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ABSTRACT 

FINITE ELEMENT MODELING OF REINFORCED CONCRETE 

STRUCTURAL WALLS 

This study was conducted to propose a two dimensional finite element model to 

obtain the inelastic response of reinforced concrete (RC) structural walls under generalized 

reversed-cyclic, in-plane loading conditions. The proposed model in this study incorporates 

a fixed crack angle modeling approach, which is suitable for reversed cyclic loading 

conditions and a feasible candidate for two dimensional finite element modeling 

methodology. The main purpose of this study is to capture a reasonable prediction of 

unexpected shear yielding and nonlinear shear deformations in slender walls. The 

analytical model was shown to capture, with reasonable accuracy, overall behavioral 

attributes of RC structural walls, including cyclic lateral load versus shear distortion, 

lateral stiffness, strength and ductility. Nonlinear force-deformation response of the 

analytical model also represents cyclic response properties; including stiffness degradation, 

plastic (residual) displacements, and pinching behavior. The proposed finite element model 

was implemented into Matlab and analyses were performed using a drift-controlled 

nonlinear analysis solution strategy. Comparison of the analytical and experimental model 

results was conducted and reasonably well results were obtained for slender walls. For 

checking the sensitivity of the analytical model results to modeling parameters, parametric 

sensitivity studies were conducted. Modeling parameters related to the number of model 

elements, axial force level, web reinforcement ratio and wall slenderness ratio were 

changed to demonstrate the sensitivity of the proposed model to important response 

parameters. 
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ÖZET 

BETONARME PERDE DUVARLARIN SONLU ELEMENLAR İLE 

MODELLEMESİ 

Bu çalışmanın amacı, betonarme perde duvarların düzlem içi tersinir tekrarlanır 

yükler altında doğrusal olmayan davranışını elde etmeyi hedefleyen iki boyutlu bir sonlu 

eleman modeli sunmaktır. Bu çalışmada sunulan model, tersinir tekrarlanır yük koşullarına 

uyumlu olan ve iki boyutlu sonlu eleman modellemesi için uygun bir seçenek olan sabit 

çatlak açısı modelleme yaklaşımını içermektedir. Bu çalışmadaki asıl amaç narin 

perdelerin beklenmeyen kesme akması ve doğrusal olmayan kayma deformasyonu için 

deneysel gözlemlerle uyumlu sonuçlara ulaşmaktır. Analitik modelin, tekrarlanır yanal 

yükler altında doğrusal olmayan kesme davranışı, yanal rijitlik, dayanım ve süneklik gibi 

önemli davranışsal özellikleri makul hassasiyetle temsil edebildiği görülmüştür. Analitik 

modelin doğrusal olmayan yük-deplasman davranış tahminlerinde rijitlik kaybı, plastik 

(kalıcı) deplasman, ve daralma gibi davranış unsurları da gözlemlenebilmiştir. Sunulan 

sonlu eleman modelinin formülasyonu Matlab ortamında kodlanmış, deplasman kontrollü 

bir doğrusal olmayan çözüm stratejisi kullanılarak analizler yürütülmüştür. Narin perdeler 

için analitik model sonuçları deneysel sonuçlarla karşılaştırılmış, davranış tahminlerinde 

makul doğruluk payı içeren sonuçlara ulaşılmıştır. Analitik model sonuçlarının önemli 

modelleme parametrelerine duyarlılığını ölçmek için ayrıca parametrik analizler yapılmış, 

model sonuçlarının kullanılan eleman sayısı, eksenel yük seviyesi, gövde donatı oranı ve 

perde narinlik oranı gibi önemli davranış parametreleri ile değişimi incelenmiştir. 
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1. INTRODUCTION 

 

1.1. General 

Reinforced concrete (RC) structural walls are commonly used because of their 

significant contribution in resisting lateral actions imposed on building structures, 

including earthquake effects and wind loads. Presence of structural walls has considerable 

impact on strength and stiffness characteristics, as well as the deformation capacity of 

structures. They substantially improve the performance of buildings in resisting earthquake 

ground motions. The effectiveness of structural walls makes it important to understand and 

characterize their hysteretic behavior when subjected to earthquake actions. Therefore, 

there have been numerous analytical and experimental studies to investigate the behavior 

of RC walls. Experimental studies have been conducted to characterize the behavior of 

existing walls while analytical studies are essential for response prediction of new walls as 

well as for improving design provisions. In order to comprehend the hysteretic behavior of 

RC walls, both experimental investigations and analytical modeling studies are deemed 

essential.  

There are various computer programs for the analysis of structural systems, almost 

all of which incorporate significant defects due to not representing important behavioral 

characteristics associated with the nonlinear hysteretic behavior of RC structural walls. 

With implementation of the performance-based analysis and design approaches in modern 

design codes, detailed modeling of the nonlinear behavior of walls has gained much more 

importance. While representing the linear elastic behavior of walls is not a significant 

challenge in design, there is still a considerable need for reliable analytical modeling 

approaches for robust simulation of the nonlinear hysteretic behavior of walls. In theory, 

analytical modeling of the inelastic response of RC walls can be conducted by using either 

microscopic (e.g., finite element) or macroscopic (e.g., plastic hinge or fiber) modeling 

approaches. Microscopic modeling approaches are typically not used in performance-based 

design applications, due to complexities in their implementation and calibration, as well as 

interpretation of the results. A widely-known and commonly-used finite element modeling 
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approach for nonlinear analysis and design of structural walls is still not available. On the 

other hand, macroscopic modeling approaches available in the literature, with the so-called 

fiber models being the most common, are generally sufficient for modeling of uncoupled 

shear and flexural responses in a wall. However, typical macroscopic modeling approaches 

fail to reliably capture the nonlinear shear response characteristics in walls, and shear-

flexure interaction effects that have been observed experimentally for even slender walls. 

Although consideration of nonlinear shear behavior is typically deemed important for 

response prediction of squat (low-rise) walls; unexpected shear yielding behavior, 

nonlinear shear deformations, and nonlinear shear-flexure interaction effects have also 

been observed experimentally for slender walls that have been designed to yield in flexure 

and are expected to show almost linear elastic shear behavior. Hence, there is still a need 

for robust modeling methodologies, using meso-scale approaches, which can capture such 

behavioral attributes in RC structural walls.  

Based on these shortcomings, in this study, a relatively simple yet robust finite 

element model formulation is developed for simulating the in-plane behavior of RC 

structural walls under reversed cyclic loading conditions; one which considers nonlinear 

flexural and shear responses, as well as their interaction throughout the loading history. 

The proposed finite element model formulation is implemented in Matlab, together with a 

nonlinear analysis solution strategy. The model is calibrated and validated against 

experimental results obtained for a relatively slender RC wall specimen tested previously. 

Model response predictions are evaluated and sensitivity of the model results to important 

response parameters are investigated, for assessment of the capabilities of the model, as 

well as for identifying potential model improvements.  

1.2. Literature Review 

1.2.1. Flexural Modeling 

Well designed and detailed walls are expected yield in flexure before shear capacity 

is reached, and dissipate hysteretic energy due to nonlinear flexural deformations 

associated with yielding of longitudinal reinforcement. Therefore, most of the modeling 

approaches available in the literature for RC walls are intended to simulate nonlinear 
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flexural behavior. The simplest and most widely-used model for structural walls consists of 

a linear elastic line element, with nonlinear rotational springs at each end for representing 

the flexural behavior at the critical regions where nonlinear deformations are expected. For 

an improved characterization of nonlinear wall behavior, Kabeyasawa et al. (1983) first 

conducted a full-scale test on a seven story RC frame-wall building  in Tsubaka, Japan and 

based on this test results proposed a new macroscopic Three-Vertical-Line-Element Model 

(TVLEM). This model incorporated three vertical line elements with two rigid beams at 

both ends, outside vertical elements representing the axial stiffness of the boundary 

regions; and three springs representing the web of the wall, one vertical, one horizontal and 

one rotational (Figure 1.1). Two hysteric models were defined for the behavior of the 

springs. An axial-stiffness-hysteresis model (ASHM) was used for the vertical line 

elements while the origin-oriented-hysteresis model (OOHM) was used for the rotational 

and horizontal springs. 

 

Figure 1.1.     Three-Vertical-Line-Element Model (TVLEM) (Kabeyasawa et al., 1983).  

After development of this model, Vulcano and Bertero (1986) modified the TVLEM 

formulation by replacing the axial-stiffness-hysteresis model (ASHM) with the two-axial-

element-in-series model (AESM) (Figure 1.2). The main purpose of this modification on 

the TVLEM was to capture the actual hysteretic behavior of the materials and their 

interaction (yielding and hardening of the steel, concrete cracking, contact stress, bond 
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degradation etc.). While the AESM gave reasonable results for the flexural behavior of a 

wall, the OOHM was found to be insufficient for representing inelastic shear behavior. 

Overall, the modified TVLEM adequately represented the inelastic flexural behavior of a 

wall, but failed to simulate its inelastic shear behavior.   

 

Figure 1.2.     Axial-Element-in-Series Model (AESM) (Vulcano and Bertero, 1986).  

Vulcano, Bertero and Colotti (1988), first proposed the so-called Multi-Component-

Parallel Model (MCPM, also known as Multiple-Vertical-Line Element Model MVLEM), 

for obtaining more accurate results for the flexural behavior of a RC structural wall. This 

model had two outside vertical elements for the boundary regions, and more than two 

interior vertical elements for the web, in order to represent the axial-flexural behavior of a 

wall (Figure 1.3). The hysteretic behavior of all vertical line elements was described by the 

AESM. Simulation of the nonlinear shear response was done using a horizontal shear 

spring, similar to the TVLEM. Hysteretic behavior of this spring was described by the 

OOHM. The authors also modified the AESM by improving the uncracked part of the axial 

behavior for concrete. In this model, the hysteretic behavior of the materials were adopted. 

The stress-strain relationship proposed by Menegotto and Pinto (1973) was adopted for 

steel. The stress-strain relationship proposed by Colotti and Vulcano (1987) was 

implemented for uncracked concrete, whereas the stress-strain relationship proposed by 

Bolong et al. (1980) was adopted cracked concrete. The constitutive material models 
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adopted, together with the inclusion of tension stiffening effects using the AESM resulted 

in reliable predictions for the flexural behavior of the RC structural walls. However, the 

model was again insufficient in simulating the nonlinear shear behavior.  

 

Figure 1.3.     Multiple-Vertical-Line-Element Model (MVLEM) (Vulcano et al., 1988).  

Due to complexity in modeling of material behavior, additional studies were 

conducted to simplify the material models implemented in the MVLEM without impairing 

the accuracy of the results. Fischinger et al. (1990), proposed simplified models for the 

vertical and horizontal springs of the model and proposed a modified MVLEM 

formulation. However, the new formulation incorporated uncertainties in calibration of the 

material model parameters of material models. In the same year, Fajfar and Fischenger 

(1990) improved the hysteretic material model formulations to minimize the uncertainties 

in the assumed parameters. After development of this theory, Fiscinger, Vidic and Fajfar 

(1992) conducted analytical studies and proved that the modified-MVLEM provided good 

response predictions for coupled RC walls. The importance of confinement effects and 

nonlinear shear behavior in wall response were emphasized in this study. 

