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ABSTRACT

ENERGY EFFICIENCY ANALYSIS AND MODELING OF

COGNITIVE AND HETEROGENEOUS WIRELESS

NETWORKS

The surging energy costs and the environmental consequences of energy genera-

tion and exploitation have put energy efficiency aspect of wireless systems into focus

in an unprecedented manner. Moreover, the capacity expectations and requirements

for wireless networks have been relentlessly increasing with the adoption of new ser-

vices and sophisticated wireless terminals. In this thesis, we evaluate cognitive and

heterogeneous wireless network paradigms from energy efficiency perspective that has

become vital due to the above mentioned phenomena. We specifically focus on energy

efficiency analysis and modeling of these systems for realizing the “green networks’’

objective. We first provide a comprehensive account of energy efficiency of wireless

networks. At a cross-sectional level, we consider cognitive radios (CR) paradigm which

is affecting all facets of wireless data communications. The CR concept is evaluated

from the “energy-efficient operation” and “energy efficiency enabler” perspectives. At

the microscopic level, we focus on small cells, namely femtocells, and propose a new

networking paradigm called cognitive femtocell networks (CFN). We analyze them in

terms of energy efficiency via our analytical model and compare their performance with

that of macrocell-only networks as well as traditional femtocell networks.
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ÖZET

HETEROJEN VE BİLİŞSEL KABLOSUZ AĞLARIN

ENERJİ VERİMLİLİĞİ ANALİZİ VE MODELLEMESİ

Artan enerji fiyatları ile enerji üretim ve tüketiminin çevresel sonuçları, kablosuz

ağların enerji verimliliğini daha önce görülmemiş şekilde önemli hale getirmiştir. Buna

ek olarak, yeni servislerin ve gelişmiş kablosuz cihazların yaygınlık kazanmasıyla kablo-

suz ağların gereksinimleri ve kapasite beklentileri durmaksızın artış göstermektedir.

Bu tezde bilişsel ve heterojen kablosuz ağ paradigmaları, yukarıda bahsedilen olgu-

lardan dolayı önemli bir hale gelen enerji verimliliği perspektifinden incelenmektedir.

“Yeşil ağlar’’ hedefini hayata geçirebilmek için özellikle enerji verimliliği analizi ve bu

ağların modellenmesi konusuna odaklanılmaktadır. İlk olarak kablosuz ağlarda en-

erji verimliliği konusunu kapsamlı bir şekilde ele alıyoruz. Kesitsel düzeyde, kablosuz

veri iletişimini tüm yönleriyle etkileyen bilişsel radyo (CR) paradigmasını inceliyoruz.

Bilişsel radyo kavramını “enerji-verimli operasyon” ve “enerji verimliliğini sağlayıcı”

perspektiflerinden değerlendiriyoruz. Mikroskopik düzeyde ise küçük hücrelere yani

femto-hücrelere odaklanıyor ve bilişsel femto-hücre ağları (CFN) adı verilen yeni bir ağ

paradigması öneriyoruz. Bu ağı analitik modelimiz aracılığıyla enerji verimliliği per-

spektifinden değerlendirerek başarımını geleneksel femto-hücre ağları ve sadece makro-

hücrelerden oluşan bir ağ ile karşılaştırıyoruz.
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1. INTRODUCTION

Mobile broadband explosion and upcoming broadband wireless standards are

putting a heavy burden on mobile networks for serving a traffic explosion in parallel

with new services and multimedia-rich content. The emerging diverse range of ser-

vices and modalities bring forth new players and factors such as OTT (Over-The-Top)

service providers (e.g. Skype and YouTube) and P2P (Peer-to-Peer)-based content

sharing, which heavily tax the network resources [1]. According to Cisco VNI forecast,

by 2017, global mobile data traffic will reach 11.2 exabytes per month (134 exabytes

annually); growing 13-fold from 2012 to 2017 [2]. This forecast is depicted in Figure

1.1 for different regions of the world. It is expected that mobile video will represent

66% of all mobile data traffic and 45% of global mobile data traffic will be offloaded to

fixed networks. Additionally, tablets will account for more than 12% of global mobile

data traffic and 4G connections will account for 45% of global mobile data traffic by

2017. Therefore, worldwide mobile network operators are struggling to ramp up their

capacity and are drawn to upgrade their own network to the latest standards for mobile

broadband (e.g. Long Term Evolution, LTE). However, the network operators gener-

ally cannot charge for these high bandwidth services while the network resources are

stretched to provide adequate QoS levels. In other words, this trend is in contrast with

the decline in average revenue per user and their profitability, and the fast adaptation

of new standards. In that regard, novel technologies and mechanisms are crucial since

the wireless networks are expected to provide much higher capacity in an adaptive

manner and to scale more flexibly in time and space.

This huge increase in mobile data traffic implies another profound challenge in

addition to meeting service requirements: the drastic surge in energy consumption.

Energy consumption of man-made systems has been a major issue due to environmen-

tal consequences of energy production and surging energy costs [3]. For instance, in

Japan, network power consumption in 2025 is predicted to be 13 times the 2006 level,

especially due to the anticipated increase in traffic volume with broadband services

and machine-to-machine bursty traffic originating from cloud computing [4]. By 2008
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Figure 1.1. Global mobile data traffic forecast by region (source: Cisco VNI Mobile
Forecast 2013, CAGR: compound annual growth rate).

figures, it was estimated that 3% of worldwide energy consumption was caused by

the ICT infrastructure that generated about 2% of the worldwide CO2 emissions [5].

Therefore, it is paramount to devise algorithms and solutions for more energy-efficient

network operation [6]. In that regard, energy efficiency is an important requirement

for any emerging mobile network or standard.

In this thesis, we consider an important part of this wide research topic and

focus on cognitive and heterogeneous wireless networks. The heterogeneous network

architecture is shown in Figure 1.2. In the next chapter, we discuss and elaborate

on the general issue of energy efficiency in wireless networks. We then delve into the

connection between energy efficiency and cognitive radios (CR) in the following chap-

ter. Cognitive radio paradigm that emerged in late 1990s [7] changes the traditional

spectrum access and management that is based on licensing and strict regulations to

a more dynamic scheme that facitates the use of unused spectrum in an opportunistic

manner. In this scheme, a CR equipped with various sensors such as sensors for spec-

trum sensing can detect the spectrum opportunities that are licensed but not used at

a time and geographical location. In CR context, the actual owners of the spectrum

are called primary users (PU) and opportunistic users are called secondary users (SU)

or cognitive radios (CR). This access paradigm is referred to as Dynamic Spectrum
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Access (DSA). DSA improves spectrum efficiency by letting CRs use PU bands that

stay idle. However, DSA regulations necessiate that this opportunistic access of SUs

must not harm the PU communications. CRs can ensure this requirement by perform-

ing spectrum sensing or accessing the PU occupancy information through the Radio

Environment Maps (REM), the entity that stores or derives spectrum use information

at a geographical location [8]. In addition to DSA capability, other important aspects

of CRs are self-awareness, environment awareness, and adaptive operation which we

call cognitive functionalities in general. A CR is self-aware such that it has the knowl-

edge of its internal states, e.g. hardware or user requirements. It is environment-aware

thanks to its sensors so that it can consider the restrictions of this environment, e.g.

radio frequency environment. By the help of the cognitive engine, an entity that imple-

ments various reasoning and learning mechanisms, CR can adapt to the environment

and can select the best mode of operation. Cognitive functions in wireless network

nodes are beneficial for leveraging intricate trade-offs among energy efficiency, per-

formance and practicality. There are two fundamental but entangled aspects of CRs

in green communications context: leveraging CRs for energy efficiency and operation

of CRs with energy efficiency. In practice, these two objectives overlap since the im-

provement of energy efficiency with CRs require efficient CRs, whereas efficient wireless

communications require cognitive abilities at different network components and proto-

cols. However, there are intrinsic challenges such as hardware complexity, algorithmic

problems and design trade-offs. In Chapter 4, we present and discuss these issues to

highlight the case of CRs for green wireless communication systems. Additionally,

some fundamental trade-offs that emerge from these challenges and their impact on

greening communications via cognitive functions are outlined.

Similar to CRs, another approach is the deployment of small cells. Femtocell

networks improve frequency reuse in residential or small indoor areas via low-power

miniaturized access points, also known as femtocell base station (FBS). The FBS lo-

cated typically a few tens of meters away from the user device can maintain high

signal quality at the user as opposed to farther away macro-BS (MBS) with poor sig-

nal quality [9]. An FBS serves the users inside its coverage area through the licensed

spectrum as an extension of the cellular operator’s network. These devices are also
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Figure 1.2. The heterogeneous wireless network architecture entailing different
network types and technologies.

referred to as home base stations as they have all the functionalities those of an MBS

but in a scaled-down version due to smaller coverage: coverage area, number of users

being served, transmission power, and equipment cost. Providing high quality services

indoors is paramount to the operators as a significant portion of voice traffic (50%)

and over 70% of data traffic originate from indoors [10]. In Chapter 5, we define

and propose a femtocell-based cognitive radio architecture for enabling multi-tiered

opportunistic access in next-generation broadband wireless systems. This architecture

denoted as cognitive femtocell network (CFN) combines the conventional femtocell idea

with infrastructure-based overlay cognitive network paradigm. It consists of FBSs with

cognitive radio capabilities, or cognitive capabilities in general [11,12]. FBSs with these

capabilities are called cognitive FBSs and referred to as CFBS. Although the cognitive

capabilities may have different interpretations in different domains, the main rationale

is that CFBSs are supposed to analyze, adapt to and learn from the operating RF

environment. In that regard, we can enumerate the following interwoven concepts:

dynamic spectrum access (DSA) and spectrum management, self-organization without
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human involvement, traffic prediction-based opportunity usage, transmit-power con-

trol, and energy-efficient operation. The complex interaction among these properties

implies a complex setting for CFN research. We highlight the drawbacks and advan-

tages of the proposed network structure with a discussion on research directions for

cognitive femtocell architecture. We also provide experimental results to illustrate a

general proof of concept for this new modality.

CFN concept is promising as a potential component of future heterogeneous net-

works. However, the ongoing mobile traffic explosion is also expected to result in

higher energy consumption and larger carbon footprint which is a major challenge

against green communications objective. Thus, energy efficiency has become a key

research focus for these systems. In Chapter 6, we analyze the introduction of cogni-

tive femtocells into wireless networks from energy efficiency perspective. We develop

an analytical model for such CFN-deployed heterogeneous networks and evaluate the

impact of CFN proliferation on energy consumption discussing the relevant tradeoffs

and practical issues.

1.1. Contributions and Thesis Outline

In this thesis, we are concerned with issue of energy efficiency in next generation

networking paradigms, understanding the operation of the networks from an energy

efficiency perspective and then designing more energy-efficient systems with new archi-

tectures and protocols for this purpose. The contributions of this thesis can be listed

as follows:

(i) Energy efficiency and wireless networks (Chapter 3): A complete analysis of

wireless networks from the energy efficiency perspective spanning from wireless

devices to networks/systems is performed. We identify fundamental trade-offs,

energy efficiency (EE) metrics, energy consumption sources and applicable EE

improvement approaches. Moreover, the potential energy efficiency factors and

directions are explored.

(ii) A through discussion of various aspects of CRs for energy efficiency and energy
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efficiency for CRs (Chapter 4): The two prominent objectives of leveraging CRs

for energy efficiency and operation of CRs with energy efficiency are analyzed.

The emerging trade-offs due to these two objectives are elaborately laid out and

discussed, which provides a solid starting point for novel green CR research.

(iii) Cognitive Femtocell Architecture (Chapter 5): We propose a new network ar-

chitecture that embraces cognitive radio functionalities at the femtocell devices

in a macrocell network that additionally deploys femtocell base stations. To the

best of our knowledge, our work is the one of the first proposals of the “cogni-

tive femtocell concept” and it has lead to many follow up research papers. We

present this concept in Chapter 5. Our research shows that this new architec-

ture can be beneficial for both CRs and macrocell networks. We also list various

cognitive functionalities that can be implemented at femtocells for more efficient

networking. In addition to being the frontier work on this new paradigm, our

work differs from the followers in a way that we also provide a new CR operation

principle through femtocells. In our work, we let CRs to get service through

CFBS which have higher spectrum detection reliability due to more advanced

sensing hardware.

(iv) A novel analytical model for energy efficiency analysis of CFN proliferation (Chap-

ter 6): The contribution of our work in that chapter is two-fold. First, we pro-

pose an analytical model to derive the energy consumption and throughput of

three networks: a macrocell-only network, a macrocell network that also deploys

femtocells, and a cognitive femtocell network consisting of a macrocell, various

femtocells, and cognitive femtocells. Second, we analyze the energy efficiency and

throughput for heterogeneous network settings. We compare the energy efficiency

and throughput performance of these three networks under increasing number of

users and increasing number of cognitive femtocells. Benefits and drawbacks of

cognitive capabilities at small cells is not yet explored adequately from an energy

efficiency viewpoint [13]. Our research shows that CFNs do not only improve

throughput but also improve the energy efficiency of the network, if the interfer-

ence among the network entitites is kept controlled.
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In this thesis, we consider energy efficiency improvement techniques at the “soft

level”, which implies algorithmic, protocol or system design approaches for wireless

systems and networks. The “hard level” approaches such as hardware design or circuit-

level improvements are not investigated although these are also critical tools for energy

efficiency. In the next chapter, we provide some background on the abovementioned

networking paradigms. Chapter 3 presents the topic of energy efficiency in wireless

networks discussing fundamental aspects such as energy efficiency metrics. Chapter 4

provides a general framework for greener wireless networks by applying the cognitive

capabilities while Chapters 5 and 6 focus on CFNs. Finally, Chapter 7 concludes this

thesis by summarizing our key contributions in addition to a discussion on possible

future directions.
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2. RELATED WORK

In this chapter, we provide the related background and work on each contribution

listed in Chapter 1. The general topic of energy efficiency in wireless networks is con-

veyed in Chapter 3. Therefore, it is not covered in this chapter to prevent a redundant

presentation.

2.1. CRs and Energy Efficiency

An important survey focusing on CRs and EE is [6] constituting the main content

of Chapter 4. Most of the work in the literature on CR regarding EE has focused on

minimization of energy consumption due to spectral sensing in CRs [14]. Since there is a

direct trade-off between enegy consumption burden of sensing and reliability, this topic

has been studied in that context. In [15], a tradeoff between the sensing duration and

the transmission duration is investigated for maximizing the throughput. The system

has sensing diversity, i.e. each user may have different sensing durations. Then, the

tradeoff is designed for each single user. Energy-efficient spectrum sensing schemes

are proposed for this setting. Spectrum sensing in cognitive sensor networks is studied

in [16] to minimize the energy consumption subject to the constraints on both detection

probability Pd and false alarm probability Pf . In [17], a cluster-and-forward based

spectrum sensing scheme is proposed to save energy. In [18], a novel metric is proposed

to evaluate the average sensing EE of CR networks. Moreover, an efficient terminal-

assignment strategy for coordinated spectrum sensing is proposed and evaluated. The

above works focus on the energy consumption due to sensing and reporting local sensing

data. However, it is crucial to consider a more integrated approach and to investigate

the energy consumption of sensing, reporting and transmission jointly [14]. A more

comprehensive treatment of this subject is provided in Chapter 4.
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Table 2.1. Related work on CFN.

Topic Related works

Survey and general issues [19,20]

Resource allocation [12]

Interference management [21–23]

Opportunistic access [24,25]

Energy efficiency [13]

2.2. Cognitive Femtocell Networks (CFN)

Femtocells improve the spectrum efficiency via improving the frequency reuse in

small areas, e.g. home coverage. However, the biggest challenge in efficient femtocell

operation is the interference between the layers - macrocell layer and the femtocell layer,

and among the femtocells in the femtocell layer. To tackle or mitigate its detrimental

effects of this interference, sensing of the frequency use as performed in cognitive radios

can be beneficial for a more informed selection of the operation frequency at each

femtocell. We call these FBSs equipped with various cognitive capabilities as Cognitive

Femtocells (CF) and refer to them as CFBS. The related CFN work in the literature

is summarized in Table 2.1 and discussed below.

Advantages of facilitating CR capabilities at the FBSs are manifold [19]. Fem-

tocells use the spectrum band owned by the macrocell operator in either orthogonal

manner or in the co-channel allocation, the first resulting in inefficient spectrum usage

and the second in interference issues. A CFBS can discover the spectral opportunities

in its neighborhood by applying various spectrum sensing policies. Then, it can apply

an environment-aware resource allocation such that both the co-layer and cross-layer

interference are kept in non-disruptive levels. These policies can dynamically operate

based on parameters such as traffic requirements, user locations, traffic density, spectral

opportunity prediction, and maximum allowed transmission power levels [20]. Hence,

higher spectral capacity is available for the femtocell services. In the literature, CF

concept is mostly accepted as a promising solution for tackling interference created by

the femtocells. Since CRs possess radio scene awareness, they enable CFBS to select

the channels that are not in use. This opportunistic operation is called interference
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avoidance [26]. One of the very recent papers on cognitive femtocells [26] provide a brief

overview of interference avoidance, cancellation, and alignment schemes facilitated by

CFBSs. This paper also demonstrates a CR-enabled FBS architecture that consists

of spectrum state database (also a part of cognitive engine), cognitive module (e.g.,

consisting of spectrum sensing block at PHY and traffic estimation block at higher lay-

ers), and a self-configuration module (e.g., implementing spectrum handover, sharing,

and transmission configuration functionalities). In [12], Zhang et al. formulate the

downlink spectrum sharing problem in cognitive radio femtocell networks, and employ

decomposition theories to solve the problem. The experimental results indicate that

CR enabled femtocells could achieve much higher capacity than the femtocell networks

which do not employ agile spectrum access.

