; asymptotic

convergence to global optimum is guaranteed for SA (Aarts et al., 2005; Henderson et

al., 2003; Zomaya and Kazman, 2010).

The original SA algorithm basically requires a cooling schedule, a stopping cri-

terion and a neighborhood definition to perform. Romeo and Sangiovanni-Vincentelli

(1991) note that an effective cooling schedule is vital in reducing the time required

to find a good solution. Cardoso et al. (1994) state that a fast cooling scheme can

lead the algorithm end up at a poor local optimum and a slow cooling schedule result

in very long computation time. Many of the cooling schedules in the literature are

heuristics and can be classified in two as static and dynamic schedules. In static cool-

ing, the parameters are fixed beforehand whereas dynamic schedules adjust the rate

of decrease in temperature using the information gained during the algorithm execu-

tion. Most common cooling scheme which is an example of static cooling, geometric



18

schedule is given as the Equation 2.18. In the equation, Ti states the temperature

level at iteration i and α is the cooling coefficient which typically take values between

0.8 and 0.99 (Aarts et al., 2005). The stopping of SA can be attained by setting a

termination temperature or by finishing the execution after a number of consecutive

decrease in temperature without having any accepted solutions (Zomaya and Kazman,

2010). Neighborhood definition is a problem specific choice for the SA algorithm as

well as the size of the neighborhood. A large neighborhood size can lead to random

sampling in a large portion of the feasible space whereas small neighborhood size can

make it difficult to find good solutions in a reasonable time (Henderson et al., 2003).

Ti+1 = αTi (2.18)

Although the SA algorithm originally worked on combinatorial optimization prob-

lems, it is applied to continuous optimization problems by mainly altering the neigh-

boring strategies. For a few examples among them, Bohachevsky et al. (1986) proposed

generating a uniform direction vector in the feasible region and moving along that di-

rection for a predetermined step size. Corana et al. (1987) chose coordinates one by

one as direction vectors in each iteration, and determined the step size randomly de-

pending on the direction. Dekkers and Aarts (1991), Romeijn and Smith (1994) and

Ali et al. (2002) proposed methods that used Markov chain approach for continuous

optimization problems.

One can refer to Dowsland (1993), Henderson et al. (2003), Aarts et al. (2005)

and Zomaya and Kazman (2010) for the formal algorithmic steps of the original SA,

convergence analysis of the algorithm and a more detailed survey.
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3. PROPOSED SOLUTION METHODS

Since Pooling problem is strongly NP-hard (Alfaki and Haugland , 2012; Audet et

al., 2004), two solution methods that are based on PSO and SA, which take advantage

of the bilinear nature of the problem, are proposed to solve large instances effectively.

3.1. Particle Swarm Optimization Based Solution Method

3.1.1. Overview of the PSO-based Method

In simplest terms, the idea used in the PSO-based method is to choose one of the

variable sets that cause bilinearity as the search variable and perform PSO operations

on that variable set while fitnesses are calculated by solving the remaining LP.

As stated before a BLP reduces to an LP when one of the variable sets causing

bilinearity is fixed, which can be solved easily and quickly. Therefore by fixing the

values of the search variables in the model, fitnesses of particles and values of the rest

of the variables can be calculated by solving the remaining LP. Also, by this way the

constraints that are not entirely composed of the search variable set becomes irrelevant

for the PSO methodology. If there exists a constraint that contains only the search

variable and constants, the feasibility of that constraint is checked before fixing the

variable and if needed, the position vector is repaired by using proper methods to

make that constraint feasible. The search variable of the proposed solution method

for pooling problem is selected as the qil variable since it is bounded between zero and

one, and also it is easy to repair the infeasibilities by normalizing the variables so that

the constraint given by Equation 2.7 holds. Also, local improvement heuristic ALT,

which is proposed by Audet et al. (2004), is performed occasionally during iterations

to improve the fitnesses of particles in the population.

As explained in Section 2.2 there are several techniques exist to avoid getting
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stuck at local optima and increase the solution quality. In this thesis, gbest static

topology, and a nonlinear inertia weight mechanism with a modification are used. The

aim of the proposed procedure is to find a good set of values for the search variables,

thus finding a good solution to the problem by using PSO framework.

The following subsections are dedicated to the details of the proposed PSO-based

metaheuristic procedure. They include information about parameters and initialization

of the population as well as the modifications to improve the solution quality and run

time. Before presenting the details, general steps are given in the Figure 3.1.

Initialize parameters, set i := 1

Initialize position vector P and velocity V for each particle in the population

repeat

for each particle in population

Repair infeasibilities

Calculate fitness F(P)

if F (P ) < F (particleBest)

particleBest := P and F (particleBest) := F (P )

if F (P ) < F (globBest)

globBest := P and F (globBest) := F (P )

for each particle in population

Update V and P

if Local improvement criteria is met

Perform ALT

if Population reduction criteria is met

Remove the worst half of the population

if Early termination criterion is met

i := maxIter

Update ω and φ1, i := i+ 1

until i > maxIter

Figure 3.1. Pseudo code of PSO-based method.
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3.1.2. Parameters

The original PSO needs a little number of parameters to perform, and for the

proposed procedure there are a few additional parameters to determine as well as the

PSO parameters.

First parameter is the population size which is usually based on dimension and the

difficulty of the problem; and usually values between 20-50 are used (Poli et al., 2007).

In this study, this parameter is used as the initial population size and the number of

particles is reduced during iterations as discussed in Section 3.1.3. Obviously the trade

off between run time and solution quality affects the selection of the initial population

size; since as the number of particles increases, the number of updates on the values of

the fixed variables and the number of LPs solved at each iteration increases.

The parameters φ1 and φ2 provide upper bounds on the amount of random move-

ment towards the personal best and population best solution vectors, respectively. One

can assert that if φ1 and φ2 has small values, intensification will be slower. On the

other hand, for the high values of φ1 and φ2, particles can begin to move in an uncon-

trolled manner. In this study the value of φ2 is set independently and the value of φ1 is

initialized depending on φ2 and updated at each iteration as discussed in Section 3.1.5.

Inertia weight ω can be seen as a term to restrict the velocity of a particle. For

the values where ω is greater than 1, swarm will be unstable. For the values less than

1, diversification is stronger for the higher values of ω and intensification is anticipated

for smaller values (Poli et al., 2007). In this study, initial omega, final omega and

omega curvature parameters are needed to be set and these parameters, as well as the

update of ω during iterations is explained in Section 3.1.4.

Maximum number of iterations, maxIter, is the parameter that determines the

termination of the algorithm, unless the procedure terminates prematurely due to early

termination criteria. It is selected depending on the sizes of the problems in this study.
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In general, parameter selection in this thesis is done by testing different values

systematically on a set of problems and the details of this parameter setting phase is

explained in Section 4.1.1.

3.1.3. Reducing Population Size

As the number of particles increases in the population the solution quality is

expected to improve and as it decreases the time spent for optimization will reduce.

Since we need to update and solve LPs for each particle at each iteration during the op-

timization procedure, which may be time consuming, a modification that compromises

between solution quality and time is included in the procedure. We start by having

a large population and reduce its size by removing particles during iterations. In this

way we can increase the possibility of visiting promising areas in the solution space at

the beginning and keep searching over the good particles and intensify to local optima

at the later iterations. This reduction structure resembles the elitist strategy used in

genetic algorithms. Eberhart and Shi (1998) argue that an explicit implementation of

elitist strategy would be by carrying good particles to other iterations and eliminating

a particle, probably the particle with the lowest fitness value, from the population.

In this thesis we implemented the idea in a way that particle elimination occurs

at specified iterations. While the swarm size selected as a moderate value for most of

the search, the exploration capability is tried to be increased by using larger swarm

size during the early phases of the search .For this purpose, removing the half of the

population twice, first at an iteration between (3%− 5%) of maxIter and secondly at

an iteration between (10% − 15%) of maxIter, is considered. At those points of the

search, first ALT procedure is conducted for all of the particles and they are sorted

with respect to their fitness values. Then the worst half of the particles is removed

from the population. Initial size of the population is selected differently depending on

the problem sizes, which are specified in Section 4.1.1, under numerical studies.
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3.1.4. Inertia Weight Update

As mentioned in Section 2.2.2, instead of using bounds on velocities of particles,

Shi and Eberhart (1998b) proposed inertia weight in order to restrict the velocities of

the particles in the population which has a role in the exploration and local search trade

off. A higher value for inertia weight results in larger differences in velocity in each

iteration whereas small inertia weight means smaller updates in velocity. Thus, large

values of inertia weight helps to explore new areas in the search space and small values

means fine tuning around the current position. They asserted that using inertia weight

improves performance and instead of using a fixed value, a linearly decreasing inertia

weight increases the quality of the solution. Chatterjee and Siarry (2006) introduce a

nonlinear variation in inertia weight. They used the formula in Equation 3.1 to update

inertia weight ω, where ωcurv specifies the nonlinear modulation index. For ωcurv = 1,

the equation behaves as a linear adaptation, for ωcurv > 1, the rate in reduction of ω

decreases as the number of iterations increase and the opposite is valid for ωcurv < 1.

Equation 3.2 specifies the velocity update using inertia weight, where V is velocity, Pi

is current position vector of the particle and particleBest and globBest are personal

best position vector of the particle and position vector of global best encountered so

far, respectively.

ωi =

(
maxIter − i
maxIter

)ωcurv
(ωinitial − ωfinal) + ωfinal (3.1)

Vi+1 = ωiVi + U (0, φ1) (particleBest− Pi) + U (0, φ2) (globBest− Pi) (3.2)

Chatterjee and Siarry (2006) tried several values for the parameters and for the

nonlinear modulation index. They reported the best results for ωcurv = 1.2, which

facilitates high enough values of ω during the first iterations to search the solution

space better and low enough values to avoid large oscillations.