 

In 1997, Kabeyasawa modified the original Three-Vertical-Line-Element-Model 

(TVLEM) formulation to the so-called Panel-Wall Macro Element (PWME). The aim of 

this modification was to improve the shear behavior of RC structural walls for both 
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monotonic and cyclic loading. In this model formulation, the centerline element in the 

TVLEM including horizontal, vertical and rotational springs, was replaced by a two 

dimensional panel element (Figure 1.4), intended to represent the nonlinear shear behavior 

of the wall. Reasonable response predictions were obtained using this model; however, 

simulation of nonlinear shear behavior was deemed to be subject to improvement. 

 

a) Original Model Layout (TVLEM)          b) Modified Model Layout (PWME) 

Figure 1.4.     Modification of the TVLEM to PWME (Kabeyasawa et al., 1997).  

A more recent study was conducted by Orakcal et al. (2004) in order to improve the 

constitutive material models in the MVLEM. The improved model formulation included 

important material characteristics and behavioral response features (e.g., neutral axis 

migration, tension-stiffening, progressive gap closure, and nonlinear shear behavior). The 

model was calibrated and extensively validated against experimental data. At the end of 

this study, accurate response predictions were obtained for the cyclic behavior of RC 

structural walls governed by flexural deformations. However, the shear and flexural 

responses were still uncoupled in the formulation, indicating that the model was incapable 

of simulating shear-flexure interaction effects in RC walls. 
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a) MVLEM element     b) Model of a wall 

Figure 1.5.     MVLEM (Orakcal et al., 2004).  

1.2.2. Constitutive Modeling of RC Panel Behavior for Finite Element Modeling 

In finite element modeling approaches, constitutive modeling of the in-plane stress-

strain behavior of the model elements under a two-dimensional state of stress, becomes 

essential. Therefore, studies were conducted to develop constitutive modeling approaches 

for RC membrane (panel elements), which were complemented with RC panel tests. In this 

context, Mitchell and Collins (1974) first proposed the so-called Diagonal Compression 

Field Theory (DCFT), in order to represent the monotonic load vs. deformation behavior of  

RC panels. Vecchio and Collins (1986) then conducted a comprehensive test program on 

numerous RC panel specimens and introduced the well-known Modified Compression 

Field Theory (MCFT). In the MCFT formulation, while the main features of the DCFT 

(e.g., coinciding principal strain and stress directions, perfect bond) were maintained, 

several behavioral parameters were added (e.g., compression softening, tension stiffening, 

and shear transfer along crack surfaces). Negligence of dowel action in reinforcing bars 

and not being suitable for hysteretic loading were the main shortcoming of this theory. 

Another constitutive modeling approach for RC panels was introduced by Mau and 

Hsu (1986, 1987), based on equilibrium, compatibility, and material stress-strain 
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relationships. In this study, boundaries among different failure modes were identified, and 

cracked concrete was treated as a new material working along diagonal compression strut 

directions. Based on this study, Hsu (1988) introduced a new constitutive modeling 

approach called the Softened Truss Model (STM). By using tension stiffening relationships 

for cracked concrete, this approach was developed for solving nonlinear shear and torsion 

problems. 

In 1989, an experimental research program was conducted at the Kajima Institute of 

Construction Technology, in which  reversed-cyclic tests were carried out on numerous RC 

panel specimens. As a result of this study, a nonlinear constitutive modeling strategy was 

introduced by Ohmori et al. (1989). This approach, which incorporated improved stress-

strain models for the materials, was apparently the cyclic version of MCFT. 

Based on experimental results obtained for cyclic testing of three panel specimens, 

Stevens et al. (1991) proposed another hysteretic constitutive modeling approach for RC 

panels. In this approach, considering the deviation between principal strain and stress 

direction was proposed for the first time. The model was calibrated for the panel specimens 

tested during the experimental program, and reasonable response predictions were obtained 

for their observed nonlinear shear behavior.   

Another important panel model model formulation was developed by Pang and Hsu, 

(1995), who proposed the Rotating Angle Softened Truss Model (RA-STM). which was 

the improved version of the Softened Truss Model (Hsu, 1988). In this new constitutive 

model, compression softening and tension stiffening were represented by new parameters. 

In addition to these features, kinking effect, which represents the softening effect on 

reinforcing bars caused by dowel action, was taken into account in the model formulation. 

After the development of the RA-STM, Pang and Hsu (1996) proposed a new constitutive 

panel model called the Fixed Angle Softened Truss Model (FA-STM). In this modeling 

approach, unlike the MCFT or RA-STM, it was assumed that the direction of the cracks 

coincide with the fixed angle following the principal directions of the applied stresses.  

Vecchio (2002) introduced a new theory called the Disturbed Stress Field Model 

(DSFM) to represent the constitutive behavior of RC panels. Within the scope of this 
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theory, the crack directions in the panel were assumed to coincide with the principal stress 

directions and principal stress directions deviated from principal strain directions by a 

fixed “lag” angle. In 2003, another cyclic version of the Modified Compression Field 

Theory was proposed by Vecchio and Palermo (2003). In this study, new constitutive 

material relationships were introduced. Response simulation studies were conducted by 

implementing the model formulation into nonlinear finite element analysis platform and 

comparing model results with experimental results obtained for RC walls.  

Hsu and Zhu (2002) proposed another constitutive panel model called the Softened 

Membrane Model (SMM). Consideration of Poisson’s effects was the major improvement 

of this model formulation over the FA-STM. Results of this study revealed that the 

influence of the kinking effect on the response, which had been discussed in development 

of the FA-STM, was negligible. In 2005, new experimental program was conducted in 

order to develop improved hysteretic material models for RC panels. As a result of these 

experiments, a new model, which is the cyclic version of the SMM, was proposed by 

Mansour and Hsu (Mansour and Hsu, 2005). This model formulation incorporated new 

cyclic constitutive relationships both for concrete and reinforcing steel. 

A new constitutive panel model was proposed by Gérin and Adebar (2009). In this 

model, principal strain directions were assumed to coincide with principal stress directions, 

whereas the crack directions were considered to be fixed. In this model formulation, new 

hysteretic multi-linear stress-strain relationships for reinforcing steel and concrete were 

implemented, and a empirical relationship was proposed for representing compression 

softening effects. 

A recent constitutive model for RC panels, named the Fixed Strut Angle Model 

(FSAM), was proposed for simulating the cyclic shear behavior of reinforced concrete 

panel elements (Ulugtekin, 2010, Orakcal et al., 2012). In this model formulation, the main 

assumption was that crack directions in concrete do not rotate, as observed consistently in 

reinforced concrete panel and wall tests, and coincide with principal stress directions in 

concrete. Model predictions were compared with results of cyclic tests on RC panel 

specimens and the model was observed to accurate predictions of the shear response 

characteristics of panel elements; including cyclic shear stress vs. shear strain behavior, 
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shear stress capacity, shear stiffness, cyclic stiffness degradation, pinching, ductility, and 

failure mode. Due to accuracy and relatively simple formulation, the model was deemed to 

be a feasible candidate for implementation into two-dimensional finite-element analysis. 

1.2.3. Modeling of Shear-Flexure Interaction in RC Walls 

There are numerous analytical models in the literature for simulating the flexural 

response of RC walls, based on uniaxial stress vs. strain relationships for the materials. 

However, they do not consider shear-flexure interaction effects, which were observed 

experimentally for not only low-rise and shear-controlled walls, but also for slender walls 

whose behavior are expected to be governed by flexural deformations. The majority of 

analytical modeling approaches presented in the literature typically neglect or 

underestimate the influence of the shear-flexure interaction on the response of slender or 

medium-rise walls.   

However, Petrangali et al. (1999) proposed a new model formulation, which was the 

pioneer of the fiber-based shear-flexure interaction models. Implementation of a 

constitutive RC panel element into a fiber-based model has since become the widely-used 

approach to capture the influence of shear-flexure interaction on the response of RC walls. 

In 2006, a study was conducted as part of a Pacific Earthquake Engineering Research 

(PEER) projects and a similar approach was used in developing an analytical model to 

represent the observed coupling between flexural and shear response components in RC 

walls (Orakcal et al., 2006). In this study, it was discussed that experimental results 

showed interaction between shear and flexural deformations even for slender walls exists. 

Within the scope of the study, the Multiple-Vertical-Line-Element Model (MVLEM) was 

modified to consider the influence of shear-flexure interaction, by assigning a shear spring 

for each uniaxial element. With this new approach to the MVLEM, each line element was 

treated as a RC panel element with membrane actions for capturing coupled shear and 

flexural responses. A rotating-angle modeling approach (essentially the rotating-angle 

softened-truss model, RA-STM) was used to represent the constitutive panel behavior. The 

constitutive material model for concrete was modified to adopt behavior under biaxial 

stresses. One of the main shortcomings of this model was that the shear-flexure interaction 
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modeling approach was limited to monotonic loading, because of the monotonic 

formulation of RA-STM. 

Other and simpler approaches are proposed for representation of shear-flexure 

interaction behavior in RC walls. An empirical modeling approach was developed by 

Beyer et al. (2011). In this approach, the ratio between flexural and shear deformations in a 

wall is defined empirically based on wall geometry, axial strain, and crack angle. Lack of 

the reliance on test data made this approach restricted. Although this methodology has 

been shown to produce reasonable estimation of the ratio between shear and flexural 

deformations for walls controlled by flexure, despite with significant dispersion, the 

approach is limited due to its reliance on test data (i.e., interpolation and extrapolation 

without an underlying behavior-based model). In the same year, a strut-and-tie (truss) 

modeling approach was introduced by Panagiotou et al. (2011), as an alternative method to 

capture shear-flexure interaction. In this approach, the interaction between shear and 

flexural responses is accounted for by reducing the concrete compressive strut capacity as 

a function of transverse tensile strain. However, due to overlapping areas of vertical, 

horizontal, and diagonal concrete struts in the model, achieving accurate displacement 

responses over a broad range of response amplitudes is a challenge, which is a known issue 

with strut-and-tie models. 

In a recent study conducted by Kolozvari et al. (2012) a new analytical model 

formulation was proposed for capturing the shear-flexure interaction in medium-rise RC 

walls under reversed-cyclic loading. The proposed analytical model incorporated RC panel 

behavior, described by Fixed-Strut-Angle panel model (FSAM) into the Multiple Vertical 

Line Element Model (MVLEM). Analytical model was compared with experimental 

results obtained for medium-rise walls, for experimental verification of the model. 

Comparison of the analytical and experimental results showed that the analytical model 

was able to capture coupling of nonlinear shear and flexural deformations in walls. 

Although reasonably accurate predictions were obtained, the analytical model results were 

found to be sensitive to modeling parameters representing shear aggregate interlock effects 

and dowel action, and the model was unable to capture the sliding shear behavior at the 

base of walls. The model was found to be subject to improvement upon calibration with 
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various wall geometries, and use of more refined constitutive modeling approaches for 

shear aggregate interlock and dowel action. 