In CFNs, offloading some portion of transmission on the femtocell operator bands

to vacant CR bands decreases the interference on the operator frequencies and this

in turn increases the system capacity. Since a wider bandwidth is available to the

users compared to the conventional femtocells operating under static spectrum access

mechanism, average interference for each frequency band decreases. This enhance-

ment is fundamental since femtocells are deployed by the users with no prior frequency

planning. Due to lack of careful resource planning as done by the operator deployed

base stations, femtocells may experience the challenge of uncontrolled interference [27].

Hence, it is paramount to provide efficient interference management. In [21], Bennis

et al. devise a game theory and stochastic approximation based approach in order to

combat with femto-to-macrocell cross-tier interference. The proposed algorithm relies

on the observations of the signal to interference plus noise ratio (SINR) of all active

communications in both macro and femtocells when they are fed back to the corre-

sponding base stations. The experimental results indicate that CR enabled femtocells

could achieve much higher capacity than the femtocell networks which do not employ

agile spectrum access [12]. Similarly, Adhikary et al. [24] propose a system where

femtocells can decode the macrocell control channel and then exploit the unassigned

time and frequency slots for their opportunistic transmission. Thus, the femto-macro

interference can be reduced with the proposed cognitive approach. In [22], Lien et

al. leverage the cognitive radio technology in order to mitigate cross-tier interference
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in femtocell networks. A strategic game for resource management is proposed for

autonomous femtocell networks avoiding any modification on existing infrastructures.

Interference management for wireless networks containing femtocells with CR technol-

ogy is also studied in [23]. Attar et al. investigate on how to mitigate co-channel

interference for LTE networks and propose two game-theoretical mechanisms. In [28],

Liang et al. consider the incumbent GSM networks in the context of cyber-physical

systems. Drawing on statistical analysis of real-scene measurements, they propose an

Efficient Duty Cycle (EDC) model to accurately characterize the GSM white space to

realize cognitive femtocells.

Tighter cooperation and coordination among network tiers is also possible for

utilizing the trade-off between interference and throughput. In [25], Urgaonkar et

al. investigate two different models of opportunistic cooperation between secondary

(femtocell) users and primary (macrocell) users in cognitive femtocell networks. In both

models, the secondary users must make intelligent cooperation decisions as they seek

to maximize their own throughput subject to average power constraints. By providing

controlled interference management, CRs can improve the system capacity in both

femtocell coverage and the macrocell footprint. The handover rate and cell coverage

area can be tuned in an adaptive manner with cooperative cognitive engines utilized by

network nodes. This is also related to the self-organization capability which improves

the network organization with easier deployment and less management burdens. This

capability is critical since femtocells are deployed by the users with no prior frequency

planning.

2.3. Energy Efficiency of Cognitive Femtocells

There has been relatively little CFN related research on energy efficiency com-

pared to other femtocell topics. However, these next-generation systems are also sup-

posed to be evaluated from the green communications perspective as other network

types have been. Because this envisaged mode of environment-friendly operation is

critical not only for protecting the environment, but also for the very benefit of the

cellular operators. A substantial amount of operational expenses of cellular network
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operators is caused by energy consumption in radio access network. Hence, operators

will also benefit from energy-efficient systems and infrastructure. In this vision, FBSs

operating with lower power owing to the receiver-transmitter proximity have better

energy-efficiency and are already accepted as green devices. Similarly, CRs support-

ing energy-efficient operation, e.g. cognitive power control, have significant potential

towards green communications [6]. It is now imperative to have an energy cost per-

spective in the design and operation of wireless communications. However, to the best

of our knowledge, the energy efficiency of CFNs is an overlooked issue. Hence, there is

very limited research [29]. Diffferent from this general cognitive femtocell research, a

more recent work on CFNs focusing specifically on energy efficiency is [13] where Xie et

al. develop a game theoretic approach for energy-efficient resource allocation. They for-

mulate this problem as a Stackelberg game in heterogeneous CR networks. Moreover,

different from our work, they assume that both MBS and FBS have CR capabilities.

Authors propose an energy efficient spectrum sharing scheme for CFNs that also adapt

transmission power of the femtocell. In the considered system, in addition to intelli-

gence at femto-layer, macrocell-layer is also CR-enabled. This CR-enabled macrocell

BS (CBS) buys spectrum from the primary networks with some offered price. Then,

CBS allocates this spectrum to either femtocells or directly to users in its own coverage.

In both cases, transmission power is adapted to maximize the energy efficiency.

A CFBS can dynamically change both its own transmission power and assign

appropriate transmission powers to users in its coverage. This energy-aware power

assignment obviously improves the energy efficiency at both ends of the communication.

This dynamic operation is based on various factors: traffic requirements, traffic activity

level, interference environment, and battery levels, to name a few. For instance, a CFBS

depending on its traffic conditions can drop its transmission power and even close down

in case there are not active users in its coverage. Especially in case of residential closed

subscriber groups, during some certain time periods (e.g. nights or working hours),

there may be no traffic activity. In those cases, via learning algorithms or threshold

based algorithms (e.g. if there is no activity for t time period, than CFBS switches

to sleep mode), a CFBS can switch off. This mode of operation is greener than the

traditional hard switch on-off operation [19]. Using this approach, Ashraf et al. design
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a user activity detection scheme at femtocells that improves energy efficiency of the

femtocells by letting them switch off in case of no active calls [30].

While CRs can empower femtocell networks with their embedded intelligence and

advanced operation functions, they also induce diverse challenges of hardware and soft-

ware complexity in addition to the management of more complicated systems [19]. The

incumbent challenges of CRs apply to the context of femtocell integration: spectrum

sensing and PU detection, efficient protocols for cognitive operation and new business

models are the most apparent challenges that need considerable effort for efficient fu-

sion of the CR paradigm and femtocell networks. CFNs should be evaluated from

an energy efficiency perspective if they are to be adopted as a part of heterogeneous

green cellular networks. In this thesis, we analyze the effect of CFBS proliferation

on the energy efficiency of cellular networks. We setup a general system model with

relevant cognitive capabilities and investigate the overall system performance under

various conditions.

Our work differs from these two papers in that we provide a general framework

to assess the energy efficiency performance of a macrocell network that in addition to

macrocell users is composed of various combinations of the following two small cells:

femtocells and cognitive femtocells. We do not delve into physical layer specifications

etc. but rather give a system level analysis for an understanding of the most general

deployments of macrocells, femtocells, and cognitive femtocells.
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3. ENERGY EFFICIENCY AND GREEN

COMMUNICATIONS CONCEPT IN WIRELESS

NETWORKS

Although the proliferation of wireless networks has been going on for many years,

explicit concern about their energy-efficient operation has recently gained unprece-

dented importance. This issue is related to six fundamental drivers in wireless com-

munications:

� Smaller form-factor devices with more advanced services and applications

� More mobility and more ad hoc settings

� The requirement of more complex and diverse capabilities for facilitating ubiqui-

tous and immersive communications experience

� The emergence of green communications concept and environmental issues related

to energy generation/consumption and sustainable development

� Operational expenditure reduction via minimization of energy usage

� The widening gap between the level of improvements in energy storage capabilities

(i.e. batteries) and the rapid advances in power-efficient circuit design

Energy efficiency is a fundamental constraint in the operation and design of com-

munication networks consisting of battery-operated devices while it is even more chal-

lenging in some wireless networks where energy may be entirely non-renewable such

as wireless sensor networks (WSN) [31]. For instance, satellites are operated by so-

lar panels or batteries which are limited in energy capacity. Moreover, non-terrestrial

space platforms are supposed to utilize much less intense solar radiation operating

under more hostile conditions. In a WSN which is typically composed of battery-

operated sensor nodes with restricted and non-rechargeable energy resources, network

lifetime is limited by the energy use of the sensor nodes. Hence, how energy is used for

transmission, reception and related functionalities is the principal factor affecting the

network lifetime [32]. In addition to the energy being the primary limiting resource
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for wireless networks, the network lifetime related to the energy use for transmitting

and processing is also a significant performance metric [33]. Considering these factors,

energy efficiency must be considered in every aspect of network design and operation,

not only for individual network segments, but also for the communication of the entire

network [34]. Energy efficiency and power control are vital for wireless network perfor-

mance, for example, in terms of throughput and delay. Choice of transmission power

affects many factors such as energy, success probability, delay, interference, and buffer

overflow [35].

The fundamental concept of wireless communications is based on the theory of

exchanging electromagnetic signals among wireless network nodes [36]. The conven-

tional network topology models usually treat links as binary-natured, i.e. there is a

connection or not. However, this model does not fit to the nature of wireless networks

since the signal strength at a specific distance is a decreasing function of the distance

from the source of the signal. Therefore, instead of a binary-natured link concept, a

relative concept is more appropriate. The signal strength at a distance r denoted by

S(r) is calculated according the radio propagation formula below [31]:

S(r) = Sr−α (3.1)

where S is the amplitude of the transmitted signal, r is the distance from the trans-

mitter, S(r) is the amplitude of the received signal at distance r, and α is a parameter

whose value ranges from 2 to 4. This nonlinear characteristic incurs nonlinearity ad-

vantages: multihop performing better compared to single hop transmission in terms of

energy cost. In other words, more hops utilized in an efficient way during a transmission

will cause smaller energy expenditure. However, the peculiar characteristics of wireless

transmission does not allow for such a straight-forward conclusion. There is also the

additional processing overhead for each intermediate node. In general, although pro-

cessing energy of a node is smaller than the transmission energy, it may manifest its

effect for low rate codes and penalty for large number of hops [33]. Also, broadcasting
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is different since it entails one-to-many information flow with single downlink wireless

transmission. The network scale (the physical separation and number of nodes in the

network) is an important factor since it determines the system operation point for these

factors.

Transmission power control is one of the mechanisms that can be considered in the

scope of energy efficiency. It is motivated from two prospective benefits: energy savings

via transmission power minimization and capacity improvement due to interference

avoidance [37]. As an illustration, we discuss how the transmission power is intricately

associated with the reliable transmission of a single packet [38]. For any particular

link <i, j> between a transmitting node i and a receiving node j, let Pi,j denote

the transmission power. Any signal transmitted is affected by two different factors:

attenuation due to the medium, and interference with ambient noise at the receiver.

The attenuation is proportional to rα as noted in Equation 3.1. The bit error rate

associated with a particular link is essentially a function of the ratio of the received

signal power to the ambient noise. For additive white Gaussian noise (AWGN) channel

and point-to-point transmission, Shannon’s capacity formula provides the achievable

rate as

R = W log2

(
1 +

P

WN0

)
(3.2)

where W is the channel bandwidth (Hertz), P is the received signal power (Watts) and

N0 is the noise power at the receiver (assuming interference is included), respectively. In

the constant-power scenario, Pi,j is independent of the characteristics of the link <i, j>

and is a constant. In this case, a receiver located further away from a transmitter will

suffer greater signal attenuation (proportional to rα) and will, accordingly, be subject

to a larger bit-error rate. Moreover, this scenario results in the same amount of energy

being consumed at the transmitting node (over a given time) regardless of whether

the receiving node is in the outer portion of the range of the transmitter or in the

immediate vicinity of the transmitting node [37].
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In the variable-power scenario, transmitter only sends with the power needed for

their intended receiver to satisfy some link performance target via taking advantage

of source and destination proximity. In other words, a transmitter node adjusts Pi,j

to ensure that the strength of the (attenuated) signal received by the receiver is inde-

pendent of r and is above a certain threshold level. This is the idea of transmission

power control which exploits these dynamic factors such as transmitter-receiver dis-

tance and channel variations, and thus provides both higher capacity via interference

avoidance and more energy-efficient operation. It is also related to dynamic coverage

management at the network level, which aims to exploit traffic variations in cellular

networks [39]. However, due to wireless channel characteristics, attaining transport

efficiency via this mechanism is not clear-cut. There are channel impairments such as

multipath effects and fading, delay due to propagation and processing, and disruptions

in network topology. This point-to-point analysis becomes inadequate when a net-

worked set of transceivers is considered in a network setting. Moreover, when energy

efficiency is considered, one has to consider other factors such as processing overhead in

addition to transmission power. Therefore, energy optimization in wireless networks is

a complicated issue even when the fundamental concept of power control is considered.

The energy minimization problem in wireless communications should be con-

sidered in all aspects from physical layer (PHY) functionalities to application layer

approaches. Broadly speaking, main motive for attaining energy efficiency is twofold.

First, in the design of newly emerging state-of-the-art systems, energy consumption

must be considered through all phases of their design from system conception to the

device and technology level. Second, systems should be managed efficiently from the

power viewpoint while they are in operation [40]. Low-power techniques vary depend-

ing on the level of the design targeted, ranging from semiconductor technology to the

higher levels of abstraction. These abstraction levels are classified as algorithm, archi-

tecture, register transfer, gate, and transistor levels. Figure 3.1 shows various levels of

hierarchy that should be considered for low-power designs. There may also be couplings

among various layers of communication protocol stacks. For instance, there exists a

value (with respect to the fast fading) of the average Signal to Noise Ratio (SNR)

which maximizes the energy efficiency of a communication link between two wireless
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Figure 3.1. Optimization levels for energy minimization.

nodes. As it is shown in [41], the existence of this maximum is strictly related to use of

retransmission-based error recovery mechanisms at link layer. These cross-layer issues

are discussed in Section 3.3.2.

The higher levels of design abstraction shown in Figure 3.1 provide larger amounts

of power reduction for chip designs. In higher levels of abstraction, such as algorithm

level, designers have a greater degree of freedom to implement low-power design tech-

niques. Hence, power-optimization process is the most effective method in higher levels

of abstraction [42]. As we move toward the lower levels, the amount of power savings

becomes less significant and the speed of power optimization becomes slower. Lower

level power-optimization techniques are more accurate; however, they are not as ap-

plicable as higher level methods. Table 3.1 illustrates the amount of power savings for

various optimization levels in CMOS based hardware according to [43].
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Table 3.1. Power-saving percentage per optimization level.

Optimization Level Power-Saving Percentage

Algorithm Level 75%

Architecture Level 50%-75%

Register Transfer Level 15%-50%

Gate Level 5%-15%

Transistor Level 3%-5%

3.1. Energy Efficiency Metrics

The requirements of EE metrics at the component, equipment, and system/network

level are significantly different. EE metrics for components are relatively straightfor-

ward to define and most of them have been well established [44]. It is more complicated

to define an EE metric for equipment and system/network. The equipment and net-

works are more complex systems entailing heterogeneous components. Moreover, they

operate in different environments under diverse conditions such as load or channel

characteristics. In the literature, there are various energy efficiency metrics consider-

ing different aspects of energy consumption and wireless communications. However, in

the fundamental sense, energy efficiency is formally defined as the number of bits that

can be successfully transmitted with unit energy consumption [45]. In other words, it

is the ratio of total throughput to the energy consumed for the transmission of this

information. Bits-per-Joule capacity introduced in [46] serves as a metric for assess-

ing the energy efficiency performance of a network. According to Shannon’s capacity

formula as stated in Equation 3.2, Bits-per-Joule metric can be calculated as

Be =

[
W log2

(
1 +

P

WN0

)]
/P (3.3)

Similarly, energy-per-bit (Eb) [45] measures the energy required to transmit a single

bit. Energy consumed for a single bit transmission is the power consumed during the

transmission time (tb) of this bit. Using Shannon’s capacity formula, tb equals to the
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inverse of channel capacity R as:

tb =
1

R
=

[
W log2

(
1 +

P

WN0

)]−1

(3.4)

From Equation 3.4, energy per bit is calculated as:

Eb = Ptb = (2
1

Wtb − 1)WN0tb (3.5)

As shown in Equation 3.5, energy consumption is a function of power consumption.

Therefore, the latter is mostly considered as a parameter to be optimized for improving

the energy efficiency and used as a metric for measuring the energy efficiency perfor-

mance.

We define throughput per unit bandwidth ν = R/W , the following relation can

be obtained linking Eb and throughput R:

Eb/N0 = (2ν − 1)ν (3.6)

The relationship of energy and performance based on Equation 3.6 is plotted in Figure

3.2. It can be obtained that for a fixed amount of data, the energy consumption de-

creases with the decreasing data rate since Eb decreases [14]. However, the conventional

per-bit energy consumption in information theory does not always represent the energy

efficiency in practical wireless networks. The energy efficiency is context-dependent,

e.g. interference from other system, traffic load, etc.

Energy Consumption Rating (ECR) Initiative [47] has proposed the Energy Con-

sumption Rating (ECR) metric for assessing the energy efficiency of a system. ECR is
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Figure 3.2. The transmission rate as a function of energy efficiency.

given by:

ECR =
E

T
(3.7)

where E and T are the energy consumption and effective throughput [48], respectively.

ECR provides an absolute measure as the ratio of E and T for different scenarios in

communication networks [14]. However, to evaluate transmit energy efficiency, the ECR

should consider the overall energy consumption per information bit that is successfully

transported over the network and is thus measured in units of joules per bit [49]. In

other words, rather than solely focusing on transmit power and resultant ECR, the

metric should identify the energy efficiency holistically. An example is provided in [49]:

A typical LTE base station sector might operate over a bandwidth of 10 MHz with

an average spectral efficiency of 1.5 b/s/Hz, thus achieving an average data rate of

15 Mb/s. If a base station antenna transmits 8 W of RF power, the RF ECR value

(considering only transmit energy consumption) for this system would be 0.53 J/b.

However, if the total power budget of the base station (e.g., 450 W) is shared among

3 sectors (i.e., 150 W/sector) the ECR value for one sector would increase to 10 J/b.

If new schemes/techniques are proposed to improve EE in a network, it is cru-
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cial to employ appropriate metrics to examine the potential energy savings. For that

purpose, the relative measure of energy reduction gain (ERG) is defined as:

ERG = 1− ECR1

ECR0

(3.8)

where ECR0 and ECR1 denotes the ECR of the base and updated system, respectively.

While analyzing the energy consumption of a network in order to assess the en-

ergy efficiency, energy dissipation is mostly considered only in a narrow context, i.e.

energy consumption of the devices in the network for transmission and related actions.