In this study, we update inertia weight using Equation 3.1 and ωcurv = 1.2 is
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selected as suggested at the work of Chatterjee and Siarry (2006) and ωfinal = 0.2

is used. However, a modification is done on the inertia weight mechanism. After

examining the improvement pattern in a subset of problems, the nonlinear function is

divided into three discrete segments. The parameters are initialized and at the end of

the completion of 15% of maxIter current omega value is reduced to a value less than

one. Similarly, at the end of the completion of 75% of maxIter, current omega value

is increased to a high value and at the rest of the iterations inertia weight reduction

works the same; it reduces to its final value nonlinearly with ωcurv = 1.2. Figure 3.2

illustrates the inertia weight update mechanism where vertical axis represents the ω

value at an iteration, horizontal axis represents iteration percentage and the dotted

line represents the change in ω without the modification.

Figure 3.2. Inertia weight update mechanism.

This modification can be explained as such: The procedure starts with a high

number of particles and the ALT procedure lets the particles to start their movements

at their local optima. Also, we want the particles to explore promising areas before the

population size is reduced. Therefore, at the early stages, global exploration is much

more important and to do this, ωinitial is set to a high value. When 15% of the maxIter

is reached, where the population size is at its final value, inertia weight is reduced to

a value less than 1, in this way we expect to observe convergent behavior. Because
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of performing ALT procedure occasionally and reducing inertia weight, the frequency

of improvements in the population reduces as the iterations move on. Therefore, it is

aimed that the particles explore their neighborhood a bit further by increasing inertia

weight at the iteration where 75% of the maxIter is performed.

3.1.5. φ1 Update

The φ1 parameter affects the random movement towards the personal best posi-

tion of the particle and φ2 parameter affects movement towards population best posi-

tion. Therefore, it can be stated that φ1 helps us to search the neighborhood of the

particle and φ2 provides intensification towards population best. By using these prop-

erties, it is decided to keep the value of φ2 fixed throughout the iterations but gradually

reduce the value of φ1 to a certain level by beginning at a higher value than φ2, in order

to provide the relative difference. In this way, at the first iterations particles will move

around their neighborhoods more than they intensify, thus diversification will be dom-

inant. And as the iteration limit comes closer, particles’ movement towards population

best will be dominant and intensification will be provided. Equation 3.3 states the

update mechanism, where φ1 reaches to the half of φ2 at termination. φ1,initial is set

as a multiple of φ2 and initial values of these are provided under numerical studies at

Section 4.1.1.

φ1,i =

(
φ1,initial −

φ2

2

)(
maxIter − i
maxIter

)
+
φ2

2
(3.3)

3.1.6. Local Improvement

As described in Section 2.1.2, ALT is a natural solution method for BLPs and

provides local optimum in finite number of steps given that each LP has a unique

solution (Audet et al., 2004). In order to take advantage of that, at the first and at

every 50 iterations ALT procedure is performed as well as at the termination. Moreover,

to maintain a good globBest, best three particles in the population are subjected to
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ALT at every 10 iterations.

3.1.7. Early Termination

Since solution time is an issue, an early termination rule is proposed to decide on

whether or not to terminate the procedure before completing maxIter. It is based on

observations on the improvement patterns of a subset of problems during preliminary

experiments. The pseudo code of the rule is given in Figure 3.3. With this rule, the

procedure cannot be terminated before 66% of the iterations are completed, in order

to avoid premature termination.

Usage of early termination can be decided depending on the convergence of the

procedure, by observing the improvement patterns. In this study, the decision to use

early termination rule is based on the problem sets at hand.

if 80% of maxIter completed and no improvement for last 5% of maxIter

return true

else if 71% of maxIter completed and no improvement for last 10% of maxIter

return true

else if 66% of maxIter completed and no improvement for last 30% of maxIter

return true

return false

Figure 3.3. Pseudo code of early termination rule.

3.1.8. Population Initialization

In order to begin with the procedure, the particles in the population must have

initial position and velocity vectors. In this study, velocity vectors of all particles

are selected as zero and they are expected to initialize themselves. On the other

hand, initial positions can be assigned to particles either randomly, or by using some
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heuristics, or by a combination of heuristic and random positions. In this thesis, the

position vectors of the particles are initialized as suggested in Audet et al. (2004); each

variable is set to zero with a 0.5 probability and if it is decided to be nonzero, it is

initialized randomly between (0, 1) range.

3.2. Simulated Annealing Based Solution Method

3.2.1. Overview of the SA-based Method

The proposed SA-based method basically applies the original SA, but uses the

neighborhood definition that is proposed for the VNS procedure in Audet et al. (2004),

which is explained in the Section 2.1.2. The SA procedure is further enhanced by

starting with a large neighborhood size and then reducing it gradually during the

course of the search.

To illustrate the neighbor generation for the pooling problem, let S = (q′, y′, z′)

be the current solution. Then (q′, z′) is an extreme point of this solution in a subspace

δ = (q, z) where y = y′ and this subspace is as a convex polytope associated with

the LP defined by fixing the variable y. The neighborhood of size one of this extreme

point in subspace δ is defined as the all extreme points that are reachable by taking

one basic variable out of basis. Then in general terms, a neighbor S ′ = (q′′, y′, z′′) in a

neighborhood of size k is generated by changing randomly k elements in the basis of the

solution in the given subspace. In next neighbor generation, q variables will be fixed.

In case S ′ is accepted, the search moves to this new solution and q = q′′ is fixed on the

next iteration; otherwise q = q′ is fixed. In this way, independent of whether the search

has moved to a new solution, at each neighbor generation the subspace δ is altered to

its complement. The complement of subspace (q, z) is defined as the subspace (y, z).

Thus, solutions in (q, z) and (y, z) are generated interchangeably.

In the proposed SA-based method, neighborhood size is determined depending on

the iteration. The initial and final neighborhood sizes are initialized at the beginning
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of the search and the current value is updated at each iteration. Also, the number

of cycles that the search runs for each temperature level is dynamic and increases

geometrically. The aim is to explore the feasible space with a larger neighborhood size

at the beginning and intensify at the end of the procedure with longer cycles. The

termination of the algorithm occurs when the iteration count reaches a parametrized

maximum number of iterations limit.

The following subsections are devoted to the details of the proposed SA-based

method; detailed information on parameters, initialization and the modifications to

improve the solution quality are explained. Before presenting the details, general algo-

rithmic steps are provided in the algorithm in Figure 3.4. In the pseudo code, S denotes

current solution and S ′ represents its neighbor, and their objective values are given by

F (S) and F (S ′), respectively. Parameter nSize stands for current neighborhood size,

cLen for current cycle length and T for current temperature.

Initialize parameters, set i := 1 and subspace δ

Generate initial solution S

repeat

for cycle:=1 to cLen

Generate Neighboring Solution S ′ from S using nSize and δ

if F (S ′) < F (S)

S := S ′

else if Random(0, 1) < exp(F (S)−F (S′)
T

)

S := S ′

δ := δ

Update T , nSize, cLen

i := i+ 1

until i > maxIter

Figure 3.4. Pseudo code of SA-based method.
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3.2.2. Parameters

In the implementation of the SA-based method, a few additional parameters are

used in order to initialize and perform the procedure. The cooling scheme is selected

as the geometric cooling schedule and the cooling coefficient parameter, α, is searched

for different values in order to assess the run time and solution quality tradeoff. The

geometric temperature update used as presented in Equation 2.18.

Since initial temperature has an important role in the solution quality, instead of

assigning a constant value for the initial temperature T0 for all problem instances, a

meaningful value is determined as suggested by Dowsland (1993) for each instance at

the beginning of the search. For this purpose, a sample solution points and a neighbor

solution for each of them are generated. Then the average of individual absolute

differences in fitness values of the solution pairs, |∆f0|, and the initial acceptance

ratio, IAR, are used to find T0 as in Equation 3.4 below. The value of IAR parameter

is searched for different values to find a good value.

T0 =
|∆f0|

ln
(

1
IAR

) (3.4)

In order to determine the termination criterion, the value of the maximum number

of iterations, maxIter, is calculated such that at the end of the procedure temperature

reaches to the desired level, Tf , under geometric cooling schedule. Therefore, Equation

3.5 can be used to calculate the maxIter parameter. However for similar reasons, a

generic calculation method is proposed instead of using a single Tf for all problem

instances. Therefore maxIter is calculated by using the final acceptance ratio param-

eter, FAR, as in Equation 3.6 which can be derived from Equation 3.5 and k stands

for the |∆f0|/|∆ff | ratio. In this study, by experimenting over a subset of instances k

is estimated as 2. The value of FAR parameter is selected as 0.001 in this thesis.

maxIter = logα

(
Tf
T0

)
(3.5)
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maxIter = logα

(
ln(IAR)

k ln(FAR)

)
(3.6)

The neighborhood size parameter, nSize, that affects the new solution generation

is adaptive and it decays geometrically as cooling schedule. In this way, having a

larger neighborhood size helps diversification at the beginning and as the procedure

reaches termination small steps in the neighborhood space leads to intensification.

The final neighborhood size, FNS, is selected as 1 in this study for all instances.

However, in order to take problem sizes into account initial neighborhood size, INS,

is determined using initial neighborhood size coefficient, β. The calculation of INS is

given in Equation 3.7. As mentioned before, neighbors are generated by fixing one of

the variable sets that cause bilinearity and removing nSize number of basic variables

from the basis of the remaining LP as in the study of Audet et al. (2004). Since at

each iteration one of those variable sets are perturbed, average number of variables

that cause bilinearity is multiplied by the parameter β. Maximum of 5 and this value

is selected in order to avoid having very small INS. Similar to some other parameters,

the value of β is selected among different values to have a good performance. As a

result of these calculations, neighborhood update coefficient, γ, is determined such that

at the end of the procedure FNS is reached. Equation 3.8 illustrates the calculation

of γ. The nSize parameter is updated as in Equation 3.9.