1.2.4. Experimental Studies on Shear-Flexure Interaction in RC Walls 

There are numerous experimental studies in the literature on investigating the lateral 

load behavior RC structural walls. However, experimental studies that focus on 

characterizing the nonlinear shear behavior and coupling of shear and flexural responses in 

walls, for modeling purposes, are relatively few. Only the experimental studies relevant to 

the scope of this study are summarized here. Orakcal and Wallace (2006) conducted an 

analytical study to experimentally-validate the MVLEM (Orakcal et al., 2004) for 

relatively slender structural walls. For experimental validation of the model, test results 

obtained for two, approximately quarter-scale wall specimens tested by Thomsen and 

Wallace (1995); one specimen with a rectangular cross section (Specimen RW2) and 

another specimen with a T-shaped cross section (Specimen TW2) were used. The walls 

were 3.66 m tall and 102 mm thick, with web and flange lengths of 1.22 m. The walls were 

relatively slender, with an aspect ratio of 3. Design of the specimens was based on a 

prototype building, with strength requirements satisfying the UBC94, and detailing 

requirements following a displacement-based evaluation. Test measurements were 

processed to allow for a direct comparison of the predicted and measured flexural 

responses. Responses were compared at various locations on the walls. Results obtained 

with the analytical model for rectangular walls compared favorably with experimental 

responses for flexural capacity, stiffness, and deformability, although some significant 

variation was noted for local compression strains. For T-shaped walls, the agreement 

between model and experimental results was reasonably good, although the model was 

unable to capture the variation of the longitudinal strains along the flange. 

An experimental program was conducted at the University of California Los Angles 

(UCLA) Structural/Earthquake Engineering Research Laboratory (SEERL) in order to 

assess the performance low-rise lightly-reinforced RC wall piers and spandrels in existing 

buildings that had been built between the 1950s and 1970s (Orakcal et al., 2009). In order 

to evaluate and rehabilitate these types of walls, cyclic lateral load tests were conducted in 

the laboratory. Test results were compared with ACI-318-05 provisions and FEMA 356 
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recommendations on walls to evaluate the reliability of the documents for rehabilitation of 

existing buildings. Observations indicated that the amount of boundary reinforcement 

provided, presence of axial load, and the location of a weakened plane joint on the wall 

were the most were the most important factors in the assessment of nominal shear strength. 

The test results were compared with predictions of a monotonic shear-flexure interaction 

model (Massone et al., 2009) for RC walls. Model results indicated that variation in the 

assumed transverse normal stress or strain distribution produced important response 

variations. The use of the average experimentally recorded transverse normal strain data or 

a calibrated analytical expression resulted in better predictions of shear strength and lateral 

load-displacement behavior, as did incorporating a rotational spring at wall ends to model 

extension of longitudinal reinforcing bars within the pedestals.  

The cyclic shear-flexure interaction modeling approach developed by Kolozvari et 

al. (2012) model was validated by comparing the model predictions with experimental 

results obtained by Tran and Wallace (2012). The experimental study was conducted to 

provide insight into the nonlinear cyclic response of moderate-aspect ratio cantilever 

structural walls. Constant axial load and reversed cyclic loading were applied to five large-

scale structural walls. Primary test variables were wall aspect ratio, wall axial stress, and 

wall shear stress. The test results indicate that significant lateral strength loss occurred at 

approximately 3.0% for all tests; however, various failure modes were observed. The 

contribution of nonlinear shear deformations to wall top lateral displacement varied 

between roughly 15% and 50%, for walls with aspect ratios of 2.0 and 1.5, respectively. 

1.3. Research Significance 

In recent years, performance-based analysis and design methodologies for RC 

buildings have gained significance. Use of performance-based modeling and assessment 

procedures for RC frame systems have typically provided reliable results, while important 

behavioral issues related to modeling of RC structural walls are still unknown. To conduct 

reliable performance analyses for walls, coupling between their nonlinear axial, flexural 

and shear responses should be well-defined under reversed cyclic loading conditions. In 

performance-based design practice, RC structural walls are typically modeled using 

commercial finite element analysis software, which do not represent important behavioral 
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characteristics with sufficient detail, or using macroscopic fiber models consisting of 

multiple vertical line elements for flexure and horizontal springs for shear, in which 

flexural and shear responses are uncoupled. A commonly-used finite element modeling 

approach for nonlinear analysis of structural walls is still not available, and there is a need 

for simple yet reliable modeling methodologies that can capture important response 

characteristics of RC structural walls.  

1.4. Objectives and Scope 

The aim of this study is to develop a relatively simple yet robust finite element model 

formulation for simulating the nonlinear behavior of RC structural walls under reversed 

cyclic loading conditions. The proposed modeling methodology is capable of representing 

nonlinear flexural and shear responses, and their interaction throughout the loading history. 

The model incorporates a fixed crack angle modeling approach, which is suitable for 

reversed cyclic loading conditions and feasible for implementation into a two dimensional 

finite element analysis platform.  

 

Within the scope of this study, formulation of the proposed finite element modeling 

approach and the assembly procedure to obtain the global stiffness matrix and internal 

force vector are implemented in Matlab, together with a nonlinear analysis solution 

strategy. The model is calibrated and validated against experimental results obtained for a 

relatively slender RC wall specimen. Model response predictions are evaluated for 

assessment of the model capabilities and limitations. Sensitivity of the model results to 

important response parameters are also investigated. 

1.5. Thesis Outline 

This thesis summarizes the findings of analytical studies conducted on development 

of a new nonlinear finite element modeling approach for simulating the coupled nonlinear 

flexural and shear responses in RC structural walls. Development of the two-dimensional 

finite element modeling approach based on the implemented constitutive panel behavior is 

described, and response predictions obtained using the finite element model are compared 

with experimental results for evaluation of model capabilities and shortcomings. In 
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Chapter 1, an introduction and a literature review, as well as the objectives and scope of 

this study were provided. Description of the implemented constitutive panel model and 

material stress-strain relationships are presented in Chapter 2. A detailed description of the 

finite element model formulation, involving stiffness assembly, internal force vector 

assembly, support conditions, constraints, nonlinear analysis solution strategy, is provided 

in Chapter 3. Chapter 4 presents information on experimental calibration of the model and 

detailed comparison of the model results with test results obtained from the literature for a 

relatively slender RC structural wall, as well as results of the parametric sensitivity studies 

conducted. Finally, concluding remarks and recommendations for future studies are 

presented in Chapter 5. 
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2. CONSTITUTIVE MODEL DESCRIPTION 

 

2.1. Overview 

Two dimensional finite element modeling of RC structural walls requires a 

constitutive RC panel element to simulate the constitutive behavioral features of RC 

structural walls (e.g. hysteretic material behavior, compression softening, tension 

stiffening, hysteretic biaxial damage, and shear transfer across cracks). In this chapter, 

properties of the constitutive RC panel element and the material constitutive relationships 

adopted in the finite element model formulation are described,  

The constitutive panel model selected for implementation into the two dimensional 

finite element model is the Fixed Strut Angle Model (FSAM) proposed by Ulugtekin 

(2010). The FSAM is a feasible candidate for implementation into a two dimensional finite 

element analysis formulation. Formulation of the FSAM is based on interpretation of 

previously-developed RC panel models, as well as results of RC panel tests available in the 

literature. In this section, the formulation and important characteristics of the FSAM are 

summarized. Detailed information on the FSAM is provided in the thesis by Ulugtekin 

(2010). 

In the first version of the Fixed Strut Angle Model proposed by Ulugtekin (2010), 

effects of shear aggregate interlock and dowel action on the response of RC panels were 

neglected. However, the zero shear stress assumption along the crack directions resulted in 

significant overestimation of sliding shear strains along cracks. Hence, a simple friction-

based constitutive model was adopted to represent shear aggregate interlock effects and 

implemented into the panel model formulation by Orakcal et al. (2012). In this study, the 

Fixed Strut Angle Model with the modification proposed to represent shear aggregate 

interlock effects (Orakcal et al., 2012), which is described in detail in the following 

section, has been implemented as a constitutive panel model. Implementation of dowel 
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action, that is the shear stresses developing perpendicular to the longitudinal direction of 

the reinforcing steel bars, has also been neglected in the present implementation. 

2.2. Panel Model  

In the constitutive panel model implemented, as it was typically assumed in other RC 

panel elements available in the literature, assumptions of perfect bond between concrete 

and reinforcing steel and no dowel action on reinforcing bars are valid. The perfect bond 

assumption provides the advantage of having the same strain fields on concrete and 

reinforcing steel, while dowel action effects (shear stresses perpendicular to the 

longitudinal direction of the reinforcing steel) are typically negligible in the shear behavior 

of RC members. For the hysteretic constitutive modeling of reinforcing steel bars, uniaxial 

directions along the rebar directions were used, whereas for the constitutive modeling of 

concrete stress-strain behavior, biaxial relations along the fixed strut (crack) directions 

were incorporated. 

A rotating strut approach, similar to the Modified Compression Field Theory 

(Vecchio and Collins, 1986) and the Rotating Angle Strut and Tie Model (Pang and Hsu, 

1995) were used for simulation of the biaxial stress-strain behavior of uncracked concrete. 

For the uncracked loading stages of the RC panel, the hysteretic behavior of concrete was 

assumed to be monotonic, which is for small strains prior to cracking. At this stage, the 

principal strains directions obtained from the applied strain field were assumed to coincide 

with principal stress directions in concrete. The constitutive material model for concrete is 

therefore applied along the principal strain directions (Figure 2.1). 
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Figure 2.1.     Uncracked behavior of concrete in the Fixed Strut Angle Model (Orakcal et 

al., 2012).  

When the principal tensile strain first exceeds the monotonic cracking strain value of 

concrete, the first crack forms in the RC panel model, in perpendicular direction to the 

principal tensile strain. Formation of the first crack means that for subsequent loading, the 

first "Fixed Strut" direction, which is parallel to the first crack, is assigned. For further 

stages of loading, principal stress directions in concrete coincide with the first crack 

directions (parallel and perpendicular), while principal strain directions continue to rotate 

with the applied strain field.  Since the first crack direction coincides with principal stress 

directions in concrete, zero shear stress (zero shear aggregate interlock) develops along the 

crack, which is an inherent assumption in the original FSAM formulation. 

After formation of the first crack, the hysteretic stress-strain relationship for concrete 

is used in directions parallel and perpendicular to the fixed strut. Calculation of these 

principal stresses in concrete is only possible with transformation of the strain field into 

directions parallel or perpendicular to the fixed strut, rather than the principal strain 

directions. After calculation of the strains parallel and perpendicular to the fixed strut 

direction, concrete stress values are determined by using the uniaxial constitutive model 

adopted for concrete. Calculated stresses in parallel and perpendicular directions to the 

fixed strut are reduced by biaxial compression softening and biaxial damage parameters, 

which are described in detail in the following section. The hysteretic uniaxial constitutive 

material model implemented for reinforcing steel (also described in the following section) 

is applied along the orthogonal rebar directions to calculate the stresses in reinforcing steel. 

Superposition of stresses developing in concrete and reinforcing steel (using reinforcing 
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steel area ratios) provides the resultant averages stresses on the panel element. Behavior of 

concrete in the FSAM after formation of the first crack is illustrated in Figure 2.2. 

  

Figure 2.2.     Behavior of concrete after formation of first crack in the Fixed Strut Angle 

Model (Orakcal et al., 2012).  

