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their motivation, and Neşe Alyüz for weekly coffee break sessions. Many thanks to our
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with Cem Sübakan and Sezer Ulukaya, especially, Cem who has carried on the Bayesian

spirit in the laboratory.

I would also like to thank all LIRIS, INSA de Lyon members for their warm

hospitality during my stay in France. Especially, Peng Wang and Youyao Zhang, I

believe that we laid the foundation for a lifelong friendship. I thank Eric Lombardi

for his collaboration as well as for his effort to teach me GPU implementation. Also

thanks to Mingyuan Jiu for brainstorming sessions on action recognition.

I have no words to express my gratitude to my parents İpek and Turgay Çeliktutan.
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ABSTRACT

STRUCTURED AND SEQUENTIAL REPRESENTATIONS

FOR HUMAN ACTION RECOGNITION

Human action recognition problem is one of the most challenging problems in the

computer vision domain, and plays an emerging role in various fields of study. In this

thesis, we investigate structured and sequential representations of spatio-temporal data

for recognizing human actions and for measuring action performance quality. In video

sequences, we characterize each action with a graphical structure of its spatio-temporal

interest points and each such interest point is qualified by its cuboid descriptors. In the

case of depth data, an action is represented by the sequence of skeleton joints. Given

such descriptors, we solve the human action recognition problem through a hyper-graph

matching formulation. As is known, hyper-graph matching problem is NP-complete.

We simplify the problem in two stages to enable a fast solution: In the first stage, we

take into consideration the physical constraints such as time sequentiality and time

irreversibility for the actions; in the second stage we approximate the problem using a

sparse subset of spatio-temporal interest points. The reduced problem is then elegantly

solved with the dynamic programming technique. Our approach results in competi-

tive performance figures vis-à-vis the state-of-the-art action recognition algorithms.

The proposed hyper-graph matching formulation has also been applied to the problem

of the quality of action rendition. Finally, we present an alternative formulation of

the action recognition problem via Hidden Markov Models (HMMs). To learn HMM

parameters, contrary to the conventional approach, Expectation-Maximization algo-

rithm, we demonstrate the practical employment of a spectral algorithm. Given the

large variations in action sequences, we resort to a clustering scheme for exploring the

subgroups in the training data and for learning multiple HMMs per action category.



vi

ÖZET

YAPISAL VE ARDIŞIK GÖSTERİMLER İLE İNSAN

EDİMLERİNİ TANILAMA

İnsan edimlerini tanılama en zorlu bilgisayarla görü problemlerinden biridir ve

çok geniş uygulama alanlarına sahip olması bakımından oldukça önemli bir rol oy-

namaktadır. Video verisinden insan edimlerini analiz etmek amacıyla, bu çalışmada

yapısal ve ardışık gösterimleri göz önüne aldık. Her bir edimi, imge dizilerinde, uzam-

zamansal ilgin noktaları ve görünüşe dayalı öznitelikler ile betimlerken, derinlik verisin-

de ise bir iskelet dizisi şeklinde ifade ettik. Bu bağlamda, insan edimlerini tanılama

problemini hiper-çizge eşleme ile formüle ettik. Bilindiği üzere, hiper-çizge eşleme

NP-tam bir problemdir. Verimli bir şekilde çözüme ulaşmak amacıyla, bu çalışmada

problemi iki aşamada indirgedik. İlk aşamada, insan edimlerinin zamanda ardışıklık

özelliklerini göz önüne aldık. İndirgenmiş problemin dinamik programlama tekniği ile

verimli bir şekilde çözülebileceğini gösterdik. İkinci aşamada ise çizge modelini seyrek

bir ilgin nokta kümesinden oluşturarak yaklaşıkladık. Yaklaşımımız literatürdeki yön-

temler ile başa baş bir sonuç vermektedir. Geliştirilen algoritmayı aynı zamanda

derinlik verisine ve edim tanılama literatüründe farklı bir probleme uyguladık. Bu-

radaki amaç, insanların bir eğitmen önderliğinde verilen edimleri hangi ölçüde doğru

yaptığını öznel olarak nicelemektir. Hiper-çizgeye dayalı önerilen yöntem doğru ve

yanlış hareketlerin ayırt edilmesi ve yürütülen bir edime öznel bir puan atanması prob-

lemlerine uygulanmıştır. Ayrıca, edim tanılama probleminin Saklı Markov Modelleri

ile alternatif bir formülasyonunu önerdik. Sık kullanılan parametre kestirimi yöntemi

beklenti-enbüyütme algoritmasının yerine, bu çalışmada yeni bir parametre kestirimi

yönteminin pratik uygulanması vurgulanmaktır. Bu parametre kestrimi yöntemi, insan

edimlerinin sınıf-içi çeşitliliğini etkin bir biçimde ele almak amacıyla, edim sınıfı başına

çoklu Saklı Mavkov Modellerinin sonsuz katışımının öğrenilmesinde kullanılmıştır.
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1. INTRODUCTION

The problem of Human Action Recognition, in simple words, can be defined as

“design of an automated system that can recognize what action is being performed,

given an image or a sequence of images of one or more people performing an action”.

The terms “action” and “activity” are inconsistently used in the literature. Although

there is no clear distinction between these terms, we refer to an action as one of the

semantic segments of an activity, or simply a delineated part of a series of motion

or movements that composes an activity. Sample actions are walk, hand wave, answer

phone, tennis serve etc., corresponding to body displacements, gesturing, office activity,

sports activity, respectively. By extension, an activity denotes a combination of action

instances having a successive or concurrent relationship in the temporal domain. While

actions are generally executed by an individual and last for a relatively short duration

of time, activities may include actions of several people, usually in interaction, and

are characterized by longer time scales. “A person unlocks a room, and then enters”,

“two people meet and handshake” and “a person gives an object to one another” can

be given as example activities.

In the last two decades, human action recognition has gained a lot of importance

as a research area, and has become one of the fastest growing fields in the computer

vision community. Its connections to various fields of study, critical application areas

and potential marketing impact all render this topic very attractive for the scientists.

In the following, its relevant applications are presented under three major disciplines:

(i) sociology; (ii) medicine; (iii) computer science or robotics.

Monitoring of the behavior and activities of individuals or of crowds, namely

surveillance, is useful for such applications as maintaining social control and security,

preventing or investigating crimes, and detecting threats. For example, an algorithm

with an acceptable false alarm rate can be used to attract the attention of the security

personnel to anomalous activities and hence to improve the security level. Design of

such systems has been studied by many researchers [7] with the focus of collective



2

activity recognition [8–10], crowd analysis [11, 12], abnormal behavior recognition [13]

and behavioral biometrics. Especially, in behavioral biometrics, identifying people

based on their distinctive gait pattern [14] has gained interest as a complementary part

in multi-biometrics, or in the absence of other modalities such as face or fingerprint.

Assistive technology (e.g. smart homes) and robotics have become instrumental

for promoting the health and wellbeing of the elderly living at home, and improving the

quality of life of disabled people. In the same vein, gaming and virtual reality systems

have emerged in rehabilitation of individuals with physical and cognitive disabilities

resulting from neurological conditions such as stroke, acquired brain injury and in

the diagnosis and treatment of developmental disorders such as autism and Asperger

syndromes. One can cite smart homes, fall detection [15], movement quality assessment

of impaired people [16], analysis of parent-child social interactions for early autism

detection [17] as currently prominent research topics in this field.

Gestures and actions of people form a rich source of information for creating

ergonomic and effective human-machine interfaces. They also offer insight into under-

standing personality traits, emotions and mood which are important clues to develop

emotionally intelligent systems that adapt and respond better to the user’s need. Such

human-centric interfaces are now becoming widespread in ambient intelligence, cinema,

entertainment and gaming industry where some concrete examples can be given as an-

imation [18], customizable hand gesture recognition interfaces [19, 20] for interacting

with the laptops, smartphones and cars, interactive smart rooms [21,22], smart televi-

sions, game consoles such as Xbox 360 [23], and interactive self learning tools [24,25].

Finally, action/activity reconition techniques can be utilized for processing the

ever-increasing amount of video data available. If we consider daily uploaded images,

videos to social networking websites such as Facebook, YouTube (100 hours of video

are uploaded to YouTube every minute [26]), videos recorded by TV-channels etc., we

can have an idea on the incredible amount of data available and the growing need to

datamine this information by effective techniques enabling content-based video analy-

sis, video annotation and retrieval [27–29], and video summarization [30].
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The application of human action understanding to a variety of aspects of life is

enormous. However, despite the available data and the advances in motion capturing

technology, solution to this problem has proven to be extremely difficult (arguably one

of the most challenging problems ever faced by the computer vision community) due

to inherent variations such as the randomness and variability in the rate, style, posture

of the subject, as well as the multitude of confounding factors such as the presence

of multiple subjects, viewing angle, camera motion, background changes, resolution,

illumination, occlusions and clothing. Consider a simple action of answer phone. As

illustrated in Figure 1.1, the object can vary in appearance, shape and size; the manner

of holding it, with left hand or right hand, the movements of the person, the body

posture, camera view angle etc. can all differ to cause significant intra-class variations

exceeding even inter-class variations. An action recognition system that works well

under and across all these variations, and that infers the target action in a time efficient

manner has not been feasible yet. The techniques developed so far is far from the

intended goal and there is a large room for improvement in this area.

Figure 1.1. Illustration of the action answer phone variations over the shape and size

of the object, the style of the subject, pose factor and camera view angle.
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Since the problem at hand is really challenging, the researchers make full use of

all types of machine learning methods ranging from Support Vector Machines, Random

Decision Forests to probabilistic graphs such as Bayesian networks, Markov Random

Fields etc. There can be several paradigms to the action recognition problem: non-

structured, structured, sequential and holistic approaches etc. While non-structured

methods like Bag of Words approach does not take into account the configuration

of the descriptors in the video, structured approaches like graphical structures model

the configuration of the descriptors both in space and time or their parent-child rela-

tionships. In the same vein, sequential approaches consider the order of the observed

descriptors. Finally, the holistic approaches handle an action as a 3-dimensional object

in the spatio-temporal domain and rest upon volumetric representations.

In this thesis, we investigate the use of structured and sequential representations

in order to recognize human actions. We proceed from simple to complex actions in

two different settings. We can summarize our achievements and novelties under two

items in connection to these specific settings.

• Action recognition from video sequences. In this setting, we aim to recognize

actions in video sequences, and focus on “one actor, one action, uniform back-

ground” case. Our proposed methodology relies on the configuration of the inter-

est points both in the space and time domain. A spatio-temporal interest point

(STIP) can be defined as a point exhibiting saliency in the space and time do-

mains, i.e., high gradient or local maxima of the spatio-temporal filter responses.

Early approaches exploit these interest points in a Bag-of-Words (BOW) [31]

formalism which converts the local descriptors encoding STIPs into a numerical

representation by disregarding most of the structural information. On the other

hand, graph-structured representations offer a natural description for this type

of information. In this context, our main contributions can be given as follows.

(i) Hyper-graph Matching. We present a novel unified representation of the local

descriptors and their geometrical configuration by the use of hyper-graphs

where the nodes of the graph correspond to the spatio-temporal interest

points and neighborhood relationship is derived from proximity information.
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So a hyper-graph or point-set matching algorithm quantifies the deformation

between two graphs, i.e., a model graph and a scene graph, and a distance

measure is deduced which can be further used for action recognition in a

classification scheme.

(ii) Graph matching is a commonly used technique in object recognition. Tem-

poral domain extensions of graphs have only relatively recently started being

applied due to its extra computational complexity. As our main methodolog-

ical contribution we show that, in the case of spatio-temporal data, typical

of video applications, the exact solution to the point set matching prob-

lem with hyper-graphs can be calculated in polynomial complexity when

the hyper-graph is constructed by respecting certain properties of the time

domain.

(iii) We introduce a new graphical structure which is specifically designed for

the spatio-temporal data. The proposed algorithm when applied to graphs

designed with this special structure, allows calculation of matches with com-

putational complexity that grows linearly in both the number of model nodes

and the number of scene nodes.

(iv) Hidden Markov Models. Hidden Markov Models (HMMs) and their variants

are widely employed for sequence alignment and classification in the action

recognition domain. Likewise, we learn a Mixture of HMMs (MHMMs) for

recognition. As is known, the exact inference requires the evaluation of an

intractable integral over the HMM parameters. The classical methods use

Expectation-Maximization (EM) algorithm for parameter estimation. One

disadvantage of EM-based algorithms is that they need a good initialization;

yet there is no guarantee to reach the global optimal. Therefore, we present

a spectral method to estimate the parameters of HMM; the latter method

is computationally practical and deterministic, but requires larger number

of samples. Given the large variations in action sequences, we resort to a

clustering scheme for exploring the subgroups in the training data and we use

the spectral method to efficiently learn multiple HMMs per action category

in the spirit of MHMMs. In this context, we more aim to demonstrate the

practical usage of spectral learning of MHMMs rather than to improve the
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action recognition performance.

• Analysis of actions in depth sequences. In the second setting, we utilize depth se-

quences recorded with a consumer depth camera and the tracked skeleton joints.

The main contribution is that we adapt our hyper-graph-based method to align

two dynamic skeleton sequences, and apply it both to action recognition task

and to the objective quantification of the goodness of the action performance.

The automated measurement of “action quality” has the potential to monitor

and gauge action imitations, for example, during a physical therapy or dance

lessons. Action correspondences are again established through the graph match-

ing formalism that jointly measures spatio-temporal domain deformations. In

addition to recognizing actions, the deformation measure has also been used for

separating acceptable and unacceptable action performances and for a continuous

quantification of the action performance quality.

The organization of the thesis is tabulated in Table 1.1. Chapter 2 gives a brief

survey on the action recognition literature. Chapter 3 introduces the efficient hyper-

graph matching approach for spatio-temporal data and Chapter 4 presents the appli-

cation of the hyper-graph based method to the depth modality. Chapter 5 introduces

the spectral learning approach for Mixture of Hidden Markov Models. Finally, Chapter

6 concludes.
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Table 1.1. Overview of the organization of the thesis.

Chapter Methodology Problem Scenario

Chapter 3 Hyper-Graph

Matching

Action

recognition from

video sequences

Chapter 5 Hidden Markov

Models

Chapter 4 Hyper-Graph
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Analysis of

actions in

skeleton (depth)
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2. STATE-OF-THE-ART

In this chapter, we present a survey of non-exhaustive action recognition methods

in the last decade and available datasets for evaluation.

2.1. Literature on Action Recognition

There is a very large scale of human action and activity recognition approaches

available in the literature and these approaches have been extensively reviewed in re-

cent papers [32–35]. These approaches can be categorized in various ways, for example,

based on the criteria of the type or modality of the observed data (still image, video

sequence, Motion Capture or depth data), on the information source underlying the

methodology (low-level, mid-level or high-level descriptors), on the methodological as-

sumptions (e.g., unstructured or structured in the spatio-temporal domain, sequential,

volumetric) and on the intended goal (e.g., multi-view action recognition, collective

activity recognition, activity recognition for interaction etc.).

Despite the difficulty of finding clear-cut distinctions since algorithms often share

techniques common to more than one category, we have found it useful to classify

them based on the specific machine learning technique. However, before delving into

the state-of-the-art approaches, we briefly introduce the data types and common de-

scriptors for action or activity recognition. The following section will make clear which

method needs to be used and how for each data type, feature or specific task.

2.1.1. Actions: Data and Descriptor Types

An action or activity is a function of time, it may be perceived as extending

over a whole period of time or as a series of repeated occurrences or as a series of

states, e.g., begin, apex and end. This interpretation is the essential first step for

recognizing actions and for realizing the subsequent tasks, e.g., segmentation, semantic

reasoning from these primitives. Notice that, there also exist several studies [36–41]
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that have a remarkable ability to recognize actions from a single image. However,

inherent limitations of still image or video data restrict open-ended improvements in

human action recognition, e.g., in the presence of severe illumination artifacts, camera

view-point change and dynamic complex backgrounds.

Recently, many researchers have shifted their focus onto gesture and/or action

analysis based on the depth sequences with the development of low-cost consumer

cameras. One advantage of depth data modality is that it can potentially mitigate

the problems encountered in the case of still image or video data. Secondly, more

informative representations of human body movements can be obtained based on depth

maps and point clouds. For this reason, in the last three years, seminal works for action

recognition has been revamped and quickly adapted to the depth data modality.

Another interesting data type could be Motion Capture (MoCap) data. In this

case, body-worn sensors are used to measure the motion of each part. However, this

modality is substantially different than the video-based action recognition methods. In

this work, we limited ourselves to vision-based methods only.

Given the above data types, the descriptors (features) can be subsumed under

the following three categories: (i) Low-level descriptors; (ii) Mid-level descriptors; (iii)

High-level descriptors. An overview of these descriptors is given in Table 2.1.

2.1.1.1. Low-level descriptors. The early methods for low-level feature extraction ben-

efit from two main information sources, shape and motion. Shape-based methods con-

sider an action as a 3-dimensional (3D) object in the space-time domain. They char-

acterize the spatial appearance by background subtracted silhouettes, blobs, contours

or gradients, and deduce the volume from stacking together the tracked contours [49]

or blobs [50]. Features can be moments, skeletal curve, medial axis, chain codes, geo-

metric features (e.g., peaks, pits, valleys) and 3D shape descriptors that are intended

to describe global appearance, boundary or volumetric properties of the delineated

volume. A pioneering approach, proposed by Bobick and Davis [42], accumulated the
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Table 2.1. How can an action be represented?

Category Approaches Illustration

Low-level

descriptors

-Silhouette volumes and contour

stack descriptors;

-Moments, 3D shape descriptors;

-Optical flow, trajectories, mo-

tion field descriptors;

-Spatio-temporal interest points

detection and description etc.

Figures from [42–44].

Mid-level

descriptors

-Learning the spatio-temporal re-

lationship of the interest points;

-Grouping interest points based

on the proximity information or

grouping trajectories;

-Spatio-temporal tubes etc.

Figure from [45].

Fig.4: Semantic Spatial Relations. (a)Intra-Person s-
patial relations drawn by dash line in purple; (b) Inter-
Person spatial relations drawn by dash line in green.

of interactive people. The definitions of dx, dy and d✓
are the same with Intra-Person, whereas dx, dy are nor-
malized by the distance between person pm and pn.

3. Interaction Recognition

We prefer our task to a discriminative function F :
I⇥y ! R, over an image I and its class labels Y where
F is parameterized by ⇥. During testing, we predict the
class label of Y ⇤ of an input image I as:

Y ⇤ = arg max
Y ⇢y

F (I, Y | ⇥) (3)

We can write

F (I, Y | ⇥) =
X

pm

↵T
m · Intra(pm, Y )+

X

(pm,pn)

�T
mn · Inter(pm, pn, Y ) + �T · App(I, Y )

(4)

where Intra(pm, Y ) represents the Intra-Person spatial
relations of person pm, Inter(pm, pn, Y ) stands for s-
patial relations of the Inter-Person between person pm

and pn, and App(I, Y ) is the appearance model. In
the experiments, the system uses the output of SVM-
s trained on Intra-Person spatial relation features in-
stead of tuning the weights of individual features. The
same operations are done on Inter-Person and appear-
ance model parts. We choose HoG [11] as the appear-
ance features.

4. Experiment

We test our method on the public UT-Interaction
Dataset [2], which has two sets of video data. The video

Fig. 5: UT-Interaction Dataset examples in still images.
(a) hand-shake; (b) kick; (c) hug; (d) point; (e) punch;
(f) push.

sequences in Set1 are taken in a parking lot with slight-
ly different zoom rate and the background is relative-
ly static, whereas videos in Set2 contains more jitters
which results in more phantoms in still images. There
are six different interactions: Hand-shake, Hug, Kick,
Point, Punch and Push. Fig.5 shows snapshots of these
activities.

We extract key frames from the original videos to
construct our testing dataset. The key frames defined
here are extracted from the original videos’ middle one
third frames with five frames as the sampling interval.
Set1 contains 497 samples and Set2 contains 464 sam-
ples. We follow the original video-test protocol,i.e., the
10-fold leave-one-out cross validation per set. For train-
ing the joint detection models, fourteen joints on human
bodies are manually annotated, namely N = 14. The
contributes of the three parts in the system (4) are test-
ed: intra personal features, inter personal features and
the appearance model. Table 1 shows the experimental
results using the mean classification accuracy and mean
average precision. In the current implementation, the
weights of the three parts in (4) are learned using SVM.
The experimental results show that the final results are
not sensitive to the weights. It can be seen from Ta-
ble 1 that the semantic spatial relation(Intra-Person and
Inter-Person) is better than HoG templates. Besides,
our semantic spatial relation is complementary to tem-
plate matching, and combining these two approaches
improves the performance significantly.

We also compare our model with the other two state-
of-the-art methods [12] and [10] on our dataset. The
first baseline BoF is the bag-of-features classifier [12],
aggregating quantized responses of densely sampled
SIFT features in spatial pyramid representation, using
an intersection kernel. Note that this is a strong base-
line, which was shown in [12] to outperform other state-
of-the-art methods in single-actor recognition. During
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Abstract

Detecting objects in cluttered scenes and estimating ar-
ticulated human body parts are two challenging problems in
computer vision. The difficulty is particularly pronounced
in activities involving human-object interactions (e.g. play-
ing tennis), where the relevant object tends to be small or
only partially visible, and the human body parts are often
self-occluded. We observe, however, that objects and human
poses can serve as mutual context to each other – recogniz-
ing one facilitates the recognition of the other. In this paper
we propose a new random field model to encode the mutual
context of objects and human poses in human-object inter-
action activities. We then cast the model learning task as a
structure learning problem, of which the structural connec-
tivity between the object, the overall human pose, and dif-
ferent body parts are estimated through a structure search
approach, and the parameters of the model are estimated
by a new max-margin algorithm. On a sports data set of six
classes of human-object interactions [12], we show that our
mutual context model significantly outperforms state-of-the-
art in detecting very difficult objects and human poses.

1. Introduction

Using context to aid visual recognition is recently re-
ceiving more and more attention. Psychology experiments
show that context plays an important role in recognition in
the human visual system [3, 24]. In computer vision, con-
text has been used in problems such as object detection and
recognition [25, 14, 8], scene recognition [23], action clas-
sification [22], and segmentation [28]. While the idea of
using context is clearly a good one, a curious observation
shows that most of the context information has contributed
relatively little to boost performances in recognition tasks.
In the recent Pascal VOC challenge dataset [9], the differ-
ence between context based methods and sliding window
based methods for object detection (e.g. detecting bicycles)
is only within a small margin of 3 − 4% [7, 13].
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Figure 1. Objects and human poses can serve as mutual context to
facilitate the recognition of each other. In (a), the human pose is
better estimated by seeing the cricket bat, from which we can have
a strong prior of the pose of the human. In (b), the cricket ball is
detected by understanding the human pose of throwing the ball.

One reason to account for the relatively small margin is,
in our opinion, the lack of strong context. While it is nice
to detect cars in the context of roads, powerful car detec-
tors [20] can nevertheless detect cars with high accuracy
whether they are on the road or not. Indeed, for the human
visual system, detecting visual abnormality out of context
is crucial for survival and social activities (e.g. detecting a
cat in the fridge, or an unattended bag in the airport) [15].

