
DISCOVERING A GENE INTERACTION ATLAS USING BAYESIAN

NETWORKS AND EXTERNAL BIOLOGICAL KNOWLEDGE

by

Haluk Doğan
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ABSTRACT

DISCOVERING A GENE INTERACTION ATLAS USING

BAYESIAN NETWORKS AND EXTERNAL BIOLOGICAL

KNOWLEDGE

Recent advances have enlightened that biological pathways are far more com-

plicated than once thought, due to the inclusion of interconnected complex cellular

actions, which made hard understanding the multifaceted mechanisms behind the bi-

ological phenomena. As a panacea, the bioinformatics community has brought up the

modularity concept to ease the understanding of biological ground truth. A microar-

ray is a high-throughput technology, which provides a global view of the genome in a

single experiment with a systematic manner by enabling the analysis of the expression

levels of a large number of genes simultaneously. Bayesian networks are probabilistic

graphical models, which are well proven technique to infer gene regulatory networks

from microarray data because of their ability to incorporate prior knowledge. In this

study, we present an algorithm, called BNP, to infer biological pathways. Fortifying

the results obtained by our model and exploring the novel interactions between genes,

we construct a gene interaction atlas via Bayesian networks by incorporating external

biological knowledge. Furthermore, a comparison of our methodology with the FLAT

method, which does not use any external knowledge, shows that BNP outperforms it

in all simulations.
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ÖZET

BAYES AĞLARI VE HARİCİ BİYOLOJİK BİLGİLER

KULLANARAK GEN ETKİLEŞİM ATLASI ÇIKARIMI

Son ilerlemeler ışığa çıkardı ki, birbirleriyle bağlantılı karmaşık hücresel olayları

içeren biyolojik patikalar düşünüldüğünden çok daha karmaşık yapılıdırlar. Bu zor du-

rum biyolojik fenomenin ardındaki çok dallı mekanizmayı anlamayı zorlaştırmaktadır.

Buna çözüm olarak biyoenformatik dünyası modülerlik kavramını biyolojik gerçekliklerin

anlaşılmasını kolaylaştırmak için öne sürmektedir. Yüksek işlem hacimli veri teknolo-

jilerinden biri olan mikrodiziler güçlü bir araç olup sistematik tarzda tek bir deney-

deki genomun genel bir tasvirinin sağlanmasının yanı sıra, gen türleri ve gen kavram-

larının paralel analizi için tasarlanmıştır. Öncelikli bilgi birleşiminin yanı sıra yetersiz

örnek sayısı ve deneysel hatalar ile başa çıkma yeteneklerinden dolayı, olasılıklı grafik

modeli olan Bayes ağları, mikrodizi verilerinden gen düzenleyici ağ oluşturmada ken-

disini iyi kanıtlamış bir tekniktir. Bu çalışmada BNP adı ile sunduğumuz algoritma,

seçilen biyolojik patikaların ilişkilerine derinlemesine bir anlam kazandırır. Modelimiz-

den alınan sonucu güçlendirmek ve genler arasındaki yeni etkileşimleri keşfetmek için,

harici biyolojik bilgiyi dahil ederek Bayes ağları üzerinden bir gen etkileşimi atlası

inşa ettik. Ayrıca FLAT adındaki, harici bilgi kullanmaksızın yapılan hesaplamalarla,

kendi metodolojimizi karşılaştırdık. Tüm simülasyonların sonuçlarına göre BNP’nin

FLAT’tan daha iyi performans gösterdiğini gördük.
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1. INTRODUCTION

1.1. Motivation and Scope of the Thesis

A biological pathway is a series of actions between molecules in a cell that results

in a certain product or a change in a cell. There are many types of biological pathways.

Some of the most common ones are involved in metabolism, the regulation of genes

and the transmission of signals. Recent advances have shown that biological pathways

are far more complicated than once thought [1]. Most pathways do not start and end

at certain points. In fact, many pathways have no real boundaries, and they often

work together to accomplish certain tasks. Biological pathways are discovered through

laboratory studies of cultured cells, bacteria, fruit flies, mice and other organisms.

Many of the pathways identified in these model systems are the same or have similar

counterparts in humans. It is estimated that there are still many biological pathways

that remain to be found. Identifying and understanding the complex connections

among the molecules in the biological pathways, as well as understanding how these

pathways work together is an important problem in biology [2].

The rapid growth of the biological technologies, such as the mapping of human

genome, has resulted in massive amounts of data. As in many fields, the challenge

has shifted from collecting a sufficient amount of data to understanding and gaining

insight from the huge amount of data that are already available. Recent advances in

high-throughput technologies have given rise to large-scale biological data in the form

of expression profiles of tens of thousands of genes and proteins.

Microarray is a robust and high-throughput technique, which was designed for

parallel analysis of genotypes and gene expressions and provides a global view of the

genome in a single experiment with a systematic and comprehensive manner. Recently,

the microarray technology has become a widely-used platform to find solutions for a

wide spectrum of biological and clinical problems [3].
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Pathway and functional analysis is an indispensable part of microarray data anal-

ysis. GenMAPP, KEGG pathway information and Gene Ontology (GO) terms are

included in many probe annotations by the microarray chip producer. Linking gene

expression data to such pathway and functional information brings out valuable expres-

sion and regulation patterns. Initially single gene analysis was widely used to analyze

microarray data. This approach mainly focused on finding a list of interesting (e.g.

differentially expressed) genes. However, due to the limitations of single gene analy-

sis, which did not look into the functional or relational aspects of gene lists, scientists

became interested in examining the relations between known pathways and outcomes

such as the way of processing drugs or fertilization of the egg [4].

Gene regulatory networks (GRNs) are structured sets of complex information

which represent regulatory relationships between genes. Gene regulatory networks

play a critical role in determining cellular functions and are of interest for identifying

various disease factors. Formal understanding of gene regulation is an emerging field

in systems biology. The inference of gene regulation networks from high-throughput

biological data is an important and challenging task. Interactions between genes can

be identified from gene expression data using reverse engineering methods. To date,

many reverse engineering methods have been proposed. Some of the methods are

Bayesian networks (BN) [5], Boolean networks [6], and linear and non-linear differential

equations [7].

Bayesian network is a promising method to describe relationships between genes

in gene regulatory networks [5]. Learning BNs from observed data is a popular research

field which is based on search and score based techniques. A scoring mechanism is

used for identifying the most probable a posteriori network given the data and a priori

knowledge. Generally, the proposed algorithms to learn BNs are heuristic and attempt

to maximize the score function. Previously, proposed BN learning algorithms have been

only dependent on observed data such as microarray data in the case of inferring gene

regulatory networks. However, studies have shown that incorporating prior knowledge

to score the candidate networks has significantly increased the success of inferring

mechanisms [8].
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Real networks are heterogeneous in their degree distributions and have orga-

nizations that diverge from the random network models. Community structures, or

modules, which represent tightly knit nodes with similar properties/roles, are com-

monly observed in real networks [9, 10]. This community structure often represents a

hierarchical pattern, similar to the organization of the human body where cells make

up tissues, tissues make up organs, and organs make up systems. Therefore, in build-

ing real networks, such as gene interaction networks, one plausible approach is first to

identify the modules that exist in the final graph, and then to identify the structural

organization of these modules to establish the final graph [11].

Biological networks are complex in their nature. However, they can be sepa-

rated into subunits, namely modules, which are relatively autonomous with respect

to other subunits. The idea of modularity started to gradually gain attention in sys-

tems biology, molecular biology, developmental biology, and evolutionary biology [12].

