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ABSTRACT

MULTI-VIEW FEATURE EXTRACTION BASED ON

CANONICAL CORRELATION ANALYSIS

Canonical Correlation Analysis (CCA) aims at identifying linear dependencies

between two sets of variables. CCA has recently become popular in the field of ma-

chine learning with the increase in the number of multi-view datasets, which consist

of different representations coming from different sources or modalities. This thesis

presents our efforts to improve the robustness and discriminative ability of CCA. CCA

uses the views as complex labels to guide the search of maximally correlated projection

vectors (covariates). Therefore, CCA can overfit the training data. Although, ensemble

approaches have been effectively used to avoid such overfittings of classification and

clustering techniques, an ensemble approach has not yet been formulated for CCA. In

this thesis, we propose an ensemble method for obtaining a final set of covariates by

combining multiple sets of covariates extracted from subsamples. Experimental results

on various datasets demonstrate the usefulness of ensemble CCA approach. The cor-

related features extracted by CCA may not be class-discriminative since it does not

utilize the class labels in its implementation. This thesis introduces a method to ex-

plore correlated and also discriminative features. Our proposed method utilizes two

(alternating) multi-layer perceptrons, each with a linear hidden layer, learning to pre-

dict both the class-labels and the outputs of each other. The experimental results show

that the features found by the proposed method accomplish significantly higher classi-

fication accuracies. Another contribution of this thesis is the use of CCA to improve a

filter feature selection algorithm. We also present our works on ensemble classification

and clustering for multi-view datasets.
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ÖZET

KANONIK KORELASYON TABANLI ÇOK-BAKIŞLI

ÖZNİTELİK ÇIKARIMI

Kanonik Korelasyon Analizi (KKA) iki değişken kümesi arasındaki doğrusal

bağıntıları belirlemeyi amaçlayan bir yöntemdir. KKA son zamanlarda makine öğrenme

alanında aynı verinin farklı temsillerinden oluşan çok-bakışlı veri kümelerinin art-

masıyla birlikte çokça kullanılmaya başlamıştır. Bu tez, KKA yönteminin gürbüzlüğü

ve sınıflandırma başarısının arttırılmasına yönelik çalışmaları içermektedir. KKA, mak-

simum korelasyona sahip izdüşüm vektörlerinin (eşdeğişkenler) bulunması için bakışları

karmaşık sınıf etiketleri gibi kullanmaktadır. Bu nedenle, KKA eğitim kümesi üzerinde

aşırı öğrenmeye sebep olabilir. Topluluk öğrenme yöntemleri sınıflandırma ve kümeleme

yöntemlerinin bu tür aşırı öğrenme sorunlarını engellemek için kullanılmış, ancak KKA

için bir topluluk yaklaşımı henüz önerilmemiştir. Bu tezde, birden fazla alt-örneklemden

elde edilen eşdeğişken kümelerinin birleştirilmesiyle nihai bir eşdeğişken kümesinin

elde edilmesi için bir topluluk yöntemi önerdik. Çeşitli veri kümeleri üzerinde elde

edilen deneysel sonuçlar topluluk KKA yönteminin başarısını göstermektedir. KKA

yönteminin gerçeklemesinde sınıf etiketlerinden yararlanılmadığı için, bu yöntemle elde

edilen öznitelikler sınıf-ayırıcı özelliğe sahip olamayabilmektedir. Bu tez iki bakış

arasındaki ortak bilgiyi içeren ve aynı zamanda farklı sınıflara ait örnekleri ayırt ede-

bilen öznitelikler arayan bir yöntem önermektedir. Önerdiğimiz yöntem her biri doğrusal

gizli katmanlı ve hem sınıf örneklerini hem de birbirlerinin çıktılarını tahmin etmeyi

öğrenmeyi amaçlayan iki çok katmanlı algılayıcıdan oluşmaktadır. Deneysel sonuçlar,

önerilen yöntemle çıkartılan özniteliklerin daha yüksek sınıflandırma başarısı verdiğini

göstermiştir. Bu tez çalışmasının diğer bir katkısı, KKA yönteminin bir öznitelik seçme

yönteminin geliştirilmesinde kullanılmasıdır. Bunun yanında çok-bakışlı veri kümeleri

için topluluk sınıflandırma ve kümeleme üzerine çalışmalarımızı da içermektedir.
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1. INTRODUCTION

Recently, in parallel with the advances in hardware technology, data collection

devices and sensors are becoming more portable and less costly, which enable the

researchers in the field of machine learning to collect multiple types of data (multi-

view data) about the same underlying phenomenon. The term “view” is used to refer

each related set of features in the field of machine learning. In consideration of these

technological advances, it can be said that gathering data is becoming easy. However,

finding test subjects, especially in biomedical applications where the test subjects are

mostly consisting of patients is still not easy. For example, Parkinson’s disease (PD)

is generally observed mostly in elderly people whose physical visits to the clinic are

inconvenient and costly, so collecting sufficient number of samples from these patients is

often not possible [1]. On the other hand, PD is a neurodegenerative disorder of central

nervous system which causes disorders in both speech and handwriting motor abilities

of patients. Hence, the number of samples required to construct a generalizable non-

invasive PD diagnosis decision support system can be reduced by gathering both speech

and handwriting samples of the patients together. Alternatively, one can constitute

a multi-view data by applying different feature representation techniques to the raw

single view data, e.g. extracting morphological features and zernike moments from

the original handwriting samples [2], or using amino-acid and dipeptide composition

of protein sequences [3].

Due to this recent popularity of multi-view datasets, the need for specific tech-

niques to analyze the relationships between the views of multi-view data and reduce the

dimensions of the multi-view data by extracting robust features is increasing. While

traditional dimensionality reduction methods such as Principal Component Analysis

(PCA) or Linear Discriminant Analysis (LDA) can be used to extract features from

a single view data, when the data is represented with multiple sets of features, treat-

ing the data as a single view by concatenating the views from different probability

distributions and applying single-view dimension reduction methods further decreases

the number of samples to number of features ratio. Besides, these methods cannot
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be used to detect correlations between the views of a multi-view data. Accordingly,

although it has been available to researchers in theory for roughly 80 years [4], Canon-

ical Correlation Analysis (CCA) [5] has recently become popular for discovering linear

relationships between two views (multidimensional variables) in the field of machine

learning.

Canonical Correlation Analysis (CCA) is a well-established statistical method

which has been proposed by Hotelling [5] in 1936. Ignoring its various extensions to

more than two views [6], CCA can be said to seek a pair of linear transformations,

one for each of the two sets of variables, such that when they are projected onto

these canonical vectors, the corresponding coordinate scores (covariates) are maximally

correlated [7]. Thus, CCA is a feature extraction method that remains in between the

unsupervised and supervised methods: similar to unsupervised methods it does not

use the class labels; on the other hand, just like a supervised method it uses each view

as a complex label of the underlying semantics to guide the other view [7]. In fact,

CCA is equivalent to LDA when the data features are used in one view and the class

labels are used as the other view [8]. Figure 1.1 shows how CCA can be used to extract

features between views of a multi-view PD dataset. Two views of the PD dataset,

speech signals and handwriting samples of the subjects, are guiding each other, and

the extracted features f(X) and g(Y ) are maximally correlated functions of the views

which are expected to have useful information for PD diagnosis since both of speech

and handwritten impairments are seen in patients with PD.

CCA has been used in a wide range of disciplines with different purposes. Pre-

liminary studies that used CCA are mostly based on quantifying and analyzing the

relations between different but related multidimensional variables [9–13]. For example,

in one of these early studies, Varis [9] applied CCA to explore the associations between

small species and physical and chemical growth factors in a natural environment. Many

recent studies that address engineering problems have also utilized from CCA with the

same purpose [14–20]. Afterwards, CCA has started to be used for classification and

regression problems as a feature extractor in the field of machine learning based on the

idea that common information included in both of the views obtained from the same
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Figure 1.1. Feature extraction between views of a Parkinson’s disease dataset using

CCA.

data source comprises the important discriminant information [7, 21–23]. In parallel

with the increasing number of applications that utilize CCA for different purposes,

some studies have focused on improving the robustness and discriminative ability of

the CCA covariates. In this thesis, we are concerned with both the robustness and

discriminative issues of CCA. Besides, we utilize CCA to improve a recently popular

filter feature selection method, and also present our preliminary studies on ensemble

classification and clustering.

1.1. Motivation

The traditional formulation of CCA utilizes the within-set and between-set sample

covariance matrices to explore the linear transformations that maximize the correlation

between two sets of variables (views). However, these sample covariance matrices can

be very sensitive to outliers and noisy samples [24–26], which can cause CCA to tune to

dummy dependencies in the training set that do not hold in the test set. Accordingly,

the literature studies that have focused on improving the robustness of CCA features

replaced the sensitive sample covariance matrices [27–29] of the views with their robust

estimations or totally avoided the use of sample covariance matrices [30–32]. A simpler

typical regularization approach to improve the generalization ability of the features

extracted by CCA is reducing the dimension of each view separately using PCA be-

fore the application of CCA [19,21,33,34]. However, although ensemble approaches in
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which multiple classifiers or clusterings are combined in attempt to produce a stronger

model have been successfully applied for dealing with such generalization and overfit-

ting problems in classification, regression, and clustering problems, an ensemble CCA

has not yet been proposed to address the robustness issue of CCA features. In this

thesis, our aim is to propose an ensemble CCA approach which combines many weak

correlations obtained from resampled subsets of the views to produce a final set of

stronger correlations with good generalization on the unseen test set examples. As

the proposed ensemble approach is used to improve the generalization of traditional

CCA features, it can also be applied to the robust implementations of CCA to further

improve their generalization.

The existing studies that aim to improve the discriminative ability of CCA utilize

the class information while fusing the views. The straightforward approach to incor-

porate the class labels into the feature fusion framework is to use an objective function

similar to that of LDA. Such studies employed the class information by maximizing the

correlation between feature vectors in the same class and minimizing the correlation

between feature vectors belonging to different classes [35, 36]. However, it has already

been shown that the extracted features with this approach are identical to those by

LDA with respect to an orthogonal transformation [37]. Besides, such discriminative

CCA methods, similar to traditional CCA and LDA, still use the sample covariance

matrices, which are sensitive to outliers and noisy samples. In this thesis, we aim to

propose a discriminative CCA method which can really take advantage of the class

labels in CCA computation and also avoids the use of sensitive sample covariance

matrices.