Until the formation of the second crack, the constitutive behavior proceeds in the 

form of a single fixed strut mechanism. When the tensile strain along the first strut 

direction exceeds the cyclic cracking strain of concrete, the second crack is formed. The 

second crack is formed perpendicular to the first crack because of the zero shear stress 

assumption along the crack directions. The first and second cracks in the panel element are 

therefore orthogonal. Examples of this “orthogonal crack” modeling approach are common 

in the literature. Formation of the second crack perpendicular to the first fixed strut implies 

formation of the second "fixed strut". Depending on the loading direction, these fixed struts 

work under tension or compression. For subsequent loading stages, principal stress 

directions in concrete are fixed along the fixed strut directions, whereas principal strain 

values are free to rotate. In order to determine the principal stresses in concrete, the applied 

strain field is transformed into strain components in the fixed strut directions instead of 

principal strain directions. Calculated strain values parallel to the two fixed strut directions 

are used in the uniaxial constitutive model for concrete to obtain the principal stresses in 

concrete, and the concrete stresses are reduced by compression softening and biaxial 

damage parameters. Again, the constitutive material model for reinforcing steel is applied 

along the orthogonal rebar directions and superposition of stresses developing in concrete 

and reinforcing steel gives the resultant averages stresses on the panel element. Behavior of 

concrete in the FSAM after formation of the second crack is shown in Figure 2.3. 
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Figure 2.3.     Behavior of concrete after formation of second crack in the Fixed Strut 

Angle Model (Orakcal et al., 2012).  

2.3. Material Constitutive Models 

2.3.1. Constitutive Model for Reinforcement 

The implemented constitutive hysteretic material model for reinforcing steel is the 

well-known nonlinear hysteretic relationship of Menegotto and Pinto (1973), extended by 

Filippou et al. (1983) to represent isotropic strain hardening. This constitutive model, 

although simple in formulation, has been shown to accurately represent experimental 

results on reinforcing steel bars. The constitutive model represents the so-called 

Bauschinger's effect, by including cyclic degradation of stiffness along the unloading and 

reloading curves. A description of the constitutive model is depicted in Figure 2.4.  

 

Figure 2.4.     Hysteretic constitutive model for reinforcing steel (Menegotto and Pinto, 

1973). 
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2.3.2. Constitutive Model for Concrete 

The implemented stress-strain behavior for concrete is the uniaxial hysteretic 

constitutive model proposed by Chang and Mander (1994) (Figure 2.5). The Chang and 

Mander model has been shown to provide accurate representation of the experimental 

results presented by various researchers. Mander et al. (1988) calibrated the model for 

unconfined and confined concrete in cyclic compression. Experimental validation studies 

against test results reported by Gopalaratnman and Shah (1985) and Yankelevsky and 

Reinhardt (1987) have shown that the model provides reliable results for unconfined and 

confined concrete under cyclic tension and compression.  

This constitutive model implemented for concrete was modified by adding 

compression softening (defined by Vechio and Collins, 1993), hysteretic biaxial damage 

(defined by Mansour et al., 2002) and tension stiffening effects (defined by Belarbi and 

Hsu, 1994) into the formulation. The aim of these modifications was to simulate the 

behavioral features of concrete under biaxial loading conditions. 

 

Figure 2.5.     Hysteretic constitutive model for concrete (Chang and Mander, 1994).  
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2.3.3. Compression Softening of Concrete 

Consideration of the so-called compression softening effects is important in 

modeling of RC panel elements. This effect has been experimentally observed by many 

researchers (e.g., Vecchio and Collins, 1986), and constitutive models were proposed to 

represent it. The compression softening effect, stemming from the tensile strains 

perpendicular to crack directions, is typically simulated by reduction in the compressive 

stresses in concrete in the principal directions (Figure 2.6). 

The compression softening relationship proposed by Vecchio and Collins (1993) was 

implemented into Fixed Strut Angle constitutive panel model formulation.  Although more 

complicated models are available for the representing compression softening effects, this 

relationship was found to provide reasonably accurate predictions of experimentally-

observed behavior, despite its simplicity. 

 

Figure 2.6.     Compression softening effects implemented in the panel model (Ulugtekin, 

2010).  

2.3.4. Tension Stiffening Effect on Concrete and Reinforcing Steel 

Tension stiffening effect is named after the contribution of cracked concrete to the 

tensile resistance of a RC member. The post-cracking stiffness, yield capacity and shear 
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behavior of the RC members have been shown to be influenced by the tension stiffening 

effect. The tension stiffening relationship proposed by Belarbi and Hsu (1994) was 

incorporated in the formulation of the constitutive panel model. This relationship considers 

two effects simultaneously. The first of these effects is the consideration of an average 

(smeared) tensile stress-strain curve for cracked concrete; while the other is the 

replacement of stress-strain curve for bare steel bars with an average (smeared) stress-

strain curve for steel bars stiffened by concrete between cracks.  

2.3.5. Biaxial Damage on Concrete 

A RC panel element, when subjected to membrane actions (biaxial loading) 

experiences damage on concrete, which is simulated via a damage coefficient in modeling 

the constitutive behavior of concrete within the panel element. This biaxial damage 

phenomenon physically reflects as softening in the compressive stress-strain behavior of 

concrete along one direction, depending on the maximum value of the previously-applied 

compressive strain in the perpendicular direction. The biaxial damage behavior is therefore 

loading-history-dependent and is not observed under monotonic loading. In terms of 

constitutive modeling, the damage coefficient, similar to the compression softening 

coefficient, is typically applied as a reducing multiplier to compressive stresses in concrete.  

 

There are two empirical models available in literature for the damage coefficient; one 

by Stevens (1987), and the other by Mansour and Hsu (2002). The biaxial damage 

relationship proposed by Mansour and Hsu (2002) was implemented into the formulation 

of constitutive Fixed Strut Angle panel model used in this study. 

2.3.6. Shear Aggregate Interlock 

The original formulation of the Fixed Strut Angle constitutive panel model described 

in this chapter was developed by Ulugtekin (2010). However, shear aggregate interlock 

effects were neglected in the original formulation. Orakcal et al. (2012) implemented a 

simple friction-based elasto-plastic shear aggregate interlock model into the panel model 

formulation. In this study, the main modification to the constitutive panel model is 

incorporation of the contribution of reinforcing steel in the shear aggregate interlock 



24 

 

model. The yield capacity of the friction-based aggregate interlock model was modified 

based on ACI 318M-08 provisions, to consider the influence of reinforcing steel in the 

shear-friction capacity. 

The proposed cyclic shear aggregate interlock model starts with linear 

loading/unloading behavior, relating the sliding shear strain along a crack to the shear 

stress, via a simple linear elastic relationship between the sliding shear strain and the 

resultant shear stress along the crack surface. When the contribution of reinforcing steel to 

the shear stress is not considered, the shear stress is restrained to zero value when the 

concrete normal stress perpendicular to the crack is tensile (crack open); and is bounded 

via the product of a friction coefficient and the concrete normal stress perpendicular to the 

crack, when the concrete normal stress is compressive (crack closed). When the 

contribution of reinforcing steel on the aggregate interlock capacity is considered, as was 

done in this study, the interlock shear capacity (Vn) along a crack is calculated using 

Equation 2.1 when the reinforcement is perpendicular to the crack, and Equation 2.2 when 

the reinforcement is inclined with respect to the crack: 

 n vf yV (A f N) 
 (2.1) 

 n vf y vf yV sin (A f N) cos (A f N)     
 (2.2) 

where   is a friction coefficient, 
vf yA f  is the axial force corresponding to tensile yielding 

in reinforcing steel due to sliding shear along the crack surface, N is the axial force in 

concrete perpendicular to the crack, and 
 
is the angle between the reinforcement and the 

crack plane (Figure 2.7).   

 

Figure 2.7.     Shear-friction mechanism along a crack (ACI-318M, 2008).  
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The linear unloading/reloading slope of the shear stress vs. sliding strain relationship 

was taken as a fraction of the concrete elastic modulus (a value 0.4Ec was adopted, 

representing the elastic shear modulus of concrete), and a value of 1.1 was assumed for the 

friction coefficient. Under constant compressive stress in concrete perpendicular to the 

crack, this model yields an elasto–plastic aggregate interlock behaviour under cyclic 

loading, similar to the cyclic stress–strain behaviour of reinforcing steel. It must be 

mentioned that the friction coefficient needs to be further calibrated with experimental data 

on panel or wall specimens experiencing sliding shear failures along cracks.      
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3. FINITE ELEMENT MODEL DESCRIPTION 

 

Civil and mechanical engineers manipulate the finite element modeling approach to 

analyze structures under loads. In this process, First, structural models are subdivided into 

reasonable number of elements, each of which is characterized by a force-deformation 

relationship. Second, the elements are assembled together through a well-defined 

procedure, which is the local equilibrium at each node. Finally, unknown displacements or 

forces are solved using the resulting equations.  

This chapter presents a description of the two-dimensional finite element modeling 

methodology developed in this study for response simulation of RC structural walls. Four 

node, eight degree of freedom finite elements were used for modeling of a local element in 

this study. Assembly of the local stiffness matrixes as well as the internal force vector of 

these local elements (mesh elements) are described in the following sections. 

Implementation of support conditions and constraints for modeling of walls are also 

described and the adopted nonlinear analysis solution strategy is summarized. 

3.1. 4 Nodes, 8 Degree of Freedom Rectangular Element (Mesh) 

A rectangular two-dimensional finite element modeling approach has been adopted 

modeling of RC structural walls. The two-dimensional rectangular element works as a 

membrane element, meaning four node elements were formulated in two dimensional 

space. Membrane elements have two degree of freedoms (DOFs) for each node, in vertical 

and horizontal directions and do not incorporate any rotational DOFs. The main idea in the 

formulation of membrane element is that it is valid for in-plane conditions, implying that 

only in-plane stiffness is considered and only in-plane loads are admissible.  

In the formulation of the rectangular element (mesh element), each local DOF is 

numbered as shown in Figure 3.1. 
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Figure 3.1.     Local nodes and DOFs in a rectangular element.  

In a rectangular FEM element, strains can be calculated using shape functions 

(Figure 3.2), based on the displacement values along the nodal degrees of freedom.  

 

Figure 3.2.     Normalized coordinates of a rectangular element.  

Using the known displacements along the DOFs, (Figure 3.1), which are obtained by 

solving equilibrium equations at the four nodes of the rectangular element, and the shape 

functions presented in Equations 3.1 to 3.4, displacement values along horizontal and 

vertical directions at any point of rectangular element can be obtained (Equation 3.5).  
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N 1 (1 )

4
   

 (3.1) 

 
 2

1
N 1 (1 )

4
   

 (3.2) 

 
 3

1
N 1 (1 )

4
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 (3.3) 
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1
N 1 (1 )

4
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 (3.4) 
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 
 
 
 

 (3.5) 

However, in this study, strain and stress values are only calculated at the center of 

each rectangular element, corresponding to 0   , for the sake of simplicity. 

Derivation of the zero normalized coordinates is described in Equations 3.6 and 3.7.  

 
x 0

0
w w

   
 (3.6) 

 
y 0

0
h h

   
 (3.7) 

At the beginning of analysis for a load step, by using the initial displacements at the 

nodes of a structural wall model, initial displacements of each node are calculated. After 

calculation of the eight displacement values for each model element, deformations of each 

element are calculated by using the transformation matrix [B] (Equation 3.8).  