Modularity brings us to understand the latent structure in complex networks, iden-

tify heterogeneities, and predict missing links between nodes. Modules of biological

networks are associated with certain biological processes. Therefore, determining the

interaction of biological modules is of great interest to understand how organisms and

their subunits function together.

Modular network learning has been applied to biological networks mostly in iden-

tifying protein-protein interaction (PPI) networks. Signaling proteins of the yeast Sac-

charomyces cerevisiae participating in shaping the organism into a filamentous form

were represented in the form of an interaction network yielding separate clusters with

edges between clusters as important points of communication [13]. Spirin and Mirny

applied clique detection and superparamagnetic clustering to the yeast proteome iden-

tifying modules with significant occurrence when compared to random graphs with the

same degree distribution [14]. The resulting modules consisted of known protein com-

plexes and were composed of proteins with the same or similar biological functions.

Another study on estimating the PPI network in yeast incorporated the microarray

expression profiles and used the resulting network to predict the functions of genes

that have not yet been well characterized [15]. Similar analyses have been done in hu-
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man and other organisms [16] where the topological parameters such as the clustering

coefficient and link density of the modules have been shown to be a good indicator of

biological homogeneity in the module. Applications of modular learning to metabolic

and gene interaction networks have resulted in similar findings with an additional ne-

cessity citing that the size of the data and the large number of nodes size hamper

learning the complete network [17–19].

This thesis proposes a method for an exhaustive inference of gene regulatory

networks from microarray data as well as for the construction of an atlas to depict

relationships in a group of genes by means of Bayesian networks. In achieving this

task, we utilize external biological knowledge to guide the construction of module net-

works that make up the interaction atlas. In our proposed model, a module is a set

of genes, which have the same expression profile and share similar biological functions.

Our primary reason for using module networks in our model is that, module networks

are mostly applicable for larger networks, are error tolerant, and enable inferring func-

tionally coherent modules [20]. Chapter 3 explains the proposed workflow in detail.

1.2. Biological Background

Proteins are essential macromolecules and play a very important role in the hu-

man body. Proteins are composed of amino-acids, and amino-acids are encoded using

3 out of 4 types of nucleotides (Adenine, Guanine, Cytosine, Uracil). The chain of

nucleotides forms the “Deoxyribonucleic acid” (DNA), and the information needed to

produce proteins is stored in DNA.

DNA is comprised of a chain of nucleotides. There are four different nucleotides,

Adenine (A), Guanine (G), Cytosine (C), and Thymine (T). DNA is in the well-known

“double helix” form, and is stored in a single chain for prokaryotes, while in eukaryotes

DNA can be packed in individual units called chromosomes. In the double helix form

Adenine binds only with Thymine, while Guanine binds only with Cytosine. This

binding plays critical role during the replication and gene expression processes.
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Unlike the DNA molecule, another important molecule called “Ribonucleic acid”

(RNA) is single stranded and is made up of the same nucleotides as the DNA but

includes Uracil (U) instead of Thymine. Even though, RNA has multiple functions, it

is primarily an intermediate molecule to produce protein from DNA.

1.2.1. Protein Synthesis

Genes, which are the hereditary units for the living organisms, are continuous

stretches of DNA molecules. They are responsible for producing particular protein

molecules. The “Central Dogma” theory pinpoints the roles of DNA and amino-acid

molecules in protein synthesis. Although there are some exceptions, the framework of

this complicated theory is that “DNA makes RNA makes protein”. Under the light of

this theory, synthesizing proteins in eukaryotes can be distinguished into three principal

stages: transcription, splicing and translation.

• Transcription: This process is carried out for the purpose of transferring the

information from a section of DNA to a pre-mRNA (immature single strand of

mRNA). The transferred information is read only from one strand of DNA.

• Splicing: The pre-mRNA is comprised of introns and exons. Introns are removed

in this stage and the remaining exons that are attached back to back represent

the coding sequences of the genes, which are used for protein production. At the

end of this phase, the mature mRNA is produced and passed on to the ribosomes.

• Translation: This last step is directly related to the gene expression. Based on the

sequence of the mRNA, amino-acids are joined together, which leads to produce

proteins.

Gene expression analysis deals with assessing the types and quantities of mRNA

molecules in a biological sample at a given time. Although not directly related to

the protein profile of the cell, gene expression, also called transcriptomics, provides

valuable information about the functional state of a cell.
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1.3. Microarrays

The advent of high-throughput technologies has reshaped the way researchers

analyze biological problems by generating hypotheses based upon genome wide inte-

grative reductionist queries [21]. One of the popular high-throughput technologies,

the microarray technology, enables us to measure the expression of thousands of genes

of organisms by conducting a single experiment. This technology produces massive

amounts of data and brings with itself new computational and statistical challenges. A

typical microarray experiment can play distinctive roles in identifying differentially ex-

pressed genes, predicting treatment response, discovering population-specific diseases,

and determining gene interactions by pathway analysis.

DNA hybridization is the key component of microarray experiments to measure

the abundance of mRNA, which states the gene expression level. The amount of mRNA

can be used to understand the activities of certain genes under different circumstances.

A typical microarray has thousands of cells over its surface and these cells are called

probes. Each probe is designed as complementary to known genes for specified organ-

isms so that cDNA strands, obtained from mRNAs can bind to these specified probes.

Figure 1.1 depicts the principal steps used in the microarray technology.
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Figure 1.1. Principle Steps in Microarray Experiments [22].

There are two types of extensively used microarrays, namely cDNA and oligonu-

cleotide chips. The main differences of microarray types rely on the design of the

probes.

• cDNA microarrays: Each probe represents only one gene. There are two biological

samples flown in two different channels that hybridize to the same surface.



8

• Oligonucleotide chips: Affymetrix is one of the leading companies of this chip

design. A gene is represented by more than one probe. One biological sample is

used for one chip.

1.3.1. Expression Measures

After the DNA hybridization step, microarrays quantify gene expression levels

using fluorescence intensity. Fluorescently lit spots on the probes indicate the identity

of the targets and intensity of the signal, which is associated with the amount of the

target mRNA. The brightness level of each probe is positively correlated with the

abundance of the corresponding gene. The intensities are measured from the image

obtained by scanning the microarray surface. These outputs usually contain noise due

to experimental errors and random factors, which are dealt with specialized image

processing algorithms. An experimental design utilizing microarrays usually contain

many chips (e.g. chips run for N cancer and M normal samples) and the measurements

obtained from each chip must be made comparable before any downstream analysis.

This procedure, referred to as normalization, can be based on different approaches

such as using housekeeping genes or setting the overall average of the chips to a certain

given value. The former depends on the assumption that there exists some genes whose

abundance should be the same across different biological or clinical states and the

latter assumes that the starting biological material contains roughly the same amount

of mRNA (despite originating from different biological conditions) and thus the overall

intensities must be roughly the same.

To this end, we have a data matrix representing the numeric relative gene expres-

sion values associating each gene and sample. These normalized gene expression levels

are usually subject to the following analysis modules:

• Filtering: In this step genes that do not have reliable detection levels and/or

genes with expression levels that are very similar in different states (e.g. cancer

and normal) are eliminated.

• Differential gene expression: Genes that are significantly differentially expressed
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between different stated are found. Generally statistical tests such as student’s

t-test or “Mann-Whitney U” test are employed. This step is usually corrected

for multiple hypothesis testing.