So is context oversold? Our answer is ‘no’. Many impor-
tant visual recognition tasks rely critically on context. One
such scenario is the problem of human pose estimation and
object detection in human-object interaction (HOI) activi-
ties [12, 32]. As shown in Fig.1, without knowing that the
human is making a defensive shot with the cricket bat, it is
not easy to accurately estimate the player’s pose (Fig.1(a));
similarly, without seeing the player’s pose, it is difficult to
detect the small ball in the player’s hand, which is nearly
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Representative (dominating) exemplars of “using a computer”

Rotation
Rich 2D appea-
rance features

2.5D Graph 
representation

Exemplar-based 
Classification

View indepen-
dent 3D pose

Fig. 1. An overview of our action recognition algorithm. We represent an action image
as a 2.5D graph consisting of view-independent 3D pose and 2D appearance features.
In recognition, the 2.5D graph is matched with a set of exemplar graphs for each action
class, allowing more robust handling of within-action variations.

while very similar human poses might correspond to many different human ac-
tions, and therefore it is difficult to build a single pose model to distinguish one
action from all the others.

In this paper, we propose a novel action recognition approach (Fig.1) to ad-
dress the above two challenges. Specifically, we make two key contributions:

– 2.5D graph for action image representation. We propose a 2.5D graph
representation for action images. The nodes of the graph are key-points of
the human body represented by view-independent 3D positions and rich 2D
appearance features. The edges are relative distances between the key-points.
Estimating the similarity between two action images then becomes matching
their corresponding graphs.

– Exemplar-based action classification. Considering that a single pose
model is not enough to distinguish one action from all the others, we propose
an exemplar based approach for action classification. For each action class,
we select a minimum set of “dominating images” that are able to cover all
within-class pose variations and capture all between-class distinctions.

The rest of this paper is organized as follows. Related work is discussed in Sec.2.
The 2.5D graph representation of action images and exemplar-based action
recognition algorithm are elaborated in Sec.3 and Sec.4, respectively. Experi-
ments are represented in Sec.5. We conclude our paper in Sec.6.
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the learned model nodes i and edges (i, j) with the lowest
weights ‖(WF)i‖2 and (WAl

)ij .

5. Inference
Given a new video, its spatiotemporal graph, G, is

matched to the available set of graph models {Gr}. G is as-
signed the class label of the closest model, in the weighted
least squares sense. Similar to (4), using the notation and
definitions from Sec. 4.3, we formulate inference as

min
r

max
P

α

L∑

l=1

Tr(PTÃ
T
l PÃrl) + (1 − α)Tr(F̃rF̃

T
P)

s.t. PPT = I, (P)ij ∈ {0, 1} (6)

As in Sec. 4.4, we reformulate (6) into an equivalent, but
simpler quadratic program, similar to (5). Then, we use the
cvx software tool to efficiently solve it.

6. Extracting the Spatiotemporal Graph
The literature presents many successful approaches to

spatiotemporal video segmentation, including those based
on tracking interest points [7], clustering pixels from all
frames [5], and variational estimation of active surfaces
[17]. Their code is typically not publicly available. Since
our focus in this paper is not on the problem of low-level
video segmentation, we specify and use a simple, blocky
segmenter, which can process long videos in nearly real
time, and produce spatiotemporal graphs of sufficient accu-
racy to robustly learn the graph models of human activities.
We initially oversegment the video into space-time

blocks with data-driven shapes and sizes. A block is a ho-
mogeneous group of pixels from a few consecutive frames,
where variations of photometric andmotion properties (e.g.,
color, optical flow) within the block are smaller than varia-
tions of its surround. We then agglomeratively group simi-
lar, adjacent blocks into a hierarchy of clusters, where each
cluster represents a blocky spatiotemporal tube, as illus-
trated in Fig. 2. While the extracted tubes are blocky, their
2D+t shapes are able to capture the motions and spatial ex-
tent of the corresponding objects in the video (see Sec. 7).
The tubes are used to build the video spatiotemporal graph.
Oversegmentation: The video is recursively split top-
down into 2D+t blocks along the x, y, and t axes. The split-
ting is done greedily by selecting block b whose partition
into subblocks b1 and b2 maximally increases the compres-
sion gain relative to the other descendants. The compression
gain is defined as γb1b2 = |εb1 + εb2 − εb|, where the com-
pression error εb =

∑
p∈b ‖fp −fb‖2 is a sum of Euclidean

distances of pixels’ feature vectors fp from the mean fb.
fp consists of HSV color values, and Lucas-Kanade optical
flow at pixel p. We use integral volumes to efficiently com-
pute γb1b2 in O(1) when searching for the optimal split of a

Figure 2. Multiscale spatiotemporal segmentation. The red arrows
show corresponding video parts and their volumetric representa-
tions. The shape of the tube accurately captures the actor’s trajec-
tory. We show only a part of the extracted spatiotemporal graph
with only hierarchical relations between 2D+t tubes, for clarity.
One level of segmentation is shown on the right.

visited block along one of x, y, and t axes. Finding the best
split in each iteration takes at mostO(width+height+length)
of the video. The recursion ends when the splitting yields
two children blocks whose volumes are smaller than a cer-
tain size (we set 10 frames). Finally, we take the smallest
blocks as our result of video oversegmentation.
Agglomerative clustering: Analogously to finding MSER
regions, we agglomeratively merge neighboring (touching)
and most similar video blocks of the aforementioned over-
segmentation. Similarity, i.e., distance between blocks is
computed as ∆ = |εb1∪b2 − εb1 − εb2 |, and recorded in
each merging iteration τ . The merging stops when varia-
tions of the gradient g(t) ≈ |∆(τ+1) − ∆(τ)| become suf-
ficiently large. At that moment, all mergers differ signif-
icantly in their compression errors, and thus are taken to
represent 2D+t tubes of a plausible spatiotemporal video
segmentation. Our experiments agree with the well-known
practice with MSER regions that gradient changes are typi-
cally small except at a few critical iteration steps, which can
be robustly identified. The agglomerativemerging of blocks
is continued until the next significant jump in the gradient
values. This gives multiscale 2D+t tubes at different levels
of homogeneity. The tubes are organized in the spatiotem-
poral graph. Depending on a video, the resulting graph may
have 1000–2000 nodes. Note that the number of nodes does
not directly depend on the length, but contents of the video.
Features of graph nodes: Each 2D+t tube is described by a
descriptor vector representing a concatenation of four types
of 10-bin histograms of: (i) 2D areas of the tube’s intersec-
tions with video frames, normalized relative to the corre-
sponding 2D areas of the parent tube, for scale invariance;
(ii) contrasts σi = ε − εi between compression errors of the
tube and its neighboring (touching) tubes i, for illumination
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High-level

descriptors

-Pose, poselets, skeletons;

-Object detection;

-Scene understanding;

-Interaction context, crowd con-

text;

-Semantic attributes etc.

Figures from [41,46–48].

Fig.4: Semantic Spatial Relations. (a)Intra-Person s-
patial relations drawn by dash line in purple; (b) Inter-
Person spatial relations drawn by dash line in green.

of interactive people. The definitions of dx, dy and d✓
are the same with Intra-Person, whereas dx, dy are nor-
malized by the distance between person pm and pn.

3. Interaction Recognition

We prefer our task to a discriminative function F :
I⇥y ! R, over an image I and its class labels Y where
F is parameterized by ⇥. During testing, we predict the
class label of Y ⇤ of an input image I as:

Y ⇤ = arg max
Y ⇢y

F (I, Y | ⇥) (3)

We can write

F (I, Y | ⇥) =
X

pm

↵T
m · Intra(pm, Y )+

X

(pm,pn)

�T
mn · Inter(pm, pn, Y ) + �T · App(I, Y )

(4)

where Intra(pm, Y ) represents the Intra-Person spatial
relations of person pm, Inter(pm, pn, Y ) stands for s-
patial relations of the Inter-Person between person pm

and pn, and App(I, Y ) is the appearance model. In
the experiments, the system uses the output of SVM-
s trained on Intra-Person spatial relation features in-
stead of tuning the weights of individual features. The
same operations are done on Inter-Person and appear-
ance model parts. We choose HoG [11] as the appear-
ance features.

4. Experiment

We test our method on the public UT-Interaction
Dataset [2], which has two sets of video data. The video

Fig. 5: UT-Interaction Dataset examples in still images.
(a) hand-shake; (b) kick; (c) hug; (d) point; (e) punch;
(f) push.

sequences in Set1 are taken in a parking lot with slight-
ly different zoom rate and the background is relative-
ly static, whereas videos in Set2 contains more jitters
which results in more phantoms in still images. There
are six different interactions: Hand-shake, Hug, Kick,
Point, Punch and Push. Fig.5 shows snapshots of these
activities.

We extract key frames from the original videos to
construct our testing dataset. The key frames defined
here are extracted from the original videos’ middle one
third frames with five frames as the sampling interval.
Set1 contains 497 samples and Set2 contains 464 sam-
ples. We follow the original video-test protocol,i.e., the
10-fold leave-one-out cross validation per set. For train-
ing the joint detection models, fourteen joints on human
bodies are manually annotated, namely N = 14. The
contributes of the three parts in the system (4) are test-
ed: intra personal features, inter personal features and
the appearance model. Table 1 shows the experimental
results using the mean classification accuracy and mean
average precision. In the current implementation, the
weights of the three parts in (4) are learned using SVM.
The experimental results show that the final results are
not sensitive to the weights. It can be seen from Ta-
ble 1 that the semantic spatial relation(Intra-Person and
Inter-Person) is better than HoG templates. Besides,
our semantic spatial relation is complementary to tem-
plate matching, and combining these two approaches
improves the performance significantly.

We also compare our model with the other two state-
of-the-art methods [12] and [10] on our dataset. The
first baseline BoF is the bag-of-features classifier [12],
aggregating quantized responses of densely sampled
SIFT features in spatial pyramid representation, using
an intersection kernel. Note that this is a strong base-
line, which was shown in [12] to outperform other state-
of-the-art methods in single-actor recognition. During
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Abstract

Detecting objects in cluttered scenes and estimating ar-
ticulated human body parts are two challenging problems in
computer vision. The difficulty is particularly pronounced
in activities involving human-object interactions (e.g. play-
ing tennis), where the relevant object tends to be small or
only partially visible, and the human body parts are often
self-occluded. We observe, however, that objects and human
poses can serve as mutual context to each other – recogniz-
ing one facilitates the recognition of the other. In this paper
we propose a new random field model to encode the mutual
context of objects and human poses in human-object inter-
action activities. We then cast the model learning task as a
structure learning problem, of which the structural connec-
tivity between the object, the overall human pose, and dif-
ferent body parts are estimated through a structure search
approach, and the parameters of the model are estimated
by a new max-margin algorithm. On a sports data set of six
classes of human-object interactions [12], we show that our
mutual context model significantly outperforms state-of-the-
art in detecting very difficult objects and human poses.

1. Introduction

Using context to aid visual recognition is recently re-
ceiving more and more attention. Psychology experiments
show that context plays an important role in recognition in
the human visual system [3, 24]. In computer vision, con-
text has been used in problems such as object detection and
recognition [25, 14, 8], scene recognition [23], action clas-
sification [22], and segmentation [28]. While the idea of
using context is clearly a good one, a curious observation
shows that most of the context information has contributed
relatively little to boost performances in recognition tasks.
In the recent Pascal VOC challenge dataset [9], the differ-
ence between context based methods and sliding window
based methods for object detection (e.g. detecting bicycles)
is only within a small margin of 3 − 4% [7, 13].
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Figure 1. Objects and human poses can serve as mutual context to
facilitate the recognition of each other. In (a), the human pose is
better estimated by seeing the cricket bat, from which we can have
a strong prior of the pose of the human. In (b), the cricket ball is
detected by understanding the human pose of throwing the ball.

One reason to account for the relatively small margin is,
in our opinion, the lack of strong context. While it is nice
to detect cars in the context of roads, powerful car detec-
tors [20] can nevertheless detect cars with high accuracy
whether they are on the road or not. Indeed, for the human
visual system, detecting visual abnormality out of context
is crucial for survival and social activities (e.g. detecting a
cat in the fridge, or an unattended bag in the airport) [15].

So is context oversold? Our answer is ‘no’. Many impor-
tant visual recognition tasks rely critically on context. One
such scenario is the problem of human pose estimation and
object detection in human-object interaction (HOI) activi-
ties [12, 32]. As shown in Fig.1, without knowing that the
human is making a defensive shot with the cricket bat, it is
not easy to accurately estimate the player’s pose (Fig.1(a));
similarly, without seeing the player’s pose, it is difficult to
detect the small ball in the player’s hand, which is nearly
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Representative (dominating) exemplars of “using a computer”

Rotation
Rich 2D appea-
rance features

2.5D Graph 
representation

Exemplar-based 
Classification

View indepen-
dent 3D pose

Fig. 1. An overview of our action recognition algorithm. We represent an action image
as a 2.5D graph consisting of view-independent 3D pose and 2D appearance features.
In recognition, the 2.5D graph is matched with a set of exemplar graphs for each action
class, allowing more robust handling of within-action variations.

while very similar human poses might correspond to many different human ac-
tions, and therefore it is difficult to build a single pose model to distinguish one
action from all the others.

In this paper, we propose a novel action recognition approach (Fig.1) to ad-
dress the above two challenges. Specifically, we make two key contributions:

– 2.5D graph for action image representation. We propose a 2.5D graph
representation for action images. The nodes of the graph are key-points of
the human body represented by view-independent 3D positions and rich 2D
appearance features. The edges are relative distances between the key-points.
Estimating the similarity between two action images then becomes matching
their corresponding graphs.

– Exemplar-based action classification. Considering that a single pose
model is not enough to distinguish one action from all the others, we propose
an exemplar based approach for action classification. For each action class,
we select a minimum set of “dominating images” that are able to cover all
within-class pose variations and capture all between-class distinctions.

The rest of this paper is organized as follows. Related work is discussed in Sec.2.
The 2.5D graph representation of action images and exemplar-based action
recognition algorithm are elaborated in Sec.3 and Sec.4, respectively. Experi-
ments are represented in Sec.5. We conclude our paper in Sec.6.
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blobs over the frames into a static image, called as “Motion History Images”. Two

other approaches, proposed in [49] and [50], best exemplify the holistic or volumet-

ric approaches. Although these methods are simple and fast, they can properly work

in just controlled settings. Shape and appearance are prone to errors of background

subtraction, light variations, shadows, and clothing. Moreover, silhouettes are not ad-

equate enough for describing the action as the motion and shape information inside

the contour is ignored.

Second category of methods, motion, can be relatively descriptive, and, at the

same time, quite robust against shape and appearance variations. A popular approach

is to estimate the motion field by optical flow and to directly extract features from the

resulting flow pattern [43, 51]. A prominent method in this case, proposed by Ke et

al. [52], extended the Haar type features [53] to 3D volume and applied to the dense

optical flow pattern. Another way to describe the motion is trajectory of the interest

points. The fact remains that the optical flow is sensitive to noise and illumination

changes, and suffers from high computational complexity. Likewise, motion trajectories

are affected by rotations, camera position, scale changes, and occlusions.

Currently, holistic or volumetric methods solely based on shape or motion have

become out-of-date, however, a significant improvement has been noted with the local

methods combining both sources of information. These methods focus more on the

local neighborhoods in spatio-temporal domain, and thus become more robust against

the aforementioned impediments and also bypass the tedious segmentation task. One

outstanding method is the spatio-temporal interest point (STIP) detector. A STIP

detector can be considered as a spatio-temporal filter that gives a high response at

the points exhibiting significance, e.g., high gradient or local maxima, in the spatio-

temporal domain. The most popular interest point detection methods are periodic

(1D Gabor filters) [54], 3D Harris corner detector [44], extension of SIFT to time

domain [55], 3D Hessian [56], 3D Gabor filters [57], 2D Gabor filters applied on the

region of interest [58]. It is typical to describe the local neighborhood of an interest

point by concatenation of gradient values [54], of optical flow values [54], or of spatial-

temporal jets [1], histogram of gradient and optical flow values (HoG and HoF) [44], and
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3D Scale-invariant Feature Transform (SIFT) [55]. Comparison of the existing STIP

detection and description methods with sparse or dense sampling (using a regular grid)

strategies have been well studied in the papers [59, 60]. The effort still continues to

incorporate other channels, e.g., color SIFTs [61], or for the depth data [62, 63]. For

example, Hadfield and Bowden [63] recently extended the benchmark interest-point

detectors [44,54,56] into the depth modality.

2.1.1.2. Mid-level descriptors. Low-level descriptors either capture only the local mo-

tion information within a small spatio-temporal patch, namely cuboid, or describe the

holistic nature. For this reason, mid-level descriptors have been proposed to extract

and to encode the information within a cuboid that is large enough to capture more in-

formative motion. Mid-level descriptors are generally built on the low-level descriptors

and possess no semantic meaning as them.

Most of the studies combine the spatio-temporal interest points to encode their

relationship. Fathi and Mori [64] first extracted low-level optical flow information, and

then used a method in the spirit of AdaBoost to build mid-level descriptors from them.

In their scheme, low-level features served as weak classifiers, and a mid-level feature

was a weighted combination of them where the weights were assigned by the AdaBoost

algorithm proportional to the discrimination capability between pairs of action classes.

For the same purpose, [65] and [66] used Random Decision Forests (RDF), differently,

considered histogram of gradient and optical flow values as low-level features. For

example, Hu et al. [66] proposed a two-level RDF framework. In the first RDF pass,

the surviving features were used to compose mid-level descriptors, and the second pass

was served for the classification from the mid-level features. They treated the space

and the time domains separately, in other words, two types of mid-level features have

been obtained covering the spatial structure and the temporal pairwise relationships.

Wang et al. [67] divided the video into a number of volumes of fixed size, and

extracted spatio-temporal orientation energy as low-level features. Mid-level features

are constructed by finding the connected volumes that have similar motion character-
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istics. Similarly, Brendel and Todorovic [45] also took into account the homogeneity

in terms of pixel intensity and motion at multiple scales, and oversegmented video to

obtain 2D + t tubes.

In the context of BoW formalism, mid-level descriptors taking into account only

pairwise spatio-temporal proximity [68] and a collection of the neighboring points [69]

or modeling the spatio-temporal relationship of these neighboring points [70] can be

considered as examples.

Since STIPs are more relevant to our focus area, we mentioned STIP-based mid-

level descriptors in detail. Note that it is possible to see the instances that combine

other types of low-level features in the literature, e.g., clustering trajectories into groups

[71].

2.1.1.3. High-level descriptors. A high-level descriptor can be a human pose, an ob-

ject, a semantic attribute, scene context or even a primitive human action. They also

benefit from low-level or mid-level like features, but there is not a direct hierarchical

relationship.

Pose estimation significantly assists the recognition of actions. An approach could

be to represent each action by a set of key poses and search similar poses within a test

sequence. For this reason, there is a considerable amount of work in the literature for

pose estimation. For example, pictorial structures [72], deformable part-based mod-

els [73] and their variants [74, 75] are popularized specially for this task. However,

estimating pose from still images or videos is very challenging per se, and occlusions

have not yet been properly handled. In the cases where the body is occluded or in the

close-up recordings where only a portion of the body is visible, poselets offer a good

solution [76,77]. A poselet captures a salient pattern corresponding to a particular part

of the human pose under a given viewpoint, and it is obtained by tightly clustering

parts both in appearance and configuration. On the other side, depth data is also likely

to be helpful for pose estimation. As a case in point, it is really encouraging to witness
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the real-time skeleton tracking algorithm developed by Shotton et al. [47] from depth

sequences. This scheme results in 20 body (skeleton) joints per frame and proves to be

adequate for tracking in the presence of appearance changes and varying background.

Actually, it is much more favorable to combine these two modalities (intensity and

depth) for complex activity recognition [78–80].

In addition to the pose information, object recognition, scene understanding or

interaction context all give an insight into human action recognition problem. For

this reason, integrating object-human context [48, 78, 79], scene context [78], person-

person context [46,78] or crowd context [81] have stirred great interest in the literature.

Note that there exist remarkably good off-the-shelf codes that are publicly available for

object detection and pose estimation. Many approaches [79, 82, 83] first run a bunch

of object detectors and pose estimators, and then directly integrate these outcomes to

their methodology.

A final type of high-level descriptors could be the semantic attributes. A semantic

attribute is generally characterized by a text that describe a primitive human action

(“talking on phone”, “riding”,“stretching arm”) [83, 84], a spatio-temporal movement

of a body part (“single leg motion”, “torso twist”, “torso up-down motion”) [85], a

physical property of the subject (“female’,“have backpack”,“wearing suit”) [86,87] etc.

2.1.2. Review of Action Recognition Methods

Rapidly increasing interest on human action recognition has spawned a large

number of different methodologies proposed in the literature. In this section, we only

present a categorization of the methods based on their prominent characteristics, and

specifically limited to relevance of our work. The taxonomy of the reviewed methods

is given in Table 2.2.

2.1.2.1. BoW and its extensions. Local spatio-temporal features extracted from a few

thousand cuboids provide a compact yet rich representation of the visual data. From
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Table 2.2. Taxonomy of the reviewed approaches.

Human Action Recognition Methods

Bag-of-Words and its

extensions

Dollar et al. [54], Schuldt et al. [1], Niebles et al. [88,89],

Laptev et al. [4], Ryoo and Aggarwal [90], Ta et al. [68],

Bilinski and Brémond [69], Li et al. [5], Ofli et al. [91],

Lin et al. [92], Bettadapura et al. [93].

The use of Graphs Ta et al. [94], Gaur et al. [95], Borzeshi et al. [96], Liu et

al. [97], Yuan et al. [98], Chen and Grauman [82], Raja

et al. [40], Yao and Fei-Fei [41], Yi and Pavlovic [99].

Brendel and Todorovic [45], Todorovic [100].

Sequential methods Chaaraoui et al. [101], Dyana and Das [102], Savarese

et al. [103], Cuntoor et al. [104], Li et al. [105], Lv and

Nevatia [106], Zhang et al. [107], Xia et al. [108], Alex-

iadis et al. [24], Raptis et al. [109], Bianco et al. [25],

Wang et al. [110], Çelebi et al. [111], Negin et al. [6],

Ellis et al. [112].

The use of Trees Mikolajczyk and Uemura [113], Jiang et al. [114], Choi

et al. [81], Oshin et al. [115], Hu et al. [66], Miranda et

al. [116].

Part-based structured

models (Support Vec-

tor Machines)

Delaitre et al. [117], Tian et al. [118], Filipovych and

Ribeiro [119], Sharma et al. [87], Liu et al. [85], Raptis

and Sigal [120].
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these features, one pioneering approach for recognition is Bag-of-Words (BoW) formal-

ism that was originally developed for image classification [31]. BoW basically mea-

sures the occurrence of the local features with taking into account their membership

to different action classes. More explicitly, it performs k-means clustering to find the

representative cluster centers, and then convert the congregated local features around

these centers into a histogram, and finally, compute the distance between these his-

tograms [54] or feed them into a classifier, e.g., Support Vector Machines (SVMs) [1],

for recognition.

