
FAST CIRCUIT TOPOLOGIES

FOR FINDING THE MAXIMUM OF n k -BIT NUMBERS

by

Bilgiday Yüce

B.S., Electrical & Electronics Engineering,

TOBB University of Economics and Technology, 2010

Submitted to the Institute for Graduate Studies in

Science and Engineering in partial fulfillment of

the requirements for the degree of

Master of Science

Graduate Program in Electrical & Electronics Engineering

Boğaziçi University

2013

ii

FAST CIRCUIT TOPOLOGIES

FOR FINDING THE MAXIMUM OF n k -BIT NUMBERS

APPROVED BY:

Prof. Günhan Dündar

(Thesis Supervisor)

Assoc. Prof. H. Fatih Uğurdağ

(Thesis Co-supervisor)

Assoc. Prof. Şenol Mutlu

Assoc. Prof. Sezer Gören Uğurdağ

Assist. Prof. İ. Faik Başkaya

DATE OF APPROVAL: 11.06.2013

iii

ACKNOWLEDGEMENTS

It would not have been possible to bring about this thesis without the support

and help of several individuals around me, to only some of whom it is possible to give

particular mention here.

First, I would like to thank my thesis advisors Assoc. Prof. H. Fatih Uğurdağ

and Prof. Günhan Dündar for their invaluable guidance and support throughout the

development of this thesis. I would like to express my deepest gratitude to Assoc.

Prof. H. Fatih Uğurdağ for his guidance, care, and patience. He also provided me

an excellent atmosphere throughout my research. His continuous help with all kind of

difficulties, which I encountered during my M.S. years, and his trust in me always kept

me motivated. I am also really thankful to Prof. Günhan Dündar for dedicating his

valuable time for my thesis and for his suggestions that have enhanced this thesis.

I would like to thank Assoc. Prof. Sezer Gören, Assoc. Prof. Şenol Mutlu and

Asst. Prof. İ. Faik Başkaya for taking part in my thesis committee and for their time.

In particular, Assoc. Prof. Sezer Gören’s helpful comments, insightful discussions, and

constructive feedback have greatly improved the quality of this work.

Also, I want to thank all of my friends who made my life enjoyable throughout my

graduate education. Especially, I want to mention Abdullah Sarıduman, Barış Esen,

Berkan Yaman, Doğan Ulus, Erdem Ulusoy, Fatih Temizkan, Furkan Şahin, Gökhan

Güner, İsmail Kara, İsmail Terkeşli, Kenan Türksoy, Mert Kaya, and Waqas Hussain.

In addition, I would also like to thank TÜBİTAK for supporting me through

BİDEB scholarship program between 2010-2012 and through ARDEB in 2013.

Finally, I am most grateful to my family members for their endless support and

love throughout my life.

iv

ABSTRACT

FAST CIRCUIT TOPOLOGIES

FOR FINDING THE MAXIMUM OF n k-BIT NUMBERS

Finding the value and/or address (position) of the maximum (or similarly min-

imum) element of a set of binary numbers is a fundamental arithmetic operation. Nu-

merous systems, which are used in various application areas, require fast (low-latency)

circuits to carry out this operation. In this thesis, we present a detailed literature survey

of previous works and propose three circuit topologies that determine both value and

address of the maximum (or similarly minimum) element within an n-element set of k -

bit binary numbers. Our proposed topologies are Array-based Topology (AbT), Hybrid

Binary tree Topology (HBT), and Quad tree Topology (QT). The timing complexity

of the fastest proposed architecture (AbT) is O(log2 n + log2 k), whereas the timing

complexity of the fastest topology in previous work is O(log2 n log2 k). We wrote RTL

code generators for the proposed topologies as well as their competitors. These auto-

mated generators are scalable to any value of n and k. Then, we applied a standard-cell

based iterative synthesis flow, which finds the optimum timing through binary search.

We obtained area, power consumption, and timing results for the proposed topologies

as well as their competitors. Using these results, we also compute some combined per-

formance metrics such that area-timing product (ATP), area-timing-square product

(AT2P), power-timing product (PTP), and energy-timing product (ETP). The synthe-

sis results showed that on the average, AbT is 1.61 times, QT is 1.28 times, and HBT

is 1.01 times faster than the fastest in the literature.

v

ÖZET

n ADET k-BİT SAYININ EN BÜYÜĞÜNÜ BULMAK İÇİN

HIZLI DEVRE TOPOLOJİLERİ

Bir sayı kümesinin maksimum (ya da minimum) elemanının değerini ve/veya

adresini (pozisyonunu) bulmak en temel aritmetik işlemlerden biridir. Çeşitli uygulama

alanlarındaki birçok sistem, bu işlemi yerine getiren hızlı devrelere ihtiyaç duyar. Bu

tezde, n tane k -bit uzunluğunda sayının en büyüğünün (benzer biçimde en küçüğünün)

hem değerini hem de adresini bulan devreler için detaylı bir literatür taraması ve üç tane

yeni devre topolojosi sunuyoruz. Önerdiğimiz topolojileri şu şekilde adlandırıyoruz:

“Array-based Topology (AbT)”, “Hybrid Binary tree Topology (HBT)” ve “Quad tree

Topology (QT)”. Önerilen topolojilerden en hızlısı (AbT) işini O(log2 n+log2 k) sürede

tamamlarken, literatürdeki en hızlı topolojinin işini tamamlaması için O(log2 n log2 k)

süre gerekir. Hem literatürdeki topolojiler hem de önerilen topolojiler için HDL kod

üreteçleri yazdık. Bu otomatik kod üreteçleri herhangi bir n ve k değeri için ilgili

topolojinin HDL kodunu üretebilecek yetenektedirler. Daha sonra ise, en iyi zaman

kısıtını ikilik arama algoritmasına benzer bir yaklaşım ile bulan, yinelemeli ve standard-

devre tabanlı bir sentez süreci uyguladık. Böylece, hem önerilen topolojiler hem de

literatürdeki topolojiler için alan, güç tüketimi ve zaman sonuçlarını elde ettik. Ayrıca,

bu sonuçları kullanarak şu birleşik başarım kıstaslarını da hesapladık: alan-zaman

çarpımı (AZÇ), alan-zaman-kare çarpımı (AZ2Ç), güç-zaman çarpımı (GZÇ) ve enerji-

zaman çarpımı (EZÇ). Sentez sonuçları, literatürdeki en hızlı devrenin, ortalamada

AbT’den 1.61 kat, QT’den 1.28 kat ve HBT’den 1.01 kat daha yavaş olduğunu gösterdi.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iii

ABSTRACT . iv

ÖZET . v

LIST OF FIGURES . ix

LIST OF TABLES . xi

LIST OF SYMBOLS . xiii

LIST OF ACRONYMS/ABBREVIATIONS . xiv

1. INTRODUCTION . 1

1.1. Motivation . 1

1.2. Contributions of the Thesis . 2

1.3. Outline of the Thesis . 3

2. PRELIMINARIES . 4

2.1. Problem Definition . 4

2.2. Circuit Complexity and Performance Modeling 5

2.2.1. Area Modeling . 5

2.2.2. Delay Modeling . 6

2.2.3. Power Consumption Modeling 7

2.2.4. Combined Circuit Performance Measures 7

2.2.5. Asymptotic O-notation . 8

3. PREVIOUS WORK . 10

3.1. Array Topology (AT) . 10

3.1.1. Theoretical Complexity of AT 12

3.2. Row Topology (RT) . 13

3.2.1. Theoretical Complexity of RT 14

3.3. Selection Topology (ST) . 15

3.3.1. Theoretical Complexity of ST 16

3.4. Traditional Binary Tree Topology (TBT) 16

3.4.1. Theoretical Complexity of TBT 19

3.5. Parallel Binary Tree Topologies (PBTs) 20

vii

3.5.1. Ripple Carry Parallel Binary Tree Topology (RCT) 23

3.5.2. Carry Select Parallel Binary Tree Topology (CST) 23

3.5.3. Carry Look-ahead Parallel Binary Tree Topology (CLT) 25

3.5.4. Theoretical Complexity of PBTs 26

3.6. Leading-zero Counting Topology (LCT) 27

3.6.1. Theoretical Complexity of LCT 28

3.7. Multi-Level Topology (MLT) . 29

3.7.1. Theoretical Complexity of MLT 30

4. PROPOSED MF CIRCUIT TOPOLOGIES 31

4.1. Array Based Topology (AbT) . 31

4.1.1. Comparator Array Unit (CAU) 32

4.1.2. Address Generation Unit (AGU) 35

4.1.3. Data Selection Unit (DSU) . 36

4.1.4. Theoretical Complexity of AbT 38

4.1.5. Other Useful Features of AbT 39

4.2. Hybrid Binary Tree Topology (HBT) 42

4.2.1. Theoretical Complexity of HBT 44

4.2.2. Delay Estimator for HBT . 45

4.3. Quad Tree Topology (QT) . 46

4.3.1. Theoretical Complexity of QT 48

5. RTL GENERATION AND SYNTHESIS METHODOLOGY 49

5.1. Creating the Input File . 50

5.2. Automatic Generation of Verilog Files 50

5.3. Pre-Synthesis Verification . 52

5.4. Iterative Synthesis . 52

5.4.1. Obtaining Timing Results . 53

5.4.2. Obtaining Area Results . 54

5.4.3. Obtaining Power Consumption Results 54

5.5. Post-Synthesis Verification . 54

5.6. Extraction of Synthesis Results . 55

6. EXPERIMENTAL WORK . 56

6.1. Experimental Setup . 56

viii

6.2. Experimental Results . 57

6.2.1. Timing Results . 59

6.2.2. Delay Overhead of DSU . 63

6.2.3. Evaluation of HBT Estimator 63

6.2.4. Area Results . 67

6.2.5. Area-Timing Product (ATP) Results 69

6.2.6. Area-Timing-Square Product (AT2P) Results 71

6.2.7. Power Consumption Results . 73

6.2.8. Power-Timing Product (PTP) Results 75

6.2.9. Energy-Timing Product (ETP) Results 77

7. CONCLUSIONS AND FUTURE WORK . 80

REFERENCES . 84

ix

LIST OF FIGURES

Figure 3.1. Array Topology [1]. 11

Figure 3.2. Row Topology [2]. 13

Figure 3.3. Selection Topology [3]. 16

Figure 3.4. Traditional Binary Tree Topology (n = 8). 17

Figure 3.5. Internal structure of a (2,k)-cmp-mux. 18

Figure 3.6. Internal structure of a (2,k)-comparator. 19

Figure 3.7. An example (8,4)-PBT circuit. 21

Figure 3.8. A node ((2,k)-RC-cell) of Ripple Carry PBT [4]. 23

Figure 3.9. (a) Linear configuration of a (2,k)-CS-cell [4]. (b) Internal structure

of the CS-block. 24

Figure 3.10. Square-root configuration of a (2,k)-CS-cell [4]. 25

Figure 3.11. Four baseline PPN topologies for CLT: (a) Ladner-Fisher (LF). (b)

Kogge-Stone (KS). (c) Brent-Kung (BK). (d) Han-Carlson (HC). . 26

Figure 3.12. Leading-zero Counting Topology [5] (n = 8). 28

Figure 3.13. Multi-Level Topology [5] (n = 8). 29

Figure 4.1. High-level block diagram of AbT. 31

x

Figure 4.2. Block diagram of CAU: (a) Conceptual array view. (b) Intercon-

nection of CAU blocks. 35

Figure 4.3. (a) Interconnection of CAU and AGU. (b) Block diagram of AGU. 36

Figure 4.4. An example for AbT without DSU (n = 4, k = 5). 37

Figure 4.5. Data selection unit (DSU) with OR trees of AGU. 38

Figure 4.6. An example AbT-based selection circuit. 40

Figure 4.7. An example (8,4)-HBT circuit. 42

Figure 4.8. Block diagram for an (n,k)-HBT consisting of cascaded (n,p)-TBT s. 43

Figure 4.9. Internal structure for a (2,p)-cmp-mux of HBT. 44

Figure 4.10. (a) Input file of the estimator (job-list). (b) Output for the first

line of the job-list. (c) Output for the second line of the job-list.

(d) Result file of the estimator. 47

Figure 4.11. Block diagram of QT (n = 16). 47

Figure 5.1. Flow diagram of the automated synthesis methodology. 50

Figure 5.2. (a) Structure defined by the testbench file. (b) Structure defined

by the wrapper file. 51

Figure 7.1. Computing multiple order statistics with AbT. 82

Figure 7.2. A (8,k)-bitonic sorter circuit. 83

xi

LIST OF TABLES

Table 2.1. Frequently used orders of functions and their aliases. 9

Table 3.1. Theoretical complexity expressions of PBTs. 27

Table 4.1. Implementation options for CAU. 41

Table 6.1. Theoretical comparison of all MF topologies. 58

Table 6.2. Comparison of two AbT variants in terms of timing (in nanosec-

onds): AbT1 (value + one-hot address) and AbT2 (value + binary

address). 60

Table 6.3. Timing results for the proposed and competitor topologies in nanosec-

onds. 62

Table 6.4. Timing results for the five variants of CLT in nanoseconds. 64

Table 6.5. Delay overhead of DSU. 65

Table 6.6. Timing results of different HBT implementations. 66

Table 6.7. Normalized area results. 68

Table 6.8. Normalized ATP results. 70

Table 6.9. Normalized AT2P results. 72

Table 6.10. Normalized power consumption results. 74

xii

Table 6.11. Normalized PTP results. 76

Table 6.12. Normalized ETP results. 78

xiii

LIST OF SYMBOLS

A Area

D Set of n k -bit numbers

Di i -th element of D

dn−1:0,j bit-slice j of the n input elements

DW Maximum (Winner) element of D

f Frequency

k Bitwidth of an input element

n Number of input elements

O Asymptotic O-notation

P Power Consumption

t Time

VDD Supply voltage

W The address (index) of the maximum element

α Switching activity (Node transition activity factor)

xiv

LIST OF ACRONYMS/ABBREVIATIONS

AbT Array based Topology

AGU Address Generation Unit

AT Array Topology

AT2P Area-Timing-Square Product

ATP Area-Timing Product

BKT Brent-Kung Topology

BM Binary Merger

CAU Comparator Array Unit

CET Carry-lookahead Equation Topology

CLT Carry Lookahead parallel binary tree Topology

CST Carry Select parallel binary tree Topology

DSU Data Selection Unit

FF Flip-Flop

FPGA Field Programmable Gate Array

HBT Hybrid Binary tree Topology

HCT Han-Carlson Topology

HDL Hardware Description Language

KST Kogge-Stone Topology

LCT Leading-zero Counting Topology

LFT Ladner-Fischer Topology

LSB Least Significant Bit

MF Maximum Finder

MLT Multi-Level Topology

MSB Most Significant Bit

PBT Parallel Binary tree Topology

PPN Parallel Prefix Network

PT2P Power-Timing-Square Product

PTP Power-Timing Product

QT Quad tree Topology

xv

RCT Ripple Carry parallel binary tree Topology

RT Row Topology

RTL Register-Transfer Level

ST Selection Topology

TBT Traditional Binary tree Topology

WLM Wire-Load Model

1

1. INTRODUCTION

This chapter introduces the motivation behind this thesis and familiarizes the

readers with the subject. Summary of contributions and outline of the thesis also

appear in this chapter.

1.1. Motivation

Fast (low-latency) maximum (or similarly minimum) finder (MF) circuits, which

determine the maximum (or minimum) number in an unsorted (arbitrary) list of un-

signed binary numbers and/or its address (position) in the list, play an important role

in a wide range of application areas such as communication systems [6], video process-

ing [7], computer networks [8], real-time systems [9], and sorting networks [10]. Since

any minimum finder circuit can be easily converted into a maximum finder circuit with

minor modifications (such as swapping operands in comparisons), and vice versa, we

include minimum as well as maximum finder circuits in the set of possible applications.

In other words, any MF topology is both a maximum and minimum finder topology.

Depending on the application, MF circuits are required to produce the value

and/or address of the maximum element. For instance, the motion estimation hardware

proposed in [7] requires only the value of the maximum element. On the other hand,

the schedulers in [8] need only address of the maximum. Other examples are the real-

time task managers in [9], and the channel estimation architecture in [6], which require

both the value and address of the maximum. Hence, fast computation of both the

value and address of the maximum element become equally important.

Moreover, the number of elements (n) to be compared and bit-width (k) of each

element are also dependent upon the application. For the circuits in [6–10], n and k are

in the range of 8 to 64. However, we cannot constrain the range and combinations of

parameters (n,k) with only these values, since finding the maximum is a fundamental

problem, and thus, it can be used in numerous applications.

2

1.2. Contributions of the Thesis

In this thesis, we analyze existing MF circuit topologies and then propose three

new fast MF circuit topologies, which can determine both the value and the address of

the maximum element within an n-element set of k -bit binary numbers. The address

may be one-hot (n bits) and/or binary (log2 n bits).

Additionally, to evaluate the performance of existing and proposed topologies, we

wrote Perl scripts for HDL code generation of all topologies. Our scripts also generate

self-checking testbench code for functional verification besides RTL code (which will

be synthesized). In addition, we also wrote synthesis (batch) scripts for a standard-

cell based iterative flow that finds the optimum timing through binary search [11–13].

In other words, we automated not only design and functional verification but also

synthesis of both existing and proposed MF circuits.

Our contributions can be summarized as follows:

• We provide a detailed literature survey of existing MF topologies, including Array

Topology (AT) [1], Row Topolgy (RT) [2], Selection Topology (ST) [3], Traditional

Binary tree Topology (TBT), Parallel Binary tree Topology (PBT) [4, 14], Multi-

Level Topology (MLT) [5], and Leading-zero Counting Topology (LCT) [5].

• While implementing Carry Lookahead PBT (CLT), we employed four pioneering

Parallel Prefix Network (PPN) topologies such that Brent-Kung (BK) [15], Han-

Carlson (HC) [16], Kogge-Stone (KS) [17], and Ladner-Fischer (LF) [18]. In

addition, we implemented another version of CLT, in which we directly wrote the

carry lookahead equations in Verilog.

• We propose three MF circuit topologies, namely, Array based Topology (AbT),

Hybrid Binary tree Topology (HBT), and Quad tree Topology (QT).

• We provide a comparison of existing and proposed topologies in terms of theo-

retical time, area and power consumption costs.