29 

 

 

1

2

3

4

5

6

7

8

d
1 1 1 1

0 0 0 0 d
2 2 2 2

ddefx 1 1 1 1
0 0 0 0

ddefy 2 2 2 2
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 (3.8) 

Then, local deformation matrixes (deformation matrix of each model element) are 

used for the calculation of local strain values in each element. 

 x

defx

2w
 

 (3.9) 

 

 y

defy

2h
 

 (3.10) 

 

 xy

defyx

2

def y

2wh

x
  

 (3.11) 

Next step is the calculation of the local stiffness matrixes for each element. The 

Fixed Strut Angle constitutive model (Ulugtekin, 2010) implemented in the FEM 

formulation is used for the calculation of tangent stiffness (elasticity) matrices for each 

model element. All strain values are used as input values for the constitutive panel model. 

By using these input values, tangent stiffness matrices are obtained as output values, as 

illustrated in Figure 3.3. 
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Figure 3.3.     Tangent stiffness (elasticity) matrix calculation path.  
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At this point the aim is obtaining the local stiffness matrices for the model elements, 

which are further assembled to generate global tangent stiffness matrix for the structural 

wall model. Each local stiffness matrix can be obtained using the tangent stiffness matrix 

and the geometric properties of each element. In definition of the FEM approach, this 

operation is performed by integration of the product of transpose of strain matrix [G]
T
, the 

elasticity matrix [E], and the strain matrix [G]. It is important to mention that unlike the 

calculation of the strain and stress values, during the volume integration in given in 

Equation 3.12, normalized coordinates 
x y

,
w h

    cannot be assumed to be constant 

because both   and   are dependent on x and y, respectively. 

 
         

T T

V V
[k] G E G dV G E G dxdydz    (3.12) 

The integral Equation 3.12 is used to calculate the 8×8 stiffness matrix [k] for each 

model element. Each element of the matrix can be calculated as: 

 11 11 33

t 1
k E E

3




 
  

   (3.13) 

 21 11 33

t 1
k E E

3 2





 
  

   (3.14) 

 31 11 33

t 1
k E E

3 2




 
   

   (3.14) 

 41 11 33

t 1
k E E

3 2 2





 
   

   (3.16) 
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t
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4
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k E E

4
  

 (3.20) 
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 85 22 33

t 1
k E E

3 2 2





 
   

   (3.24) 

where 
h

w
  , t is the thickness of the membrane element and E values are scalar values 

taken from the elasticity matrix. Using the equations above, the 8×8  local stiffness matrix 

for each element can be calculated as the matrix defined in Equation 3.25. 

 

11 21 31 41 51 61 71 81

21 11 41 31 71 81 51 61

31 41 11 21 61 51 81 71

41 31 21 11 81 71 61 51
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81 61 71 51 85 75 65 55

k k k k k k k k

k k k k k k k k

k k k k k k k k

k k k k k k k k
[k]

k k k k k k k k

k k k k k k k k

k k k k k k k k

k k k k k k k k
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





 
 
 
 
 
 
 
 
 

 (3.25) 

The local stiffness matrix [k] of each model element was calculated by following the 

described procedure. The next step in modeling is the assembly of these local stiffness 

matrices, which is described in the following section.  

3.2. Finite Element Model Stiffness Assembly 

In this section, details on the assembly of local stiffness matrixes are provided. 

Determining the local stiffness matrix for each model element is the first step to the 

assembly. The next step is assembling of all local stiffness matrices to develop the global 

stiffness matrix for the wall model. As a general example for the assembly of the local 

stiffness matrices, a sample model is illustrated in Figure 3.4. After the numbering of the 
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nodes and elements, the global stiffness matrix assembly is performed as shown in Figure 

3.5. 

2

4 5

1 2

3 4 5

6 7 8

1 3

 

Figure 3.4.     Numbering of nodes and elements in a sample model.  

+ + + + =

[K]

[k] [k] [k] [k] [k]
1 2 3 4 5

 

Figure 3.5.     Superposition of stiffness matrixes.  

The presented sample is a very general case for the assembly strategy, which is 

essential to comprehend the logic of assembly. There are five elements included in the 

sample model and each of the element stiffness matrices are shown in Figure 3.5. The 

assembly is performed via superposition on the overlapping boxes (terms) within the 

global stiffness matrix. As shown in the example shown in Figure 3.6 for a rectangular 

wall model, the wall is subdivided into model elements and the elements are first 

numbered for the assembly operation. 
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Figure 3.6.     Numbering technique used for the FEM of a rectangular wall.  

After numbering of each model element, the overlapping terms of the 8×8 local 

stiffness matrices are superimposed with each other for generating the global stiffness 

matrix of the model. In order to explain the superposition strategy, generation of the global 

stiffness matrix of a wall model with four model elements is illustrated. The global DOFs 

of the wall model are first numbered (Figure 3.7), which defines the order of the terms in 

the global displacement vector and global stiffness matrix. 
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Figure 3.7.     Global and local DOFs in a structural wall model.  

In Figure 3.7, DOF numbers displayed inside the model elements are local DOFs and 

DOF numbers displayed outside the elements are global DOFs. Global stiffness matrix of 
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this sample model is calculated by superimposing the local stiffness terms at overlapping 

locations within the global stiffness matrix. Equation 3.26 is an example for calculation of 

one of the terms in the global stiffness matrix. Superscripts in Equation 3.26 indicate the 

model element numbers while subscripts indicate the local stiffness term index for each 

model element. 

                                           [K]99 = [k]
1

11 + [k]
2

33 + [k]
3

22  + [k]
4

44                          (3.26) 

 Each term in the global stiffness matrix of the wall model is calculated by the same 

procedure used in Equation 3.26. For this sample, there exist 18 global DOFs, implying 

that the global stiffness matrix will be an 18×18 matrix, with 324 terms.   

3.3. Internal Force Vector Assembly 

In this section, definitions of the local internal force vectors and the assembly 

procedure to obtain the global internal force vector are presented in detail. Knowing the 

average strain values for each model element, the average stresses in each element can be 

calculated using the constitutive Fixed Strut Angle panel model (Figure 3.8).  

x

y

xy







 
 

 
 
 

 Fixed Strut Angle Panel Model (FSAM) 

x

y

xy







 
 

  
 
 

 

Figure 3.8.     Stress vector calculation path.  

Stress values are multiplied with thickness and half of vertical or horizontal width 

and superimposed to obtain the internal force vector for each element. Numbering of the 

internal force vector components, which is similar to the local displacement numbering 

scheme is illustrated in Figure 3.9. 
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Figure 3.9.     Numeration of internal forces for a mesh.  

The adopted numbering scheme and the obtained stress values can be used in 

combination to calculate the terms of the internal force vector for each model element. 

Calculation of the internal force values along each nodal DOF is performed using 

equilibrium, as depicted in Equations 3.27 to 3.34.  

 1 x xyf h t w t      
 (3.27) 

 2 x xyf h t w t      
 (3.28) 

 3 x xyf h t w t       
 (3.29) 

 4 x xyf h t w t       
 (3.30) 

 5 y xyf w t h t      
 (3.31) 

 6 y xyf w t h t       
 (3.32) 

 7 y xyf w t h t      
 (3.33) 

 8 y xyf w t h t       
 (3.34) 

Each model element undergoes the same procedure to obtain internal force values. The 

local internal force vectors are then superimposed in order to obtain the global internal 

force vector for the wall model. For the sample assembly shown in Figure 3.4, the internal 

force vector assembly would be performed as shown in Figure 3.10. As described for the 

calculation of the terms in the global stiffness matrix, overlapping internal forces values in 

the global force vector are superimposed. 



36 

 

+ + + + =

{F}

{f} {f} {f} {f} {f}
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Figure 3.10.   Superposition of internal force vectors.  

As shown with the example RC structural wall is subdivided into meshes and all 

meshes have been enumerated (Figure 3.6) for the assembly operation. After the 

numeration of each mesh, the intersection of 8 x 1 local internal force vectors with each 

other is superimposed to generate global internal force vector. In order to explain the 

superposition strategy, generation of global internal force vector of a RC structural wall 

with four meshes is developed. Global DOFs are enumerated, which provides global force 

vector (Figure 3.11). 

For the sample illustrated in Figure 3.6, the overlapping terms of the 8×1 local 

internal force vectors are superimposed with each other for generating the global internal 

force vector of the model. In order to explain the superposition strategy, generation of the 

internal force vector of a wall model with four model elements is illustrated. The global 

DOFs of the wall model define the order of the terms in the global force vector for the wall 

model. 

In Figure 3.11, DOF numbers displayed inside the model elements are local DOFs 

and DOF numbers displayed outside the elements are global DOFs. The global internal 

force vector of this sample model is calculated by superimposing the local internal force 

vector terms at overlapping locations within the global force vector. Equation 3.35 is an 

example for calculation of one of the terms in the global internal force vector. Superscripts 

in Equation 3.35 indicate the model element numbers while subscripts indicate the local 

internal force vector index for each model element.  
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Figure 3.11.   Global and local DOFs in a structural wall model.  

                          {F}91  = {f}
1

11 + {f}
2

31 + {f}
3

21 + {f}
4

41    (3.35) 

 Each term in the global internal force vector of the wall model is calculated by the 

same procedure used in Equation 3.35. For this sample, there exist 18 global DOFs, 

implying that the global internal force vector will be an 18×1 vector.   

3.4. Support Conditions and Constraints 

At the supports of a RC wall, the displacements are zero. This kinematic condition is 

incorporated into the finite element model of the wall, via enforcing zero displacement 

along the DOFs of the model at the supports (Figure 3.12), and solving the equilibrium 

equation by partitioning. Through this procedure, the reaction forces at the supports are 

calculated from the equilibrium equation, using the known (zero) displacement values 

along the DOFs at the supports.  

In addition, in order to simulate the test conditions for which the wall model was 

experimentally validated, enforcement of constraint conditions along selected DOFs may 

be necessary. For example, during loading tests, rigid beams are typically connected to the 

top of RC wall specimens, in order to transmit the vertical and lateral loads applied 

externally by hydraulic actuators to the wall specimen.  
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Figure 3.12.   Support conditions in the FEM.  

Since the wall specimen that was used for experimental validation of the model in the 

current study was connected to steel load transfer beam at the top, which behaved like a 

rigid body, a body constraint was defined along the top DOFs of the FEM of the wall 

specimen (Figure 3.13).  
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Figure 3.13.   Conversion of DOFs after the assignment of body constraint.  