BoW is very fast, simple and successful, if our only goal is to uncover the action.

For more sophisticated goals –such as modeling of action co-occurrencess or high level

interpretation of the scene–, it is patently not appropriate. Its limitation is to neglect

the structural information encoded in the video, e.g., the spatio-temporal relationship of

the descriptors. To remedy its shortcomings, structural information has been imposed

by many studies [4, 68, 69, 88–90]. For example, Laptev et al. [4] divided the space-

time volume into several grids and constructed spatio-temporal histograms where each

histogram is referenced with its grid position. The latter methods [88–90] focus more

on the detection and localization of actions in the video rather than classification.

Some methods [89] extended the BoW approach with the topic models. In tradi-

tional BoW, we have a number of videos that contain visual words from a vocabulary

and simply count the number of occurrences of each word within the video. The topic

models are also in the same spirit, additionally, we introduce a latent topic variable

associated with each occurrence of a word. BoW formalism assigns each word to a

topic independently. This assumption can be constrained given that the topics gen-

erate words condition on the previous word or on some spatial-temporal consistency

between the words. Note that, in the computer vision literature, words correspond to

local spatio-temporal descriptors and topics to different action categories. A case in

point, Niebles et al. [89] learned the distribution of the local descriptors and recognize

multiple actions by using probabilistic Latent Semantic Analysis (pLSA) and Latent

Dirichlet Allocation (LDA). In another work [88], they built a probabilistic model on

the top of the BoW representations. Once the interest points are clustered, they model
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the relative spatial arrangement of clusters as well the distribution of the appearance

and position of interest points within each cluster in a probabilistic framework. Instead

of building histograms from individual descriptors, Ryoo and Aggarwal [90] described

the pairwise spatio-temporal relations between the local features based on a set of

rules and transformed these relations into a 3D histogram. The similarity between two

histograms was measured by kernel matching.

The concept of the BoW was also adapted to the depth data modality by Li

et al. [5]. Bag of 3D points was used to characterize the salient poses, which were

probabilistically modeled by so called “action graphs”. In a similar way, Ofli et al. [91]

divided each sequence into small temporal segments, namely M-frame length subse-

quences. They took into account a number of joints having maximum variance within

each subsequence and then used these most informative joints to construct histograms

for action recognition.

The use of BoW formalism is still on-trend, however, in contrast to the previous

efforts, we observe that the recent methods [92,93] are more characterized by enriched

descriptors and intended for activity recognition in complex scenarios.

2.1.2.2. The use of Graphs. Graphs by nature offer a model for describing the spatio-

temporal relationships. As we propose in Section 3.5, several methods [94,95] structure

the interest points into a graph for matching. Ta et al. [94] have built graphs from

proximity information by thresholding distances between interest points [54] in space

and time. Similarly, Gaur et al. [95] modeled the relationship of spatio-temporal inter-

est points [44] in a local neighborhood, i.e., they have built local feature graphs from

small temporal segments instead of the whole video. These temporally ordered local

feature graphs composed the so-called String of Feature Graphs (SFGs). Dynamic

Time Warping (DTW) was utilized to measure the similarity between a model and a

scene SFG. In [96], graphs were not directly matched in the spatio-temporal domain.

Instead, a number of interest points is structured into a graph per frame, which is called

as “frame graph”. Scores generated by matching a scene frame graph across a set of
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model frame graphs were fed to Hidden Markov Models (HMMs) for classification.

Graph embedding has been used in several studies [97, 98]. For example, Liu et

al. [97] used graphs to model the relationship between different components. While

the nodes can be spatio-temporal descriptors, spin images or action classes, edges

represent the strength of the relationship between these components, i.e. feature-

feature, action-feature or action-action similarities. The graph was then embedded

into a k-dimensional Euclidean space; hence correspondence was solved by spectral

technique.

The approach proposed by Chen and Grauman [82] can be considered in this

category as well. They first divided the test video into several subvolumes where each

subvolume was scored by Support Vector Machines (SVMs) with respect to its relevance

to a specific action class, in terms of the appearance and motion descriptors. Then,

branch-and-cut algorithm searched the best scoring connected subvolumes, referred to

as a “max-subgraph”, for each action class.

Probabilistic models have also been widely used in the literature [45,100,105–107].

Brendel and Todorovic [45] built weighted directed graphs from adjacency and hierar-

chical relationships of spatio-temporal tubes produced from oversegmenting the video.

Given a set of training graphs, a graph can be generated by mixing these relationships

through a permutation matrix which encodes the correspondences between the nodes.

This generative probabilistic model was used to weight the representative edges and

nodes as well as to eliminate the outliers. Once the weights were learned, a test graph

was matched to the available model graphs by estimating the permutation matrix and

assigned to the class of the closest model in the least squares sense.

Graphs are also used to model different types of data: still images [40, 41] and

MoCap data [99]. Inspired from pictorial structures [72], Raja et al. [40] jointly estimate

the pose and action using a pose-action graph where the nodes correspond to the five

body parts, e.g., head, hands, feet, and the energy function is formulated based on

both detected body parts and possible relative positioning of parts given the action



19

class. In [41], Yao and Fei-Fei structure salient points on the human body, namely

skeletal joints, into a graph. Body joints are detected again by pictorial structures [72];

however, the main difference is that they use the method in [121] to recover depth

information and, then attribute the 3D position information of the joints as well as

appearance features to the nodes and 3D pose features to the edges. Similary, in [99],

graphs model the relationship of skeletal joints from MoCap Data.

2.1.2.3. Sequential methods. The linear and causal nature of the time dimension is

frequently used to devise methods based on sequence alignment. The widely used Dy-

namic Time Warping (DTW) is an appropriate technique for matching two sequences

in different lengths [101, 114]. Other example methods based on sequence alignment

are chain graph models [105–107], trajectory matching with Gabor filters [102], cor-

relation [103], learning salient state transitions by HMMs [96, 104] and modeling the

evolution of silhouettes over time [122].

Chaaraoui et al. [101] proposed a multi-view action recognition method based

on learning a set of key poses in the spirit of BoW. They characterized each sequence

frame by frame with the key poses, and aligned two different sequences by DTW.

In [103], Savarese et al. measured the correlation of spatio-temporal (ST) patterns and

constructed ST correlograms. Then, Probabilistic Latent Semantic Analysis (pLSA)

was used to learn different human actions from these correlograms.

Li et al. [105] used a weighted directed graph where they assigned the nodes to

frames with salient postures or silhouettes that were shared among different action

categories. Here, edges encoded the transition probabilities between these postures.

Given the training data, each action was learned and represented by several paths in

the graphs. In the same vein, Lv and Nevatia [106] used salient postures for single-

view action recognition in [106]. They modeled each action as well as linking different

actions by chain graphs, called as Action Nets. Then, recognizing actions was boiled

down to searching the most likely path by the Viterbi algorithm. Finally, to recognize

actions performed by two interacting people, e.g. boxing, hand shaking etc., Zhang et
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al. [107] also proposed a time-expanded chain graphical model.

Again in this category, depth-based action recognition methods can be coarsely

examined along two main aspects. First, a skeleton is transformed into a feature rep-

resentation robust to intrinsic properties such as body size, variance within the action

class etc., and extrinsic conditions like camera position. Secondly, model skeleton

sequences and a scene skeleton sequence are temporally aligned to each other and com-

pared with respect to their kinematic details, e.g., speed, amplitude, position of skeleton

joints, trajectory etc. The available approaches to temporal alignment typically utilize

three methods or variations of them: Dynamic Time Warping (DTW) [25,111], Hidden

Markov Models (HMM) [108] and correlation [6, 24].

Xia et al. [108] represented each skeleton as a histogram of joint positions that

was obtained by converting Cartesian coordinates of the joint positions to spherical

coordinates and dividing the sphere enclosing the skeleton into several grids. Each

action video was described by a sequence of poses, which were actually characterized

by histograms, and Hidden Markov Models (HMMs) were used for classification.

One prominent robust skeleton representation was proposed by Raptis et al. [109].

Briefly, Principal Component Analysis (PCA) was applied on the torso joint positions.

The resulting basis, called as “torso frame”, was used to estimate the orientation of the

human body and accordingly to extract a set of features, e.g., limb joint angles with

respect to the torso frame. These features were used to train cascaded correlation-

based classifiers and the reliability of matching two sequences was evaluated by a

distance metric based on DTW. Following this, Negin et al. [6] proposed a correlation-

based method based on the torso frame features [109] and employed Random Decision

Forests to learn the discriminative features per action class.

Introducing a skeleton joint weighting or a feature selection mechanism has been

shown to improve the action recognition performance in previous studies [6,91,110,111].

Wang et al. [110] proposed a discriminative joint mining approach in which the goal

was to select the best subset of joints that increases a confidence measure and at
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the same time decreases an ambiguity measure. Their learning scheme resulted both

in most informative joints and training sequences per each action class. They used

Multiclass-Multiple Kernel Learning for classification where each kernel corresponds to

a learned discriminative prototype. In another work, Çelebi et al. [111] used weighted

DTW where they learned the weights of each joint during a training phase. Finally,

Ellis et al. [112] used GentleBoost for selecting a set of best features corresponding to

the informative joints and logistic regression for classification.

2.1.2.4. The use of Trees. Trees offer a representation for handling aforementioned

structural properties by nature. However, we observe that they are often utilized for

fast searching a query feature within a large vocabulary. For example, Mikolajczyk

and Uemura [113] built a vocabulary from appearance-motion features and exploited

randomized kd-trees to match a query feature to the vocabulary. A sequence was

classified by accumulating the weights of the matched features over time. Similarly,

Jiang et al. [114] used trees for assigning each frame to a shape-motion prototype, and

aligned the two sequences of prototypes by DTW.

The most recent methods have been used Random Decision Forests (RDFs) or

Random Ferns [115] for learning discriminative and representative features [6, 66, 81].

Choi et al. [81] proposed a method to analyze crowd behavior, e.g., “queuing in a line”,

“talking”. Given the location, pose of each individual per frame and the velocity, they

learned the most discriminating spatio-temporal regions by RDFs, and then modeled

their spatio-temporal relationships by Markov Random Fields (MRF) for a specific

activity class. Oshin et al. [115] extracted relative-motion-based descriptors, inspired

from the Random Ferns concept. To capture the relative motion, each fern applied

a series of binary tests to the input cuboids within a portion of the video, and these

outputs were then aggregated and concatenated to form a histogram representation.

They used Support Vector Machines (SVMs) for classification.

In the context of depth modality, Miranda et al. [116] used RDFs for action

recognition. They first learned a set of key poses with multi-class Support Vector
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Machines (SVMs), and then fed these poses to the RDFs. They characterized each

pose (skeleton) by a modified version of the torso frame features [109].

2.1.2.5. Parts-based structured methods or SVMs. Although Deformable Part-based

Models (DPMs) [73] are frequently used for pose estimation, we have encountered only

two methods [117,118] for action recognition in the literature. A few explanatory notes

for DPMs are in order. DPM assumes that each object is composed of a root filter and

several parts, as is common, each characterized by HoG features. Its key aspect is that,

for a certain object category and viewpoint, it learns the discriminative parts as well as

their best configuration by using Latent Support Vector Machines (LSVM) where the

spatial position of the parts are regarded as the latent variables. To detect an object in

an image, searching over all possible configurations of the parts is efficiently performed

by dynamic programming technique. For example, in the case of pose estimation, parts

can be considered as the limbs.

Delaitre et al. [117] used DPMs to recognize actions in still images and also showed

that the DPMs perform better when combined with the Bag-of-Words approach. Up

to our knowledge, the first method that extends DPMs to spatio-temporal domain was

proposed by Tian et al. [118]. Their method retained exactly the same formulation

as in [73] while generalizing the parts to capture spatio-temporal information. More

explicitly, each part is represented by a volume, and the model learns the displacement

of parts both in space and time.

Similarly, Filipovych and Ribeiro [119] integrated spatio-temporal configuration,

appearance and human-object interactions into a parts-based model. Sharma et al.

[87] recognized both attributes and actions from still images by parts-based loosely

structured models. In other words, their model allows learning all possible variations,

articulations from a large number of candidate parts while the highly structured models

assume some priori information or initialization heuristics taking into account a few

spatially constrained templates. Their formulation was basically based on linear SVM

with hinge loss.
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Besides part-based models, Latent SVMs have also been used to discriminatively

learn different types of components. Liu et al. [85] treated the semantic attributes

that describe the movements of the body parts as the latent variables. Raptis and

Sigal [120] considered the key-frames featuring in a particular action sequence, each

encoded with spatial features by the notion of poselets [76]. Their SVM formulation

allows both learning the discriminative key-poses and their temporal relationships.

2.2. Benchmark Datasets

Since standard datasets are compulsory for experimental assessment and perfor-

mance comparisons of different algorithms, for selection of proper solutions to practical

applications, we briefly review the most relevant works that have been dedicated to

generate standard testbeds for action detection and recognition systems.

Large spectrum of human action recognition applications creates need for differ-

ent types of data collections, consequently, there are a plethora of datasets publicly

available in the literature. These datasets have been extensively studied in a recent

survey [123]. Here, we only recall the most prominent ones, and, additionally, multi-

modal (RGB-D) datasets which were not addressed in [123], and introduce our own

multi-modal dataset, so called LIRIS Human Activities Dataset [3].

The earliest datasets focus on simple periodic actions, e.g., running, walking,

boxing, hand-clapping etc., with usually uniform background and static camera. Each

video sequence includes a single person performing only one action (please refer to Fig-

ure 2.1). Typical examples are the KTH dataset [1] and the Weizmann dataset [124].

However, the performance on these datasets have been saturated. More complex ac-

tions and cluttered and dynamic backgrounds are covered by CAVIAR [125], ETISEO

[126], UIUC [127] and MSR [128] action datasets, in which the recordings took place

in shopping centers, hallways, metro stations or on the street.

More realistic datasets include videos of a series of actions or co-occurring actions

performed by one or more people, namely, activities or events, from real-world scenes
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Figure 2.1. KTH dataset is a typical example of “one actor, one action, uniform

background” concept [1].

and generally collected for surveillance purposes. In this context, sample datasets

that focus person-person interaction are CAVIAR [125], BEHAVE [129], CASIA [130],

i3DPost [131], TV Human Interactions [132], UT-Interaction [133], VideoWeb [134]

datasets. Several datasets feature crowd behavior, for instance PETS 2009 [135],

ETISEO [126], or group activities, for instance BEHAVE [129] and Collective Activity

[136]. Person-object interactions were addressed by CASIA [130], where the object can

be a car, door, telephone, baggage etc. Finally, daily activities in a natural kitchen

environment are dealt by University of Rochester Activities of Daily Living Dataset

[137] and the relatively challenging TUM Kitchen [138] dataset.

Different camera views render activity recognition problem much harder than

the recognition with fixed viewing direction. An algorithm that is trained on a single

view and works well across all view variations has not been feasible yet. Therefore,

multi-view datasets include several simultanuous views for each scene: BEHAVE [129],

CASIA [130], CAVIAR [125], ETISEO, [126], IXMAS [139], i3DPost [131], MuHaVi

[140], UCF-ARG [141], VideoWeb [134] and Multiple Cameras Fall [15]. Aerial views

are handled by UCF Aerial [142] and UCF-ARG [141].

Many datasets can be defined as “controlled” in that they are collected within the

framework of a defined experimental setup. Uncontrolled databases, on the other hand,

are collected without any constraints, and they are appropriately called sometimes “ac-
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tions in the wild”. Recently, datasets collected from Youtube, dailymotion and broad-

cast television channels, movies, have aroused a lot of interest due to the huge amount

of web sources in contrast to the laborious process of building controlled databases.

Moreover, they provide more realistic and challenging videos. These datasets exhibit a

large variability in background, camera view angle, camera motion, resolution, environ-

mental conditions, number of subjects and the style of the acting. Prominent examples

of wild datasets are BEHAVE [129], HMDB51 [143], Hollywood [144], Hollywood-2 [2],

Olympic Sports [145], TV Human Interaction [132], UCF Youtube [146], UCF Sports

and UCF 50 [147]. Some instances are illustrated in Figure 2.2.

Figure 2.2. Recent research trends stress the recognition of the actions in the wild,

some examples are illustrated from Hollywood-2 dataset [2].

The recent introduction of low-cost depth cameras, e.g., Microsoft Kinect, Asus

Xtion, Primesense Carmine and Capri etc., has created wide spread interest in activity

recognition from depth sequences. On the one hand, depth data offers a solution to

coping with complex colored background, camera view variations and camera motion

etc., as well as alternative representations based on depth maps, point clouds or human

skeletons. On the other hand, the downside is that the current technology only allows

detecting objects within a short distance to the depth sensor, i.e., reliable results are

obtained within 3-4 meters. As a result, there is a considerable amount of publicly

available depth datasets, so-called “RGB-D” or “multi-modal” datasets, in the litera-

ture. Among these, MSR Gesture 3D [148], MSRC-12 Kinect Gesture Dataset [149]

and the ChaLearn Gesture Dataset [150] focus on gesture recognition and body sign

language understanding. Actions in the context of interacting with game consoles are

handled in MSR Action 3D Dataset [148], basic actions such as jumping, hand clap-

ping, stand up etc. in Berkeley Multimodal Human Action Database (MHAD) [151],

10 physical therapy exercises in WokoutSU-10 Exercise Dataset [6], and 12 different
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Figure 2.3. LIRIS Human Activities Dataset [3] is one pioneering multi-modal

dataset in that it contains complex human activities in a realistic setting. From left

to right, gray scale images captured by Kinect, their corresponding depth images and

color images from the Sony camcorder are illustrated respectively.

types of tennis shots in THree Dimensional Tennis Shots (THETIS) [152] dataset. Fi-

nally, the recognition of daily activities is addressed in the Cornell Human Activities

dataset (CAD) [153], the RGBD-HuDaAct dataset [154] and the MSR Daily Activity

3D dataset [148]. These activities are usually individual activities, such as got to bed,

get up, drink water, eat meal, answer phone, enter a room, lie down on a sofa, play

guitar, write on a whiteboard etc., in a natural home environment.

In the scope of multi-modal datasets, we collected LIRIS Human Activities Dataset

[3] that is particularized for recognizing complex activities in a realistic office environ-

ment. These activities are ranging from individual activities including human-object

interactions, e.g., pick up/put down an object, unlock a door and then enter, leave a

baggage, to human-human interactions or group activities, e.g., hand shake, discussion,

give an object to another. As shown in Figure 2.3, the dataset was shot in two settings:

(i) a dynamic Kinect camera installed on a mobile robot; (ii) a static Sony consumer
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camera. Its comparatively difficult aspects stem from the camera movements (a large

variety of camera view angle), activities running in the background and the same type

of activities occurring in different contexts, for example, discussion of several people

on the white board or around the table.

In Table 2.3, we summarize the highlights of the RGB-D or multi-modal datasets.
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Table 2.3. Overview of multi-modal datasets for human activity recognition.

Dataset Contents Highlights

MSR Action

3D [148]

10 subjects, 567 samples, 20 actions for

interacting with game consoles: arm

wave, forward kick, tennis serve etc.

Annotation: tracked human skeleton

joints.

MRSC-

12 [149]

30 subjects, 594 samples, 12 gestures:

(i) iconic gestures: shoot a pistol, throw

an object, kick etc.; (ii) metaphoric ges-

tures: start music, raise volume etc.

Annotation: tracked human skeleton

joints.

WSU-10 [6] 15 subjects, 1500 samples, 10 physi-

cal therapy exercises: lateral stepping,

freestanding squats, oblique stretch etc.

Annotation: tracked human skeleton

joints.

MHAD [151] 12 subjects, 660 samples, 11 basic ac-

tions: jump in place, punch, sit down

then stand up etc.

Source: 5 different modalities (mo-

tion capture system, multi-view stereo

vision camera arrays, Kinect cam-

eras, wireless accelerometers and micro-

phones).

MSR Daily

Activity

3D [148]

10 subjects, 320 samples, 16 activities:

read book, write on a paper, use vac-

uum cleaner etc.

Annotation: tracked human skeleton

joints (RGB channel and depth chan-

nel are not strictly synchronized).

CAD-

60 [153]

4 subjects, 60 samples, 12 daily activi-

ties: brush teeth, chop, relax on couch

etc.

Annotation: tracked human skeleton

joints.

CAD-

120 [153]

4 subjects, 120 samples, 10 complex ac-

tivities: take medicine, microwave food,

clean objects etc.

Annotation: sub-activity labels such

as opening, placing, object affordance

labels such as drinkable, closeable,

tracked human skeleton joints and

tracked object bounding boxes.

RGB-D Hu-

DaAct [154]

30 subjects, 1189 samples, 12 daily ac-

tivities: going to bed, eating meal, tak-

ing off the jacket etc.

Annotation: activity label.

LIRIS Hu-

man Activi-

ties [3]

18 subjects, 461 samples, 10 complex

activities: discussion, give an item to

another, unlock a room and enter etc.

Source: 2 different modalities (Kinect

camera mounted on a mobile robot and

a consumer camcorder). Annotation:

video activity tag and tracked human

bounding boxes with the activity label.
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3. SPATIO-TEMPORAL HYPER-GRAPH MATCHING

Many computer vision problems have been formulated in terms of graphs and their

associated algorithms, since graphs provide a structured, flexible and powerful repre-

sentation for visual data. This representation has been successfully used in problems

such as tracking [155, 156], object recognition [157–160], object categorization [161],

and shape matching [162,163].

Consider a graph G = {V , E} in a typical computer vision problem. It consists of

a set of nodes V with associated geometric and appearance features, and of edges E that

represent structural relationships between nodes. Graph matching problem is basically

searching the best correspondence between two graphs, i.e., the one that represents

the model - a model graph GM - and the other one that represents the scene - a scene

graph GS. In this thesis, we formulate the graph matching problem as the following

generic energy-minimization problem [159]:

E(x) =
∑

i

U(xi) +
∑

(i,j)∈E

D(xi, xj) (3.1)

where x = {xi} is a set of discrete variables representing an assignment between two sets

of nodes, a model set and a scene set to which the model set is tentatively assigned. In

this formulation, the energy E(·) is a non-negative scalar value which is lower for likely

assignments respecting certain invariances and geometric transformations, whereas it

results in higher values for unrealistic and unlikely assignments. Other alternative

notations use matrices, but they are mathematically equivalent (e.g. [164,165]).

Here, the U(·) term denotes the distance between intrinsic properties of nodes.

These properties represent most frequently appearance information such as SIFT [166],

histograms of gradient and optical flow [44], shape contexts [167] etc. Therefore, U(·)
refers to a distance function on these properties between the model and scene. D(·),
on the other hand, addresses the similarity of node pairs. It models the geometric
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deformation of the assignment with respect to some invariance.

There are two drawbacks of considering only pairwise edges. It restricts geometri-

cal coherence constraints to distance measures, and edge pairs are not invariant to scale

changes. A more general case involving n-tuples of nodes, namely, hyper-graph match-

ing, was proposed in the context of object recognition by Zass and Shashua [168].