INS = max

(
5, β

number of variables causing bilinearity

2

)
(3.7)

γ =

(
FNS

INS

)1/maxIter

(3.8)

nSizei+1 = γ nSizei (3.9)

The parameter that determines the number of cycles at each temperature level,

cLen, increases geometrically in order to be able to explore close neighborhood when

the procedure is close to termination. For this purpose, initial cycle length, ICL, and

final cycle length, FCL, are used. ICL parameter is used as 1 for all cases whereas
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FCL depends on problem instances. Using a similar idea as before, cycle length update

parameter, θ, is calculated as in Equation 3.10 and cLen is updated as in Equation

3.11.

θ =

(
FCL

ICL

)1/maxIter

(3.10)

cLeni+1 = θ cLeni (3.11)

3.2.3. Local Improvement

In order to improve the quality of the current solution, local optimization method

ALT is used for the SA-based procedure as in the other method. During the procedure,

at first iteration and at the termination local search by ALT is performed. Moreover,

whenever a neighboring solution improves the current solution ALT is carried out. The

reason is to reach the local optimum easily and to avoid spending time unnecessarily

in a valley.

3.2.4. Solution Initialization

For the initial solution generation of the algorithm, the same method used in

the PSO-based method is utilized. The position vector of the solution is initialized as

proposed in Audet et al. (2004); each variable is set to zero with a 0.5 probability and

if it is decided to be nonzero, it is initialized randomly between (0, 1) range.
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4. NUMERICAL RESULTS AND PERFORMANCE OF

THE PROPOSED SOLUTION METHODS

4.1. Test Problems and Experimental Setting

There is a number of problem instances in the literature that are used widely in

testing the performances of the solution techniques for the pooling problem (Adhya et

al., 1999; Audet et al., 2004; Ben-Tal et al., 1994; Foulds et al., 1992; Haverly, 1978).

However, these benchmark problems represent small to medium size problems (Mis-

ener and Floudas, 2009). Recently, Alfaki and Haugland (2012) presented randomly

generated large instances of the pooling problem.

In this study, in order to study the performance of the proposed heuristics,

mostly large problem instances are used, and generated when necessary. The in-

stances that are used in experiments can be divided into four sets, roughly by problem

sizes. Set 1 contains 14 problems: the third example given in Adhya et al. (1999), re-

ferred as AST3, the last randomly generated instance by Audet et al. (2004), referred

as R19, and 12 other problems that are fabricated by combining different problems

using AST3 and the last four problems of Audet et al. (2004). These are referred

as R19AST3 1, R18R17 1, R18R16 1, R17R16 1, R19AST3 2, R18R17 2, R18R16 2,

R17R16 2, R19AST3 3, R18R17 3, R18R16 3, R17R16 3. These 12 problems were gen-

erated to obtain medium to large sized problems before Alfaki and Haugland (2012)

published their study. They are fabricated by combining two separate problems into one

and the name of the problem consists of those two instances. The suffixes “ 1”, “ 2” and

“ 3” determines the combination technique. For the instances with suffix “ 1”, the two

problems are just combined by increasing the indices of the sets of the second problem

by the cardinality of the relevant sets of the first problem. Therefore it can be said that

these are two separable problems expressed as one. For the instances with suffix “ 2”,

on top of the former problem, some additional network links and their relevant cost

parameter values are generated randomly and included in the problem. Lastly, for the
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instances with suffix “ 3”, additional to the previous combination, quality attributes

are defined randomly for some of the raw materials and end products which are con-

nected to the other problem by the additional links. There are 20 problems in set 2, set

3 and set4. These instances are given in Alfaki and Haugland (2012) and set 2 includes

group A, set 3 contains group B and set 4 is composed of group C problems provided

in their study. All of the instances that are used in this study can be downloaded in a

GAMS readable format from http://www.bufaim.boun.edu.tr/Pooling Instances.zip.

The sizes of the problems for the Q-formulation are given in the Table 4.1 to

provide a rough understanding about the problem difficulties. The first two columns of

Table 4.1 state the set and the name of the problem and the succeeding columns identify

the number of input streams (ni), intermediate pools (nl), end products (nj) and quality

attributes (nk). Columns seven to ten identify the number of variables (vars), number

of linear equality constraints (leq), number of linear inequality constraints (lin) and

number of bilinear inequality constraints (bin).

To analyze the performances of the two proposed solution methods, the results

are compared with heuristic solution techniques that are presented in the literature.

Multi-start version of ALT (MALT), VNS presented in Audet et al. (2004) and the

greedy construction heuristic (GCH) offered in Alfaki (2012) are used for comparison

and the pseudo codes of those are given in Figures 2.1, 2.2 and 2.3, respectively. In

the study of Audet et al. (2004), multi-start version of SLP method is dominated by

MALT and VNS for all of their randomly generated test instances, therefore it is omit-

ted as a solution method for comparison. Apart from those, an open source large scale

nonlinear optimization software IPOPT (Wächter and Biegler, 2006), a commercial

software package KNITRO which is a large scale mathematical optimization software

specialized in nonlinear optimization (Byrd et al., 2006) and a commercial nonconvex

optimization software BARON (Tawarmalani and Sahinidis, 2005) are used as general

purpose solvers for experimentation. BARON guarantees global optimality; however

KNITRO and IPOPT are local optimizers. For the heuristic methods and general

purpose solvers Q-formulation of the pooling problem is used. Moreover, in order to
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Table 4.1. Sizes of the test instances.

Problem ni nl nj nk vars leq lin bin

Set 1

AST3 8 3 4 6 20 3 55 64

R19 12 10 11 4 182 10 382 112

R19AST3 1 20 13 15 10 202 13 437 176

R18R17 1 22 10 8 34 123 10 235 316

R18R16 1 20 14 13 33 216 14 446 334

R17R16 1 22 14 13 7 213 14 435 130

R19AST3 2 20 13 15 10 235 13 504 340

R18R17 2 22 10 8 34 157 10 297 588

R18R16 2 20 14 13 33 253 14 507 898

R17R16 2 22 14 13 7 253 14 519 226

R19AST3 3 20 13 15 10 235 13 504 340

R18R17 3 22 10 8 34 157 10 297 588

R18R16 3 20 14 13 33 253 14 507 898

R17R16 3 22 14 13 7 253 14 519 226

Set 2

A0 20 10 15 24 171 10 376 758

A1 20 10 15 24 179 10 416 712

A2 20 10 15 24 192 10 400 760

A3 20 10 15 24 218 10 457 760

A4 20 10 15 24 248 10 491 760

A5 20 10 15 24 277 10 570 760

A6 20 10 15 24 281 10 571 760

A7 20 10 15 24 325 10 666 760

A8 20 10 15 24 365 10 720 760

A9 20 10 15 24 407 10 812 760

Set 3

B0 35 17 21 34 384 17 768 1498

B1 35 17 21 34 515 17 965 1498

B2 35 17 21 34 646 17 1248 1498

B3 35 17 21 34 790 17 1464 1498

B4 35 17 21 34 943 17 1779 1498

B5 35 17 21 34 1044 17 1947 1498

Set 4

C0 60 30 40 40 811 30 1604 3320

C1 60 30 40 40 1070 30 2101 3320

C2 60 30 40 40 1278 30 2523 3320

C3 60 30 40 40 1451 30 2802 3320
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analyze the solution quality in depth and let the optimization packages use the advan-

tage of a tighter relaxation, STP-formulation of pooling problem is also experimented

as well as the Q-formulation for the general purpose solvers. The STP-formulation is

given in the Appendix B.

In order to improve the solution quality and reduce the effect of the random

seed that initializes the random number stream that is used during the procedure,

the solutions are replicated with different number of seeds depending on their run

times. The solutions for set 1 and set 2 are replicated five times and for set 3 three

times. Therefore the best objective value and the sum of run times of the replications

are reported. For set 4 however, the average objective values and run times of five

replications are reported due to long run times.

The VNS procedure that is reported in Audet et al. (2004) needs two parameters:

maximum neighborhood size and number of iterations which is the stopping condition

of the algorithm. Maximum neighborhood size is selected as 100 as it is used in Audet

et al. (2004). In order to provide a fair comparison, stopping condition is imposed by

a time limit which is set as the time spent on the PSO-based solution method for that

instance. The VNS procedure is replicated in the same way of the runs of the proposed

solution methods.

The MALT procedure requires number of starting points as the parameter in the

study of Audet et al. (2004). However, again for the sake of a fair comparison, the

stopping condition is given by a time limit in this study. New position vectors are

generated and subjected to ALT procedure until the time limit, which is determined

by the time spent on the PSO-based method for the particular instance, is exceeded.

The only parameter GCH requires is the time limit for the procedure. Although

one hour is used as time limit in Alfaki (2012), the time limits allowed here the same

as all other methods for a fair comparison.
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The proposed solution methods, VNS, MALT and GCH are coded in C# language

via Microsoft Visual Studio 2010. In order to solve the LPs in PSO-based, SA-based,

VNS and MALT procedures IBM ILOG CPLEX 11.0 is employed.

For the nonlinear optimization software, BARON, KNITRO and IPOPT, time

limits are imposed as other heuristics and memory limits are set as 3000 Mbytes to

avoid memory insufficiency. The maximum iteration limit for KNITRO and IPOPT

are set to unlimited to avoid termination due to iteration limit before the time limit is

reached. KNITRO has three options for the algorithm used for solution; two of which

are interior point methods (Interior/Direct algorithm and Interior/CG algorithm) and

the other one (Active Set algorithm) follows an exterior path. As default, KNITRO

uses the first algorithm and switches to the second algorithm if needed during the run

time, which use interior methods and terminates when the feasibility error is within

its limits. However, it should be noted that the solution reported in this case still has

infeasibility even though it is small. When feasibility tolerance is set to zero, KNITRO

fails to find a feasible solution for any of the problem instances. In this thesis, Active

Set Algorithm with multi-start option (ms enable true, ms terminate 1) is used to

eliminate that problem. The rest of the options of the solvers are left as their default

values.