• Clustering: Samples or genes are clustered to identify similar phenotypes and

genes that have concurrent expression levels across samples, which may imply

certain functional processes.

• Biomarker Discovery: A prediction algorithm is devised to identify a relatively

small number of genes that can predict samples that belong to a certain pheno-

type. For example, if a microarray experiment utilizes primary and metastatic

tumors, the goal may not only be to find genes differentially expressed between

the two states but also to identify a signature set of genes and predict a new

sample as primary or metastatic sample.

• Functional or Pathway analysis: Genes that belong to a certain gene set (GO

functional category or pathway) are identified and the sets are indicated as being

significantly enriched or not.

• Promoter region analysis: Differentially expressed genes are investigated for their

promoter regions to identify certain motifs that exist in an abundance that is

beyond random chance. This way transcription factors or other molecular mech-

anisms that orchestrate the observed genes’ expression profiles are found.
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2. GENE NETWORK MODELING

2.1. Gene Networks

The success of genome sequencing has brought out characterization of hundreds

of thousands of genes. The next important task is identifying functions of genes and

their interactions. Therefore, learning gene interaction networks using computational

and statistical methods is an appealing research area. The terms “gene interaction

networks” and “gene regulatory networks” are interchangeably used throughout this

thesis.

Gene regulatory networks have been represented by various models. Boolean

networks, Petri Net modeling, state machines, π-calculus, and Bayesian networks have

been applied to infer gene regulatory networks from microarray data in previous stud-

ies [5,23–26]. In this thesis, we have used “Bayesian network” modeling in our method-

ology. The reasons for choosing Bayesian networks are multiple. Firstly, Bayesian net-

works is a concrete class of models which provide us to apply our ideas and to assess

the results of queries for our inquiries. Secondly, Bayesian networks function at the

intersection probability and graph theory. Since we are studying on noisy microarray

data and uncertain biological evidence, probability theory is a solid way to interpret our

findings. Last but not the least; we have been trying to detect cause-effect relationships

from data.

Bayesian networks have become a widely used method for modeling uncertain

knowledge. They have become a promising tool for analyzing gene expression patterns

[5]. Bayesian networks can be used to model relationships between genes and genetic

regulatory networks. The advantages of using Bayesian networks are as follows:

• Compact and intuitive representation of gene relationships.

• Capturing causal relationships between genes.

• Integration of prior knowledge into the network.
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• Suitable to work well with noisy data.

• Capable of handle uncertainty.

• Efficiently learn new models of gene relationships.

2.2. Bayesian Network Models

A Bayesian network is a graphical representation of probability distributions over

a set of parameters. Its structure is in the form of a directed acyclic graph (DAG);

each node represents a random variable, and each edge represents dependencies among

random variables. If there is a directed edge from node Xi to Xj, formally shown as

Xi → Xj, then Xi is called parent of Xj, and Xj is called a child of Xi. The intuitive

meaning of an edge from Xi to Xj is that Xi directly influences Xj. Local probability

distributions of each node only depends on parameters of their parents. Formally, each

variable X is independent of its non-descendants given its parents. A Bayesian network

provides a factored representation of the joint probability distributions.

The Bayesian network structure in Figure 2.1 dictates that the random variable

C depends on variables A and B, whereas, A and B are independent from each other.

Another rigorous implication of this Bayesian network is the independence of A and D

on the condition that the value of C is fixed.
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Figure 2.1. An Example Bayesian Network Modeling.

The structure of a Bayesian network implies statistical conditional independence

statements, as well as statements of dependence among random variables. We can show

the set of all independence relations implied by Bayesian networks from a set of axioms

described in [27]. However, determining these relations cannot be an easy task, because

it proceeds over and over again until the desired relation is proved or disproved [28].

The method “d-separation” is another approach to determine independence relations

from the structures of Bayesian networks. The d-separation rules provide an easier

method than the use of the set of axioms, which are described in Pearl et al. Therefore,

d-separations rules are widely used in practice [29].
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2.3. Learning Bayesian Networks

Learning the structure of BNs from data is one of the most challenging problems,

even if data are complete. The problem is known to be NP-hard, and best exact

known methods take exponential time on the number of variables and are applicable

to small settings (around 30 variables) [30]. In the following subsections, we briefly

explain learning the parameters and structure of Bayesian networks. There are two

types of algorithms used to learn the structure of Bayesian networks: “score based”

and “constrained based” methods.

2.3.1. Learning Parameters

Parameter learning is the indispensable phase to learn the structure of a network

given the data. Bayesian networks implement statistics of the study by defining a

probability distribution for each node. Based on the Bayes rule, we use the known

parameters to update our beliefs into posterior beliefs:

P (θ|D) =
P (D|θ)P (θ)

P (D)

where D represents the data and θ represents the model inferred from the BN graph.

Since P (D) is the same for all different parameters, it can be left out from the above

equation, rendering the following approximation:

P (θ|D) ∝ P (θ)P (D|θ)

Typically, parameter learning methods estimate the values of the parameters of a

Bayesian network by the following two different methodologies:

• Maximizing the joint likelihood of the training data.

• Computing the posterior over parameters θ given a prior distribution P (θ).
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The first method is regarded as maximum likelihood estimation (MLE). The joint log

likelihood of the training data can be written in a discrete form as follows:

logP (D|θ) =
N∑
i=1

n∑
j=1

logP (xij|xiΠ(j), θ)

=
N∑
i=1

n∑
j=1

log

(∏
mn

θ
1
xi
j
=m,xi

Π(j)
=n

jmn

)

=
∑
jmn

Njmn log θjmn

whereNjmn is the number of samples which satisfy the configuration [xj = m,xΠ(j) = b].

Mjmn can be shown mathematically as follows:

Mjmn =
N∑
i=1

1xij=m,xi
Π(j)

=n

where, 1(·) denotes the indicator function. Using Lagrange multipliers to maximize

local normalization constraints, one can maximize log (P |θ) by the following closed

form:

θ̂jmn =
Njmn

Njb

where Njn =
∑

aNjmn.

Maximum a posteriori estimation is the second method to learn parameters from

data. We can use the posterior distribution to test goodness of fit of both prior and

likelihood (probability distribution of parameters), and the main advantage of Bayesian

networks is the ability of incorporating prior knowledge. Prior knowledge can be ben-

eficial to avoid overfitting when one has a small size training data. Given a prior

distribution P (θ), we can learn the parameters by maximizing the posterior. It is

mathematically shown as follows:

logP (θ|D) = log
P (θ)P (D|θ)

P (D)
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The above equation is equivalent to maximizing log (P (θ)P (D|θ)) since P (D) is same

for all different parameters θ.

Given a directed acyclic graph G such that P (G) > 0, we have two parameter

independence assumptions, which are satisfied by the Bayesian network:

• Global parameter independence: P (ΘG|G) =
∏n

i=1 P (Θi|G)

• Local parameter independence: P (Θi|G) =
∏qi

j=1 P (Θij|G) for all i = 1, . . . , n.

The above two parameters independences imply that the prior P (θ) yields the following:

P (θ) =
∏
jn

P (θjn)

By assumption, P (θjn) is coming from Dirichlet distribution. That is;

Dir(θjn|jmn1, jmn2, . . . , jmnr) =
1

Z

r∏
k=1

θmnk
jmnk−1

where Z =
∏r

k=1 Γ(jmn)

Γ(
∑r

k=1 jmnk)
is a normalization factor, and Γ is the gamma function.