• The contribution of AbT is providing the fastest MF topology of which timing

complexity is O(log2 n + log2 k). On the contrary, state-of-the-art has a timing

3

complexity of O(log2 n log2 k).

• QT is an hybrid topology, which combines the speed advantage of AbT and area

advantage of quad tree configuration. Its timing complexity (O(log4 n log2 k)) is

better than any existing topology as well as its area complexity (O(log2 n log2 k))

is same as area complexity of the most area-efficient existing topology.

• HBT is another hybrid topology, which provides a generalization for PBT by

thinking of an (n,k)-HBT as a combination of dk/pe cascaded (n,p)-TBT s. The

timing complexity of HBT (O ((k/p+ log2 n) log2 p)) depends on the value of the

partition (p) parameter, while its area complexity is (O(log2 n log2 k)) is same as

area complexity of the most area-efficient existing topology.

• We wrote an estimator script in Perl to find the optimum partition (p) value of

HBT that leads to the maximum clock frequency for a given (n,k) combination.

• We developed HDL code generators (in Perl) for almost all of the MF topologies

mentioned above. Due to their high theoretical time complexities, we did not

write generators for AT, RT, and ST. The code generators produces a Verilog RTL

to be synthesized, an automatic testbench for pre- and post-synthesis functional

verification, and a wrapper for proper timing computation after synthesis.

• We obtained a rich set of timing, power consumption and area results using an

automated standard-cell based logic synthesis flow. The flow includes wire-load

models and uses an iterative synthesis strategy [11–13].

• We also provide a comparison of proposed topologies and their competitors (exist-

ing topologies) in terms of empirical time, power consumption, and area results.

1.3. Outline of the Thesis

Rest of the report is organized as follows. In Chapter 2, we introduce the basic

concepts and notations used in this thesis. Chapter 3 gives an overview of the related

work. Chapter 4 presents the details of the proposed topologies. In Chapter 5, we

explain our synthesis methodology and RTL code generators. Chapter 6 provides

experimental results for the proposed topologies and their competitors. And Chapter

7 gives the conclusions and future work.

4

2. PRELIMINARIES

Since finding the maximum (or similarly minimum) element of a set of binary

numbers and/or its address is a fundamental arithmetic operation, it can take part in

numerous applications in different formats. Therefore, we first give a formal definition

of the problem, and we introduce the notations as well as definitions we use in the

thesis (Section 2.1). Next, we give circuit complexity and performance models, which

are used for theoretical comparison of MF circuit topologies (Section 2.2).

2.1. Problem Definition

The problem of finding the maximum of n k -bit unsigned binary numbers is

formally defined as follows:

Given a set D = {D0, D1,. . . , Dn−1} of n unsigned binary numbers, an MF circuit

produces output(s) DW and/or W, where DW denotes the maximum (winner) element

of D (DW ≥ Di,∀Di ∈ D) and W denotes its address (position).

We use the following notations throughout this thesis report:

• We will use (n,k)-name notation to denote a circuit/topology, which is called

name and has n k -bit inputs.

• We will represent the binary version of the address as W = (wdlog2 ne−1wdlog2 ne−2

. . .w0).

• We will represent the one-hot version of the address as W = (mn−1mn−2. . .m0).

• We will represent each element Di as a k -bit unsigned number such that Di =

(di,k−1di,k−2 . . . di,1di,0).

• We will also use dn−1:0,j notation to denote bit-slice (i.e., collection) j (dn−1,jdn−2,j

. . . d0,j) of n elements.

Note also that the maximum element does not necessarily have to be unique. In

5

the case of multiple maximum elements, MF circuits choose one of those maximum

elements as the winner element applying a priority scheme. Hence, we assumed as if

the maximum element was unique in our definition and the assumption will continue

to be valid throughout this report.

In this thesis, we will examine several MF circuits and topologies. The topology

of an MF circuit specifies how basic building blocks of the circuit are connected to each

other (independent of n and k parameters). Topology does not deal with the exact

internal implementation of building blocks; it deals with how the building blocks are

interconnected. In other words, changing the implementation of some or all instances

of a building block does not cause any topological change. On the other hand, we will

use the term circuit to denote any specific hardware implementation of a topology.

2.2. Circuit Complexity and Performance Modeling

We use simple complexity and performance models for a rough characterization

of gate-level MF circuits. Given a circuit, specified by a logic equation or a netlist

built from basic logic gates, we need estimations of the expected area, time (speed),

and power consumption for a synthesized circuit as a function of the parameters n and

k.

2.2.1. Area Modeling

The silicon real estate a VLSI circuit occupies is the sum of its logic cells as well as

their interconnections. Total logic cell area can be estimated from logic equations and

gate-level netlists. In addition, wiring area is proportional to total wire length, which

can be estimated from the sum of cell fanout. Since total cell fanout is also proportional

to total circuit size, we can claim that total wiring area is also proportional to the

number of transistors [19].

Taking into account the above criteria, we use unit-gate area model [20] in this

thesis to estimate the area of a circuit from logical equations and netlists consisting of

6

simple logic gates. Unit-gate area model can be summarized as follows:

• A unit-gate is an elementary 2-input gate, such as AND, NAND, OR, and NOR,

except XOR gate.

• An XOR gate is counted as two unit gates.

• Areas of inverters and buffers are ignored.

• Area of an elementary m-input gate is m−1 because the m-input gate is thought

of as a binary tree configuration of m− 1 2-input simple gates.

2.2.2. Delay Modeling

Delay of a VLSI circuit is determined by logic cells and wires on the critical path

of the circuit, which can be defined as the path between an input and an output with

the maximum delay. Critical path evaluation is done by “static timing analysis”, which

is a method of computing expected timing of digital circuits utilizing graph algorithms.

Although timing is also dependent on temperature, voltage, and process variations, we

assume they affect all circuits equally.

The total critical path delay is the sum of logic cell delays, output transition delays,

and wire delays on the respective path. Logic cell delay is determined by transistor-level

implementation and complexity of the cell. Output transition delay is the time it takes

for a logic cell output to charge/discharge capacitances, which consists of interconnect

and cell input loads and are proportional to the fanout of the cell. The wire delay is

the RC-delay of interconnects [19].

Considering the above factors, we use unit-gate delay model, similar to the unit-

gate area model in this thesis to estimate the delay of a circuit from logical equations

and netlists consisting of simple logic gates. Unit-gate delay model can be summarized

as follows:

• A unit-gate is an elementary 2-input gate, such as AND, NAND, OR, and NOR,

except XOR gate.

7

• An XOR gate is counted as two unit gates.

• Delays of inverters and buffers are ignored.

• Delay of an elementary m-input gate is dlog2me because the m-input gate is

thought of as a binary tree configuration of m− 1 2-input simple gates.

2.2.3. Power Consumption Modeling

The power dissipation of a CMOS circuit is dominated by the dynamic dissipation

resulting from charging and discharging capacitances. If we ignore the dynamic short-

circuit currents and static leakage power, the total power consumption can be written

as:

Ptotal =
∑
i

Ctotal V
2
DD fclk α

Here, Ctotal is the total load capacitance at node i, VDD is the supply voltage, fclk is the

clock frequency, and α is the power consuming switching activity (or node transition

activity factor) at node i. Switching activity of a node can be defined as the probability

that a clock event results in a power consuming transition at this node. Total capac-

itance is roughly proportional to the circuit size. Supply voltage and clock frequency

can be considered as constant throughout the circuit and therefore is not relevant in

circuit comparisons. Switching activity is a function of nature and statistics of input

signals as well as overall circuit topology and function to be implemented.

Hence, if we assume supply voltage, clock frequency, and input switching activity

values are the same for all circuits, power consumption of the circuit becomes approx-

imately proportional to circuit size. Therefore, unit-gate area model can be used for

estimation of power consumption of a circuit.

2.2.4. Combined Circuit Performance Measures

Depending on the requirements of the design, circuit performance can be mea-

sured in terms of either area, time, power consumption, or combination of those.

8

Some of the most common combined performance measures are area-timing product

(ATP), power-timing product (PTP), area-timing-square product (AT2P), and area-

square-timing product (A2TP). ATP roughly indicates the circuit size per data items

processed per time unit. AT2P tries to stress time objective than area while A2TP

stresses area objective more than time. PTP can be regarded as the power dissipation

per computation. The common property of all those combined performance metrics is

that the smaller the used combined metric is, the higher the performance of the cor-

responding circuit is. Also, we can use aforementioned unit-gate models to calculate

these combined performance metrics.

2.2.5. Asymptotic O-notation

Using the circuit complexity and performance models given in Sections 2.2.1 up

to 2.2.4, we obtain a complexity function, mathematical function of input parameters,

for the circuit. For MF circuits examined in this thesis, input parameters are the count

of the numbers to be compared (n) and the bitwidth of each number (k). Hence, we

obtain complexity functions such that gcomplexity = g(n, k).

In comparing the complexities of different circuits, not all terms of a circuit’s

complexity function is essential. Instead, only the rate of growth or the order of mag-

nitude of the complexity function is typically of the most concern [21]. Asymptotic

notations are symbols used in computational complexity theory [22] to express the

efficiency of algorithms with a focus on their orders of growth. In this thesis, we use

one of the most widely-used asymptotic notations to compare efficiency of our circuits’

complexity functions: O-notation.

O-notation denotes the asymptotic upper bounds of the complexity functions.

Given to functions g(n) and h(n) that map a natural number n to some positive value,

it is said that g(n) = O(h(n)) (pronounced as “g(n) is big-oh of h(n)”or as “g(n) is of

order at most h(n)) if two constants c and n0 exist such that the following proposition

9

is true:

∀n ≥ n0 : g(n) ≤ c g(n)

Note also that O(h(n)) denotes a set of functions and the equality sign in g(n) =

O(h(n)) denotes the set membership, namely g(n) ∈ O(h(n)). The following are legal

expressions in computational theory:

1

3
n2 = O(n2)

n3 + 1000n2 + n = O(n3)

4n log n+ n = O(n log n)

2n3 = O

(
1

7
n3

)
2n3 = O

(
n3 + n2

)
Although the last three expressions are valid, we do not prefer them while describing

complexities of our circuits. We choose the asymptotic notation to be as simple and

as informative as possible. Table 2.1 lists some of the most common O-notations and

their aliases in ascending complexity order.

Table 2.1. Frequently used orders of functions and their aliases.

O-notation Alias

O(1) Constant complexity

O(log n) Logarithmic complexity

O(n log n) linearithmic, loglinear, or quasi linear

O(n2) Quadratic complexity

O(n3) Cubic complexity

O(nc), c >1 Polynomial complexity

O(cn), c >1 Exponential complexity

O(n!) Factorial complexity

10

3. PREVIOUS WORK

In this chapter we shall examine the existing MF circuit topologies: Array Topol-

ogy (AT) [1], Row Topolgy (RT) [2], Selection Topology (ST) [3], Traditional Binary

tree Topology (TBT), Parallel Binary tree Topology (PBT) [4,14], Multi-Level Topology

(MLT) [5], and Leading-zero Counting Topology (LCT) [5].

3.1. Array Topology (AT)

AT [1] is best described as a filter. It starts with all elements being candidates

for the maximum, looks at each bit from most significant bit (MSB) to least significant

bit (LSB), and narrows down the candidates in each iteration until only one is left.

An (n,k)-AT circuit is organized as a k -by-n array of AT -cells as shown in Figure 3.1.

Row r of the array consists of n AT-cells that form bit-slice r of n elements. Each

column c of the array consists of k AT-cells corresponding to Dc. AT first initializes

the enable signals (en0:n−1,k−1) of the AT-cells residing in (k − 1)-th row of AT, and

then applies the following steps for each bit-slice (row) r (r = k − 1 DOWNTO 0) of

AT, as shown in the second row of Figure 3.1:

(i) Each cell c in the bit-slice performs an AND operation on its input dc,r and its

corresponding enable signal (enc,r) using a 2-input AND gate (labelled with i in

Figure 3.1).

(ii) An n-input OR gate (labeled with ii in Figure 3.1) computes the dW,r (r -th bit

of the winner element DW) using the 1-bit signals produced in Step (i).

(iii) Computed dW,r is inverted by an inverter (labeled with iii in Figure 3.1).

(iv) Each cell c in the bit-slice performs an AND operation on its input enc,r with the

inverted signal in Step (iii) using a 2-input AND gate (labeled with iv in Figure

3.1).

(v) Each cell c in the bit-slice computes the enable signal enc,r−1 of the corresponding

AT-cell in the next bit-slice r−1 with an 2-input OR gate(labeled with v in Figure

3.1).

11

As it can be seen, the two 2-input AND gates (i and iv in Figure 3.1) filters out the

elements, whose enable signal is zero. If the enable signal of an element is 1, the 2-input

AND gate (iv in Figure 3.1) checks whether the corresponding bit of the element is

the same as the corresponding bit of the winner element, which is computed by the

n-input OR gate (ii in Figure 3.1). If these two bits are equal, the enable signal of the

corresponding element becomes 1 for the next row and becomes zero otherwise. In AT,

Figure 3.1. Array Topology [1].

enable (en) signals ripple down from MSB to LSB. Thus, dW,j cannot be determined

until the enn−1:0,j+1 signals settle down.

As it can be seen in Figure 3.1, AT produces the value and one-hot address of

the maximum (winner) element.

12

3.1.1. Theoretical Complexity of AT

An AT-cell consists of two 2-input AND gates and one 2-input OR gate, and thus,

we can write the following complexity expressions for an AT-cell, using the complexity

models discussed in Section 2.2:

tAT–cell = tAND2 + tOR2 = 1 + 1 = 2 (3.1)

AAT–cell = 2× AAND2 + AOR2 = 2× 1 + 1 = 3 (3.2)

PAT–cell = AAT–cell = 3 (3.3)

Complexity functions of each n-input OR gate that resides in the rows of AT:

tORn = log2 n× tOR2 = log2 n (3.4)

AORn = (n− 1)× AOR2 = n− 1 (3.5)

PORn = AORn = n− 1 (3.6)

The total complexity of AT:

tAT = k × (1 + tORn + tAT–cell) = k × (1 + log2 n+ 2)

= k × (log2 n+ 3)

= O(k × log2 n+ k) (3.7)

AAT = k × n× AAT–cell + k × AORn

= k × n× 3 + k × (n− 1) = 4× k × n− k

= O(k × n) (3.8)

PAT = AAT = 4× k × n− k = O(k × n) (3.9)

13

3.2. Row Topology (RT)

RT [2] determines the maximum of n elements in k cycles, where k is the width

of each element. RT can be thought of as a row of AT with additional storage elements

within RT-cells as seen in Figure 3.2. RT also uses a shift register to store the value

Figure 3.2. Row Topology [2].

of the maximum element. RT computes one bit of the maximum value in each cycle,

from MSB to LSB. After k cycles, the maximum value becomes available in the shift

register. One-hot address of the maximum element is also available in cycle k. RT first

clears all the flip-flops with a start pulse and then applies the following steps for each

clock cycle c (c = k − 1 DOWNTO 0), as shown in Figure 3.2:

(i) The bit-slice dn−1:0,c is made available at the input ports In−1:0 respectively.

(ii) xn−1:0 signals are concurrently computed using 2-input NAND gates (labeled with

i in Figure 3.2).

(iii) An n-input NAND gate (labeled with ii in Figure 3.2) computes the dW,c (c-th

most significant bit of the winner element DW) using xn−1:0 signals produced in

14

Step (i).

(iv) When an input x of the n-input NAND gate equals to the dW,c computed in Step

(iii), the corresponding D flip-flop changes its state (Q signal in Figure 3.2) in

the next clock cycle c− 1. This operation is concurrently carried out by 2-input

AND gates (labeled with iii in Figure 3.2) and 2-input OR gates (labeled with

iv in Figure 3.2).

(v) Finally, computed dW,c value is moved into the shift register with the next clock

pulse.

Note also that xn−1:0 signals at the final cycle give the one-hot address of the maximum

element. In addition, RT is not our competitor as it computes the maximum element

in multiple clock cycles.

3.2.1. Theoretical Complexity of RT

An RT-cell consists of a 2-input AND gate, a 2-input OR gate,a 2-input NAND

gate, and a D flip-flop. Hence, we can write the following complexity expressions for

an RT-cell, using the complexity models discussed in Section 2.2:

tRT–cell = tNAND2 + tAND2 + tOR2 = 1 + 1 + 1 = 3 (3.10)

ART–cell = ANAND2 + AAND2 + AOR2 + ADFF = 1 + 1 + 1 + 4 = 7 (3.11)

PRT–cell = ART–cell = 7 (3.12)

In above calculations, we ignore clock-to-q delay and setup time of the D flip-flop.

Also, we take the area of the flip-flop as 4 unit gates as indicated in [2].

Complexity expressions for the n-input NAND gate:

tNANDn = log2 n× tNAND2 = log2 n (3.13)

ANANDn = (n− 1)× ANAND2 = n− 1 (3.14)

PNANDn = ANAND2 = n− 1 (3.15)

15

The total complexity of RT:

tRT = k × (tNANDn + tRT–cell) = k × (log2 n+ 3)

= O(k × log2 n+ k) (3.16)

ART = n× ART–cell + ANANDn + AShiftReg

= n× 7 + (n− 1) + (4× k) = 8× n+ 4× k − 1

= O(n+ k) (3.17)

PRT = ART = O(n+ k) (3.18)

3.3. Selection Topology (ST)

In [3], finding the maximum is thought of as a subset of selection operation, which

refers to finding an element of given order from an ordered set of elements. And an MF

circuit topology, which we call Selection Topology (ST), was proposed. ST computes

the position(s) of the maximum element(s) of a set of n k -bit numbers in k cycles, and

outputs the result as an n-bit signal. In Figure 3.3, ST with the signals at the j -th

cycle is given. Similar to AT and RT, it successively operates on bits of all numbers.

Initially, each element is a candidate for the maximum element. Hence, flip-flops of

Figure 3.3 are initially set to 1. In each cycle j, ST observes the j -th bit-slice dn:0,j of

the input elements and decides if a particular element should remain as a candidate,

or if it should be permanently rejected. Thus, we obtain a subset of the initial set that

does not include the rejected elements, after each cycle j. After k cycles, we obtain

the set of the maximum element(s) and outputs of the flip-flops show the positions of

the maximum element(s). In order to select the maximum value we need an additional

priority encoder followed by a multiplexer circuit. In addition, ST is not our competitor

as it computes the maximum element in multiple clock cycles.