The mathematical models are coded on GAMS IDE version 23.6.5; and BARON

version 9.0.6, KNITRO version 7.0.0 and IPOPT version 3.8 are run through the GAMS

interface to solve the models. Finally, all experiments are carried out on a PC with

3.07 GHz CPU and 8 GB RAM, running under 64-bit Windows 7 operating system.

In Chapter 3, where the proposed solution methods are presented, required pa-

rameters are described and values are specified if they are fixed for all problem in-

stances. The other parameter values that depend on the instance sets are presented on

the two following subsections for PSO-based and SA-based approaches, respectively.
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4.1.1. PSO-based Method Parameter Values

PSO-based method requires initial population size, maxIter, early termination

rule usage, ωinitial, φ2 and initial multiplier for φ1 values other than the ones that

are stated before. Since run time of the procedure is important and must be within

reasonable limits, and initial population size and maximum number of iterations are

the main factors affecting it; initial population sizes and maxIter are determined by

the size of the problems. By using the observations in the preliminary experiments, for

the problems in the set 1 initial population size is set as 100. For the instances in the

set 2, initial population size is selected as 60, and 40 is chosen for set 3 and set 4. The

population size is reduced to its half at 5th and 15th iterations. Value of maxIter is set

as 100 for set 1 and set 2. Also, early termination rule is applied for those two sets.

On the other hand, 150 is selected as maxIter and early termination rule is not used

for the rest, namely set 3 and set 4. For the modification in ω value, it is chosen that

the omega value is reduced to 0.9 at the completion of %15 of maxIter, and increased

to 1.2 at the completion of %75 of maxIter.

The values of ωinitial, φ1,initial and φ2 are selected among different alternatives

by experimenting over a subset of 8 problem instances, namely AST3, R19AST3 2,

R17R16 3, A1, A4, A9, B0 and B4, in order to avoid over fitting. For ωinitial, a high

value (h) 1.5 and a low value (l) 1.2; for φ2 1.25, 1.0 and 0.75 (h, m and l, respectively)

are tried. φ1,initial is initialized as a multiple of φ2 and this multiplier is searched

among two values, namely 1.5 and 2.0 (h and l, respectively). Full factorial design for

the three parameters is used and each parameter setting is denoted in a three letter

format where first letter states the level of φ1,initial multiplier, the second represents φ2

level and the last one states the ωinitial level. To check whether there is a significant

difference among those 12 parameter settings Friedman test is used (Hollander and

Wolfe, 1999). Friedman test is a nonparametric statistical test that is used to compare

the medians of observations repeated on the same subjects. The null hypothesis is

that all treatment effects are equal, and the alternative hypothesis is at least two of

the treatment effects are not equal; where the parameter settings denote the treatment
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effects. It is the nonparametric alternative of repeated measures analysis of variance

test. Since the normality assumption does not hold, the nonparametric Friedman test

is applied in this study. Basically, for each instance, each parameter setting is assigned

a rank such that small observations get a smaller rank. Then ranks of each parameter

settings are summed and Friedman test statistic is calculated. The tests are conducted

using statistical software package Minitab 16. Table 4.2 provides the Friedman test

results below and it fails to reject the null hypothesis since p > 0.05. Although there

is no parameter setting that is significantly different, the parameter setting with the

lowest rank is selected, namely “hmh”. All parameters used for PSO-based method are

summarized in Table 4.3 with respect to the problem sets, where Est Median stands

for estimated median.

Table 4.2. Friedman test result for PSO-based method parameter settings.

Setting Observation Count Est Median Sum of Ranks

hhh 8 -23753 55.0

hhl 8 -23778 50.0

hlh 8 -23691 66.0

hll 8 -23707 59.5

hmh 8 -23865 26.5

hml 8 -23761 54.0

lhh 8 -23758 55.5

lhl 8 -23777 48.5

llh 8 -23804 42.0

lll 8 -23562 72.5

lmh 8 -23770 46.0

lml 8 -23744 48.5

p = 0,193 (adjusted for ties)
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Table 4.3. PSO-based method parameter summary.

Set 1 Set 2 Set 3 Set 4

popSize 100 60 40 40

maxIter 100 100 150 150

φ1,initial 2.0 2.0 2.0 2.0

φ2 1.0 1.0 1.0 1.0

ωinitial 1.5 1.5 1.5 1.5

ωfinal 0.2 0.2 0.2 0.2

ωcurv 1.2 1.2 1.2 1.2

4.1.2. SA-based Method Parameter Values

Apart from the previously reported parameter values, SA-based method requires

initial neighborhood size coefficient, β, initial acceptance ratio, IAR, cooling coefficient,

α and final cycle length, FCL.

A similar approach is used in the determination of parameters that is used in PSO-

based method is adopted for the parameters of SA-based approach. Experimentations

are carried out over the same subset of problems and full factorial design is used where

the levels are denoted by letters for each parameter. For β, 0.2, 0.1 and 0.05 (h, m

and l, respectively), for IAR, 0.99, 0.95 and 0.9 (h, m and l, respectively) and finally

for α, 0.95 and 0.9 (h and l, respectively) are tried. Friedman test is used to check

whether there is a significant difference among those 18 parameter settings and Table

4.4 presents the result of the test.

From Table 4.4, it can be seen that not all the parameter settings are equal since

p < 0.05. Since the small rank values represent better performance, the two settings

that provide the best performance, “hhh” and “hlh” are tested among themselves to

see if there is a significant difference between them and Table 4.5 shows the test results.

Since p > 0.05, it can be said that parameter settings “hhh” and “hlh” are statistically
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equal. As a result, for set 1 and set 2 instances “hhh” setting, for set 3 and set

4 problems “hlh” parameter settings are used, in order to reduce the time spent on

calculations.

Table 4.4. Friedman test result for SA-based method parameter settings.

Setting Observation Count Est Median Sum of Ranks

hhh 8 -19769 33.5

hhl 8 -19748 68.5

hmh 8 -19750 60.5

hml 8 -19717 92.5

hlh 8 -19757 45.5

hll 8 -19681 99.5

mhh 8 -19750 52.5

mhl 8 -19729 87.5

mmh 8 -19738 72.5

mml 8 -19713 98.5

mlh 8 -19723 78.5

mll 8 -19671 117.5

lhh 8 -19740 67.5

lhl 8 -19753 68.5

lmh 8 -19758 58.5

lml 8 -19714 94.5

llh 8 -19740 72.5

lll 8 -19710 99.5

p = 0,003 (adjusted for ties)

Table 4.5. Friedman test result for SA-based method parameters for the best two

settings.

Setting Observation Count Est Median Sum of Ranks

hhh 8 -20443 10.5

hlh 8 -20442 13.5

p = 0,257 (adjusted for ties)
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After selection of these parameters, an important time difference between PSO-

based and SA-based methods for the set 1 and set 2 problems is observed. Based on

this observation, in order to increase the solution quality, α is increased to 0.97 and

FCL is increased to 20 for set 1 from the default value 10. For the set 2 instances,

FCL is increased to 15.

Although most of the time SA-based approach terminates earlier, all instances

for the SA-based procedure are limited by time, which is determined by the time spent

on the PSO-based method for the particular instance for a fair comparison.

All parameters used for SA-based method are summarized in Table 4.6 with

respect to the problem sets.

Table 4.6. SA-based method parameter summary.

Set 1 Set 2 Set 3 Set 4

IAR 0.99 0.99 0.9 0.9

FAR 0.001 0.001 0.001 0.001

β 0.2 0.2 0.2 0.2

FNS 1 1 1 1

α 0.97 0.95 0.95 0.95

ICL 1 1 1 1

FCL 20 15 10 10

4.2. Results and Comparison

The primary criterion in evaluation of the performances in this section is the

objective values of the solution techniques. As mentioned before, all methods except

PSO-based approach has implied upper limits on the run time and this limit is deter-

mined by the time spent on PSO-based method. However, there may be some excess

in times since the iterations are allowed to be completed if time limit is reached. As

previously stated, for VNS, PSO-based method and SA-based method, total time spent



42

and minimum of the replications are presented except for set 4, where the average time

and objective values are reported. In all of the tables that present the numerical values,

if a solution technique fails to find a feasible solution within the given time limit or

terminates due to convergence to an infeasible point, the objective value of that instant

is left with a dash. For the results of BARON, if the optimal solution is found, then

the lower bound value is left with a dash.

Before comparing the experimentation results with the proposed methods, the

results of the Q-formulation and the STP-formulation are compared for each solver.

For KNITRO, 12 of the instances have equal objective values, for 15 of the instances

Q-formulation yielded lower results whereas opposite is true for 7 cases. For the runs

with IPOPT, for 15 of the instances Q-formulation and for 10 of the instances STP-

formulation turned out to be better. Also, it can be said that for most of the cases, run

times are worsened when switching to STP-formulation using IPOPT solver. When

the upper bound values of BARON are compared, it is seen that STP-formulation

resulted in lower objective values for 8 of the cases, 2 of them belonging to the set 1 of

instances, and Q-formulation provided better results for 12 cases, all of which belonging

to the other sets. However, as it was expected, the lower bounds of Q-formulation are

inferior to the ones of STP-formulation for all instances. It is also noteworthy that

KNITRO and IPOPT failed to find feasible solutions for most of the cases in sets 2,

3 and 4. Tables 4.7, 4.8 and 4.9 provide the results of these comparisons where the

better objective values are presented in bold.

The comparison between the performances of PSO-based method and the general

purpose solvers are provided in the Table 4.10 for set 1 and the other sets are given in

the Table 4.11. In this comparison, each of the solver solutions are compared to the

proposed PSO-based method in a pair-wise manner. If an objective value is strictly

better than the PSO-based method then it is presented in bold.

When the Q-formulation solved with KNITRO and PSO-based methods are com-

pared, it can be seen that in 29 instances in all 34, PSO-based method resulted in better
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Table 4.7. Q-formulation and STP-formulation comparison for KNITRO.