For instance, energy consumed in a wireless sensor network is calculated as the sum of

energy consumed by the nodes in the network only for sensing, communication, and

data processing [34]. Energy expenditure for maintaining the infrastructure or deploy-

ing the sensors are mostly ignored. For a more accurate energy efficiency analysis, a

communication system should be analyzed from a broader perspective ranging from

system level to component level [50], and from manufacturing process to the mainte-

nance of the system. Besides, alternative metrics considering not only the throughput

capacity or energy consumption performance of the system but also spectral efficiency

(bits per Joule per Hertz ), other QoS related metrics and spatial efficiency (bits per

Joule per unit area) are yet to be widely adopted for a more accurate and holistic

energy efficiency analysis [50].

3.2. The Composition of Energy Consumption in Wireless

Communications

According to [51], the European Commission DG INFSO report in [52] estimated

European telcos and operators to have an overall network energy requirement equal to

14.2 TWh in 2005, which will rise to 35.8 TWh in 2020 if no green network technologies

will be adopted. These trends are depicted in Figure 3.3. According to [5], the Global

e-Sustainability Initiative (GeSI) weighed the carbon footprint of networks and related



23

ECO

BAU

Energy savings

E
n
e
rg

y
 c

o
n
s
u
m

p
ti
o
n
 (

T
w

h
)

Year

2005 2010 2015 2020

10

0

20

30

40

Figure 3.3. Energy consumption estimation for the European telcos network
infrastructures. Two scenarios are considered:“Business-As-Usual (BAU) vs.
Eco-sustainable (ECO) in addition to the resultant cumulative energy savings
between the two scenarios [51]. Source: European Commission DG INFSO

report [52].

177.99

Fixed broadband

Telco devices

Fixed narrowband

2020

0 50 100 150 200 250 300

Estimated CO2 emissions (Mtons per year)

Mobile

64.932002

350

63.42

18.12

4.53

52.35 69.80 48.86

Figure 3.4. GeSI CO2 emission estimation [51]. Source: Smart 2020 report [5].

infrastructures at about 320 Mtons of CO2 emissions in 2020. In 2002, network in-

frastructure for mobile communication generated the leading greenhouse contribution

weighing for more than 40% upon the overall network carbon footprint. The 2020 es-

timation suggests that mobile communication infrastructures will represent more than

50% of network CO2 emissions as shown in Figure 3.4. Moreover, it is noted that the

energy costs accounts for almost 18% of a mobile operator’s operational expenditures

(OPEX) [53]. Therefore, EE is not just a responsibility for environmental protection

but also an opportunity in terms of economic benefits [54]. Careful analysis of the

energy consumption of a mobile network (as in [55]) provides the pointers on where the

energy saving potential is concentrated, namely access and core networks. For instance

according to [55], BSs account for the largest portion of power consumption followed
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by mobile switching, core transmission, data centers and retails. Therefore, power

consumption analysis of radio access network is of significant importance for greener

networks. Lately, ways of improving energy efficiency and thus decreasing power con-

sumption have been at the interest of many ICT companies [49]. As a first line of

defense, new BS deployments can be avoided by making efficient use of the existing

infrastructure [4]. To this goal, traffic optimization (caching) and efficient scheduling

by making use of the temporal characteristics of network flows can be employed as well

as applying systemic energy-saving techniques exploiting network-wide advances [6].

Different wireless network segments have different peculiarities and requirements.

A typical example is the network scale factor. Traffic adaptation via sleep mechanisms

and dynamic voltage scaling (DVS) do not work well with small-scale networks such as

WLANs since they have a large number of diverse nodes with sporadic traffic genera-

tion and transfer with relatively low volume (i.e. sparsity in time and space). However,

metro and access networks neither have device operating ratios low enough to make

sleep control and DVS effective nor optical nodes usage justified (low traffic volume)

unlike the core network. A negative consequence is the lack of feasibility for more ef-

ficient optical packet switching instead of electrical routers [4]. For satellite networks,

these factors emerge in both settings: for relaying services (point-to-point backhaul-

ing) the number of nodes is very limited with high duty-cycles for the link. For the

access scenarios, the system has more nodes that are geographically spread and with

various channel conditions and applications, which make the resource allocation and

power control more challenging. Therefore, flexibility and adaptability to different cir-

cumstances are critical for any green communications scheme to attain widespread and

effective applicability.

3.2.1. Network Node Centric Analysis

The main sources of energy consumption are distributed among various com-

ponents in a wireless device. A typical wireless device is shown in Figure 3.5. The

dominant factors are transmission, processing and maintenance such as cooling. The

PHY layer plays a very important role in wireless communications due to the chal-



25

Power supply 

subsystem

Baseband 

Processing

A
p

p
lic

a
ti
o

n
s

payload

wireless transmission

RF front-end

TX RX

PA

Control 

subsystem

Wireless network node

Figure 3.5. Block diagram of wireless network node focusing on radio subsystem.

lenging nature of communication medium. The power consumption of wireless devices

heavily relies on the PHY layer. Therefore, energy can be saved in mobile devices by

shutting down system components when inactive. The medium access control (MAC)

layer manages wireless resources for PHY layer and directly impacts overall network

performance. By utilizing various information related to a node (traffic characteristics

and requirements, queue states as well as channel states), mechanisms implemented at

MAC can determine the operation mode of a node: some time periods can be sched-

uled as idling or shutdown periods and better energy management can be provided.

This type of operation requires a tight coordination among the layers such that a user

can wake up as it needs to transmit or receive [45]. Regarding the efficiency provided

via the hardware, ubiquitous VLSI-based optimizations have increased the energy effi-

ciency performance of wireless networks. These solutions entail various advances such

as RFICs with lower power consumption, smaller idle mode costs and better support

for transceiver wake up/sleep/active cycles [56].

3.2.1.1. Sources of Power Dissipation in CMOS Devices. Since most of today’s designs

are based on CMOS technology, the first step toward power reduction is to analyze the

sources of power dissipation in such devices. Power consumption sources in digital

CMOS circuits are divided into three main categories [43]:

� Static power dissipation (Pstatic): It is caused by leakage currents and subthresh-
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old currents.

� Short-circuit power dissipation (Pshort circuit): It depends on the amount of short-

circuit current flowing to ground.

� Dynamic power dissipation (Pdynamic): It is due to charging and discharging of

parasitic capacitive loads of interconnects and devices in the circuit during its

operation.

The contribution of these three parameters to the total power consumption is basically

additive and shown below:

Ptotal = Pstatic + Pdynamic + Pshort circuit (3.9)

CMOS devices have very low static power dissipation and most of the energy in them is

used to charge and discharge load capacitances (dynamic power dissipation). Dynamic

power dissipation is of larger magnitude compared to the short-circuit and static pow-

ers. Hence, it is considered as the basic component of power consumption of a CMOS

device.

From a system-level perspective, the power consumption of a CMOS based silicon

can be roughly parametrized into [51]:

P = CV 2f (3.10)

where P is the active power consumption, C the capacitance of CMOS circuit, and V

and f are the operating voltage and frequency values, respectively. It is worth noting

that V and f are related since they need to be directly proportional for a correct working

of the CMOS silicon. Clearly, configuring (i.e. decreasing) the operating frequency and

the voltage of a processor, or throttling its clock, provides a performance-consumption

trade-off, allowing the reduction of the power consumption and of heat dissipation at
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the price of slower performance. Specifically, power scaling capabilities allow dynam-

ically reducing the working rate of processing engines or of link interfaces. This is

usually accomplished by tuning the clock frequency and/or the voltage of processors,

or by throttling the CPU clock (i.e., the clock signal is gated or disabled for some

number of cycles at regular intervals).

3.2.1.2. The Power Amplifier (PA). In a RF frontend or even an equipment, the power

amplifier is the main source of power consumption. According to [57], the power

amplifiers in a GSM BS turn 22% of total input energy into heat. The efficiency of

power amplifier η is defined as the ratio of effective output power to input power [44]:

η =
Poutput

Pinput

(3.11)

PA is a critical source of power consumption in a typical transmitter. Since

nonlinear distortion in circuitry of a wireless system is due to its power limitations

(limited power supply), it is most evident in the components handling the highest

signal levels, which are typically PAs used for wireless transmission [58]. In other words,

transmission power amplifiers have nonlinear transfer functions. This nonlinearity is

characterized by amplitude conversion (AM/AM) and phase conversion (AM/PM) [59].

Equations 3.12 and 3.13 give an example of a typical traveling wave tube (TWT) model

used in satellite communications, where A(r) and Φ(r) are the AM/AM and AM/PM

conversions, respectively [60]:

A(r) =
2r

1 + r2
(3.12)
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and

Φ(r) =
r2

1 + r2
(3.13)

where r is the amplifier input signal amplitude. The nonlinearity of the structure

implies the challenge to quasi-linear operation of PAs.

For real wireless systems, PAs enforce practical hardware constraints on the en-

ergy performance limits theoretically achievable via optimizations. For instance, the

typical energy conversion efficiency of a power amplifier in current base stations is

estimated to be less than 40 percent [39]. Efficiency optimization of PA is also desir-

able due to its high cost and complexity. In case the modulated signal can enforce

less requirements on the linearity of the PA, lower cost transmitters can be designed.

This in turn leads to simpler (hence lower cost) surrounding components in addition

to less requirements on cooling. Furthermore, battery lifetime can be increased which

is crucial for battery-operated hand-held devices [61].

For increasing the base station efficiency, improving the efficiency of the PA and

antenna, as well as optimizing the power transfer between them is instrumental. One

possible approach for PA is to use the Class J amplifier [62], which relies on fundamental

and second harmonic tuning to achieve high efficiencies, while maintaining the linear

operation. In the case of the antenna, exploiting highly efficient dual-polarized patch

antenna elements is an option [49]. In addition, a system level approach is to shut

down a power amplifier when the transmitter is idle. Another energy saving solution is

to place PA next to the transmitter antennas in order to minimize feeder cable losses.

This design is also beneficial to decrease the cooling related energy consumption.

Wideband PA design is especially important for cognitive and heterogeneous net-

works since it is necessary for multi-mode and multi-standard operation that reduces

the complexity and size of the modules. This is also beneficial for infrastrucutre shar-

ing which allows cooperation among network operators, improving resource utilization
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and leading to substantial OPEX and CAPEX savings.

3.3. The Emerging Factors and The Potential Approaches for Energy

Efficiency in Wireless Networks

In this section, we present an investigation of some emerging factors/approaches

in wireless networking with an envisaged impact on the energy efficiency. They can also

be interpreted as potential elements in energy efficiency toolbox for green networks.

3.3.1. Cognition in Networks

Cognitive radio networks can enable advanced energy consumption minimization

schemes in wireless nodes. Energy awareness is the first step to this goal. That is

to say, a node with capability of modeling or estimating its energy consumption can

determine the potential points for energy optimization. This requires sensing data and

computational schemes based on learning. Additionally, advanced middleware support

for realizing an efficient energy management and measurement, and profiling of energy

consumption in wireless networks are of fundamental importance for improving energy

efficiency. CRs can enable all these tasks since CRs are promised to be self-aware:

the CR knows the source of its power supply, the remaining power source as well as

energy efficiency performance of alternative adaptation schemes [6]. CRs encompass

the sensor and computational infrastructure for enabling these capacities.

3.3.2. Cross-layer Design: The Paradigm Shift

The conventional layered protocol stack where each layer performs some defined

functionalities, only allows the adjacent layers to communicate via some primitives.

Figure 3.6 depicts this layered approach for TCP/IP stack. Organization of these

functionalities and tasks confined into the layers not only eases the management of

the system but also facilitates better understanding of the overall system. This ar-

chitectural principle has facilitated the rapid proliferation of diverse applications that

constitute the Internet ecosystem. Moreover, reusability of some parts of the protocol
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Figure 3.6. Traditional TCP/IP layered protocol stack vs. cross-layer protocol stack.

stack (e.g. same lower layers can be used for a wide range of applications) is increased by

this layered architecture, which in turn enhances the utility of the network architecture.

Layering typically simplifies network design and leads to robust scalable communica-

tion protocols [63]. On the contrary, layering happens to be suboptimal because each

layer has insufficient information about the internal and external parameters since the

information is not shared among the protocol layers. The interface between the layers

is pre-defined and static leading to inflexibility, and is independent of individual net-

work constraints and application requirements [64]. This shortcoming is highly evident

for energy efficiency case in heterogeneous networks. In monolithic design approaches,

systems are carefully designed and implemented with specific hardware to perform at

the maximal efficiency for specific applications [65]. However, heterogeneous and cog-

nitive networks operate under very uncertain and dynamic circumstances. Therefore,

cross-layer design is highly beneficial in these systems.

As opposed to restrictions in the interactions between the adjacent layers in

layered approach, the cross-layer design (Figure 3.6) expands the functionalities of

the layers by enabling the non-adjacent layer interactions [66]. It aims to achieve

optimal performance by allowing sharing of information across several layers. By the

extended sharing of information, each layer has wider information about the network

when compared to layered approach. However, several concerns are evident regarding

the flexibility, inter-operability, proliferation and even the performance of the cross-
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layer design. Since it violates the abstraction of the lower layers to the upper layers,

it leads to dependencies between various layers. This in turn, leads to challenges in

the cross-layer protocol design. All dependency relations must be clearly identified

between the layer pairs and then the design framework must be drawn. Therefore, the

simplification in the layered protocol approach leaves its place to many challenges in

the cross-layer approach.

Since optimizing energy consumption requires in-depth analysis of the low-level

radio hardware meanwhile measuring performance is only possible by taking the char-

acteristics of the protocol stack into account, energy management problem requires a

cross-layer solution approach [67]. A typical example is the monitoring and predic-

tion of energy efficiency for supporting the decision making processes in the network

equipment [14]. This capability is required in a network-wide setting. On the infras-

tructure side, network nodes may optimize their energy consumption using different

control dimensions such as switching to different network interfaces, adaptive sleep

cycles, application-specific policies, and class based policies to avoid sacrificing the

QoS of important users. Cross-layer signaling is necessary to exchange the relevant

sensory and control information among layers and thus act in a cross-layer manner.

Heterogeneous and cognitive networks will operate in dynamic environments where a

single energy management solution is not sufficient. Thus, flexible cross-layer solutions

are necessary [56]. Potential cross-layer interactions for a network node are shown in

Figure 3.7.

Careful attention should be paid to the design of layers in a heterogeneous network

in order not to disrupt the basic layering principles and prevent the unstable system

behavior. Cross-layer design methodologies that rely on interaction between the dif-

ferent protocol layers, is promising for addressing inherent challenges such as energy

efficiency and for providing reliable and high-quality end-to-end performance in wire-

less communications. However, cross-layer protocol design imposes many challenges in

the protocol design and implementation; increase in the layer interdependencies, more

complex protocol design, and stability issues. Therefore, great attention and research

on the novel cross-layer techniques are required.
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3.3.3. Increasing Heterogenity: Plural Networks

Future mobile networks are expected to involve systems that are based on different

technologies, such as WiFi, 2G/3G, WiMAX, LTE, and satellite networks [68]. Inter-

national Telecommunication Union (ITU) has defined integrated and hybrid networks

in the framework of Next-Generation Networks in order to address this heterogeneous

environment [69]. The cooperation of different wireless communication systems enables

design and runtime optimizations to provide these services in the most energy-efficient

way, taking into account QoS requirements, signal quality (coverage), and traffic con-

gestion conditions. In this regard, these integrated and hybrid networks so called

Heterogeneous Networks (HetNets) are posed to be both a challenge and a facilitator

for energy-efficient communications.

In this context, HetNet concept relies on the use of multiple types of radio ac-

cess infrastructure such as macrocells, small cells (picocells, femtocells), relays and

distributed antennas in a wireless network in order to offer wireless coverage in an

environment with a wide variety of wireless coverage zones. These network architec-

tures may be either operator-deployed and/or consumer-deployed [70]. By deploying

these additional network nodes within the local-area range and bringing the network
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closer to end-users, HetNets are envisaged to improve spatial reuse and coverage en-

hancing data rates, while retaining the seamless connectivity and mobility of cellular

networks [71]. For the realization of such converged networks, a multitude of issues

pertaining to transmission efficiency, resource allocation and management, mobility

management, and seamless connectivity have to be addressed [72].

To exploit the advantages of these integrated systems, a flexible multimode radio

is essential. A multimode radio communication terminal is a tunable device for com-

municating over multiple radio interfaces [73]. Multimode devices with multi-wireless

interfaces are important since they are potentially more open to DSA schemes and

cognitive capabilities can be achieved via firmware upgrades in a flexible manner. For

multimode devices, there is the additional parameter of selecting which interface to

utilize in addition to conventional energy optimization problems. Because a fast inter-

face can send data with less energy per bit since it takes shorter to transmit. However,

it may incur a larger wakeup cost. As a result, the multimode structure adds another

control dimension to the conventional radio structure. Additionally, the available hard-

ware layout of these devices introduce different dimensions of energy consumption op-

timization. Overall, the cost and reward structure for opportunistic operation is more

complex since different interfaces have different properties such as power consumption

per bit, wakeup cost, throughput and channel characteristics [36].

3.3.4. Virtualization and Cloudification of Mobile Networks

Virtualization is one of the primitives that are widely adopted in ICT infras-

tructure for improving energy efficiency and reducing the carbon footprint. Modern

network equipment already include some virtualization primitives, which allow differ-

ent logical routers over a single physical platform [51]. However, they are generally

conceived for being used in simple VPN-like applications. This notion results in a

coupling between logical nodes and physical platforms where a logical network entity

can usually work on a specific hardware platform.

As noted in [51], research on router virtualization render the possibility of re-
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alizing novel virtualization paradigms, which allow logical instances to be migrated

among different physical platforms without suffering service interruption and losing

any packets [74]. In perspective, such kind of primitives can be adopted for adapting

the number of active physical platforms or aggregating logical entities with respect to

traffic volumes and network requirements. This capability is closely related to net-

work topology control and adaptation approach discussed in Section 3.3.5. Logical

instances, able to move among different hardware platforms, provide another oppor-

tunity for turning off hardware platforms or consolidating functionalities on energy-

efficient hardware without causing degraded user experience and network instabilities

since the network as an entity becomes a logical infrastructure as well. However, this

flexibility requires substantial research efforts to be realized. In this respect, virtual-

ization primitives embedded in network equipment constitute the capability framework

for novel network-wide and energy-aware control criteria to dynamically re-configure

networks and related equipment. For the mobile network, network virtualization en-

ables dynamic provisioning of virtual network segments to provide different services to

different customer groups.