1.2. Contributions

In this section, we summarize the major contributions of this thesis study, and

refer to the particular sections of the thesis where they can be found:

• Ensemble Canonical Correlation Analysis (ECCA): We adapt the ensemble idea

to the CCA problem and propose an ensemble CCA (ECCA) method for obtaining
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a final set of covariates by combining multiple sets of covariates extracted from

subsamples (Section 3.3). We address the covariate correspondence problem and

propose the use of covariate correspondence matrix to combine the covariates of

various subsamples. Experimental results on various datasets have shown that

ECCA has better generalization for both the test set correlations of the covariates

and the test set accuracy of classification performed on these covariates (Section

5.1).

• Discriminative Alternating Regression (D-AR): We propose a method called D-

AR that integrates the class labels into its feature extraction framework without

the use of sensitive sample covariance matrices (Section 4.2). It is a linear dimen-

sionality reduction method based on the alternating regression approach imple-

mented by a multi-layer neural network with a “linear” hidden layer. We show

that the D-AR features accomplish significantly higher classification accuracies

on test sets of experimental datasets than its counterparts (Section 5.2).

• Kernel Canonical Correlation Analysis based minimum Redundancy-Maximum

Relevance (KCCAmRMR): We show that CCA can be used to improve a popular

filter feature selection algorithm called minimum Redundancy-Maximum Rele-

vance (mRMR). We first show on a simple toy/synthetic problem that using

mRMR can lead to inaccurate orderings of the variables because it does not

deal with the type of the dependency, but only with its quantity (Section 2.4.2).

Instead, we propose a method called KCCAmRMR which utilize kernel CCA to

explore and use all the correlated functions (covariates) between variables to com-

pute their unique (conditional) information about the target (Section 2.4.3). We

demonstrate the usefulness of our method on both toy and benchmark datasets

(Section 5.3).

• Cluster Stacking and Parallel Interacting Multi-view Learning Methods: As a

part of our preliminary studies on multi-view datasets, in the context of this

thesis, we propose a cluster ensembles method, called cluster stacking, and a

two stage supervised multi-view learning technique, called Parallel Interacting

Multi-view Learning (PIML). Cluster stacking approach is based on augmenting

the clustering indices of multiple clusterings and using this augmented consensus
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partition as the final partition (Section 3.2.3.3). The augmented cluster index

matrix we used in the cluster stacking method formed a basis to propose the use

of covariate correspondence matrix in the ensemble CCA method. We use our

cluster stacking approach to reduce each view of a multi-view protein structure

prediction dataset down to a single variable and compare its robustness with co-

association based matrix cluster ensembles method (Section 5.4). Our proposed

PIML method is based on the idea that the classical ensemble approach does not

take conditional interdependences among the views (Section 3.2.2) into account.

We demonstrate and compare the classification performance of PIML with that

of the classical ensemble approach on protein and arrhythmia datasets (Section

5.5).

1.3. Organization of the Thesis and Publications

The contributions of this thesis have been published in [38–46]. The chapters of

this thesis and the related publications are as follows:

In Chapter 2, we give the theoretical formulation of CCA and its relation to LDA.

We provide an overview of the literature studies from various fields that use CCA for

analyzing the relationships between different views of the a multi-view data, extracting

features from a multi-view data, and selecting the most informative features of a given

dataset. We also present our proposed feature selection method called KCCAmRMR, in

which we utilized Kernel CCA to improve a recently popular minimum Redundancy-

Maximum Relevance (mRMR) feature selection method. Parts of this chapter are

published in [38,40,45].

In Chapter 3, we first summarize the existing robust CCA methods. Then, we

give an overview of ensemble idea and its use for classification and clustering problems.

We also present our proposed cluster stacking approach and supervised multi-view

learning technique which are published in [39, 42, 43, 45]. Then, we review the exist-

ing ensemble approaches to CCA and mention their drawbacks. Finally, we define

the covariate correspondence problem and present our ensemble canonical correlation
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analysis (ECCA) method to deal with this problem. The ECCA method has been

published in [41].

In Chapter 4, first we review the existing research, which aim to increase the

discriminative ability of CCA features. Then, we propose an alternating regression

based discriminative CCA method, called Discriminative Alternating Regression (D-

AR), which aims to explore the discriminative covariates by incorporating the class

labels into the view fusion framework. The D-AR method also avoids the use of the

sensitive sample covariance matrices to extract the covariates. We give the architecture

of the D-AR method which is based on the alternating regression approach implemented

by a multi-layer neural network with a “linear” hidden layer. Some parts of this chapter

are published in [44].

Chapter 5 presents the experimental results obtained with the proposed ECCA,

D-AR, KCCAmRMR, cluster stacking, and PIML methods. We demonstrate the ro-

bustness of the covariates extracted by ECCA method on the emotion recognition,

handwritten digit recognition, content-based retrieval, and object recognition experi-

mental datasets. We also compare ECCA methods with CCA on a small toy dataset.

Moreover, we compared the discriminative power of the covariates extracted by CCA

and the proposed ECCA methods on the emotion recognition, handwritten digit recog-

nition, and content-based retrieval experimental datasets. In our D-AR experiments,

the discriminative power of the covariates extracted with the proposed D-AR method

are evaluated and compared against of the traditional CCA, PCA+CCA, AR, and

LDA methods on the emotion recognition and object recognition datasets under vari-

ous training set sizes. We also provide experimental results to evaluate the discrimina-

tive ability of the features selected by the proposed KCCAmRMR method on six UCI

datasets [47]. In our cluster stacking experiments, we present the comparative results

on a protein dataset with multiple views that are used to predict protein structure.

Finally, we provide the experimental results of the PIML method on two real pro-

tein datasets (secondary structure and subnuclear location prediction from sequence

features) and one real dataset on arrhythmia type prediction. All the experimental

results presented in Chapter 5 are published in [38,39,41–46].
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We conclude and summarize the main contributions of this thesis in Chapter 6.

We also discuss possible future work related to the proposed methods.
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2. CANONICAL CORRELATION ANALYSIS

Canonical Correlation Analysis (CCA) aims at measuring linear relationships be-

tween two sets of variables (views). CCA is a well-established statistical method but

with the recent developments in kernel and multi-view methods, it has become popular

technique for discovering linear/nonlinear relationships between two views (multidi-

mensional variables) [5, 7].

In this chapter, first, the theoretical formulation of CCA and the relation between

CCA and LDA are given. Thereafter, the literature studies from various fields that

use CCA for different aims are summarized. Finally, we present our proposed feature

selection method called KCCAmRMR, in which we utilized Kernel CCA to improve

a recently popular minimum Redundancy-Maximum Relevance (mRMR) [48] feature

selection method.

2.1. Theoretical Formulation of CCA

Canonical Correlation Analysis (CCA) aims at discovering linear dependencies

between two different but related views of the same underlying semantics [5]. It is

used to detect the maximum correlation between linear combinations of the two views.

The views guide each other behaving like complex labels as a way of feature selection

towards the underlying semantics [7].

Suppose that we have a dataset D composed of two such views with N pairs of

feature vectors:

D = di = {(xi, yi), i = 1, 2, · · · , N},

where xi ∈ Rm, yi ∈ Rn, and N is the total number of instances in the whole sample.



10

We can consider the dataset D as a block matrix of centered datasets

X = [x1, x2, · · · , xN ] ∈ Rm×N ,

Y = [y1, y2, · · · , yN ] ∈ Rn×N .

In CCA, the objective is to project X and Y datasets onto basis vectors wx and wy,

respectively, such that the correlation between the projections of the variables onto

these basis vectors is mutually maximized. In other words, the aim is to maximize the

correlation between the linear combinations wT
xX and wT

y Y :

ρ = max
wx,wy

corr(wT
xX,w

T
y Y )

= max
wx,wy

cov(wT
xX,w

T
y Y )

σwT
x XσwT

y Y

(2.1)

where a superscript T denotes transpose, cov denotes the covariance, and σwT
x X is the

standard deviation of wT
xX. The above correlation expression can be rewritten as

ρ = max
wx,wy

E[(wT
xX)(wT

y Y )T ]√
E[(wT

xX)(wT
xX)T ]E[(wT

y Y )(wT
y Y )T ]

= max
wx,wy

E[wT
xXY

Twy]√
E[wT

xXX
Twx]E[wT

y Y Y
Twy]

= max
wx,wy

wT
xE[XY T ]wy√

wT
xE[XXT ]wxwT

y E[Y Y T ]wy

(2.2)

in which E denotes the expectation.

The covariance matrix of (X, Y ) is

C(X, Y ) = E

 CXX CXY

CY X CY Y

 = C (2.3)

where total covariance matrix C is a block matrix, CXX ∈ Rm×m and CY Y ∈ Rn×n are

within-set covariance matrices, CXY ∈ Rm×n and CY X ∈ Rn×m are between-set covari-
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ance matrices, and CXY = CT
Y X . Substituting these covariance matrices in Equation

2.2, we obtain

ρ = max
wx,wy

wT
xCXYwy√

wT
xCXXwxwT

y CY Ywy

. (2.4)

It is clearly seen that re-scaling of the canonical vectors wx or wy does not affect the

solution of the maximization problem given in Equation 2.4, that is to say replacing

wx by αwx gives the following equivalence:

αwT
xCXYwy√

α2wT
xCXXwxwT

y CY Ywy

=
wT

xCXYwy√
wT

xCXXwxwT
y CY Ywy

. (2.5)

Hence, the CCA optimization problem given in Equation 2.2 can be rewritten as:

ρ = max
wx,wy

wT
xCXYwy√

wT
xCXXwxwT

y CY Ywy

subject to wT
xCXXwx = 1

wT
y CY Ywy = 1. (2.6)

Using the Lagrangian relaxation method to solve the above optimization problem, we

obtain the following Lagrangian:

L(λ,wx, wy) = wT
xCXYwy −

λX
2

(wT
xCXXwx − 1)− λY

2
(wT

y CY Ywy − 1). (2.7)

Finally, the CCA optimization problem given in Equation 2.6 is reduced to

XY T (Y Y T )−1Y XTwx = λ2XXTwx

CXYC
−1
Y YCY Xwx = λ2CXXwx, (2.8)



12

and similarly for the canonical vectors of Y :

Y XT (XXT )−1XY Twy = λ2Y Y Twy

CY XC
−1
XXCXYwy = λ2CY Ywy (2.9)

which are eigenvalue problems of the form Ax = λBx. The canonical vectors, wx

and wy, are obtained using the eigenvectors corresponding to the largest eigenvalues

of C−1XXCXYC
−1
Y YCY X and C−1Y YCY XC

−1
XXCXY , respectively. The projections of X and

Y onto these canonical vectors, i.e. wT
xX and wT

y Y , are called canonical variables

(covariates).