KNITRO Q KNITRO STP

Set Problem Objective Time Objective Time

Set 1

AST3 -559.62 0.1 -65.00 0.1

R19 -4524.18 0.2 -4524.18 94.5

R19AST3 1 -5083.80 47.6 -5083.80 2.8

R18R17 1 -1981.82 0.6 -1429.16 0.2

R18R16 1 -2841.67 0.4 -2858.50 0.4

R17R16 1 -3462.00 0.3 -3322.00 0.3

R19AST3 2 -4594.18 1.5 -4594.18 1.0

R18R17 2 -2034.16 0.6 -1429.16 0.7

R18R16 2 -2841.67 0.8 -2841.67 8.1

R17R16 2 -3506.79 1.6 -3322.00 0.3

R19AST3 3 -3779.50 3.6 -4078.44 1.8

R18R17 3 -830.32 1.2 -91.51 0.1

R18R16 3 -1715.28 3.3 -865.75 0.2

R17R16 3 -2602.82 14.2 -2624.86 1.3

Set 2

A0 -33838.65 241.5 -27939.13 522.9

A1 -23577.65 8.9 -20668.93 58.8

A2 - 855.0 -6443.82 50.4

A3 -33493.38 212.8 -34844.11 102.7

A4 -39656.81 400.2 - 1093.2

A5 -26265.05 1252.9 - 1191.0

A6 -41945.96 515.9 -41906.40 1104.9

A7 - 1486.0 - 1486.0

A8 - 1309.0 - 1309.0

A9 -21593.58 943.2 -20774.54 1249.5

Set 3

B0 -37210.20 91.6 - 2135.0

B1 -57932.09 1292.8 -58299.34 2465.6

B2 - 3624.0 - 3624.6

B3 - 3997.1 - 3997.1

B4 - 4775.0 -56857.68 9387.4

B5 - 6268.2 - 6268.0

Set 4

C0 -82128.14 3273.6 - 3387.0

C1 - 4290.5 - 4290.1

C2 - 5251.9 - 5251.1

C3 - 5738.1 - 5737.0
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Table 4.8. Q-formulation and STP-formulation comparison for IPOPT.

IPOPT Q IPOPT STP

Set Problem Objective Time Objective Time

Set 1

AST3 -559.62 0.5 -50.74 4.2

R19 -4524.18 1.8 -3222.13 131.1

R19AST3 1 -96.54 387.1 -3347.01 387.1

R18R17 1 -1981.82 2.3 -706.05 765.1

R18R16 1 -2858.50 5.6 -2858.50 11.2

R17R16 1 -3462.00 2.4 - 248.1

R19AST3 2 -5083.80 97.8 -5083.80 449.1

R18R17 2 -2066.86 107.3 -735.95 142.1

R18R16 2 -2920.13 1710.1 -2536.20 1805.3

R17R16 2 -3462.00 33.7 -3313.86 78.2

R19AST3 3 -4169.48 25.0 -2812.47 489.1

R18R17 3 -1121.52 46.0 -920.84 737.2

R18R16 3 -1830.31 2076.3 -1365.47 2076.2

R17R16 3 -2500.95 32.4 -2625.88 69.6

Set 2

A0 - 94.8 -34166.73 851.1

A1 - 73.1 -27120.26 789.1

A2 - 856.0 -16246.64 855.3

A3 - 145.7 -38012.27 1061.2

A4 - 1094.5 -39574.85 1093.2

A5 - 721.0 - 1261.1

A6 -42042.98 55.3 - 1355.2

A7 -29364.48 1423.8 - 1486.3

A8 -30333.09 261.9 -28844.89 1309.3

A9 -21304.25 433.2 - 1526.6

Set 3

B0 - 1283.6 -3420.20 2139.7

B1 - 2672.0 - 2639.6

B2 - 3682.3 - 3664.4

B3 - 4010.8 - 4000.2

B4 -59380.30 2848.4 - 4781.1

B5 - 6292.3 - 6313.9

Set 4

C0 - 3459.8 - 3632.9

C1 - 4930.3 -28660.83 14153.4

C2 - 5625.5 -14187.71 8036.5

C3 - 5894.0 - 5779.8
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Table 4.9. Q-formulation and STP-formulation comparison for BARON.

BARON Q BARON STP

Set Problem LB UB Time LB UB Time

Set 1

AST3 -857.11 -561.05 51.1 - -561.05 0.5

R19 -5622.02 -4524.18 131.1 - -4524.18 3.6

R19AST3 1 -6852.21 -5085.23 387.1 - -5085.23 80.3

R18R17 1 -3366.70 -1981.82 765.1 - -1981.82 4.2

R18R16 1 -4416.90 -2858.50 1592.1 - -2858.50 13.1

R17R16 1 -5099.48 -3462.00 248.1 - -3462.00 12.9

R19AST3 2 -6853.95 -5094.18 449.1 - -5103.97 20.6

R18R17 2 -3665.97 -2188.92 781.1 - -2188.92 11.1

R18R16 2 -4451.54 -2971.68 1805.1 - -2971.68 25.7

R17R16 2 -5397.76 -3523.62 296.1 - -3523.62 13.9

R19AST3 3 -5114.83 -4137.05 489.1 - -4169.48 43.8

R18R17 3 -2217.47 -1319.13 737.1 - -1319.13 20.6

R18R16 3 -2753.86 -2346.80 2076.2 - -2346.80 36.1

R17R16 3 -3980.91 -2913.58 348.1 -2978.60 -2913.58 348.1

Set 2

A0 -90728.40 -27226.20 851.1 -37343.70 -20510.68 851.2

A1 -67066.54 -14525.16 789.1 -30355.30 -24890.62 789.2

A2 -61934.95 -12574.81 855.2 -23330.00 -17917.33 855.2

A3 -87856.75 -29922.67 1061.2 -40761.00 -18171.21 1061.2

A4 -78196.57 -23115.18 1093.2 -42928.50 -17021.58 1093.2

A5 -67494.19 -15977.12 1191.3 -28257.80 -6224.06 1191.3

A6 -69358.50 -15647.51 1355.3 -42463.00 -5405.46 1355.3

A7 -84539.77 -26499.75 1486.4 -44682.20 -10221.20 1486.4

A8 -70876.13 -18311.77 1309.4 -30666.90 -19476.27 1309.4

A9 -65281.72 -18203.73 1526.4 -21934.00 -13436.57 1562.5

Set 3

B0 -102125.43 -9814.85 2135.4 -45377.30 -8883.27 2135.5

B1 -127259.71 -26256.96 2635.6 -65241.80 -7933.14 2639.1

B2 -103699.78 -8898.13 3626.7 -56320.20 -5155.73 3625.0

B3 -113638.00 - 3998.2 -74050.50 -15858.95 3998.3

B4 -114518.49 -318.06 4785.9 -59469.70 0.00 4776.8

B5 -122845.00 - 6270.1 -60696.40 - 6270.1

Set 4

C0 -195498.75 -18965.68 3388.0 -98253.60 -7744.63 3388.3

C1 -237127.76 -5967.00 4291.6 -119006.00 -15693.06 4292.1

C2 -244485.00 - 5253.2 -136398.61 -3227.02 5253.4

C3 -245821.00 - 5739.7 -130315.02 - 5863.1
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objective values. Among the instances KNITRO was better, four belongs to set 2 and

one to set 4. Also, it is important to note that for 10 out of 20 instances in set 2, set

3 and set 4, KNITRO failed to find a feasible solution. However, it can be said that,

for the cases where it finds a feasible solution, run times of KNITRO are considerably

lower than the proposed PSO-based method’s, especially for set 1. A similar conclusion

can be derived for solution with KNITRO for STP-formulation. In this case, only the

result of case B4 is better than the PSO-based method’s results. KNITRO terminated

without a feasible solution for 12 of the 20 set 2, set 3 and set 4; and run times where

feasible solution can be found are notably shorter for set 1 problems.

Comparison between PSO-based method and IPOPT is not much different than

the previous comparison in terms of the general picture. For 28 instances, solutions

of Q-formulation with IPOPT were inferior and for 29 cases STP-formulation with

IPOPT was outperformed by PSO-based method. IPOPT was unable to find a feasible

solution for 15 of the 20 instances in set 2, set 3 and set 4 when Q-formulation is used.

When STP-formulation is used, one case terminated without a feasible solution for set

1 and 11 cases from the others. Run times of IPOPT are usually shorter than PSO-

based method where a feasible solution found for Q-formulation. However, the run is

terminated due to time limit in most of the cases where STP-formulation is used.

In almost all of the cases in set 2, set 3 and set 4, BARON was unable to beat the

PSO-based method; only the A2 instance in SPT-formulation was superior. BARON

yielded better results for four problems when Q-formulation is used, and six problems

when STP-formulation is used. BARON was unable to find a feasible solution for four

cases with Q-formulation and for two cases with STP-formulation, which are in set 3

and set 4. BARON was able to find optimal solutions for 13 of the 14 instances in set

1 and terminated in a significantly shorter time compared to PSO-based procedure.

Among the instances whose optimality is proven, PSO-based method was able find

eight of them. KNITRO found three optimal results in Q-formulation and two in STP-

formulation. IPOPT was able to find five optimal values in Q-formulation but only one

in STP-formulation. Lastly, BARON with Q-formulation found 11 optimal results.
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Table 4.12 displays the pair-wise comparison between PSO-based method and

other heuristics, namely GCH, MALT and VNS. If an objective value is strictly better

than the PSO-based method then it is shown in bold. When Table 4.12 is examined,

it can be said that GCH was unable to find any better solution and the comparison

against MALT procedure shows that for only two of the cases MALT was able to find

a better solution than PSO-based procedure. When VNS is compared, it is seen that

the PSO-based solution method dominates all of the instances in set 1. For the other

sets, PSO-based method was superior in 12 of the cases out of 20; seven in set 2, three

in set 3 and two in set 4.

The comparison between the performances of SA-based method and the general

purpose solvers are shown in the Table 4.13 for set 1 and Table 4.14 for the remaining.

Similar to previous comparisons, pair-wise comparisons are conducted between each

of the solver solutions and the SA-based solutions. Likewise, if an objective value is

strictly better than the SA-based method, then it is presented in bold.