Body constraint is implemented in the model formulation using a displacement 

transformation matrix [T]. The body constraint condition enforces equal horizontal 

displacement in the horizontal direction while relating vertical displacements to a global 
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rotational displacement at the top of the a wall through the plane-sections-remain-plane 

condition. The aim of implementing the body constraint in the model is representation of a 

rigid load transfer beam possibly connected to the top of a RC wall specimen during 

testing. The transformation matrix defined for a sample wall model wall with four model 

elements is given in Equation 3.36. Derivation of the global stiffness matrix, the global 

internal force vector, and the displacement vector of the wall model after assignment of the 

body constraint are given in Equations 3.37 to 3.40. Equation 3.40 gives the result of the 

production of the transpose of the transformation matrix [T] with both sides of Equation 

3.37. It must be mentioned that this wall model assembly with only four model elements is 

merely a simple example aimed to demonstrate the general formulation of the FEM, and 

that more model elements are typically required for a reliable model assembly.  
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 (3.36) 

 18x18 18x1 unb 18x1[K] {D} {F } 
 (3.37) 

 18x18 18x15 15x1 unb 18x1[K] [T] {D} {F }  
 (3.38) 

 
T T

18x15 18x18 18x15 15x1 18x15 unb 18x1[T] [K] [T] {D} [T] {F }    
 (3.39) 
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3.5. Nonlinear Analysis Solution Strategy 

After assembly of the model elements for derivation of the global stiffness matrix 

and the internal force vector, and implementation of support conditions and constraints, a 

displacement-controlled nonlinear analysis solution strategy (Clarke and Hancock, 1990; 

Simons and Powell, 1982) was adopted for conducting displacement-controlled hysteretic 

lateral load analysis of RC walls using the proposed FEM. A displacement-controlled 

solution strategy was preferred in order to be able to correlate model results with results of 

drift-controlled lateral load tests conducted on RC wall specimens. Details of the selected 

nonlinear analysis solution strategy are presented in this section. The applied strategy 

consists of two main stages; load incrementation and equilibrium stages. For subsequent 

discussions, the load incrementation stage is denoted by "i" while the equilibrium stage is 

denoted by "j". During the incrementation stage, the target displacements imposed on the 

model are incremented, whereas during the equilibrium stage, iterations are performed on the 

model displacements, in order to reach equilibrium between the internal and external forces, 

within a specified tolerance. 

For the first incrementation stage, the initial tangent stiffness matrix  I i
K  at the start 

of each load step is calculated using the geometric and material properties of the wall 

model. The next step in this stage is the definition of the reference load vector I i
F . This 

reference vector depends on the normalized external load vector. For example if the load is 

applied along the the last DOF of the model,  I i
F is defined as expressed in equation 3.41.    

 
 

0

0

1

I i
F

 
 
 

  
 
  

 (3.41) 
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The so-called tangent displacement vector is then computed as defined in Equation 

3.42.  

 
     I I Ii ii

inv K F 
 (3.42) 

The computed tangent displacement vector is only for determination of the direction 

of the displacements in the analytical model. The magnitude of the componensts in the 

tangent displacement vector is not significant. Based on the imposed displacements applied 

in a controlled manner on the model, the reference displacement vector  nb  is also 

defined.  nb is a vector of zeros except at the specific DOF, along which the displacement 

is controlled. For example if the imposed displacement on the model is controlled along 

the last DOF,  nb  takes the form shown in Equation 3.43.    

 
 

0

0

1

nb

 
 
 

  
 
  

 (3.43) 

After definition of the reference displacement vector  nb , the initial load increment 

1j

i
  can be calculated as expressed in Equation 3.44. 

 
   

1 Δj n
i T

n I i
b






 
 

 (3.44) 

After calculation of initial load increment, the corresponding initial displacement 

increment can be calculated as: 

 
   

j 1 1

i
Δ j

i I i
  

  
 (3.45) 
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and the total displacements and load level updated from those at the conclusion of the 

previous load step are calculated by: 

 
     

j 1 j 1

i i 1 i
Δ  

 


 

 (3.46) 

 
1 1

i 1

j j

i i   

 
 (3.47) 

where  is a scalar to be multiplied with the reference external load vector to obtain the 

external force vector (Fext).  

 
   

1 1j j

ext i Ii i
F F

 
 (3.48) 

While the external load vector is calculated from Equation 3.48, the internal force 

vector is calculated from the stresses developing in each model element (as described in 

Section 3.3).  The next step is to compute the unbalanced force between external and 

internal force vectors. Calculation of the unbalanced force vector is expressed in Equation 

3.41. 

 
     

1 1 1j j j

unb int exti i i
F F F

  
 

 (3.49) 

In nonlinear analysis, this unbalanced force vector incorporates terms larger than a 

specified tolerance, which means iterations "j" are necessary within the same load step "i", 

to reach equilibrium of the model. For commencement of the equilibrium iterations, the 

residual displacement increment can be calculated as: 

 
 

 

 

1

Δ

j

j unb i
R i

I i

F

K





 (3.50) 

The incremental external force multiplier and nodal displacement vector can now be 

calculated from the residual displacement vector as: 
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Δ
T j

n Rj i
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n I i

b

b
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 (3.51) 

 
     Δ Δ

j jj

i I Ri i i
     

 (3.52) 

After calculation of the load and displacement increments,, the nodal displacement 

vector and external force multiplier at the end of the current iteration cycle can be 

calculated as: 

 
     

1
Δ

j j j

i i i
  


 

 (3.53) 

 
1j j j

i i i   
 (3.54) 

In the next step, as was done in the load incrementation stage, the external force 

vector Fext and the internal force vector Fint are recalculated, and the unbalanced (residual) 

force is defined as the difference between these two as: 

 
   

j j

ext i Ii i
F F

 (3.55) 

 
     

j j j

unb int exti i i
F F F 

 (3.56) 

If terms in the unbalanced force vector are again larger than a specified tolerance, the 

equilibrium cycles are repeated until the external and internal forces are balanced, within 

the specified magnitude of tolerance. When this condition is satisfied, the load step is 

assumed converged, and the strategy is commenced for a new load step with a new 

incrementation cycle. 

Graphical representations of the nonlinear analysis solution strategy described are 

illustrated in Figures 3.14 and 3.15 Further information on the solution strategy can be 

found in Clarke and Hancock (1990) and Simons and Powell (1982).  
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Figure 3.14.   Representation of the nonlinear analysis solution strategy for a single degree 

of freedom system (Clarke and Hancock, 1990).  

 

Figure 3.15.   Iterative strategy and residual displacements (Clarke and Hancock, 1990).  
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4. EXPERIMENTAL CALIBRATION AND VALIDATION OF THE 

MODEL 

 

The model formulation and the nonlinear analysis solution strategy described in the 

previous chapter were implemented in Matlab for conducting displacement-controlled 

analysis of actual RC walls, using the proposed finite element modeling approach. This 

chapter presents information on experimental calibration of the proposed model and 

detailed comparison of the model results with experimental results obtained from the 

literature for a relatively slender RC structural wall. Results of the parametric sensitivity 

studies performed using the proposed model are also presented. 

4.1. Description of Experimental Program 

For calibration and experimental verification of the analytical model, the rectangular 

wall specimenRW2 tested by Thomsen and Wallace (1995, 2003) was used. A brief 

overview of experimental study is provided in this section. More detailed information on 

the experimental program, can be found in the papers by Thomsen and Wallace (1995, 

2003).     

The rectangular wall specimen  RW2 used for assessment of the model was 3.66 m 

tall and 102 mm thick, with web length of 1.22 m (Figure 4.1). 
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Figure 4.1.     RC wall specimen tested by Thomsen and Wallace (1995).  

 

Figure 4.2.     Profile view of specimen RW2 showing placement of reinforcement 

(Thomsen and Wallace, 1995).  
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At boundaries of the wall specimen, 8 - #3 (db  
= 9.53 mm) bars were used while for 

the web reinforcement #2 (d
b 

= 6.35 mm) bars were uniformly distributed in both 

transverse and longitudinal directions (Figure 4.3). 4.76 mm annealed smooth wires having 

the same material properties with #3 and #2 deformed bars were used as transverse 

reinforcement at wall boundaries.  

 

Figure 4.3.     Cross-sectional view of the test specimen RW2 (Thomsen and Wallace, 

1995).  

A prototype building was used for design of the test specimen and strength 

requirements were taken from Uniform Building Code (1994), whereas a displacement-

based design approach presented by Wallace (1994, 1995) was utilized for the detailing 

requirements at the boundaries of the wall. 

During the design of the walls, concrete having the compressive strength of 27 MPa 

was specified. However, during the testing, measured compressive strengths ranged from 

28.7 to 58.4 MPa. For specimen RW2, the mean value of concrete compressive strength 

was 42.8 MPa. Figure 4.4 displays the concrete stress-strain relationships which were 

measured via testing standard cylinder specimens having dimensions of 152 mm x 304 

mm. 
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Figure 4.4.     Measured concrete stress-strain relationship for RW2 (Thomsen and 

Wallace, 1995).  

Three types of reinforcing steel with different diameters and stress-strain behaviors 

were used in construction of the wall specimen. The #3 (d
b 

= 9.53 mm) deformed bars used 

for the longitudinal reinforcement at boundaries had a yield stress of 414 MPa (Grade 60) 

while the #2 (d
b 

= 6.35 mm) deformed bars used for the longitudinal and transverse 

reinforcement at the wall web had a yield stress of approximately 448 MPa. On the other 

hand, the 4.76 mm smooth wire used as the transverse reinforcement at boundaries had a 

yield stress of approximately 552 MPa, which was later annealed to decrease the yield 

stress to 448 MPa. Yield strength of these reinforcing steel bars were made similar, while 

the measured stress-strain behavior of the three types were moderately different (Figure 

4.5). 
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Figure 4.5.     Measured reinforcement stress-strain relationship for #3, #2 and 4.76 mm 

annealed wire (Thomsen and Wallace, 1995).  

The wall specimen was tested in an upright position in the Structural Engineering 

Research Laboratory (SERL) at Clarkson University. A schematic test setup is shown in 

Figure 4.6. In Figure 4.7, a photograph of the set up is presented. The wall specimen was 

cast monotonically with a pedestal and 32 mm diameter high-strength steel tie-down rods 

were used to affix the pedestal rigidly to the strong floor. 
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Figure 4.6.     Schematic of the test setup (Thomsen and Wallace, 1995).  

 

Figure 4.7.     A photograph of the test setup (Thomsen and Wallace, 1995).  
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In order to transfer the lateral and axial load imposed at the top of the specimen, a 

specially fabricated steel profile was used. This profile was anchored at the top of the RW2 

by using 25 mm diameter rods which had been cast integrally with the fourth story of the 

specimen. In Figure 4.8, the fabricated profile, together with axial and lateral load setup is 

shown. An axial stress of approximately 0.10 g cA f   was maintained throughout the 

duration of the test. Out-of-plane displacement of the specimen was prevented by using a 

steel truss system connected to the top of the specimen. Hence, torsional twisting of the 

wall specimen was also prevented.  

 

Figure 4.8.     A photograph of load transfer assembly (Thomsen and Wallace, 1995).  

As shown in Figure 4.9, an extensive instrumentation setup was used to measure 

displacements, loads, and strains at critical locations for the wall specimen. In order to 

measure displacements for each loading step, wire potentiometers, linear potentiometers, 

and linear variable differential transducers (LVDTs) were used while load cells were used 

to measure axial and lateral loads, and strain gauges were used to measure strains in the 

concrete and the reinforcing steel. To observe the pedestal slip from the ground level, 

linear potentiometer placed horizontally were used, while two vertical potentiometers were 

utilized to measure vertical displacement of the pedestal (Figure 4.10).  
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Figure 4.9.     Instrumentation on RW2.  

 

Figure 4.10.   A photograph of instrumentation used to measure pedestal movement 

(Thomsen and Wallace, 1995).  
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Figure 4.11 shows the wire potentiometers used to measure shear deformations on 

the specimen. These wire potentiometers were placed in an X configuration. Besides, two 

vertical wire potentiometers placed at the boundaries of the specimen were used to 

measure flexural rotations (Figure 4.9).  

 

Figure 4.11.   A photograph wire potentiometers used to measure shear deformations 

(Thomsen and Wallace, 1995).  