For practical purposes, by preferring to use Maximum-Likelihood parameters

instead of entire distribution, the MAP for θmnk will be in the following form:

θ̂jmn =
αjmn +Njmn

αjn +Nn

Bayesian learning is another alternative method to estimate parameters as in ML

and MAP. Unlike ML and MAP, in Bayesian learning, one can estimate all parameter

possibilities by storing the posterior parameter distribution for subsequent use. This
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is mathematically shown as follows:

P (θ|D) =
r∏
j=1

∏
n

Γ(αjn +Njn)
∏
m

θ
αjmn+Nmn−1
jmn

Γ (αjmn +Njmn)

We can obtain the closed form formulas, as shown above, regardless of using ML, MAP

or Bayesian learning for the complete dataset. However, when the data is incomplete,

parameter learning becomes difficult due to the reason that log likelihood cannot be

discretized to estimate parameters for each variable independently. If the missing data

is always unobserved, we can label it as a hidden variable. The EM (Expectation

Maximization) algorithm can be used to avoid the missing data problem. However,

the details of the EM algorithm are beyond the scope of this thesis.

2.3.2. Learning the Structure via Score-Based Methods

Score based methods are popular for learning Bayesian network structures from

data. In each iteration of the score-based algorithms, a score is assigned to a candidate

network to state how well the candidate network describes the data. For discrete BNs,

most of the learning tasks are performed by calculating P (D|G) with the Bayesian

Dirichlet equivalent (BDe) score function, instead of the true parameter P (G|D).

P (G|D) =
P (D|G)P (G)

P (D)

where P (D|G) is the marginal likelihood of data D given graph G, P (D) is the prob-

ability of the data, P (G|D) is the posterior probability of G.

P (G|D) ∝ P (D|G) = BayesianScoringBDe
(D,G)

=
N∏
i=1

qj∏
j=1

Γ(Nij)

Γ(Nij +Mij)

rj∏
k=1

Γ(αijk + sijk)

Γ(αijk)

where Ni is the number of nodes, qi is the number of different states of node’s parents,

and ri is the set of values a node can take on. Nij is the sum of corresponding Dirichlet

distribution hyper-parameters αijk, which need to be assigned by the user. Mij is the
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number of times that the parents of node i take on configuration j in the dataset.

And of these Mij cases, sijk is the total number of times in the sample that node i is

observed to have value k when its parents take on configuration j.

In the score based methods, a heuristic algorithm is employed to walk through

the search space. At each iteration, the score of the candidate graph is assessed and

the overall procedure is halted when certain optimization criteria are met. Among

the most popular learning tasks is the Greedy Hill Climbing algorithm [31], which is

employed in this thesis.
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3. ATLAS GENERATION

Pathway analysis provides an insight into the underlying biology of differentially

expressed genes becoming an indispensable stage for microarray data analysis. How-

ever, there may exist undiscovered biological pathways, known pathways may have

missing nodes and/or edges and interaction among pathways may reveal new biolog-

ical hypothesis. In order to provide improvement in these areas, in this thesis, we

provide a methodology that generates a gene interaction atlas from microarray data.

The construction of a gene regulatory network from massive amounts of microarray

data could be cumbersome due to the limitations of computational power and the

structure learning algorithms performances. For this reason, heuristic algorithms and

module networks have emerged as means to reduce computational limitations. More-

over, modularity would be beneficial to bring out the functional relationships between

strongly connected subunits in the network. In Figure 3.1, we depict our overall work-

flow.

Figure 3.1. A Workflow of the Gene Interaction Atlas Generation.
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In the proposed method, gene expression profiles are clustered to identify the

modules and the genes that they contain. A Bayesian network Learning approach

utilizing external knowledge (called the BNP algorithm) is applied to each module.

These networks define the connectivity between the genes in each module. In order to

combine these different clusters (the terms modules and clusters are interchangeably

used throughout this thesis), we identified representative genes for each cluster with

two different approaches. The first one is based on the nodes’ out-degrees, and the

second one is based on the Pagerank algorithm. Subsequently, we apply the BNP

algorithm again, only to the representative genes to understand the relations among

the clusters. Finally, we apply the BNP algorithm once again to merge clusters if two

clusters have been linked in the previous step.

3.1. Clustering

Constructing a gene interaction atlas by inferring gene regulatory network from

high throughput biological data such as microarray data is a computationally intensive

task due to the following reasons:

• Thousands of genes interact with each other.

• Complex relationships exists between genes.

• The data is noisy.

• The sample size is in general inadequate.

Learning the structure of BNs from data is a computationally intensive task and the

algorithms proposed so far are only applicable for small number of variables [30]. Cur-

rently, most of the common structure learning algorithms are based on the greedy search

algorithms, the Hill climbing algorithms and the Markov Chain Monte Carlo (MCMC)

search techniques [32]. Module networks approach is a promising technique that can

cope with the aforementioned computational and statistical problems. It explicitly

partitions the variables into modules and each module represents a set of variables

that have the same statistical behavior so that it significantly reduces the complexity

of the network along with the number of parameters [19]. Splitting genes into modules
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according to their expression profiles is an essential step for learning structure from

gene expression data. Genes in each module are expected to have similar expression

patterns and functional characteristics. Relations in the modules are well defined as

co-expressed genes are expected to reside in the same module [19]. Clustering is a

way to partition genes according to their expression profiles. The k-means clustering

algorithm is a simple, but popular clustering algorithm. The k-means algorithm starts

with a collection of n items, in our case gene expressions, and a chosen number of

clusters, k, that we want to apportion the items into. Initially k items are selected

randomly as the centroid of clusters. Then, n items are assigned to the closest cluster

according to the specified distance metrics such as Euclidean distance. Subsequently,

clustering proceeds repeatedly by the following three steps:

• The means of all items in each cluster are computed.

• New centroids are specified as the means of the clusters.

• Items are reassigned to the clusters according their distances to the new centroids.

Finally, the algorithm terminates when the assignment of items to clusters is not

changed. In the proposed workflow, we adopted the k-means clustering algorithm

to identify the genes in each module.

3.2. Incorporation of External Knowledge

The inference of gene interaction networks from high-throughput biological data

is an important and challenging task in systems biology. Throughout the literature,

the term “gene interaction” has been used in a broad sense implying direct or indirect

interactions between genes and/or gene products. Several machine learning and statis-

tical methods have been proposed for the problem [20,31,33–36] and Bayesian network

models have gained popularity for the task of inferring gene networks [5, 37–39]. Be-

cause of the complexity of gene interaction networks and the sparse, noisy nature of

experimental data, machine learning and statistical methods may lead to poor recon-

struction accuracy for the underlying network. One way to overcome this problem

would be to incorporate prior biological knowledge when making network inferences
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using experimental data. Due to technological advances in sequencing and microarray

technologies in proteomics and related fields, biological and clinical data are being pro-

duced at an ever increasing rate. The 2013 special database issue of the Nucleic Acids

Research journal lists 1,512 molecular biology databases, which provide a vast amount

of annotated data and meta data that could be used in a systematic way [40].

Many BN structure learning algorithms are based on heuristic search techniques

with the likelihood approximation because of the infeasible computational complexity.