Another approach is to utilize cloud computing concept, especially for computa-

tion off-loading. It is very effective for enhancing the computational power and battery

life of resource-constrained devices such as mobile user devices [75]. Remote execu-

tion via online services running in the cloud permits transposition of computation

from battery-powered mobile devices or power-inefficient network nodes in order to

utilize “economies of scale” on more energy-efficient hardware. However, this scheme

is beneficial when processing overhead is more dominant compared to communication

counterpart such as video processing.

3.3.5. Network and Topology Flexibility

Power saving mechanisms based on network and topology control are currently

founded on the extension of traffic engineering and routing criteria [51]. In this area,

the basic idea is to adapt the network capacity in terms of links and nodes to the

actual traffic volumes. Researchers propose to reduce the network energy requirements
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by switching off unused links and nodes. Thus, the main objective of these studies is

to move traffic flows among network nodes in order to find the minimum number of

network resources (i.e., links and nodes), guaranteeing the best trade-off between end-

to-end network performance and overall power consumption. This approach is closely

related to virtualization paradigm discussed in the previous section since virtualization

enables “fluidic networks” where communication functionalities can easily migrate,

activate or shut-down at different physical network locations.

For the emerging mobile networks, Self-Organizing Networks (SON) concept is

also critical in network and topology control [76]. SON concept implies that net-

work entities are active agents and they interact among themselves to reduce the

cost of installation and management by through automated mechanisms focusing on

self-configuration, self-optimization and self-healing, which constitute the three main

phases of the SON cycle [77]. This new type of networks is expected to be widely

deployed in 4G networks since small cell proliferation is going to increase with new

spectrum bands at high frequencies, capacity requirements and higher peak data rates.

This paradigm creates another energy efficiency potential in wireless networks.

3.4. Summary

Energy efficiency and power control are vital for wireless network performance.

In this chapter, we have presented background on energy efficiency in wireless networks

discussing fundamental aspects such as energy efficiency metrics and the composition

of energy consumption. We also discussed emerging developments in wireless networks

which are expected to have an impact on energy efficiency related research. In the

following chapters, we focus on this subject and energy efficiency following this general

background build-up.
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4. COGNITIVE RADIOS AND GREEN WIRELESS

COMMUNICATIONS

We need energy efficient systems in order to protect our environment, cope with

global warming, and facilitate sustainable development. However, telecommunications

data volume increases approximately by an order of 10 every 5 years, which results

in an increase of the associated energy consumption by approximately 16-20% per

annum [78]. For instance, in Japan, network power consumption in 2025 is predicted

to be 13 times the 2006 level, especially due to the anticipated increase in traffic volume

with broadband services and machine-to-machine bursty traffic originating from cloud

computing [4]. While the use of Information and Communications Technology (ICT)

is considered to be a facilitator for global energy savings (teleworking, smart logistics,

smart buildings, etc.), the volume of network traffic will also increase which leads

to a challenging trade-off. Specifically, the computing and communication systems

are regarded as key components for reducing the environmental footprint in other

environments such as utility grids and transportation systems and also for greening

services and utilities. However, by 2008 figures, it is estimated that 3% of the world-

wide energy consumption is caused by the ICT infrastructure that generates about 2%

of the world-wide CO2 emissions [5].

A major portion of this expanding traffic has been migrating to mobile networks

and systems. Thus, optimizing the energy-efficiency of wireless communications not

only reduces environmental impact, but it also cuts overall network costs and helps to

make communication more practical and affordable in a pervasive setting. For instance,

in many portable devices, 30% of the energy consumption is due to wireless network

interfaces [56]. With the expanding domination of multimedia services/traffic in wire-

less networks, the spectrum requirements and computational burden on these mobile

devices are also toughening in contrast to the perpetual trend of equipment miniatur-

ization. Considering all these points, energy-wise optimization of all aspects of wire-

less communications, ranging from equipment manufacturing to core functionalities,
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is paramount. Accordingly, the green networks and communications approach which

call for a holistic energy-wise optimization of communication systems have spurred a

substantial stream of new research activity.

Cognitive radio (CR) is a promising paradigm proposed to cope with the spectrum

scarcity problem that has emerged as a result of increased need for anytime-anywhere

connectivity [79]. Briefly, CR (also called smart radio) is defined as a wireless radio

device that can adapt to its operating environment via sensing in order to facilitate

efficient communications [80]. A CR, with its built-in intelligence and cognitive ca-

pabilities, can sense the radio spectrum, locate spectrum holes and opportunistically

access them as long as the licensed users (also called primary users, PUs) do not use

the band. Moreover, it can facilitate multi-mode radio interfaces that can operate in

multiple standards with its adaptation property. However, there are many challenges

in realizing the CR concept. Briefly, detecting spectrum holes reliably and vacating the

spectrum bands immediately as a PU appears in the CR band are difficult problems

that are yet to be solved exquisitely. CRs open up new control dimensions for green

wireless communications with their agility and adaptation properties.

Cognitive abilities that refer to a wide range of properties from spectrum sensing

to learning-empowered adaptive transmission in wireless network nodes are beneficial

for leveraging intricate trade-offs between energy efficiency, performance and practical-

ity. Nodes coupled with these cognitive functionalities, known as cognitive nodes, can

improve network performance by environment-aware and self-aware operation capabil-

ities. However, there are intrinsic challenges such as hardware complexity, algorithmic

problems and design trade-offs. These issues can be classified into two broad groups:

CR inherent problems, e.g. efficient sensing and spectrum access, and interworking is-

sues entailing communications networks themselves and other infrastructural segments

such as smart grids [78]. However, it is envisaged that adaptive and optimal operation

via cognitive nodes will benefit the overall ICT and the relevant interconnected sys-

tems. In this work, we present and discuss these points to highlight the case of CRs for

green wireless communication systems. Moreover, we outline the fundamental trade-

offs for greening wireless communications via cognitive functions in order to convey the
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challenges against this objective.

The rest of the chapter is organized as follows: The next section presents a

brief background on energy efficiency issues of wireless networks. We then discuss the

benefits of CR for energy efficient wireless communications in Section 4.2. Section

4.3 presents some fundamental trade-offs for greening communications via cognitive

functions and their impact on energy efficiency. Finally, Section 4.4 concludes the

chapter.

4.1. Energy Efficiency Perspective for Wireless Networks

The typical power consumption profile for an European mobile network operated

by a global cellular operator is shown in Figure 4.1 according to [55]. This diagram

conveys the prime targets for energy savings: access and core networks. To control

the increasing power consumption in these domains, the green networks and energy

efficiency are now more important than ever. Accordingly, many ICT companies have

announced voluntary targets for substantial energy consumption and CO2 emission

reductions for the coming years [78]. In that sense, system-wide energy savings in ICT

and ICT empowered systems are crucial. However, this is not a trivial task with a

multidimensional setting of various factors such as hardware complexity, algorithmic

problems and design issues. As the first line of defense, the mobile operators can avoid

upgrades and green-field deployments via better utilization of incumbent infrastructure

[4]. A typical approach towards this goal is to play with the temporal characteristics

of the traffic: tools for this aim are traffic optimization (caching) and more efficient

scheduling of network flows. Moreover, systemic energy-saving techniques exploiting

network-wide advances such as generally applicable routing and switching algorithms

and evolving device technology can be employed.

Different wireless network segments have different peculiarities and requirements.

A typical example is the network scale factor. Traffic adaptation via sleep mechanisms

and dynamic voltage scaling (DVS) do not work well with small-scale networks such as

WLANs since they have a large number of diverse nodes with sporadic traffic generation
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Figure 4.1. Typical breakdown of power consumption in a mobile operator [55].

and transfer with relatively low volume (i.e. sparsity in time and space). However,

metro and access networks neither have device operating ratios low enough to make

sleep control and DVS effective nor optical nodes usage justified (low traffic volume)

unlike the core network. A negative consequence is the lack of feasibility for more

efficient optical packet switching instead of electrical routers [4]. Therefore, flexibility

and adaptability to different circumstances are critical for any green communications

scheme to attain widespread and effective applicability.

The key points related to different network segments are shown in Figure 4.2 and

described below. There are energy efficiency approaches addressing different subnet-

works such as better power control between end-user devices and access nodes, and

generally applicable solutions such as low-power VLSI based network equipment.

4.1.1. Endpoint Devices and Access Network

“Greening” wireless access networks depends on a multitude of factors such as

network scale, incumbent standards’ capabilities, and cost efficiency. From the end-

user perspective, the increasing energy disparity between increasing communication

demands and relatively sluggish increase in energy storage capabilities shortens system

lifetime and complicates cooling mechanisms. The design of energy-efficient systems

needs to encompass RF components, adaptive physical layer algorithms, the MAC

protocol and the network layer while taking into account environment and application

constraints [56]. The key factors improving energy efficiency in this domain can be
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Figure 4.2. General interworking view and mechanisms/advances for greener wireless
communications. As the network is traced from the edge towards the core, the

number of network devices decreases while the operating ratio and traffic volume
increase due to traffic aggregation.

listed as:

� Base station (BS) architectural enhancements - According to publicly available

data, BS power consumption account for approximately 200 to 500 GWh per

year per operator in some European countries [81]. Modern state-of-the-art 3G

LTE and WiMAX BSs do not require the “forced” cooling function and instead

use passive cooling [55] which provides drastic power savings. The total power

consumption of a site without power supply and active cooling/air conditioning

can be 20-25% lower according to the energy consumption model in [82].

� Protocol and middleware support for energy efficiency such as power saving via

radio access controller driven sleep and granular closed-loop power control benefit

both access infrastructure and end devices. For instance, to reduce energy con-

sumption in the wireless local network interface, the energy-saving mechanisms

defined by IEEE 802.11b called power-saving mode (PSM) are instrumental. PSM

is a general approach that works at the wireless link layer between the access point
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and the client and switches the wireless node to a lower-power sleep mode when

data is not being received or transmitted. For multicarrier transmission schemes

such as OFDM, one of the major drawbacks of is the high peak-to-average power

ratio (PAPR) of the transmitted signal. If the peak transmit power is limited by

either regulatory or application constraints, the protocol middleware is supposed

to reduce the average power allowed under multicarrier transmission. That re-

quirement imposes intrinsic power control mechanisms in these systems, which

benefits energy efficiency.

� Hardware advances related to RF components - The high power amplifier (HPA)

is a crucial element of the radio transmitter chain. These analog components

are not ideal due to a limited linear range leading to nonlinear distortions in

case of out-of-range operation. Particularly, they consume a large portion of

energy in RF circuitry during transmission. Better and flexible HPAs and the

increase in power efficiency of baseband processing circuits enhance the efficiency

of wireless transceivers. For this purpose, signal conditioning algorithms, like

crest factor reduction (CFR) for decreasing the PAPR and digital predistortion

for increasing the PA linearity, must be applied in order to keep the PA operation

closer to saturation [82]. Moreover, load adaptive CFR combined with adaptive

power supply of the PA and power supplies optimized for variable input power

are instrumental in the analogue chain.

� Support from applications via application layer signalling towards other layers

such as instantaneous data rate demand and service requirements enable control

optimization in a cross-layer setting. This is enabled by firmware and application

support resident on the mobile terminals.

4.1.2. Core Network

For any wireless network, the backplane of interconnecting wired network is also

critical for energy-efficient operation in addition to the network edge which contains ac-

cess nodes and user equipment. Energy-efficient routers, switches, servers and commu-

nication hardware contribute largely to the consumption in the operator’s IP backbone
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network [4] as shown in Figure 4.1.

� Impact of energy-efficient computing technologies on core network nodes - Pro-

cessing nodes such as call/session control servers, IMS servers, and AAA servers

(service network) have benefited from the energy efficiency advances in common

IT infrastructure.

� The proliferation of flat all-IP mobile networks - Next generation systems such as

3G LTE and WiMAX facilitates a flat all-IP network. This leverages the general

advances in low-power, low-cost routers and server equipment [4]. For instance,

IEEE P802.3az Energy Efficient Ethernet (EEE) has been standardized in IEEE

Std 802.3az-2010, which was approved September 30, 2010 [83]. EEE uses a Low

Power Idle mode to reduce the energy consumption of a link when no packets

are being sent. In addition, novel IP-based routing/switching schemes enable the

harvesting of general advances in communication infrastructure.

� Network level sleep-mode technologies - Controller nodes (e.g. proxy server tech-

niques controlling the sleep-active cycles of network nodes according to traffic

load) dynamically configure the operational mode of network nodes according to

traffic characteristics. Proxy is an intermediate node that intercepts the com-

munication transparently acting as the destination node in order to improve the

performance of communication. Proxying for energy efficiency is the use of a low-

power entity allowing a high-power device to go to sleep and thus save power while

still maintaining its network presence [84]. The proxy enables a host to transition

into and out of sleep transparently to the network. Use of a proxy requires no

infrastructure changes such as changing existing protocols, or maintaining state

in routers or switches.

� Optical switching and routing - Electronic packet-by-packet processing consumes

vast amount of energy consumption for high throughput [85]. Packet routing

account for about 37% of all power consumption of routers and optical routers

are more efficient in that sense [4]. Therefore, with the increasing number of

high bandwidth applications, the usage of all-optical network solutions increases.

However, energy consumption of optical networks is also an important issue that



43

has to be addressed in parallel [86]. In that respect, energy saving both exploiting

the traffic characteristics for reducing the number of in-line system components

and switching off active optical links especially during low traffic periods can be

achieved.

However, there is still room in the core network for new improvements. From

the CR perspective, injection of more cognitive capabilities into core network nodes

is posed to provide additional savings. This will enable reconfigurable network nodes

operating at different points on the energy-performance curve.

4.1.3. Network-wide Enhancements

The next generation mobile communication standards such as 3G LTE and IEEE

802.16m incorporate a multitude of capabilities and techniques that enhance spec-

tral efficiency (bits/Hz/area) and energy efficiency. For instance, MIMO transmission

and reception, adaptive modulation and coding, advanced antenna techniques such as

beamforming, MAC enhancements such as Hybrid ARQ (HARQ), advanced resource

allocation and packet scheduling techniques [87] all provide opportunities to improve

power efficiency of these wireless systems. The mechanisms in emerging communica-

tion protocols such as WiMAX sleep cycles, DVB-SH efficiency due to energy-aware

design, and LTE power saving mechanisms provide new optimization parameters.

On the hardware side, ubiquitous optimizations based on VLSI and circuit de-

sign progress have improved the efficiency of wireless network nodes. These can be

listed as RFICs with less power consumption and better support for transceiver wake

up/sleep/active cycles as depicted in Figure 4.3, and smaller idle mode overhead [56].

Two driving factors have improved the overall consumption of network hardware: DVS

and low power VLSI implementations with advances in LSI fabrication and reduction

of driving voltage. However, wireless transceivers have different characteristics which

require novel RFIC system models. In the access network side, sleep mode in BSs for

traffic adaptation at different scales are possible: At macro level, carrier shutdown,

sector shutdown, and adaptive coverage can provide adaptive power usage while at



44

active0{rx, tx}

activen{rx, tx}

idle

sleep

active idle

scaling

sleeping

Less activity, larger savings

Figure 4.3. Adaptive sleep and active modes for network nodes. The wireless node
can utilize dynamic voltage scaling for transmit (tx) and receive (rx) interfaces in

active mode. It can also adapt to different activity levels while being idle.

the micro level, total BS shutdown can optimize energy consumption (e.g. a femto-

cell BS shuts its interface down in case of user non-existence.) Additionally, repeaters

and relays which operate at the physical layer can improve spectral efficiency with-

out increasing power consumption [88]. BS design enhancements such as RF amplifier

location also improve power efficiency.

Another approach may be to take advantage of spatial network layout and thus

increase proximity advantage. As the typical network nodes for this purpose, home

BSs, i.e. femtocells, are posed to be a good candidate as the supporting infrastructure

in that regard [11]. Deployed at the homes or small-area public places, femtocells are

low-power plug-and-play BSs providing connectivity to the cellular operator’s network

via a digital subscriber line (DSL) router or cable modem Femtocell concept has been

developed to improve spatial coverage with increasing reuse without introducing much

complexity and cost. The main premise behind femtocell is to increase transmitter-

to-receiver proximity to improve system capacity via higher quality links and more

spatial reuse [89], thereby providing a cost-effective solution for better user experience

against poor indoor coverage. Femtocells enable greener wireless access in four factors:

More local optimizations, less power consumption, less electromagnetic (EM) pollution,

and better resource utilization. We elaborate on femtocells and energy efficiency in
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Chapter 5 and Chapter 6.

4.2. Benefits of Cognitive Radios for Green Wireless Communications

According to FCC (FCC NPRM, Dec 17, 2003, ET-03-108), “A cognitive radio

is a radio that can change its transmitter parameters based on interaction with the

environment in which it operates.” This interaction may involve active negotiation or

communications with other spectrum users and/or passive sensing and decision mak-

ing within the radio. To this end, a CR is supposed to perform an envisaged cognitive

operational cycle shown in Figure 4.4. CR senses its electromagnetic operational en-

vironment by its sensors. After processing these sensory readings that represent the

state of the environment, CR plans and decides on its actions considering its goals,

priorities and constraints. With these self-awareness and environment-awareness ca-

pabilities, a CR can select the best strategy meeting its goals. Upon deciding on the

most appropriate strategy, CR acts accordingly. All steps interact with the embedded

learning module. In other words, a CR learns from its experiences which also makes it

smart. The energy efficiency related functionalities should be embedded in these flows,

and also these processes themselves should be made energy-efficient.
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CR has been proposed as a general approach for higher efficiency in wireless

communication systems. Moreover, from the green perspective, spectrum is a natural

resource which should not be wasted but be shared. CRs enable this paradigm with

smart operation and agile spectrum access. But they also have to be optimized on

the way to green communications. There are two related aspects of CRs in the green

networks perspective: achieving energy efficiency in CR (this paradigm enables a more

prevalent optimization) and energy efficiency via cognitive radio (capabilities.)