The comparison between the Q-formulation solved with KNITRO and SA-based

methods shows that in five of all of the instances KNITRO performed better than

proposed SA-based method. Like before, run times of KNITRO is considerably lower

than the proposed SA-based method’s for the cases where it finds a feasible solution

and especially for set 1. Similar results can be seen in comparison to KNITRO for

STP-formulation. In this case, only two of the results out of 34 are better than the SA-

based method’s results. Again, run times are usually shorter than SA-based method

for the cases where a feasible solution is found.

In parallel to the previous comparisons, solutions of Q-formulation with IPOPT

were inferior for 24 cases. IPOPT managed to be superior to SA-based approach only in

three cases for STP-formulation. Like before, run times of IPOPT are usually shorter

than proposed SA-based method where a feasible solution found for Q-formulation,

but, it is not the case when STP-formulation is used.
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Table 4.12. Heuristic methods and PSO-based method comparison.

GCH MALT VNS PSO-based

Set Problem Objective Time Objective Time Objective Time Objective Time

Set 1

AST3 -552.85 4.6 -557.49 51.0 -554.16 51.1 -561.05 51.0

R19 -4513.39 110.1 -4524.18 131.0 -4524.18 131.4 -4524.18 131.3

R19AST3 1 -4480.17 212.4 -5079.32 387.1 -5085.23 387.6 -5085.23 387.4

R18R17 1 -1280.10 481.6 -1981.82 765.1 -1512.16 765.5 -1981.82 765.1

R18R16 1 -2767.00 1475.0 -2858.50 1592.5 -2858.50 1593.6 -2858.50 1592.4

R17R16 1 -3462.00 248.8 -3452.98 248.1 -2992.34 248.4 -3462.00 248.3

R19AST3 2 -4258.38 420.7 -5067.37 449.1 -4524.18 449.7 -5061.06 449.2

R18R17 2 -1338.82 298.9 -2047.76 781.0 -1443.92 782.1 -2188.92 781.5

R18R16 2 -2813.09 709.8 -2951.19 1805.2 -2901.31 1807.1 -2971.68 1805.9

R17R16 2 -3343.13 121.6 -3445.54 296.0 -3445.17 297.0 -3506.79 296.8

R19AST3 3 -2936.64 80.8 -4083.88 489.1 -3735.23 489.7 -4167.50 489.3

R18R17 3 -680.10 284.6 -689.16 737.1 -689.16 738.2 -980.36 737.8

R18R16 3 -1829.63 1918.5 -2325.46 2076.2 -2302.20 2078.5 -2343.41 2076.5

R17R16 3 -2273.80 167.6 -2762.73 348.1 -2861.56 349.1 -2913.58 348.9

Set 2

A0 -18464.33 184.1 -32820.76 851.1 -33067.42 863.1 -33469.65 851.1

A1 -6282.29 119.2 -16583.12 789.0 -17553.96 790.8 -26508.80 789.5

A2 -6699.04 127.6 -19422.44 855.0 -14104.50 857.1 -16882.24 855.9

A3 -24417.47 711.9 -35407.84 1061.1 -37890.59 1066.7 -37889.26 1061.7

A4 -27163.24 323.6 -37532.21 1093.5 -37367.87 1100.0 -38320.45 1093.7

A5 -19602.47 489.2 -23746.37 1191.2 -24912.02 1196.2 -25372.95 1191.3

A6 -22484.50 419.6 -41330.57 1355.3 -41981.83 1360.4 -41941.17 1355.1

A7 -23635.36 324.1 -41370.72 1486.7 -42360.35 1490.1 -42838.33 1487.0

A8 -17951.92 364.2 -24242.31 1309.1 -29415.77 1319.2 -30249.15 1309.8

A9 -16050.83 412.7 -20299.78 1526.5 -21784.73 1532.0 -21689.53 1526.5

Set 3

B0 -19601.09 553.2 -34409.74 2135.3 -39926.02 2142.1 -40150.09 2135.9

B1 -27876.72 552.7 -54850.38 2635.4 -57977.08 2644.0 -57999.63 2635.1

B2 -28434.78 1266.6 -48887.33 3624.4 -50896.49 3637.5 -49892.58 3624.5

B3 -43721.24 837.2 -67560.29 3997.1 -68661.65 4002.2 -72861.33 3997.7

B4 -32347.64 1224.1 -53647.78 4775.5 -59208.37 4777.6 -58759.30 4775.8

B5 -32686.58 1340.9 -50159.38 6268.3 -60334.21 6276.4 -60060.83 6268.5

Set 4

C0 -22796.34 722.8 -64243.97 3390.0 -68265.23 3404.9 -66337.18 3387.5

C1 -34054.62 629.3 -68427.27 4307.3 -81572.92 4355.1 -81091.98 4290.9

C2 -50703.12 1394.4 -96241.47 5265.4 -109320.80 5278.6 -111315.98 5251.5

C3 -30767.65 1268.3 -93697.17 5740.4 -104596.01 5793.5 -109249.43 5737.5
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As in the comparison to PSO-based method, SA-based method dominated BARON

in set 2, set 3 and set 4; except for the A2 instance in SPT-formulation. However,

BARON yielded better results for nine problems for both formulations in set 1. The

run times for BARON are again significantly smaller for the cases where an optimal

solution is found. SA-based method was able to solve five of the problems that have

proven optimal solutions to optimality.

Table 4.15 displays the pair-wise comparison between SA-based method and

GCH, MALT and VNS. Like before, strictly better objective values than the SA-based

method are shown in bold. Table 4.15 states that GCH was unable to find any better

solution again and MALT was able to find a better solution than SA-based procedure

for four instances among all 34, where three of them are in set 1 and the other one in

set 2. SA-based procedure dominated VNS in all instances except one instance each in

set 1, set 2 and set 3.

Table 4.16 provides a one to one comparison between the two proposed solution

methods. For set 1, PSO-based method was superior in eight of the instances and

both methods performed the same for the rest. For set 2, in three problems PSO-

based method, in seven problems SA-based method performed better. Lastly, for all

of the instances of set 3 and set 4 SA-based approach was the dominating one. Also,

SA-based method terminated in 24 out of 34 instances before time limit is reached. In

total, 56512.2 seconds spent for SA-based method calculations whereas 63787.9 seconds

spent for PSO-based method.

In order to be able to say more about the solution quality of the proposed meth-

ods, gaps are calculated using the Equation 4.1. Lower bounds of BARON with STP-

formulation (LBSTP ) are used and gaps between the two proposed methods as well

as the best gaps obtained among all solution techniques are presented in Table 4.17.

In general, it can be said that reasonable gaps are achieved for set 1, set 2 and set 3

problems whereas it is not exactly the case for set 4. However, this can be due to poor
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Table 4.15. Heuristic methods and SA-based method comparison.

GCH MALT VNS SA-based

Set Problem Objective Time Objective Time Objective Time Objective Time

Set 1

AST3 -552.85 4.6 -557.49 51.0 -554.16 51.1 -560.95 17.4

R19 -4513.39 110.1 -4524.18 131.0 -4524.18 131.4 -4524.18 102.4

R19AST3 1 -4480.17 212.4 -5079.32 387.1 -5085.23 387.6 -5083.80 316.0

R18R17 1 -1280.10 481.6 -1981.82 765.1 -1512.16 765.5 -1981.82 481.7

R18R16 1 -2767.00 1475.0 -2858.50 1592.5 -2858.50 1593.6 -2858.50 1213.5

R17R16 1 -3462.00 248.8 -3452.98 248.1 -2992.34 248.4 -3462.00 175.3

R19AST3 2 -4258.38 420.7 -5067.37 449.1 -4524.18 449.7 -4594.18 346.8

R18R17 2 -1338.82 298.9 -2047.76 781.0 -1443.92 782.1 -2188.92 625.6

R18R16 2 -2813.09 709.8 -2951.19 1805.2 -2901.31 1807.1 -2920.06 1348.5

R17R16 2 -3343.13 121.6 -3445.54 296.0 -3445.17 297.0 -3460.53 202.7

R19AST3 3 -2936.64 80.8 -4083.88 489.1 -3735.23 489.7 -4077.03 403.7

R18R17 3 -680.10 284.6 -689.16 737.1 -689.16 738.2 -980.36 555.0

R18R16 3 -1829.63 1918.5 -2325.46 2076.2 -2302.20 2078.5 -2333.99 1523.4

R17R16 3 -2273.80 167.6 -2762.73 348.1 -2861.56 349.1 -2910.92 308.4

Set 2

A0 -18464.33 184.1 -32820.76 851.1 -33067.42 863.1 -34564.00 859.4

A1 -6282.29 119.2 -16583.12 789.0 -17553.96 790.8 -19324.58 589.3

A2 -6699.04 127.6 -19422.44 855.0 -14104.50 857.1 -18389.39 662.0

A3 -24417.47 711.9 -35407.84 1061.1 -37890.59 1066.7 -38237.24 1064.2

A4 -27163.24 323.6 -37532.21 1093.5 -37367.87 1100.0 -38968.48 1099.4

A5 -19602.47 489.2 -23746.37 1191.2 -24912.02 1196.2 -25331.73 1201.7

A6 -22484.50 419.6 -41330.57 1355.3 -41981.83 1360.4 -41995.98 1363.4

A7 -23635.36 324.1 -41370.72 1486.7 -42360.35 1490.1 -43260.04 1493.3

A8 -17951.92 364.2 -24242.31 1309.1 -29415.77 1319.2 -29057.56 1315.1

A9 -16050.83 412.7 -20299.78 1526.5 -21784.73 1532.0 -21851.79 1541.9

Set 3

B0 -19601.09 553.2 -34409.74 2135.3 -39926.02 2142.1 -41425.54 1457.3

B1 -27876.72 552.7 -54850.38 2635.4 -57977.08 2644.0 -59163.90 1929.4

B2 -28434.78 1266.6 -48887.33 3624.4 -50896.49 3637.5 -51749.24 3012.6

B3 -43721.24 837.2 -67560.29 3997.1 -68661.65 4002.2 -72886.45 3712.3

B4 -32347.64 1224.1 -53647.78 4775.5 -59208.37 4777.6 -59293.62 4803.0

B5 -32686.58 1340.9 -50159.38 6268.3 -60334.21 6276.4 -60150.66 5605.0

Set 4

C0 -22796.34 722.8 -64243.97 3390.0 -68265.23 3404.9 -75614.89 2831.9

C1 -34054.62 629.3 -68427.27 4307.3 -81572.92 4355.1 -87982.64 3636.8

C2 -50703.12 1394.4 -96241.47 5265.4 -109320.80 5278.6 -117096.68 4971.2

C3 -30767.65 1268.3 -93697.17 5740.4 -104596.01 5793.5 -111244.69 5742.5
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Table 4.16. PSO-based and SA-based method comparison.