These approaches may lead to a false model as neither the search technique nor the

objective functions guarantee the optimal solution. Informative priors generated from

existing biological information can improve structure learning to get better models to

describe the underlying gene interactions. In several studies the use of prior biological

knowledge in conjunction with gene expression data has been shown to improve the

fidelity of network reconstruction [41–45]. These studies were limited in the use of

external biological knowledge by incorporating only certain features, such as network

topology or binding sites in promoter regions. Furthermore, in these approaches man-

ual curation and/or manual incorporation of the external knowledge were employed.

In this thesis, we use a framework to incorporate multiple sources of prior knowledge,

regardless of its type, into BN learning. The meaning of prior knowledge in our con-

text is the enumeration of pairwise interactions of genes from biological information

sources and the use of this information in BN modeling. The proposed method is

fully automatic and does not use likelihood approximations to find the optimal net-

work that explains the observed experimental data. The proposed framework uses the

BN infrastructure itself to incorporate external biological knowledge when learning the

networks. This infrastructure yields gene interaction information for pairs of genes,

which can be used as informative priors to calculate the probability of a candidate

graph, G. This information is then incorporated in the network learning process that

tries to identify the most probable graph given the data. The schematic depiction of

the overall proposed method is presented in Figure 3.2.



22

Figure 3.2. Overall workflow of the proposed method. BNP is constructed using gene

interaction information from external biological databases and when instantiated

with an evidence vector for a pair of genes, the gene interaction probability is

inferred. For a list of genes, the pairwise interaction information is stored in the prior

matrix B, which is used to calculate the probability of a candidate graph G in the

structure learning process.

Pairwise interaction information is gathered from biological databases and a BN

model for prior knowledge, Bayesian Network Prior (BNP) is developed. In BNP, one

node is depicted as “Gene Interaction” (GI) and the topology represents the dependence

structure among different evidence types, as well as dependence structure between them

and the GI node. For a set of genes, the model is instantiated with the given evidence

and/or experimental data for each pair of genes. The GI node is used to infer whether

the gene pair is related or not, represented by a prediction value between 0 and 1. A

prior knowledge matrix, B, is populated with these prediction values for all gene pairs.

This prior knowledge is utilized to calculate the probability of a candidate DAG, G, in

the structure learning process. This parameter is used to optimize P (G|D) instead of

the likelihood, P (D|G), used by the existing structure learning algorithms.
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3.2.1. Informative Structure Priors

In gene interaction network modeling studies using BNs, Xi represents a gene

and the edges represent relationships among genes. The task of network inference (i.e.

structure learning) is to make inferences regarding the graph G that best explains the

data. This can be achieved by finding the DAG G that maximizes P (G|D) = P (D|G)P (G)
P (D)

where P (D|G) is the likelihood, P (D) is the probability of the data, P (G) is the struc-

ture prior (or network prior) probability of the graph G, and P (G|D) is the posterior

probability of G. In commonly used heuristic structure learning algorithms, P (D|G)

is optimized instead of the true model P (G|D). The likelihood criterion does not

guarantee to find the optimum solution even if a heuristic approach is not employed.

Nevertheless, optimizing the likelihood can be justified by assuming P (D) and P (G)

to be equal for all G. The former assumption can be regarded as reasonable as D is

observed. However, the latter assumption is generally not correct and is made mainly

due to difficulties in calculating P (G) and/or lack of prior knowledge on G. Use of uni-

form (flat) priors for Gs ignores the contribution of P (G) and this may cause failure in

differentiating between DAGs that are in the same Markov equivalence set. Therefore,

the true DAG among the ones that support the same conditional probability distribu-

tion cannot be identified. BNP aims to calculate P (G) using external knowledge and

provide improvements in the structure learning phase for gene interaction networks.

For discrete BNs, most of the learning tasks are performed by calculating P (D|G)

with the Bayesian Dirichlet equivalent (BDe) scoring function and by assuming uniform

(flat) prior structure for all possible candidate DAGs [46]. In the proposed approach,

we employ a greedy search algorithm that aims to maximize P (G|D). For a given

candidate DAG, G, we calculate P (G) by first obtaining the prior information matrix,

B. Unlike existing methods, the proposed approach does not use categorized prior

knowledge but assigns probabilities to each candidate edge. The matrix B is obtained

by instantiating BNP with the evidence vector for each pair of genes in the input gene

set. These evidence vectors can originate from any performed experimental data at

hand, or external knowledge, or both.



24

Let B be the prior information matrix, where B(i, j) = P (Xij), the proba-

bility of gene i and j interact based on external knowledge. Let AG denote the

adjacency matrix of the candidate graph G. We define the matrix U such that

U(i, j) = 1–[B(i, j)AG(i, j)], the element by element multiplication of B and AG.

Note that if there exists no edge from i to j in G, U(i, j) = 1; and if there is an edge

from i to j in G, U(i, j) is inversely proportional to our prior belief on the existence of

the edge. The total energy of G is defined as:

E(G) =
∑
i,j

U(i, j)

N2

where N is the number of nodes in G. This way, we do not assign categorical values to

U(i, j) and exploit fully the information about prior existence of an edge. Informative

structure prior is formulated as:

P (G) = CeβE(G)

where C is a scaling constant. The choice of C does not affect the relative compar-

ison during scoring of graphs in structure learning. The hyperparameter β can be

marginalized using the following equation:

P (G) = c
1

βH − βL

∫ βH

βL

eβE(G)dβ

For ease of simulation, the integral is calculated for a range of E(G) and stored in a

lookup table.

3.3. Bayesian Network Prior

The goal in building BNP is to construct a framework such that the distilled

external biological knowledge is used in an intelligent way to make an assessment about

the interaction of a pair of genes. Previously, Troyanskaya et al. proposed a Bayesian

framework for combining various data sources for gene function prediction [47]. In
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this method a Naive Bayes model was constructed. The parameters (CPTs) of the

model were determined by experts. Then, a separate network was instantiated for

each gene pair by initializing the bottom level nodes with evidence and the probability

of the functional relationship between the two genes was updated. The model was

designed for functional prediction, not for gene interaction network learning. The prior

knowledge inference model used here automatically learns the parameters of the nodes

in BNP that predicts if two genes interact using external biological knowledge. The

model organism chosen for BNP was human and the external data came from pathway,

microarray, gene and protein interaction databases. The assembled information source

is made up of “evidence types”, each making a “Yes” or “No” call about the interaction

of two genes and BNP is the BN that represents the relation between these evidence

types and the GI.

The data sources used in calculating BNP came from microarray coexpression,

KEGG [48], NCI/NATURE [49], and Reactome [50] databases. After all sources were

merged, 60,950 pairwise gene interactions based on 19 evidence types were obtained.

The GI node is appended to this evidence matrix (where rows represent gene pairs

and columns represent evidence types) with a “true” value if there were at least two

evidence types implying interaction. BNP was built by learning both structure and

parameters using Greedy Hill Climbing [29].

3.3.1. Constructing the Bayesian Network Prior (BNP)

BNP was built using the gene interaction evidence matrix that contained over

60,000 pairs of genes. The model was trained and tested using a 5-fold cross validation

approach, where the dataset was randomized and 80% of the data was used to train the

model and 20% of the data was used to test the model. The success rate of the model

with respect to the GI data label is calculated as the classification error, which is the

percentage of mismatching real and predicted values of the GI node. This procedure

was repeated 5 times and average error values were calculated. At each iteration,

after BNP was built with 80% of the evidence matrix using the Greedy Hill Climbing

method, the remaining 20% of the data matrix was tested by inferring the value of the
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GI node. This test was done through instantiation of BNP using the evidence vector

of a given pair of genes. Loopy Belief Propagation inference algorithm was used for

inference. If the inference value was greater than 0.5, the GI node was taken to be

“true”. The classification error rate for the 5-fold cross validation was 0.105 ∓ 0.003

implying an accuracy of ∼90% when estimating if two genes interact given the external

biological knowledge. The final BNP was constructed using the entire evidence matrix.