A hyper-graph is a generalization of graphs allowing for edges (hyper-edges, strictly

speaking) to connect any number of vertices, typically more than two. In this thesis,

we consider 3-tuples of nodes. The energy function becomes an extension of the classi-

cal formulation 3.1, but where inter-nodal distortion is handled through a ternary term

that enables scale-invariant matching, in the spirit of [165,168]:

E(x) =
∑

i

U(xi) +
∑

(i,j,k)∈E

D(xi, xj, xk). (3.2)

Despite its popularity and effectiveness, the computation of graph matching still

remains a challenging task. In fact, its computational complexity have made its use

on data having a large number of nodes, e.g., video, intractable in practice. Useful

formulations as in Equations 3.1 and 3.2 are known to be NP-hard combinatorial

problems [159]. While the graph isomorphism problem is conjectured to be solvable in

polynomial time, it is known that subgraph isomorphism - exact subgraph matching -

is NP-complete [169]. Solutions for practical graphs therefore rely on approximations

or heuristics.

In this thesis, we propose a novel method for matching hyper-graphs embedded

in space-time focused on action recognition applications in videos; in particular, on

localizing and recognizing human actions in video or depth sequences. In this context,

we show that the complexity of the matching problem can be reduced to a tractable

level and the global minimum can be calculated by taking into account special proper-

ties of the time domain, i.e., causality, linear order of time and one-to-one mapping of

time instants. Furthermore, we propose an approximate graphical structure specifically
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designed for the spatio-temporal data and derive an exact minimization algorithm for

this special structure. In other words, we show that a better solution can be obtained

by matching approximate data models instead of using an approximate matching al-

gorithm applied to the complete data model.

3.1. Related Literature on Graph Matching

Since the general problem is NP-hard [159], a great effort has gone to optimiza-

tion of graph matching algorithms in the machine learning community. The extensive

research on practical solutions to graph matching can be analyzed under different per-

spectives. One of the most common classifications is “exact matching vis-à-vis inexact

matching” [170]. Exact matching tries to find a strictly structure-preserving corre-

spondence between the two graphs (e.g., graph isomorphism) or at least between their

subparts (e.g., subgraph isomorphism), while inexact matching allows compromises in

the correspondence principle by admitting structural deformations up to some extent.

This work will be more to analyze the available methods in terms of their solution

guarantees, namely “approximate solution vis-à-vis exact solution”, whether they per-

form exact or inexact matching. Below, we briefly review the methods relevant to our

work as illustrated in Figure 3.1.

Approximate solution. Approximate matching algorithms do not guarantee global op-

timum, as the energy can get trapped in some local minimum. Many different types

of approaches have been proposed to approximate the solution of the graph match-

ing problem. Among these, spectral methods [162, 165] study the similarities between

the eigenstructures of the adjacency or Laplacian matrices of the graphs. In particu-

lar, Duchenne et al. [165] generalized the spectral matching method from the pairwise

graphs presented in [162] to hyper-graphs by using a tensor-based algorithm to rep-

resent affinity between feature tuples, which is then solved as an eigen-problem on

the assignment matrix. More explicitly, they solved the relaxed problem by using a

multi-dimensional power iteration method, and obtained a sparse output by taking

into account l1-norm constraints instead of the classical l2-norm. Leordeanu et al. [171]

made an improvement on the solution to the integer quadratic programming problem
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Figure 3.1. Classification of graph matching algorithms pertinent to our perspective.

Our proposed method falls into the class of exact solution-approximate models.

in [165] by introducing a semi-supervised learning approach. In the same vein, Lee et

al. [172] approached this problem via the random walk concept.

Some methods solve a relaxation of the original combinatorial problem. Zass and

Shashua [168] presented a soft hyper-graph matching method between sets of features

that proceeds through an iterative successive projection algorithm in a probabilistic

setting. They extended the Sinkhorn algorithm [173], which is used for soft assignment

in combinatorial problems, to obtain a global optimum in the special case when the

two graphs have the same number of vertices and an exact matching is desired. They

also presented a sampling scheme to handle the combinatorial explosion due to the

degree of hyper-graphs. Zaslavskiy et al. [174] employed a convex-concave programming

approach to solve the least-squares problem over the permutation matrices. Recall that

a permutation matrix encodes one possible correspondence between the vertices of two

graphs. More explicitly, they proposed two relaxations to the quadratic assignment

problem over the set of permutation matrices which results in one quadratic convex and

one quadratic concave optimization problem. They obtained an approximate solution

of the matching problem through a path following algorithm which tracks a path of

local minimum by linearly interpolating convex and concave formulations.

Another approach is to decompose the original matching problem into subprob-
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lems, which is then solved with different optimization tools [159, 175]. Lin et al. [176]

first determined a number of subproblems where each subproblem is characterized by

local assignment candidates, i.e., by plausible matches for model and scene local struc-

tures. For an example in action recognition domain, these local structures can corre-

spond to the human body parts. Then, they built a candidacy graph representation by

taking into account these possible candidates on a layered (hierarchical) structure and

formulated the matching problem as a multiple coloring problem. Finally, Duchenne

et al. [161] extended one dimensional multi-label graph cuts minimization algorithm to

images for optimizing the Markov Random Fields (MRFs).

The methods described above more focus on object recognition problem in still

images or in 3D as practical application. We have encountered only several previ-

ous works that literally applied graph matching to human action recognition problem

in video sequences. As mentioned in Chapter 2, [94] and [95] structured the spatio-

temporal interest points into a graph. Ta et al. [94] have built hyper-graphs from prox-

imity information by thresholding distances between interest points both in space and

time, and match a scene graph to a model graph by using the algorithm of Duchenne et

al. in [165]. Similarly, Gaur et al. [95] modeled the relationship of spatio-temporal in-

terest points within small temporal segments and obtained temporally ordered graphs.

Then, a model graph sequence and a scene graph sequence were aligned by Dynamic

Time Warping where the distance between two graphs was formalized by the method

of Leordeanu and Hebert in [162]. Differently, Brendel and Todorovic [45] formulated

the graph matching problem as a weighted least squares problem on the set permuta-

tion matrices. Recall that they built directed graphs from adjacency and hierarchical

relationships of spatio-temporal regions and learned the representative nodes and edges

in the weighted least squares sense from a set of training graphs.

Exact solution. Truly exact minimization algorithms always find a solution that is

the global minimum of the energy function. On the other hand, they require high

computational time in general. In order to achieve matching in polynomial time, one

approach, introduced in this chapter, is to approximate the data model (graphical

structure) as opposed to applying an approximate matching algorithm to the complete
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data model. This can be achieved by filtering out the unfruitful portion of the data

before matching. As a case in point, a method for object recognition has been proposed

by Caetano et al. [177] which approximates the model graph by building a k-tree

randomly from the spatial interest points of the object. Then, matching was calculated

using the classical junction tree algorithm [178] known for solving the inference problem

in Bayesian Networks.

Regarding the previous works on graph matching and action recognition, we can

highlight the commonalities and the novelties of our proposed approach as follows.

• The nodes of our graphs correspond to spatio-temporal interest points in video

sequences (Section 3.5) or skeleton joints in depth sequences (Chapter 4), and the

neighborhood relationships are derived from proximity information as in [94,95].

• Our formulation also tackles the time warping problem and aligns two sequences.

• The proposed method enables both localization and recognition of human actions

in a query video as [45, 94, 95]. Localization corresponds to matching an action

model point set within a usually much larger scene point set, and to generate a

matching score for classification.

• Unlike the previous works [45, 94, 95], we do not search approximate solutions,

matching is done with an exact minimization algorithm.

• A tractable exact minimization algorithm is derived by assuming realistic time-

domain constraints. We show that, under these constraints, the hyper-graph

matching problem –formulated in Equation 3.2– can be efficiently solved in the

spirit of dynamic programming technique. In this case, the complexity of the

correspondence problem can be bounded by a small exponent.

• We introduce a graphical structure which spreads over the spatio-temporal do-

main. To further reduce the complexity, we approximate it by proposing three

different graph building strategies, each assumes very few interest points per

frame.

Notice that we are using the terms “approximate matching - approximate solu-

tion” and “exact solution - exact minimization” interchangeably within this chapter.
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The rest of the chapter is organized as follows: Section 3.2 formulates the graph

matching problem for spatio-temporal data. Section 3.3 discusses the temporal proper-

ties of the action data and proposes an optimal space-time matching algorithm taking

advantage of these properties. In Section 3.4, we introduce the structuring of model

sequences into a graph and derive an algorithm which further reduces the computa-

tional complexity of the matching algorithm. Subsequent Section 3.5 and Chapter 4,

make clear which components need be adapted and how for two specific tasks, namely,

action recognition from video-sequences and analysis of depth sequences.

3.2. General Problem Formulation

In our work, we formulate the problem as a particular case of the general corre-

spondence problem between two point sets. The objective is to assign points from the

model set to points in the scene set, such that geometrical invariance is satisfied. We

solve this problem through a global energy minimization procedure, which operates on

a hyper-graph constructed from the model point set. The M points of the model are

organized as a hyper-graph G = {V , E}, where V is the set of nodes (corresponding to

the points) and E is the set of edges. From now on we will call (in loose language)

hyper-graphs “graphs” and hyper-edges “edges”. The edges E in our graph connect

sets of three nodes, thus triangles. The notation used in this chapter is summarized in

Table 3.1.

While our method requires the points in the model video to be structured into a

graph, this is not necessarily so for the points in the scene video. In other words, the

scene data consists of arbitrary number of space-time interest points per frame, without

any superimposed organization. However if desired, any prior structural information

available on the scene data can be integrated easily in the minimization framework. In

this case, the problem reduces to a classical graph-matching problem. Our formulation

is therefore more general but can also deal with graph matching.

We illustrate the graph matching problem in Figure 3.2. Notice that the mapping

is neither subjective as not all scene nodes need to be assigned, nor injective since more
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Table 3.1. Definitions and notations used throughout this chapter.

Symbol Definition

pi Space-time position of a point : [ p
〈x〉
i p

〈y〉
i p

〈t〉
i ]

fi Local appearance feature vector of a point pi

〈m〉,〈s〉 Super-script indicators for “model” and “scene”

M,S Number of model and of scene nodes; S >> M ;

M,S Number of model and of scene frames;

M i Number of model points per frame i,

ε Dummy value (node is assigned)

λ1, λ2, λ3 Weighting parameters

W d Penalty for dummy assignment

W t Maximum penalty for temporal distortion

T t Maximum allowable time difference

xi = j Variable : ith model node is assigned to jth scene node

x The whole set of assignments: x = {xi}, i = 1..M

Terms

U(·) Euclidean distance between a model and

a scene appearance feature vector

D(., ., .) Space-time geometric distortion between two triangles

Dg(., ., .) Euclidean distance between sets of angles

Dt(., ., .) Truncated time differences

∆(i, j) Time difference between two pairs of nodes

φ〈.〉(i, j, k) Angle with respect to the point j

When variables xi are split into zi and yi,l (Section 3.3)

zi = j Variable : ith model frame is assigned to jth scene frame

yi,l = k Variable : lth node of ith model frame is assigned to

kth node of zith scene frame

Graphical structure

G Generic hyper-graph

V Set of nodes

E Set of edges

E i Set of edges with latest time instant i

Ri Reach of frame i: set of edges which reach into the past

of frame i and which are also part of i or of its future

X i Set of all variables zp or yp,l involved in the edges of

of the reach Ri



37

p
〈m〉
1 , f

〈m〉
1

p
〈m〉
2 , f

〈m〉
2

p
〈m〉
3 , f

〈m〉
3

p
〈m〉
4 , f

〈m〉
4

p
〈m〉
5 , f

〈m〉
5

Model graph

p
〈s〉
1 , f

〈s〉
1

p
〈s〉
2 , f

〈s〉
2

p
〈s〉
3 , f

〈s〉
3

p
〈s〉
4 , f

〈s〉
4

p
〈s〉
5 , f

〈s〉
5 p

〈s〉
6 , f

〈s〉
6

Scene point-set

x1

x2

x3
x4

x5

Figure 3.2. Illustration of graph matching problem in our formulation.

than one model point can be assigned to a scene node.

Each point i in the two sets (model and scene) is assigned a space-time position

pi = [p
〈x〉
i p

〈y〉
i p

〈t〉
i ]T , and a feature vector fi that describes the appearance in a local

space-time neighborhood around this point. When necessary, we will distinguish be-

tween model and scene variables by the superscripts 〈m〉 and 〈s〉: p
〈m〉
i , f

〈m〉
i , p

〈s〉
i , f

〈s〉
i

etc. Note that symbols in superscripts enclosed in angle brackets 〈.〉 are not numerical

indices, they are mere symbols indicating a category.

Each node i of the model graph is assigned a discrete variable xi, i = 1..M ,

which represents the mapping from the ith model node to some scene node, and can

take values from {1 . . . S}, where S is the number of scene nodes. We use the shorthand

notation x to denote the whole set of map variables xi. A solution of the matching

problem is given through the values of the xi, that is, through the optimization of the

set x, where xi = j, i = 1..M , is interpreted as model node i being assigned to scene

node j = 1..S. To handle cases where no reliable match can be found, e.g., due to

occlusions, an additional dummy value ε is admitted, which semantically means that
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no assignment has been found for the given variable (xi = ε). Note that the use of

dummy value can be regarded as an additional node for the scene graph.

Each combination of assignments x evaluates to a figure of merit in terms of an

energy function E(x), which will be given below. In principle, the energy should be

lower for assignments that correspond to a realistic transformation from the model im-

age to the scene image, and it should be high otherwise. We search for the assignments

that minimize this energy.

In higher order matching, typically, hyper-edges connect 3 nodes, which allows

to formulate geometrical constraints between pairs of triangles. In addition to feature

similarity, geometrical similarity of point triples can be measured in terms of angles

of the respective triangles; notice that this measure is scale invariant. Our proposed

energy function is as follows:

E(x) = λ1
∑

i

U(xi) + λ2
∑

(i,j,k)∈E

D(xi, xj, xk) (3.3)

where U is a data-attached term taking into account feature distances, D is the geo-

metric deformation between two space-time triangles, namely the cost for assigning a

scene node triple to a model node triple, and λ1 and λ2 are the weighting parameters.

For convenience, dependencies on all values over which we do not optimize have been

omitted. U is defined as the Euclidean distance between the appearance features of

assigned points in the case of a candidate match, and it takes a penalty value W d for

the dummy assignments:

U(xi) =





W d if xi = ε,

||fi〈m〉 − f 〈s〉xi || else.
(3.4)

The D term separately handles the internal angles of node triples and time loca-

tion differences between node pairs. Since our data is embedded in space-time, angles
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Figure 3.3. Illustration of calculating the geometric deformation, Dg(·).

include a temporal component that is not related to scale changes induced by zooming.

We therefore split the geometry term D into a temporal deformation term Dt

and a spatial geometric deformation term Dg:

D(xi, xj, xk) = Dt(xi, xj, xk) + λ3D
g(xi, xj, xk) (3.5)

where the temporal distortion Dt is defined as truncated time differences in terms of

the number of frames over two pairs of nodes of the triangle:

Dt(xi, xj, xk) =





W t if ∆(i, j) > T t ∨∆(j, k) > T t,

∆(i, j) + ∆(j, k) else
(3.6)

∆(i, j) = |(p〈m〉〈t〉i − p〈m〉〈t〉j )− (p〈s〉〈t〉xi
− p〈s〉〈t〉xj

)|. (3.7)

First, ∆(i, j) is the time interval differences in the assignment of model node pair

(i, j) to scene node pair (xi, xj), and T t bounds the node pair differences in time. The

time warping term penalizes the discrepancy in the extent of time between model node

pairs and the corresponding scene node pairs. The node pairs in the model should not
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be too close or too far from each other, and likewise for the scene node pairs.

Secondly, Dg is defined over differences of angles:

Dg(xi, xj, xk) =

∣∣∣∣∣∣

∣∣∣∣∣∣
φ〈m〉(i, j, k)− φ〈s〉(xi, xj, xk)
φ〈m〉(j, i, k)− φ〈s〉(xj, xi, xk)

∣∣∣∣∣∣

∣∣∣∣∣∣
. (3.8)

Here, φ〈m〉(i, j, k) and φ〈s〉(xi, xj, xk) denote the angles subtended at point j and

xj for, respectively, model and scene triangles indexed by (i, j, k) and (xi, xj, xk) as

illustrated in Figure 3.3. It should be noted that the nodes of the space-time triangles

are themselves spatial triangles within frames. In other words, our geometric deforma-

tion is measured in terms of the geometrical distance between triangles only in spatial

domain which ensures robustness against camera zooming in contrast to Ta et al. [94].

3.3. Spatio-Temporal Matching

3.3.1. Properties of Spatio-Temporal Data

Our data structure is embedded in space-time. We assume the following com-

monly accepted properties of space-time to derive an efficient algorithm:

Assumption 3.1. Causality. Each point in the two sets (i.e., model and scene) lies

in a 3-dimensional space: [p
〈x〉
i p

〈y〉
i p

〈t〉
i ]T . However, the spatial and temporal dimensions

should not be treated in the same way. While objects (and humans) can undergo arbi-

trary geometrical transformations like translation and rotation, which is subsumed by

geometrical matching invariance in our formulation, time series data (human move-

ments) can normally not be reversed. In a correct match, the temporal order of the

points should be retained, which can be formalized as follows

∀ i, j : p
〈m〉〈t〉
i ≤ p

〈m〉〈t〉
j ⇔ p〈s〉〈t〉xi

≤ p〈s〉〈t〉xj
. (3.9)



41

Let us recall that the superscript 〈t〉 stands for the time dimension, and it is not an

index.

Assumption 3.2. Temporal closeness. Another reasonable assumption is that the

extent of time warping between model and scene time axes must be limited. In other

words, two points which are close in time must be close in both the model set and the

scene set. This property can be used to further decrease the search space during subgraph

matching. Since our graph is created from proximity information (time distances have

been thresholded to construct the hyper-edges), this can be formalized as follows:

∀ i, j, k ∈ E : |p〈s〉〈t〉xi
− p〈s〉〈t〉xj

| < T t ∧ |p〈s〉〈t〉xj
− p〈s〉〈t〉xk

| < T t. (3.10)

This property is also addressed in Equations 3.6 and 3.7.

Assumption 3.3. One-to-one mapping of time instants. We assume that time instants

cannot be split or merged. In other words, all points of a model frame (time instant)

should be matched to points of one and only one scene frame, and vice versa.

∀i, j : (p
〈m〉〈t〉
i = p

〈m〉〈t〉
j ) ⇔ (p

〈s〉〈t〉
xi = p

〈s〉〈t〉
xj ). (3.11)

3.3.2. Matching

In this section, we derive an exact minimization algorithm. Assumption 3.3

implies that a correct sequence match is an injective map, that is, it consists of a

collection of single model-frame-to-scene-frame matches. We therefore first reformulate

the energy function in Equation 3.3 by splitting each variable xi into two subsumed

variables zi and yi,l, which are interpreted as follows: zi, a frame variable, denotes the

index of the scene frame that is matched to ith model frame. The number of model

frames and scene frames are denoted as M and S, respectively. Each model frame i

also possesses a number M i of node variables yi,1, . . . , yi,M i
, where yi,l denotes the index

of scene node that is assigned to lth node at frame i in the model graph. Note that
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Figure 3.4. Separation of node assignments. (a) Frame variable set zc denotes a triple

assignment of model frames i, j, k to the scene frames; (b) Each frame variable zi can

assume M i node variables.

the number of possible values for variable yi,l depends on the value of zi, since different

frames may contain different number of nodes. The separation of node assignments is

exemplified in Figure 3.4.

The objective remains to calculate the globally optimal assignment of all nodes

of the graph, i.e., the optimal values for all variables zi and yi,l,∀i ∀l. In other terms,

a node of a given frame i is not necessarily matched to the (locally only) best fitting

node in the frame-to-frame sense. This will be detailed in the rest of this section.

For convenience, we will also simplify the notation by representing a hyper-edge

(the corresponding frame indices and node indices) as c and the corresponding variables

as (zc, yc); in other words, (zc) implies a triple assignment of model frames (say, i, j, k),

to scene frames; and (yc) implies the connection of the three model nodes to the three

frames (zc). For ease of notation we also drop the parameters λ1 and λ2 which can be
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absorbed into the potentials U and D.

The reformulated energy function is now given as:

E(z, y) =
∑

(i,l)∈M×M i

U(zi, yi,l) +
∑

c∈E

D(zc, yc). (3.12)

To summarize, we continue with the following variables and definitions:

• Each model frame is injectively assigned via zi = j to a scene frame from among

j = {1, . . . , S}.
• Nodes within each such possibly matched model frame to a scene frame are as-

signed to the nodes in the scene frame via yi,l.

• Assumptions 3.1-3.3 are observed in the temporal assignments.

We now introduce a decomposition of the set of hyper-edges E into disjoint subsets

E i, where E i is the set of all hyper-edges which contain at least one node with temporal

coordinate equal to i and no node has a higher (later) temporal coordinate. It is clear

that the set of all possible sets E i forms a complete partition of E , i.e. E =
⋃
i E i. We

can now exchange sums and minima according to this partitioning:

min
z,y

E(z, y) =

min
z1;y1,1,...,y1,M1

[
M1∑

l=1

U(z1, y1,l) +
∑

c∈E1
D(zc, yc)+

min
z2;x2,1,...,y2,M2

[
M2∑

l=1

U(z2, y2,l) +
∑

c∈E2
D(zc, yc)+

...

min
zM ;yM,1,...,yM,M

M

[MM∑

l=1

U(zM , yM,l) +
∑

c∈EM

D(zc, yc)

]
. . .

]
.

(3.13)

Hyper-edges have variable temporal spans, which makes it impossible to define a
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recursion scheme with regular structure. We therefore define the concept of the reach

Ri of frame i, which consists of the set of edges which reach into the past of frame i

and which are also part of i or of its future:

Ri =
{
c ∈ E : [min〈t〉(c) < i] ∧ [max〈t〉(c) ≥ i]

}
(3.14)

where min〈t〉(c) and max〈t〉(c) are, respectively, the minimum and the maximum tem-

poral coordinate of the nodes of edge c. Note that, by definition E i ⊆ Ri.

We also introduce the expression X i for the set of all variables zp or yp,l involved

in the reach Ri:

X i = {(zp, yp,l) : [∃q, r : (p, q, r) ∈ c] ∧ [c ∈ Ri]} . (3.15)

Finally, the set of variables X i that belongs to the frames before i is denoted as X i
−

X i
− = {(zp, yp,l) ∈ X i : p < i}. (3.16)

Now, a recursive calculation scheme for Equation 3.13 can be devised by defining

a recursive variable αi which minimizes the variables of a given frame as a function of

the reach variables before it as follows. For the inner most bracket we can set

αM(XM
− ) = min

zM ;yM,1,...,yM,M
M

[MM∑

l=1

U(zM , yM,l)+
∑

c∈EM

D(zc, yc)

]
. (3.17)

For the next inner bracket, a brute force calculation would give

αM−1(X (M−1)
− ) = min

zM−1;yM−1,1,...,yM−1,M
M−1

[MM−1∑

l=1

U(zM−1, yM−1,l)+

MM∑

l=1

U(zM , yM,l)+
∑

c∈EM−1∪EM

D(zc, yc)

]
.
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The backward recursive expression can be obtained by using αM(XM
− ):

αM−1(X (M−1)
− ) = min

zM−1;yM−1,1,...,yM−1,M
M−1

[MM−1∑

l=1

U(zM−1, yM−1,l)+

∑

c∈EM−1

D(zc, yc) + αM(XM
− )

]
.