PSO-based SA-based

Set Problem Objective Time Objective Time

Set 1

AST3 -561.05 51.0 -560.95 17.4

R19 -4524.18 131.3 -4524.18 102.4

R19AST3 1 -5085.23 387.4 -5083.80 316.0

R18R17 1 -1981.82 765.1 -1981.82 481.7

R18R16 1 -2858.50 1592.4 -2858.50 1213.5

R17R16 1 -3462.00 248.3 -3462.00 175.3

R19AST3 2 -5061.06 449.2 -4594.18 346.8

R18R17 2 -2188.92 781.5 -2188.92 625.6

R18R16 2 -2971.68 1805.9 -2920.06 1348.5

R17R16 2 -3506.79 296.8 -3460.53 202.7

R19AST3 3 -4167.50 489.3 -4077.03 403.7

R18R17 3 -980.36 737.8 -980.36 555.0

R18R16 3 -2343.41 2076.5 -2333.99 1523.4

R17R16 3 -2913.58 348.9 -2910.92 308.4

Set 2

A0 -33469.65 851.1 -34564.00 859.4

A1 -26508.80 789.5 -19324.58 589.3

A2 -16882.24 855.9 -18389.39 662.0

A3 -37889.26 1061.7 -38237.24 1064.2

A4 -38320.45 1093.7 -38968.48 1099.4

A5 -25372.95 1191.3 -25331.73 1201.7

A6 -41941.17 1355.1 -41995.98 1363.4

A7 -42838.33 1487.0 -43260.04 1493.3

A8 -30249.15 1309.8 -29057.56 1315.1

A9 -21689.53 1526.5 -21851.79 1541.9

Set 3

B0 -40150.09 2135.9 -41425.54 1457.3

B1 -57999.63 2635.1 -59163.90 1929.4

B2 -49892.58 3624.5 -51749.24 3012.6

B3 -72861.33 3997.7 -72886.45 3712.3

B4 -58759.30 4775.8 -59293.62 4803.0

B5 -60060.83 6268.5 -60150.66 5605.0

Set 4

C0 -66337.18 3387.5 -75614.89 2831.9

C1 -81091.98 4290.9 -87982.64 3636.8

C2 -111315.98 5251.5 -117096.68 4971.2

C3 -109249.43 5737.5 -111244.69 5742.5
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lower bounds for the instances in set 4 as well as poor solution quality.

gap =

∣∣∣∣objective− LBSTP

objective

∣∣∣∣ 100 (4.1)

When the individual performances of the proposed solution methods are in-

spected, it can be said that both procedures are dominated by BARON with

STP-formulation for the instances in set 1. For set 2, set 3 and set 4 BARON per-

formed poorly, moreover KNITRO and IPOPT turned out to be unreliable since they

were unable to find a feasible solution in most of the times. For these three sets, SA-

based method performed well in most of the cases. However, especially for set 3 and

set 4, the performance of PSO-based method was comparable to the performance of

VNS procedure.

Friedman test can be used to see if there is a significant effect of the solution

technique used on the solution quality. For this purpose, first all of the solution methods

and problem instances are used and Table 4.18 presents the results of this test. Since

p < 0.05, it can be concluded that there is a significant difference among solution

techniques. SA-based, PSO-based and VNS methods end up with the smallest ranks

after this test; therefore as a further analysis, Friedman test is performed on those

three in pair-wise manner. Tables 4.19, 4.20 and 4.21 show the result of these tests.
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Table 4.17. Optimality gap percentages.

Set Problem PSO-based Gap SA-based Gap Best Gap

Set 1

AST3 0 0.0162 0

R19 0 0 0

R19AST3 1 0 0.0282 0

R18R17 1 0 0 0

R18R16 1 0 0 0

R17R16 1 0 0 0

R19AST3 2 0.8478 11.0963 0

R18R17 2 0 0 0

R18R16 2 0 1.7678 0

R17R16 2 0.4800 1.8233 0

R19AST3 3 0.0476 2.2677 0

R18R17 3 34.5556 34.5556 0

R18R16 3 0.1445 0.5490 0

R17R16 3 2.2317 2.3249 2.2316

Set 2

A0 11.5748 8.0422 8.0422

A1 14.5103 57.0813 11.9285

A2 38.1925 26.8667 20.1188

A3 7.5793 6.6003 6.6003

A4 12.0250 10.1621 8.2500

A5 11.3698 11.5510 7.5871

A6 1.2442 1.1121 0.9990

A7 4.3043 3.2875 3.2875

A8 1.3810 5.5385 1.1005

A9 1.1271 0.3762 0.3762

Set 3

B0 13.0192 9.5394 9.5394

B1 12.4866 10.2730 10.2730

B2 12.8829 8.8329 8.8329

B3 1.6321 1.5971 1.5971

B4 1.2090 0.2970 0.1506

B5 1.0582 0.9073 0.6003

Set 4

C0 48.1124 29.9395 19.6345

C1 46.7543 35.2608 35.2608

C2 22.5328 16.4838 16.4838

C3 19.2821 17.1427 17.1427
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Table 4.18. Friedman test result for all solution techniques for all instances.

Method Observation Count Est Median Sum of Ranks

BARON-Q 34 -10281 197.0

BARON-STP 34 -9473 191.0

GCH 34 -8886 269.0

IPOPT-Q 34 -11368 225.0

IPOPT-STP 34 -11683 273.5

KNITRO-Q 34 -12352 230.0

KNITRO-STP 34 -11885 283.5

MALT 34 -14372 184.0

PSO-based 34 -15500 112.5

SA-based 34 -15548 111.5

VNS 34 -14904 167.0

p = 0,000 (adjusted for ties)

Table 4.19. Friedman test result for PSO-based and VNS methods for all instances.

Method Observation Count Est Median Sum of Ranks

PSO-based 34 -23661 44.0

VNS 34 -23513 58.0

p = 0.013 (adjusted for ties)

Table 4.20. Friedman test result for SA-based and VNS methods for all instances.

Method Observation Count Est Median Sum of Ranks

SA-based 34 -23662 38.0

VNS 34 -23278 64.0

p = 0.000 (adjusted for ties)
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Table 4.21. Friedman test result for PSO-based and SA-based methods for all

instances.
Method Observation Count Est Median Sum of Ranks

PSO-based 34 -24128 53.0

SA-based 34 -24141 49.0

p = 0.465 (adjusted for ties)

Tables 4.19, 4.20 and 4.21 indicate that, both PSO-based and SA-based methods

perform significantly better than VNS when all problem instances are considered. How-

ever there is no significant difference between the two proposed methods, PSO-based

and SA-based methods.

Finally, Friedman test is conducted for all solution techniques over the problem

sets 2, 3 and 4; since for the instances in set 1 the optimal solutions are found except for

one problem. Table 4.22 presents the results of the test results. Since p < 0.05, there

is again a significant difference among solution techniques and SA-based, PSO-based

and VNS methods end up with the smallest ranks. For those three, Friedman test is

performed in pair-wise manner and Tables 4.23, 4.24 and 4.25 present the result of

these tests.
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Table 4.22. Friedman test result for all solution techniques for set 2, set 3 and set 4.

Method Observation Count Est Median Sum of Ranks

BARON-Q 20 -11090 157.5

BARON-STP 20 -7924 155.0

GCH 20 -20952 139.0

IPOPT-Q 20 -3967 163.0

IPOPT-STP 20 -3535 146.5

KNITRO-Q 20 -17045 130.5

KNITRO-STP 20 -6654 162.5

MALT 20 -37417 100.0

PSO-based 20 -39977 60.0

SA-based 20 -40487 37.0

VNS 20 -39458 69.0

p = 0,000 (adjusted for ties)

Table 4.23. Friedman test result for PSO-based and VNS methods for set 2, set 3 and

set 4.
Method Observation Count Est Median Sum of Ranks

PSO-based 20 -42437 28.0

VNS 20 -42124 32.0

p = 0.371

Table 4.24. Friedman test result for SA-based and VNS methods for set 2, set 3 and

set 4.
Method Observation Count Est Median Sum of Ranks

SA-based 20 -43070 22.0

VNS 20 -41729 38.0

p = 0.000
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Table 4.25. Friedman test result for PSO-based and SA-based methods for set 2, set 3

and set 4.
Method Observation Count Est Median Sum of Ranks

PSO-based 20 -42213 37.0

SA-based 20 -42804 23.0

p = 0.002

Tables 4.23, 4.24 and 4.25 indicate that, SA-based method perform significantly

better than both PSO-based method and VNS when sets 2, 3 and 4 are considered.

Also, there is no significant difference between PSO-based method and VNS for the

large instances.
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5. CONCLUSION

In the scope of this thesis, the pooling problem which is a well known bilinear,

NP-hard problem is studied. Although there are exact methods to solve the pooling

problem in the literature, these techniques are ineffective for large problem instances.