The strength of the probabilistic relationships expressed by the edges of the BNP was

measured using Friedman’s bootstrap method with 1,000 repeats [51]. Model averaging

was used to build a consensus DAG of BNP, which is shown in Figure 3.3. BNP provides

a unique depiction about how different experimental assays are related to each other

and to the event of gene interaction, which opens ways to new hypotheses about assay

type interrelation.
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Figure 3.3. Topology of the Bayesian Network Prior (BNP). BNP depicts the

conditional dependence structure between various evidence types and the Gene

Interaction node based on external biological knowledge. BNP is used to predict the

interaction probability for two genes using the provided experimental data combined

with external information.

3.3.2. Application of BNP to Microarray Data

We currently use BNP on microarray data containing two types of samples (i.e.

cancer vs. normal). The input data for structure learning was obtained as previously

described in [52]. Briefly, columns represent genes and rows represent observations.

Each row (observation) is obtained by the fold change values of the genes between one

pair of control and test samples. For example, if we have 10 control and 10 test samples,
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the input matrix consisted of 100 observations (10 control x 10 test) and reflected the

distribution of fold change values between the two classes of samples. This matrix

was discretized into 3-levels using k-means clustering [53]. The inferred DAGs using

prior knowledge (proposed method) and uniform prior knowledge (flat prior, standard

methods) were compared to the original pathway structures using AUC values.

When the proposed method was employed, the BNP was instantiated for each

gene pair in the given pathway to obtain the GI probability for the pair. These values

made up the prior information matrix, B. During the instantiation, the evidence

vector used was composed of the existing evidence information for the gene pair in the

databases and the microarray correlation value calculated by the input gene expression

data. The BNP workflow then collates this observed information with the distilled

structure obtained from external knowledge-bases to infer the GI probability for a pair

of genes. The results for the AUC values between the predicted and true DAGs for the

14 pathways using simulated gene expression data are assessed.
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4. EXPERIMENTS AND RESULTS

Graphical representations of biological pathways show us vital biological and

enzymatic reactions in a cell. There are two types of biological pathway analyses. In

the first type of analysis, only one pathway is taken into account and its robustness,

steady states, modular structure, and network motifs are examined. In the second type

of analysis, multiple pathways are of interest to identify similarities between them.

These similarities may instruct to rectify and explore new pathways or develop new

drugs and determine missing enzymes [54].

Kyoto Encyclopedia of Genes and Genomes (KEGG) is a curated knowledge

based biological pathways database, which stores molecular interaction networks in

various cellular processes among different organisms. To date, KEGG database con-

tains 232 biological pathways for human. The relations between pathway nodes in

KEGG are activation, inhibition, expression, repression, indirect effect, state change,

binding/association, dissociation, missing interaction, phosphorylation, dephosphory-

lation, glycosylation, ubiquitination, and methylation.

Same biological phenomena can play role in different biological pathways render-

ing overlapping genes in different pathways. When generating the simulated microarray

data to test the proposed algorithm, we chose pathways that did not have any genes in

common. Considering a graph for the KEGG pathways where nodes represent path-

ways, and edge weights represent the number of common genes between two pathways,

our pathway set can be found using the independent vertex set problem, which is an

NP-complete problem and returns a subset of pairwise non-adjacent vertices [55]. In

our domain, the independent vertex set algorithm gives us a list of KEGG pathways, no

two of which share any genes. We found a maximal independent vertex set with length

29. For the sake of simplicity, we chose 14 pathways instead of 29. SynTReN v1.12 [56]

was used to generate the signal levels for the genes in each of the 14 pathways with

20 control and 20 test samples and 10% background noise [56]. This way we have a

simulated microarray data that follows the case where the chosen pathways have been
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set to as active. To this end, we wish to cluster the microarray data and build BNs for

each module.

4.1. Clustering

To be able to assess the performance of our work, and demonstrate the worst

case, we partitioned our synthetic gene expression data, generated from the selected

14 pathways, into 14 clusters via the k-means clustering algorithm. It should be noted

that, k-means clustering algorithm may not give the same final clustering due to the

selection of initial centroids randomly. In order to minimize the deficiency of the

clustering solution, we ran the k-means procedure 5 times and the consensus of five

clustering results was used for further analyses. Each time initial centroids for k-

means are selected randomly and consensus of clustering has been achieved by forming

a consensus matrix whose entries denotes the number of times gene i was clustered

with gene j. Consequently, consensus matrix is a similarity matrix, therefore we can

use it as input to k-means clustering algorithm. Minimum and maximum cluster sizes

are 2 and 35 respectively, the mean is 15.86, and the standard deviation is 9.39. In

Table 4.1 and Table 4.2, the number of genes corresponding to each of the original

KEGG pathways and the number of genes in each cluster are shown.
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Table 4.1. Selected Pathway IDs and Number of Genes in Each Pathway.

Pathway ID Number of Genes

hsa00100 19

hsa00120 16

hsa00232 7

hsa00471 4

hsa00531 19

hsa00592 20

hsa00630 18

hsa00770 17

hsa00780 2

hsa00790 13

hsa00920 13

hsa04710 23

hsa04744 29

hsa05216 29

Total: 222
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Table 4.2. Cluster IDs and Number of Genes in Each Cluster.

Cluster ID Number of Genes

Cluster 1 11

Cluster 2 13

Cluster 3 22

Cluster 4 13

Cluster 5 35

Cluster 6 23

Cluster 7 17

Cluster 8 25

Cluster 9 13

Cluster 10 4

Cluster 11 2

Cluster 12 7

Cluster 13 8

Cluster 14 29

Total: 222

In Tables 4.3 through 4.16 we list the number of genes each pathway is represented

by in each of the 14 clusters.
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Table 4.3. The Relation of Cluster 1 and KEGG Pathways.

KEGG Pathway Occurrence Ratio %

hsa00770 4 36.36

hsa00592 2 18.18

hsa00630 2 18.18

hsa05216 1 9.09

hsa04710 1 9.09

hsa00120 1 9.09

Table 4.4. The Relation of Cluster 2 and KEGG Pathways.

KEGG Pathway Occurrence Ratio %

hsa05216 4 30.77

hsa00630 3 23.08

hsa00790 2 15.38

hsa00100 2 15.38

hsa04710 1 7.69

hsa00531 1 7.69
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Table 4.5. The Relation of Cluster 3 and KEGG Pathways.

KEGG Pathway Occurrence Ratio %

hsa04744 6 27.27

hsa00790 4 18.18

hsa00630 2 9.09

hsa05216 2 9.09

hsa00770 2 9.09

hsa00232 2 9.09

hsa00780 1 4.55

hsa04710 1 4.55

hsa00120 1 4.55

hsa00531 1 4.55

Table 4.6. The Relation of Cluster 4 and KEGG Pathways.

KEGG Pathway Occurrence Ratio %

hsa00531 6 46.15

hsa04744 4 30.77

hsa00120 1 7.69

hsa05216 1 7.69

hsa00780 1 7.69
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Table 4.7. The Relation of Cluster 5 and KEGG Pathways.