After obtaining the first projective directions, (wx1, wy1), which satisfies Equation

2.6, next pair of projective directions corresponding to the second largest eigenvalues

of C−1XXCXYC
−1
Y YCY X and C−1Y YCY XC

−1
XXCXY can be obtained by solving the following

optimization problem:

ρ = max
wx,wy

wT
xCXYwy√

wT
xCXXwxwT

y CY Ywy

subject to wT
xCXXwx = 1

wT
y CY Ywy = 1

wT
x1CXXwx = 0

wT
y1CY Ywy = 0. (2.10)

The number of non-zero solutions to the eigenvalue problem of CCA is limited to the

smaller dimensionality of views X and Y . Hence, the maximum number of covariates

that can be extracted between X and Y is equal to the smaller of m− 1 and n− 1.

2.2. Relation Between CCA and LDA

Shortly after the proposal of CCA by Hotelling [5], in 1938, Bartlett [49] has

revealed the connection between CCA and LDA by showing that LDA components
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can be obtained with the application of CCA between the data matrix and the class

label matrix L. Suppose that the matrix L represents the class label information of the

data matrix and constituted using the 1−of−C, or the more compact 1−of−(C−1)

coding [8], defined as:

L =



1N1 0N1 0N1 · · · 0N1

0N2 1N2 0N2 · · · 0N2

0N3 0N3 1N3 · · · 0N3

...
...

...
. . .

...

0Np 0Np 0Np · · · 1Np



T

∈ Rp×N (2.11)

where p is the number of classes, Nj is the number of samples in class j, 1j is a column

vector of j ones, 0j is a column vector of j zeros, and N =
∑p

i=1Ni. The CCA problem

here is to find a pair of linear transformations, one for input data X and one for class

label matrix L, such that when they are projected onto these canonical vectors, the

corresponding coordinate scores (covariates) are maximally correlated [7]:

ρ = max
wx,wl

corr(wT
xX,w

T
l L) (2.12)

Similar to Equation 2.6, the CCA problem between X and L can be written as:

ρ = max
wx,wl

wT
xCXLwl√

wT
xCXXwxwT

l CLLwl

subject to wT
xCXXwx = 1

wT
l CLLwl = 1

which is transformed to the following eigenvalue problem as shown in Section 2.1:

XLT (LLT )−1LXTwx = λ2XXTwx. (2.13)
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In the above problem, XLT can be written as

XLT =

p∑
i=1

Ni∑
j=1

(xij − x)(li)T

=

p∑
i=1

Ni(xi − x)(li)T

= X̂I

= X̂ (2.14)

where x is the global mean, xij denotes the jth sample of class i, (li) is a p dimensional

column vector whose ith element is 1 and the others are zero, xi = 1
Ni

∑Ni

j=1 x
i
j is the

class mean of X, and

X̂ = [N1(xi − x), · · · , Np(xp − x)] ∈ Rm×p. (2.15)

Now, we can rewrite the left-side of the eigenvalue problem given in Equation 2.13 as

XLT (LLT )−1LXTwx = X̂(LLT )−1X̂T , (2.16)

where

LLT =

p∑
i=1

Ni∑
j=1

li(li)T

=

p∑
i=1

Nil
i(li)T

=


N1

N2

. . .

Np

 ∈ Rp×p. (2.17)
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Thus, replacing this matrix in Equation 2.16, we obtain

XLT (LLT )−1LXTwx = X̂(LLT )−1X̂T

= X̂


N1

N2

. . .

Np

 X̂
T

=

p∑
i=1

Ni(xi − x)(xi − x)T

= Sb, (2.18)

where Sb is between-class scatter matrix:

Sb =

p∑
i=1

Ni(xi − x)(xi − x)T . (2.19)

Recall that LDA aims to project the data onto vectors such that the between-

class scatter is maximized while the within-class scatter is minimized, so the instances

that belong to different classes will be as well separated as possible, and the instances

from the same class to be as close to their mean as possible [50]. Thus, in LDA, we

want to obtain W which maximizes

|W TSbW |
|W TSwW |

(2.20)

where Sw is within-class scatter matrix, and is defined as

Sw =

p∑
i=1

Ni∑
j=1

(xij − xi)(xij − xi)T . (2.21)
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The LDA problem is reduced to the following eigenvalue problem:

Sbw = λSww (2.22)

and the LDA components are the eigenvectors corresponding to the largest p−1 eigen-

values of this problem. Now, we can rewrite the solution of the eigenvalue problem

given in Equation 2.13 as

Sbwx = λStwx (2.23)

where St = XXT is the total scatter matrix, and St = Sb + Sw. Replacing this in

Equation 2.23, we obtain

Sbwx = λ(Sb + Sw)wx,

Sbwx =
λ

1− λ
Swwx (2.24)

which is equal to the problem of LDA given in Equation 2.22.

There are some research efforts that aim to obtain more useful projections than

LDA using the equivalence between CCA and LDA [8]. These studies are based on

using different encoding modes for class labels. In one of such study, Sun and Chen [51]

proposed a method which uses soft labels instead of using a common label for all the

samples of the same class in order to assign different values to the samples of a class that

lie on different regions of the input space. Thus, they assigned more importance on the

samples near the class boundaries when compared with the high-density regions with

class centers. Their experimental results showed that the extracted features using soft

label based CCA have higher classification performance than those of extracted with

traditional LDA. Loog et al. [52] proposed a similar idea for an image segmentation

task. They constituted the second view of CCA by incorporating the class labels of

neighborhood pixels into their feature extraction framework with the aim of taking

advantage of the spatial context. In a more recent study, Kursun et al. [8] applied
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CCA to maximize the correlation between all pairs of data samples that belong to

the same class. The proposed method which they called within class coupling CCA

(WCCCA) performs a form of implicitly-supervised LDA and useful when the class

labels are embedded in the spatial and/or temporal patterns of the data rather than

being explicitly available. They demonstrated the usefulness of WCCCA on a face

database.

2.3. Applications of Canonical Correlation Analysis

Canonical Correlation Analysis (CCA) is a statistical method which has been

proposed by Hotelling [5] in 1936. However, although CCA has been available to

researchers in theory for roughly 80 years [4], it has recently found use in the field of

machine learning due to the rapid rise of multi-view datasets.

In multi-view setting, the dataset is composed of two or more related sets of

features (views). The term “multi-view” is used to refer multiple sets of features about

the same underlying phenomenon. The views can be obtained from totally different

natural data sources that belong to the same phenomenon. For example, in some

speech recognition problems, the researchers use both the audio and visual information

to obtain more generalizable models [53]. Besides, a multi-view data can be obtained

from a single view data by applying different feature representation techniques to the

original input. For example, the handwriting samples of subjects may be represented

with morphological features and Zernike moments [2]. The views belong to the same

object or class label in supervised settings. Most of the existing studies apply CCA

to extract/fuse features in multi-view classification/regression problems or analyze the

relationships between related views of a phenomenon. Besides, there are also literature

studies which utilize CCA for feature selection task.

2.3.1. Analysis of Relations

CCA has at first found use in a wide range of disciplines with the aim of exploring

and analyzing the relations between different but related multidimensional variables. In
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1991, Varis [9] used CCA to make an analysis of an environmental engineering problem.

He studied the relations between the most prevalent phytoplankton species and nine

physical and chemical growth factors in a polyhumic Finnish lake. In the same year,

Bartos et al. [10] applied CCA to analyze another ecological problem. They applied

CCA to study the potentialities of increasing wheat production by dividing the consid-

ered 30 variables into two sets. By the aid of eigenvalues Bartlett-test they determined

that the two sets can be described by 7 canonical variables based on 30 variables. They

also explored many canonical relations among the ecological factors (e.g. humus%,

CaCO3, stickiness, NO2 + NO3, fertilizer N) and nutrient content variables (e.g. dry

matter, P, K, Na, Ca, Mg%, crude protein, crude fibre). In 1992, Wade et al. [11]

analyzed the relationship between neuroticism and extraversion on the 4 major stages

of pain processing, that of pain sensation intensity, pain unpleasantness, suffering, and

pain behavior, in 205 chronic pain patients (88 male and 117 female). They found

that personality traits effect the ways in which people cognitively process the mean-

ings that chronic pain holds for their life, and hence the extent to which they suffer.

Finkenberg [12] conducted CCA to explore the relations between personal incentives

for exercise and body esteem using the Personal Incentives for Exercise Questionnaire

and the Body Esteem Scale of two hundred twelve women and 93 men enrolled in phys-

ical education courses. In another study, Cserhati and Forgacs [13] aimed to find the

relationships between the retention characteristics and molecular structure using CCA

and compared CCA with various multivariate mathematical-statistical methods such as

PCA and cluster analysis. They showed that molecular substructures have significant

influence on the reversed-phase retention behaviour of non-ionic surfactants. They also

found significant linear correlations between the covariates and the first coordinate of

the nonlinear map of principal component variables.

CCA is also used in more recent studies with the aim of exploring relationships

between different multidimensional variables. In a study of crew interaction with the

automatic flight control system of an aircraft, Degani et al. [14] observed 60 flights

and recorded every change in the aircraft control modes. They also recorded every

observable change in the operational environment. They used CCA to quantify the

relationships between the state of the operating environment and pilots’ actions and
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responses. Instead of presenting CCA by means of numerical tables, they proposed

to use a sun-ray-like diagram to present the multiple patterns that exist in the data

by employing Alexander’s theory of centers [15]. In a facial expression recognition

study, Zheng et al. [16] manually located 34 landmark points from each facial image

and then converted these geometric points into a labeled graph vector to represent the

facial features. As the second view, for each training facial image, they generated a

six-dimensional semantic expression vector by combining the semantic ratings which

describes the basic expressions. They utilized kernel CCA to learn the correlation

between the labeled graph vector and the semantic expression vector, and according

to this correlation, they estimated the associated semantic expression vector of a given

test image and then performed the expression classification according to this estimated

semantic expression vector.