16

Figure 3.3. Selection Topology [3].

3.3.1. Theoretical Complexity of ST

Total complexity of ST:

tST = k × (tAND2 + tORn + tmux2) = k × (1 + log2 n+ 2)

= k × (log2 n+ 3) = O(k × log2 n+ k) (3.19)

AST = n× (AAND2 + Amux2 + ADFF) + AORn

= n× 7 + (n− 1) = 8× n− 1

= O(n) (3.20)

PST = AST = O(n) (3.21)

3.4. Traditional Binary Tree Topology (TBT)

The most widely used MF circuit topology in the literature is traditional binary

tree topology (TBT), in which (2,k)-cmp-mux blocks are connected in a binary tree

configuration. In Figure 3.4, an (8,k)-TBT is given as an example.

A (2,k)-cmp-mux in `-th level of the binary tree, given in Figure 3.5, has two

(k + `)-bit inputs (A and B in Figure 3.5) and a (k + ` + 1)-bit output. The most

17

Figure 3.4. Traditional Binary Tree Topology (n = 8).

significant ` bits of an input signal represent the address of winner element determined

by the preceding sub-tree rooted at this input port. And, the remaining k bits of

an input signal is the value of the aforementioned winner element. For instance, in

Figure 3.4, sel7654 is the address of the maximum of elements D7, D6, D5, and D4,

while max (D7, D6, D5,D4) is the value of the maximum one. Each (2,k)-cmp-mux in

`-th level of the binary tree consists of a (2,k)-comparator (cmp) (denoted as A>B

in Figure 3.5) to determine which one of its two inputs is greater, and a (k + `)-bit

2-to-1 multiplexer (mux) to select the greater input. The multiplexer uses the output

of the comparator (selAB in Figure 3.5) to make the selection. Data inputs of the

multiplexers in the `-th level of the tree are (k + `)-bit signals in order to transfer the

binary addresses and the values of the maximum elements so far computed to the next

level of the binary tree.

In TBT, efficient hardware implementation of (2,k)-comparators is crucial to re-

duce the latency. To determine the greater one of two k -bit binary numbers A and B,

we only need to apply a subtraction operation, (A−B) or (B−A), and then to check

only the final carry bit of the operation. Hence, we can utilize parallel prefix adders to

implement delay- and area-efficient (2,k)-comparators, as in [23]. Parallel prefix adders

concurrently compute generate (gi) and propagate (pi) signals as a preprocessing step,

18

Figure 3.5. Internal structure of a (2,k)-cmp-mux.

which takes O(1) time. Then, they compute group generate (Gi:j) and group propagate

(Pi:j) signals between bit positions i and j using parallel prefix structures, which can

compute the final carry in O(log2k) time. Finally, they calculate the sum in O(1) time.

Since we only need to compute the final carry bit, we do not need to compute the sum

and to determine carry bit for each bit position. Thus, we only use preprocessing logic

and a binary tree part of the parallel prefix structure, which produces the final carry in

order to implement a (2,k)-comparator circuit. A (2,8)-comparator is shown in Figure

3.6 as an example and as a reference for theoretical complexity calculations in Section

3.4.1.

19

Figure 3.6. Internal structure of a (2,k)-comparator.

3.4.1. Theoretical Complexity of TBT

Complexity expressions for (2,k)-comparator :

tcomparator = (log2 k)× tPG + tpre

= (log2 k)× (tOR2 + tAND2) + tpre = (log2 k)× (1 + 1) + 2

= 2× log2 k + 2 = O((log2 k)) (3.22)

Acomparator = k × Apre + (k − 1)× APG

= k × (AXOR + AAND2) + (k − 1)× (AOR2 + 2× AAND2)

= k × (2 + 1) + (k − 1)× (1 + 2× 1) = 6× k − 1 = O(k) (3.23)

Pcomparator = Acomparator = 6× k − 1 = O(k) (3.24)

20

Complexity expressions for (2,k)-cmp-mux :

tcmp−mux = tcomparator + tmux2

= (2× log2 k + 2) + (tAND2 + tOR2) = 2× log2 k + 4

= O(log2 k) (3.25)

Acmp−mux = Acomparator + k × Amux2

= (6× k − 1) + k × (2× AAND2 + AOR2) = 6× k − 1 + 3× k

= 9× k − 1 = O(k) (3.26)

Pcmp−mux = Acmp−mux = 9× k − 1 = O(k) (3.27)

Complexity functions for (n,k)-TBT:

tTBT = log2 n× tcmp−mux = log2 n× (2× log2 k + 4)

= 2× log2 n× log2 k + 4× log2 n = O(log2 n× log2 k + log2 n) (3.28)

ATBT = (n− 1)× Acmp−mux + Aextra

= (n− 1)× (9× k − 1) + (log2 n− 1)× Amux2

= (9× k × n− n− 9× k + 1) + (log2 n− 1)× 3

= O(k × n) (3.29)

PTBT = ATBT = O(k × n) (3.30)

The Aextra term of Equation 3.29 denotes the area overhead caused by the fact that

we convey both the value and the address of the maximum element to the next level

of TBT.

3.5. Parallel Binary Tree Topologies (PBTs)

Since the (2,k)-comparators of TBT propagates signals from LSB to MSB, a node

((2,k)-cmp-mux) at the level (` + 1) of TBT cannot start comparison before its two

descendant nodes at level ` computes all k bits of their results. Authors of [4, 14]

propose an MF topology, which we call Parallel Binary Tree (PBT), to reduce the

21

overall propagation delay of TBT by using (2,k)-cmp-mux circuits that propagate the

signals from MSB to LSB. Using this kind of (2,k)-cmp-mux circuits, more significant

result bits of a (2,k)-cmp-mux circuit in the tree become available to its descendant

(2,k)-cmp-mux circuit and the descendant can start comparison operation before the

end of the comparison in the predecessor. In other words, each level of the binary tree

concurrently operates on the different bit positions of its inputs. Hence, we call this

topology as PBT to distinguish it from TBT. To illustrate the operation of PBT, a

conceptual (8,4)-PBT example is given in Figure 3.7. In this conceptual PBT circuit,

each node of the tree computes its result bit-by-bit from MSB to LSB. The sequence

of the events and propagation of the results through (8,4)-PBT of Figure 3.7 can be

summarized as follows:

Figure 3.7. An example (8,4)-PBT circuit.

• (t = 0). (2,4)-comparators at Level-0 start to compare MSBs (4th bits) of their

corresponding inputs.

• (t = 1). The winners of MSB comparisons at Level-0 conveyed to corresponding

22

(2,4)-comparators at Level-1. At the same time, (2,4)-comparators at Level-0

start to compare 3rd bits of their inputs.

• (t = 2). (2,4)-comparators at Level-0 start to compare 2nd bits of their inputs

and (2,4)-comparators at Level-1 start to compare 3rd bits of their inputs. Con-

currently, (2,4)-comparators at Level-2 start to compare MSBs of their inputs.

• (t = 3). (2,4)-comparators at Level-0 start to compare LSBs (1st bits) of their

inputs and (2,4)-comparators at Level-1 start to compare 2nd bits of their inputs.

Concurrently, (2,4)-comparators at Level-2 start to compare 3rd bits of their

inputs.

• (t = 4). (2,4)-comparators at Level-0 complete their jobs. (2,4)-comparators at

Level-1 start to compare 1st bits of their inputs. Concurrently, (2,4)-comparators

at Level-2 start to compare 2nd bits of their inputs.

• (t = 5). (2,4)-comparators at Level-1 finish their jobs. Concurrently, (2,4)-

comparators at Level-2 start to compare 1st bits of their inputs. And all bits of

the result will be available at t = 6.

In [4, 14], three PBT variants are proposed, each of which utilizes a different

well-known adder topology: Ripple Carry parallel binary tree Topology (RCT), Carry

Lookahead parallel binary tree Topology (CLT), and Carry Select parallel binary tree

Topology (CST). They define a 2-bit carry signal ({choose, found}) propagating from

MSB to LSB. The found bit of the carry signal at bit-position i indicates if the winner

is determined so far by comparators between MSB and the bit-position i. The choose

bit of the carry signal at bit-position i indicates which one of the inputs is the winner.

For instance, a (2,k)-cmp-mux of RCT consists of k cascaded (2,1)-RC-cells (a kind

of (2,1)-cmp-mux). Each RC-cell at bit-position i computes the carry input of bit-

position i− 1 and select signal for the multiplexer that selects bit i of the result. We

shall examine each of the three variants in a separate subsection (in Sections 3.5.1

–3.5.3) to show more clearly the differences between them.

23

3.5.1. Ripple Carry Parallel Binary Tree Topology (RCT)

In RCT, each node of the tree is a (2,k)-RC-cell, which is functionally equivalent

to a (2,k)-cmp-mux and consists of serially connected k (2,1)-RC-cells as shown in

Figure 3.8. A (2,1)-RC-cell at the bit position i produces bit i of the winner element

(mi in Figure 3.8) as well as carry signal for the bit position i − 1. The (2,1)-RC-cell

Figure 3.8. A node ((2,k)-RC-cell) of Ripple Carry PBT [4].

at the bit position i computes its outputs using the following equations [4]:

choosei = choosei+1 + foundi+1.(ai.bi) (3.31)

foundi = foundi+1 + (ai ⊕ bi) (3.32)

mi = choosei.bi + choosei.ai (3.33)

3.5.2. Carry Select Parallel Binary Tree Topology (CST)

In a (2,k)-RC-cell, each (2,1)-RC-cell has to wait for an incoming carry signal to

compute its result bit. To reduce this linear dependency, CST adapts the idea of carry

select adders to the comparison operation, and uses (2,k)-CS-cells (see Figure 3.9) at

the nodes of PBT. Internal structure of the (2,k)-CS-cell is similar to that of carry

select adders. A (2,k)-CS-cell consists of cascaded (2,pi)-CS-cells. A (2,pi)-CS-cell

consists of three blocks: A (2,pi)-ripple-block, (2,pi)-mux-block, and a (2,pi)-CS-block.

The ripple-block is the carry generator part of the RC-cell and the mux-block is a pi

24

bit 2-to-1 multiplexer. The CS-block takes carry signals from the previous CS-cell as

well as from the current ripple-block, and then computes select signals of the current

mux-block besides carry signals for the next CS-cell. At the beginning, each (2,pi)-CS-

cells starts to compute corresponding pi bits of the winner as if higher order bits of the

inputs were equal and then the CS-block selects the correct result when the true value

of the incoming carry signal is determined.

Figure 3.9. (a) Linear configuration of a (2,k)-CS-cell [4]. (b) Internal structure of

the CS-block.

In CST, a mismatch between the arrival time of the input carry signals and

preparation time of the out carry signals: The closer a (2,pi)-CS-cell to LSB is, the

earlier it prepares the output carry signal and the later its input carry arrives. In

order to get around the mismatch, a square–root configuration was designed in [4]. In

the square–root configuration the pi values are chosen as {p1 =
√

2k, p2 = p1 + 1,. . . ,

pfinal = pfinal−1+1 } to obtain a timing complexity of O(
√
k). We shall use this version

in Chapter 6 while we are obtaining synthesis results. In Figure 3.10, the authors also

introduces a new type of block, namely half carry-select block (HCS-block), which is a

simplified version of CS-block. The purpose of HCS-block is reducing the fanout on

the critical path of (2,k)-CS-cell. Further details can be found in [4].

25

Figure 3.10. Square-root configuration of a (2,k)-CS-cell [4].

3.5.3. Carry Look-ahead Parallel Binary Tree Topology (CLT)

CLT eliminates the ripple effect in RCT and CST using the following Boolean

equations:

gci = ai.bi (3.34)

gfi = ai ⊕ bi (3.35)

choosei =
i∑

x=k−1

(
i+1∏

y=x+1

gfy

)
.gcx (3.36)

foundi =
i∑

x=k−1

gfx (3.37)

Using this equations, carry signals for each bit position can be computed as soon as

the inputs A and B becomes available to the corresponding node of the PBT.

Although it was not mentioned in [4, 14], we can use parallel prefix networks

(PPNs) to compute choosei and foundi signals in Equations 3.36 and 3.37. Hence, we

also implemented four different PPN variants of CLT, each of which uses a different

PPN topology: Brent-Kung PBT (BKT) [15], Kogge-Stone PBT (KST) [17], Han-

Carlson PBT (HCT) [16], and Ladner-Fischer PBT (LFT) [18]. Note that we shall

name the MF topology, which directly implements the Equations 3.34 –3.37 in Verilog,

as Carry-lookahead Equations Topology (CET). In Figure 3.11, we show the PPNs for

26

n = 8 as an example.

Figure 3.11. Four baseline PPN topologies for CLT: (a) Ladner-Fisher (LF). (b)

Kogge-Stone (KS). (c) Brent-Kung (BK). (d) Han-Carlson (HC).

3.5.4. Theoretical Complexity of PBTs

In Table 3.1, we give the theoretical complexities of seven different PBT variants:

RCT, CST, CLT, LFT, BKT, KST, and HCT. As the detailed analysis of RCT, CST,

and CLT can be found in [4], we do not give detailed complexity equations for them.

Since area and power consumption are the same according to our complexity models

explained in Section 2.2, we do not list the power consumption complexity functions

in Table 3.1.

27

Table 3.1. Theoretical complexity expressions of PBTs.

Topology Timing Complexity Area Complexity

RCT O(log2 n+ k) O(n× k)

CST O(
√
k) + O((

√
k − log2 n)× log2n) O(n× k)

CET O(log2 n× log2 k) O(n× k)

LFT O(log2 n× log2 k) O(n× k × log2 k)

BKT O(log2 n× log2 k) O(n× k)

KST O(log2 n× log2 k) O(n× k × log2 k)

HCT O(log2 n× log2 k) O(n× k × log2 k)

3.6. Leading-zero Counting Topology (LCT)

Leading-zero Counting Topology (LCT) [5] consists of two cascade stages. In the

first stage, value of the winner (i.e. maximum) element is determined. And in the

second stage, binary address of the winner is computed. In the first stage, each of the

n elements is converted into a one-hot code and then a 2k-bit vector B is obtained by

applying OR operation on the one-hot elements. Finally, the k -bit value of the winner

element is computed using an a leading-zero counting (LZC) algorithm (a priority

encoder). In the second stage, each element is first compared with the winner element

to obtain n-bit vector D. Finally, the LZC is used to determine log2 n-bit address of

the winner element from D. As a result, LCT outputs both value and binary address

of the winner. In Figure 3.12, we present a (8,k)-LCT circuit as an example.

28

Figure 3.12. Leading-zero Counting Topology [5] (n = 8).

3.6.1. Theoretical Complexity of LCT

Complexity formulas for a (n,k)-LCT :

tLCT = tone−hot + tORn + tLZC1 + tEquality−comparator + tLZC2

= (k + 1) + 2× log2 k + 2× log2 n+ 3 = O(k + log2 k + log2 n) (3.38)

ALCT = Aone−hot + AORn + ALZC1 + AEquality−comparator + ALZC2

= (2k × (k − 1)) + (2k × (k − 1)) + (
2k

2
× k)

+ (k × 2 + k − 1) + (
n

2
× log2 n)

= 2k × (
3× k

2
+ n− 2) + 2k + 1 +

n

2
× log2 n

+ (
n2 − 2× n+ 8

8
) + (

n− 2

2
)× k × 3

= O(2k × (n+ k)) (3.39)

PLCT = ALCT = O(2k × (n+ k) (3.40)

29

3.7. Multi-Level Topology (MLT)

In Multi-Level Topology (MLT) [5], inputs are first divided into 2-element groups

and the winner of each group is determined by a (2,k)-cmp-mux circuit. Then, a

parallel comparison (i.e., every pair is compared each other) is applied between groups

using (2,k)-comparators. Finally, the value of the winner is transferred to the output

through a serial configuration of the multiplexers. A (8,k)-MLT is given in Figure 3.13

as an example. Second stage of MLT topology has the same architecture as comparator

Figure 3.13. Multi-Level Topology [5] (n = 8).

array unit of our AbT, which we shall explain in Section 4.1. However, MLT does not

utilize the concurrency between comparison and selection operations (3rd stage of MLT)

in contrast to our approach. Also, MLT outputs only the value of the winner element.

We can serially connect the second stage of LCT to the output of MLT to obtain the

binary address of the maximum element.

30

3.7.1. Theoretical Complexity of MLT

Complexity formulas for a (n,k)-MLT :

tMLT = t1ststage + t2ndstage + t3rdstage

= tcmp−mux + tcomparator + (
n

2
− 1)× tmux2

= (log2 k + 2) + log2 k + (
n

2
− 1)× 2

=
n

2
+ 2× log2 k = O(n+ log2 k) (3.41)

AMLT = A1ststage + A2ndstage + A3rdstage

=
n

2
× Acmp−mux + (

n2 − 2× n
8

)× Acomparator

+ (
n2 − 2× n+ 8

8
)× AAND2 + (

n− 2

2
)× k × Amux2

=
n

2
× (9× k − 1) + (

n2 − 2× n
8

)× (6× k − 1)

+ (
n2 − 2× n+ 8

8
) + (

n− 2

2
)× k × 3

= O(k × n2) (3.42)

PMLT = AMLT = O(k × n2) (3.43)

31

4. PROPOSED MF CIRCUIT TOPOLOGIES

In this chapter, we present the details of our proposed topologies: Array based

Topology (AbT), Hybrid Binary tree Topology (HBT), and Quad tree Topology (QT).

4.1. Array Based Topology (AbT)

AbT is a fast MF circuit topology, where the main idea is first producing an n×n

array of 1-bit comparison results by comparing every pair of input elements in parallel,

and then concurrently generating the address as well as the value of the maximum

element via output logic. Carrying out all possible comparisons in parallel allows us

to avoid log2 n stages of the binary tree topologies, and thus, AbT ends up with just

one comparator on the critical path followed by some selection logic.

The conceptual block diagram of AbT is given in Figure 4.1. AbT consists of

three blocks in the top-level: Comparator Array Unit (CAU), Address Generation

Unit (AGU), and Data Selection Unit (DSU). CAU computes all magnitude relations

Figure 4.1. High-level block diagram of AbT.

in parallel, which are necessary to compute one-hot address of the maximum. AGU

rapidly generates one-hot and/or binary address of the maximum by processing the

32

results of CAU. DSU operates concurrently with AGU and conveys the maximum

element to the output. DSU uses the signals produced by intermediate stages of AGU,

and hence, it does not bring any (theoretical) delay overhead on AGU.