After the experimental setup was prepared, testing of the specimen started with 

applying axial load, which continued until reaching the specified axial load (approximately  

0.10 g cA f  ). Load cells and pressure gages were used to monitor the axial load history on 

the specimen, which was applied using hand pumps. After reaching the specified axial 

load, drift-controlled reversed-cyclic loads were applied on the specimen. A total of 20 full 

cycles were performed during the test (Figure 4.12).  

 

Figure 4.12.   Lateral drift history for specimen RW2.  
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4.2. Model Calibration 

The analytical model proposed in this study was calibrated to represent the geometric 

properties, reinforcement amount, and material characteristics of wall specimen RW2. 

Calibration of the analytical model consists of two processes: calibration of the model 

geometry and calibration of the constitutive material model parameters. In this section, 

details of the calibration process are presented.  

As shown in Figure 4.13, in the model formulation, specimen RW2 was divided into 

6 segments (m=6) in horizontal direction and into 20 segments (n=20) in the vertical 

direction, resulting in a total of 120 rectangular model elements. The criteria for model 

discretization was to make the model elements have approximately equal width and height, 

and capture the locations where displacement sensors were attached for measurement of 

local deformations, so that model results can be compared with test measurements also at 

local response levels. 

  1219 mm

19 mm 19 mm
3 @ 51 mm 153 mm 3 @ 191 mm 153 mm 3 @ 51 mm

64 mm

19 mm

19 mm

102 mm

#2 bars (db=6.35 mm) Hoops (db=4.76 mm)8 - #3  bars

1 2 3 4 5 6Horizontal mesh # :

(db=9.53 mm)  @ 191 mm @ 76 mm

 

Figure 4.13.   Geometric calibration for specimen RW2.  

Material calibration was performed by calibration of the constitutive model 

parameters for concrete and reinforcing. For the reinforcing steel stress-strain relationship, 

the Menegotto and Pinto (1977) was calibrated to represent experimentally-observed 

results for the reinforcing bars (Figure 4.14). Depending on the test results conducted on 

the #3 (db  
= 9.53 mm) and #2 (d

b 
= 6.35 mm) deformed bars, a modulus of elasticity cE = 
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200 GPa was determined. Tensile yield strengths of y = 434 MPa and  y = 448 MPa, and 

a strain-hardening ratio of b = 0.02 were assigned for the bare #3 and #2 bars, respectively. 

These parameters were used to define the compression behavior of reinforcing steel bars. 

However, for tension, the yield strength ( y ) and strain-hardening (b) parameters were 

modified to include the effects of tension stiffening based on the empirical relation 

proposed by Belarbi and Hsu (1994).  

For the calibration of cyclic Bauschinger’s effect parameters in the constitutive 

model for reinforcing steel, namely parameters, R0, a1, and a2, previous recommendations 

were used. Values of R0 = 20, a1 = 18.5,  a2 = 0.0015 were assigned to the parameters, as 

recommended by Elmorsi et al. (1998) were assigned. 

As shown in Figure 4.15, the Chang and Mander (1994) model was calibrated to 

represent the experimentally-measured behavior of concrete cylinder samples. Concrete 

compressive strength of cf
 = 42.8 MPa was assigned, at the compressive strain value of  

c = 0.0021. The initial tangent modulus (elastic modulus) of concrete was assigned a 

value of cE  = 31026 MPa. In the compression zone, parameter r, which is used for 

determining the shape of envelope curve, is assigned a value equal to 7.0. Concrete tensile 

strength tf  was calculated as 2.03 MPa, based on Equation 4.1. Tensile strain value at 

peak monotonic tensile stress was set equal to t = 0.00008. The initial tangent modulus in 

tension was selected to be the same as in compression, which was cE  = 31026 MPa. 

Unlike the compression envelope, the r value for tension was set equal to 1.2, to represent 

the effects of tension stiffening in the shape of tension envelope curve, as proposed by 

Belarbi and Hsu (1994),  

 
0.31t cf f   (4.1.)
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Figure 4.14.   Constitutive material model for reinforcing steel and parameters for 

calibration (Orakcal, 2004).  

 

Figure 4.15.   Constitutive material model for concrete and parameters for calibration 

(Orakcal, 2004).  
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Confined concrete in the boundary regions was calibrated based on the confinement 

model by Mander et al. (1988). As shown in Figure 4.16, in order to observe the 

consistency in considering the confinement effect, the model by Mander et al. (1998) was 

compared with the confinement model by Saatcioglu and Ravzi (1992). An overall 

summary of the calibrated constitutive material parameters is presented in Table 4.1 and 

Table 4.2 for concrete and reinforcing steel bars, respectively. 

 

Figure 4.16.   Comparison of the confinement models.   

Table 4.1.   Calibrated constitutive parameters for concrete.  
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Table 4.2.   Calibrated constitutive parameter for reinforcing steel.  

 

Compression softening effects were taken into account based on the model 

parameters proposed by Vecchio and Collins (1993), as presented in Section 2.3.3. The 

biaxial damage formulation proposed by Mansour and Hsu (2002) was implemented into 

Fixed Strut Angle Model for the simulation of the biaxial damage effects, as mentioned in 

Section 2.3.5. The shear aggregate interlock model explained in Section 2.3.6 was also 

incorporated in the calibration. The linear unloading/reloading slope of the interlock shear 

stress-strain relationship along the cracks was taken as 0.4Ec, and a value of 1.1 was used 

for the friction coefficient. 

4.3. Model Results and Comparison with Experimental Results of Specimen RW2 

The calibrated analytical model implemented in Matlab was used to compare the 

experimentally-observed results with analytical model predictions. As explained in Section 

4.1, the instrumentation setup established during the tests allowed local deformation 

measurements at various locations on the wall specimen, which were also compared with 

analytical model results. Analysis of the specimen RW2 was performed with the calibrated 

parameters defined in the previous section to validate the accuracy of the analytical model. 

The analysis was conducted using the displacement-controlled nonlinear analysis solution 

strategy described previously. The top displacement history applied to the wall specimen, 

included unwanted displacement components resulting from sliding and uplift of the 

pedestal. Hence, the analytical model was subjected to a corrected top displacement 

history, which was processed by subtracting the unwanted pedestal displacement effects 

(Figure 4.17). After applying the modified top displacement history to the analytical 

model, comparison of the experimentally-measured and analytically-predicted lateral load 

Parameter #3 Rebar #2 Rebar Parameter #3 Rebar #2 Rebar 

y (MPa) 434 448 y (MPa) 395 336

E0 (MPa) 200000 200000 E0 (MPa) 200000 200000

b 0.02 0.02 b 0.0185 0.035

Rebar in Compression Rebar in Tension
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vs. top displacement response of the wall specimen is presented in Figure 4.18. The 

nominal lateral drift levels listed in Table 4.3, which corresponded to peak points of each 

lateral drift level, were used for local deformation (e.g., concrete strain profile) 

comparisons. 

 

Figure 4.17.   Comparison of applied and corrected drift histories for specimen RW2.  

Table 4.3.   Lateral displacement values at peak drift points for specimen RW2.  
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was conducted by applying the corrected top displacement history under a constant axial 

force of 378 kN. The analytically-predicted lateral load vs. displacement response 

reasonably represents the experimentally-observed cyclic response characteristics of the 

wall, including lateral load capacity, stiffness degradation, hysteretic shape, plastic 

(residual) displacements, ductility, and pinching behavior. Overall, the analytical model 

provides an accurate prediction of the global lateral load behavior of the wall specimen.    

 

Figure 4.18.   Comparison of the measured and calculated lateral load vs. displacement 

responses for wall specimen RW2.  
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displacement profiles of the wall, which were recorded during the test using WPs 

connected to the specimen at story levels. It must be mentioned that the results compared 

here are the corrected lateral displacement magnitudes, meaning pedestal movement 

contributions were subtracted. In the positive loading direction, the model gives reasonable 
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predictions are more accurate at the drift levels smaller than 2.0%. Overall, the model 

adequately represents the distribution of lateral displacements along wall height, and 

concentration of nonlinear deformations along the first story height of the wall.   

 

Figure 4.19.   Comparison of the measured and predicted lateral displacement profiles.  
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measurements. In the test results, rotations over the first story were calculated by dividing 
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Figure 4.20.   Comparison of measured and predicted lateral displacement and rotation 

time histories at the first story level.  

Figures 4.21 and  4.22 compare the measured and predicted concrete strain values at 

specific locations and at peak points corresponding to selected drift levels. The 

measurements were obtained from the seven linear variable differential transducers 

(LVDTs) mounted at the base of the specimen, as shown in Figure 4.9. While evaluating 

the analytical results, obtained vertical displacement values at model DOFs were divided 

by the vertical length of the model elements to calculate the average strain values. Results 

were compared at peak drift levels shown in Figures 4.21 and 4.22 As revealed in the 

comparisons, average concrete profiles are similar especially in the tensile region of the 

wall cross-section. As can be obviously seen in the figure, unlike in fiber models, plane 

sections do not necessarily remain plane in the implemented FEM, which is more 

consistent with the experimentally-measured strain profiles. Accurate predictions are also 

obtained with the model for the depth of the neutral axis. In the compression region of the 

wall cross-section, the model seems to underestimate average compressive strains in 

concrete. This may be due to the fact that the LVDTs used to measure these strains were 

affixed to wooden blocks glued to the surface of the wall. Therefore, the experimental 

measurements may not reliably represent the compressive strains experienced by the 
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confined core concrete in the boundary regions. Similar results were obtained for this 

specimen, using fiber modeling approaches.   

 

Figure 4.21.   Comparison of the average concrete strain profiles along wall length at small 

drift levels.  

 

Figure 4.22.   Comparison of the average concrete strain profiles along wall length at large 

drift levels.  
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Figures 4.23 and 4.24 show the comparison of the measured and predicted average 

strain histories in the vertical direction at the two boundaries (north and south) at the base 

the wall specimen. Again, the test data was recorded by the LVDTs mounted at the base of 

the wall. As discussed for Figures 4.21 and 4.22, the analytical model accurately captures 

the average tensile strains in concrete, but underestimates compressive strains to as low as 

approximately half of measured values. However, reasonable compressive strain 

predictions are obtained at earlier stages during loading, corresponding to smaller drift 

levels. As well, as discussed later in Section 4.4, compressive strain predictions of the 

model may be influenced by the number of model elements used along the height of the 

wall, possibly resulting in improved correlations between analytical and experimental 

results.  

 

Figure 4.23.   Comparison of the vertical strain histories at the north boundary of the wall 

at base level.  
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Figure 4.24.   Comparison of the vertical strain histories at the south boundary of the wall 

at base level.  

Shear distortion of the wall specimen RW2 was measured along the first and second 

story heights, by using diagonally-mounted wire potentiometers. Wire potentiometers were 
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the specimen. Based on measurements of these sensors and  using the procedure proposed 
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wall were calculated and compared with the model predictions. Measured and predicted 

lateral load vs. shear distortion responses along the first and second story heights of the 

specimen are compared in Figures 4.25 and 4.26. In the analytical model results, 

significant nonlinear shear deformation response was observed along the first story, 
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Figure 4.25.   Comparison of measured and predicted lateral load vs. first story shear 

deformation responses.  