The energy management problem, in its most general formulation, is a multidi-

mensional optimization problem which consists of dynamically controlling the system to

minimize the average energy consumption under some performance constraint(s) [90].

In general, the related objective of energy efficiency can be measured as number of

transmitted data bits per Joule of energy. Since CRs mostly apply a periodic sens-

ing scheme in order to evade any interruptions to the reappearing PUs, each frame

is divided into two main parts: sensing and transmission. In general, the longer the

sensing duration, the better the sensing accuracy. However, it shortens the duration

available to transmission. Hence, sensing and transmission scheduling should be per-

formed providing a balance between the sensing accuracy and transmission efficiency.

Taking this issue from the energy perspective especially for battery-limited CRs, CRs

can decide on the best sensing and transmission duration considering this problem

as an energy-efficiency maximization problem subject to PU interference restrictions.

Similarly, power allocation over a number of channels can improve the energy-efficiency

in multi-channel CRs. A CR with a limited power budget can allocate its restricted

resources considering the energy-efficiency of each channel [91].

The evolution and interaction of green communications and the cognitive net-

works are shown in Figure 4.5. The advent of cognitive end devices (CRs and wired

nodes) and smart core/access network nodes such as cognitive femtocells constitute a

meta-infrastructure forming smarter ICT via cognitive capabilities which can be de-

noted as cognitive networks. This interconnected structure provides a pervasive enabler

for green systems and services such as smart utility networks (e.g., smart grids), smart

ambient environments (home, workplace, enterprise, etc.), and smart transportation
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systems. In this work, we focus on the general optimization problem of operational

consumption after the wireless communication system is deployed, but not the entire

system lifecycle of manufacturing, deployment, and operations as the green networks

approach considers. To that end, the capabilities of CRs enable a diverse set of energy

efficiency optimizations in different communication settings:

� Intelligence support for energy efficiency functionalities Models for energy con-

sumption estimation require sensory data and computational schemes based on

learning for accurate operation. Moreover, sophisticated middleware support for

energy management and measurement, and profiling of energy consumption in

wireless networks are crucial for attaining energy efficiency. Power supply and

energy efficiency awareness is possible with CRs since the CR knows the source

of its power supply, the remaining battery life, and the energy efficiency of alter-

native adaptation schemes [92]. CRs encompass the sensor and computational

infrastructure for enabling these capacities.

� Energy savings via duty-cycle optimization and robustness in ad hoc settings For

mobile ad hoc networks, the infrastructure-less and mobile system setup leads to

rapid changes in the network topology and thus causes the issue of constantly

forming and breaking communication links. This difficulty is also critical for the

lifetime of the network since mobile ad hoc networks comprise energy-limited

nodes [93]. Dynamic spectrum access in CRs can alleviate this problem via var-

ious mechanisms such as switching to the backup channels, estimation of the

further link qualities, and acting accordingly, since it is inherently designed with

these considerations. On the other hand, CRs may be subject to link disruptions

due to unexpected PU appearance in the transmission band. The service dis-

ruptions due to spectrum unavailability should be minimized since the constant

cost of having the system ready for communication can be eliminated and longer

sleep opportunities can be created for network devices. CRs facilitate duty-cycle

optimization since they perform agile spectrum access.

� Network layer capabilities CRs can utilize energy-aware vertical and horizontal

handovers with support from the access infrastructure. They can select the most
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appropriate network not just according to the physical layer conditions and avail-

able bandwidth, but also with a consideration of energy cost. For instance, in

the mesh mode, they can optimize routing and switching for energy efficiency.

� Cross-layer optimizations The energy management problem lends itself to a cross-

layer solution approach, as measuring performance requires taking into account

the characteristics of the protocol stack, whereas optimizing energy expenditure

relies on the detailed knowledge of the low level radio hardware [90]. Cognitive

network devices with their assumed machine learning and control frameworks are

inherently more apt to cross-layer optimizations since these functionalities have

to interact with different layers of the system. These communication systems will

operate in dynamic environments where a single energy management solution is

not sufficient. Thus, flexible cross-layer solutions are necessary [56].

The applications in cognitive networks will be able to interact with the radio for

more flexible and adaptive operation. This functionality enables context-aware opera-

tion in the lower layers under application driven smart schemes. On the infrastructure

side, network nodes with cognitive capabilities may optimize their energy efficiency

using different control dimensions such as switching to different network interfaces,

adaptive sleep cycles, application specific policies, and class-based policies to avoid

sacrificing QoS of important users (Figure 4.3).

- Enabler for ubiquitous efficiency optimizations The interaction with other util-

ity networks such as end-points for “smart grids” and “smart transportation systems”

will provide new opportunities for optimization of these networks. A typical exam-

ple is distributed power generation and consumption that will become more common

with the proliferation of home fuel cells, small-scale renewable energy sources and high

peak-to-average resource demands such as in electrical grids when plug-in hybrids and

electric vehicles (EVs) are charged overnight [78]. CRs can provide support for two-

way information flows in the next generation grids. For these grids, smart meters

that provide accurate real time information on consumption to the user and the utility

company are critical. Moreover, distributed and micro-scale power generation infras-
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tructure requires pervasive networking for control and monitoring. Various communi-

cation standards such as Zigbee have been considered for communication among these

elements in the home network and the wide area network (towards the grid operator).

However, these systems generally face two main issues: coverage and interference [94].

Using cognitive networks such as TV white space (TVWS) based IEEE 802.22 can

provide a feasible solution to these issues. In particular, given the relatively low data

rates involved in smart metering communications within each home, a single (or even a

small sub-channel) TVWS channel could be assigned for such applications in order to

provide whole-home coverage. Moreover, they can support wider area communication

between smart meters, microgrids and utility control centers.

- Physical layer capabilities In the physical layer, beamforming (exploiting an-

tenna directionality) for reducing power requirement and interference for a given range

and data rate is possible. An example in that regard is major issue of the PAPR of the

transmitted signal in multicarrier transmission schemes such as OFDM. The CR sen-

sors provide data support for power efficient PAPR reduction techniques. Furthermore,

the cognitive mobile devices will have the intelligence to select the most energy efficient

PHY profiles based on the present channel state via learning and estimation. However,

this requires hardware support with more complex signal processing and comes with

some typical issues such as hidden node problem and MAC design [95].

- Bandwidth-energy trade-offs According to Shannon’s law, there is a direct trade-

off between bandwidth and power efficiency. Therefore, with agile spectrum access and

smart operation, CRs may prefer bandwidth expansion to minimize power consumption

in valid operational opportunities without sacrificing throughput. These communica-

tion theoretic trade-offs provide tools to mitigate energy consumption issue.

- Simpler and more efficient evolution paths The software defined nature of CR

allows the modification of energy saving schemes in operation (runtime) much more

easily (e.g. novel sleep mechanisms, operational profile mappings computed offline and

updated [56]). This also enables more autonomous operation and self configuration

for network nodes. This is in line with the 4G evolution path where the flat network
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architecture incurs a paradigm shift towards intelligent radio access network.

- Smaller impact on human health The increase in the number of wireless infras-

tructure nodes such as base stations and mobile terminals has increased the awareness

of the public about EM radiation. Avoiding EM pollution via the proper use and shar-

ing of spectrum resources for protecting the human health [96] addresses the public

health concerns due to EM radiation originating from wireless systems. This is due to

the Shannon’s capacity formula, which translates into the trade-off relation between

transmit power P and signal bandwidth W for a given transmission rate, R, as

P = WN0(2
R
W − 1) (4.1)

It can easily be seen from the above expression that when no limit is imposed on the

bandwidth, the minimum power consumption goes down toN0R ln 2 [39]. OFDM based

next generation systems such as LTE provide more flexibility compared to GSM and

UMTS for dynamic spectrum adjustment. These communication theoretic trade-offs

among bandwidth, throughput and energy consumption performances can be balanced

for attaining a desirable balance between these parameters.

- Longer lifetime for wireless equipment Another important feature of CRs is

their ability to provide upgradeable and longer lifetime radio equipment for the wire-

less communications infrastructure [97]. For the commercial end-user devices, this is

very important. Because the lifetime of consumer devices are shortening with the in-

creasing pace of new communication and application capabilities. For cellular networks

such as 2G/3G/LTE systems, the user device lifetime is around 1-2 years which results

in a rapid cycle of device replacement and high energy footprint due to manufacturing

processes [98]. For the military domain, software upgradability and reconfigurability for

flexibility and low cost of ownership is essential since this type of applications is char-

acterized by long-lifetime acquisitions although missions and technical requirements

vary at a faster scale. CR capabilities will also be applicable to satellites from the
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SDR perspective where SDR enables remote upgrades of communication capabilities

and possibly mission expansion/upgrades during the lifetime of a satellite [99]. User

equipment lifetime is longer since firmware updates allow support of new protocols

and features without disposal of these devices. This is critical since the disposal of

equipment contributes to the enormous electronic waste (e-waste) issue and leads to

waste of energy and natural resources used for production, logistics, and deployment in

the first place. This is against the goal of energy efficiency and environmental-friendly

operation for wireless networks.

4.3. The Emerging Tradeoffs: The Virtue of Being Smart or The Comfort

of Being Simple-minded?

The wireless communications systems typically operate under very volatile condi-

tions due to dynamic propagation environment and diverse application requirements.

By carefully adapting the system to these dynamics at runtime and capitalizing on

the energy scalability features of the system, substantial energy savings are possible

compared to conventional design. For CR systems, a major challenge is to enable

low energy reconfigurable radio implementations that are suited for physically-limited

mobile terminals and competitive with fixed hardware implementations. As noted

in [90], a cross-layer cognitive controller functional block can intelligently configure the

platform runtime controllable parameters depending on the context. For that function-
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ality, it depends on proper monitors of the radio environment such as access network

detection, channel state information, spectrum scanning information, and interference

metric, and of the user needs and profiles as input signals.

The functionalities listed for CRs generally require more advanced hardware and

software with a larger environmental footprint for attaining the overall environmental

or cost-wise gains. Therefore, the fundamental trade-off for adoption of these mecha-

nisms is the complexity introduced into systems vs. the gain towards greening of these

systems. This leads to the figurative case of “being smart” vs. “being simple-minded.”

Moreover, CRs will have to couple efficient energy management and efficient spectrum

usage. Consequently, some fundamental trade-offs for greening wireless communica-

tions via cognitive functions emerge. They can be listed as:

� Computational complexity vs. energy consumption - All the capabilities which

rely on computation such as data processing and learning listed in Section 4.2

incur an energy consumption penalty [100]. This trade-off particularly resides on

Stage 2 (Learn) and 3 (Plan and Decide) of the cognition cycle. Machine learning

algorithms and decision theoretic frameworks may have high complexity with a

corresponding energy burden. Spectrum sensing and agile access require energy

consumption and may incur additional complexity. Therefore, it is important to

optimize the energy cost without sacrificing performance (i.e. to reduce complex-

ity) for energy-efficient cognitive radios. The relevant costs must be outweighed

by the energy efficiency gains provided by the cognitive network. The analysis of

this trade-off is an important research topic.

� Penetration vs. performance - In system design, the higher performance you

target, the more exotic solutions you may end up with. That “alienation” factor

may negatively affect the compatibility of novel CR based systems and impede

their penetration into deployed networks. This general issue is also related to

the trade-off described next since it is closely linked to the standardization and

regulatory perspective. This trade-off is especially coupled to the Stage 1 (Sense)

and 4 (Act) of the cognition cycle. Because these stages specify the interfaces
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and interactions with the external systems and convey potential interoperability

issues. The need to detect and/or generate a wide range of waveforms in any band

also imposes a challenging requirement for the specification of the underlying

reconfigurable radio.

� Market exposure vs. regulatory lag - The proliferation of innovative communi-

cation systems directly depends on the regulatory timeliness and support for

attaining wide market exposure. The standardization for cognitive networking

has been going on in various efforts, most notably IEEE 802.22, IEEE DYS-

PAN Standards Committee, IEEE 1902 and ECMA-392. The regulatory drive

for power-awareness in the design, configuration and management of networks,

and in the design and implementation of protocols are crucial for the adoption of

CRs on the way to green networks. Therefore, the regulatory lag determines the

market exposure of smart radios in green wireless communication context.

� Hardware complexity vs. financial cost - Reconfigurable wireless terminals, con-

stituting the infrastructure for CRs, entail software defined radio (SDR) based

digital baseband engine and reconfigurable analog front-end circuits. Energy

gains can be achieved using energy-scalable design paradigms in the baseband

processing algorithms, advanced digital control in the baseband component or

flexible power amplifiers [90]. The energy efficiency capabilities also necessitate

more complicated and expensive hardware, which is a general issue for CRs, not

just in the energy efficiency context. This phenomenon has been a practical

obstacle against the proliferation of agile and smart radio concepts since their

inception. This trade-off is effective on all the stages of the cognition cycle.

� Spectrum sensing vs. less overhead - Spectrum sensing is pure overhead with en-

ergy consumption. However, sensing strategy directly determines the spectrum

opportunities and thus the performance of dynamic spectrum access. Therefore,

the more frequent the spectrum sensing, the more transmission opportunities.

This in turn causes higher energy consumption. Another challenge in waveform

detection and spectrum sensing lies in the requirement to simultaneously sense

and communicate [90]. The large dynamic range due to signals, noise, and in-

terference poses a significant challenge for low power terminal implementation.
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Moreover, even performance measurement for decision support is problematic

since it is not trivial which energy and quality metrics are suitable as controller

input.

These interconnected trade-offs are in general applicable both to communication

systems that are optimized for energy efficiency via cognitive functionalities and to

CRs themselves. The key notion in that context is that significant energy savings

are possible by continuously adapting the energy-scalable CR to the actual environ-

ment conditions while satisfying performance constraints. This requirement points to

a system-level approach exploiting cross-layer interactions among different layers in

order to carry out integrated energy management and pervasive energy consumption

optimization.

4.4. Summary

The benefits of green wireless communications outweigh the drawbacks for the

mobile operators. The research for green communications is an interdisciplinary field

since it depends on advances in myriad areas from computer architecture to network-

ing/communications standards. It requires the parallel effort of optimizing cognitive

networks and optimization of other systems via cognitive networks and cognitive ca-

pabilities in general. The CRs are supposed to couple energy efficiency with efficient

spectrum usage for supporting green communications. The vast applicability of CR

based optimization in home, enterprise and data center environments brings up many

opportunities as well as challenges and open problems towards these goals. It should

be noted that “to consume only when necessary” (spectrum, energy, hardware) is in

contrast with the consumer society tendencies promoted by the cultural logic of late

capitalism. However, this approach is crucial to cope with global warming and to en-

able global sustainable development. In this chapter, we have presented and discussed

CRs from the perspective of green wireless communications. We have also outlined

the issues and trade-offs entangled with fusion of cognitive dimension and wireless sys-

tems. In Chapter 5, we define a novel small-cell network, namely Cognitive Femtocell
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Network (CFN), which builds on the notions of CR and femtocell. Subsequently, we

focus and expand the general CR analysis in this current chapter for that specific type

of CRN and elaborate on its energy efficiency in Chapter 6.
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5. COGNITIVE FEMTOCELL NETWORKS: AN

OVERLAY ARCHITECTURE FOR LOCALIZED

DYNAMIC SPECTRUM ACCESS

The need for anytime-anywhere service access over wireless networks has spurred

a great demand for wireless radio resources. Additionally, the emerging web-based ser-

vices such as YouTube and Facebook require broadband access due to the multimedia-

rich content. Hence, efficient spectrum utilization is of great concern for two reasons:

providing spectrum opportunities for emergent technologies/services and utilizing al-

ready crowded lower frequency bands with better spectrum efficacy. Dynamic spec-

trum access (DSA) facilitates the so-called cognitive radio (CR) devices to analyze

the spectrum bands and access them if unoccupied until the arrival of an incumbent

transmitter. In CR terminology, a primary user (PU) refers to a user who has higher

priority or legacy rights for utilizing a specific part of the spectrum whereas a secondary

user (SU) equipped with CR exploits the unused parts of this spectrum in such a way

that PU communications are not disturbed. Since a PU has the right to access the

spectrum depending on its contract with its service provider whenever it needs, a CR

node must vacate those primary bands as fast as possible. Otherwise it would harm

the primary communications which is a violation of CR operation rules. However, it is

non-trivial for an SU to detect the existence of a higher priority PU in these spectrum

bands of interest [101]. This requirement is challenging since there is usually no inter-

action between the primary and secondary (cognitive) networks. In order to detect the

spectrum opportunities or the PUs, SUs sense the spectrum with its sensors. Depend-

ing on sensor readings and spectrum decision algorithm, SU decides on the state of a

frequency band as idle or busy.

Reliable PU detection is the fundamental step in the realization of DSA and

the opportunistic use of white spectrum. Depending on the PU signal knowledge and

the radio environment, various transmitter detection schemes can be applied such as

matched filter detection and energy detection [101]. A detection scheme must be re-
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liable such that some degree of probability of detection (Pd) must be met, e.g. 0.9 in

IEEE 802.22 [102] which is the first CR based wireless network standard. Moreover,

probability of false alarm (Pf ) which is defined as the probability that the detection

scheme incorrectly declares the spectrum as occupied when it is not, should be suf-

ficiently low. In case of false alarm, these spectrum holes can not be identified for

SU use thereby resulting in lower spectrum efficiency. Performance of primary signal

detection schemes may significantly degrade in case of severe channel impairments. In

order to cope with this issue, robust spectrum sensing can be achieved by cooperation

among SUs at the expense of message exchange overhead and cooperation delay. SUs

can share their local sensing data with other SUs. Moreover, an infrastructure based

solution with more advanced capabilities and network-wide knowledge can improve the

system performance. The gain vs. overhead trade-off must be considered in designing

such collaborative techniques.