There are also heuristic methods that are proposed for the problem, but there is no

modern metaheuristic approaches studied in this context except for variable neighbor-

hood search in the literature. In this study, two metaheuristic methods are proposed to

solve the pooling problem, namely an approach based on particle swarm optimization

and a simulated annealing approach that employs variable neighborhood size. Both

methods exploit the bilinear structure of the formulation in new solution generation,

fitness calculation and local improvement.

Particle swarm optimization, a swarm based metaheuristic which is originally

designed to solve continuous optimization problems, is adapted as the first proposed

method. In this method, the problem is mainly reduced to optimization of one of the

variable sets and this fixed search variable is subjected to particle swarm operations.

Also a fast local optimization heuristic called ALT is incorporated to speed up the

convergence of PSO-based procedure. Also, some modifications in parameters are

designed to explore the feasible space at the beginning and intensify at the end of

the algorithm. As the second metaheuristic approach, simulated annealing which is

originally emerged to solve combinatorial problems is modified to solve the pooling

problem is studied. The dynamic neighborhood scheme employed in this method is

based on a previously used one in a VNS approach for this problem. Also, the same

local improvement heuristic is integrated in the SA-based method to improve solution

quality.

One of the main advantages of the proposed methods is that they always provide

a feasible solution regardless of the iteration. Another advantage is that the SA-based

procedure can be run as if the problem has no constraints and PSO-based method only
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needs to consider the constraints that are entirely composed of the search variable.

To evaluate the performances of these methods, problem instances of different

sizes in the literature are used and 12 new ones are fabricated. Open source and

commercial general purpose solvers are employed along with the heuristic methods in

the literature as benchmark methods. In general, the general purpose global optimizer

BARON was able to find the optimum of almost all of the smaller problems that are

given as set 1. However, for the larger problem sets, the proposed methods performed

better, especially SA-based method dominated the others. Also from an operational

perspective, the run times are reasonable for a tactical problem: All solutions are

provided under two hours whereas most them lasted under an hour.

Finally, the generalization of the two proposed methods to general bilinear pro-

gramming problems is a possible research direction as a future work. Both approaches

can be generalized for continuous bilinear optimization models in a similar fashion.
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APPENDIX A: P-FORMULATION OF THE POOLING

PROBLEM

Table A.1. Sets, parameters, and decision variables for P-formulation.

Sets

I Set of input streams (raw materials)

L Set of pools

J Set of output streams (end products)

K Set of quality attributes

TX Set of (i, l) pairs for which input to pool connection exists

TY Set of (l, j) pairs for which pool to output connection exists

TZ Set of (i, j) pairs for which input to output connection exists

Parameters

cil Unit cost of raw material i sent to pool l

cij Unit cost of raw material i sent to output j

dj Unit revenue for product j

ALi Minimum required usage of raw material i

AUi Maximum availability of raw material i

Sl Capacity of pool l

DL
j Minimum required production of end product j

DU
j Demand upper limit of end product j

Cik Level of quality attribute k in raw material i

PL
jk Lower limit of quality attribute k in end product j

PU
jk Upper limit of quality attribute k in end product j

Decision variables

xil Flow from input stream i to pool l

ylj Flow from pool l to output j

zij Flow from input stream i to output j

plk Level of quality attribute k in pool l
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P-formulation:

min
xil,ylj ,
zi,j ,plk

∑
(i,l)∈TX

cilxil −
∑

(l,j)∈TY

djylj −
∑

(i,j)∈TZ

(dj − cij)zij (A.1)

s.t.

ALi ≤
∑

l:(i,l)∈TX

xil +
∑

j:(i,j)∈TZ

zij ≤ AUi ∀i (A.2)

∑
i:(i,l)∈TX

xil ≤ Sl ∀l (A.3)

DL
j ≤

∑
l:(l,j)∈TY

ylj +
∑

i:(i,j)∈TZ

zij ≤ DU
j ∀j (A.4)

∑
i:(i,l)∈TX

xil −
∑

j:(l,j)∈TY

ylj = 0 ∀l (A.5)

∑
l:(l,j)∈TY

plkylj +
∑

i:(i,j)∈TZ

Cikzij ≤ PU
jk

 ∑
l:(l,j)∈TY

ylj +
∑

i:(i,j)∈TZ

zij

 ∀j, k (A.6)

∑
l:(l,j)∈TY

plkylj +
∑

i:(i,j)∈TZ

Cikzij ≥ PL
jk

 ∑
l:(l,j)∈TY

ylj +
∑

i:(i,j)∈TZ

zij

 ∀j, k (A.7)

∑
i:(i,l)∈TX

Cikxil = plk
∑

j:(l,j)∈TY

ylj ∀l, k (A.8)

0 ≤ xil ≤ min

Sl, AUi , ∑
j:(l,j)∈TY

DU
j

 ∀(i, l) ∈ TX (A.9)

0 ≤ ylj ≤ min

Sl, DU
j ,

∑
i:(i,l)∈TX

AUi

 ∀(l, j) ∈ TY (A.10)

0 ≤ zij ≤ min
{
AUi , D

U
j

}
∀(i, j) ∈ TZ (A.11)

min
i
Cik ≤ plk ≤ max

i
Cik ∀l, k (A.12)
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APPENDIX B: STP-FORMULATION OF THE POOLING

PROBLEM

Table B.1. Sets, parameters, and decision variables for STP-formulation.

Sets

I Set of input streams (raw materials)

L Set of pools

J Set of output streams (end products)

K Set of quality attributes

TX Set of (i, l) pairs for which input to pool connection exists

TY Set of (l, j) pairs for which pool to output connection exists

TZ Set of (i, j) pairs for which input to output connection exists

Parameters

cil Unit cost of raw material i sent to pool l

cij Unit cost of raw material i sent to output j

dj Unit revenue for product j

ALi Minimum required usage of raw material i

AUi Maximum availability of raw material i

Sl Capacity of pool l

DL
j Minimum required production of end product j

DU
j Demand upper limit of end product j

Cik Level of quality attribute k in raw material i

PL
jk Lower limit of quality attribute k in end product j

PU
jk Upper limit of quality attribute k in end product j

Decision variables

qil Proportion of flow from input stream i to pool l among all flows into pool l

ylj Flow from pool l to output j

zij Flow from input stream i to output j

tlj Proportion of flow from pool l to output j among all flows out of pool l

xil Flow from input stream i to pool l
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STP-formulation:

min
qil,ylj ,
zi,j

∑
(i,l)∈TX
(l,j)∈TY

cilqilylj −
∑

(l,j)∈TY

djylj −
∑

(i,j)∈TZ

(dj − cij)zij (B.1)

s.t.

ALi ≤
∑

l:(i,l)∈TX
(l,j)∈TY

qilylj +
∑

j:(i,j)∈TZ

zij ≤ AUi ∀i (B.2)

∑
j:(l,j)∈TY

ylj ≤ Sl ∀l (B.3)

DL
j ≤

∑
l:(l,j)∈TY

ylj +
∑

i:(i,j)∈TZ

zij ≤ DU
j ∀j (B.4)

∑
l:(l,j)∈TY
i:(i,l)∈TX

Cikqilylj +
∑

i:(i,j)∈TZ

Cikzij ≤ PU
jk

 ∑
l:(l,j)∈TY

ylj +
∑

i:(i,j)∈TZ

zij

 ∀j, k (B.5)

∑
l:(l,j)∈TY
i:(i,l)∈TX

Cikqilylj +
∑

i:(i,j)∈TZ

Cikzij ≥ PL
jk

 ∑
l:(l,j)∈TY

ylj +
∑

i:(i,j)∈TZ

zij

 ∀j, k (B.6)

∑
i:(i,l)∈TX

qil = 1 ∀l (B.7)

∑
i:(i,l)∈TX

qilylj = ylj ∀l, j (B.8)

∑
j:(l,j)∈TY

qilylj ≤ qilSl ∀i, l (B.9)

∑
j:(l,j)∈TY

tlj = 1 ∀l

(B.10)∑
j:(l,j)∈TY

tljxil = xil ∀i, l

(B.11)∑
i:(i,l)∈TX

tljxil ≤ tljSl ∀l, j

(B.12)
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qilylj = tljxil ∀l, i : (i, l) ∈ TX , j : (l, j) ∈ TY (B.13)

0 ≤ qil ≤ 1 ∀(i, l) ∈ TX (B.14)

0 ≤ ylj ≤ min

Sl, DU
j ,

∑
i:(i,l)∈TX

AUi

 ∀(l, j) ∈ TY (B.15)

0 ≤ zij ≤ min
{
AUi , D

U
j

}
∀(i, j) ∈ TZ (B.16)

0 ≤ tlj ≤ 1 ∀(l, j) ∈ TY (B.17)

0 ≤ xil ≤ min

Sl, AUi , ∑
j:(l,j)∈TY

DU
j

 ∀(i, l) ∈ TX (B.18)
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Problem: Alternate Formulations and Solution Methods”, Management Science, Vol.

50, No. 6, pp. 761-776.

Ben-Tal, A., G. Eiger, and V. Gershovitz, 1994, “Global Minimization by Reducing

the Duality Gap”, Mathematical Programming, Vol. 63, No. 1-3, pp. 193-212.



70

Bohachevsky, I. O., M. E. Johnson, and M. L. Stein, 1986, “Generalized Simulated

Annealing for Function Optimization”, Technometrics, Vol. 28, No. 3, pp. 209-217.

Byrd, R., J. Nocedal, and R. Waltz, 2006, “Knitro: An Integrated Package for Nonlin-

ear Optimization”, In: G. Pillo, and M. Roma (Eds.), Large-Scale Nonlinear Opti-

mization.

Cardoso, M. F., R. L. Salcedo, and S. F. de Azevedo, 1994, “Nonequilibrium Simu-

lated Annealing: A Faster Approach to Combinatorial Minimization”, Industrial &

Engineering Chemistry Research, Vol. 33, No. 8, pp. 1908-1918.

Carlisle, A. and G. Dozier, 2001, “An Off-the-shelf PSO”, In: Proceedings of the Work-

shop on Particle Swarm Optimization, Indianapolis, USA, 2001.
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