(3.18)

Finally, the general recursive formula can be given as

αi(X i
−) = min

zi;yi,1,...,yi,Mi

[
M i∑

l=1

U(zi, yi,l)+
∑

c∈Ei
D(zc, yc) + αi+1(X (i+1)

− )

]
. (3.19)

It should be noted that Equation 3.19 is valid, if the following relation holds:

X (i+1)
− ⊆

(
X i
− ∪ {zi; yi,1, . . . , yi,M i

}
)
. (3.20)

Illustrative example of the recursion scheme. Figure 3.5 is a simple example illustrating

how the recursion scheme works. The vertical blue bars correspond to the frame

instances. Our model graph assumes five frame variables zi, each associated with one or

more node variables yi,l. The recursion starts from the last frame i = 5 where we define

the respective reach variable and the assignment variable sets as R5 = {(z3, z4, z5)},
X 5 = {(z3, y3,1), (z4, y4,1), (z5, y5,1)} and X 5

− = {(z3, y3,1), (z4, y4,1)}. Thus, we obtain

α5(X 5
−) = min

z5,y5,1

[
U(z5, y5,1) +D(z3, y3,1, z4, y4,1, z5, y5,1)

]
.

And the recursion continues as follows. For i = 4, we can setR4 = {(z2, z3, z4), (z3, z4, z5)},
X 4 = {(z2, y2,1), (z3, y3,1), (z4, y4,1), (z5, y5,1)} and X 4

− = {(z2, y2,1), (z3, y3,1)}, the recur-

sion iterates by calculating α4 from α5 as below
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α4(X 4
−) = min

z4,y4,1

[
U(z4, y4,1) +D(z2, y2,1, z3, y3,1, z4, y4,1) + α5(X 5

−)

]
.

Finally, for i = 3, we obtain

α3(X 3
−) = min

z3,y3,1

[
U(z3, y3,1) +D(z1, y1,1, z2, y2,1, z3, y3,1)

+D(z2, y2,2, z2, y2,3, z3, y3,1) + α4(X 4
−)

]
,

where R3 = {(z1, z2, z3), (z2, z3, z4), (z3, z4, z5)}, X 3 = {(z1, y1,1), (z2, y2,1:3), .., (z5, y5,1)}
and X 3

− = {(z1, y1,1), (z2, y2,1:3)}. Note that we can write these relations because Equa-

tion 3.20 is always satisfied.

3.3.3. Computational Complexity

The recursion starts at the last frame i = M and iterates by calculating αi from

αi+1. At each step, a minimum is calculated over all variables of frame i for all possible

values of the variables in X i
−. The computational complexity can thus be bounded by

the maximum number of variables z and y in ( X i
− ∪ {zi; yi,1, . . . , yi,M i

} ), which are

denoted by |X i∗
z |,|X i∗

y | in the following expression:

O

(
M ·S|X

i∗
z |·R|X i∗

y |
)

(3.21)

where M and S are the number of model and scene frames, R is the maximum number

of nodes per frame in the scene sequence. The complexity is thus very much lower

than the complexity of the brute force approach, which is given by O(MSM |E|). Let

us recall that S is the total number of nodes in the scene and M is the total number

of nodes in the model, i.e. S � S and S � R. Furthermore, both |X i
z | and |X i

y|
are bounded and in fact quite small when the graph is constructed from proximity

constraints. However, for general graphs, it is still too high for practical usage. The

next section will introduce a special structure which further decreases complexity.
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1 2 3 4 5

α5(z3, z4) = min
z5

[U(z5) +D(z3, z4, z5)]

1 2 3 4 5

α4(z2, z3) = min
z4

[U(z4)+

D(z2, z3, z4) + α5(z3, z4)]

1 2 3 4 5

α3(z1, z2) = min
z3

[U(z3) +D(z1, z2, z3)+

D(z2, z2, z3) + α4(z2, z3)]

α2(z1) = min
z2

[U(z2) + α3(z1, z2)]

E(z) = min
z1

[U(z1) + α2(z1)]

Figure 3.5. An example hyper-graph. Vertical blue bars correspond to the frames.

The recursion starts from the last frame i = 5 and iterates by calculating αi from

αi+1 where the evolution of the iteration is illustrated with solid lines. For simplicity,

node variables yi,l are absorbed into the frame variables zi. At each step, a minimum

is calculated over all variables of frame i for all possible values of the variables in X i
−.
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3.4. Graphical Structure

As discussed before, classical methods such as spectral approaches provide ap-

proximate solutions to the NP-complete graph matching problem since the exact min-

imization is infeasible. In this work, we advocate an alternative idea, which is to

approximate the problem – the graphical structure in this case – and then to solve

the newly formulated problem exactly. This is particularly appealing in point match-

ing problems where the structure of the graph is less related to the description of the

object per se, but rather more to the constraints in the matching process. We re-

call that the graphical structure is obtained from adjacency or proximity information,

the description of the object can be approximated by respecting the properties of the

spatio-temporal data (Section 3.3.1).

The approximation to the graphical structure is as follows. The graphical struc-

ture (the set E of edges) is restricted by constraints on the combinations of temporal

coordinates. The triplets (i, j, k) of temporal coordinates allowed in a hyper-edge are

restricted to triplets of consecutive frames: (i, j, k) = (i, i + 1, i + 2). Depending on

the visual content of a video, there may be frames which do not contain any space

time interest points, and therefore no nodes in the model graph. These empty frames

are not taken into account when triplets of consecutive frame numbers are considered.

One can encounter frames without STIPs more often in one video vis-à-vis another if

the action is enacted more slowly in the former. Thus this skipping of frames is in fact

instrumental for the implicit time warping of sequences.

This structure can be visualized by a meta graph, which contains a single node for

each (non empty) frame and a hyper-edge connecting the triplets of consecutive frames,

as seen in Figure 3.6a. The meta graph is planar and with triangular structure. Figure

3.6b shows a model graph which satisfies the restrictions described above. Note that

each triangle in the meta graph (Figure 3.6a) corresponds to a set of triangles in the

model graph (Figure 3.6b).

Given these restrictions, we propose three different model graphs and three dif-
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z1 z2 . . . zM−1 zM

(a)

(b)

(c)

Figure 3.6. Proposed graphical structure. (a) A special graphical structure designed

for very low computational complexity: a second order chain. This meta-graph

describes the restrictions on the temporal coordinates of model graphs; (b) a sample

model graph satisfying the restrictions in (a); (c) a sample model graph limited to a

single point per frame (the single-point-single-chain model).
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ferent associated matching algorithms. They differ in the number of model nodes per

frame and the way they are linked.

3.4.1. Single-chain-single-point Model

In this model, we keep only a single node per model frame by choosing the most

salient one, e.g., the one with the highest confidence. However, no restrictions are

applied to the scene frames which may contain an arbitrary number of points. In this

case, the graphical structure of the meta graph is identical to the graphical structure of

the model graph. An example of this model graph is given in Figure 3.6c. In particular,

each model point i is connected to its two immediate frame-wise predecessors i−1 and

i− 2 as well as to its two immediate successors i+ 1 and i+ 2.

Given this special graphical structure, the matching problem can be solved as

follows. The energy function can be simplified, since the couple of discrete variables

(zi, yi,l), l = 1 can be simplified by dropping all variables yi,l. The frame variable zi is

indeed sufficient to describe the assignment of the frame as well as the assignment of

the point, which are one-to-one related. The neighborhood system of this simplified

graph can be described in a very simple way using the index of the nodes of graph,

similar to the dependency graph of a second order Markov chain:

E(z) =
M∑

i=1

U(zi) +
M∑

i=3

D(zi, zi−1, zi−2). (3.22)

The reach of this structure is constant and consists of two edges only, as Ri =

{(zi−2, zi−1, zi), (zi−1, zi, zi+1)}. The general recursive formula of the inference algo-

rithm can be derived as

αi(zi−1, zi−2) = min
zi

[
U(zi) +D(zi, zi−1, zi−2) + αi+1(zi, zi−1)

]
(3.23)

with the initialization
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αM(zM−1, zM−2) = min
zM

[
U(zM) +D(zM , zM−1, zM−2)

]
. (3.24)

During the calculation of the trellis, the arguments of the minima in Equation 3.23 are

stored in a table βi(zi−1, zi−2). Once the trellis is completed, the optimal assignment

can be calculated through classical backtracking:

ẑi = βi(zi−1, zi−2), (3.25)

starting from an initial search for z1 and z2:

(ẑ1, ẑ2) = arg min
z1,z2

[U(z1) + U(z2) + α3(z1, z2)]. (3.26)

The algorithm as given above is of complexity O(M ·S3·R). Recall that the total

number of model and scene nodes are denoted by M and S, a trellis is calculated in an

M × S × S matrix, where each cell corresponds to a possible value of a given variable.

The calculation of each cell requires to iterate over all S2 possible combinations of its

two successors.

Exploiting the assumptions on the spatio-temporal data introduced in Section

3.3.1, the complexity can be decreased further:

• Assumption 3.1. Taking causality constraints into account, we can prune many

combinations from the trellis of the optimization algorithm. In particular, if we

calculate possibilities in the trellis given a certain assignment for a given variable

zi, all values for its predecessors zi−1 and zi−2 must be necessarily before zi, i.e.,

lower.

• Assumption 3.2: Similar as above, given a certain assignment for a given variable

zi, we will allow a maximum number of T t possibilities for the values of the

successors zi+1, zi+2, which are required to be close.

Thus, the expression in Equation 3.23 is only calculated for values (zi−1, zi−2)
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satisfying the following constraints:

|zi − zi−1| < T t ∧ |zi−1 − zi−2| < T t ∧
zi > zi−1 ∧ zi−1 > zi−2.

(3.27)

These pruning measures decrease the complexity to O(M ·S·T t2·R), where T t is a small

constant measured in the number of frames and R is generally very small, so the

complexity becomes linear on the number of points in the scene: O(M ·S).

Note that our formulation does not require or assume any probabilistic modeling.

We used dynamic programming algorithm extended to include second-order dependen-

cies. At a first glimpse it could be suspected that the single-point-per-frame approach

could be too limited to adequately capture the essence of an action sequence. Experi-

ments have shown, however, that the single chain performs surprisingly well. It should

be noted again, that no restrictions have been imposed on the scene, in other words,

none of the scene points have been eliminated.

3.4.2. Single-chain-multiple-points Model

Keeping multiple points per model frame and solving the exact minimization

problem is of polynomial complexity, as has been proven in Section 3.3. However,

the complexity is still too high even with the restrictions imposed by the meta-graph

structure given in Figure 3.6a. We propose the following (partially) greedy algorithm,

which separates frame assignments and node assignments into two consecutive steps:

• For each possible frame assignment zi, we solve the node assignment variables

yi,l with local geometric and appearance information extracted from the given

frames.

• We calculate the solution for the frame assignment variables zi by minimizing the

energy function. In this step, the node assignment variables yi,l are considered

constant.
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The node assignments in the first step can be done by minimizing appearance

information alone, i.e., for each model node we select a scene node having minimal

feature difference. To make this assignment more robust, we do not take this decision

individually per node, but we take the decision jointly for all nodes of each model

frame. Let’s assume that we select the most salient three points per each model frame.

In this case, the criteria for the assignment is a weighted combination of appearance

feature distances and geometrical deformation of each in-frame triangle formed by the

model points.

The second step, which optimally aligns the frames given the pre-calculated node

assignments, is equivalent to the matching algorithm of the single point model described

in Section 3.4.1. However, the graphical structure on which the algorithm operates is

now the meta graph (given in Figure 3.6a) and not the model graph (given in Figure

3.6b). In the multiple point case these two graphs are not identical. For this reason, the

terms U(·) and D(·), originally defined on edges in the model graph, i.e., on triangles

in space-time, are now defined on edges in the meta graph, i.e. on sets of triangles in

space-time. They can be set as sums over the respective triangles in the set:

U(zi) =
R∑

l=1

Ul(zi, yi,l)

D(zi, zi−1, zi−2) =
∑

c∈(i,i−1,i−2)

Dc(zc, yc).
(3.28)

Here the expressions Ul(·) and Dc(·) are defined, respectively, as equivalent to U(·) in

Equation 3.4, and as equivalent to D(·) in Equation 3.5.

The computational complexity of the global frame alignment step is identical to

the single point model, apart from a small loop over the nodes of each frame. For

example, in our case (R = 3), the complexity becomes O(M ·S·T t2·R3).

3.4.3. Multiple-chains Model

The model described in Section 3.4.2 has allowed taking into account multiple

points per frame. In this case, we approximate the matching algorithm by separating



54

the set of discrete variables into two subsets and by solving for each subset indepen-

dently. An alternative way is to approximate the model by separating the full graph

into a set of independent model graphs, each one featuring a single point per frame,

i.e., each one being of the type shown in Figure 3.6c. As in Section 3.4.1, the exact

global solution of each individual chain is computed.

In this case, the definitions for U(zi) and D(zi, zi−1, zi−2) are identical to the

single-point model. The energy function to be minimized is a sum over the energy

functions corresponding to the individual graphs (chains) as follows:

E∗(z) =
1

N

N∑

k=1

Ek(z) (3.29)

where N is the number of single chain models and Ek(·) is the kth single-chain-single-

point energy function which is formulated in Equation 3.22. In other words, we match

each single-chain-single-point model to a scene sequence and average the resulting N

energies to reach a final decision. Therefore, the computational complexity increases

linearly with N as compared to the single-chain model. Note that N is typically a

small number.

Subsequent Section 3.5 and Chapter 4 present the experimental results for two

specific problems, namely, action recognition from video-sequences and analysis of

depth sequences.

3.5. Application to Video-based Action Recognition

In this section, we discuss the application of the proposed hyper-graph matching

algorithm to the human action recognition problem in video sequences. Given a train-

ing set of model action graphs, our strategy is to calculate the matching energy of a

given scene sequence with each model graph, and infer the action class by the nearest-

neighbor classification rule. In the sequel, we first present the preprocessing steps,

namely, we describe the detection of the spatio-temporal interest points, description of



55

their shape and motion, and pruning unfruitful model graphs. We then continue with

the experimental setup for action recognition and its results.

3.5.1. STIP Detection and Description

We used two different methods to extract spatio-temporal interest points: 3D

Harris detector [4] and 2D Gabor filters [58]. The detected interest points constitute

the nodes of the graphs.

3.5.1.1. 3D Harris detector. The well known Harris interest point detector was devel-

oped by Harris and Stephens [179] and was extended into the spatio-temporal domain

by Laptev et al. [4]. The detector is based on the spatio-temporal second moment

matrix ψ of the Gaussian smoothed video volume I [4].

The spatio-temporal second moment matrix ψ is composed of first order spatial

and temporal gradients averaged using the spatio-temporal separable Gaussian kernel

g(·):

ψ(x, y, t;σ, τ) = g(x, y, t;σ, τ) ∗




L2
x LxLy LxLt

LxLy L2
y LyLt

LxLt LyLt L2
t


 , (3.30)

where σ, τ are defined as the spatial and temporal scales, respectively, and the first

order gradients can be calculated as follows:

Lx =∂x(g(x, y, t;σ, τ) ∗ I(x, y, t)) (3.31)

Ly =∂y(g(x, y, t;σ, τ) ∗ I(x, y, t)) (3.32)

Lt =∂t(g(x, y, t;σ, τ) ∗ I(x, y, t)). (3.33)

Note that the scale parameters for spatial and temporal domain are treated separately

as the spatial and temporal extents of the events are independent.
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To detect interest points, we search for the locations where ψ contains three large

eigenvalues, a1, a2, a3, namely, strong intensity variation along three orthogonal spatio-

temporal directions. Instead of calculating eigenvalues at every video location (x, y, t),

we find the local maxima of the following function

H = det(ψ)− k·(trace(ψ))3 = a1a2a3 − k(a1 + a2 + a3)
3. (3.34)

In other words, the spatio-temporal interest points, i.e., the points showing high

gradient both in space and time, are at the locations of the local maxima of H. Laptev

et al. [4] also proposed to extract points at multiple levels by using a set of scale

parameters. In our experiments, we used the off-the-shelf code in [4]. The parameter

set is defined as follows: σ2 = 4, 8, 16, 32, 64, 28 and τ 2 = 2, 4 and k = 0.0005.

3.5.1.2. 2D Gabor filters. Gabor filters have been successfully used in many applica-

tion such as iris recognition, face recognition etc. In the action recognition domain,

several researchers [54, 57, 58] have also used Gabor filters to detect spatio-temporal

interest points. In our work, we use 2D Gabor filters as proposed by Bregonzio et al.

in [58] where the real component of a Gabor filter is composed of a sinusoidal carrier

and a Gaussian envelope:

G(x, y) = cos(2π·(µ0x+ ν0y) + θi)· exp

(
−x

2 + y2

2ρ2

)
, (3.35)

where ρ is the width of the Gaussian envelope, θi is the orientation of the filter and

µ0, ν0 are the spatial frequencies that controls the scale of the filter.

To detect interest points, Bregonzio et al. [58] proposed to take the difference

between the consecutive frames and to convolve the resulting image with a bank of 2D

Gabor filters having different orientation and scale parameters. The different responses

are calculated for different parameter pair and then summed up. Spatio-temporal in-

terest points are located at local maxima of the resulting function. In our experiments,
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we used the publicly available code from [58]. We used the same parameter setting as

in [58] where we considered five different θi values, θi = {0◦, 22◦, 45◦, 67◦, 90◦}, and one

scale parameter by setting µ0 = ν0 = 1
2ρ

and ρ = 11.

3.5.1.3. Cuboid descriptors. For appearance features fi, we have used the well known

histogram of gradient and optical flows (HoG+HoF) extracted with the publicly avail-

able code from [4]. Extension of HoG and HoF to temporal domain results in a position

dependent histogram. The histogram computation is illustrated in Figure 3.7. The lo-

cal neighborhood of a detected point is divided into a grid with M × M × N (i.e.,

3×3×2) spatio-temporal blocks. For each block, 4-bin gradient and 5-bin optical flow

histograms are computed and concatenated into a 162-length feature vector.

Figure 3.7. Computation of HoG and HoF [4]. Courtesy of Ivan Laptev.

3.5.2. Learning Discriminative Graph Prototypes

In prototype-based approaches, prototype selection plays a key role in recogni-

tion performance. In the context of action recognition, intra-class variability can be

large enough to eclipse the discrimination among different classes. For this reason,

we learned a reduced set of representative model graphs called prototypes and used

Nearest Prototype Classifier (NPC) for recognition. The problem can be formulated

as follows.

Let {G〈m〉i }|L|i=1 be a set of model graph prototypes obtained from the training set L.

Our goal is to find a subset of discriminative graph prototypes, SDG, which increases

the measure ACC(V, {G〈m〉i }Ni=1) defined as recognition accuracy on a validation set V
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using the model graph prototypes {G〈m〉i }Ni=1 ∈ L, N < |L|:

SDG = arg max
{G〈m〉i }Ni=1∈L

ACC(V, {G〈m〉i }Ni=1). (3.36)

However, searching exhaustively for the optimal SDG is a combinatorial problem.

Instead, we used a greedy search algorithm called as Sequential Floating Forward

Search (SFFS), which provides discriminative prototypes in ensembles at a much lower

computational cost. SFFS has been successfully used as a supervised feature selection

method in many previous studies [180]. The main steps of SFFS can be briefly described

as follows:

(i) Start with one prototype per class that yields the best performance and pro-

ceed to add, one at a time, conditionally the prototype that enables the biggest

improvement in performance.

(ii) After a number of addition steps, remove one or more of the prototypes if their

deletion improves the performance.

(iii) Repeat Step 2 and 3, until no more performance improvement is observed.

3.5.3. Experimental Setup

The proposed matching algorithms have been evaluated on the widely used public

KTH database [1]. This database contains 25 subjects performing 6 actions (walking,

jogging, running, handwaving, handclapping and boxing) recorded in four different sce-

narios including indoor/outdoor scenes and different camera viewpoints, totally 599

video sequences (one is corrupted). Each video sequence is also composed of three or

four action subsequences, resulting in 2391 subsequences in total. The subdivision of

the sequences we used is the same as the one provided on the official dataset web-

site [181]. In our experiments, we have used these subsequences to construct the model

graphs where each one consists of 20 to 30 frames, and such that each frame contains

at least one or more salient interest points.

Parameters have been estimated or fixed as follows. The penalty parameter W d
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should theoretically be higher than the average energy of correctly matched triangles

and lower than the average energy of incompatible triangles. We define W d as the mean

value of all, compatible or incompatible, triangle matching energies. The weighting

parameters are set so that each distortion measure has the same range of values: λ1 =

0.6, λ2 = 0.2, λ3 = 5, T t = 10, and W t = 20.

All experiments use the leave-one-subject-out (LOSO) strategy. Action classes

on the unseen subjects are recognized with a nearest prototype classifier (NPC). The

distance between scene and model prototypes is based on the matching energy given in

Equation 3.3. However, experiments have shown that the best performance is obtained

if only the appearance terms U(·) are used for distance calculation instead of the full

energy in Equation 3.3. This results in the following two step process:

(i) Node correspondences: The correspondence problem is solved using the total

energy in Equation 3.3, that is the sum of U(·) and D(·) terms. This step provides

a solution for the hidden variables x.

(ii) Decision for action class: The distance between model and scene graphs is cal-

culated using only the U(·) term evaluated on the assignments calculated in the

first step, i.e., on solutions for variables x.

Results have been analyzed in terms of three criteria: (i) performance of the

various graphical structures with different number of interest points per frame; (ii)

impact of prototype selection; and (iii) computational efficiency. These will be detailed

in the following section.

3.5.4. Choice of Graphical Structure

The three graphical structures introduced in Section 3.4 have been evaluated on

the dataset:

• Single-chain-single-point model: The interest points are detected by the 3D Harris
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detector [4]. Frame of a model sequence is represented by a single most salient

point. There are no such restrictions on the scene sequences.

• Single-chain-multiple-points model: The 3D Harris detector results in very few

interest points, i.e., the number of points varies between 1 and 4 per frame on

average. It is a good choice, if our only goal is to select a single point per frame.

However, in the case of multiple-points model, it is not appropriate. We therefore

used 2D Gabor filters [58] and extracted at least 20 points per frame. To eliminate

outliers, we fitted a bounding box on the human body and applied canny edge

detector to choose the points that are on or closer to the human silhouette. N = 3

points per frame are used in the model sequence. To capture the global property

of the human body, these three points are selected so as to constitute the biggest

triangle. There are no restrictions on the scene sequences, only the points outside

the bounding box are eliminated.