In addition to reliable PU detection issues, there are other difficulties for wide

acceptance of CRs such as deployment of new infrastructure for access control, hard-

ware support, security/privacy issues, and network management. Reusing the exist-

ing infrastructures for tackling with these issues provides cost-efficiency and ease-of-

deployment. Home base stations, i.e. femtocells, are posed to be a good candidate

as the supporting infrastructure in that regard. Deployed at the homes or small-area

public places, femtocells are low-power plug-and-play base stations providing connec-

tivity to the cellular operator’s network via a broadband connection such as digital

subscriber line (DSL) or cable [103]. Femtocell concept has been developed to im-

prove spatial coverage with increasing reuse at the expense of affordable complexity

and cost. Considering the fact that around 40 percent of mobile usage is originating

from the homes, femtocells providing better user experience indoors are attracting the

interest of various parties [104]. The main premise behind femtocell is to increase

transmitter-to-receiver proximity to improve system capacity via higher quality links

and more spatial reuse [89], thereby providing a cost-effective solution for better user

experience against poor indoor coverage. However, this requires the deployment of

additional infrastructure and network changes. In this chapter, we define and pro-

pose a femtocell-based CR architecture for enabling multi-tiered opportunistic access
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in next-generation cellular broadband wireless systems. This architecture combines the

conventional femtocell idea with infrastructure-based overlay cognitive radio network

(CRN) paradigm. Table 5.1 summarizes the challenges and opportunities of these two

concepts from both the network operator’s and user’s perspective. For the former, the

most significant advantage of femtocells is the better indoor coverage and increased

spectral efficiency leading to reduced capital and operational costs. However, this

necessitates a more complicated network structure with quality-of-service (QoS) and

security issues. For the user, femtocells provide higher bandwidth with lower power

consumption at the cost of new device installment and a broadband backhaul connec-

tivity. Similarly, application of DSA in CRs increases the spectral efficiency and eases

the penetration of new operators with novel wireless services. For the user, CR facil-

itates more autonomous operation with more cost-effective and personalized services.

For both parties, it induces diverse challenges of hardware and software complexity

in addition to the management of more complicated systems. The integrated network

architecture aims to cover the best practices of femtocells and CRNs at the cost of chal-

lenges of these two concepts. This “cognitive femtocell” idea also leads to a simpler

and easier proliferation of CR into the practical systems.

The rest of the chapter is organized as follows: The next section presents a brief

background on femtocell networks in addition to technical challenges. We then intro-

duce the cognitive femtocell (CF) concept with a summary of network elements and

their functionalities that will be integrated to a conventional next-generation cellular

femtocell network. Section 5.3 provides experimental results on the throughput perfor-

mance of the introduced femtocell overlay network. Section 5.4 discusses the technical

challenges and open research directions for the presented architecture. Finally, Section

5.5 concludes this chapter.

5.1. Technical Challenges

Sensing the spectrum and finding the access opportunities is not a trivial task

in CRs. There are numerous sensing methods that can be applied depending on the

system requirements and the network architecture. For instance, SUs can utilize their
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local sensing information or can make use of the exchanged sensing data of their neigh-

bors. Sensing can be performed synchronously network-wide, or each SU can have its

own sensing schedule. It can also be done by external auxiliary entities rather than

the SU network itself to avoid its burden on the SU. In this regard, sensor networks

have been proposed as an external network for assisting the CRs in analyzing the

spectrum and finding the white spaces. For instance, Sensor Network aided Cognitive

Radio (SENDORA) [105] concept aims to address various operational scenarios in the

next-generation cognitive networks by the help of wireless sensor networks. Although

it is a novel approach to alleviate a challenging issue, it has the drawback of requiring

additional infrastructure of sensors that are resource-constrained.

Accessing the spectrum usage list from a central database is an alternative ap-

proach that eases the task of spectrum sensing. This approach can be applied to the

systems with slowly changing bands such as TV bands. With the global shift from

analog TV to digital TV, a vast amount of TV bands are being opened for free use.

The PUs using these bands are broadcasters, authorized TV devices and wireless mi-

crophones. In the USA, Federal Communications Commission (FCC) accepts the man-

agement of white spaces and protection of PUs by a white space database (WSDB)

approach [106]. WSDB keeps the up-to-date spectrum availabilities by applying se-

cure and trusted registration of devices. This approach is viable and efficient since

TV bands are relatively static. On the other hand, for more dynamic and frequently

changing spectrum bands, it can be challenging. Latency in getting the available spec-

trum information via database access and thus accuracy of that information are the

relevant drawbacks of this approach. Femtocell infrastructure already being deployed

can mitigate this reliable spectrum sensing problem.

Femtocells can be utilized for residential (private) use and thus only registered

users can be served by a femtocell. Alternatively, operators may install femtocells

in public places, e.g. shopping malls or cafes, and any subscriber inside the cover-

age region can access femtocell. The first case is referred to as closed access whilst

the latter is open access. Open access use-case has to tackle with securely providing

access to the network resources. Moreover, it may result in excessive signalling for



61

providing handover between adjacent femtocells or between femtocells and the macro-

cell in case of high user mobility. In hybrid access which is a combination of these

two access schemes, a portion of femtocell resources are allocated to the residential

registered users whilst the remaining is available for the open access [107]. Since fem-

tocells are mostly user-installed devices, their positions are determined by users, as

opposed to cellular base stations (BSs) that are deployed after a detailed capacity and

performance planning [108]. Hence, femtocells can result in interference between the

neighboring femtocells and underlaying macrocells leading to a capacity reduction and

performance degradation [109]. Most widely-applied interference mitigation techniques

are advanced power adaptation and synchronization signaling between femtocells. Fur-

thermore, there are alternative approaches using other methods. For instance, Li et

al. [110] work on femtocells that are capable of sensing the spectrum and allocate the

spectrum minimizing the interference based on the spectrum sensing results.

Another challenge is the control of QoS in the broadband IP access which is

usually DSL. This is more of a challenge if the femtocell and backhaul broadband access

are provided by different operators. In addition, scalability is an important issue related

to the deployment of femtocells [108]. This is crucial especially for hierarchical cellular

systems such as 2G networks. However, the next-generation broadband wireless access

systems 3G LTE and IEEE 802.16 WiMAX follow a different network architecture

and employ a flat network where the access nodes are more autonomous and intelligent

leading to more sophisticated network edge. This is a fundamental factor for femtocells

in our setting since we consider this kind of network and assume more autonomous

and capable spectrum managing entities. In other words, this trait strengthens the

applicability of our approach.

From the economic point of view, the cost burden of femtocells requires a differ-

ent model for distributing costs to the relevant parties. Financial analysis of femtocell

networking has been provided in [89]. Considering the cost aspect, a different economic

model can be created by altering femtocells into more advanced entities via introduc-

ing controlled changes for cognitive radio networking. An open access femtocell that

provides service to secondary users registered to an operator’s network can charge less
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Figure 5.1. Cognitive femtocell network architecture with network subsystems, SUs
and PUs (femtocell and macrocell) having various access modes.

to its incumbent users, proportional to how much it allows its resources for the use of

SUs. The idea of opportunistically allocating resources of a femtocell facilitates the

SUs get service by the help of femtocell’s cognitive capabilities and enables efficient

spectrum usage and lower prices for PUs.

Femtocell BS based on a software defined radio architecture can update both

its firmware and application software, thereby can adapt to changing environment

and network requirements. This also enables more autonomous operation and self

configuration for femtocell BSs. This is in line with the 4G evolution path where

the flat network architecture incurs a paradigm shift towards intelligent radio access

network [111].

5.2. Cognitive femtocell: Small-scale distributed system for cognitive

network proliferation

We propose an extension to the conventional femtocell concept for enabling cog-

nitive operation for dual-mode handsets. Proposed network architecture is depicted in

Figure 5.1. In this setting, the standard indoor coverage expansion idea for femtocell

is still intact and operational. We use the term cognitive femtocell base station (CFBS)
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for the device, which is a simplified low-power network entity that utilizes broadband

cellular technology (3G LTE/WiMAX) with IP backhaul through a local broadband

connection, such as digital subscriber line (DSL), cable, or fiber [108]. It is coupled

with relevant CR capabilities such as spectrum sensing, interference management, and

efficient resource allocation via learning and adapting to the operating environment.

CFBS acts as a conventional femtocell base station (FBS) that provides backhauling

services to the users in its coverage region. CFBS accesses the operator’s network via

wired broadband IP connection. The wide area network used for cognitive exploitation

is assumed to be 3G LTE or IEEE 802.16 WiMAX. Moreover, CFBS is responsible for

local sensing and is connected to a separate cognitive femtocell subnetwork (CFS) for

infrastructure resident functionalities such as user rights, service provisioning, profile

management and charging in the cognitive domain.

In order to control interference on the femtocells in vicinity and underlaying

macrocell, CFBS constructs the radio environment map (REM) of the femtocell by

sensing its operating environment. Since femtocell coverage region is in the order of

tens of meters, the interference per frequency band can be assumed to be uniform in

its coverage region due to spatial correlation. In order to serve the SUs with a service

request, CFBS authorizes the SUs with low bit rate control signalling via a standard

protocol such as Session Initiation Protocol (SIP) [112]. SUs and CFBS are assumed
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to be multi-radio and multi-interface. For instance, a personal area network (PAN)

interface such as Bluetooth can be utilized for signaling. The dual-mode assumption

is realistic due to the wide availability of PAN access on current mobile handsets and

integrated multinetwork access points (APs) for femtocells. However, a software update

in the handsets for supporting the cognitive mode is necessary. This update should

provide the required protocol modifications and application level tools for configuration

and management of this mode by the user.

This architecture is beneficial for both the femtocell and cognitive operation in

different aspects. Advantages of this system layout are manifold:

� Less SU interference and better spectrum access due to better sensing capability

� Better spectrum utilization for incumbent operator

� New business models where opportunistic spectrum access is integrated as a pri-

mary service

� The incumbent mobile network does not have to change significantly.

� The architecture enables the establishment of Mobile Virtual Network Operators

(MVNOs) for providing localized cognitive access with different pricing schemes

(i.e. CFS can belong to to another operator (MVNO) working with multiple

operators.)

� Larger and better coverage due to conventional femtocell idea

� Since the infrastructure will be supplied and maintained by the user(s), an incen-

tive in terms of free or cheaper service shall be provided.

� Femtocell traffic aggregation can be performed in the CFS, and thus the incum-

bent network does not have to handle numerous femtocells in the radio network

controller’s functionality.

With an advanced sensing unit, CFBS monitors its operating radio environment.

We assume that CFBS can scan and allocate the frequency ranges of multiple oper-

ators hence enabling the multi-operator service deployment. Via periodic spectrum

sensing, CFBS can locate the spectrum opportunities that are not utilized by any PUs

in its region and the neighboring femtocells. Depending on the PU traffic requests and
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spectrum opportunities available for SUs, CFBS manages resource allocation. The cog-

nitive femtocell networking facilitates SUs and PUs operate in various access modes.

Service access can be either directly to the MAN/WAN network or via the femtocell BS.

Access modes are summarized in Figure 5.2. Compared to conventional MAN/WAN

access, access through the cognitive counterpart provides higher capacity via exploiting

the spectrum opportunities more efficiently. Conventional femtocell access facilitates

coverage expansion and operation with lower energy consumption. Cognitive femto-

cell access adds diverse enhancements to conventional access modes, namely adaptive

operation, higher throughput, better interference management and flexible energy-

throughput tradeoff.

This architecture also allows more advanced machine learning and fingerprinting

based spectrum sensing. Since CFBS manages the traffic backhauling from the PUs and

allocation of spectrum opportunities to the SUs, it can train itself on the traffic pattern

of both PUs and SUs. Traffic prediction and modeling is a fundamental capability in

order to allocate spectrum opportunities efficiently [101]. Briefly, if CFBS had the

exact knowledge of current and future spectrum usage pattern, then it would be trivial

to make allocation of white spaces. SUs would access the spectrum whenever there

is no traffic and would vacate the band just before the spectrum band is occupied.

Although, this exact knowledge is impossible, it can be estimated utilizing accumulated

information and applying various prediction methods. For instance, in [113, 114] CR

nodes estimate the residual idle and busy times of primary WLAN channels using the

theory of alternating renewal processes. In this model, each PU channel is considered to

follow up and down periods in a renewal cycle that correspond to busy and idle channel

states, respectively. In [115], CRs estimate the call arrival rate and call holding time

using an algorithm which exploits the periodicity of the PU traffic process.

Signaling flow among SUs, CFBS and CFS is depicted in Figure 5.3. First, SU

performs ranging in order to associate with the CFBS (Step 1). Upon receiving the

request from SU, CFBS queries the SU database residing in the CFS. If the SU can

be registered in the network, then CFBS authorizes the SU into the network (Step 2).

Next, when SU requests frequency (Step 3), CFBS checks REM that is constructed by
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periodic spectrum measurements and updated according to the PU activities. State of

a channel centered at frequency f Hz at the time slot i is represented by S(f, i). The

state of the channel can be either busy or idle depending on the measured energy and

the PU detection threshold. REM can be represented as a two-dimensional array as in

Figure 5.3. The spectrum measurements at a time slot t for the available channels (f1

to fn) are stored in REM. Assuming an energy-detector as the PU detection scheme,

CFBS decides on the state of the channel. REM also stores the previous measurements

in a time window and thereby CFBS can exploit this data for learning the spectral

environment. Therefore, this architecture enables the CFBS to predict the PU traffic

activities and allocate channels accordingly. Finally, SU can start transmission. CFBS

enforces policies based on profile for service and QoS provisioning fetched from the user

database of the CFS operator. After allocating the channels for opportunistic use, the

resource usage is transmitted to the central authority for charging and monitoring.

After completing its transmission, SU releases the channel (Step 4). If a PU reap-

pears in the channel during SU’s transmission, SU is forced to perform spectrum hand-
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Figure 5.4. Simulation setup with three SUs in center femtocell coverage and the
relevant system parameters.

off. Depending on the spectrum availability, it can be allocated either another primary

or a secondary frequency channel. In this work, we do not address CR MAN/WAN

access mechanisms after SU frequency allocation.

5.3. Experimental Results

In this section, we provide interference and throughput performance of cognitive

femtocell networks via system-level simulations in order to demonstrate the potential

benefits described earlier. We assume that the broadband cellular network (BWN)

operates at 2.1 GHz carrier frequency with channels of 10 MHz bandwidth. Femtocell
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users are stationary, therefore the channel is assumed to be stationary. A lognormal

path loss model is used between every node in the network. The transmission power Pt

of macro-PU, femto-PU, SU, femto-BS and macro-BS are 20, 3.1, 20, 10 and 35 dBm,

respectively. Mobility is not considered in the experiments since we do not focus on

the handover and inter-femtocell user management which is a general femtocell issue.

In the simulation setup, we focus on a single macro-BS coverage with radius rm=500

m, whereas the femtocell radius is rf=20 m. We suppose a frequency reuse factor of

1, which is the general case for 3G LTE and WiMAX systems.

Figure 5.4 illustrates the network deployment model employed in the experiments.

The simulation area comprises a two-tiered and tessellated femtocell distribution. In

each femtocell footprint, there are three SUs and three femto-PUs. There are seven fem-

tocells deployed in a confined region inside the macrocell to simulate a realistic network

setup. These femtocells are scattered around a center femtocell in a randomized fashion

(random distance and angular orientation). The macro-users are spectrally orthogo-

nal while the femto-PUs use overlapping frequencies with them. However femto-PUs

in the same femtocell use non-overlapping frequencies. Additionally, we assume the

availability of two more frequencies for modeling the effect of multi-operator frequency
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sensing and allocation capability of CFBS.

In order to illustrate the performance gains introduced by CFBS, two scenarios

are compared. In Scenario I, SUs sense the spectrum and access the available fre-

quency bands exploiting their own sensing capabilities. In Scenario II, CFBS manages

spectrum sensing and allocation. In both scenarios, as PU detection mechanism, a

simple energy detection scheme is assumed with a detection threshold of Γthresh=-100

dBm. In other words, an SU senses the spectrum and it can detect the existence of

the PU if aggregate received power (dBm) at the SU is higher than Γthresh. We use a

discrete-time slot-level system simulation such that at the beginning of each time slot,

femto-PUs and SUs generate traffic depending on their traffic activity and generation

model. In order to model the worst case, in high load case all femto-PUs and macro-

PUs are active and generate traffic. In light load case, traffic activity is generated

randomly according to a uniform distribution with an activity factor of λ which stands

for the portion of time slots that a user generates traffic. SUs are assumed to have

traffic at each time slot such that if there exists a spectrum opportunity, they start

transmission.

Each channel is modeled with corresponding channel parameters as depicted in

Figure 5.4. In Scenario II, the contribution of transfer of sensing and detection from

less-capable SU to more advanced CFBS is modeled as more reliable sensing capability

which corresponds to Pd=0.90 and Pf=0.1 which are the typical values of IEEE 802.22.

Simulations are run with various SU probability of detection (Pd) and probability

of false alarm (Pf ) values and under various femto-PU and macro-PU traffic loads.

Figure 5.5 illustrates the change in the average throughput with increasing SU Pf .

Average throughput is calculated in terms of packets per timeslot and it decreases with

increasing Pf in Scenario I. However, in Scenario II, throughput is not affected since

spectrum sensing is driven by the CFBS. Femto-PU and macro-PU throughput values

are slightly affected in both scenarios. In low activity case where λ=0.3, femto-PU

throughput is 6.30 packets/timeslot and macro-PU throughput is 1.29 packets/timeslot

in both scenarios. In medium activity and high activity cases (λ=0.6 and λ=0.9,

respectively), femto-PU throughput is 12.57 and 18.90 packets/timeslot in Scenario
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I and Scenario II. Similarly, macro-PU throughput is slightly higher in Scenario II

compared to Scenario I with values 2.81 vs. 2.83 for λ=0.3 and 4.82 vs. 4.90 for λ=0.9.