In 2008, Cao et al. [17] aimed to examine how microbial community composition

and denitrification enzyme activities (DEA) at a California salt marsh vary with en-

vironmental conditions, nutrient availability, and levels of pollutants. They used CCA

to directly assess the relationships between microbial community profiles and environ-

mental variables such as elevation, total organic carbon and dissolved organic carbon.

In yet another study, using CCA, Ozkan et al. [18] aimed to investigate to which extent

yield components are related to canopy components in Gerek-79 cv. of bread wheat.

In their study, the first view is composed of yield components which are obtained using

the biological yield, grain yield, 1000-grain weight, fertile spikelet number and harvest

index. They used the canopy components as the second view which consists of spike

number, spike length and plant height. The results of their analyses showed that there

is significant high correlation of 0.923 between yield and canopy components. In the

same year, Yang et al. [19] utilized CCA to learn the mapping between 2D face image

and 3D face data, and observed that the proposed 2D-3D face matching method de-

creased the computation complexity drastically compared to the conventional 3D-3D

face matching while keeping relative high recognition rate. Considering the require-

ment of complex multivariate relationships identification in large scale genomic studies

with multiple phenotypic or genotypic measures, Parkhomenko et al. [20] proposed

Sparse Canonical Correlation Analysis (SCCA) method which examines the relation-
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ships between two types of variables and provides sparse solutions that include only

small subsets of variables of each type by maximizing the correlation between the sub-

sets of variables of different types while performing variable selection. They illustrated

the practical use of SCCA on a human gene expression data. In a more recent study,

Huang and He [54] applied CCA to establish the coherent subspaces between the prin-

cipal component analysis (PCA) based features of high-resolution and low-resolution

face images.

2.3.2. Feature Extraction

The simplest approach to learning from the data with multiple views (i.e. multiple

feature sets) is to concatenate all the features and use it as a single view data. However,

single view approach suffers from two main shortcomings: First, it increases the chances

of facing the curse of dimensionality, which is a problem encountered in regression and

classification problems when using a large number of features [55]. It is known that

reducing the number of features by eliminating the irrelevant and redundant ones

lead to more accurate and generalizable classification and regression models and so

decreases the complexity of the system. Second, it fails to model the individual views

of the data sampled from different multivariate statistical distributions, thus achieves

lower generalization of the classifiers [56]. It has been shown that treating the multi-

view data as if it consists of a single view decreases the performance when compared

with combining the multiple representations of the data with a more sophisticated

approach [57, 58]. Such an approach to supervised learning on multi-view data is

ensemble learning which is based on employing separate classifiers on each view and

combining the predictions of the views using techniques such as voting and stacked

generalization (stacking) [59]. Besides, co-training [57] and co-EM [60] multi-view

approaches are used to assign a label to the unlabeled examples in semi-supervised

learning problems.

The ensemble approach which is based on learning from each view individually

and then combining the predictions does not take the correlation information between

the views into account [61]. Therefore, CCA has recently found use in the field of
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machine learning as a feature extraction method since it can explore the correlated

information between different views of multi-view data. In 2003, considering that CCA

is a very powerful and versatile statistical tool that is especially well suited for relating

two sets of measurements, Melzera et al. [23] showed that kernel CCA (KCCA) is an

efficient non-linear feature extractor. They applied KCCA to build appearance object

models for pose estimation. In the same year, Hardoon et al. [7] proposed an overview

of CCA with application to learning methods. They attempted to learn the semantic

representation of images and their associated text to enable content based retrieval

with no reference to labeling. They used the extracted features which represents the

derived semantic space in an image retrieval task.

Extracting features with CCA between different representations of the data and

feeding these features to classifiers has also gained much attention in the field of pat-

tern recognition. The primordial study that used CCA features for classification and

regression goes back to Sun et al. [21]. They stated that since different views obtained

from the same data source reflect the different characteristic of patterns, fusing these

views to extract features not only preserves the important discriminant information,

but also eliminates the redundant information to certain degree. On the handwritten

Arabic numerals and Yale face databases, they showed that recognition rate of CCA

features with minimum-distance classifier is significantly higher than that of using each

view individually or the existing feature fusion algorithms. In another related study,

Liu et al. [62] reduced the dimension of the original face image sample using PCA to

overcome the singularity problem of the covariance matrix, and then applied CCA to

extract the linear optimal discriminant features without losing Fisher discriminatory

information. They fed the CCA features to k-nearest neighbor classifier and observed

that PCA+CCA performed higher classification accuracy than Fisherface.

In face recognition problems, the number of samples is always smaller than the

dimension of the dataset. In order to solve this small size problem encountered in CCA-

based face recognition problems, Sun et al. [22] proposed a new supervised learning

method called two-dimensional CCA. While traditional CCA extracts the features after

transforming the matrix face data to vector representation, 2DCCA directly extracts
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the features from image matrix. They observed that 2DCCA method achieves better

recognition performance than several other CCA-based methods on face recognition

datasets.

There are some research efforts in the literature that aimed at improving the

discriminative ability of CCA features by incorporating the class labels into feature

fusion and extraction framework. In 2007, Kim et al. [35] proposed a discriminative

CCA method based on Linear Discriminant Analysis that maximizes the canonical cor-

relations of within-class sets and minimizes the canonical correlations of between-class

sets. Shortly after this work, Sun et al. [36] proposed a very similar method which also

incorporated the class information into the framework of CCA for combined feature

extraction. By feeding the extracted features to k-Nearest Neighbor (k-NN) and Naive

Bayes classifiers, they compared the discriminative ability of DCCA with CCA and

Partial Least Squares (PLS) on text categorization, face recognition and handwritten

digit recognition datasets, and showed that DCCA features achieved higher classifica-

tion accuracy than those of the alternative methods. Based on DCCA method, Peng et

al. [63] proposed a CCA model with local discrimination (called Local-DCCA), which

considers the local correlations of the within-class sets and the between-class sets. How-

ever, in 2011, Shin and Park [37] analyzed the correlation based dimension reduction

methods and showed that the projective directions by DCCA are equal to the ones

obtained from LDA with respect to an orthogonal transformation. They also proposed

a method using within-class nearest neighborhood scatter which is especially effective

for data with non-normal class distributions.

For the semi-supervised multi-view case where the class labels of some patterns

are missing but the underlying phenomenon is represented with at least two views,

Kursun and Alpaydin [64] proposed a CCA based semi-supervised feature extraction

method called Semi-supervised CCA (SCCA). For the samples with missing class label,

the SCCA method keeps the pattern of the other view. Otherwise, it represents the

class-label by the class-center of the samples in that other view. CCA is used to extract

features between thus generated views.
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2.3.3. Feature Selection

As CCA has ability to learn a semantic space between two multi-dimensional

variables, it can be used to represent one view in terms of the other one. As explained

in Section 2.1, the objective of CCA is to project views X and Y onto basis vectors wx

and wy, respectively, such that the correlations between the projections of the variables

onto these basis vectors are mutually maximized. So, the features of view X can be

sorted according to their importance in the explanation of view Y by the magnitudes of

their corresponding weights in vector wx. Based on this idea, Hardoon et al. [65] used

CCA and its nonlinear extension Kernel CCA (KCCA) between fMRI and the activity

signal to identify the pixels with high weights as pixels that are associated with high

correlation will have a high weight value.

In 2008, Paskaleva et al. [66] presented a problem-specific CCA based feature

selection algorithm, called Canonical Correlation Feature Selection (CCFS), for the

general class of sensors whose bands are both noisy and spectrally overlapping. CCFS

combines a generalized canonical correlation analysis framework and a minimum mean-

square-error criterion for the selection of feature subspaces. They applied CCFS to

classify rock species using laboratory spectral data and a quantum-dot infrared pho-

todetector sensor, and to classify and estimate abundance of hyperspectral imagery

obtained from the Airborne Hyperspectral Imager sensor. Their classification results

on both applications showed that in the presence of noise, the proposed CCFS algo-

rithm can effectively reduce the sensorspace dimensionality while maintaining good

separability and classification results. In a more recent bioinformatics study, since

Sparse CCA method [20] does not directly provide a ranking of features, Zheng et

al. [67] proposed a simplified version of sparse CCA which produces a ranking of the

features. Their study addressed the problem of identifying correlations between genes

or features of two related biological system in which not all the features of predictor

view is related with the other multi-dimensional view. The aim of their proposed CCA

based feature selection model is ranking and selecting a subset of the features of the

input view which are dependent on the other view and eliminating the remaining fea-

tures which constitute a noise set. They demonstrated the effectiveness of the method
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on a recent infant intestinal gene expression and metagenomics dataset.

2.4. Proposed KCCAmRMR Feature Selection Method

Feature selection methods allow obtaining more robust and accurate machine

learning algorithms by reducing the high dimensional problem to a minimum set with

maximum joint dependency [48, 68]. In this section, we propose an individual feature

selection method called KCCAmRMR [38], in which we utilized kernel CCA (KCCA)

to improve a recently popular minimum Redundancy-Maximum Relevance (mRMR)

feature selection method [48]. Firstly, we briefly review the mRMR method. Then we

give the problem with the mRMR approach on a demonstrative toy example to show

that mRMR algorithm may cause inaccurate orderings. Finally, we present the details

of our proposed KCCAmRMR method. In simple terms, KCCAmRMR explores the

correlated functions between the variables and uses them to compute the redundancy

term instead of directly using themselves (i.e. their exact values).

2.4.1. The minimum Redundancy-Maximum Relevance (mRMR) Method

The minimum Redundancy-Maximum Relevance (mRMR) method [48] is based

on recognizing that the combinations of individually good variables do not necessar-

ily lead to good classification/prediction performance. In other words, to maximize

the joint dependency of top ranking variables on the target variable, the redundancy

among them must be reduced, which suggests incrementally selecting the maximally

relevant variables while avoiding the redundant ones. Based on this idea, mRMR uses

mutual information as a filter in order to obtain maximum classification/prediction

performance with a minimal subset of variables by reducing the redundancies among

the selected variables to a minimum.