Figure 4.26 compares the shear deformation responses along the second story. In 

both analytical and experimental results, the lateral load vs. shear distortion response along 

the second story is more linear elastic in nature, with considerably smaller deformations 

compared to the first story. The analytical model reasonably captured the  experimentally-

observed shear deformations in the second story. The shear stiffness characteristics were 

not duplicates; however, they showed similar trends. Since shear deformations along the 

third and fourth stories of the wall were not experimentally measured, shear response 

comparisons could not be made in these regions. 
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Figure 4.26.   Comparison of measured and predicted lateral load vs. second story shear 

deformation responses.  

However, Figure 4.27 compares only the analytically-predicted shear deformation 
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Figure 4.27.   Comparison of analytical lateral load vs. story shear deformation responses. 

4.4. Parametric Sensitivity Studies 

Within the scope of this study, parametric studies were also performed to investigate 

the sensitivity of the model results to important parameters related to the response of 

structural walls. Parametric sensitivity studies were conducted for the number of model 
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reasonable number of model elements are used. However, this may not necessarily be the 

case for the local deformation predictions, as depicted in Figure 4.29.  Figure 4.29 

compares of the analytical average strain histories in the vertical direction at the boundary 

of the wall specimen at the base, for the three different n values. As shown in the figure, 

the average tensile strains are not significantly sensitive to the number of model elements 

used along the height of the wall, which is a positive aspect since the tensile strains were 

predicted accurately by the original model configuration. On the other hand, the 

compressive strain predictions, which were underestimated by the original model, are 

considerably different when 36 model elements are used along wall height. This indicates 

that compressive strain predictions of the model are sensitive to the number of model 

elements, which is promising for obtaining improved compressive strain predictions with a 

more refined analytical model configuration.  

 

Figure 4.28.   Analytical lateral load vs. top displacement responses for different n values.  
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Figure 4.29.   Analytical vertical strain histories at the boundary of the wall at base level 

for different n values.  
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second parametric study that was conducted to assess the sensitivity of the proposed 
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Figure 4.30.   Analytical lateral load vs. top displacement responses for different wall 

aspect ratios.  

 

Figure 4.31.   Analytical lateral load vs. top displacement responses for different wall 

aspect ratios.   
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Another sensitivity study of the model results was performed by changing the axial 

load level applied on the wall. As depicted in  Figure 4.32, changing the axial load on the 

wall value from the original value of 378 kN to values of 179 kN and 756 kN obviously 

influences the analytical lateral load vs. displacement response of the wall. Larger axial 

load levels result in increased predictions for the lateral load capacity and the lateral 

stiffness of the wall, as expected for RC walls and columns designed to yield in flexure. 

The analytical model clearly incorporates the significant influence of axial load on the 

response predictions. 

 

Figure 4.32.   Analytical lateral load vs. top displacement responses for different axial load 

levels.  
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to observe the change in the lateral load vs. displacement response predicted by the 

analytical model, as well as the amount of nonlinear shear deformations developing in the 

wall model, when the shear capacity of the wall is reduced. Figure 4.33 shows the 

influence of decreasing the web reinforcement ratio on the lateral load vs. displacement 

response of the wall, whereas Figures 4.34 and 4.35 illustrate the effects of reduced web 

reinforcement to the amount of nonlinear shear deformations developing along the first 

story and second stories of the wall, respectively. As depicted in the figures, decreasing the 

web reinforcement ratio of the wall results in a reduced lateral load capacity prediction for 

the wall, and a larger maximum shear deformation prediction. Therefore, the analytical 

model successfully considers the influence of the amount of wall shear reinforcement on 

the global response of the wall, as well as the magnitude of nonlinear shear deformations 

developing in the wall.   

 

Figure 4.33.   Analytical lateral load vs. top displacement responses for different web 

reinforcement ratios.  
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Figure 4.34.   Effect of web reinforcement ratio to shear deformations along first story.  

 

Figure 4.35.   Effect of web reinforcement ratio to shear deformations along second story.  
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4.5. Discussion of Results 

This chapter covered the description of the experimental study conducted on wall 

specimen RW2, geometric and material calibration of the proposed model for the wall 

specimen, and comparison of analytical and experimental results for the specimen at 

various response levels. Parametric sensitivity studies performed using the wall model 

were also presented in this chapter.  

Based on comparison of the experimentally-measured results and model predictions, 

the proposed finite element modeling approach, incorporating the fixed-strut-angle panel 

model, can be deemed to represent the nonlinear hysteretic behavior of relatively slender 

RC walls reasonably well. The analytical model demonstrates reasonable levels of 

accuracy in predicting both the global response and local deformation characteristics of the 

wall specimen investigated. Average strain profiles along the length of the wall are mostly 

well represented, and tensile strains are well predicted, although compressive strain 

predictions are subject to improvement. Contrary to commonly-applied fiber models, the 

proposed finite element model formulation does not enforce the plain-sections-remain-

plane condition along the length of the wall, which was found to be consistent with the 

experimentally-measured strain profiles. Another advantage of the proposed finite element 

model over a fiber model is that nonlinear shear deformations and coupling of nonlinear 

shear and flexural responses can be simulated by the proposed model, even for a slender 

wall designed to yield in flexure before reaching shear capacity. Nonlinear shear response 

predictions of the model can be improved upon incorporating better constitutive 

relationships representing the shear transfer mechanism across cracks. 

Results of the parametric sensitivity studies conducted within the scope of this study 

showed that the proposed analytical model is sensitive to variation in important geometric 

and material characteristics of a wall. Increasing the number of model elements along wall 

height improves the model predictions for average strains in concrete, although not as 

influential on the lateral load vs. displacement response of a wall. The model capable of 

simulating different (flexural vs. shear) behavior modes based on the wall aspect ratio, 

which also influences the amount of shear deformations. Change in the axial load level 

directly influences the lateral load capacity and lateral stiffness predictions of the model, 
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which is a well-known behavioral aspect of RC members. The analytical model results are 

also sensitive to the web reinforcement ratio of a wall, which significantly influences the 

lateral load capacity and nonlinear shear deformation predictions of the model. Overall, 

results of the sensitivity studies indicate that the analytical model predictions are 

consistent, both mechanically and behaviorally.   
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5. SUMMARY AND CONCLUSIONS 

 

5.1. Overview 

A nonlinear finite element model for RC walls, incorporating a fixed-strut-angle 

constitutive panel formulation, was developed in this thesis. The aim was to simulate the 

nonlinear hysteretic response of RC structural walls under reversed-cyclic in-plane loading 

conditions. An overview of the flexural and shear-flexure interaction modeling approaches 

for RC walls, constitutive modeling methodologies for RC panels, and experimental 

studies on RC walls in the literature was provided. A new finite element modeling 

approach was then proposed for improved response prediction of RC walls. 

The constitutive Fixed-Strut-Angle Panel model developed by Ulugtekin (2010), was 

implemented into the FEM formulation proposed in this thesis. Formulation and assembly 

of the proposed FEM model, which is the baseline computational aspect of this study, was 

described in detail. Generation of local stiffness matrices and internal force vectors, and 

their assembly for determination of the global stiffness matrix and internal force vector of 

the model were illustrated. Implementation of support restraints at the wall base level and 

the rigid body constraint at the top of the wall were also described. 

After formulation of proposed FEM was completed, a drift-controlled nonlinear 

analysis solution strategy was incorporated for conducting hysteretic lateral load analyses 

using the analytical model. The model was experimentally calibrated and validated against 

cyclic test results reported by Thomsen and Wallace (1995) on a relatively-slender 

rectangular wall specimen designed to yield in flexure. Comparison of the response 

predictions of analytical model and the experimentally-obtained results were made at 

various response levels and various locations on the wall where measurements had been 

recorded. In order to demonstrate the sensitivity of the analytical model results to 

important parameters, parametric sensitivity studies were also carried out and consistency 

of the model results was evaluated. 
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5.2. Conclusions 

The following conclusions can be drawn on the basis of the results obtained using the 

analytical model developed in this study: 

 The proposed FEM demonstrated a reasonable level accuracy in predicting the 

nonlinear hysteretic response of  RC structural walls under in-plane reversed-cyclic 

loading conditions. Accurate predictions were obtained for the experimentally-

observed cyclic response characteristics of the wall investigated, including its lateral 

load capacity, stiffness degradation, hysteretic shape, plastic (residual) 

displacements, ductility, and pinching behavior. The model also provided reasonably 

accurate predictions of nonlinear flexural deformations developing in the plastic 

hinge region of the wall.    

 

 Average concrete strain profiles along the base of the wall were reasonably 

predicted by the analytical model, especially in the tensile region of the wall cross-

section. Unlike in fiber models, plane sections do not necessarily remain plane in the 

proposed FEM formulation, which was observed to be more consistent with the 

experimentally-measured strain profiles. Accurate predictions were also obtained 

with the model for the depth of the neutral axis. Compressive strains in concrete 

were underestimated; however, it was shown that compressive strain predictions of 

the model may be influenced by the number of model elements used along the 

height of the wall, possibly resulting in improved correlations between analytical 

and experimental results. 

 

 An important result obtained from this study is related to simulation of nonlinear 

shear responses. The analytical model, with a new shear aggregate interlock model 

formulation proposed by this study, provided reasonable estimates for the nonlinear 

shear deformations developing along the first story height of the wall specimen, 

where nonlinear flexural deformations were also concentrated. The magnitude of the 

predicted nonlinear shear deformations decreased along the height of the wall, which 

was consistent with the experimental measurements. This demonstrated the model’s 

capability of capturing nonlinear shear-flexure interaction effects in a wall. This is a 
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significant advantage of the finite element modeling approach proposed in this 

study, over conventional fiber models that do not consider coupling of shear and 

flexural responses.  

 

 It was observed that changing the number of model elements along wall height did 

not significantly influence prediction of the model for the lateral load vs. top 

displacement response of the wall; however, increasing the number of model 

elements resulted in improved average concrete strain predictions at the base of the 

wall. On the other hand, the global load vs. displacement response prediction of the 

model was considerably sensitive to the axial load applied on the wall, which is 

expected for RC members designed to yield in flexure. 

 

 It was also demonstrated that the proposed analytical model was capable of 

simulating different modes of behavior, based on the aspect ratio of a wall. 

Decreasing the wall aspect ratio changes the predicted response of the wall from the 

ductile flexural-dominated behavior that is typical of slender walls, into a brittle 

shear-dominated behavior expected for low-rise walls. As well, the model was 

shown to successfully represent the influence of the amount of web (shear) 

reinforcement on the global load vs. displacement response of a wall, as well as the 

magnitude of nonlinear shear deformations experienced by the wall. 

5.3. Recommendations for Future Studies 

The following recommendations can be made for future studies related with the 

scope of this thesis: 

 Linear shape functions and Gauss integration points can be implemented into the 

formulation of the proposed finite element model for a more refined description of 

the strain and stress fields acting on the model elements. 

 The simple constitutive shear aggregate relationship implemented in the model 

formulation can be improved to represent a better shear stress transfer mechanism 
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across the cracks. A constitutive model representing dowel action in reinforcing bars 

can also be incorporated in the formulation.  

 The analytical model should also be validated experimentally for squat (low-rise) 

walls, the behavior of which is governed by nonlinear shear deformations.  

 Future studies should also focus on implementation of the proposed modeling 

approach for structural walls having non-rectangular cross-section geometries (e.g., 

T-shaped or U-shaped walls). 
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