Next, we investigate the impact of Pd increasing from 0.5 to 0.9 on macro-PU and

SU throughput. In case of low Pd values, SU fails to detect an ongoing PU transmission

and transmits on an occupied channel. Hence, interference experienced at the macro-

PUs increases directly with the decrease in the sensing precision, thereby resulting in

low signal-to-noise ratio (SNR) at the macro-PUs. In other words, in these scenarios

SUs cause harmful interference to the macro-PUs such that minimum required SNR

can not be satisfied for successful packet reception at macro-PUs. This results in packet

drops, thereby a decrease around five percent in macro-PU throughput. In Scenario I,

SU throughput is slightly higher than Scenario II since SUs access the spectrum more

aggressively. In Scenario II, since sensing is more robust (Pd=0.95) and meets the

macro-PU restrictions, throughput barely changes in various settings. Experimental

results illustrate the benefits of CFBS deployment and indicate that it enhances SU

throughput and decreases the interference experienced by the PUs due to more reliable

sensing by CFBS.

5.4. Discussions

The research directions and open issues for CF networks can be classified into

native topics for CRN and femtocells, and emergent topics due to the integration of

these two concepts. The research directions in conventional femtocell aspect are as

follows:

Interference management Since femtocells are deployed at the subscriber’s premise

in ad hoc manner, cellular frequency planning is missing. This usually results in in-

terference issues among nearby femtocells (intra-tier) and between femtocell and the

underlaying macrocell (cross-tier). Interference decreases the system capacity and may

result in poor user experience. Hence, interference mitigation techniques in both uplink

and downlink are crucial [103].
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Pricing, business and service models This is a two-fold issue: the pricing of the

equipment and the service. In order to compete with Wi-Fi or similar ubiquitous

wireless access technologies, femtocell services must be provided with favorable cost

options [89]. The capital and operational expenditures should be kept at a reasonable

level in order to justify a femtocell solution. Standardization for the femtocell BS

protocols and a scalable interface to the operator network is a key factor in that respect.

Backhaul support and net neutrality Since the femtocell is connected to the oper-

ator’s network via the Internet, providing sufficient user experience can be challenging.

QoS requirements of the traffic generated by the femtocell users need to be met via ap-

plying various QoS provisioning mechanisms at both the operator’s network and the IP

network [89]. Net neutrality is an emerging principle where user access networks should

not enforce restrictions on traffic content/source/characteristics and on the modalities

of communication. This idea is particularly applicable to broadband access networks

and thus the traffic generated due to femtocell backhauling. For the case of disparate

cellular and wired broadband operator, regulations leading to net neutrality may ease

the deployment of femtocells and alleviate the performance bottleneck due to the dis-

favoring by the access network operator (e.g. DSL or Fiber-To-The-x, FTTx) against

the other operator’s traffic.

In CR domain, there are various open issues some of which can be listed as follows:

Sensing reliability Providing a simple yet reliable spectrum sensing scheme is still

an open problem in CR communications. Radio front-end with a wideband spectrum

sensing capability is required at the CR in order to operate in a wide range of spectrum

[116]. Additionally, SUs are restricted with low power transmission with a requirement

of PU detection at low SNR environments. CR devices must include computational

intelligence in order to adapt their sensing mechanisms to a wide-range of spectrum

channels that expose differences in nature, e.g. emergency communication bands vs.

TV bands [79].

Inter-femtocell interference among PUs and SUs Related to the spec-
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trum sensing issue, SUs must be able to detect the PUs in close proximity with a suffi-

cient probability of detection. Since femtocell coverage is small compared to macrocells,

it is easier to detect the PUs in femtocells service area. However, in femtocell setup,

PUs operate with low power levels due to short distance between the transmitter and

receiver. FBS performing spectrum analysis for guaranteeing non-harmful interference

to the neighbors, can share its sensing with the SUs. Thus, SUs using this information

in addition to their spectrum sensing outcomes can detect the PUs. However, it is still

an issue to vacate a channel in a sufficiently short time in case a PU reappears in band.

Cross-tier cognitive interference among PUs in the macrocell and SUs in the

femtocell Macro-PUs geographically residing in the femtocell coverage area or close

proximity but being served by the macro-BS raise destructive interference [103]. Since

FBS locations are unknown to the service provider, this interference must be managed

by the FBSs themselves. Depending on the access method (i.e., open, closed or hy-

brid) this interference may become even more destructive [107]. High performance yet

efficient interference mitigation techniques spanning from power control to spectrum

allocation mechanisms should be employed at the femtocells.

The issues due to CR and femtocell integration are more diverse since they entail

challenges from both domains. The predominant issues and topics are as follows:

SU and CFBS requirements Hardware and firmware modifications in conventional

FBS for providing high-performance spectrum sensing are still to be explored. Namely,

fundamental issues can be listed as protocol stack changes, powerful signal analysis

methods for reliable wideband spectrum sensing and hardware requirements such as

antennas, more advanced RF front-ends and signal processing circuitry. For SU, the

substantial changes should be confined to software domain for wider and easier service

penetration.

Signalling protocols between SU and CFBS The service registration and control

at the application level between SU and CFBS should be done using a low-latency and

lightweight protocol. The signalling should be provided through standardized protocols
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and interfaces that are based on open standards such as SIP. This is an open research

topic.

Interworking between CFS and incumbent operator’s core network Interworking

protocols at signalling and bearer levels to provide interoperability of these two sub-

systems should be developed [108]. Aggregation at CF gateway should be scalable

in order to support the large amount of femtocells connected to CFS. Similarly, CFS

connector at the CFS edge should scale both horizontally and vertically, and support

different signalling and data interfaces between peers.

Analysis of power efficiency gains via CF architecture The power efficiency is

crucial for mobile devices due to limited battery life and restricted form factor. On

the network side, power awareness is necessary to minimize costs and environmental

impact of network infrastructure, i.e. aiming green networks. The gains and tradeoffs

introduced with the combination of DSA and spatial proximity of transmitter-receiver

pair in femtocells are yet to be explored in more detail.

Business models for open and dynamic access The cost reductions via off-loading

the macro network by the femtocell operation and discovering the vacant resources by

cognitive capabilities, provide a strong motivation for operators to introduce cognitive

femtocell based services. These cost savings can be exploited to provide low-cost voice

and data services to the customers. However, more practical and streamlined business

models need to be developed by the operators for encouraging the femtocell owners

willing to share their resources with SUs. Moreover, charging models and service

agreements for cognitive femtocell users are to be defined.

Service aspects-authentication, authorization and accounting (AAA) Service pro-

visioning and access control are inherently complicated in cognitive femtocell networks

with opportunistic access enabled over open femtocells. In addition, security and pri-

vacy should be provided at a satisfactory degree. This is also challenging since SUs

may connect over different femtocells through different broadband operators.
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5.5. Summary

The wireless broadband access is spreading on all fronts. Although these ac-

cess systems address different requirements, the fundamental requirement is to achieve

higher spectral efficiency. Femtocells are accepted as promising low-cost and easy-to-

deploy candidate for providing small-area indoor coverage and thus increasing spectral

efficiency and system capacity. However, this approach has the drawback of increased

deployment and operational costs in the infrastructure aspect. Another approach for

addressing the requirements of broadband access is dynamic spectrum access. Dy-

namic spectrum access facilitates the cognitive radio nodes to analyze the spectrum

and access the white spaces till the arrival of licensed users.

In this chapter, we study a femtocell-based cognitive radio scheme in order to

provide more effective dynamic spectrum access and management. In this system, the

cognitive femtocell network utilizes a new service paradigm and transforms the main

burden, interference management, into the service enabler itself. SUs are controlled by

the femtocell infrastructure to tackle with reliable sensing and service control issues.

Cognitive FBSs have spectrum sensing hardware and access the cognitive operator’s

network to authorize the SUs and apply the required AAA functionalities. We carry

out system-level simulations to show the performance gain introduced by the proposed

architecture. Simulation results demonstrate that with better sensing capability, FBS

discovers the spectrum opportunities more efficiently and allocates them to the request-

ing SUs in its coverage area. Hence, SU throughput and spectrum access is improved,

which also results in less interference to the PUs.
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6. ENERGY EFFICIENCY IMPACT OF COGNITIVE

FEMTOCELLS IN HETEROGENEOUS NETWORKS

In this chapter, we delve deeper into the cognitive femtocell concept and discuss

cognitive femtocell networks (CFNs) from energy efficiency perspective via examin-

ing the related challenges and trade-offs. While CRs can empower femtocell networks

with their embedded intelligence and advanced operation functions, they also induce

diverse challenges of hardware and software complexity in addition to the manage-

ment of more complicated systems [19]. The incumbent challenges of CRs apply to the

context of femtocell integration: spectrum sensing and PU detection, efficient proto-

cols for cognitive operation and new business models are the most apparent challenges

that need considerable effort for efficient fusion of the CR paradigm and femtocell

networks. CFNs should be evaluated from an energy efficiency perspective if they

are to be adopted as a part of heterogeneous green cellular networks. Therefore, our

aim is to investigate the interplay between the energy gains achieved by introducing

cognitive femtocells with spectrum sensing/discovery capability and the additional en-

ergy overhead induced by spectrum sensing and backhauling by these systems. We

highlight the cases under which conditions energy efficiency achieved by small cells

and increased spectral efficiency compensate for the additional energy consumption by

cognitive femtocells.

The remainder of this chapter is organized as follows: Section 6.1 first describes

the system model and next proposes an analytical model for calculating the energy

efficiency and throughput of a network consisting of a macrocell, various femtocells

and cognitive femtocells. Subsequently, Section 6.2 analyzes this cellular heteroge-

neous network and evaluates the system performance in terms of energy efficiency and

throughput. This analysis investigates the effect of CFNs on energy efficiency of cellu-

lar heterogenous networks by comparing its performance with alternative setups that

do not entail cognitive femtocells. Finally, Section 6.3 concludes the chapter.
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Figure 6.1. System model and and the relevant interference effects on network
entities.

6.1. System Model

We describe the heterogeneous wireless system with CFBSs investigated in our

work and layout the system model analytically in this section. We assume the avail-

ability of fundamental CR capability of dynamic spectrum access at CFBSs as well as

capability of detecting user activity in the related coverage area. The latter capability

is directly linked to the “environment-awareness” property of cognitive radios.

The heterogenous network under focus that is illustrated in Figure 6.1 consists

of three types of cells: cognitive femtocells managed by CFBS, femtocells managed

by FBS, and a macrocell managed by MBS. Each of these base stations serves its

users: cognitive femtocell users (CFUs), femtocell users (FUs), and macrocell users

(MUs), respectively. MBS resides at the center of the cell with a coverage radius of R.

The difference between an FU and a CFU is due to the serving base station: an FBS

or a CFBS. Both are stationary, hence their channels with the serving CFBS/FBS

are assumed to be stationary. CFBSs have the necessary capability of utilizing a

wider band than the licensed cellular network (compatible RF frontend and baseband

processing). Moreover, the femtocells are synchronized for time-slotted operation. We

use the formal definition of energy efficiency - number of transmitted data (bits) per
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unit energy consumption- as our performance metric measured in bits/Hertz per joule.

Let NF , NC , nf , nc, nm denote the number of each entity: FBS, CFBS, FU,

CFU, and MU, respectively. A macrocell-only network will have only MUs (NC =

nc = NF = nf = 0) whereas a macrocell network with only traditional femtocells

has no cognitive entities (NC = nc = 0). The FM frequencies are owned by the

operator. The MUs operate at these frequencies orthogonally while the FUs and CFUs

use overlapping frequencies with them. Additionally, we assume the availability of

FCR more frequencies for modeling the effect of multi-operator frequency sensing and

allocation capability of CFBSs. Each CFBS/FBS serves to a single CFU/FU in its

coverage. We assume that each CFBS performs sensing regularly, once in each Ts time

slots. The longer is this period, the lower is the energy consumption for sensing and

the lower is the sensing performance. We incorporate the effect of Ts in our system

by modeling probability of detection (pd) and false alarm (pfa) as functions of Ts: pd

decreases while pfa increases with increasing Ts. We will refer to these terms as pd(Ts)

and pfa(Ts) to represent this relationship.

We focus on the downlink transmission, and spectrum sensing and allocation only

on the CFBS downlink. There are two main reasons for this: first, the asymmetric

nature of user traffic concentrates the transmissions on the downlink. Second, the

relatively easier proliferation of CR capabilities through FBS deployment compared to

user replacements implies this scenario more likely.

The following notation is used for representing types: C stands for CFBS, c for

CFU, F for non-cognitive femto, f for FU, M for MBS, m for MU, and P for primary

user. In this network, energy consumption (E) and throughput (C) are calculated

as the sum of values by related entities, i.e. total throughput of users in the system

opposed to the total energy consumption of all network nodes excluding the licensed

users of the primary bands (primary users, PUs) since they are external entities. For

the sake of brevity, we use energy and power interchangeably at certain points during

analysis since we already consider power consumption per time unit (P × T ) leading

to an implicit energy consumption value for those specific cases. In the following part,
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Table 6.1. Energy consumption components for each entity.

Entity Transmission Reception Backhaul Sensing Idling
MBS +
FBS + + +
CFBS + + + +
MU + +
FU + +
CFU + +

we present our approach to calculate these energy consumption and related capacity

values. Table 6.1 lists all energy consumption components associated with each entity.

6.1.1. Downlink Energy Consumption Model

In this section, we present our model for each component: MBS, FBS, CFBS,

MU, FU, and CFU. As shown in Table 6.1, MBS consumes energy only for transmission

whereas an FBS also has backhaul and idling components for energy consumption. A

CFBS has all these components as of an FBS with an addition of component for sensing

energy consumption. Since we focus on downlink transmission, all user types consume

energy for reception and idling. We use the model introduced in [117] for base station

transmission energy consumption1 . In this model, power consumed for transmission

(P in) is a function of transmission power P out and network load. This model accounts

for all energy consuming components, e.g., circuitry and feeder losses [117]. Addition-

ally, we include the backhaul energy consumption since it may substantially affect the

energy efficiency figures especially for small cells [118]. Considering the fact that back-

haul also may change the best operation mode especially for small cell scenarios, we

also include backhaul energy consumption in the small cells. Effect of backhauling at

the MBS is skipped since both scenarios -with and without small cells- already have

this cost.

1Throughout the section, we use power and energy consumption interchangebly. Both in fact refer
to the power consumption as we consider unit time in our model.



79

6.1.1.1. MBS energy consumption. MBS energy consumption is due to downlink trans-

mission to the MUs in its coverage. Given the power consumption for transmission is

P in
M , total energy consumption equals P in

M .

6.1.1.2. MU energy consumption. Let λm denote the probability that an MU has a

downlink traffic in a time slot and P i
m be the idling energy consumption when an

MU has no incoming traffic. Since MBS allocates frequencies orthogonally, an MU

is assigned a frequency with probability p = FM/nm, (FM ≤ nm). Average energy

consumption at the MU is:

Em = λmpP
rx
m + (1− λmp)P

i
m (6.1)

where P rx
m denotes the energy consumption of an MU for receiving the downlink traffic.

6.1.1.3. CFBS energy consumption. At a time slot, a CFBS may be in one of the

three states:

(i) it transmits downlink traffic to CFUs,

(ii) it switches to idle mode if there is no downlink traffic, or

(iii) it halts all traffic and senses the spectrum.

Let λc denote the probability that a CFU has a downlink traffic in a time slot, and

CFBS performs spectrum sensing once in each Ts slots. In the transmission mode,

total energy consumption (Et
C) is the sum of energy consumption due to transmitter

and the backhaul equipment: Et
C = P in

C + P bh
C . For sensing and idling modes, energy

consumption (Es
C and Ei

C) becomes Es
C = P s

C + P bh
C and Ei

C = P i
C . Then, average

CFBS energy consumption becomes:

EC =
Es

C + (Ts − 1)(λcE
t
C + (1− λc)E

i
C)

Ts

. (6.2)
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6.1.1.4. CFU energy consumption. A CFU may be in two states: traffic reception

or idling. It receives downlink traffic if it has some incoming traffic and allocated a

frequency by the CFBS. It idles if it does not have an incoming traffic or no frequency

is allocated for it. Additionally, a CFU idles during sensing periods as CFBS halts

transmission and performs sensing. A CFU receives traffic from the serving CFBS

at the assigned frequency f . Since discovered spectrum opportunities at the CFBS

may be spectrally distant from the operator-owned frequencies, we include the cost

of RF antenna tuning, aka channel switching cost [119]. Channel switching cost is a

linear function of the difference between the current and to be switched frequencies,

i.e., |f − f ′|. Let δF be the average number of channel switching, and P i
c be the energy

consumption when a CFU has no incoming traffic. Energy consumption at the CFU

is:

Ec =
P i
c + (Ts − 1)(λc(P

rx
c + P cs

c δF ) + (1− λc)P
i
c)

Ts

(6.3)

where P i
c , P

rx
c , and P cs

c denote the energy consumed by a CFU for idling, reception,

and channel switching, respectively.

6.1.1.5. FBS energy consumption. Different from CFBS, an FBS does not perform

spectrum sensing. Energy consumption at the FBS is due to transmission, backhaul,

and idling.