Detailed structure of AbT will be described in the following subsections.

4.1.1. Comparator Array Unit (CAU)

CAU can be thought of as a preprocessing unit that constructs an n×n array (see

Figure 4.2) of 1-bit comparison results gxy (gxy = Dy > Dx, where ∀x, y ∈ [0, n−1]) by

concurrently computing all required magnitude relations between the inputs (Di) to

produce the one-hot address of maximum. Note that x and y denote the corresponding

column and row of the array, respectively, throughout this subsection.

In order to determine if a specific element Di is the maximum (DW) of the n

elements, we need to compare the element Di with all of the other elements (Dj, where

j 6= i) and thus we need (n − 1) comparison operations. For instance, the following

logic equation gives us if D0 is the maximum element of our input set D.

m0 = (D0 ≥ D1) · (D0 ≥ D2) · (D0 ≥ D3) · . . . · (D0 ≥ Dn−1)

= (D1 < D0) + (D2 < D0) + (D2 < D0) + . . . (Dn−1 < D0) (4.1)

If we apply the same operations to each element of the set D, we obtain Equation

4.2. In Equation 4.2, each bit mi specifies whether the element Di has the maximum

value or not. In regards to Equation 4.2, we need n× (n−1) comparison operations to

determine the position(s) of the maximum element(s). We can do all of these operations

in parallel as there is no data dependency between the required comparison operations.

However, Equation 4.2 cannot handle the cases in which more than one element

has the maximum value. In such cases, the computed n-bit vector (mn−1mn−2 . . .m1m0)

shall not be one-hot. Thus, we need a priority encoder circuit to obtain the one-hot

address of the maximum element. This priority encoder brings an extra area and de-

33

lay overhead to the AGU. Fortunately, this problem can be solved by embedding the

priority information into Equation 4.2. As a result, we obtain Equation 4.3.

m0 = (D0 ≥ D1) · (D0 ≥ D2) · (D0 ≥ D3) · . . . · (D0 ≥ Dn−1)

= (D0 < D1) + (D0 < D2) + (D0 < D3) + . . .+ (D0 < Dn−1)

m1 = (D1 ≥ D0) · (D1 ≥ D2) · (D1 ≥ D3) · . . . · (D1 ≥ Dn−1)

= (D1 < D0) + (D1 < D2) + (D1 < D3) + . . .+ (D1 < Dn−1) (4.2)

...

mn−1 = (Dn−1 ≥ D0) · (Dn−1 ≥ D2) · (Dn−1 ≥ D3) · . . . · (Dn−1 ≥ Dn−2)

= (Dn−1 < D0) + (Dn−1 < D2) + (Dn−1 < D3) + . . .+ (Dn−1 < Dn−2)

m0 = (D0 > D1) · (D0 > D2) · (D0 > D3) · . . . · (D0 > Dn−1)

= (D0 ≤ D1) + (D0 ≤ D2) + (D0 ≤ D3) + . . .+ (D0 ≤ Dn−1)

=
n−1∑
y=1

(D0 ≤ Dy)

m1 = (D1 ≥ D0) · (D1 > D2) · (D1 > D3) · . . . · (D1 > Dn−1)

= (D1 < D0) + (D1 ≤ D2) + (D1 ≤ D3) + . . .+ (D1 ≤ Dn−1)

= (D1 < D0) +
n−1∑
y=2

(D0 ≤ Dy) (4.3)

...

mn−1 = (Dn−1 ≥ D0) · (Dn−1 ≥ D2) · (Dn−1 ≥ D3) · . . . · (Dn−1 ≥ Dn−2)

= (Dn−1 < D0) + (Dn−1 < D1) + (Dn−1 < D2) + . . .+ (Dn−1 < Dn−2)

=
n−2∑
y=0

(D2 < Dy)

34

We can also rewrite Equation 4.3 as in Equation 4.4:

mx =

(
x−1∑
y=0

(Dx < Dy)

)
+

(
n−1∑

y=x+1

(Dx ≤ Dy)

)

=

(
x−1∑
y=0

(gxy)

)
+

(
n−1∑

y=x+1

(gyx)

)
(4.4)

In this embedded priority scheme, the greater the address of an element Di is, the

greater its priority is. Using this priority scheme, we break the tie when multiple

inputs possess the maximum value, and we obtain a one-hot n-bit address vector

(mn−1mn−2 . . .m1m0) without any delay and area overhead. The priority scheme also

leads to an area optimization in CAU, which shall be clear in the following paragraphs.

As seen in Equation 4.4, in order to find any mx, we first compute n magnitude

relations and then apply a NOR operation on the computed relations. Hence, we

should compute n2 magnitude relations and should apply n NOR operations to obtain

the whole one-hot address. The required relations are concurrently computed by CAU,

while NOR operations are applied by AGU.

Fortunately, we can reduce the number of (2,k)-comparators required to obtain

gxy values. First, we do not need to compute gxy values on the diagonal of the array

because they are all zero. Second, we can compute the lower triangular part (x < y)

of the array by transposing and inverting the upper triangular part (x > y) owing to

our priority scheme. Hence, we can find gxy value residing in column x and row y of

the array using Equation 4.5.

gxy =

0 if y = x,

Dy > Dx if y < x ∀x, y ∈ [0, n− 1]

gyx if y > x

(4.5)

Based on Equation 4.5, we compute n (n − 1)/2 gxy values within the upper

triangular part with n (n− 1)/2 (2,k)-comparators. Then, we use n (n− 1)/2 inverters

35

to compute n (n − 1)/2 gxy values within the lower triangular part, as illustrated in

Figure 4.2. In this figure, we use gray dotted lines to show the array cells computed by

inverters, while we use gray solid lines for inverters and their connections. On the other

hand, we use black solid lines for the cells computed directly by (2,k)-comparators.

Each (2,k)-comparator of Figure 4.2 determines whether its first input (Dy) is greater

than its second input (Dx) and produces a 1-bit output (gxy). We utilize PPN adder

topologies to implement (2,k)-comparators of CAU as mentioned in Section 3.4. As a

result, CAU can compute the required n2 relations, in Equation 4.5, in O(log2 k) time.

Figure 4.2. Block diagram of CAU: (a) Conceptual array view. (b) Interconnection of

CAU blocks.

4.1.2. Address Generation Unit (AGU)

AGU computes one-hot and/or binary address of the maximum element using

n (n− 1) magnitude relations computed by CAU.

AGU uses an n-input NOR gate to compute each bit of one-hot address and an

encoder circuit to compute binary address, as shown in 4.3b. The n-element NOR

gate, which produces mx of Equation 4.4, uses (n–1) gxy values within the column x of

CAU. We implement an n-input NOR gate as a binary tree of 2-input OR gates with

a final inverter. Similarly, we implement the encoder circuit as a binary tree of 2-input

OR gates. Hence, AGU can generate one-hot and/or binary address of the maximum

36

element in O(log2 n) time. CAU and AGU are connected to each other as illustrated

in 4.3a.

Figure 4.3. (a) Interconnection of CAU and AGU. (b) Block diagram of AGU.

The following example, which is also shown in Figure 4.4 is useful to understand

how CAU and AGU function together. Let D be {D3, D2, D1, D0} = {10001, 11010,

01001, 11010}. In this case, we have n = 4 and k = 5. In Figure 4.4, we explicitly give

equation sets obtained from Equations 4.3 and 4.4. As it can be seen in the figure, we

first compute each row of the upper triangular part of the array via (2,5)-comparators.

Then, we compute the values within the lower triangular part of the array using only

inverters. In this example, the maximum element is D2, and our (4,5)-AbT example

outputs one-hot address as “0100” and binary address as “10” in Figure 4.4.

4.1.3. Data Selection Unit (DSU)

DSU is a binary tree of k -bit 2-to-1 multiplexers and operates concurrently with

AGU. Ideally, DSU does not cause any extra delay overhead to AGU. This can be

proven by a simple timing analysis: In order to determine the select input of a 2-to-1

multiplexer at level j of the DSU, a 2j−1-input NAND gate is needed. Each input of

37

Figure 4.4. An example for AbT without DSU (n = 4, k = 5).

this NAND gate comes from the level j–1 of associated OR trees of AGU. Assuming

that all gxy values of CAU is ready at the time (t = 0), arrival times for data (tdata)

and select (tselect) input signal of the a 2-to-1 multiplexer at the level j of DSU are

given in Equations 4.6 and 4.7.

tselect = t
ORtree

+ tNAND = log2 2j−1 + (j − 1) = 2× j − 2 (4.6)

tdata = (j − 1)× tmux = 2× j − 2 (4.7)

Equations 4.6 and 4.7 prove that select and data signals arrive at the same time. An

example for n = 8 is given in Figure 4.5. In Figure 4.5, OR trees of AGU are shown

as gray solid lines. Also, data and select signals are shown as black solid and dotted

lines, respectively. Arrival times of these signals are also given in Figure 4.5.

In reality, however, the situation is a little different. Adding DSU increases the

fanout where it taps into AGU, causing some extra delay overhead to AGU. We shall

examine the delay overhead of DSU in Section 6.2.1 with an empirical approach.

38

Figure 4.5. Data selection unit (DSU) with OR trees of AGU.

4.1.4. Theoretical Complexity of AbT

We can estimate the theoretical complexity of an (n,k)-CAU as follows:

tCAU = tcomparator

= (2× log2 k + 2) = O(log2 k) (4.8)

ACAU =
n× (n− 1)

2
× Acomparator

=
n× (n− 1)

2
× (6× k − 1) = O(k × n2) (4.9)

PCAU = ACAU = O(k × n2) (4.10)

Complexity formulas for a (n,k)-AGU:

tAGU = tNORn

= log2 n = O(log2 n) (4.11)

AAGU = n×+ANORn

= n× (n− 1) = O(n2) (4.12)

PAGU = AAGU = O(n2) (4.13)

39

We can write the following formulas that compute the theoretical complexity of (n,k)-

DSU:

tDSU = log2 n× tmux2

= log2 n× (tOR2 + tAND2)

= log2 n× 2 = O(log2 n) (4.14)

ADSU = AMUXes + ANANDs

= ((n− 1)× Amux2) +

(
log2 n∑
l=1

(l − 1)× n

2l

)

= ((n− 1)× 3× k) +

(
(log2 n− 1)× log2 n

2

)
= O(k × n) (4.15)

PDSU = ADSU = O(k × n) (4.16)

Using the theoretical complexity formulas above, which we wrote for CAU, AGU and

DSU, we obtain the following theoretical complexity values for AbT:

tAbT = tCAU +max (tAGU , tDSU)

= O(log2 k) +O(log2 k) = O(log2 k + log2 n) (4.17)

AAbT = ACAU + AAGU + ADSU

= O(k × n2) +O(n2) +O(k × n)

= O(k × n2) (4.18)

PAbT = AAbT = O(k × n2) (4.19)

4.1.5. Other Useful Features of AbT

In this subsection, we shall talk about some possible applications, in which AbT

can be used, and also make a generalization for AbT.

First of all, we can use AbT to solve the selection problem, which can be defined

40

as finding the i -th smallest element (i -th order statistic) of a set D of n binary numbers

[24]. For instance, the maximum element (DW) is the n-th order statistic (i = n) of

the set D. AGU naturally determines the rank of input elements. The number of ones

in column j of CAU gives the rank of input Dj. For example, in Figure 4.4 columns 0,

1, 2, and 3 contain 1, 3, 0, and 2 ones, respectively. This implies the following ranking:

D2, D0, D3, D1. Hence, we can compute the i -th order statistic of the set D in four

steps: First, producing the CAU results, and then computing the sum of the elements

(gj,0:n−1) in each column j of CAU to obtain the rank of each element Dj. The third

step is comparing each computed sum sj with the order i to obtain the one-hot address

of the i -th smallest element. Finally, we select the value of the i -th smallest element

using the one-hot address. From a hardware point of view, we need adder circuits

and equality comparator circuits in addition to CAU. For the example in Figure 4.4, a

selection circuit is given in Figure 4.6.

Figure 4.6. An example AbT-based selection circuit.

The selection problem can also be solved by sorting all elements of the set and

then simply choosing the i -th element of the sorted list. However, a circuit tailored

to solve a larger problem (e.g., sorting) may be more complex than required to solve

a smaller problem (e.g., selection). For example, a bitonic sorter [25] circuit, which

is one of the well-known parallel sorting methods, sorts all elements in O((log2 n)2 ×

log2 k) time whereas the circuit in Figure 4.6 determines the address of i -th element in

O((log2 n)2 + log2 k) time. However, the bitonic sorter circuit consumes O(k n log2 n)

area while AbT has an area complexity of O(k n2). As seen from these complexity

41

expressions, for some specific values of parameters n and k, using AbT can be more

convenient than using a bitonic sorter circuit in terms of time and/or area.

Another important feature of AbT is that we can use any type of comparison

circuit (>, <, ≥, ≤) to implement (2,k)-comparators of CAU. Hence, we can rewrite

4.5 in a more general form such that:

gxy =

0 if y = x,

Dy opDx if y < x ∀x, y ∈ [0, n− 1]

gyx if y > x

(4.20)

In Equation 4.20, op specifies the type (>, <, ≥, ≤) of the (2,k)-comparators of CAU.

Depending on op, there are four possible configurations for AbT. For each configuration,

AGU uses different gxy values of CAU to compute a bit mi of one-hot address. Also,

resulting priority scheme depends on the chosen op. For each op type, gxy values used

to compute mi and the resulting priority schemes are listed in Table 4.1 for maximum

as well as minimum finder circuits. In ascending (descending) priority scheme, priority

Table 4.1. Implementation options for CAU.

op Finding Maximum Finding Minimum

AGU Inputs Priority Scheme AGU Inputs Priority Scheme

> gix Descending gyi Ascending

≤ gix Ascending gyi Descending

< gyi Ascending gix Descending

≤ gyi Descending gix Ascending

of an input element increases (decreases) as its address increases (decreases). Note

that, we have chosen op as > in Figure 4.2 and 4.3, and for experimental work which

we shall present in Chapter 6.

42

4.2. Hybrid Binary Tree Topology (HBT)

In Sections 3.4 and 3.5, we explained TBT and PBTs, respectively. In TBT,

signals are propagated from LSB to MSB, while signals in PBTs are propagated from

MSB to LSB. Thus, PBTs are superior than TBT in terms of latency (speed). On

the other hand, area complexity of (2,k)-cmp-mux circuit of TBT is less than the area

complexities of PBTs’ (2,k)-cmp-mux circuits. In this section, we propose a hybrid MF

circuit topology, which combines the speed advantage of PBTs and area advantage of

TBT. We call this topology Hybrid Binary tree Topology (HBT) since HBT is a kind

of combination of PBT and TBT. Owing to HBT, we obtain an MF topology, which is

faster than TBT and smaller than PBTs. In the following paragraphs we shall explain

the details of HBT.

For simplicity, let us first consider RCT, which is a variant of PBT. RCT can be

thought of as consisting of cascaded instances of TBT that operate in parallel as shown

in Figure 4.7. In Figure 3.7, we show the (8,4)-RCT as a binary tree configuration of

Figure 4.7. An example (8,4)-HBT circuit.

(n−1) (2,4)-cmp-mux circuits. On the other hand, in Figure 4.7, we present the (8,4)-

RCT as a ripple configuration of four (8,1)-TBT s, in which each TBT takes a bit-slice

of n input elements and computes the corresponding bit of the maximum value. These

43

TBTs operate in an interleaved manner. That is, they operate in parallel, except a

delay between subsequent bit positions that is equal to the delay of a (2,1)-RC-cell. The

carry signal flows between (2,1)-RC-cells in the same positions in different TBTs in a

ripple style. This ripple connection is shown for three out of the seven (2,4)-cmp-muxes

in Figure 4.7 so that the figure does not look crowded. Each group of four (2,1)-RC-cells

connected in a ripple forms a (2,4)-cmp-mux of PBT, which is topologically identical

to a ripple carry adder.

Hence, we can make the following generalization for an (n,k)-PBT topology,

which is also the main idea behind HBT: Any (n,k)-PBT circuit can be implemented

as a ripple configuration of dk/pe (n,p)-TBT s, in which each TBT computes the cor-

responding p bits of the maximum. We obtain (n,k)-RCT for p = 1, while we get

(n,k)-CLT when p equals to k. Similarly, we can obtain the block diagram for HBT

by generalizing Figure 4.7 to Figure 4.8.

Figure 4.8. Block diagram for an (n,k)-HBT consisting of cascaded (n,p)-TBT s.

The internal structure of each (2,p)-cmp-mux of Figure 4.8 is given in Figure

4.9. Here, we made some modifications on the cmp-mux internal structure explained

in Section 3.4 in order to incorporate the carry signals (found and choose) of PBT

into TBT. We put an additional circuitry consisting of an AND2 and an OR2 gate

44

Figure 4.9. Internal structure for a (2,p)-cmp-mux of HBT.

between the output of comparator circuit and the select input of multiplexer in order

to compute output choose signal. We also added an XOR and an OR gate block to

produce output found signal.

As it shall be seen in Section 4.2.1, HBT has a different theoretical complexity

value for each different value of p.

4.2.1. Theoretical Complexity of HBT

We should first obtain theoretical complexity expressions of our modified (2,p)-

cmp-mux :

t(2,p)−cmp−mux = max (tA>B, tchooseout , tfoundout , tvalue)

= max (log2 p, log2 p+ 2, log2 p+ 3, log2 p+ 4)

= log2 p+ 4 = O(log2 p) (4.21)

A(2,p)−cmp−mux = AA>B + Achooseout + Afoundout + Avalue

= p+ 2 + 3× p+ 3× p

= 7× p+ 1 = O(p) (4.22)

P(2,p)−cmp−mux = A(2,p)−cmp−mux = O(p) (4.23)

45

Theoretical complexity expressions of HBT:

tHBT =

(
k

p
+ log2 p− 1

)
× t(2,p)−cmp−mux

=

(
k

p
+ log2 n− 1

)
× (log2 p+ 4)

= O

((
k

p
+ log2 n

)
× log2 p

)
(4.24)

AHBT =
k

p
× t(n,p)−cmp−mux

=
k

p
× (n− 1)× t(2,p)−cmp−mux

=
k

p
× (n− 1)× (7× p+ 2) = O(k × n) (4.25)

PHBT = AHBT = O(k × n) (4.26)

4.2.2. Delay Estimator for HBT

As it can be seen in Equation 4.24, HBT has a different timing complexity for each

value of p. That is, there are multiple HBT solutions for a specific (n,k) combination

and the performance of each solution is different. Hence, we should choose the best

partition value p to implement the fastest (n,k)-HBT circuit.