In mRMR algorithm, firstly, the mutual information (MI) between the candidate

variable and the target variable is calculated (the relevance term). MI is a measure of

the mutual dependence of two random variables. The definition of mutual information

is based on Shannon’s entropy [69]. The entropy of a random variable X, denoted
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H(X), is a function of the probability distribution function P (X), and is sometimes

written as H(P (X)) since the entropy of X does not depend on the actual values of

X, it only depends on P (X). Shannon’s entropy is a measure of the uncertainty of a

random variable X and thus, it quantifies how difficult it is to predict that variable.

The definition of Shannon’s entropy can be written as an expectation:

H(X) = −E[logP (X)] = −
∑
x

[p(x) log(p(x))], (2.25)

where p(x) = P (X = x) is the probability distribution function (more it is the precisely

probability mass function for the discrete case but the results are generalizable) of X.

Hence the Shannon’s entropy is the average amount of information contained in random

variable X. In other words, it is the uncertainty removed after the actual outcome of

X is revealed. MI is a measure of mutual dependence of the two variables based on

the entropy:

I(X;Y ) = H(X) +H(Y )–H(X, Y ), (2.26)

where I(X;Y ) denotes the MI between random variables X and Y . The measure I

is also the Kullback-Leibler divergence of the product P (X)P (Y ) of the two marginal

probability distributions from the joint probability distribution, P (X, Y ). The MI

between random variables X and Y can be defined in terms of their probabilistic

density functions as:

I(X;Y ) =
∑
x

∑
y

[
p(x, y) log

(
p(x, y)

p(x) · p(y)

)]
, (2.27)

where p(x, y) = P (X = x, Y = y). Intuitively, mutual information is the shared

information between X and Y . In other words, it measures how much uncertainty is

removed from Y by knowing the state of X. Hence, if X and Y are independent, then

knowing the state of X does not give any additional information about the state of

Y and vice versa, so their mutual information is zero. On the other hand, if the two

random variables are identical, knowing one of the variables completely removes the
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uncertainty of the other one, so in this case the mutual information is equal to the

entropy of one of these variables.

In mRMR algorithm, after the computation of the MI between the candidate

variable and target, the average MI between the candidate variable and the variables

that are already selected is computed (the redundancy term). The entropy-based

mRMR score (the higher it is for a feature, the more that feature is needed) is obtained

by subtracting the redundancy from relevance. This scheme is shown in Figure 2.1.

t

x1 x2 xm

S1 S2 Sn

 

Figure 2.1. Computation of mRMR score of a candidate variable.

The maximal statistical dependency of the target variable (or class) t on the

data distribution in the subspace Rm (and vice versa) is called maximal dependency

(Max-Dependency) where m is the number of features chosen. In other words, Max-

Dependency scheme is finding a feature set S with m features which jointly have the

largest dependency on the target variable t [70]. This has the following form:

maxD(S, t), D = I({xi, i = 1, 2, . . . ,m}; t), (2.28)

where xi is the ith feature, and I(xi; t) denotes the mutual information between xi and

t. This form corresponds to adding one feature at each iteration which contributes to
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the largest increase of I(S; t). However, as Peng et al. [48] also stated, it is hard to

get an accurate estimation for multivariate density p(x1, . . . , xm) and p(x1, . . . , xm, t)

because the multivariate density estimation often involves computing the inverse of the

high-dimensional covariance matrix, which is usually an ill-posed problem. Besides, the

number of samples is often insufficient to accurately estimate the multivariate densi-

ties, and Max-dependency has slow computational speed. Therefore, Peng et al. [48]

proposed an alternative way of selecting features based on maximal relevance criterion

(Max-relevance). Max-relevance aims to maximize the mean value of all mutual infor-

mation scores between individual feature xi and target class t as an approximation of

Equation 2.28:

maxD(S, t), D =
1

|S|
∑
xi∈S

I(xi; t). (2.29)

This Max-relevance criterion approximates the maximum joint dependency of features

on the target class by maximizing the summation of mutual information between indi-

vidual features and target class. The features chosen with Max-relevance scheme are

expected to have rich redundancy because we choose them according to their individual

dependency with the target. Therefore, Peng et al. [48] proposed the following minimal

redundancy (Min-redundancy) condition to select mutually exclusive features:

minR(S), R =
1

|S|2
∑

xi,xj∈S

I(xi;xj). (2.30)

Finally, an operator for combining Equation 2.29 and Equation 2.30 is defined by:

max Φ(D,R),Φ = D −R. (2.31)

Thus, according to mRMR approach, mth feature chosen for inclusion in the set of

selected variables, Sm, must satisfy the below condition:

Sm = arg max
xj∈X−Sm−1

[
I(xj; t)−

1

m− 1

∑
xi∈Sm−1

I(xj;xi)

]
, (2.32)
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where X is the whole set of features. To better understand how this difference makes

good sense, Equation 2.32 can be expressed in proportional to the entropy of xj as

shown below in Equation 2.33:

Sm = arg max
xj∈X−Sm−1

[
H(xj)

(
I(xj; t)

H(xj)
− 1

(m− 1)H(xj)

∑
xi∈Sm−1

I(xj;xi)

)]
, (2.33)

where H(xj) is the entropy of xj. In the above equation, first term,
I(xj ;t)

H(xj)
denotes how

much entropy of the candidate variable xj in percent is common with the target t. The

second term 1
(m−1)H(xj)

∑
xi∈Sm−1

I(xj;xi) measures how much entropy of the candidate

variable xj in percent (average) is common with the selected variables (e.g. a variable

xj might have 60% of its entropy common with the target variable t and 40% of its

entropy common with the other variables, in average, which seemingly points out that

20% if its entropy could be unique information about t that would be gained when

xj is included). Multiplying the difference of these terms with the variable’s entropy

gives the unique information that the variable has about the target class. Among the

candidate variables, the variable with the maximum mRMR score is chosen next into

the selected set of variables.

Although it has been showed that mRMR algorithm works well for some exper-

imental studies, it is known that it causes inaccurate orderings in some cases since it

only measures the quantity of redundancy between the candidate variables and the

selected variables but does not deal with the type of this redundancy [40, 71, 72]. In

this context, Peng et al. [48] applied the backward elimination wrapper technique after

feature selection step by mRMR to get rid of these ineffective variables. Specifically,

mRMR chooses some irrelevant variables too early and some useful variables too late.

This is due to the fact that candidate variable that seems highly redundant with the

already selected variables might carry unique information about the target variable.

To address this problem, Sotoca and Pla [72] uses conditional mutual information to

estimate relevant redundancies and cluster variables based on these redundancies; thus,

each variable-cluster becomes a feature subset selected by an mRMR-like criterion. In

another study, Gurban and Thiran [73] incrementally selected the features also us-
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ing their conditional mutual information but taking difference of mutual information

(with target); but conditional mutual information is not a good match as they note

in their paper by requiring an additional parameter β as in [68] to bring them to the

same scale. In our approach, all the entropies are computed by Shannon’s mutual

information (i.e. no conditionals) and the relevance and redundancy terms, thus, are

comparable without need for further adjustments.

2.4.2. The Problem with mRMR Method

The problem with mRMR approach is that the subtracted redundancy term pun-

ishes features that are related to each other but carry different (i.e. unique or condi-

tionally independent) information about the target variable. To illustrate, in Figure

2.2, two random variables, X1 and X2, a target variable t, and relations among them

are visualized. Each region shown with ri represents one unit of information. Sup-

pose that X1 has been already selected into the feature set S. In the latter iterations,

mRMR score of each variable is computed to estimate the unique information they

have about target t. For example, mRMR score computation of variable X2 is shown

below:

mRMR(X2) = I(X2; t)− I(X2;X1). (2.34)

The mutual information between X2 and t, I(X2, t), is the sum of r3 and r4 which are

the intersection regions of X2 and t. For the computation of the unique information

that candidate variable X2 carries about target t, the mutual information between

X2 and the set of selected variables must be computed and subtracted from I(X2, t),

called the redundancy term. In our example, the redundancy between X1 and X2 is

the intersection regions of these variables, the sum of r3 and r7. Therefore, according

to Equation 2.34, mRMR score of X2 can be computed as:

mRMR(X2) = (r3 + r4)–(r3 + r7) = r4 − r7. (2.35)
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Figure 2.2. Venn diagram visualization of the relations between the variables for the

definition of the problem.

However, as it is seen in Figure 2.2, the unique information that X2 carries, i.e. distinct

from the already selected variable X1, about t is region r4. Therefore, mRMR score of

X2 must be r4. This is because of computing the redundancy term as the mutual in-

formation between X1 and X2. However, redundancy term must not be the quantity of

common information that they carry about each other. It must be the common infor-

mation that they carry about t. This information can be called as relevant redundancy

(RR).

As seen in Figure 2.2, only region r3 is the common information that X1 and

X2 carry about t. Therefore, redundancy term must be only r3, not r3 + r7. We see

that r7 is also common between X1 and X2, but it is not common with target t. In

this context, we refer to this type of redundancy as irrelevant redundancy (IR). The

redundancy term of mRMR algorithm may be expressed as the sum of RR and IR as:

Redundancy(X1, X2) = RR(X1, X2) + IR(X1, X2). (2.36)
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However, as it is mentioned above, redundancy term must only include RR(X1, X2),

which gives the quantity of common information that X1 and X2 carry about target t

(i.e. relevant to the learning task).

As another demonstrative example showing the problem with mRMR, suppose

that we have 4 variables, X1, X2, X3, X4, and our task is to predict the target variable

t where

t = r2 + r3 + r4 + r7 + r8,

X1 = r4 + r5 + r8 + r9,

X2 = X1 + r6 = r4 + r5 + r8 + r9 + r6,

X3 = r7 + r8 + r9 + r10,

X4 = r1 + r2. (2.37)

In Figure 2.3, the relations among the five random variables, X1, X2, X3, X4,

and the target variable t, are visualized. Table 2.1 shows the mutual information

scores among the variables. Each variable has different quantity of entropy. All ri are

integers distributed uniformly but their ranges differ to vary the mutual information

scores. The example is created in such a way that X1 is the most relevant variable to

t and selected first by mRMR. Then, X3 must be chosen as the next variable but since

X3 has high irrelevant redundancy (IR) with X1, X4 will be selected by mRMR and

X3 will be added one iteration later than it must have been.