6.1.1.6. FU energy consumption. An FU different from the CFU operates only on the

operator bands which are typically a set of contiguous bands. Hence, channel switching

in FUs is negligible compared with the CFUs. Energy consumption at the FU is due

to receiving or idling in case of no incoming traffic.
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6.1.2. Spectrum capacity calculation

CFBS in a CFN discovers spectrum opportunities via analyzing the spectrum

consisting of FCR frequencies. However, sensing process is not totally accurate; a CFBS

may fail to detect active PU(s) in the band, called misdetection, or may give an alarm

that PU exists in the band but it does not, called false alarm. Some opportunities

might be lost due to false alarm. Taking the effect of false alarm into account, we

can model the spectrum capacity of CFBSs in terms of available frequencies. Given

that there are FCR frequencies for opportunistic use, and each frequency is idle with

probability pidle, then spectrum capacity FC is the sum of discovered frequencies and

the MBS frequencies:

FC = FCRpidle(1− pfa(Ts)) + FM (6.4)

whereas in a setting with only femtocells sharing the operator’s frequencies, spectrum

capacity is simply

FF = FM . (6.5)

6.1.3. Interference calculation

Below, we classify the type of interference among the entities into three groups

and identify the value of each using the expected distance between the source and

the victim of the interference. Let n∗,x be the number of entities of Type * creating

interference to an entity of Type x, and I∗,x be corresponding interference. We find the

number of interferers as λ∗N̄∗/F∗ where N̄∗ is the number of Type * nodes excluding
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the node itself:

nC,m =
λcNC

FC

, nF,m =
λfNF

FF

(6.6)

nC,c =
λc(NC − 1)

FC

, nF,c =
λfNF

FF

(6.7)

nC,f =
λcNC

FC

, nF,f =
λf (NF − 1)

FF

(6.8)

We consider only a single MU receiving at each MBS frequency and a single PU for

each primary network frequency. Hence, we can write nP,c = 1, nM,c = 1, nM,f = 1.

� Co-layer Interference: A CFBS creates interference to the CFUs receiving at the

same frequency in the coverage of other CFBSs. This effect is marked as 1 in

Figure 6.1. This interference equals to IC,c = P out
C d−α where d is the average

distance to the closest CFBS and α is the path loss exponent of the link between

the CFBS and the CFU. Assume thatNC CFBS are uniformly deployed at angular

separation 2π
NC

and at a distance R
2
away from the center of the cell on the average.

In this network, d can be calculated using the law of cosine as follows:

d =

√
R

2

2

(1− cos(
2π

NC

)). (6.9)

Similarly, a CFBS creates interference to the FUs in the femtocells (IC,f , link 2

in Figure 6.1), FBS to FUs in neighboring cells (IF,f , link 3), and FBS to the

CFUs (IF,c, link 4). All are calculated similar to IC,c.

� Cross-layer Interference: Interference between macro-layer and femto-layer is

called cross-layer interference. In the downlink, BS generates interference to the

user receiving at the same frequency in the other layer: MBS to the CFUs/FUs

and CFBS/FBS to the MUs. The effects marked with 5,6,7, and 8 in Figure 6.1

correspond to these interference types, respectively. Average distance between the

MBS and a CFU/FU is d = R
2
. Average distance between a CFBS/FBS and an
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MU is calculated similar to inter-CFBS distance calculation in Equation 6.9:

d =

√
R

2

2

(1− cos(
2π

NC

− 2π

nm

)). (6.10)

� Cognitive Layer Interference: CFBS may experience/create severe interference

from/to the external primary networks at FCR bands. This interference is sig-

nificantly high in case of misdetection compared to the opportunistic use of the

spectrum after successful discovery of the idle bands. This effect is depicted as

link 9. The distance between the source and the victim of the interference is:

d =

√
R

2

2

(1− cos(
2π

NC

− 2π

np

)). (6.11)

Interferences at an MU (Im), at an FU (If ), and at a CFU (Ic) under a certain prob-

ability of detection pd(Ts) are calculated as follows considering all three types of the

interference and the background noise (N0):

Im = nC,mIC,m + nF,mIF,m +N0 (6.12)

If = nC,fIC,f + nF,fIF,f + nM,fIM,f +N0 (6.13)

Ic = nC,cIC,c + nF,cIF,c + nM,cIM,c + nP,c(1− pd(Ts))IP,c +N0. (6.14)

We can calculate the theoretical capacity perceived by each user type using Shannon’s

formula. Since we are mainly concerned with the relative performance comparison of

different scenarios and the effect of CFN proliferation, we assume that the channel

bandwidth is 1 Hz for the sake of simplicity. This setting also allows the performed

analysis to be network-technology independent. Therefore, the results may also be

interpreted as “per frequency unit capacity”.
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Since CFUs do not receive traffic during sensing periods, we normalize throughput

of CFUs (Cc) accordingly as below:

Cm =
FM

nm

log2(1 +
P out
M

Im
) (6.15)

Cc =
Ts − 1

Ts

FC

nc

log2(1 +
P out
C

Ic
) (6.16)

Cf =
FF

nf

log2(1 +
P out
F

If
). (6.17)

Finally, energy consumption (E) and capacity (C) are calculated as the total energy

consumption and throughput of all entities in the network as follows:

E =EM + nmEm +NCEC+

ncEc +NFEF + nfEf (6.18)

C =nmCm + ncCc + nfCf (6.19)

Using the derived network capacity and energy consumption values, energy efficiency

η is calculated as η = C
E
.

6.2. Analysis and Evaluation

In this section, we evaluate the effects of CFN on the energy efficiency of hetero-

geneous mobile networks via system-level simulations. In order to analyze the energy

efficiency tradeoffs emerging with the introduction of CFBSs, we analyze three scenar-

ios:

� In Scenario I, there are no femtocells but just the macrocell serving the cellular

users. This scenario is also referred to as macrocell-only scenario.

� In Scenario II, the system has femtocells in the macrocell coverage. This scenario

is referred to as macrocell+femtocells scenario.
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� Scenario III reflects a CFN scenario, where CFBSs are also deployed in addition

to FBSs in the macrocell. This scenario is referred as CFN scenario.

Table 6.2. Summary of basic variables and parameter values.

Parameter Explanation Value

R Radius of macrocell 500 m

P out
C , P out

F , P out
M Transmission power of CFBS, FBS, and

MBS
30, 30, 46 dBm

P i
C , P

bh
C , P s

C CFBS power of idling, backhaul, and
sensing

500, 100, 600
mW

P i
m,P

rx
m MU idling and receiving power 200, 600 mW

P i
c ,P

rx
c CFU idling and receiving power 200, 300 mW

δF Average number of channel switching 5

FM , FCR Number of MBS and CR frequencies 10, 5

pidle PU probability of being idle 0.6

λf , λm, λc Traffic probability of FU, MU, and
CFU

0.6

αMC , αMF , αPC Path loss exponential (MBS-CFU,
MBS-FU, PU-CFU)

2.8

αFC , αCC , αFF Path loss exponential (FBS-CFU,
CFBS-CFU, FBS-FU)

2

System parameters for these settings are summarized in Table 6.2. For calculating

distances in different scenarios for specific number of users, we take an initial random

setting as our reference and calculate distances from the presented distance formulas.

Since the nodes become closer with increasing number of users N , we scale distance

values based on our reference model. We model the performance decrease in sensing

with increasing sensing period as follows:

pd(Ts) = 0.9/(Ts − 1) and pfa(Ts) = 0.1(Ts − 1). (6.20)

However, please note that any non-increasing function of Ts can be integrated into

our evaluation for calculating pd and non-decreasing function of Ts for calculating pfa.
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Figure 6.2(a) depicts energy efficiency of these three scenarios. In Scenario I, all users

are MUs whereas in Scenario II half of the users is MUs and the other half is FUs. In

Scenario III, the number of MUs, FUs, and CFUs in the network are equal. This last

scenario corresponds to the setting where CFNs are deployed into the network leading

to a heterogeneous network of macrocells, conventional femtocells and cognitive femto-

cells. For this scenario, we set Ts to 2, 6, and 10 time slots to see the effect of sensing

period. With increasing number of users, the energy efficiency of all scenarios decreases

as expected. In general, CFN attains higher energy efficiency for typical settings. This

is due to the additional bandwidth utilized via DSA. While CFN outperforms Sce-

nario I and Scenario II, Scenario II generally outperforms Scenario I. This supports the

proposition that deploying small cells to a macrocell improves energy efficiency, and

adding cognitive capabilities to these femtocells further improves the performance. The

CFN scenario with Ts = 6 performs as the best one. This result shows the trade-off

between energy/throughput consumption of sensing vs. its accuracy. The performance

loss suffered by Scenario II and Scenario III is greater with increasing user density

leading to lower performance after an intersection point with Scenario I at N = 100

and N = 150, respectively. After a certain point, CFBS and FBS become so dense

that their interference degrades the network performance. Although, macrocell-only

scenario has lower bandwidth and lacks frequency reuse, it attains higher energy effi-

ciency due to its interference-free operation principle. We infer from this figure that

effective interference management schemes have to be applied for femtocell and cogni-

tive femtocell scenarios in order to realize their potential. Additionally, the backhaul

power consumption in FBSs and CFBSs, albeit not having a significant share in total

energy consumption for low number of nodes, may have an effect on the total energy

efficiency of the network. In order to investigate the sensitivity of energy efficiency to

spectrum sensing overhead, we also considered the case where spectrum sensing requires

higher power consumption, setting P s
C = 1800 mW instead of 600 mW . Our analysis

revealed that energy efficiency did not change significantly because power consumption

for transmission dominates the power consumption for sensing in the considered model

due to periodic sensing. Hence, we can infer that efficient use of the transmission

power is more significant for better energy efficiency compared to the sensing energy
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Figure 6.2. Comparison of three scenarios. Scenario I: Macrocell only network, all
users are MUs; Scenario II: FBSs are added to the macrocell network. Half of the
users are MUs and the other half are FUs; Scenario III: MBS, FBS and CFBS are
deployed in the macrocell. There are equal number of MUs, FUs, and CFUs in the

network.
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consumption. This result is in accordance with the widely articulated importance of

power control and optimization for the energy efficiency of wireless networks in the

literature [117].

Figure 6.2(b) illustrates the change in system throughput. Scenario I exhibits

constant throughput, which is expected since the available spectral resources are fixed

for this macrocell-only network. For Scenario II, we can see an increased throughput

compared to Scenario I. This improvement is brought by the femtocells that can reuse

the frequency resources of the macrocell. However, while this frequency reuse does

not result in significant throughput loss for low femtocell density, it leads to lower

throughput converging to that of the macrocell-throughput under denser femtocell de-

ployments. As observed in other works, dense deployments of small cells have the

challenge of interference management and if not controlled (as in the considered sys-

tem) this issue leads to major throughput loss. The spectrum utilization in cognitive

manner for Scenario III hits an interference wall resulting in diminished capacity due

to collisions and missed opportunities. As we considered a quiet period for sensing,

i.e., all transmission is halted and sensing is performed, the more frequent the sensing

is, the less time remains for transmission. Additionally, the longer the sensing period

is, the higher the energy consumed for sensing is. On the other hand, sensing more

frequently improves sensing accuracy and hence discovered spectrum capacity for the

cognitive femtocells. This phenomenon can be interpreted as “do not sense too much or

too little” to traverse an optimal curve between sensing accuracy and sensing related

resource consumption (spectrum or energy). This figure corroborates this intricate

trade-off since Scenario III with Ts = 6 maintains the highest throughput among all

Scenario III cases. Additionally, similar to Scenario II, CFN suffers from increasing

interference for denser deployments in general, regardless of the sensing period value.

The performance of Scenario III depends on the sensing accuracy of the radios

which is represented in the Ts related pd and pfa values. Obviously, one fundamental

improvement for such a CR system would be to enhance the sensing scheme in terms of

accuracy and energy consumption. This has two interrelated benefits: better sensing

allows for shorter sensing periods while energy-efficient sensing modules decrease energy
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consumption per sensing time. Such fundamental enhancements would also improve

the overall system performance. The analytical results also indicate the sensitivity

of this type of systems to user densities. Next, we investigate the impact of CFBS

proliferation. In this scenario, there is a constant number of users in MBS coverage

(i.e., 300 users), and 100 of them are MUs. The remaining users are served by FBS or

CFBS based on the number of deployed CFBSs. We increase the density of deployed

CFBSs from 0.1 corresponding to 10% of small cells being cognitive femtocells, to

0.9. Figure 6.3(a) and Figure 6.3(b) depict the impact of increasing CFBS deployment

for Ts = 2, 6, and 10 time slots. We observe that deploying more CFBSs initially

increases the capacity and energy efficiency. Scenario with Ts = 2 time slots has lower

throughput and energy efficiency as it consumes half of the operation time for sensing.

However, as density increases, this scenario achieves higher energy efficiency compared

to the cases with Ts = 6 and 10 time slots. Basically, higher sensing accuracy achieved

by short Ts results in lower energy consumption. We also observe that there is an

optimal percentage of CFBS which leads to peak performance. In other words, this

result demonstrates that adding cognition to the non-cognitive FBS devices improves

the energy efficiency as well as throughput initially. However, after some point this

cognitive operation results in throughput loss due to overheads in sensing. When

there is a huge demand for the discoverable PU spectrum resources, disproportionate

time loss in agressive sensing by all CFBSs degrades the performance improvement

facilitated via discovered spectrum capacity. Hence, under such a scenario not all the

devices but some portion of the FBSs should utilize dynamic spectrum access. Please

note that our system does not employ any cooperation between the CFBSs which leads

to this conclusion. However, under more capable CFBS devices, e.g. devices not only

implementing DSA but a set of other cognitive capabilities such as power adaptation or

interference alignment [26], then turning more FBS into CFBS would further improve

the system performance. This analysis renders the improved benefits attainable with

a robust and efficient selection/adoption of cognitive capabilities for deployment in

network elements.
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Figure 6.3. Effect of CFBS proliferation. Number of MUs are kept constant and
remaining users are served by either FBS or CFBSs. Number of deployed CFBSs is

increased from 10% to 90% of the small cells.
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6.3. Summary

In this chapter, we have analyzed the impact of introducing cognitive radio ca-

pability - spectrum sensing and opportunistic access - into femtocells as a practical

application of cognitive radio concept. Cognitive Femtocell Networks (CFNs), a het-

erogenous network consisting of femtocells enriched with CR capabilities, are promising

as next-generation cellular radio systems integrating the advantages of two emerging

radio concepts: cognitive radios and small cells. We have provided a general analytical

approach to model the energy efficiency and capacity of a heterogenous network - a

macrocell-only network, a macrocell network with femtocells, and a network consisting

of macrocell, femtocells and cognitive femtocells. We have highlighted the benefits of

coupling these two concepts via our system model.

Our analysis illustrates the trade-offs related to the adoption of CFNs from the

energy efficiency perspective. In general, CFNs improve energy efficiency and through-

put of the network. On the other hand, it incurs additional sensing overheads, which

may yield higher energy consumption if performed in a wasteful manner. Our results

show this tradeoff between sensing accuracy and energy efficiency. We also observe

that under high cognitive femtocell density with uncontrolled cross- and co-layer in-

terference, a macrocell only network performs better. Hence, CFNs have to apply

interference management and control schemes to be less sensitive to node density and

to be more robust to heavy network load.
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7. CONCLUSION

7.1. Summary of Key Contributions

This thesis aims to provide an understanding of energy efficiency challenges and

some practical solutions for them in next generation wireless networking paradigms.Although

due to the common traits of wireless technologies, most of the discussions, analysis, and

solutions provided in this thesis can be considered as relevant to wireless networks in

general, we have focused on cognitive radio networks and cognitive femtocell networks

(CFNs).

This thesis contributes to the research both on energy efficiency and wireless

networks as follows:

� We have provided an analytical discussion of EE in wireless networks and identi-

fied fundamental trade-offs, EE metrics, energy consumption sources and appli-

cable EE improvement approaches.

� We have presented an elaborative discussion on the current state of the art in

green networking paradigm and highlighted directions for greener communica-

tions via cognitive radio functionalities.

� We have proposed a new type of network so called cognitive femtocell network

(CFN) that brings two networking paradigms together – cognitive radio and

femtocells – in order to tackle the “artificial” spectrum inefficiency and low quality

communications indoors by enjoying the benefits of these two paradigms. In

addition to a new network architecture named as CFN, we provide an elaborate

discussion on possible enhancements that can be applied at femtocells for both

better spectral efficiency and energy efficiency. Furthermore, in our model we have

shown how secondary users can benefit from getting service through femtocells

rather than performing spectrum sensing with a lower sensing reliability.

� We have designed a simple yet efficient analytical model to investigate the energy

efficiency benefits brought by cognitive femtocells to the macrocell-only networks
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by capturing the operation principles of macrocell networks as well as macro-

femto networks and cognitive femtocell networks. Limiting our attention to the

system level only, e.g., spectrum capacity and interference at a cognitive femto-

cell, femtocell and a macrocell, we have shown that femtocells improve throughput

compared to a macrocell-only network by better utilizing the macrocell frequen-

cies in a small locality. Next, we have demonstrated that cognitive femtocells

further improve the spectrum efficiency as well as the energy efficiency of the

network under normal network density. For a very densely deployed cognitive

femtocell network, the detrimental effects of the interference begin to dominate

the spectral efficiency benefits achieved by cognitive femtocells. Therefore, our

analysis consistent with the previous works has shown that interference manage-

ment is substantial for cognitive femtocell networks.

7.2. Future Directions

The envisaged future directions entail the core paradigms that we have covered

in this thesis work, namely CRs and CFNs.

In Chapter 5, we designed a cognitive femtocell network that deploys CR-enabled

femtocells. However, the considered cognitive functionality was minimal, i.e., spectrum

sensing and resource allocation. A more advanced cognitive femtocell device can apply

various functionalities such as traffic prediction or power adaptation. Such cognitive

femtocells with more advanced capabilities are essential to realize the real potential of

cognitive femtocells.

In Chapter 6, we provided an analytical model for evaluating the energy efficiency

of cognitive femtocell networks. However, we have not considered any interference

management schemes neither at femtocells nor at cognitive femtocells. The lack of

this mechanism showed itself as the decreasing performance with increasing cognitive

femtocell density. The first interesting direction we envision is embedding various

interference management schemes and then analyzing the added benefits. In this more

advanced system, it is evident that energy efficiency will improve. However, quantifying
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this improvement can show the further improvements at cognitive femtocells. Another

future work can be to simulate the proposed system with more detailed features, e.g.

mobility of users, and compare it with the analytical model.
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