The most obvious way of finding the fastest HBT implementation for a certain

combination of n and k is doing synthesis for all possible values of p and choosing the

fastest implementation from among the synthesized circuits. However, this approach

has several disadvantages. First, it is very time consuming, especially for large values

of k. Second, it is an expensive method taking into account the licensing costs of CAD

tools. Since companies generally pay high amounts of money for CAD tool licenses for

a limited time, their purpose is completing each design as soon as possible. That is,

licensing cost per design should be as small as possible. In our case, we can define a

design as implementing the fastest (n,k)-HBT for a specific (n,k) case. For our brute

force approach, however, licensing cost per design is the maximum since we try all

possible solutions in our design space.

46

In order to overcome the disadvantages of the obvious method, we can use an

estimation software, which estimates the fastest HBT implementation for a given (n,k)

combination before synthesis. For this purpose, we wrote an estimation tool in Perl,

which estimates the performance of different HBT implementations based on Equation

4.24. As Equation 4.24 roughly estimates the timing complexity of an HBT imple-

mentation, the fastest HBT implementation chosen by the estimator might not be the

fastest HBT implementation in reality. Hence, we should synthesize a group of HBT

implementations rather than synthesizing only the first choice of the estimator. In this

work, we shall synthesize the first four choices of the estimator in Chapter 6 to evalu-

ate the accuracy and precision of the estimator. We can summarize how our estimator

works as follows:

(i) The first step is creating the input file of the estimator, which we call job-list.

Each line of the job-list specifies the values of n and k as well as the name of the

topology to be synthesized. The format of the job-list is as follows (see Figure

4.10a): nxkb topology. In this case, the name of the topology is obviously HBT.

(ii) Then, the estimator script is executed with the input file. The estimator reads

the each line of the job-list, computes the timing complexity values of each line

for all possible partition (p) values, and writes the results into a separate output

file (see Figure 4.10b and c), which belongs to the current line.

(iii) Finally, it chooses the fastest four partition values of each file created in the

previous step and writes them into the results file (see Figure 4.10d), which shall

be given as an input file to our main synthesis script described in Chapter 5.

4.3. Quad Tree Topology (QT)

In this section, we shall propose another hybrid topology, which we call Quad Tree

Topology (QT). In QT, an (n,k)-MF circuit is implemented as a quad tree configuration

of (4,k)-AbT circuits. In Figure 4.11, we show a (16,k)-QT as an example. Our main

purpose for coming up with QT is to overcome two potential drawbacks of AbT. First

one of these handicaps is that AbT has a quadratic area complexity (O(k n2)) and this

could prevent AbT to scale well for large values of parameter n. Second, every input of

47

Figure 4.10. (a) Input file of the estimator (job-list). (b) Output for the first line of

the job-list. (c) Output for the second line of the job-list. (d) Result file of the

estimator.

Figure 4.11. Block diagram of QT (n = 16).

48

AbT has a fanout of n−1 and this could cause degradation in expected performance and

necessitate buffer insertion for large values of n. In order to overcome these drawbacks,

we can utilize hybrid topologies that use AbT as a building block. QT is a promising

candidate for such topologies because both the area and fanout disadvantages of AbT

become inconsiderable for n = 4. QT utilizes the speed advantage of AbT and area

advantage of quad tree configuration. As a result, we obtain an MF circuit topology,

which is significantly faster than any MF topology in the previous work as well as brings

a little area overhead on the most area-efficient MF circuit topology in the previous

work.

4.3.1. Theoretical Complexity of QT

We can estimate the theoretical complexity of (n,k)-QT as follows.

tQT = log4 n× t(4,k)−AbT

= log4 n×O(log2 k + 2) = O(log4 n× log2 k) (4.27)

AQT =
n− 1

3
× A(4,k)−AbT

=
n− 1

3
×O(k × 16) = O(k × n) (4.28)

PQT = AQT = O(k × n) (4.29)

As it can be seen from Equations 4.27 and 4.28, our area complexity reduces from

O(k n2) to O(k n) in comparison to AbT. Besides, fanout of each input becomes O(1)

as opposed to O(n). We shall validate our claims in Chapter 6.

49

5. RTL GENERATION AND SYNTHESIS

METHODOLOGY

In Chapters 3 and 4, we explained the details of several MF circuit topologies

and derived their theoretical computational complexity expressions based on the sim-

ple complexity models given in Section 2.2. Our next step shall be to validate our

theoretical claims by synthesizing the proposed architectures as well as competitive

existing structures. Hence, we need to write Register-Transfer Level (RTL) Verilog

code of each topology to be synthesized and testbench code for verification of the RTL

design. Besides, we should configure our synthesis tool for each specific synthesis job to

obtain the optimum synthesis results. If we try to handle the whole process manually,

it shall be excessively time-consuming and error-prone as we want to synthesize the MF

topologies for many (n,k) combinations. Thus, we automated the synthesis process. In

this chapter, we shall give details of our automated synthesis methodology.

Our methodology starts by creating the input file, each line of which contains a

synthesis job to be done. A synthesis job is specified by the parameters n, k, and name

of the MF topology to be synthesized. Then, we call our main synthesis script (written

in Perl), which carries out the synthesis jobs in the input file one by one. For each

job, main synthesis script synthesizes the specified topology and produces area, timing,

and power consumption results. After the main synthesis script completes all of the

jobs in the input file, we execute our result extraction script (written in Perl) to collect

the synthesis results into a single output file. In Figure 5.1, we give a high-level flow

diagram of our methodology. In Figure 5.1, we use black dashed lines to show manual

steps, while we use black solid lines for the steps carried out by our main synthesis

script. In addition, we use gray solid lines to represent the step executed by the result

extraction script. In the following sections, we shall examine each step of Figure 5.1 in

detail.

50

Figure 5.1. Flow diagram of the automated synthesis methodology.

5.1. Creating the Input File

The first step of our methodology is constructing the input file for the main

synthesis script. Each line of the input file is a specific synthesis job and it specifies

the values of parameters n and k as well as the MF topology to be synthesized. This

is the only step in our synthesis methodology that we carry out manually. Its format

is the same as the given format in Figure 4.10a. The main synthesis script sequentially

reads the each line of the input file and produces synthesis results for the MF circuit,

which is defined in this specific line, by performing the steps given in Figure 5.1.

5.2. Automatic Generation of Verilog Files

After reading a specific line of the input file, our main synthesis script auto-

matically generates self-checking testbench and RTL design codes (in Verilog) for the

(n,k)-MF circuit specified by this line. To achieve this, the main synthesis script uses

our code generator scripts, which were written in Perl scripting language and are scal-

51

able to any value of k and n. The code generators let us to get rid of intensive Verilog

code writing process when we compare the MF topologies against each other for various

combinations of n (n ∈ 8, 16, 32, 64) and k (n ∈ 8, 16, 24, 32, 64).

We wrote Verilog code generators for all of the proposed and existing topologies

except AT, RT, and ST. Because of their high theoretical timing complexity values, we

did not write generators for those three topologies. Our code generators take n and k

as input arguments and generate the required Verilog files: maxNk.v, wrappermaxNk.v,

and TB maxNk.v. The structure of our Verilog files is given in Figure 5.2. Note

also that HBT has a third argument p, which specifies the bit-widths of the TBTs

used in HBT. Thus HBT’s code generator takes p as an argument as well. maxNk.v

Figure 5.2. (a) Structure defined by the testbench file. (b) Structure defined by the

wrapper file.

is RTL Verilog code of the specified (n,k)-MF circuit. Its inputs are n k -bit binary

numbers and outputs are the value and binary (log2 n -bit) address of the maximum

number. It includes the top module, called maxNk, as well as the definitions of other

modules instantiated by the top module. Note also that the maximum element does

not necessarily have to be unique. In the case of multiple maximum elements, our

top module chooses one of those maximum elements as the winner element applying a

priority scheme. In our priority scheme, priority of an input element increases as its

address increases.

52

TB maxNk.v functionally verifies the top module. It instantiates the top module

and checks its correctness applying random test inputs. It is just used in verification

steps of Figure 5.1.

wrappermaxNk.v is just for synthesis purposes. It has n k -bit flip-flops right

before the inputs. On the output, it has a k -bit flip-flop for the maximum value, and

a log2 n-bit flip-flop for the binary address of the maximum. It instantiates the top

module between this flip-flop set so that all top module inputs are fed from flip-flops

and all top module outputs are sunk by flip-flops. Hence, our timing results shall be

flop-to-flop and include flop clock-to-Q delay as well as setup time.

5.3. Pre-Synthesis Verification

Before synthesis, we should verify functional correctness of our RTL code. Our

main synthesis script uses maxNk.v and TB maxNk.v files, which are created by code

generators explained in Section 5.2, for functional verification. Our testbench can be

divided into three blocks as shown in Figure 5.2a. RTL Design block is an instantiation

of our top module produced in the first step. Reference Design is a high-level (behav-

ioral) description of our top module. Random Test Input Generator block randomly

produces test inputs and applies them to the RTL design as well as the reference design.

Finally, the testbench compares the outputs of two design blocks. If those two outputs

are equal, our RTL design passes the verification and it can be synthesized. Otherwise,

it fails and we should solve the problems before proceeding to iterative synthesis step

of Figure 5.1.

5.4. Iterative Synthesis

In the synthesis process, our aim is to obtain the smallest clock period for each

synthesis job. One of the most important parameters that affects the achieved clock

period is the clock period target, which is supplied to the synthesis tool. Hence,

we need to give the optimum clock period target to our synthesis tool in order to

obtain the smallest clock period possible. However, we cannot know what the optimum

53

clock period target is beforehand. Fortunately, we can feed the synthesis tool with a

clock period target, which is close to the optimum one, via our iterative synthesis

script [11–13].

Our iterative synthesis script (written in Perl) synthesizes each circuit four times

and searches for the smallest clock period with a kind of binary search. In each iteration

we have an upper bound value and a lower bound value for the clock period. Lower

bound is the largest clock target that was not achieved so far. Upper bound is the

smallest clock target that was met so far. Our initial target clock period is 0.1ns

(impossible to be met) for the first iteration. For other iterations except the last

iteration, our clock period target is the average of the upper and lower bound values.

For the last iteration, the target is the 90% of the best achieved clock period so far.

As a result, we happen to force the synthesis tool as much as possible to obtain the

smallest clock period. Timing, area, and power consumption results are saved into

separate text files after each iteration.

5.4.1. Obtaining Timing Results

In order to obtain timing results, we use static timing analysis, which validates

the performance of a design by checking all possible timing paths and without requiring

simulation. Each timing path has a start-point and an end-point. The data is launched

from the start-point by a clock edge and then captured at the end-point by another

clock edge after it is propagated through combinational logic between the start-point

and end-point. As we use a wrapper consisting of input and output flip-flops, we can

define the start-point and end-point as follows: The start-point of a path is clock input

of a flip-flop and the end-point is a data input of a flip-flop.

Each path in the design has an associated slack, which is the difference between

arrival time and required time of the path. Arrival time of a path is the elapsed time

from triggering clock edge at the start-point to arrival of the data signal at the end-

point of the path. Required time is the latest arrival time for the path, which does not

make the clock cycle any longer than targeted. The minimum clock period, at which

54

the design operates properly, is difference between the target clock period and the slack

of the critical path. Critical path of a design is the path that has the smallest algebraic

slack value. Our iterative synthesis script outputs the minimum clock period value for

its each iteration.

5.4.2. Obtaining Area Results

Since we used the wrapper module only for timing purposes, we do not report

the areas of the wrapper’s input and output flip-flops. For each iteration, our iterative

synthesis script only reports the area of our top module (maxNk) in square microns.

5.4.3. Obtaining Power Consumption Results

Our iterative synthesis script reports the average dynamic power dissipation of

the synthesized gate-level design for each iteration in Watts. We use a toggle rate

based (statistical) power analysis method, which does not require simulation. Toggle

is a transition from 0 to 1 or vice versa. Toggle rate is the number of toggles per

unit time. In the power estimation method, we supply the toggle rates at the primary

inputs of our design and then these values are propagated into the circuit. Finally,

power analysis tool calculates the average dynamic power dissipation using the toggle

rates propagated.

5.5. Post-Synthesis Verification

After synthesis, we obtain a gate-level netlist for our design. We have to verify

the functionality of this gate level synthesis. We use the same method explained in

Section 5.3 for this purpose. The only difference is that we have a gate-level netlist

consisting of cells of our standard cell library instead of a RTL Verilog code.

55

5.6. Extraction of Synthesis Results

We should collect all timing, area, and power results, which are obtained after

synthesis, into a single file to analyze the results. We wrote a result extraction script

in Perl that automatically collects all of the results and writes them into a comma

seperated values (CSV) file.

56

6. EXPERIMENTAL WORK

In this chapter, we present our experimental setup as well as synthesis area,

timing, and power consumption results, which are obtained using the methodology

explained in Chapter 5, for our proposed MF topologies and their competitors.

6.1. Experimental Setup

Synthesis results highly depend on the version of the synthesis tool, synthesis

parameters, targeted technology, and standard cell library. In our experimental work,

we used 2010.12 version of Synopsys Design Compiler (DC) as the synthesis tool and

the worst case version of UMC Faraday 0.18 µm standard cell library with a wire-

load model (WLM). Moreover, we used a server class workstation with a Xeon-X5650

processor running at 2.67GHz with 8GB DRAM.

Delay due to wires (wire load and wire propagation delay) is an extremely impor-

tant contributor to overall delay in a circuit. It is not too hard to compute delay due

to wires after physical placement and routing. However, we did not apply a place and

route process in this work. Hence, we used a set of WLMs, which is supplied in the

technology library, in order to take the wire delay into account during the synthesis

process. A WLM consists of lookup tables that map the fanout of a net to estimated

wirelength, thereby estimated capacitance and resistance [26]. A net with a larger

fanout is assumed to have more wires and therefore more delay (more resistance and

capacitance). Furthermore, as the design size increases, standard cells may happen to

be placed physically farther apart within that design, which typically results in longer

wires. Hence, our WLM set includes several WLMs to be used for different design

sizes. In our synthesis process, DC automatically selects an appropriate WLM based

on the area of the design. In addition, we set the wire-load mode to enclosed, which

means that the wire delay of each net is calculated using the WLM corresponding to

the smallest subcircuit that completely encloses that net.

57

In this work, synthesis was carried out with a main batch script which uses an

input (job-list) file and calls other scripts when required, as we explained in Chapter

5. Every row of the job-list file specifies k and n parameters and the circuit topology

to be synthesized. The main synthesis script first reads the job and then performs a

three-stage process: As the first step, it generates the RTL and testbench based on k, n,

and the specified topology. Then, the main script functionally verifies the design with

the self-checking testbench produced in the first step. If the design passes the test, an

iterative synthesis script [11–13], which calls DC in batch mode, is executed. Otherwise,

the process is aborted, and the next job in the job-list file is read. The iterative synthesis

script synthesizes the circuit four times and searches for the smallest clock period with

a kind of binary search. In each synthesis run, area, power consumption, and timing

results are written into a file. Then, the target clock period is updated.

6.2. Experimental Results

Before we give the results, we present the theoretical area and time complexities

in Table 6.1 for all MF topologies. Since area and power consumption are of the same

order of magnitude according to our complexity models explained in Section 2.2, we do

not list the power consumption complexities in Table 6.1. Based on the complexities in

Table 6.1, we chose the competitors (TBT, RCT, CLT, CST, MLT, and LCT) of our

proposed topologies (AbT, HBT, and QT) for implementation and excluded the rest

due to their high theoretical complexities. Hence, we wrote Verilog code generators

for all of the topologies except AT,RT, and ST. As stated in Chapter 5, our scripts

generate self-checking testbench code for functional verification and RTL (in Verilog)

for logic synthesis. Also, our code generators are scalable to any value of k and n.

All of the implemented topologies output both the value and binary address of

the maximum element. We implemented two different versions (AbT1 and AbT2) of

AbT. AbT1 outputs the value and one-hot address, while AbT2 outputs the value and

binary address of the maximum element. The purpose of implementing AbT1 is not to

compare it with the competitors, but to prove that AbT can produce binary and/or

one-hot address in O(log2 k + log2 n). On the other hand, AbT2 is compared with the

58

Table 6.1. Theoretical comparison of all MF topologies.

Topology Timing Complexity Area Complexity

AT O(k × log2 n+ k) O(k × n)

RT O(k × log2 n+ k) O(n)

ST O(k × log2 n+ k) O(n)

TBT O(log2 k × log2 n+ log2 n) O(k × n)

RCT O(k + log2 n) O(k × n)

CST O(
√
k) + O((

√
k − log2 n)× log2n) O(k × n)

CET O(log2 k × log2 n) O(k × n)

LFT O(log2 n× log2 k) O(n× k × log2 k)

BKT O(log2 n× log2 k) O(n× k)

KST O(log2 n× log2 k) O(n× k × log2 k)

HCT O(log2 n× log2 k) O(n× k × log2 k)

MLT O(log2 k × log2 n+ n) O(k × 2k)

LCT O(log2 k × log2 n+ k) O((k + n)× 2k)

AbT O(log2 k + log2 n) O(k × n2)

HBT O((k/p+ log2 n)× log2 p) O(k × n)

QT O(log4 n× log2 k) O(k × n)

59

competitors topologies as well as other proposed topologies.

In the following subsections we give the synthesis results for several values of k

and n such that k ∈ {8, 16, 24, 32, 64} and n ∈ {4, 8, 16, 32, 64}. In the result tables,

bold numbers shall show the best result in each case (each row of the tables).

Before proceeding further, we should note that we shall not give the detailed

synthesis results of LCT although we wrote code generators and obtained synthesis

results for this topology as well. The main reason of not giving the results of LCT is

that our workstation runs out of memory when LCT is synthesized for k > 8. The

second reason is that obtained synthesis results of LCT for k ≤ 8 are only better

than the results of MLT. Hence, we shall not show the results for LCT in the Sections

6.2.1–6.2.7.