Table 2.1. Mutual information scores among the variables.

X1 X2 X3 X4

X1 3.1172 2.1728 0.2043 0.0219

X2 2.1728 3.1649 0.2434 0.0155

X3 0.2043 0.2434 2.8840 0.0125

X4 0.0219 0.0155 0.0125 1.4720

t 0.4826 0.4536 0.2218 0.0399
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Figure 2.3. Venn diagram visualization of relations between variables of toy dataset.

In particular, X1 consists of regions r4, r5, r8, and r9. Here, r5 and r8 are binary

(0 or 1) and the variable r4 ranges from 0 to 5. This bigger range of r4 increases the

mutual information between X1 and target t and makes X1 the most relevant variable

to t. The variable r9 ranges from 0 to 3 and increases the irrelevant redundancy between

X1 and X3. X3 consists of regions r7, r8, r9, and r10 of which r7 and r8 contributes to

the variability of t. r7 takes on values between 0 and 3 so that X3 is the second most

important variable for predicting t. X2 contains X1 and additionally covers r6 which

takes values 0 or 1. Due to this additional uncertainty, which is not common with the

target t, mRMR algorithm will prefer X1 to X2 initially. mRMR approach successfully

leaves picking X2 to the last step. X4 consists of binary variables r1 and r2. r1 is the

random variable that contributes to the mutual information between X4 and t.

mRMR algorithm chooses the variable that has the highest mutual information

score with the target variable in the first iteration since there are no selected variables

yet. X1 and X2 are designated to provide the most information to target t with r4

and r8 as described above. However, X2 includes the region r6 in addition to X1 which

decreases its mutual information with t because r6 contributes to the variability of X2

and is not common with t. Therefore, X1 is chosen in the first order by mRMR. The

problem with mRMR appears in the second iteration of this demonstrative example as
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follows. X2 has the highest mutual information with t among X2, X3, X4 but it is very

redundant with the already selected variable X1, so the relevance term (the mutual

information between variable and target) is mostly cancelled out by the redundancy

term (average mutual information between variable and the set of selected variables).

Thus, mRMR score of X2 is nearly zero. X3 has four units of common information with

target t (r7 is between 0 and 3 and r8 is between 0 and 1 summing up to four) and four

units of common information with selected variable X1 (r8 is between 0 and 1 and r9 is

between 0 and 2). Therefore, mRMR score of X3 becomes practically zero. However,

the unique information r7 that X3 supplies for target t should not have been cancelled

out by X1’s r9. In other words, the common information, r7, with the target t that

X3 includes, which X1 does not possess, is overlooked. X4 has one unit of common

information, r2, with t and no common information with the already selected variable

X1. Thus, X4 is chosen second for the set of selected variables as a mistake. Table 2.2

shows a representative table of mRMR scores of the variables and the selected variables

in each iteration (even though the mRMR score of X4 is just a bit larger than X3, our

aim here was to come up with a most simplistic example that this can happen, which

can be thought as a kind of imperfection/noise in the algorithm).

Table 2.2. mRMR scores of variables in each iteration.

X1 X2 X3 X4 Selected Variable

Iteration 1 0.4826 0.4536 0.2218 0.0399 X1

Iteration 2 - -1.7192 0.0175 0.0180 X4

Iteration 3 - -0.6406 0.1134 - X3

Iteration 4 - -0.3570 - - X2

2.4.3. KCCAmRMR Method

The KCCAmRMR method has been built on our earlier work [40] in which we

used an unsupervised machine learning tool, SINBAD (Set of INteracting BAckprop-

agating Dendrites) [74,75], while computing the relevant redundancy between the fea-

tures and the target. In our KCCAmRMR approach, we use kernel canonical correla-
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tion analysis (KCCA) [76, 77] in order to find the nonlinear relations, i.e. correlated

functions, between the features and the target t. We use the explored functions with

KCCA instead of the features themselves as in mRMR, and thus, filter out the irrelevant

redundancies and take only the relevant redundancies into account while computing

the redundancy term.

2.4.3.1. Kernel Canonical Correlation Analysis. Kernel Canonical Correlation Analy-

sis (KCCA) is a nonlinear correlation measure for determining statistical dependencies

between two random variables. KCCA is a kernelized version of CCA that leads to a

generalized eigenvector problem in a reproducing kernel Hilbert space by making the

use of a kernel for catching nonlinear relations that correspond to influential hidden

factors responsible for the correlations [7,74,78]. Figure 2.4 shows that KCCA lifts the

data into a higher dimensional feature space and reduces to a CCA problem that can

be efficiently carried out in the input space anyway, known as the “kernel trick” [79,80].
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Figure 2.4. KCCA is reduced to a CCA problem with the use of kernel trick.

2.4.3.2. KCCAmRMR Formulation. The feature selection criterion of our KCCAm-

RMR method has two terms as in mRMR: relevance and redundancy. The difference

is that in KCCAmRMR the correlated functions explored with KCCA are used instead

of the features directly while computing the mutual information scores. Each function

fi,u(xi) corresponds to a relation of xi with t (or a function of t). Thus, only the

relevant information of xi with the target is taken into account whereas the irrelevant
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information of xi about t is filtered out. The relevance term of KCCAmRMR’s feature

selection criterion is given below:

Dxj ,t =
∑
u∈Fj

[
I(fj,u(Xj); t) · ρ2u

]
, (2.38)

where Dxj ,t is the relevance between feature xj and target t, Fj is the set of correlated

functions with target t explored by KCCA, fj,u(xj) is the uth correlated function be-

tween xj and t, and finally ρu is the correlation coefficient between fj,u(xj) and target t.

In Equation 2.38, since there are multiple correlated functions, each of which represents

a different relation, the relevance term is summed over all these correlated functions

(the number of these correlated functions can be different for different features with

varying correlation coefficients). We multiply the mutual information between each of

the correlated function and target with the square of correlation coefficient, ρ2u, which

is used to weigh the meaningfulness of the relation by taking into account the variance

explained by the covariate.

As for the computation of the redundancy term, while computing a candidate

feature’s redundancy with already selected features, we use the correlated functions

of the features (with the target) instead of using the features themselves. We sum

redundancies over all pairs of correlated functions:

Rxj ,xi
=

1

m− 1

∑
xi∈Sm−1

∑
u∈Fj ,v∈Fi

[
I(fj,u(xj); fi,v(xi)) · ρ2u · ρ2v

]
(2.39)

where Rxj ,xi
represents the target-relevant redundancy between features xj and xi. As

in mRMR, in order to find the average redundancy of the candidate feature with the

selected set of features, we divide the sum of mutual information among correlated

functions to the number of already selected features. We also multiply the mutual

information with the correlation coefficients, ρ2u · ρ2v, as in the case of computing the

relevance term, as the weights of the relations with the target. Thus, according to our

approach, the mth variable that will be selected next among the candidate variables



36

must satisfy the condition:

Sm = arg max
xj∈X−Sm−1

[∑
u∈Fj

[
I(fj,u(xj); t) · ρ2u

]
−

1

m− 1

∑
xi∈Sm−1

∑
u∈Fj ,v∈Fi

[
I(fj,u(xj); fi,v(xi)) · ρ2u · ρ2v

]]
. (2.40)

For the computation of KCCAmRMR, all the correlated functions among the variables

and between each variable and target are found using KCCA. Then, these correlated

functions are used instead of using the features themselves as inputs to mRMR.
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3. ENSEMBLE CANONICAL CORRELATION ANALYSIS

Ignoring its various extensions to more than two views, CCA uses these two views

of the same underlying semantics as complex labels to guide the search of maximally

correlated projection vectors (covariates). Therefore, CCA can overfit the training

data, meaning that different correlated projections can be found when the two-view

training dataset is resampled. Although, to avoid such overfitting, ensemble approaches

that utilize resampling techniques have been effectively used for improving generaliza-

tion of many machine learning methods, an ensemble approach has not yet been for-

mulated for CCA. The existing studies embracing both CCA and ensembles are similar

to ensemble classification idea. They do not combine multiple sets of covariates into

a final set of covariates but only apply CCA to extract covariates on each subsample

separately, train a classifier on this reduced set of dimensions defined by the covariates,

and then combine the predictions of such separate classifiers. In this chapter, we pro-

pose an ensemble CCA (ECCA) method for obtaining a final robust set of covariates

by combining multiple sets of covariates extracted from subsamples. The aim of ECCA

method is reaching a final set of covariates by combining sets of covariates obtained

from various resamplings.

The remaining of this chapter is organized as follows: In Section 3.1, the existing

robust canonical correlation analysis methods are summarized. Section 3.2 reviews

the ensemble idea and its applications to classification, clustering, and CCA problems.

Then, in Section 3.3 our proposed ensemble solution for CCA is given.

3.1. Robust CCA Methods

From the computational point of view, in the traditional generalized eigenvalue

formulation of CCA, the canonical vectors are computed based on the within-set and

between-set sample covariance matrices which can be very sensitive to outliers and

noisy samples [24]. Based on these matrices with poor generalization, it has been

shown that CCA can tune to dummy dependencies in the training set that do not
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hold in the test set without proper regularization [25, 26]. The studies that deal with

this sensitive sample covariance matrix problem can be categorized into three groups:

(i) reducing the dimension of each view independently using Principal Component

Analysis (PCA) before feature fusion as a preprocessing step, (ii) iterative alternating

regression approaches which avoid the use of sample covariance matrices, (iii) and

robust CCA approaches which utilize the robust estimation of the sample covariance

matrices used in the computation of canonical vectors. The related studies with robust

CCA methods are be summarized in this section.

3.1.1. PCA plus CCA

The application of PCA before classification/regression and feature extraction

tasks with the aim of avoiding over-fitting problem and dealing with curse of dimen-

sionality is a very common preprocessing step in the field of machine learning. Also

PCA has been used before CCA to reduce the dimensions of the views independently

especially in face recognition applications due to small sample size problem and high

dimensionality of image vectors. As stated in Section 2.1, in the traditional formu-

lation of CCA, the canonical vectors are computed based on the sample covariance

matrices, and in face recognition problems, it is very difficult to obtain enough number

of samples so as to avoid the singularity of the sample covariance matrix. In 2005, Sun

et al. [21] used PCA plus CCA method to deal with the singularity of the covariance

matrix problem and also obtained generalizable canonical variables. They extended

the applicable range of CCA by applying PCA to each view for dimensional reduction

and extracting covariates with CCA in the PCA transformed space.