KEGG Pathway Occurrence Ratio %

hsa04710 8 22.86

hsa00120 5 14.29

hsa00592 4 11.43

hsa05216 3 8.57

hsa00100 3 8.57

hsa00920 3 8.57

hsa00531 3 8.57

hsa00770 2 5.71

hsa04744 2 5.71

hsa00790 1 2.86

hsa00630 1 2.86

Table 4.8. The Relation of Cluster 6 and KEGG Pathways.

KEGG Pathway Occurrence Ratio %

hsa05216 6 26.09

hsa04744 6 26.09

hsa00592 4 17.39

hsa00630 2 8.70

hsa00790 2 8.70

hsa00770 2 8.70

hsa04710 1 4.35
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Table 4.9. The Relation of Cluster 7 and KEGG Pathways.

KEGG Pathway Occurrence Ratio %

hsa00770 5 29.41

hsa00592 2 11.76

hsa00630 2 11.76

hsa00100 2 11.76

hsa00920 2 11.76

hsa05216 1 5.88

hsa00120 1 5.88

hsa04744 1 5.88

hsa00531 1 5.88

Table 4.10. The Relation of Cluster 8 and KEGG Pathways.

KEGG Pathway Occurrence Ratio %

hsa00100 5 20.00

hsa00232 4 16.00

hsa04710 4 16.00

hsa00120 4 16.00

hsa05216 2 8.00

hsa00770 2 8.00

hsa04744 2 8.00

hsa00630 1 4.00

hsa00790 1 4.00
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Table 4.11. The Relation of Cluster 9 and KEGG Pathways.

KEGG Pathway Occurrence Ratio %

hsa04744 4 30.77

hsa00471 3 23.08

hsa00531 3 23.08

hsa00790 2 15.38

hsa00100 1 7.69

Table 4.12. The Relation of Cluster 10 and KEGG Pathways.

KEGG Pathway Occurrence Ratio %

hsa00592 1 25.00

hsa00630 1 25.00

hsa00920 1 25.00

hsa04744 1 25.00

Table 4.13. The Relation of Cluster 11 and KEGG Pathways.

KEGG Pathway Occurrence Ratio %

hsa04710 1 50.00

hsa00592 1 50.00
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Table 4.14. The Relation of Cluster 12 and KEGG Pathways.

KEGG Pathway Occurrence Ratio %

hsa00592 2 28.57

hsa04710 2 28.57

hsa00471 1 14.29

hsa00120 1 14.29

hsa00531 1 14.29

Table 4.15. The Relation of Cluster 13 and KEGG Pathways.

KEGG Pathway Occurrence Ratio %

hsa00592 2 25.00

hsa04744 2 25.00

hsa00630 1 12.50

hsa00100 1 12.50

hsa00920 1 12.50

hsa00531 1 12.50
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Table 4.16. The Relation of Cluster 14 and Kegg Pathways.

KEGG Pathway Occurrence Ratio %

hsa05216 8 27.59

hsa00920 6 20.69

hsa00100 5 17.24

hsa04710 4 13.79

hsa00120 2 6.90

hsa00531 2 6.80

hsa00790 1 3.45

hsa00232 1 3.45

These results suggest that in most of the cases, a given cluster dominantly rep-

resents genes from one or a few pathways.

4.2. Atlas Construction

The primary goal of pathway atlas construction is to see the extended exhibition of

the pathway interactions. Our test data for atlas construction is generated synthetically

from 14 pathways that contain a total of 222 genes. Learning the structure of 222

genes is computationally expensive, since the space of all possible structures grows

exponentially in the number of variables n. That is, there are n(n−1)
2

possible undirected

edges and 2
n(n−1)

2 subset of these edges. Besides, more than one orientation of edges

may exist. Therefore, we have clustered the synthetic data into 14 clusters to reduce

the search space.

We have applied the structure learning algorithm into 14 clusters by using two

methods: BNP and FLAT. The former one uses external biological knowledge in its

model to score the candidate graphs and the latter does not resort external knowledge.

Results of these runs show us the internal topology of each clusters. Yet, our goal is
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to construct the interactions of the given pathways. Therefore, relations in between

clusters are also important to discover significant inter-relations.

Two different strategies were used to merge the clusters using pairwise links

between them. In the first strategy, we selected representative genes by taking into

account their out-degrees in the graphs of the corresponding clusters. A high out-

degree represents more involved genes in the interaction network. Each cluster is

represented by the gene with the highest out-degree in the cluster’s learned network.

However, there may be more than one gene with the maximum out-degree in a given

cluster. In those cases, we used all the genes with the maximum out-degree as the

cluster’s representative. The representative genes’ expression values were sifted from

synthetic microarray data and subjected to our structure learning algorithm. All tied

genes in the same cluster (i.e., genes with the same out-degrees) were reduced into one

representative gene for the corresponding clusters by performing row-wise and column-

wise OR operation in the adjacency matrix of representative genes’ interaction graph.

If there is an edge between representative genes of two clusters, we sift genes that are in

these two clusters from synthetic microarray data, and perform the proposed structure

learning using the sifted gene expression data. Finally, we combine the adjacency

matrices of clusters and merged the clusters to construct the interaction atlas.

In the second strategy, we have applied Google’s Pagerank algorithm with %90

damping parameter [57] to select representative genes and apply the same procedure

as above to combine clusters and construct the atlas. The adjacency matrix of the

clusters and the representative genes are in Appendix A. In Figure 4.1, we show the

interaction network between clusters based on the network used with representative

genes found based on their out-degrees.
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Figure 4.1. Interactions Between Clusters.

We assess the performance of our methodology by reverse engineering the original

KEGG pathways from constructed gene interaction atlas. Our performance measuring

criteria is in terms of area under the receiver operating characteristic curve (ROC

AUC). We compare the deduced network from our atlas using the genes in a given

KEGG pathway to the original KEGG pathway. The highest and lowest AUC values

using the BNP algorithm with representative gene selection by the out-degree approach

were 0.87 and 0.53, respectively, with an average value of 0.73. However, the success

of the BNP counterpart, namely FLAT, had a maximum of 0.72, and minimum of

0.06 AUC values, with an average value of 0.54. By changing the representative gene

selection approach from out-degree to Google’s Pagerank, BNP resulted in a maximum

of 0.75, and minimum of 0.48 AUC values, with an average value of 0.6. Using the

Pagerank approach, the FLAT algorithm resulted in 0.61, and 0.40 highest and lowest
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AUC values, respectively, with an average value of 0.51. These results, summarized

in Figure 4.2, suggest that the proposed method outperforms the FLAT method in

terms of the accuracy of atlas generation based on known pathways that make up the

atlas. The added value due to the incorporation of the external biological knowledge

is reflected in the accuracy performance of the proposed method. Moreover, the out-

degree based selection method for the representative genes yielded higher AUC values

compared to the Google’s Pagerank method. In Table 4.17 and Table 4.18, we show

the AUC values attained by the BNP and FLAT algorithms for each selected KEGG

pathway with different representative gene selection methods. This could be due to the

community structure seen in biological pathways which is represented by their scale-

free nature. These networks generally hold a few hubs (nodes with large degrees),

which in our framework ends up to be a good representative node reflecting most of

the dependency structure.

Table 4.17. AUC Values for the BNP (Out-Degree) and FLAT (Out-Degree)

Algorithms.