6.2.1. Timing Results

In this subsection, we shall give the timing results (minimum achievable clock

period) in nanoseconds. All the inputs are fed from flip-flops (FFs) and all outputs are

also sunk by FFs. The timing results given in this subsection are FF-to-FF and thus

include clock-to-Q delays and setup times of the FFs.

Table 6.2 shows the timing results for the two variants of AbT (AbT1 and AbT2)

in nanoseconds. AbT computes the one-hot and binary addresses of the maximum

element with the same timing complexity as seen in the Table 6.2.

In Table 6.3, we list the timing results of the proposed topologies and their

competitors. Although we implemented five variants (CET, LFT, HCT, KST, and

BKT of Section 3.5.3) of CLT, we only give the best timing results of the five variants

as a column (CLT) in Table 6.3 for brevity. We present all of the timing results for

the five variants of CLT in Table 6.4. Similarly, we put only the best timing results of

HBT into Table 6.3, although we obtained up to four different timing results (for each

different partition value) for each specific combination of n and k. All of the obtained

60

Table 6.2. Comparison of two AbT variants in terms of timing (in nanoseconds):

AbT1 (value + one-hot address) and AbT2 (value + binary address).

n×k AbT1 (one-hot address) AbT2 (binary address)

4× 8 1.65 1.66

4× 16 1.91 1.87

4× 24 2.02 2.00

4× 32 2.09 2.07

4× 64 2.28 2.30

8× 8 1.94 1.97

8× 16 2.17 2.15

8× 24 2.39 2.38

8× 32 2.49 2.52

8× 64 2.71 2.76

16× 8 2.27 2.28

16× 16 2.57 2.64

16× 24 2.72 2.84

16× 32 2.87 2.87

16× 64 3.15 3.18

32× 8 2.73 2.82

32× 16 3.07 3.06

32× 24 3.26 3.30

32× 32 3.48 3.49

32× 64 5.34 5.24

64× 8 3.26 3.34

64× 16 4.56 5.33

64× 24 5.77 5.71

64× 32 5.63 5.70

64× 64 8.23 7.25

Average 3.22 3.23

61

timing results of HBT can be found in Table 6.6.

As seen in Table 6.3, AbT offers superior performance than any competitor in all

cases. It is the fastest topology in 22 out of 25 test cases as well. AbT is 1.21 –2.17

times faster than the fastest competitor. On the average, AbT is 1.61 times faster than

the fastest competitor. Besides, the performance superiority of AbT becomes more

apparent as k increases. For instance, AbT is 1.41 times faster on the average than its

closest competitor for k = 8, while it is 1.72 times faster for k = 64.

The second fastest topology of Table 6.3 is QT, which is 1.26 times slower than

AbT on the average. On the other hand, it is slightly faster than AbT for (n = 64,

k = 16) and (n = 64, k = 64). It is 1.10 –1.41 times faster than the fastest competitor.

On the average, QT is 1.28 times faster than the fastest competitor in the literature.

Our third proposed topology, HBT, is 0.88 –1.06 times faster than the fastest

competitor. In addition, it is 1.01 times faster than the fastest competitor on the

average. HBT is 0.94 times faster (1.06 times slower) than the fastest competitor for

k = 8, while it is 1.04 times faster for k = 64 on the average. Hence, it becomes more

preferable to the fastest competitor as the parameter k increases. Furthermore, HBT

is faster than the fastest competitor in 19 out of 25 test cases of Table 6.3, and it is

only 1.06 times slower, on the average, than the fastest competitor in the remaining

six cases. HBT is also 1.25 times faster than RCT, 1.07 times faster than CST as

well as 1.01 times faster than CLT on the average. On the other hand, HBT is 1.59

and 1.27 times slower than AbT and QT, on the average, respectively. In addition to

timing results of HBT in Table 6.3, we list the timing results of the fastest four HBT

implementations, in regards to our estimator explained in Section 4.2.2, in Table 6.6

of Section 6.2.3 in order to evaluate our estimator.

Considering the competitors, PBT is the fastest topology in all cases except the

cases of (n = 4, k = 64), (n = 8, k = 64), and (n = 32, k = 64). For (n = 4,

k = 64) and (n = 8, k = 64), the fastest competitor is TBT, while for (n = 32, k = 64)

MLT is the fastest competitor. Except for the cases of (n = 16, k = 32), (n = 64,

62

Table 6.3. Timing results for the proposed and competitor topologies in nanoseconds.

Proposed Topologies Competitor Topologies

n×k AbT2 QT HBT1 TBT RCT CST CLT2 MLT

4× 8 1.66 1.64 2.17 2.23 2.37 2.24 2.19 2.80

4× 16 1.87 1.87 2.62 2.74 3.26 2.72 2.63 3.46

4× 24 2.00 2.04 2.79 3.01 4.12 2.98 2.85 3.95

4× 32 2.07 2.11 2.99 3.14 4.86 3.26 3.02 4.14

4× 64 2.30 2.27 3.45 3.51 6.37 3.97 3.57 4.53

8× 8 1.97 2.76 2.97 3.09 3.03 3.07 2.84 3.94

8× 16 2.15 3.08 3.58 3.89 4.03 3.67 3.65 4.43

8× 24 2.38 3.40 3.87 4.18 4.93 4.14 4.05 4.95

8× 32 2.52 3.67 4.16 4.52 5.82 4.54 4.36 5.16

8× 64 2.76 4.10 4.91 5.19 9.45 5.60 5.21 5.78

16× 8 2.28 2.97 3.61 4.09 3.59 3.76 3.46 4.80

16× 16 2.64 3.44 4.46 5.06 4.77 4.72 4.61 5.65

16× 24 2.84 3.77 5.02 5.62 5.85 5.33 5.23 6.16

16× 32 2.87 3.97 5.51 6.00 6.73 5.80 5.82 6.37

16× 64 3.18 4.45 6.65 7.23 10.97 7.48 6.91 6.99

32× 8 2.82 4.15 4.39 4.95 4.10 4.33 3.99 6.02

32× 16 3.06 4.94 5.54 6.19 5.52 5.57 5.32 6.73

32× 24 3.30 5.49 6.48 7.22 6.95 6.67 6.50 7.31

32× 32 3.49 5.74 6.89 7.71 7.93 7.26 7.04 7.52

32× 64 5.24 6.42 8.19 8.88 12.39 9.45 8.59 8.23

64× 8 3.34 4.53 5.23 6.15 4.61 5.27 4.70 6.85

64× 16 5.33 5.20 6.43 7.77 6.44 6.67 6.49 7.81

64× 24 5.71 5.86 7.47 8.78 7.70 7.83 7.35 8.87

64× 32 5.70 6.14 8.03 9.37 9.03 8.62 8.24 8.82

64× 64 7.25 6.71 9.73 10.67 13.61 11.33 10.31 14.28

63

k = 8), and (n = 64, k = 16), CLT is the fastest PBT variant. We list the timing

results of all five variants of CLT in Table 6.4. When we look at Table 6.4, we can

see that our PPN implementations (BKT, LFT, HCT, and KST) are faster than the

direct implementation (CET) of Equations 3.36 and 3.37 in 16 out of 25 cases.

6.2.2. Delay Overhead of DSU

In Section 4.1.3, we stated that although DSU does not increase the overall delay

of AbT in theory, it brings an extra delay overhead on AGU in practice because it

increases the fanout of AGU nodes to which it is connected. To show the effect of DSU

on the delay of AGU, we listed the timing results for AbT2 with/without DSU in Table

6.5 in nanoseconds. As seen in Table 6.5, DSU increases the overall delay 13.69% on

the average. In other words, we can compute the value of the maximum element in

addition to its address with only a 13.69% delay overhead thanks to our parallel DSU

architecture explained in Section 4.1.3. Note also that the AbT variant with DSU is

faster than the AbT variant without DSU in the case of (n = 64, k = 64).

6.2.3. Evaluation of HBT Estimator

In this subsection, we shall present the synthesis results of HBT for our 25 exam-

ple cases. For each different (n,k) combination in Table 6.6, we give the results of four

(if possible) theoretically fastest HBT implementations in regards to our estimator.

We list the results within each row of the table, in descending order in terms of their

theoretical timing complexity values computed by the estimator. In other words, the

second column (1st) includes the synthesis results of the theoretically fastest HBT im-

plementations while the last column (4th) includes the results of the fourth fastest HBT

implementation. We also show the corresponding partition (p) values in parentheses.

As it can be seen from Table 6.6, the first or the second choice of our estimator

has the best timing results in all cases. Furthermore, the last choice of our estimator

1Results of the fastest topology in Table 6.6.
2Results of the fastest topology in Table 6.4.

64

Table 6.4. Timing results for the five variants of CLT in nanoseconds.

n×k CET BKT LFT HCT KST

4× 8 2.19 2.25 2.30 2.25 2.22

4× 16 2.75 2.71 2.68 2.63 2.63

4× 24 3.09 3.00 2.91 2.85 2.92

4× 32 3.26 3.23 3.02 3.07 3.07

4× 64 3.94 3.76 3.57 3.58 3.57

8× 8 2.84 3.02 3.11 3.06 3.04

8× 16 3.77 3.74 3.65 3.66 3.68

8× 24 4.34 4.08 4.10 4.05 4.05

8× 32 4.68 4.49 4.36 4.43 4.38

8× 64 5.93 5.44 5.38 5.21 5.21

16× 8 3.46 3.78 3.81 3.83 3.80

16× 16 4.61 4.73 4.69 4.74 4.72

16× 24 5.45 5.30 5.23 5.48 5.53

16× 32 6.03 5.87 5.82 5.88 5.85

16× 64 7.50 6.91 6.93 7.05 7.02

32× 8 3.99 4.42 4.58 4.61 4.64

32× 16 5.32 5.75 5.92 5.97 6.00

32× 24 6.57 6.51 6.50 6.70 6.83

32× 32 7.22 7.04 7.12 7.21 7.37

32× 64 9.34 8.59 8.78 8.70 8.65

64× 8 4.70 5.50 5.48 5.61 5.56

64× 16 6.49 6.81 6.77 7.11 7.01

64× 24 7.35 7.95 7.83 8.22 8.21

64× 32 8.43 8.24 8.46 8.66 8.74

64× 64 11.24 10.31 10.64 11.15 11.22

65

Table 6.5. Delay overhead of DSU.

n×k AB2 (without DSU) AB2 (with DSU) Delay Overhead (%)

4× 8 1.46 1.66 13.89

4× 16 1.63 1.87 14.88

4× 24 1.67 2.00 19.82

4× 32 1.74 2.07 18.97

4× 64 1.82 2.30 26.45

8× 8 1.77 1.97 11.30

8× 16 1.96 2.15 9.44

8× 24 2.11 2.38 12.56

8× 32 2.12 2.52 18.63

8× 64 2.27 2.76 21.63

16× 8 2.13 2.28 6.92

16× 16 2.40 2.64 10.10

16× 24 2.52 2.84 12.70

16× 32 2.65 2.87 8.11

16× 64 2.79 3.18 13.80

32× 8 2.55 2.82 10.61

32× 16 2.90 3.06 5.53

32× 24 2.96 3.30 11.57

32× 32 3.18 3.49 9.75

32× 64 4.80 5.24 9.01

64× 8 3.13 3.34 6.88

64× 16 3.53 5.33 51.06

64× 24 5.04 5.71 13.31

64× 32 5.37 5.70 6.15

64× 64 7.30 7.25 -0.75

66

Table 6.6. Timing results of different HBT implementations.

HBT Implementations

n×k 1st 2nd 3rd 4th

4× 8 2.17 (p = 4) 2.21 (p = 2) - -

4× 16 2.62 (p = 8) 2.63 (p = 4) 2.72 (p = 2) -

4× 24 2.79 (p = 8) 2.83 (p = 12) 2.85 (p = 6) 2.88 (p = 4)

4× 32 3.05 (p = 16) 2.99 (p = 8) 3.15 (p = 4) 3.54 (p = 2)

4× 64 3.45 (p = 32) 3.47 (p = 16) 3.56 (p = 8) 4.13 (p = 4)

8× 8 2.97 (p = 4) 2.97 (p = 2) - -

8× 16 3.62 (p = 8) 3.58 (p = 4) 3.65 (p = 2) -

8× 24 3.87 (p = 8) 3.98 (p = 6) 4.01 (p = 4) 4.12 (p = 12)

8× 32 4.16 (p = 8) 4.33 (p = 16) 4.30 (p = 4) 4.66 (p = 2)

8× 64 5.08 (p = 32) 4.91 (p = 16) 4.98 (p = 8) 5.36 (p = 4)

16× 8 3.61 (p = 2) 3.83 (p = 4) - -

16× 16 4.46 (p = 4) 4.69 (p = 8) 4.59 (p = 2) -

16× 24 5.09 (p = 8) 5.02 (p = 4) 5.04 (p = 6) 5.42 (p = 3)

16× 32 5.46 (p = 8) 5.51 (p = 4) 5.75 (p = 16) 5.74 (p = 2)

16× 64 6.65 (p = 16) 6.67 (p = 8) 6.86 (p = 32) 7.03 (p = 4)

32× 8 4.39 (p = 2) 4.60 (p = 4) - -

32× 16 5.57 (p = 4) 5.54 (p = 2) 5.94 (p = 8) -

32× 24 6.49 (p = 4) 6.67 (p = 8) 6.48 (p = 6) 6.94 (p = 3)

32× 32 6.99 (p = 8) 6.89 (p = 4) 8.38 (p = 16) 7.14 (p = 2)

32× 64 8.19 (p = 8) 8.38 (p = 16) 8.63 (p = 32) 8.59 (p = 4)

64× 8 5.23 (p = 2) 5.47 (p = 4) - -

64× 16 6.43 (p = 2) 6.78 (p = 4) 7.32 (p = 8) -

64× 24 7.55 (p = 4) 7.47 (p = 2) 7.59 (p = 8) 8.28 (p = 3)

64× 32 8.03 (p = 4) 8.34 (p = 8) 8.36 (p = 2) 9.10 (p = 16)

64× 64 9.73 (p = 8) 10.06 (p = 16) 10.16 (p = 4) 10.55 (p = 32)

67

has the worst timing results in 21 out of 25 cases. In the remaining four cases, the

estimator’s last choice has the second worst timing. Hence, we can use our estimator to

avoid synthesizing an (n,k)-HBT for each possible partition of k. We can synthesize the

first three choices of the estimator and then pick the fastest one among them. So that,

we can implement the fastest (n,k)-HBT circuit by only synthesizing three different

possible implementations instead of k different possible implementations.

6.2.4. Area Results

Table 6.7 shows the normalized area results. In each case, we take the area of

TBT, which is the most area-efficient MF topology as it can be seen in Table 6.7, as

unity and scale other values in regards to this value. In addition to individual area

results of proposed and competitor topologies, we also give the area results of the

fastest competitor of each case within the last column of Table 6.7.

In spite of its superior timing results, AbT is the least area-efficient one of our

proposed topologies as it can be seen in Table 6.7. The area results of AbT is 4.82

times worse, on the average, than the fastest competitor’s results and 7.53 times worse

than TBT’s results. In contrast, AbT is 1.61 and 1.76 times faster than its fastest

competitor and TBT, respectively, as shown in Table 6.3. Despite this overall area

overhead, AbT has very promising area results for n = 4. AbT is 1.20 times smaller as

well as 1.43 times faster than the fastest competitor for n = 4. Furthermore, it is only

1.30 times larger than TBT, while it is 1.47 times faster than TBT for n = 4.

QT, another proposed topology, is 1.37 times larger and 1.40 times faster than

the most area-efficient topology (TBT) on the average. Moreover, QT is 1.25 times

more area-efficient as well as 1.28 times faster than its fastest competitor as stated

in Section 6.2.1. On the other hand, QT is 5.50 times more area-efficient than AbT

although it is 1.26 times slower than AbT on the average.

In regards to Table 6.7, HBT is the most area-efficient proposed topology. The

area of HBT is 1.19 times larger than TBT, which is the best MF topology in terms of

68

Table 6.7. Normalized area results.

Proposed Topologies Competitor Topologies

n×k AbT2 QT HBT3 TBT RCT CST CLT4 MLT Fastest

4× 8 1.29 1.29 1.23 1.00 1.26 1.33 1.40 1.64 1.40

4× 16 1.27 1.36 1.24 1.00 1.23 1.24 2.16 1.59 2.16

4× 24 1.25 1.17 1.11 1.00 1.14 1.24 2.10 1.30 2.10

4× 32 1.30 1.15 1.11 1.00 1.31 1.29 2.07 1.44 2.07

4× 64 1.41 1.45 1.26 1.00 2.05 1.52 4.33 1.74 1.00

8× 8 2.04 1.28 1.12 1.00 1.16 1.35 1.08 1.71 1.08

8× 16 2.56 1.58 1.24 1.00 1.26 1.49 1.94 1.93 1.94

8× 24 2.27 1.45 1.25 1.00 1.18 1.32 2.94 1.61 2.94

8× 32 2.25 1.32 1.10 1.00 1.18 1.32 2.01 1.72 2.01

8× 64 2.64 1.34 1.22 1.00 1.32 1.34 3.01 2.00 1.00

16× 8 4.39 1.34 1.26 1.00 1.13 1.31 1.27 2.14 1.27

16× 16 5.28 1.58 1.23 1.00 1.21 1.44 1.19 2.17 1.19

16× 24 4.36 1.38 1.22 1.00 1.22 1.42 2.04 2.42 2.04

16× 32 5.14 1.25 1.13 1.00 1.27 1.40 2.04 2.42 1.40

16× 64 5.16 1.49 1.28 1.00 1.44 1.45 1.98 2.17 1.98

32× 8 7.23 1.21 1.06 1.00 1.03 1.29 1.13 3.01 1.13

32× 16 8.53 1.35 1.05 1.00 1.17 1.35 1.14 3.18 1.14

32× 24 7.94 1.32 1.12 1.00 1.18 1.32 1.89 3.25 1.89

32× 32 8.88 1.26 1.08 1.00 1.28 1.36 1.65 3.06 1.65

32× 64 13.17 1.54 1.32 1.00 1.50 1.50 2.04 3.38 3.38

64× 8 16.21 1.55 1.21 1.00 1.13 1.42 1.23 5.08 1.13

64× 16 20.03 1.48 1.23 1.00 1.23 1.34 1.20 4.68 1.23

64× 24 17.77 1.26 1.19 1.00 1.23 1.32 1.99 4.98 1.99

64× 32 21.01 1.40 1.13 1.00 1.30 1.37 1.66 5.53 1.66

64× 64 24.74 1.46 1.28 1.00 1.42 1.36 1.94 6.68 1.94

69

area-efficiency. However, HBT is 1.10 times faster than TBT on the average. HBT is

also is 1.43 times more area-efficient than its fastest competitor. Moreover, HBT is 6.33

and 1.15 times more area-efficient, on the average, than AbT and QT, respectively.