In another study, Sun et al. [34] applied the same PCA/CCA strategy to Gener-

alized CCA (GCCA) which incorporates the class information of the training samples

to improve the discriminative ability. They firstly extracted two groups of feature sets

on ORL and Yale face image datasets, then used PCA to reduce the dimension of two

groups of feature sets, finally used their proposed GCCA algorithm to extract discrim-

inative features in the transformed low-dimensional feature spaces. In the same year,

He et al. [33] proposed to use a very similar PCA plus CCA strategy, and extended the
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case to KPCA plus CCA to extract nonlinear features which is equivalent to Kernel

Fisher Discriminant Analysis in nature. They tested the PCA/KPCA+CCA methods

on ORL face database which contains images from 40 individuals, each providing 10

different images. They fed the extracted features with PCA/KPCA+CCA to k-nearest

neighbor classifier, and showed that KPCA/PCA+CCA significantly outperform Fish-

erface and KPCA+CCA is a little better than PCA+CCA. Yang et al. [19] proposed a

learning based 2D-3D face matching method using CCA to learn the mapping between

2D face image and 3D face data, and they also applied PCA on both 2D face image

and 3D face data before the feature extraction step to avoid the curse of dimensionality

and reduce noise. Although it has been shown that PCA can be applied before CCA

as a preprocessing step to avoid the overfitting and singularities of covariance matrices,

some of the important information regarding the correlations between the views might

be lost in this “blind” dimensionality reduction process since, unlike CCA, the PCA

method does not have the same ultimate goal of preserving the interrelations between

the views. Besides, how much the variance of the views must be preserved is also

another parameter that must be determined to apply PCA.

3.1.2. Alternating Regression

The alternating regression (AR) approach is firstly described by Wold [81]. The

motivation of alternating regression approach is implementing CCA without the use of

sample covariance matrices, which are sensitive to outliers and nosiy samples. Wold

has already mentioned that AR can be used to estimate the canonical variates as a

solution to CCA [25]. Given two multi-dimensional datasets,

X = [x1, x2, · · · , xN ] ∈ Rm×N

Y = [y1, y2, · · · , yN ] ∈ Rn×N
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where m and n are the number of features of X and Y , respectively, N is the number

of instances, the maximization problem of CCA is

(wx, wy) = arg max
a,b

corr(aTX, bTY ). (3.1)

Here, wx and wy are called canonical vectors of X and Y , respectively. The AR

approach starts by obtaining an initial value for one of these canonical vectors. Suppose

that we have an initial value for wx. This value can be obtained by assigning random

values to the vector elements or by applying PCA on X and getting the principal

component that corresponds to the largest eigenvalue [25]. Now, the maximization

problem given in Equation 3.1 can be written as:

wy = arg max
b

corr(wT
xX, b

TY ). (3.2)

Then the first value of wy canonical vector, w1
y is obtained according to

wT
xX = wT

y Y + γ1 + ε1 (3.3)

by regressing the univariate (w0
x)TX on Y where w0

x is the initial value of wx. In the

next iteration, w1
x is obtained by regressing (w1

y)
TY on X:

wT
y Y = wT

xX + γ2 + ε2. (3.4)

This alternating procedure is iterated until convergence. After each iteration, the

estimated regression coefficients are normalized. It must be noted that the regression

estimators in the above scheme need to be robust. Branco et al. [25] suggested to use a

weighted L1 estimator for this purpose which has already been used in an application

of AR by Croux and Filzmoser [82]. Branco et al. [25] also extended least squares

alternating regression scheme to obtain higher order canonical variates.

In 1998, Lai and Fyfe [30] investigated a neural network implementation of CCA.
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The inputs of their neural model is X and Y views and the objective function that will

be maximized is E[(wT
xX)(wT

y Y )] where E[] denotes the expectation which will be taken

over the joint distribution of X and Y . Using gradient ascent, they extract the update

rules for the weights of their neural model. They tested their method on an artificial

dataset which has been generated by drawing the samples of the views from zero-mean

Gaussian distribution and introducing correlations between the views. They also used

a real data that comprises exam grades of 88 students. In 1999, Lai and Fyfe [83]

extended their neural implementation of CCA by maximising the correlation between

outputs when such outputs are a nonlinear function of the inputs. They investigated a

particular case of maximisation of E[(wT
xX)(wT

y Y )] when the samples of view Y are a

nonlinear function of the view X’s inputs. They also demonstrated the success of their

method where the correlation extends to more than two input data sets.

Hsieh [31] proposed a nonlinear canonical correlation analysis method which is

constructed using three feedforward neural networks. He designed the first network as

a double-barreled architecture with an unconventional cost function, which maximizes

the correlation between the two output neurons (the canonical variates). He used hy-

perbolic tangent function (or the sigmoidal function) to provide the nonlinearity as

transfer function in the hidden layer of this network. The other two networks map

from the outputs of the first network back to the original two sets of variables. A

different algorithm other than neural networks can also be used in the implementation

of AR. For example, Ryder and Favorov [74,75,78,84] suggested an unsupervised ma-

chine learning tool, SINBAD (Set of INteracting BAckpropagating Dendrites), which

is a basic computational strategy for finding the functions of dependencies between

variables as similar to CCA. In [40], we used Support Vector Machines (SVMs) in the

SINBAD model to learn the nonlinear relations among two sets of variables. In its

implementation of SINBAD in [40], the learnt functions between the sets of variables,

f and g, are kernel functions as we used kernel-SVMs for SINBAD dendrites. We

acquired nonlinear dependences using RBF-kernel.
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3.1.3. Robust Estimation of Covariance Matrix

The robust estimation of sample covariance matrices in CCA computation is a

straightforward technique that can be used to overcome the sensitivity problem of

CCA to outliers and noisy samples. As shown in Section 2.1, the canonical vectors

between views X and Y are obtained using the eigenvectors corresponding to the

largest eigenvalues of C−1XXCXYC
−1
Y YCY X and C−1Y YCY XC

−1
XXCXY . The robust estimation

of covariance matrix idea is based on computing the within-set covariance matrices,

CXX and CY Y , and between-set covariance matrices, CXY and CY X , using a robust

covariance estimator.

M-estimators and Minimum Covariance Determinant (MCD) estimator methods

are two alternative robust covariance estimators which can be used in CCA computa-

tion. Karnel [27] proposed a robust CCA method by computing the covariance matrices

using M-estimators [85]. M-estimators are a maximum likelihood type estimator which

aim to reduce the effect of outliers by replacing the residuals, r, with a function of the

residuals, ρ, which must satisfy the following properties:

• ρ(r) > 0, ∀r and has a minimum at 0,

• ρ(r) = ρ(−r), ∀r,

• ρ(r) increases with the increasing values of r, but does not get too large as r

increases.

The standard least squares method where ρ(r) = r2 is not a robust M-estimator since

outliers have strong effects in the minimization of the function which results in overfit-

ted parameters. Because of the poor robustness properties of M-estimators in higher

dimensions [25], Croux and Dehon [28] proposed to use the Minimum Covariance De-

terminant (MCD) estimator of Rousseeuw [86] to robustly estimate the population

covariance matrices in CCA computation. The MCD estimator is based on choosing a

subset of the data which minimizes the determinant of the sample covariance matrix.

The number of samples in this subset is typically determined as b0.5Nc or b0.75Nc

where N is the total number of samples [25] in the original dataset. Rousseeuw and
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Van Driessen [87] proposed a fast algorithm to find the optimal subset of samples to

compute the MCD estimator, but they did not provide a large sample theory for the

Fast-MCD (FMCD) estimator. In a more recent study, Zhang et al. [88] proposed

three robust estimators of multivariate location and dispersion, and used one of these

to create a robust method of CCA. They conducted two simulation studies to compare

eight different CCA methods which are based on different robust sample covariance

matrix estimations.

3.2. Ensemble Idea

The ensemble idea is based on combining multiple models (classifiers, regressors,

or clusterings) to obtain an improved final model [89]. The final model is expected to

have higher prediction accuracy in classification problems [50] and more robust cluster

solutions in clustering problems [90] than could be obtained from any of the individual

models.

3.2.1. Ensemble Learning

Ensemble learning is a recently popular multi-learner system, in which multiple

individual learners are trained on the same task and a better predictive model than all

of the individual learners is aimed to be obtained by combining the predictions of the

individual learners. The set of individual learners may be constituted using:

• different learning algorithms on the training set,

• an algorithm with different hyper-parameters,

• different feature representations of the same data which can be obtained natu-

rally from different sensors (e.g. chemical and biological views of data in drug

discovery, or acoustic features and motion of lip region in speech recognition)

or by applying different feature extraction algorithms on the original data or by

artificially dividing the original data into groups in order for utilizing multiple

predictors on each view,

• different subsamples of the dataset by drawing random training sets [50].
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Early works on ensemble learning aimed at improving the accuracy and robustness

of classifiers and regressors [59, 91–94]. In 1990, Hansen and Salamon [91] proved

that the likelihood of an error using majority voting strategy to combine predictions

will monotonically decrease with the increasing number of ensemble members if each

member of the ensemble, i.e. feature subset, can get the right answer more than

half the time, and the responses of members are independent. In other words, both

theoretical [91, 95], and empirical [96–98] research on ensemble learning proved that

in order to obtain a better predictive final model, the individual learners must be

accurate and diverse enough. Diversity of the ensemble can be increased by creating

individual members which make their errors on different parts of the input space.

Many diversity measures have been proposed due to its important characteristic in

classifier combination. However, diversity has still no strict definition or generally

accepted formal measure [99]. As the accuracy of the members tend to decrease with

the increasing diversity, the studies that incorporate the accuracy and diversity within

a single measure are popular [100]. Fundamental machine learning tasks for ensemble

learning are harder than traditional single view learning because not only the accuracy

of the system but the diversity among the members of the ensemble must also be

taken into account. In one of those studies, Opitz [101] proposed a genetic algorithm

based feature selection method that aims at finding a set of feature subsets that will

promote diversity among the ensemble’s classifiers. They compared their method with

the traditional and powerful ensemble approaches of AdaBoost and Bagging on various

datasets and showed the utility of feature selection for ensembles.