Pathway ID (Number of Nodes, Number of Edges) BNP (Out-Degree) FLAT (Out-Degree)

hsa00100 (19, 43) 0.76 0.68

hsa00120 (16, 23) 0.81 0.69

hsa00232 (7, 7) 0.64 0.45

hsa00471 (4, 6) 0.80 0.50

hsa00531 (19, 24) 0.86 0.72

hsa00592 (18, 17) 0.53 0.06

hsa00630 (15, 25) 0.77 0.61

hsa00770 (17, 44) 0.87 0.53

hsa00780 (2, 2) 0.75 0.50

hsa00790 (13, 16) 0.66 0.55

hsa00920 (13, 26) 0.73 0.64

hsa04710 (23, 104) 0.63 0.60

hsa04744 (28, 49) 0.63 0.47

hsa05216 (28, 49) 0.75 0.56
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Table 4.18. AUC Values for the BNP (Pagerank) and Flat (Pagerank) Algorithms.

Pathway ID (Number of Nodes, Number of Edges) BNP (Pagerank) FLAT (Pagerank)

hsa00100 (19, 43) 0.61 0.61

hsa00120 (16, 23) 0.63 0.55

hsa00232 (7, 7) 0.48 0.48

hsa00471 (4, 6) 0.70 0.40

hsa00531 (19, 24) 0.67 0.55

hsa00592 (18, 17) 0.63 0.40

hsa00630 (15, 25) 0.54 0.57

hsa00770 (17, 44) 0.57 0.51

hsa00780 (2, 2) 0.75 0.50

hsa00790 (13, 16) 0.54 0.47

hsa00920 (13, 26) 0.67 0.51

hsa04710 (23, 104) 0.55 0.53

hsa04744 (28, 49) 0.51 0.48

hsa05216 (28, 49) 0.57 0.52

4.2.1. Topological Parameters of the Resulting Networks

A graph or network can be represented as an adjacency matrix, and any element

of this matrix is given as follows:

αij =

1, if i→ j

0, if i9 j

By using this representation, various graph parameters can be calculated, which can

provide an insight to understand complex graphs such as a gene interaction atlas.

The degree of any node i is represented by ki =
∑

j αij. The higher degree of

a node implies stronger connectivity of the node in the graph. Moreover, the average
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Figure 4.2. Performance Comparison of Different Strategies.

degree of a graph is given by k̄ =
∑

i ki
N

where N is the total number of nodes in the

graph. The higher average degree implies good inter-connectivity among the nodes in

the graph.

Characteristic path length of a graph tells us the shortest path length between

two nodes averaged over all pairs of nodes. Its formula is represented by L =
∑

i

∑
j Lij

N(N−1)

where Lij is the shortest path length between node i and node j. A high characteristic

path length asserts that the graph is almost linear, and a low characteristic path length

shows that the graph is in compact form.

Clustering coefficient is a measure for local density in the graph. Clustering

coefficient Ci of a node i is given by Ci = ei
ki(ki−1)

2

where ei is the number of edges

between the nearest neighbors of the ith node, and ki is the number neighbors of node

i. The average clustering coefficient of a graph is given by C̄ =
∑

i Ci

N
. The value

of clustering coefficient denotes the probability that two adjacencies of a node i are

connected to each other.
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Network diameter is the largest distance between two nodes. A network with

low diameter is called “small world” network, and biological networks tend to have

low diameters [58]. For instance, metabolic networks have low diameters, which may

enable to reduce transition times between metabolic states.

Betweenness centrality is a measure of a node’s centrality in the graph. It denotes

the fraction of all of the shortest paths between all nodes in a network that pass

through a given node [59]. The betweenness centrality assumes that there aren’t any

isolated components because its calculation relies on the shortest paths. Moreover,

the measurement closeness centrality is also based on the shortest path length. When

the average path length between a node i and the rest of the nodes is low, centrality

of the node i would be high. On the other hand, stress centrality represents the

number of shortest paths between all node pairs that pass through a particular node.

Intuitively, stress centrality denotes the amount of work performed by each node in the

graph. A higher value of closeness or betweenness centrality can be interpreted as initial

candidates for regulatory genes. However, either closeness or betweenness centrality

is measured based on the shortest path which leads to ignore spreading information

through non-shortest paths. Moreover, high values of betweenness centrality shows

more efficiently organized metabolic networks.

The in-degree and out-degree distribution of the atlas roughly follows a power-law,

which is similarly seen in other biological networks. In this scale-free structure, we see

few nodes with a high number of connections, which represents the hubs. The average

clustering coefficient of an atlas is 0.209, which is relatively smaller than the ones

observed in other biological networks, which tend to be around 0.5 [60]. Therefore, we

believe the generated atlas presents a less isolated community structure than generally

seen. This could be due to the liberal procedure followed in merging the clusters.

If a more stringent criterion were used, we might have observed a more hierarchical

structure with higher tightly knit, separated communities. The average shortest path

length of the atlas is about 3, which implies a reachable network where any given node

is, on average, can reach to another node in about three hops. Nevertheless, these

parameters diverge from the corresponding values seen in random networks and can
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be considered similar to the ones observed in real biological networks. The network

diameter of an atlas is 7, which is relatively small, and may direct researchers to make

a further investigation on genes 7 apart from any of each.

Table 4.19. Statistics of Learned Gene Interaction Atlas.

Clustering Coefficient 0.21

Network Diameter 7

Characteristic Path Length 2.97

Average Number of Neighbors 27.65

Number of Nodes 222

Figure 4.3. Betweenness Centrality of Gene Interaction Atlas.
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Figure 4.4. Closeness Centrality of Gene Interaction Atlas.

Figure 4.5. In-Degree Distribution of Gene Interaction Atlas.
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Figure 4.6. Out-Degree Distribution of Gene Interaction Atlas.

Figure 4.7. Histogram of the Shortest Path in the Atlas.
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5. CONCLUSION

This thesis has investigated a computational method for inferring a gene regu-

latory atlas from microarray data by incorporating external biological knowledge. In

this investigation, the aim was to explore undiscovered gene-gene interactions in or-

der to provide an insight for discovering new biological pathways, and updating our

knowledge on already identified biological phenomena. Incorporating external knowl-

edge into inferring gene regulatory networks reduces the data required. Since Bayesian

networks can integrate external knowledge into its calculations, this study was under-

taken to design a computational method by means of Bayesian networks. The results

of this research support the idea that external biological knowledge significantly in-

creases the success rate of network inference. This research will serve as a base for

future studies, and it can provide an answer to unsolved biological questions in the

basis of gene regulations. Several limitations to this pilot study need to be acknowl-

edged. Only synthetic data is used in simulations and due to the limitations of time

and computational resources, we have limited ourselves only 14 biological pathways.

Future research should therefore concentrate on the investigation of gene regulatory

networks from real microarray data, and increase the gene interaction atlas by using

more biological pathways.
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APPENDIX A: CLUSTERS AND REPRESENTATIVE

GENES

Adjacency matrices of 14 clusters are shown in Table A.1 through Table A.14.

Node labels with bold faces denotes representative genes in the respected cluster.
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Table A.10. Adjacency Matrix of Cluster 10.

391013 283871 445329 346562

391013 0 0 1 0

283871 1 0 0 1

445329 0 0 0 0

346562 0 0 0 0

Table A.11. Adjacency Matrix of Cluster 11.

100137049 100506332

100137049 0 1

100506332 0 0
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