6.2.5. Area-Timing Product (ATP) Results

Synthesis tools sacrifice area to achieve shorter clock periods, and hence, area and

timing costs are somewhat inversely proportional. Thus, we used area-timing product

(ATP), also called area-delay product, as a figure of merit for area consumption per

unit delay in order to make a reasonable comparison between competitors. Thus, we

list (normalized) ATP results in Table 6.8, in addition to area results in Table 6.7.

Similar to the area results given in Section 6.2.4, we take the ATP result of TBT as

unity in each row of Table 6.8.

Regarding to ATP results in Table 6.8, QT is the best proposed topology and

TBT is the the best existing topology on the average. QT is also the most ATP-efficient

MF topology on the average. Besides, our proposed MF topologies have better ATP

results than the competitors in 16 out of 25 cases of Table 6.8.

QT is 1.01 times more ATP-efficient than TBT as well as it is 1.58 times more

ATP-efficient than the fastest competitor, on the average. Since QT is topologically

equivalent to AbT for n = 4, we can claim that QT has the most ATP-efficient MF

topology for n = 4. Similarly, QT has superior ATP results for n = 64. QT has

also 4.48 and 1.09 times better ATP results, on the average, than AbT and HBT,

respectively.

Moreover, HBT is the our second most ATP-efficient topology and it is 1.09 times

less ATP-efficient than the TBT, which is the best competitor from the ATP point of

view. On the other hand, HBT is 1.46 times more efficient than the fastest competitor

in terms of ATP results. As HBT provides a generalization for PBTs, we can compare

3Results of the fastest topology in Table 6.6.
4Results of the fastest topology in Table 6.4.

70

Table 6.8. Normalized ATP results.

Proposed Topologies Competitor Topologies

n×k AbT2 QT HBT5 TBT RCT CST CLT6 MLT Fastest

4× 8 0.96 0.96 1.20 1.00 1.34 1.34 1.37 2.07 1.37

4× 16 0.87 0.93 1.19 1.00 1.46 1.23 2.07 2.00 2.07

4× 24 0.83 0.78 1.02 1.00 1.55 1.22 1.98 1.71 1.98

4× 32 0.85 0.76 1.06 1.00 2.02 1.34 1.99 1.90 1.99

4× 64 0.92 0.95 1.24 1.00 3.73 1.72 4.40 2.24 1.00

8× 8 1.30 1.14 1.08 1.00 1.13 1.34 1.00 2.18 1.00

8× 16 1.41 1.25 1.14 1.00 1.31 1.40 1.82 2.19 1.82

8× 24 1.29 1.18 1.16 1.00 1.40 1.31 2.85 1.91 2.85

8× 32 1.25 1.07 1.01 1.00 1.52 1.33 1.94 1.96 1.94

8× 64 1.40 1.06 1.16 1.00 2.41 1.44 3.02 2.23 1.00

16× 8 2.44 0.97 1.11 1.00 0.99 1.21 1.07 2.51 1.07

16× 16 2.76 1.07 1.08 1.00 1.14 1.34 1.08 2.42 1.08

16× 24 2.21 0.92 1.09 1.00 1.27 1.35 1.90 2.66 1.90

16× 32 2.45 0.83 1.04 1.00 1.42 1.36 1.90 2.57 1.36

16× 64 2.27 0.92 1.18 1.00 2.18 1.50 1.89 2.10 1.89

32× 8 4.11 1.01 0.94 1.00 0.85 1.13 0.91 3.66 0.91

32× 16 4.21 1.08 0.94 1.00 1.04 1.21 0.98 3.46 0.98

32× 24 3.63 1.00 1.01 1.00 1.13 1.22 1.70 3.29 1.70

32× 32 4.02 0.94 0.96 1.00 1.32 1.28 1.49 2.99 1.49

32× 64 7.76 1.11 1.22 1.00 2.09 1.59 1.98 3.13 3.13

64× 8 8.80 1.14 1.02 1.00 0.85 1.22 0.94 5.65 0.85

64× 16 13.74 0.99 1.02 1.00 1.02 1.15 1.00 4.70 1.02

64× 24 11.55 0.84 1.01 1.00 1.08 1.18 1.77 5.03 1.77

64× 32 12.77 0.91 0.97 1.00 1.25 1.26 1.50 5.20 1.50

64× 64 16.80 0.92 1.17 1.00 1.81 1.45 1.87 8.94 1.87

71

its ATP results with the ATP results of PBTs. In comparison to CST, which is the

best PBT variant in terms of ATP, QT has 1.04 - 1.30 times (1.23 times on the average)

better ATP-results. Besides, it is 1.36 and 1.62 times more ATP-efficient than RCT

and CLT, respectively.

AbT is the least ATP-efficient MF topology as seen in Table 6.8. The ATP results

of AbT are 2.80 times worse, on the average, than the fastest competitor’s results and

4.43 times worse than TBT’s results. On the contrary, ATP results of AbT are 1.88 and

1.12 times better than the ATP results of the fastest competitor and TBT, respectively,

for n = 4.

6.2.6. Area-Timing-Square Product (AT2P) Results

Area-timing-square product (AT2P), also called area-delay-square product, is

similar to ATP, but it stresses the timing objective more than the area. Since the

performance of an MF circuit is more important than its area in our case, we can use

AT2P as a figure of merit for area evaluation of the MF topologies examined in this

thesis. Thus, we list (normalized) AT2P results in Table 6.9. Similar to the area results

given in Section 6.2.4, we take the AT2P result of TBT as unity in each row of Table

6.9.

Regarding to AT2P results in Table 6.9, QT is the best proposed topology and

TBT is the the best existing topology on the average. QT is also the most AT2P-

efficient MF topology on the average. Besides, our proposed MF topologies have better

AT2P results than the competitors in 22 out of 25 cases of Table 6.9.

QT is 1.39 times more AT2P-efficient than TBT as well as it is 2.03 times more

AT2P-efficient than the fastest competitor, on the average. Since QT is topologically

equivalent to AbT for n = 4, we can claim that QT has the most AT2P-efficient MF

topology for n = 4 and n = 16. Furthermore, QT has superior AT2P results for 17

5Results of the fastest topology in Table 6.6.
6Results of the fastest topology in Table 6.4.

72

Table 6.9. Normalized AT2P results.

Proposed Topologies Competitor Topologies

n×k AbT2 QT HBT7 TBT RCT CST CLT8 MLT Fastest

4× 8 0.72 0.70 1.17 1.00 1.42 1.35 1.35 2.61 1.35

4× 16 0.59 0.64 1.13 1.00 1.74 1.22 1.99 2.53 1.99

4× 24 0.55 0.54 0.95 1.00 2.13 1.21 1.87 2.23 1.87

4× 32 0.56 0.52 1.01 1.00 3.12 1.39 1.92 2.50 1.92

4× 64 0.60 0.61 1.22 1.00 6.78 1.95 4.48 2.90 1.00

8× 8 0.83 1.02 1.03 1.00 1.11 1.33 0.92 2.78 0.92

8× 16 0.78 0.99 1.05 1.00 1.35 1.32 1.70 2.50 1.70

8× 24 0.74 0.96 1.07 1.00 1.65 1.30 2.76 2.27 2.76

8× 32 0.70 0.87 0.93 1.00 1.95 1.33 1.86 2.24 1.86

8× 64 0.74 0.83 1.10 1.00 4.39 1.55 3.03 2.48 1.00

16× 8 1.36 0.71 0.98 1.00 0.87 1.11 0.91 2.95 0.91

16× 16 1.44 0.73 0.95 1.00 1.07 1.25 0.99 2.70 0.99

16× 24 1.11 0.62 0.97 1.00 1.32 1.28 1.76 2.91 1.76

16× 32 1.17 0.55 0.95 1.00 1.59 1.31 1.84 2.73 1.31

16× 64 1.00 0.57 1.08 1.00 3.31 1.55 1.80 2.03 1.80

32× 8 2.34 0.85 0.84 1.00 0.70 0.99 0.73 4.46 0.73

32× 16 2.08 0.86 0.84 1.00 0.93 1.09 0.84 3.76 0.84

32× 24 1.66 0.76 0.90 1.00 1.09 1.12 1.53 3.33 1.53

32× 32 1.82 0.70 0.86 1.00 1.35 1.21 1.36 2.91 1.36

32× 64 4.58 0.81 1.12 1.00 2.91 1.69 1.91 2.90 2.90

64× 8 4.78 0.84 0.87 1.00 0.64 1.04 0.72 6.29 0.64

64× 16 9.42 0.66 0.84 1.00 0.84 0.99 0.84 4.72 0.84

64× 24 7.51 0.56 0.86 1.00 0.94 1.05 1.49 5.09 1.49

64× 32 7.76 0.60 0.83 1.00 1.21 1.16 1.32 4.90 1.32

64× 64 11.41 0.58 1.07 1.00 2.31 1.54 1.81 11.96 1.81

73

out of 25 cases. QT has also 3.68 and 1.37 times better AT2P results, on the average,

than AbT and HBT, respectively.

Moreover, HBT is the our second most ATP-efficient topology and it is 1.01

times more AT2P-efficient than the TBT, which is the best competitor from the AT2P

point of view. On the other hand, HBT is 1.47 times more efficient than the fastest

competitor in terms of AT2P results. As HBT provides a generalization for PBTs,

we can compare its AT2P results with the AT2P results of PBTs. In comparison to

CST, which is the best PBT variant in terms of AT2P, QT has 1.07 - 1.59 times (1.32

times on the average) better AT2P results. Besides, it is 1.82 and 1.65 times more

AT2P-efficient than RCT and CLT, respectively.

AbT is the least AT2P-efficient MF topology as seen in Table 6.9. The AT2P

results of AbT are 1.82 times worse, on the average, than the fastest competitor’s

results and 2.65 times worse than TBT’s results. On the contrary, AT2P results of

AbT are 2.48 and 1.46 times better than the AT2P results of the fastest competitor

and TBT, respectively, for n < 16.

6.2.7. Power Consumption Results

Table 6.10 shows the normalized dynamic power consumption results of our pro-

posed topologies as well as their competitors. Although we also obtained the leakage

power consumption results, we do not show them as they are negligible in comparison

to dynamic power consumption results. We take the results of TBT as unity and scale

other values in regards to this value.

As seen in Table 6.8, TBT has the best power consumption results in all cases,

except the case of (n = 4,k = 24), in which AbT has the best power consumption value.

On the average, HBT is the best proposed topology and TBT is the best competitor

topology in terms of power consumption.

7Results of the fastest topology in Table 6.6.
8Results of the fastest topology in Table 6.4.

74

Table 6.10. Normalized power consumption results.

Proposed Topologies Competitor Topologies

n×k AbT2 QT HBT9 TBT RCT CST CLT10 MLT Fastest

4× 8 1.11 1.12 1.22 1.00 1.30 1.53 1.40 1.76 1.40

4× 16 1.08 1.20 1.33 1.00 1.14 1.56 2.49 1.75 2.49

4× 24 0.99 1.07 1.28 1.00 1.09 1.41 2.52 1.59 2.52

4× 32 1.02 1.07 1.32 1.00 1.28 1.49 2.59 1.83 2.59

4× 64 1.16 1.17 1.30 1.00 1.79 1.48 4.87 1.82 1.00

8× 8 1.78 1.21 1.20 1.00 1.29 1.37 1.11 2.19 1.11

8× 16 1.78 1.41 1.26 1.00 1.25 1.44 2.17 2.33 2.17

8× 24 1.96 1.39 1.43 1.00 1.17 1.42 3.89 2.06 3.89

8× 32 1.89 1.31 1.28 1.00 1.18 1.39 2.50 2.36 2.50

8× 64 2.26 1.14 1.27 1.00 1.12 1.28 3.17 2.58 1.00

16× 8 4.09 1.41 1.48 1.00 1.36 1.54 1.37 2.74 1.37

16× 16 4.43 1.67 1.34 1.00 1.19 1.46 1.13 2.85 1.13

16× 24 4.05 1.47 1.46 1.00 1.28 1.57 2.58 3.59 2.58

16× 32 3.99 1.23 1.24 1.00 1.19 1.52 2.58 3.30 1.52

16× 64 4.19 1.37 1.34 1.00 1.25 1.38 1.97 2.57 1.97

32× 8 7.83 1.36 1.33 1.00 1.29 1.59 1.15 4.54 1.15

32× 16 8.05 1.44 1.21 1.00 1.22 1.34 1.07 4.46 1.07

32× 24 8.01 1.65 1.55 1.00 1.49 1.56 2.69 5.16 2.69

32× 32 8.14 1.32 1.29 1.00 1.26 1.41 2.30 4.17 2.30

32× 64 16.48 1.49 1.43 1.00 1.36 1.47 2.10 4.16 4.16

64× 8 10.93 1.72 1.34 1.00 1.24 1.63 1.08 7.01 1.24

64× 16 22.79 1.52 1.32 1.00 1.22 1.17 1.01 5.86 1.22

64× 24 23.20 1.31 1.29 1.00 1.18 1.19 2.41 6.92 2.41

64× 32 31.28 1.69 1.46 1.00 1.27 1.53 1.96 8.61 1.96

64× 64 37.72 1.40 1.35 1.00 1.27 1.29 1.96 12.67 1.96

75

HBT, the best proposed topology in terms of power, consumes 1.33 times more

power than TBT, while it consumes 1.49 times less power than the fastest competitor.

In addition, it is 6.33 and 1.02 times more power-efficient on the average than AbT

and QT, respectively.

QT is the second most power-efficient proposed topology and consumes 1.36 times

more power than TBT on the average. QT is the most power-efficient topology up to

n = 8 as well. QT is also 1.46 times less power-consuming than the fastest competitor.

AbT is the most power-consuming MF topology on the average, as seen in Table

6.8. AbT consumes 4.25 and 8.41 times more power than the fastest competitor and

TBT, respectively. On the other hand, AbT is 1.86 times better than the fastest

competitor in terms of power consumption, while it is only 1.07 times worse than TBT

for n = 4. Moreover, AbT is the most power-efficient proposed topology on the average

for n = 4.

6.2.8. Power-Timing Product (PTP) Results

Power-timing product (PTP), also called power-delay product, is another com-

bined performance metric like ATP and AT2P. PTP is a balanced measure that con-

siders both the speed and power consumption factors of a design. We can use PTP

as a figure of merit for power efficiency of a circuit. Thus, we list (normalized) PTP

results in Table 6.11. Similar to the area results given in Section 6.2.4, we take the

PTP result of TBT as unity in each row of Table 6.11.

Regarding to PTP results in Table 6.11, QT is the best proposed topology and

TBT is the the best existing topology on the average. QT is also the most PTP-efficient

MF topology on the average.

QT is 1.01 times more PTP-efficient than TBT as well as it is 1.84 times more

9Results of the fastest topology in Table 6.6.
10Results of the fastest topology in Table 6.4.

76

Table 6.11. Normalized PTP results.

Proposed Topologies Competitor Topologies

n×k AbT2 QT HBT11 TBT RCT CST CLT12 MLT Fastest

4× 8 0.83 0.82 1.19 1.00 1.38 1.54 1.38 2.22 1.38

4× 16 0.74 0.82 1.27 1.00 1.35 1.54 2.38 2.21 2.38

4× 24 0.66 0.72 1.19 1.00 1.49 1.40 2.38 2.08 2.38

4× 32 0.67 0.72 1.26 1.00 1.97 1.54 2.49 2.41 2.49

4× 64 0.76 0.76 1.28 1.00 3.26 1.67 4.95 2.35 1.00

8× 8 1.13 1.07 1.15 1.00 1.26 1.36 1.02 2.78 1.02

8× 16 0.98 1.12 1.16 1.00 1.29 1.35 2.03 2.65 2.03

8× 24 1.11 1.14 1.32 1.00 1.38 1.40 3.77 2.44 3.77

8× 32 1.05 1.06 1.18 1.00 1.52 1.40 2.41 2.70 2.41

8× 64 1.20 0.90 1.20 1.00 2.04 1.38 3.17 2.87 1.00

16× 8 2.28 1.02 1.30 1.00 1.20 1.42 1.15 3.21 1.15

16× 16 2.31 1.13 1.18 1.00 1.12 1.36 1.03 3.18 1.03

16× 24 2.05 0.98 1.31 1.00 1.33 1.48 2.40 3.94 2.40

16× 32 1.91 0.82 1.14 1.00 1.34 1.47 2.50 3.51 1.47

16× 64 1.84 0.84 1.24 1.00 1.90 1.43 1.88 2.49 1.88

32× 8 4.46 1.14 1.18 1.00 1.07 1.39 0.93 5.53 0.93

32× 16 3.97 1.15 1.09 1.00 1.08 1.20 0.92 4.85 0.92

32× 24 3.66 1.25 1.39 1.00 1.43 1.44 2.42 5.22 2.42

32× 32 3.68 0.98 1.15 1.00 1.30 1.32 2.10 4.07 2.10

32× 64 9.72 1.07 1.32 1.00 1.89 1.56 2.04 3.86 3.86

64× 8 5.94 1.27 1.14 1.00 0.93 1.40 0.82 7.80 0.93

64× 16 15.63 1.02 1.09 1.00 1.01 1.01 0.84 5.89 1.01

64× 24 15.08 0.87 1.10 1.00 1.04 1.06 2.02 6.99 2.02

64× 32 19.01 1.10 1.25 1.00 1.22 1.41 1.73 8.10 1.73

64× 64 25.61 0.88 1.23 1.00 1.62 1.37 1.90 16.95 1.90

77

PTP-efficient than the fastest competitor, on the average. Since QT is topologically

equivalent to AbT for n = 4, we can claim that QT has the most PTP-efficient MF

topology for n = 4. QT has also 5.10 and 1.22 times better PTP results, on the average,

than AbT and HBT, respectively.