• Multiple-chains model: We again used 2D Gabor filters [58] to extract interest

points. N = 2 single-chain-single-point models are matched separately. A final

decision is obtained by averaging the matching energies over chains.

In Table 3.2, the results for different graphical structures are given. The best

recognition performance of the proposed scheme is found to be 89.2% with the single-

chain model. Looking at the confusion matrices in Table 3.2, it can be observed that

major part of the errors are due to confusion between the jogging and running classes,

which are indeed quite similar.

At first sight it might come as a surprise that the single-point model performs

slightly better than the two alternative models using multiple points per frame. How-

ever, the single-chain-multiple-point model does not fully exploit the rich space-time

geometry of the problem. In fact, we force this model to choose the triple of interest

points per frame (that will constitute one of the nodes of its hyper-graph) all from the

same model frame and the same scene frame. Even though the subsequent hyper-graph

matching uses the space-time geometry, it cannot make-up for the lost flexibility in the

in-frame triple point correspondence stage.
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The multiple-chain model, on the other hand, is similar in nature to the single-

chain model as it consists of chains successively established with mutually exclusive

model nodes (scene nodes can be re-used). Individual performance of chains are 85.6%

and 84.6%, respectively. The additional information content gathered by chains seems

to translate into better performance, which increases to 86.6% when we do score fusion

(average the energies). A plausible explanation is that two models, single-chain and

multiple-chain, basically differs in the interest point detection method used, 3D Harris

detector [4] and 2D Gabor filters [58], respectively, which is noisy for multiple-chains

model. However, this gap is compensated by the prototype selection algorithm as

shown in the following section.

3.5.5. Prototype Selection

We conjectured that the discrimination power can be improved by judicious se-

lection of prototypes, in effect removing the noisy prototypes. We learned a set of

discriminative prototypes by the method introduced in Section 3.5.2. We used the

same data partition protocol (8/8/9) given in [1]: Model graph prototypes are created

from the training subjects and the prototype selection is optimized over the validation

set. We have determined the optimal number of prototypes by a grid search where the

increments were in groups of 5 graphs. In Table 3.3, we have presented our results after

prototype selection. For example, for single-chain-single-point model, SFFS yielded 50

models out of the initial 750 ones as the best subset of model graph prototypes. Learn-

ing prototypes increased the test performance by 2 percentage points, up to 91%. As

expected, handwaving and jogging sequences benefit the most from dictionary learning

(see Table 3.3). Similar observations can be made for single-chain-multiple-points and

multiple-chains model. The number of model graph prototypes are reduced to 250 and

50 from 750, respectively. To sum up, Table 3.4 summarizes our experimental results

and compares run times of each graphical structures. Note that the run times given

do not include interest point detection and feature extraction, but these are negligible

compared to the matching requirements.

Sample matched model and scene sequences are illustrated in Figure 3.8 where
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Table 3.2. Confusion matrices before prototype selection (a) single-chain-single-point

model, (b) single chain-multiple-points model and (c) multiple-chains model.

Respective average accuracies are 89.2%, 87.6% and 86.6%. (B: Box, HC: Handclap,

HW: Handwave, J: Jog, R: Run, W: Walk).

(a) (b)

B HC HW J R W

B 86 13 0 0 1 0

HC 1 99 0 0 0 0

HW 1 10 89 0 0 0

J 0 0 0 74 26 0

R 0 0 0 10 90 0

W 0 0 0 3 0 97

B HC HW J R W

B 96 2 0 0 2 0

HC 1 99 0 0 0 0

HW 2 7 91 0 0 0

J 0 0 0 69 31 0

R 0 0 0 14 84 2

W 0 0 0 8 5 87

(c)

B HC HW J R W

B 94 6 0 0 0 0

HC 3 97 0 0 0 0

HW 3 12 85 0 0 0

J 0 0 0 93 6 1

R 0 0 0 40 59 1

W 0 0 0 8 0 92
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Table 3.3. Confusion matrices after prototype selection: (a) single-chain-single-point

model, (b) single chain-multiple-points model and (c) multiple-chains model.

Respective average accuracies are 91%, 90.2% and 90.8%. (B: Box, HC: Handclap,

HW: Handwave, J: Jog, R: Run, W: Walk).

(a) (b)

B HC HW J R W

B 92 3 3 2 0 0

HC 0 97 3 0 0 0

HW 0 3 97 0 0 0

J 0 0 0 88 9 3

R 0 0 0 19 75 6

W 0 0 0 0 3 97

B HC HW J R W

B 94 0 6 0 0 0

HC 0 97 3 0 0 0

HW 3 5 92 0 0 0

J 0 0 0 92 3 5

R 0 0 0 8 89 3

W 0 0 0 17 5 78

(c)

B HC HW J R W

B 94 6 0 0 0 0

HC 0 100 0 0 0 0

HW 0 6 94 0 0 0

J 0 0 0 91 3 6

R 0 0 0 23 77 0

W 0 0 0 11 0 89
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Table 3.4. Summary of the experimental results. Run time (ms/frame) is computed

for matching one model graph on a CPU with 2.8GHz and 8GB RAM.

Before After Run

prototype prototype time

Method selection selection (ms/fr)

Single-chain-single-point 89.2% 91% 4.1ms

model

Single-chain-multiple-points 87.6% 90.2% 15.6ms

model

Multiple-chains 86.6% 90.8% 12.6ms

model

in each sub-figure the left image is from the model sequence and the corresponding

matched scene frame is given on its right. One can observe that the proposed method

is also successful at localizing a model action sequence in a much longer scene se-

quence (recall S >> M). We illustrate in Figure 3.8a-c successfully recognized actions

handwaving, handclapping, walking, and in Figure 3.8d a misclassification case, where

running was recognized as jogging.

3.5.6. Comparison with State-of-the-art

We would like to point out that although many research results have been pub-

lished on the KTH database, most of these results cannot be directly compared due to

their differing evaluation protocols, as has been indicated in the detailed report on the

KTH database [182]. Nevertheless, for completeness we give our performance results

along with those of some of the state-of-the-art methods as reported in the respective

original papers. Details of these methods were discussed in Chapter 2. In Table 3.5, we

report average action recognition performance and computation time of the compared

methods. Although methods to calculate run times and protocols employed differ be-

tween the papers, this table is intended to give an overall idea. We claim that our

method provides a good compromise between performance and complexity. For ex-
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ample, the method proposed by Ta et al. [94] is the closest approach to our method:

they also used graph matching but based on spectral methods, so that they do approx-

imate matching of the exact problem. Recall that ours was the exact minimization of

the approximated graph problem. As can be seen, our approach shows a competitive

performance but with a very low computational time.

3.5.7. A Real-time GPU Implementation

A GPU implementation enables real-time performance on standard medium end

GPUs, e.g., a Nvidia GeForce GTS4501 . Table 3.6 compares single-chain/single-point

model run times of the CPU implementation in Matlab/C and the GPU implemen-

tation running on different GPUs with different characteristics, especially the number

of calculation units. The run times are given for matching a single model graph with

30 nodes against scene blocks of different lengths. If the scene video is segmented into

smaller blocks of 60 frames, which is necessary for continuous video processing, real

time performance can be achieved even on the low end GPU model. With these smaller

chunks of scene data, matching all 50 graph models to a block of 60 frames (roughly 2

seconds of video) takes about 3 ms regardless of the GPU model.

The processing time of 3 ms per frame is very much lower than the requirement

for real time processing, which is 40 ms for video acquired at 25 frames per second. Ad-

ditional processing will be required in order to treat overlapping blocks, which increases

running time to 6 ms per frame.

3.6. Summary

In this chapter, we showed that the exact solution to the point set matching

problem with hyper-graphs can be calculated with bounded complexity in the case of

spatio-temporal data. This is enabled when the correspondence problem is constrained

by taking into account the sequential nature of time and causality of human actions. We

show that, under these assumptions, the energy function can be minimized in the spirit

1GPU implementation of the proposed algorithm was done by Eric Lombardi.
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Table 3.5. Comparison with the state-of-the-art methods on the KTH database (E:

Performance Evaluation, R: Run time, LOOCV: Leave-one-out-cross validation, NA:

Not available).

Average

Work performance Run time Remarks

Ta et al. 91.2% 46.7s E: LOOCV

[94] R: Matching 1s video

with 98 model graphs

Borzeshi et al. 70.2% NA E: 8/8/9

[96] R: NA

Brendel & NA 10s E: NA

Todorovic [45] R: Matching 1000 nodes

model-graph with 2000+

nodes scene-graph

Lv & Nevatia NA 5.1s E: NA

[106] R: s/frame

Savarese et al. 86.8% NA E: LOOCV

[103] R: NA

Ryoo & 93.8% NA E: LOOCV

Aggarwal [90] R: NA

Mikolajczyk & 95.3% 0.5s to 3s E: LOOCV

Uemura [113] (5.5s to 8s R: s/frame

with SVM)

Jiang et al. 93.4% NA E: LOOCV, all scenarios

[114] in one

R: NA

Our method 91% 0.2s E: 8/8/9

(single-chain- R: s/frame,

single-point matching with 50 model

model) graphs
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(a) (b)

(c) (d)

Figure 3.8. Examples for matched sequences. (a) Model: Handclap (first column),

Scene: Handclap (second column); (b) Model: Handwave, Scene: Handwave; (c)

Model: Walk, Scene: Walk; (d) Model: Jog, Scene: Run. Here, (a), (b) and (c) show

a case of correct recognition, while (b) is a case of misclassification.

of dynamic programming technique which indeed leads to the global minimum. These

simplifications reduce the exponent of the complexity, but it still remains exponential
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Table 3.6. Run times in milliseconds for a CPU and two different GPUs and for 4

different scene block sizes. The last column on the right gives times per frame for

matching the whole set of 50 model graphs (∗Real time).

Implementation
Scene Scene A single model All 50 models

Nodes Frames Time (ms) Time/fr (ms) Time/fr (ms)

CPU: Intel Core 2 Duo, 754 723 2900 4.01 200.5

E8600 @ 3.33Ghz,

Matlab/C(mex)

Nvidia GeForce GTS450, 754 723 748 1.03 51.5

192 cuda cores, 60 55 4 0.07 3.5∗

128 bit memory interface

Nvidia GeForce GTX560, 754 723 405 0.56 28

336 cuda cores, 60 55 4 0.07 3.5∗

256 bit memory interface

in nature. We have therefore introduced an approximation to the graphical structure

with three different graph building strategies: (i) single-chain-single-point model; (ii)

single-chain-multiple-points model; and (iii) multiple-chains model.

As a proof of concept, our algorithm has been tested on the KTH database

where we compared these three graphical structures in terms of action recognition

performance and computational efficiency. We summarized our results in Table 3.7.

To remind, we quantify the computational complexity by the following variables.

(i) M and S are the number of model nodes and the number of scene nodes, respec-

tively. Note that S �M . |E| is the number of edges.

(ii) M and S are the number of model frames and the number of scene frames,

respectively. Note that S � S and S �M .

(iii) In the approximated graphical structure, the distance between the nodes in the

time domain is thresholded by T t.

(iv) R is the maximum number of interest points per frame in the scene sequence.
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Table 3.7. Summary of the computational complexities and the recognition

performances of the proposed approaches.

Method Complexity Recognition Per-

formance

Brute-force approach O(M ·SM ·|E|) -

Single-chain-single-

point model

O(M ·S·T t2·R) 91%

Single-chain-multiple-

points model

O(M ·S·T t2·R3) 90.2%

Multiple-chains model O(N ·M ·S·T t2·R) 90.8%

(v) N is the number of matched single chains-single point model.

Each model allows performing exact minimization with complexity that grows only

linearly in the number of model frames and the number of scene frames, and grows

exponentially in the temporal search range and the number of interest-points per scene

frame. As shown, the complexity of the proposed approaches is very much lower than

the complexity of the brute force approach.

We notice that single-chain-single-point model surpasses the other two models,

multiple-points and multiple-chains models, not only in performance, albeit slightly,

but also in computational time. One reason could be that these two approaches (single-

point versus multiple-points) differ in the interest point detection method. We conjec-

ture that the interest points detected by 3D Harris detector [4] are more informative

and discriminative than the interest points by 2D Gabor filters [58]. We tested and val-

idated this conjecture by comparing “single-chain-single-point model+3D Haris detec-

tor” performance with “single-chain-single-point model+2D Gabor filter” performance

where we obtained 89.2% and 85.6% recognition performances, respectively, before the

prototype selection takes place. However, this gap in performance was compensated

by eliminating noisy prototypes from the model graph set.
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The proposed scheme shows a modest performance (91%) as compared to the best

performance obtained on the KTH database (95.3%). However, it has the advantage

of very low runtime. Our algorithm is faster by an order of magnitude with respect to

its nearest competitor in speed (Table 3.5).
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4. HYPER-GRAPH BASED ANALYSIS OF SKELETON

SEQUENCES

In this chapter, we present the application of the proposed graph matching algo-

rithm to action recognition from depth data. In this context, we use depth sequences

recorded with a Kinect camera [23], which yields the coordinates of the tracked skeleton

joints [47].

We address a second specific problem in the action analysis domain, that of

automatic action quality assessment. The goal is to evaluate the performance of a

person performing an action as guided by instructions or by exemplars. The exemplar

can be in the form of a video of an agent performing the action, the instructions in

the form of a text describing the kinematic details of an action or in the form of

by an instructor/person in interaction. Instances of this problem in the literature are

evaluation of karate performance [25], of dancer’s performance [183], quality assessment

of reach and grasp movements of stroke survivors [16], and the gaming/entertainment

industry. In this work, we particularly aim to assess the quality of physical exercises

for therapeutic purposes.

We model the spatio-temporal relationship between the skeleton joints by the

single-chain-multiple-points model (Chapter 3, Section 3.4.2). Since the in-frame point

correspondence problem is already solved by skeleton-tracking algorithm, we do not

need to perform any greedy algorithm for assigning node variables (see Section 3.4.2).

Therefore, the matching problem is reduced to ensuring the temporal consistency be-

tween joints, namely the temporal alignment. The reduced problem seems to be some-

what easier as compared to the unconstrained graph matching problem in Chapter 3,

but it is still very challenging due to spiky, noisy joint data delivered by the Kinect sys-

tem or data missing due to severe occlusions. Once the skeleton sequences are aligned,

the action quality is measured based on the spatial and temporal deformation measures

with respect to a reference subject, e.g., an instructor.
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We begin with the related literature on quality assessment. Then, we describe

the three important aspects of the skeleton-based algorithm: (i) skeleton representa-

tion (normalization and pose descriptor extraction); (ii) sequence alignment by graph

matching; (iii) performance assessment. Comparative experimental results on two ac-

tion datasets are also presented.

4.1. Related Literature on Quality Assessment

In the literature, we have encountered only few studies for automatic action

quality assessment. These prior works have used Motion Capture (MoCap) data [184,

185] or RGB video sequences [186]. A few approaches have been recently proposed

based on skeleton tracking. For example, in [25], Bianco and Tisato recognize Karate

moves based on skeletal joints. They select triplets of joints manually for hand and

foot techniques, and represent each move by the angles of joint triplets. A set of key

poses is obtained via K-means clustering and Dynamic Time Warping (DTW) is used

for aligning two sequences of poses. The resulting normalized DTW distance is used

for performance evaluation and a regression analysis is done in order to validate the

relationship between the DTW distance and the subjective scoring. Essid et al. [183]

use three different quality measures and then combine them for salsa dance performance

evaluation. These measures are computed based on positions, velocities and 3D motion

(flow) of the joints. This method uses quaternionic correlation to estimate the time-shift

between two dancing sequences. Venkataraman et al. [16] propose a correlation-based

approach to quantify the movements of stroke survivors. They model the movements

of a human differently, from a dynamical system perspective and reconstruct a phase

space to infer geometrical and topological information from observations by means of

attractor. Their features rely on the shape features from the reconstructed phase space.

However, the main drawback of these methods is the use of correlation, as it does not

incorporate time warping.

In our work, we use the proposed hyper-graph matching algorithm to align two

skeleton sequences. Compared to the scheme in Chapter 3, the spatio-temporal in-

terest points in the graph matching algorithm are replaced with skeleton joints, and
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then characterize each skeleton by a pose descriptor. We enrich the angle-based pose

descriptor proposed in [25] and concatenate it with a distance-based pose descriptor.

We also propose a novel method for elimination irrelevant model graphs. Experimen-

tal results are reported on both action recognition and quality assessment of physical

exercises.

4.2. Pose Descriptor Extraction

Prior to any feature extraction, we applied a preprocessing stage to normalize

skeletons. Each joint n of a skeleton is represented at a time instant i by its 3 coor-

dinates pi,n = [ p
〈x〉
i,n p

〈y〉
i,n p

〈z〉
i,n ]. First, the skeletons are normalized in order to render

each skeleton independent from position and body size. For each time instant (frame),

we scaled the Euclidean distance between connected skeleton joints so that the inner

distance between the hip and the center of shoulders is set to unit length, and then we

translated joint positions so that the hip center coincides with the origin of the coor-

dinate system. Secondly, we applied vector median filtering on the time-trajectories of

each joint, where for the nth joint the M long joint coordinate sequence is given by

Pi,n =




p
〈x〉
1,n p

〈x〉
2,n . . . p

〈x〉
M,n

p
〈y〉
1,n p

〈y〉
2,n . . . p

〈y〉
M,n

p
〈z〉
1,n p

〈z〉
2,n . . . p

〈z〉
M,n


 . (4.1)

Vector median filtering aims at removing possible coordinate spikes and reducing noise.

Following the preprocessing stage, we extract two types of pose descriptors for action

recognition and quality assessment.

4.2.1. Angle-based Pose Descriptor

In the literature, it has been shown that scale and orientation-invariant features

can be obtained by using angles between consecutive joints. Each skeleton is repre-

sented by 14 angles as illustrated in Figure 4.1. Bianco et al. [25] characterized each

joint with only the subtended angle. We believe that to fully describe the orientation
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in 3D, one should calculate both the subtended angle and the orientation angle of the

plane defined by the three points (joints).

a1 a2 a3 a4 a5 a6 a7

a8 a9 a10 a11 a12 a13 a14

Figure 4.1. Angles computed for skeleton representation.

To describe the orientation angles of the plane defined by joint triples, we calculate

the inclination and azimuth angles with respect to the torso basis, as in Raptis et al.

in [109]. We apply PCA to the six torso joint positions (shoulder left/right/center and

hip left/right/center) and find a torso basis {ux, uy, uz} in which ux aligns with the

line that connects the shoulders, uy coincides with the line along the spine, and finally,

uz corresponds to depth directional vector. The torso joints and the calculated angles

are illustrated in Figure 4.2. Each angle is defined by three joints ps, pc and pe at any

time instant. For simplicity, we ignore the time index i for the moment. As illustrated

in Figure 4.2b, the vector b, extension of the vector −−→pspc, is the normal of the plane S
centered at the pc. We calculate the angles as follows:

• The inclination angle α(n) is computed between −−→pcpe and b.

• The azimuth angle β(n) is defined between ûx and p̂e which are the projections

of ux and pe on the plane S, respectively.

• We also compute the angle η between the directional vector z from the depth

sensor and the body orientation vector uz from the torso basis, to measure the



75

−0.5
0

0.5
0.8 11.2

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

time

uy 
uz 

ux 

pc pe

ps

α

β

ûx
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Figure 4.2. (a) Illustration of torso basis; (b) Illustration of the spherical coordinates,

i.e., radius R, inclination angle αj and azimuth angle βj, defined based on the torso

frame.

bending of the body.

Thus, we can define the angle-based pose descriptor vector as a = {a(1), . . . , a(14), η} ∈
R29 where a(n) = {α(n), β(n)}.

4.2.2. Distance-based Pose Descriptor

Complementarily, we calculate the Euclidean distance between joint-position pairs,

pi,n and pi,k. Let N be the number of joints. In our experiments, we ignore the joints

related to hand and foot, since these are more prone to errors, and set N = 15. We

define the distance-based pose descriptor vector as d = {d(n)|n = 1, 2, . . . 15} ∈ R210

where d(n) = {d(n, k)|k 6= n} ∈ R14 and d(n, k) = ‖pi,n − pi,k‖2.

Finally, we simply obtain the joint pose descriptor vector fi as the concatenation

of the two pose, angle-based and distance-based, descriptor vectors, fi = {a,d}.
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4.2.3. Pose Quantization

We quantize the skeleton pose space in order to decrease redundancy in the

temporal domain. Since K-means clustering is widely used for extracting the key

poses [25, 108], we adapted it to cluster skeleton poses represented by the joint pose

descriptor fi and obtained a set of key poses. Given a sequence of key poses, we sample

and assign each skeleton at a time instant to its closest cluster center, i.e., its closest

key pose, and obtain an abstract representation for each skeleton sequence.

4.3. Graph-based Sequence Alignment

In this section, we customize the single-chain-multiple-points-model (please refer

to Chapter 3, Section 3.4.2) for aligning the tracked skeleton sequences. In this context,

each action sequence is structured into a single chain graph where the frame variables zi

coincide with the frames (skeletons) and each zi assumes N node variables yi,n, namely

skeleton joints. Since the Kinect system provides the positions of the skeleton joints, the

problem of assigning the node variables has already been solved. However, the problem

of which model frame to match with which scene frame remains still very challenging

in nature due to noisy, missing or occluded joints. In this context also, graph matching

offers a robust and flexible solution to the sequence alignment problem against these

problems.

Below, we invoke our proposed graph energy function as defined in Section 3.4.2:

E(z) = λ1

M∑

i=1

U(zi) + λ2

M∑

i=3

D(zi, zi−1, zi−2). (4.2)

U(·) is now defined as the Euclidean distance between the pose descriptors of skeletons,

and D(·) again measures the spatio-temporal deformation in terms of two terms, the

time warping penalty term Dt(·) and the geometrical deformation term Dg(·). For

convenience, we recall U(·)
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Figure 4.3. Each triangle models the spatial relationship between three consecutive

skeletons in the triangular structure graph.

U(zi) =




W d if zi = ε,

‖f 〈m〉i − f 〈s〉zi ‖ else,

(4.3)

where ε is the dummy assignment and W d its penalty, and D(·)

D(zi, zi−1, zi−2) =
∑

c∈(i,i−1,i−2)

Dc(zc, yc). (4.4)

Recall that Dt(·) is the time differences between the model nodes and their correspond-

ing scene nodes truncated by the threshold T t. Slightly different from the single-chain-

multiple-points-model in Section 3.4.2, Dg(·) is measured by summing the deformation

terms over the triplets of consecutive joints. This can be best explained by Figure

4.3 where each skeleton joint is connected to its two preceding and its two succeeding

neighbors. In other words, each triangle models the temporal relationship of three

consecutive skeleton joints, all of the same type. If we put into formulation, let pc,n

denotes the triangle vertices associated with the 3 dimensional Cartesian coordinates of

nth joint in three consecutive frames, {i, i−1, i−2}. Dg(·) is defined as the summation

of the differences between the angles of triangle formed by the model triplet p
〈m〉
c,n and
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the corresponding angles of the triangle formed by its corresponding scene triplet p
〈s〉
zc,n:

Dg(zi, zi−1, zi−2) =
N∑

n=1

‖ψ(p〈m〉c,n )− ψ(p〈s〉zc,n)‖ (4.5)

where ψ(·) denotes the two triangle angles in Equation 3.8 and N is the number of

skeleton joints per frame.

Note that the computational complexity, in this case, is even lower than the

complexity of the single-chain-single-point-model, i.e. O(M ·S·T t2). Recall that M

and S are respective number of scene and model frames. In the sequel, we show how

these measures can be used for action recognition and performance assessment as well

as for learning a set of discriminative and representative model graphs.

4.4. Learning Model Graphs

In this chapter, inspired from the algorithm in [67], we follow an approach for

learning and mining prototypes different from what we had used in Section 3.5.2. Given

a set of L model graph prototypes G
〈m〉
j obtained from a training set, our goal is to find

a subset of representative and discriminative graph prototypes. Let Ej
i be the energy

of a model graph G
〈m〉
j matched to a scene graph G

〈s〉
i which is explicitly formalized in

Equation 4.2. We define two measures: discriminability measure and representability

measure.

Discriminability measure for G
〈m〉
j is formulated as the ratio of between-class

variance to within-class variance:

DISj =

∑K
k=1Nk(µ̄

j
k − µ̄j)2∑K

k=1

∑
i∈Ck

(µji − µ̄jk)2
(4.6)

where K is the number of action classes. Let Nk be number of samples in each action
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class Ck, µ̄
j
k and µ̄j can be defined as follows:

µ̄jk =
1

Nk

∑

i∈Ck

Ej
i ; µ̄j =

1∑K
k=1Nk

K∑

k=1

µ̄jk. (4.7)

Representability measure, REPj, evaluates the ratio of the scene graphs that are

covered by the model graph G
〈m〉
j . Given a model graph and a scene graph pertaining

to the same action class, the model graph covers the scene graph, if it is in the l-nearest

neighborhood of the scene graph. REPj is therefore defined as the ratio of the number

of covered scene graphs to all scene graphs.

We choose the model graphs satisfying these two requirements. In our experi-

ments, we normalize these two measures and calculate the mean value. We choose the

model graphs that have higher mean and set the number of selected prototypes that

gives the best performance on the training set. Indeed, experimental results show that

the choice of representative and discriminative model graphs to construct a learned

dictionary improves the performances as compared to when all the models were used.

4.5. Action Quality Assessment

We test and assess the utility of our scheme in two separate frameworks: (i)

To classify a variety of action sequences into respective “correctly performed” and

“wrongly performed” classes; (ii) To automatically grade the similitude of an action

as compared with a model sequence, as a measure of the actor’s performance level. In

the context of quality assessment, the correct sequences (the model set) will typically

be the actions of an instructor or a software agent, and the test sequences, which can

prove correct or incorrect, will be those of a novice performer.

4.5.1. Classification: Correct vs. Wrong

Given a set of selected model graphs and a set of scene graphs labeled as cor-

rect or incorrect, the goal is to discriminate action sequences that are deemed to
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be wrongly performed from correctly performed ones. For this purpose, we define

a feature vector for each scene graph G
〈s〉
i in terms of the matching energy to the

model graphs {G〈m〉j , j = 1 . . . L} in the library. The feature vector has the form

F
〈s〉
i = {Ej

i , j = 1 . . . L}, where Ej
i is the matching energy in Equation 4.2 between

the model graph G
〈m〉
j and the scene graph G

〈s〉
i , and L is the number of model graphs.

Then using the feature vector, F
〈s〉
i , we train a linear Support Vector Machine (SVM)

separately for each action type to classify sequences as correctly and wrongly per-

formed. Notice that due to the intra-variation of action sequences, we cannot use a

single prototype sequence, but we aggregate via SVM the scores of the distances of

the test sequence to all realizations of the model actions. In other words, there are

multiple ways of doing the action wrongly, and there are variations among the correct

ones.

4.5.2. Quality Assessment

The second task is to gauge the goodness of the performance given that the

action has been performed correctly. To this effect we can use the matching energy per

sequence, or per frame, per limb, or even per joint. Consider two aligned sequences,

where MT is some model sequence and ST some scene sequence aligned to the model

sequence. These sequences are characterized by their respective sequences of pose

descriptors, namely MT = {f 〈m〉i ; i = 1 . . .M} and ST = {f 〈s〉i ; i = 1 . . .M}. Our

goal is to infer the offsets between the joints in MT and ST

The offset of a component (joint) n of an descriptor between the pair of f
〈m〉
i,n and

f
〈s〉
i,n at a time instant i is computed as

δn = |f 〈m〉i,n − f 〈s〉i,n |. (4.8)

We define ∆ =
∑N

n=1 δn + δt for each skeleton of n joints, δt as the time difference, N

is the number of joints, and d = (∆1, . . . ,∆M) for the entire sequence of M frames. A

quality measure (QM) is defined in terms of the overall distance, i.e., QM =
∑M

m=1 ∆m.

We have observed, as expected that QM (distance) is proportional to the deterioration
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in the action quality.

This distance measure can be also specialized for different subsets of body joints,

for example upper body or lower body joints or to only one joint in order pinpoint the

deficiencies or differences between the performance of the test subject and that of the

instructor.

4.6. Experiments and Results

The proposed framework was tested on MSR Action 3D dataset [5] and WorkoutSu-

10 Gesture dataset [6]. Experimental evaluations have demonstrated the utility of the

proposed scheme for the following two tasks: action recognition and action quality

assessment.

4.6.1. Datasets and Experimental Setup

The experiments are conducted under three settings as follows.

• MSR Action 3D Dataset [5]. MSR Action 3D dataset is one of the early collections

recorded with a depth sensor. There are 20 actions performed by 10 subjects.

Each subject performs each action 2 or 3 times, resulting in 567 recordings in

total. However, we have used 557 recordings in our experiments as in [110]. Each

recording contains a depth map sequence with a resolution of 640× 480 and the

corresponding coordinates of the 20 skeleton joints. Actions are selected in the

context of interacting with game consoles, for example, arm wave, forward kick,

tennis serve etc.

• Workout SU-10 Gesture dataset [6]. This dataset has the same recording format

as MSR Action 3D dataset. However, the context is physical exercises performed

for therapeutic purposes. Lateral stepping, hip adductor stretch, freestanding

squats, oblique stretch etc. can be given as examples of exercises (actions). There

are 15 subjects and 10 different exercises. Each subject repeats an exercise 10

times, resulting in 1500 action sequences in total. In our experiments, we used
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600 sequences for training and tested our algorithm on the unseen part of the

dataset (we ignored one subject, and tested on 800 sequences).

The action types occurring in MSR Action 3D Dataset [5] and Workout SU-10

Gesture dataset [6] are listed in Table 4.1.

Table 4.1. The action types used in the experiments.

Dataset Acronym Action type

M
S
R

A
ct

io
n

3D
D

at
as

et
[5

]

AS1 horizontal arm wave, hammer, forward punch,

high throw, hand clap, bend, tennis swing,

pick & throw

AS2 high arm wave, hand catch, draw x, draw tick,

draw circle, two hand wave, side-boxing,

forward kick

AS3 high throw, forward kick, side kick, jogging,

tennis swing, tennis serve, golf swing,

pick & throw

W
or

ko
u
t

S
U

-1
0

G
es

tu
re

D
at

as
et

[6
]

A1 single leg balance with hip flexion

A2 single leg balance trunk rotation

A3 lateral stepping

B1 thoracic rotation bar on shoulder

B2 hip adductor stretch 1

B3 hip adductor stretch 2

C1 dumbbell curl-to-press

C2 freestanding squats

C3 transverse horizontal dumbbell punch

C4 lateral trunk/oblique stretch

• Perturbed dataset. We used Workout SU-10 Gesture dataset [6] for performance

assessment. Since the subjective quality labels on this dataset is absent, we

created the metadata artificially. We perturbed the positions of selected joints in

these sequences with Gaussian noise, and the perturbation level (noise variance)

was assumed as the quality metadata. We considered mild to severe perturbations
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applied to various subsets of joints, i.e., left/right arm and left/right leg. Ten

levels of perturbation strength were used, as represented by standard deviations,

σ = 0.1 : 0.15 : 1.5. Recalling that the spine length of the skeleton was set to

1, can give us an idea of the extent of perturbation. Sample perturbed skeleton

sequences are illustrated in Figure 4.4. These perturbations are not constrained

in that the kinematics of the arm or leg movements are not taken into account.

However for mild perturbations, movements of the skeleton and Figure 4.4 show

that the results are plausible and convenient for the performance evaluation under

limb joint uncertainties.

Finally, the parameters, λ, W d, are set on the training set. It should be noted

that we applied pose quantization only on the model graphs where we find setting

K = 512 adequate in pose quantization.

4.6.2. Action Recognition Results

We used nearest neighbor classifier where the distance measure was the matching

energy in Equation 4.2. The average performance is found to be 72.9% and 99.5% on

MSR Action 3D Dataset and WorkoutSU Gesture dataset, respectively. These results

are given in Table 4.2.

The performance when joint subsets were perturbed with additive Gaussian noise

are presented in Table 4.3. We observe that the performance degrades gracefully with

increasing limb noise.

4.6.3. Comparison with State-of-the-art Methods

For completeness, we compared our algorithm with the state-of-the-art methods

[16], [5], [6] which were described in Chapter 2.

In Table 4.4, we tabulated our results on MSR Action 3D Dataset [5]. The

performance is computed using a cross-subject test setting where half of the subjects
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Figure 4.4. Example illustrations. (a)-(b) Respective original sequence and perturbed

sequence of action type C1; (c)-(d) Respective original sequence and perturbed

sequence of action type A2. Note that, while (b) is a severe noise case, (d) is an

example of mild noise case.

were used for training and testing was conducted on the unseen portion of the subjects.

Li et al. [5] proposed to divide the dataset into three subsets in order to reduce the

computational complexity during training. Each action set (AS) consists of eight action

classes similar in context. We repeated the same experimental setup 100 times where,

each time, we randomly selected five subjects for training and used the rest for testing.

Finally, we reported the average recognition rate over all repetitions as well as the
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Table 4.2. Recognition performances (%) on MSR: MSR Action 3D Dataset and

WSU: WorkoutSU Gesture datasets. L is the number of model graphs used in the

experiments.

Dataset Number of Performance w/o Performance w/

action classes Graph Mining Graph Mining

MSR 20 71.8 (L = 291) 72.9 (L = 271)

WSU 10 94.9 (L = 600) 99.5 (L = 507)

Table 4.3. Recognition performances (%) under additive Gaussian noise. We set σ

value to 0.1, 0.5 and 1 for mild, medium and severe noise cases, respectively.

Perturbation Performance w/o Performance w/

Type Graph Mining Graph Mining

Mild noise 93.4 98.8

Medium noise 86.4 96.2

Severe noise 75.7 87.8

No perturbation 94.9 99.5

corresponding standard deviations in the last column of Table 4.4. As seen Table

4.4, the proposed method performs better in AS1 and AS2, and has a competitive

performance in AS3. Our proposed method is more successful in overall performance,

especially in discriminating actions with similar movements.

In Table 4.5, we compared our results on Workout SU-10 Gesture dataset [6] with

the method proposed in [6]. In Table 4.2, we have used 14 subjects as opposed to 12

subjects by Negin et al. [6]. For a fair comparison, we used the same experimental setup,

namely, cross-subject test setting where we used the same six subjects for training and

the same remaining six subjects for testing as in [6]. As seen, our proposed method

with graph mining scheme performs better as compared with Negin et al. [6].
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Table 4.4. Recognition performances (%) for MSR Action 3D Dataset [5] in

cross-subject test setting. The respective standard deviations are 5, 7.5, and 13.2 for

the last column.

Action Set Venkataraman Li et al. [5] Proposed Method

et al. [16] w/o Graph Mining

AS1 77.5 72.9 84.5

AS2 63.1 71.9 85.0

AS3 87.0 79.2 72.2

Overall 75.9 74.7 80.5

4.6.4. Quality Assessment Result

4.6.4.1. Classification results. In Table 4.6, we present the performance of our frame-

work for discriminating correctly performed and wrongly performed sequences. We

consider a set of 400 sequences. We obtained a set of wrongly performed sequences by

distorting each sequence with σ = 0.5, 1, which results in 800 sequences in total. We

trained a separate SVM classifier for each action class on the features as described in

Section 4.5 and used a leave-one-subject-out test setting. Our average classification

performance is found to be 86.6%.

4.6.4.2. Regression analysis. The rendition of the action obviously deteriorates with

the addition of the joint noise and we expect our action quality measure, that is, the

calculated total distance between two matched sequences, to be proportional. We used

a regression analysis between the noise variance and the matching energies to the model

sequences. We considered 10 different σ values and four different body parts (left/right

arm and left/right leg) and generated 3600 different sequences for action classes A1, A2

and A3. We matched each perturbed sequence with its original sequence and calculated

the quality measure, QM , as in Section 4.5. As discussed before, in the absence

of human evaluations, in order to find the relationship with the calculated distance

and the perturbation variances, we applied Support Vector Regression (SVR) with
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Table 4.5. Recognition performances (%) for Workout SU-10 Gesture dataset [6] in

cross-subject test setting.

Action Negin et al. Proposed Method Proposed Method

[6] w/o Graph Mining w/ Graph Mining

A1 100 96.7 100

A2 93.3 100 100

A3 98.3 100 100

B1 98.3 100 100

B2 96.6 100 100

B3 100 73.3 98.3

C1 100 100 100

C2 98.3 100 100

C3 100 100 100

C4 95.0 91.5 98.3

Overall 98.0 96.1 99.6

Table 4.6. Classification performance of the proposed framework: correctly performed

sequences vs. wrongly performed sequences. Overall classification performance is

86.6%.

Correct. Perform. Wrong. Perform.

Correct. Perform. 85.1 14.9

Wrong. Perform. 11.8 88.2
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polynomial kernel variety. Figure 4.5 verifies the relationship between the calculated

quality score (distance) and the simulated mismatch (perturbation variance).
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Figure 4.5. Calculated distance, QM , vs. simulated mismatch (perturbation

variance).

4.7. Summary

In this chapter, we extended the graph-based action recognition scheme to skele-

ton pose sequences, and in addition we developed an action quality assessment method.

We also introduced an effective algorithm to select the most discriminative prototypes

in the training set. The experimental results show that the graph matching scheme has

a competitive action recognition capability, it proves to be useful as an action quality

monitor on a continuous scale, and that the prototype selection improves the overall

performance.

We demonstrated the viability of the proposed algorithm on MSR Action 3D

dataset [5] and Workout SU-10 Gesture dataset [6]. In our experiments, we obtained

72.9% performance on the more challenging and noisier MSR Action 3D dataset and
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99.5% performance on Workout on the SU-10 Gesture datasets. In either case, our

method surpasses the performance of its counterparts, which are based on correlation

[6, 16] and BoW [5], respectively.

For action quality assessment experiments, in the absence of scored and labeled

data, we created a perturbed dataset where the noise variance was interpreted as the

meta-data. Our regression results showed that the action perturbation (noise variance)

and the distance measure between a scene sequence and its aligned model sequence has

a plausible relationship. This distance measure has been used for separating acceptable

(original) and unacceptable (severely noise perturbed) action performances.

Finally, since the Kinect system delivers the skeleton joint positions in real-time,

in fact our scheme can be used to give instantaneous feedback on the quality of action,

whether over a portion of the action or a subset of joints.
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5. MIXTURE OF HIDDEN MARKOV MODELS

Hidden Markov Models (HMM) is a fundamental statistical method for dealing

with temporal patterns, as is expected, it has been widely used in the action recog-

nition domain. We had already cited several instances of its use in modeling human

movements [96,104,108,187] (please refer to Chapter 2). In this chapter, we apply Hid-

den Markov Models (HMMs) to the action recognition problem, where the contribution

consists of an alternative and novel parameter learning algorithm. We propose a spec-

tral learning method for efficiently estimating the parameters of the Hidden Markov

Models (HMM) as well as those of the Mixtures of Hidden Markov Models (MHMM).

We demonstrate the viability of the proposed algorithm on video sequences like those

in the KTH dataset [1].2

The parameter learning task in HMM can be formulated as finding a set of pa-

rameters that maximizes the likelihood of the training sequences. This formulation,

however, requires the evaluation of an intractable integral over the parameters. There

is no algorithm in the open literature for solving this problem exactly. As a conse-

quence, popular learning algorithms derive a local maximum likelihood by using search

heuristics, for example, Expectation-Maximization algorithm. Although this algorithm

is efficient, it does not guarantee the global optimum as it suffers from vagaries of

initializations and inadequate number of iterations. To this effect, spectral learning

algorithm has been proposed as a viable and computationally efficient alternative to

EM approach for maximum likelihood estimation. Given a sufficient amount of data,

Hsu et al. [188] have recently shown that hidden variables such as the model param-

eters can be estimated by only low-order moments of the observed sequence. In this

chapter, we investigate the practical deployment of this spectral method [188] against

its counterpart EM algorithm.

Previous works [96,187] represented each action class by a single Hidden Markov

Model. However, a single representative model may not suffice in that, in reality,

2The content of this chapter was joint work with Yusuf Cem Sübakan.
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human action instantiations show great variability depending upon the subject, the

environment, viewing angle etc. In this context, there is a good reason to use mixture

models which is a good approach to handle data containing multiple subgroups. In

Section 5.2.1, we show that the extended version of the spectral method Hsu et al. [188]

can be used for learning infinite Mixtures of Hidden Markov Models (MHMM) where

the number of subgroups is unknown. We experimentally validate that learning infinite

mixture models of action classes improves the classification accuracy.

The rest of this chapter is organized as follows. First, we define Hidden Markov

Models and present the parameter learning by the EM approach and the spectral

method. Then, we introduce the mixture of HMMs in conjunction with the spectral

learning algorithm. Finally, the experimental results highlight the potential impact of

the proposed algorithm on the KTH action dataset [1].

5.1. Hidden Markov Models

The Hidden Markov Model defines a probability distribution over sequences of

hidden states (ht) and observation (xt). An HMM can be formally defined with the

following elements [189]:

• Hidden states, ht, that can take values from {1, . . . ,M} at a time instant t, where

M is the number of states.

• Observations, xt, that can take values from {1, . . . , N} at a time instant t, where

N is the number of observations and M ≤ N .

• State transition probability matrix

Tij = p(ht = i|ht−1 = j), T ∈ RM×M (5.1)

where Tij ≥ 0 and
∑

j Tij = 1 for j ∈ {1, . . . ,M}.
• Observation probability matrix

Oij = p(xt = i|ht = j), O ∈ RN×M . (5.2)
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• Initial state probabilities

π = [πi] where πi = p(h1 = i). (5.3)

The parameter set of an HMM is denoted as λ = {O, T,π}, since M and N are

implicitly defined in the other parameters. Directed graphical model representing an

HMM is given in Figure 5.1a. Given a training sequence, x = {x1, . . . , xS}, and a

hidden state sequence, h = {h1, . . . , hS}, the joint probability can be calculated by

p(x,h|λ) = p(h1|π)·
(

S∏

t=2

p(ht|ht−1, T )

)
·
(

S∏

t=1

p(xt|ht, O)

)
. (5.4)

We are interested in estimating the model parameters that maximizes the prob-

ability generating x, namely, to find λ∗ that maximizes the likelihood p(x|λ). The

likelihood can be obtained by marginalizing the joint probability, namely, summing up

over all possible h’s:

p(x|λ) =
∑

all h

p(x,h|λ). (5.5)

5.1.1. Learning Model Parameters of HMM

In this section, we present two methods for learning model parameters: (i) clas-

sical maximum likelihood based learning by Expectation-Maximization procedure and

(ii) spectral learning based on the method of moments.

5.1.1.1. Expectation-Maximization algorithm. To learn the optimal model parameters

λ∗, one has to maximize the logarithm of the likelihood:

λ∗ = arg max
λ

log p(x|λ)

= arg max
λ

log
∑

h

p(x,h|λ). (5.6)
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h1 h2 . . . ht

x1 x2 . . . xt
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πk T k

h1,l h2,l . . . htl,l

cl

x1,l x2,l . . . xtl,l

Ok

(a) (b)

Figure 5.1. Directed Acyclic Graph (DAG) (a) of HMM and (b) of MHMM.

However, there is no closed form solution for this maximization problem since the

likelihood p(x|λ) is defined with a summation over the hidden variables h that prevents

the logarithm to act directly on the distribution. Instead, given λ, we first find a lower

bound for Equation 5.5, and then maximize this lower bound. For a valid probability

distribution q(h), we can define the lower bound of Equation 5.5 by the following

function:

∑

h

q(h) log
p(x,h|λ)

q(h)
(5.7)

due to Jensen’s inequality [190].

Given some initial values for model parameters denoted by λold, Expectation-

Maximization algorithm is a two-step iterative procedure. In Expectation (E) step, we

choose q(h) such that Equation 5.5 and Equation 5.7 are equal for λold. This is achieved

by setting q(h) = p(h|x, λold) for every possible state sequence h. In Maximization (M)

step, we look for the new parameter values, λnew, that maximizes Equation 5.7 such

that conditions on λnew are satisfied. EM algorithm is summarized in Figure 5.2.

It should be noted that we give a naive approach to EM where there are MS
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possible h in the E step, which is not practical. This can be efficiently done by ex-

ploiting the conditional independence properties of the HMM using forward-backward

algorithm. The details can be found in [191].

EM is an efficient algorithm, however, learning parameters of an HMM using

EM is a non-convex problem with many local maxima. EM will converge to any local

maximum based on the initial values, therefore one has to run the algorithm multiple

times with different initial values.

Set λold = {Oold, T old,πold} with random valid probability values.

Repeat until convergence {
(E-Step) For every possible h, set

q(h) := p(h|x, λold)
(M-Step) Update

λnew = arg maxλ
∑

h q(h) log p(x,h|λ)
q(h)

subject to
∑

j O
new
ij = 1 for j ∈ {1, . . . ,M}, Onew

ij ≥ 0,
∑

j T
new
ij = 1 for j ∈ {1, . . . ,M}, T newij ≥ 0,

∑
i π

new
i = 1, πnewi ≥ 0.

λold := λnew

}

Figure 5.2. Expectation-Maximization algorithm for HMM.

5.1.1.2. Spectral algorithm. Spectral methods have been proposed as an alternative

to overcome the shortcomings of EM and to bypass the tedious estimation of the

maximum likelihood. They basically operate on the eigen-structure of the empirical

(observable) moments to elicit the underlying model parameters and assure a unique

accurate estimation of them given a sufficient number of training samples. We first

present how such a connection between the low-order observable moments and the

model parameters can be established in the case of an HMM based on the work proposed

by Hsu et al. [188,192], so called “method of moments”.
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Method of moments [188,192] learns a representation that is based on the follow-

ing observable operator view:

Lemma 5.1. For x = 1, . . . , N define

Ax = Tdiag(O(x, :)) (5.8)

where O(x, :) denotes the xth row of the matrix O. Given an observed sequence x and

the parameters λ:

p(x|λ) = 1TMAxS . . . Ax1π (5.9)

where 1M is a vector of all ones of length M.