Moreover, HBT is the our second most ATP-efficient topology and it is 1.21 times

less PTP-efficient than the TBT, which is the best competitor from the PTP point of

view. On the other hand, HBT is 1.50 times more efficient than the fastest competitor

in terms of PTP results. As HBT provides a generalization for PBTs, we can compare

its PTP results with the PTP results of PBTs. In comparison to CST, which is the best

PBT variant in terms of PTP, QT has 1.15 times on the average better PTP results.

Besides, it is 1.20 and 1.65 times more PTP-efficient than RCT and CLT, respectively.

AbT is the least PTP-efficient MF topology as seen in Table 6.11. The PTP

results of AbT are 2.78 times worse, on the average, than the fastest competitor’s

results and 5.05 times worse than TBT’s results. On the contrary, PTP results of AbT

are 2.70 and 1.37 times better than the PTP results of the fastest competitor and TBT,

respectively, for n = 4.

6.2.9. Energy-Timing Product (ETP) Results

Energy-timing product (ETP), also called energy-delay product, considers both

the timing and energy consumption of a VLSI circuit simultaneously. Thus, we can use

ETP as a figure of merit for energy efficiency of an MF circuit. We give (normalized)

ETP results in Table 6.12. Similar to the area results given in Section 6.2.4, we take

the PTP result of TBT as unity in each row of Table 6.12.

Regarding to ETP results in Table 6.12, QT is the best proposed topology and

TBT is the the best existing topology on the average. QT is also the most ETP-efficient

MF topology on the average. Besides, our proposed MF topologies have better ETP

11Results of the fastest topology in Table 6.6.
12Results of the fastest topology in Table 6.4.

78

Table 6.12. Normalized ETP results.

Proposed Topologies Competitor Topologies

n×k AbT2 QT HBT13 TBT RCT CST CLT14 MLT Fastest

4× 8 0.62 0.61 1.16 1.00 1.47 1.55 1.35 2.79 1.35

4× 16 0.50 0.56 1.21 1.00 1.61 1.53 2.29 2.79 2.29

4× 24 0.44 0.49 1.10 1.00 2.04 1.38 2.25 2.72 2.25

4× 32 0.44 0.48 1.20 1.00 3.05 1.60 2.39 3.17 2.39

4× 64 0.50 0.49 1.26 1.00 5.92 1.89 5.03 3.04 1.00

8× 8 0.72 0.96 1.11 1.00 1.24 1.35 0.94 3.55 0.94

8× 16 0.54 0.89 1.06 1.00 1.34 1.28 1.90 3.02 1.90

8× 24 0.63 0.92 1.23 1.00 1.63 1.39 3.66 2.89 3.66

8× 32 0.59 0.86 1.09 1.00 1.96 1.40 2.32 3.08 2.32

8× 64 0.64 0.71 1.14 1.00 3.71 1.48 3.18 3.20 1.00

16× 8 1.27 0.74 1.15 1.00 1.05 1.30 0.98 3.76 0.98

16× 16 1.21 0.77 1.04 1.00 1.06 1.27 0.94 3.54 0.94

16× 24 1.03 0.66 1.17 1.00 1.39 1.41 2.23 4.32 2.23

16× 32 0.91 0.54 1.04 1.00 1.50 1.42 2.42 3.72 1.42

16× 64 0.81 0.52 1.14 1.00 2.89 1.48 1.80 2.40 1.80

32× 8 2.54 0.96 1.04 1.00 0.89 1.22 0.75 6.73 0.75

32× 16 1.96 0.92 0.97 1.00 0.97 1.08 0.79 5.27 0.79

32× 24 1.68 0.95 1.25 1.00 1.38 1.33 2.18 5.28 2.18

32× 32 1.67 0.73 1.03 1.00 1.33 1.25 1.92 3.97 1.92

32× 64 5.73 0.78 1.22 1.00 2.64 1.66 1.97 3.57 3.57

64× 8 3.22 0.93 0.97 1.00 0.70 1.20 0.63 8.69 0.70

64× 16 10.72 0.68 0.90 1.00 0.84 0.87 0.70 5.92 0.84

64× 24 9.80 0.58 0.94 1.00 0.91 0.95 1.69 7.07 1.69

64× 32 11.55 0.72 1.07 1.00 1.18 1.30 1.52 7.63 1.52

64× 64 17.39 0.55 1.12 1.00 2.06 1.45 1.83 22.68 1.83

79

results than the competitors in 22 out of 25 cases of Table 6.8.

QT is 1.39 times more ETP-efficient than TBT as well as it is 2.35 times more

ETP-efficient than the fastest competitor, on the average. Since QT is topologically

equivalent to AbT for n = 4, we can claim that QT has the most ETP-efficient MF

topology for n = 4 and n = 16. QT has also 4.28 and 1.53 times better ATP results,

on the average, than AbT and HBT, respectively.

Moreover, HBT is the our second most ETP-efficient topology and it is 1.10 times

less ETP-efficient than the TBT, which is the best competitor from the ETP point of

view. On the other hand, HBT is 1.54 times more efficient than the fastest competitor

in terms of ETP results. As HBT provides a generalization for PBTs, we can compare

its ETP results with the ETP results of PBTs. In comparison to CST, which is the

best PBT variant in terms of ETP, QT has 1.23 times, on the average, better ETP

results. Besides, it is 1.58 and 1.69 times more ETP-efficient than RCT and CLT,

respectively.

AbT is the least ETP-efficient MF topology as seen in Table 6.12. The ETP

results of AbT are 1.82 times worse, on the average, than the fastest competitor’s

results and 3.08 times worse than TBT’s results. On the contrary, ETP results of AbT

are 2.92 and 1.79 times better than the ETP results of the fastest competitor and TBT,

respectively, for n < 16.

13Results of the fastest topology in Table 6.6.
14Results of the fastest topology in Table 6.4.

80

7. CONCLUSIONS AND FUTURE WORK

In this thesis, we examined the existing circuit topologies (AT, RT, ST, TBT,

RCT, CST, CLT, MLT, and LCT), while we proposed three circuit topologies (AbT,

HBT, QT), which compute the value and address of the maximum of n k -bit numbers.

We compared the proposed topologies (AbT, HBT, QT) with their competitors

(TBT, RCT, CST, CLT, MLT, and LCT) based on timing, area, ATP, and power

dissipation. We use an automated synthesis methodology (Chapter 5), which consists

of a main synthesis script carrying out the synthesis process, and a set of Verilog code

generators (written in Perl) to implement all of these MF circuit topologies. Our code

generators, which are scalable to any value of n and k, produce RTL and self-checking

testbench code for the proposed topologies as well as their competitors.

In regards to the synthesis results in Section 6.2.1, AbT is the best topology in

terms of timing results (latency) for all cases. Besides, AbT can produce the value

of maximum element in addition to its address with little delay overhead due to our

parallel DSU structure. On the average, the second and third fastest topologies are

QT and HBT, respectively. In addition, the fastest competitor is CLT on the average.

As mentioned in Section 6.2.3, we wrote an estimator script in Perl to estimate

the timing complexities of all possible implementations (with different p values) of an

(n,k)-HBT for a specific (n,k) value. Using the estimator, we eliminate the need to

synthesize all possible HBT implementations to find the fastest implementation for a

specific (n,k) value.

The most area-efficient topology on the average is TBT, which is also the most

obvious and widely used competitor topology. On the other hand, the best proposed

topology is HBT and the worst proposed topology is AbT in terms of area. Although it

has the best timing results, AbT has a significant area overhead for n > 8. Fortunately,

we can overcome this disadvantage by using QT, which is the most ATP-efficient MF

81

topology. Using QT for n > 8, we can save 9.06 times more area with the cost of 1.28

times lower speed (i.e., more latency) in comparison to AbT. On the other hand, QT

is still 1.21 times faster than the fastest competitor on the average. Moreover, HBT

has better area than all of the existing PBT variants on the average.

In terms of power consumption, TBT is the best MF topology, while HBT is the

best proposed topology on the average. Our second least power-consuming proposed

topology is QT, whose power consumption is very close to power consumption of HBT.

The most power-consuming topology is AbT, which is the fastest topology.

Taking into account of the ATP and PTP results, QT, a proposed topology, is

the best MF topology on the average. The second best topology is TBT from the

ATP as well as PTP point of view. On the other hand, the least ATP-efficient and

the least PTP-efficient topology is AbT, which is the fastest topology, on the average.

Interestingly, for n = 4, AbT is the best MF topology in terms of both ATP and PTP

results. Our second most ATP-efficient and PTP-efficient proposed topology, HBT,

has better ATP and PTP results than all of the existing PBT variants on the average

as well.

As it can be seen from Sections 6.2.6 and 6.2.9, AT2P and ETP results are similar

to each other. Considering AT2P and ETP, QT is the best MF topology on the average

while TBT is the second best MF topology. Although AbT is the worst MF topology

on the average in terms of both AT2P and ETP, it is the best MF topology for n < 16.

Our HBT is the third best MF topology on the average in regards to AT2P as well as

ETP.

Our future work will possibly involve synthesis of AbT with other configurations

given in Table 4.1. Moreover, looking for more area-efficient implementations, such

as using a hierarchical approach to reduce size of AbT’s CAU or using simpler com-

parators, is another possible work. Obviously, we should work on our estimator tool

to improve its accuracy and precision. We may also write an estimator tool, which

estimates the best MF topology for a specific (n,k) case. Proposed architecture and

82

its competitors may also be synthesized on FPGAs.

Another important future work is examining the usage of proposed MF topologies

in selection and sorting topologies. Here, we shall look over the possible usage of AbT

as an example. In Section 4.1.5, we claimed that AbT can be used to compute i -

th order statistic of a set D of n k -bit numbers, and we gave an example topology

for this purpose in Figure 4.6. AbT can also produce multiple order statistics of

the set D without any extra delay, as shown in Figure 7.1. Adding an extra order

statistic brings an area overhead of O(n (k+log2 n)). Thanks to its ability of computing

Figure 7.1. Computing multiple order statistics with AbT.

multiple order statistics, we can also use AbT as a subcircuit in sorting networks such

as bitonic sorter [25], which is one of the fastest sorting networks. A bitonic sequence of

numbers can be defined as a concatenation of a non-decreasing monotonic sequence and

a non-increasing monotonic sequence. And if we apply a circular rotation operation

on a bitonic sequence, the result is also a bitonic sequence. An (n,k)-bitonic sorter

repeatedly merges shorter bitonic sequences to obtain larger bitonic sequences. It

starts with one-element bitonic sequences (n inputs) and finally comes up with an

83

n-element (sorted) bitonic sequence. As an example, we give a bitonic sorter, which

sorts 8 k -bit numbers in Figure 7.2. An (n,k)-bitonic sorter consists of log2 n stages of

Figure 7.2. A (8,k)-bitonic sorter circuit.

binary merger (BM) blocks. The i -th stage of the sorter consists of n/2i BM blocks

with the size of 2i. As you can see from Figure 7.2, we have two kinds of BM blocks:

increasing BM (with up arrow) and decreasing BM (with down arrow). Increasing BM

sorts the inputs in ascending order while decreasing BM sorts the inputs in decreasing

order. The vertical arrows in Figure 7.2 point toward to larger number.

The traditional implementation of a (p,k)-BM block consists of log2 p stages of

p (2,k)-cmp-mux circuits. Hence, total timing and area complexities of a traditional

(n,k)-bitonic sorter are O((log2 n)2 log2 k) and O(k n (log2 n)2) respectively. If we im-

plement a (p,k)-BM with the AbT topology shown in Figure 7.1, we obtain an (n,k)-

bitonic sorter with the timing and area complexities of O((log2 n)2 + log2 n log2 k) and

O(k n2), respectively. Note also that we need only p2/8 comparators in CAU of a

(p,k)-BM, instead of p (p + 1)/2 comparators, since our input is a bitonic sequence.

Furthermore, we can use hybrid BM blocks, which are combination of the traditional

and AbT-based implementations, to reduce the area overhead of using AbT.

84

REFERENCES

1. Vai, M. and M. Moy, “Real-Time Maximum Value Determination on an Easily

Testable VLSI Architecture”, IEEE Transactions on Circuits and Systems I: Fun-

damental Theory and Applications , Vol. 40, No. 4, pp. 283–285, 1993.

2. Vinnakota, B. and V. Bapeswara Rao, “A New Circuit for Maximum Value De-

termination”, IEEE Transactions on Circuits and Systems I: Fundamental Theory

and Applications , Vol. 41, No. 12, pp. 929–930, 1994.

3. Daneshgaran, F. and K. Yao, “Efficient Parallel Pipelinable VLSI Architecture for

Finding the Maximum Binary Number”, IEE Proceedings on Circuits, Devices and

Systems , Vol. 141, No. 6, pp. 527–534, 1994.

4. Harteros, K., Fast Parallel Comparison Circuits for Scheduling ,

Technical Report 304, University of Crete, FORTH-ICS, 2002,

http://archvlsi.ics.forth.gr/muqpro/cmpTree.html, accessed at May 2013.

5. Huang, X.-P., X.-Y. Fan, S.-B. Zhang and F. Zhang, “An Optimized Tag Sorting

Circuit in WFQ Scheduler Based on Leading Zero Counting”, Proceedings of the

IEEE International Conference on Solid-State and Integrated Circuit Technology

(ICSICT), pp. 533–535, Shanghai, China, 2010.

6. del Campo, F. M., R. Cumplido, R. Perez-Andrade and A. Orozco-Lugo, “A Sys-

tem on a Programmable Chip Architecture for Data-Dependent Superimposed

Training Channel Estimation”, International Journal of Reconfigurable Comput-

ing , Vol. 2009, Article ID 912301, 10 pages, 2009.

7. Huang, Y.-W., S.-Y. Chien, B.-Y. Hsieh and L.-G. Chen, “Global Elimination

Algorithm and Architecture Design for Fast Block Matching Motion Estimation”,

IEEE Transactions on Circuits and Systems for Video Technology , Vol. 14, No. 6,

pp. 898–907, 2004.

85

8. Yang, M., H. Selvaraj, E. Lu, J. Wang, S. Q. Zheng and Y. Jiang, “Scheduling

Architectures for DiffServ Networks with Input Queuing Switches”, Electronics

and Telecommunications Quarterly , Vol. 55, No. 1, pp. 9–30, 2009.

9. Kohout, P., B. Ganesh and B. Jacob, “Hardware Support for Real-Time Operat-

ing Systems”, Proceedings of the IEEE/ACM/IFIP International Conference on

Hardware/Software Codesign and System Synthesis (CODES+ISSS), pp. 45–51,

California, USA, 2003.

10. Azuma, S., T. Sakuma, T. Nakano, T. Ando and K. Shirai, “High-Performance Sort

Chip”, Proceedings of the Annual International Symposium on High Performance

Chips (Hot Chips), California, USA, 1999.

11. Ugurdag, H. F. and O. Baskirt, “Fast Parallel Prefix Logic Circuits for n2n Round-

Robin Arbitration”, Microelectronic Journal , Vol. 43, No. 8, pp. 573–581, 2012.

12. Ugurdag, H. F., F. Temizkan, O. Baskirt and B. Yuce, “Fast two-pick n2n round-

robin arbiter circuit”, Electronics Letters , Vol. 48, No. 13, pp. 759–760, 2012.

13. Yuce, B., H. F. Ugurdag, S. Goren and G. Dundar, “A fast circuit topology for

finding the maximum of n k-bit numbers”, Proceedings of the IEEE International

Symposium on Computer Arithmetic (ARITH), pp. 59–66, Texas, USA, 2013.

14. Hendry, D., “Comparator trees for winner-take-all Circuits”, Elsevier Neurocom-

puting , Vol. 62, pp. 389–403, 2004.

15. Brent, R. P. and H. T. Kung, “A Regular Layout for Parallel Adders”, IEEE

Transactions on Computers , Vol. C-31, No. 3, pp. 260–264, 1982.

16. Han, T. and D. Carlson, “Fast Area-efficient VLSI Adders”, Proceedings of the

IEEE International Symposium on Computer Arithmetic (ARITH), pp. 49–56,

Como, Italy, 1987.

17. Kogge, P. M. and H. S. Stone, “A Parallel Algorithm for the Efficient Solution of a

86

General Class of Recurrence Equations”, IEEE Transactions on Computers , Vol.

C-22, No. 8, pp. 786–793, 1973.

18. Ladner, R. E. and M. J. Fischer, “Parallel Prefix Computation”, Journal of the

ACM , Vol. 27, No. 4, pp. 831–838, oct 1980.

19. Zimmermann, R., Binary Adder Architectures for Cell-Based VLSI and their Syn-

thesis , Ph.D. Thesis, Swiss Federal Institute of Technology, 1997.

20. Tyagi, A., “A Reduced-Area Scheme for Carry-Select Adders”, IEEE Transactions

on Computers , Vol. 42, No. 10, pp. 1163–1170, 1993.

21. Wang, L.-T., Y.-W. Chang and K.-T. Cheng, Electronic Design Automation : Syn-

thesis, verification, and test , Morgan Kaufmann/Elsevier, Boston, MA, USA, 2009.

22. Ullman, J. D., Computational Aspects of VLSI , W. H. Freeman & Co., New York,

NY, USA, 1984.

23. Veeramachaneni, S., M. Krishna, L. Avinash, P. Reddy and M. Srinivas, “Efficient

Design of 32-bit Comparator Using Carry Look-ahead Logic”, IEEE Northeast

Workshop on Circuits and Systems (NEWCAS), pp. 867–870, Montreal, Canada,

2007.

24. Cormen, T. H., C. Stein, R. L. Rivest and C. E. Leiserson, Introduction to Algo-

rithms , McGraw-Hill Higher Education, 2nd edn., 2001.

25. Batcher, K. E., “Sorting Networks and Their Applications”, Proceedings of the

Spring Joint Computer Conference, pp. 307–314, New Jersey, USA, 1968.

26. Boese, K. D., A. B. Kahng and S. Mantik, “On the Relevance of Wire Load Mod-

els”, Proceedings of the ACM/IEEE International Workshop on System Level In-

terconnect Prediction, pp. 91–98, California, USA, 2001.