Proof.

p(x|λ) =
∑

hS+1

∑

hS

p(hS+1|hS)p(xS|hS)..
∑

h2

p(h3|h2)p(x2|h2)
∑

h1

p(h2|h1)p(x1|h1)p(h1)
︸ ︷︷ ︸

Ax1π︸ ︷︷ ︸
Ax2Ax1π︸ ︷︷ ︸

AxS
..Ax2Ax1π︸ ︷︷ ︸

1TMAxS
..Ax2Ax1π

.

We assume that the HMM obey the following condition.

Assumption 5.2. π > 0 element wise, and O is rank M.

The conditions on π requires that each state has non-zero probability. This is sat-

isfied if the Markov chain specified by T is ergodic and π is its stationary distribution.

The condition on O prevents the ambiguity in which a state i has an output distri-

bution equal to a convex combination of other states’ output distributions, and thus



96

guarantees an explicit expression of the model parameters in terms of the observable

quantities.

Following this, the HMM representation is defined by the observable quantities,

namely the marginal probabilities of observation singletons, pairs and triples:

(P1)i = p(x1 = i) (5.10)

(P3,1)ij = p(x3 = i, x1 = j) (5.11)

(P3,x,1)ij = p(x3 = i, x2 = x, x1 = j), (5.12)

where P1 ∈ RN is a vector, and P3,1, P3,x,1 ∈ RN×N are the matrices. Moreover, it is

straightforward to show the connection between these observable quantities and the

model parameters:

P1 = Oπ (5.13)

P3,1 = OTTdiag(π)OT (5.14)

P3,x,1 = OAxTdiag(π)OT . (5.15)

The representations further depends on the matrices U ∈ RN×M and V ∈ RN×M

that obeys the following condition and lemma.

Assumption 5.3. UTO and V TO are invertible.

Lemma 5.4. Assume π > 0, and O and T are rank M. Let U ∈ RN×M and V ∈ RN×M

be matrices such that both UTO and V TO are invertible. Then UTP3,1V is invertible,

and for all x, the observable operator, Bx ∈ RM×M , is given by

Bx := (UTOT )diag(O(x, :))(UTOT )−1. (5.16)

Then, Bx can be written in terms of the observable quantities

Bx = (UTP3,x,1V )(UTP3,1V )−1. (5.17)
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Proof. Since P3,1 = OTTdiag(π)OT , we can express UTP3,x,1V as

UTP3,x,1V = UTOAxTdiag(π)OTV (5.18)

= UTOTdiag(O(x, :))Tdiag(π)OTV (5.19)

= UTOTdiag(O(x, :))(UTOT )−1(UTOT )Tdiag(π)OTV (5.20)

= (UTOT )diag(O(x, :))(UTOT )−1UTP3,1V. (5.21)

Thus, Bx = (UTP3,x,1V )(UTP3,1V )−1 is satisfied.

The algorithm is motivated by Lemma 5.4 in that we compute the Singular Value

Decomposition (SVD) of an empirical estimate of P3,1 to discover U and V that sat-

isfy Assumption 5.3. More explicitly, Bx reveals T and O as follows. First, we in-

dependently sample a number of independent observation pairs and triples, p(x3, x1)

and p(x3, x2, x1), to form empirical estimates of P3,1 ∈ RN×N and P3,2,1 ∈ RN×N×N .

We then compute the SVD of P3,1 to discover U and V that are the left and right

singular vectors that corresponds to the M largest singular values and recover Bx

from (UTP3,x,1V )(UTP3,1V )−1. Note that, if we compute the eigen-decomposition of

Bx, eigenvalues are the xth row of O and T can be estimated from the eigenvectors,

UTOT . Since we admit that π is the steady state distribution in Assumption 5.2, we

can estimate it as the eigenvector of T associated to the eigenvalue 1.

We summarize the spectral algorithm for estimating parameters in Figure 5.3.

5.2. Mixtures of Hidden Markov Models

Mixtures of Hidden Markov Models (MHMMs) can be interpreted as the combi-

nation of K independent “standard” HMMs. A MHMM is illustrated in Figure 5.1b.

The key point is to introduce a hidden cluster indicator, cl, where cl = k indicates

that the observation sequence xl is generated from the kth HMM with a transition

matrix T k and an observation matrix Ok. Given L observation sequences, to estimate
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1. Independently sample a number of observation pairs and triples to form em-

pirical estimates P̂3,1 and P̂3,2,1;

2. Compute the SVD of P̂3,1, and let Û and V̂ be the matrix of left and right

singular values corresponding to the M largest singular values;

3. Estimate the first row of Ô matrix and R = ÛT ÔT̂ by computing the eigen-

decomposition of B1 = Rdiag(O(1, :))R−1, namely, Ô(1, :) = R−1B1R;

for n = 2 to N do

Ô(n, :) = R−1BnR;

end for

temp = (ÛÔ)−1R;

4. Normalize temp to have columns sum up to one, and set T̂ = temp.

Figure 5.3. HMM spectral learning algorithm.

the model parameters, one has to maximize the following likelihood over all cluster

parameter sets:

p(x1, . . . ,xL|λ1, . . . , λK) =
∑

cl

∑

hl

L∏

l=1

p(xl,hl, cl|λ1, . . . , λK). (5.22)

For this maximization problem, an EM algorithm can be derived similar to Section

5.1.1.1. The only difference is the additional summation over cl terms. However,

for each iteration, the evaluation of the E step increases linearly with the number of

clusters, K. Below, we propose an alternative method that combines k-means clustering

method and spectral learning approach.

5.2.1. Spectral Learning of Mixture of HMMs

The extension of the method of moments to the Mixtures of HMMs is not straight-

forward. We therefore use method of moments as a subroutine in a K-means type

algorithm. The basic steps of the algorithm can be summarized as follows:
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(i) For each action class, assume N training sequences xn and K independent stan-

dard HMMs. Randomly initialize the cluster indicator variables c = {c1, . . . , cN}.
(ii) Given c, compute empirically P k

3,1 and P k
3,2,1, k = 1, . . . , K, and estimate the

model parameters λk of each HMM using the spectral algorithm given in Figure

5.3.

(iii) Update the cluster-training sequence assignments, in other words, assign each

training sequence, xn, to the cluster that has the best fitting model parameters:

cn = arg max
k
p(xk|λk). (5.23)

(iv) Repeat steps 2 and 3 until convergence.

It should be noted that, in a finite mixture model, number of components has

to be specified apriori. However, in reality, we do not have such an information about

the number of subgroups available in the data. The algorithm can be extended to

infinite mixture models by defining a term that creates a new, non-pre-existing cluster,

if the available cluster model parameters can not model the training sequence well

enough. This term can be simply characterized by p(xn|λall) where λall can also be

empirically learned from all training samples, {x1, . . . ,xN}, regardless of the clusters.

More explicitly, if p(xn|λall) > p(xn|λk), ∀k, we create a new cluster K + 1. By

extension, if one of the clusters becomes empty, we decrease the number of clusters by

one, and relabel the remaining ones.

5.3. Application to Human Action Recognition

In this section, we demonstrate the practical usage of the proposed approaches

on the human action recognition problem from video sequences. First, we briefly

mention action description and observation model selection, and then continue with

the experimental results.

5.3.1. Spatio-temporal Interest Point Detection and Action Description

For each action frame, we first place a bounding box on the human body, and

then, divide the box into 9 blocks. We characterize a box by the number of detected
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Figure 5.4. Each box (frame) is described by the number of detected STIPs within

the blocks. An action can be regarded as a sequence of boxes.

spatio-temporal interest points (STIPs) within each block. Yamato et al. [187] also

used a similar descriptor in conjunction with HMMs. They first converted each frame

to a binary image which is then divided into blocks, and count the occurring 0/1 pixels

within each block. Differently, we treat the number of STIPs within each box as the

observations xt at a time instant t. This procedure is illustrated in Figure 5.4. As

shown, consider two “boxing” action instantiations. In the first sequence, there is no

motion in the legs, whereas in the second we have substantial leg movement. Training

a Mixture of HMMs for each class can effectively capture the within-class-variance.

The box and interest points are automatically extracted by using the off-the-shelf code

in [58]. Finally, we opt to use Poisson distribution to model the observation since each

observation or box is represented by the STIPs count.

The rationale to use a rather simple set of features to describe human actions is

to be able to run the HMM model as a proof of concept.
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5.3.2. Experimental Results

We tested the proposed approaches on KTH dataset [1]. For each action class,

we use 64 sequences for training and 36 sequences for testing. We present our results

in three settings:

(i) HMM with EM learning: We train a single HMM per action class and learn the

model parameters by EM. We assign a test sequence to the highest likelihood

action class.

(ii) HMM with spectral learning: We train a single HMM per action class and learn

the model parameters by spectral method. We assign a test sequence as in (i).

(iii) MHMM with spectral learning: We train more than one HMM per action class

and learn the model parameters by spectral method. We assign a test sequence

based on the likelihoods averaged over the clusters pertaining to a certain action

class.

The corresponding results are tabulated in Table 5.1. In both of the learning ap-

proaches, it is obvious that learning Mixture of HMMs significantly increases the recog-

nition performance. In the case of a single HMM, spectral learning is a lagging runner

up behind EM. However, this gap is compensated in learning MHMMs. More impor-

tantly, given this accuracy, the run-time of the spectral learning is competitive. For

example, for learning a MHMM, if we use EM, each iteration takes 7.5 seconds. On

the other hand, 3.1 seconds is needed per iteration, if we use spectral learning for

parameter estimation.

5.4. Summary

In this chapter, we examined the practical deployment of HMM in handling action

recognition problem from a parameter learning perspective. For this purpose, we com-

pared two parameter learning approaches, EM and spectral learning. First, we show

that spectral learning can be competitive as EM, moreover, reduced computational

time and being insensitive to initialization are an added bonus. Secondly, we demon-
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strated that training Mixtures of HMMs per class effectively captures the within-class

variations, and consequently increases the recognition performance significantly.

In this chapter, the best performance, 74.0%, was obtained by MHMMs on KTH

action dataset [1]. This performance, which is well below the state of the art (Chapter

3) should be interpreted with the notion that it is only a poof of concept result. In

fact, we have used a rather a rather simple set of features to only demonstrate the

competitiveness of the spectral algorithm with respect to the EM method and the

capability of MHMMs in handling the inherent variations of human actions. More

sophisticated features such as appearance features should be used with the spectral

methods to prove its true performance.
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Table 5.1. Confusion matrices for (a) HMM with EM learning; (b) HMM with

spectral learning; (c) MHMM with spectral learning. Respective recognition

accuracies: 70.6%, 66.5%, and 74.0%. (B: Box, HC: Handclap, HW: Handwave, J:

Jog, R: Run, W: Walk)

(a) (b)

B HC HW J R W

B 89 3 3 0 0 5

HC 11 86 3 0 0 0

HW 3 17 80 0 0 0

J 0 0 0 47 20 33

R 2 2 0 55 30 11

W 0 0 0 8 0 92

B HC HW J R W

B 89 0 3 0 0 8

HC 20 55 25 0 0 0

HW 0 0 100 0 0 0

J 0 0 0 20 30 50

R 3 3 0 20 47 27

W 0 0 0 0 3 97

(c)

B HC HW J R W

B 89 3 0 0 0 8

HC 14 69 17 0 0 0

HW 3 0 97 0 0 0

J 0 0 0 36 22 42

R 5 0 0 28 56 11

W 0 0 0 3 0 97
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6. CONCLUSION

In this thesis, we have investigated structured and sequential representations

of video data for recognizing selected sets of human actions and for measuring their

enacting quality. In video sequences, we have characterized each action with a graphical

structure of its spatio-temporal interest points and cuboid descriptors, whilst in the

case of depth data an action has been represented by the sequence of its skeleton joints.

Given these descriptors, we formulated the human action recognition problem through

two essential machine learning techniques, Hyper-graph Matching and Hidden Markov

Models.

The main achievements, novelties of the thesis research and the potential future

directions are summarized in the subsequent Sections 6.1, 6.2 and 6.3. Finally, we draw

our conclusions from the state-of-the art literature in Section 6.4.

6.1. Fast Hyper-Graph Matching for Spatio-temporal Data

The widely used graph matching technique provides a powerful solution to point

set correspondence problem by combining both sources of information, the configura-

tional and the appearance sources. In the general case, its major drawback is that

the useful formulations result in an NP-hard combinatorial problem. In the computer

vision literature, as also elaborated in Chapter 3, we have observed that there are two

common strategies to achieve efficient graph matching: (i) to approximate the solution

and (ii) to approximate the graphical structure.

A significant body of work has been devoted to approximate the solution, e.g.,

spectral methods, relaxation of the optimization problem, local search heuristics etc.

There are several applications of the approximate matching algorithms in the action

recognition domain [45, 94, 95]. This strategy usually results in non-optimal solutions

and one does not have much of a control in the nature of approximation. However, the

strategy of approximating the solution is found to be more appropriate in the case of
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large graphs.

The alternative strategy, that is, the methods based on approximating the graph-

ical structures in order to enable an exact optimal solution, results in matching of

smaller graphs. We have encountered only few works in the literature that employ the

strategy of approximating a graphical structure. An example is the graph structured

into a k-tree in [177] for object recognition.

In this context, the main theoretical contributions and novelties of the thesis can

be summarized as follows.

• We developed an efficient hyper-graph matching method for spatio-temporal data.

A hyper-graph was built using the spatio-temporal relationships between the in-

terest points and the nodes of the graph were attributed cuboid descriptors.

The matching problem formulation represents the conversion of the exact mini-

mization problem into a simpler but feasible problem without compromising the

optimality of the solution. In this simplification, three realistic assumptions were

made: (i) causality of human movements; (ii) sequential nature of human move-

ments; and (iii) one-to-one mapping of time instants. We showed that, under

these assumption, the correspondence problem can be decomposed into a set

of subproblems such that each subproblem can be solved recursively in terms

of the others, and hence derived an exact minimization algorithm. Finally, the

minimization problem was efficiently solved by using the dynamic programming

technique.

• We further reduced the computational complexity significantly by introducing the

notion of sparse graphs. In this case, the reduced graphical structures represent an

approximation, but otherwise the graph matching is solved exactly. We proposed

three different graphical approximation structures, all characterized by a strong

reduction in the number of interest points, in fact, each one assumes very few

interest points, i.e., from 1 to 3 points per frame. We show that our algorithm

can successfully recognize actions with an order of magnitude reduction in the

computation time.
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• We found out that the performance improves when the training set is judiciously

selected. A lean training set selected with a search algorithm performs quite

better as compared to employing the entire set. To this effect, we customized

the feature selection algorithm called Sequential Floating Forward Search, for

learning a set of representative and discriminative model graph prototypes over

a validation set.

As a proof of concept, we first applied the proposed algorithm to action recog-

nition in video sequences. Spatio-temporal interest points were detected by means of

3D Harris corner detector and 2D Gabor filters. As shape and motion descriptors,

we utilized histogram of gradients (HoG) and histogram of optical flow (HoF). The

hyper-graph matching energy between two point sets, i.e., a model and a scene, was

further used for recognition and localization of actions.

We can draw the following conclusions. Hyper-graph-based representation of

spatio-temporal interest points adds an important information to the problem formu-

lation and significantly improves the performance as compared to a scrambled collection

of spatio-temporal patches. When one is interested in localizing actions or segmenting

movements, our matching formulation offers a natural solution. However, the complex-

ity is still high in the case of large graphs. While our method is a good and efficient

solution for “one action, one actor and uniform background” paradigm, sparse sam-

pling of the interest points leaves many uncovered volumes in the video which will be

detrimental to deducing scene context and to recognizing complex activities.

The proposed algorithm can be improved along several avenues.

• Learning the parameters. Recall that our energy formulation in Equation 3.3

is composed of three terms: feature dissimilarity, geometric deformation and

time warping penalty. Since each action has a different nature both in space

and time, we believe that learning the parameters, λ’s, T t and W d, per action

category would boost the performance. For example, the parameters can be

learned using Support Vector Machines in a similar way as in [46]. An alternative
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way to formalize problem could be a model-based approach in a probabilistic

setting where the matching of triple of nodes can be modeled by a probabilistic

distribution.

• Smart selection of interest points or triangles. In our experiments, the single-

chain-single-point model works surprisingly well and fast for recognizing periodic

actions, e.g., boxing, walking. However, the single-chain-single-point model is

limited in capturing local information that could not be discriminative for ac-

tion classes different despite containing similar movements, for example, drinking

coffee and answering phone. On the other hand, the single-chain-multiple-points

model has the potential to better capture the global motion of the human body.

However, the interest points detected by Gabor filters are found to be less infor-

mative. We conjecture that the performance of the single-chain-multiple-points

model or multiple chains model can be further increased by learning informative

interest points and spatio-temporal triangles for each action category in the spirit

of Sequential Floating Forward Search.

• Descriptors to be explored. We have used spatio-temporal interest points for

matching two action sequences. However, our graphical structure enables to

replace the interest points by mid-level or high-level features. For example, in

Chapter 4, we used tracked skeleton joints [47] from depth sequences. Another

potential features could be the use of pairwise spatio-temporal features as in

[68,69], spatio-temporal regions [45] or human body parts [73,193].

6.2. Skeleton-based Human Action Analysis

Our proposed hyper-graph matching algorithm assumes a structured represen-

tation both in space and time domains. It is therefore closely related to sequence

alignment methods in that it exploits the sequential nature of the time in a similar

way. In our work, we demonstrated the usefulness of our method for aligning tracked

skeleton sequences from depth data. We obtained the skeletons by using the off-the-

shelf skeleton tracking system in [47]. Each action sequence is structured into a chain

graph where the nodes coincide with the skeleton joints in frames, and the edges model

their temporal relationship. More explicitly, each node is associated to exactly one
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frame characterized by a skeleton; an edge models the temporal relationship between

the joints of the skeleton in neighboring frames. We encoded each node with angle-

based and distance-based pose descriptors. To eliminate the confounding model graph

prototypes, we proposed a novel prototype selection method that intends to minimize

the within-class variance, at the same time, to maximize between-class variance. This

approach enabled us to achieve reliable performance both in recognizing actions and

in quantifying the action quality.

We conclude that when the spatio-temporal interest points have a semantic mean-

ing as in the case of the joints of the human skeleton, our matching algorithm offers

a good solution both for action recognition and sequence alignment problems, hence

automatic action quality assessment, and it is also capable of handling noisy joint

estimations.

As a future direction, we believe that learning informative joints would play an

important role. For example, a weighted alignment formulation can be utilized in the

spirit of the weighted Dynamic Time Warping in [111] in which the weights of each joint

per class were learned during a training phase. Another potential application could be

recognizing the interaction between humans based on their skeletons as in [46].

6.3. Mixture of Hidden Markov Models

Hidden Markov Model (HMM) has been widely used tool for the sequential pat-

tern recognition in the literature. Although Hidden Markov Models for action recog-

nition in video sequences is not a new concept. To the best of our knowledge, we are

the first ones to investigate alternative parameter learning approaches for HMMs in

the action recognition domain. In the context of our work, our contributions can be

summarized as follows.

• We demonstrated that spectral parameter learning algorithm [188] can be a viable

algorithm against the conventional Expectation-Maximization (EM) algorithm.

The performance of spectral learning algorithm appears modest as compared
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to the EM. The most important advantage of the spectral estimation methods

is that it is not sensitive to different initializations, i.e., it always guarantee a

unique solution. To obtain better performance, spectral method can be used to

initialize EM.

• To mitigate the large within-class variance of human actions, we learned a Mixture

of Hidden Markov Models (MHMMs) for each action category. Our experimental

results verified that MHMMs per action are superior to learning a single HMM.

A similar idea was proposed by Felzenszwalb et al. [73] where mixture of de-

formable part-based models assumes multiple components for handling front and

side views. As a novelty for the MHMM applications, we automatically learned

the number of mixture components from the training samples. To this effect,

we proposed a method for learning infinite mixtures of HMMs in the spirit of K-

means algorithm. Our experimental results showed that spectral learning method

for MHMMs is adequate to infer human actions with the advantage of lower run

time.

In our proof of concept approach, we used extremely simple features, that is, the

count of interest points within the blocks of the bounding box of the action subject.

We believe that integrating rich STIP descriptors such as HoG and HoF [4] in the

MHMM scheme should improve the recognition performance results. This is in fact

part of the future work.

In conclusion, action recognition has come a long way from its meager beginning

with Motion History Images [42] and Bag-of-Words formalism [31] etc. The current

trend is to combine spatial configuration, temporal consecutiveness of the descriptors or

hierarchical relationships between the descriptors. We believe that we have integrated

this aspect carried in our graph matching and sequence alignment formulations.

6.4. Conclusions

Our conclusions drawn from the state-of-the art literature are as follows:
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• Sparse sampling vs. dense sampling. While the sparse sampling of interest points

is easier to handle within the framework of graph models, and it has proven to

be adequate for action recognition in the case of single actor and of non-cluttered

background, dense sampling seems more powerful to recognize complex activities

[82]. Its main advantage is that dense sampling with a regular grid on the spatio-

temporal domain guarantees coverage of the entire object and exploitation of the

scene context. However, dealing with dense features brings significantly higher

computational load, and it is not obvious how one can handle the cloud of spatio-

temporal interest points. One possible way to proceed would be to find similarities

of spatio-temporal interest point clouds using thin plate spline based robust point

matching [194]; alternatively, one can consider the heat kernel signature approach

[195].

• Higher-level descriptors. Until recently, the majority of action recognition works

have been using low-level descriptors, e.g., most of them in the form of spatio-

temporal center-surround contrast points, that is, spatio-temporal saliencies. In

recent years, however, pose estimation techniques have grown exponentially in

number, both in the RGB and the depth modalities. Integration high level de-

scriptors, such as poselets, human pose estimation, detection of scene objects,

has been shown to improve the understanding of the scene and the recognition

of complex activities. Though extraction of high level descriptors is a challeng-

ing task per se. In this context, mid-level features [45, 67] seems a promising

research direction. We believe it is worthwhile exploring alternative approaches

to integrate them into the graphical structure approach.

• Multi-modal data. With the development of low-cost depth cameras, RGBD

datasets that combine intensity and depth sequences have become an emerg-

ing field. Depth data remedies the limitations of the intensity sequences and

is promising for handling multiple views, variability in clothes, cluttered back-

grounds etc. Works that jointly exploit spatio-temporal depth and appearance

data have started to appear. Recently built realistic RGBD datasets will boost

the research in this direction.

• Complexity level of the problems. The action recognition problem can be consid-

ered to be solved for single action, single actor and uniform background case, at
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least in the view of current databases such as Weizman [124], KTH [1]. The so-

lution of this restricted problem has the potential to benefit certain applications

in human-machine interaction, for example, the gaming industry. On the other

hand, for more complex and realistic scenes involving arbitrary views, multiple

actors, complex activities and cluttered background, the current technology is

very far from a general robust solution stage.
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