In 2003, Bryll et al. [102] presented an ensemble construction technique, called

attribute bagging. This method constitutes the individual members of the ensemble

by partitioning the features instead of the samples in order to increase the diversity

among the individual classifiers. In the attribute bagging method, after determining

an appropriate attribute subset size, subsets of features are selected randomly. In this

way, the projections of the training set are obtained on which the ensemble classifiers

are built. They compared the performance of attribute bagging method with sample

based ensemble methods such as bagging on a hand-pose recognition dataset, and

showed that it gives consistently better results than bagging both in terms of accuracy
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and stability.

Ensemble learning is based on employing separate classifiers on each feature sub-

set and combining the predictions of the views using techniques such as voting and

stacking [103]. The final prediction, y, of an ensemble is given by

y =
M∑
i=1

widi (3.5)

satisfying

wi ≥ 0, ∀i and
M∑
i=1

wi = 1, (3.6)

where wi is the weight of the prediction of ith ensemble member, di is the prediction

of ith ensemble member, and M is the total number of individual members in the

ensemble [50]. The weight of the vote of each ensemble member, i.e. wi, is equal in

the simple voting scheme (wi = 1
M

). The class with the maximum number of votes

is the final prediction of the ensemble. This voting strategy is called majority voting

for two class classification problems. Instead of using the hard label predictions, more

sophisticated predictions as the measure of how much confident the ensemble member is

for its prediction can be used to obtain the final predictions. In the stacking approach,

the weights of the individual member predictions are learned by another learner which

does not need to be linear. In Figure 3.1, the training scheme of an ensemble with

two individual members is shown. In the individual learning step, firstly, the classifiers

are trained independently, and the obtained models for each member (i.e. view) are

applied on the training set which gives the class posterior probability estimates for the

training examples. This mapping can be defined as:

−→
f v,0 : Xv 7→ P c (3.7)

where P = [0, 1] ⊆ R and
−→
f v,0 denotes the function of the initial model of view v

defined from Xv, i.e. the original features of view v, to the class posterior probability
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estimates (a p dimensional vector, where p is the number of classes). In the combination

step, the probability estimates of the views are combined using a combination technique

such as voting or stacking.

View 1
Features

View 1
Model 1

View 2
Features

View 2
Model 1

Classifier Classifier

Probability
Estimates
of View 1

Probability
Estimates
of View 2

Combination of
Predictions:

Voting or Stacking

Figure 3.1. Ensemble learning with two individual members.

3.2.2. Proposed Parallel Interacting Multi-view Learning Method

In recent years, ensemble learning has gained considerable interest in predictive

tasks regarding high dimensional datasets which are available in many fields such as

biomedical engineering and bioinformatics [50, 104–106]. As a preliminary study of

this thesis, considering that the classical ensemble approach does not take into account

conditional interdependences among the views, we present a two stage supervised multi-

view learning technique called Parallel Interacting Multi-view Learning (PIML) [42,

43]. The classical ensemble techniques are expected to work well when there are no

conditional dependences (given the class-label) among the views since the views do
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not interact during their individual learning processes. The proposed method PIML

enables view interaction (in parallel) the training process, not only for avoiding the

curse of dimensionality but also for modeling at least some of the interdependences

among the views [43]. In other words, PIML addresses the following drawbacks of

the existing multi-view learning approaches: (i) the lack of training phase interaction

problem of the classical ensemble learning approach, (ii) the curse of dimensionality

problem of the approach which merges the views of the dataset and treats it as if it

consists of a single view. The proposed PIML method can also be used to combine the

covariates extracted with our proposed ensemble CCA or discriminative alternating

regression methods.

In the architecture of PIML, the views interact in parallel during the training

process for modeling the interdependences among the views, and also the curse of di-

mensionality is avoided since only the probability estimates of other views as a summary

information are used instead of high-dimensional original input space. The main idea

is as follows: the classifier of each view uses the input variables from its own view along

with the predictions (outputs) of the classifiers of the other views. In other words, each

view uses the summary of information in the other views and evaluates its own input

features (again) this time also by taking into account the predictions obtained from

classifiers trained, in a similar fashion, on the other views. This technique increases the

individual accuracies (sufficiency) of the views by taking the class posterior probability

estimates of the other views during its second training phase, and also aims to pre-

serve the diversity of the views by merging the original features of the individual views

only with the summary information of the other views. Therefore, PIML approach is

expected to reach higher accuracy than its counterparts that merge all the variables

of all the views or combine their predictions after the individual learning process, i.e.

ensemble methods.

If we used the probability estimates of all the views directly, we can only create

a single stacking network. Thus, our PIML strategy resembles blocking [49], which

is an experimental design strategy which produces similar experimental conditions to

compare alternative stochastic configurations in order to be confident that observed
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differences in accuracy are due to actual differences rather than to fluctuations and noise

effects. Using each view’s raw features along with the probability estimates of other

views at least corresponds to creating multiple versions of stackings (yet possibly still

using the same classifier model), thus increasing the number of blocking configurations.

The PIML architecture, which can be implemented in batch and in online learning

form, is shown in Figure 3.2. According to the simplified two-part batch implemen-

tation of PIML, firstly, each view is trained independently using a classifier (support

vector machines in this thesis). Then, the obtained models for each view are applied

on the training set and the class posterior probability estimates of each view for the

training examples are obtained. This mapping is defined as given in Equation 3.7.

The interaction of the views is then accomplished by combining the original fea-

tures of each view with the class posterior probability estimates of the other views

on the training set. In other words, the input of the second-pass classifier for each

view consists of the original features of the view plus the class posterior probability

estimates of the other views on those samples. Augmenting the features of a view by

the class posterior probability estimates as ‘the summary of the information that the

other views possess about the target’, a new model for each view is obtained. These

second (or higher order) models can be described recursively as below:

−→
f v,i+1 :

(
Xv,

[−→
f w,i

]
∀w 6=v

)
−→ P c (3.8)

where i+ 1th model of view v is a function defined from Xv augmented with the class

posterior probability estimates of the ith models of the other views to the improved

estimates of class posterior probabilities. Thus, PIML can be seen, at least, as an

ensemble of stacking networks, in which rather than creating a single stacking that uses

all the estimates from all the views, the estimate of each view is utilized multiple times,

thus leading to multiple stackings to be ensembled, which in turn leading to higher

number of blocking configurations and more confident posterior probability estimates.

When PIML is used in batch mode, we observed that generally, models show
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Figure 3.2. Two pass PIML architecture with two views. Each view has a classifier

that feeds its output into the classifiers of the other views.

substantial improvement over the initial ones. However, the third pass results in ap-

proximately the same accuracy. Therefore, in our PIML experiments given in Section

5.5, we use two pass implementation of PIML in our experiments.
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3.2.3. Cluster Ensembles

In the latter times, the ensemble approaches have been applied to combining

multiple clusterings, also known as the cluster ensemble problem. Cluster ensemble

problem was first addressed by Strehl and Ghosh [90]. The cluster ensemble approach

is based on combining the cluster labels which are obtained by applying a single cluster-

ing approach [50,107] to each ensemble set. While simple techniques such as majority

voting can be used to combine the predictions of multiple classifiers, for cluster en-

sembles we need more sophisticated tools since cluster labels assigned by each single

clustering are only symbolic, known as the cluster correspondence problem [108–110].

3.2.3.1. Single Clustering Algorithms. The clustering solutions of the convergent clus-

tering methods such as k-means depend on the starting cluster seeds. The k-means [111]

clustering algorithm is a non-hierarchical clustering procedure which aims to partition

the observations into k clusters such that each observation belongs to the cluster with

the nearest mean. In k-means clustering algorithm, the aim is to partition the obser-

vations into k clusters so that the within-cluster sum of squares is minimized. The

within-cluster sum of squares (WCSS) is computed as:

WCSS =
k∑

i=1

∑
xj∈Si

‖ xj − µi‖2, (3.9)

where Si is the set of observations of cluster i, and µi is the mean of points in set Si.

The standard algorithm of k-means identifies the clusters using an iterative refinement

technique consisting of two steps: firstly the mean of the clusters are computed and

each observation is assigned to the cluster with the nearest mean, and secondly the

means of the clusters are updated as the centroid of the observations in the cluster. The

algorithm is terminated when the assignments of the observations to the clusters remain

same between two iterations. The Forgy Method [112] can used for the initialization of

the means in which the means are randomly selected among observations. The k-means

clustering algorithm is heuristic, so the global optimum solution is not guaranteed.

Because of the built-in randomness of the algorithm, a different cluster solution is
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obtained in each run of the algorithm.

On the other hand, the hierarchical clustering methods are not convergent. In

general terms, these methods aim to build a hierarchy of clusters. In the agglomerative

type hierarchical clustering strategy, which is a ‘bottom-up’ approach, each observation

starts in its own cluster, and the most similar pairs of clusters are merged into a single

parent cluster. This process is repeated until the maximum number of clusters that will

be kept in the hierarchical tree is formed. There is no need for iterative optimization

procedure for the convergence of hierarchical clustering, so different runs of hierarchical

clustering techniques with the same observations and parameters result in the same

clustering indices. However, these methods are very sensitive to outliers [113].

3.2.3.2. Co-association Matrix based Cluster Ensembles. To overcome the variations

of the single clustering methods and obtain robust cluster solutions, co-association ma-

trix based cluster ensembles [90] approach is employed. The aim of the cluster ensemble

approaches is to obtain a final robust and reproducible cluster solution by combining

the solutions of many single clusterings. These single clusterings may be found using

different initialization conditions, constituting different subsets of observations with re-

sampling techniques such as bootstrapping, or applying different clustering algorithms

to the original input data.

The cluster ensembles method based on co-association matrix [90, 114–116] is

briefly summarized as follows: Suppose that a clustering algorithm is run B times on

a dataset X with different starting conditions, and partitions S = S1, S2, . . . , SB are

obtained. Each element of the co-association matrix, i.e. the similarity between two

objects x1 and x2, is defined as:

sim(x1, x2) =
1

B

B∑
i=1

θ(Si(x1), Si(x2)), (3.10)

where θ(a, b) = 1 if a = b, θ(a, b) = 0 if a 6= b, and Si(x1) is the partition of x1.

Similarity between a pair of objects is simply represented by number of clusters shared
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by these objects in the partitions S1, . . . , SB [117–119]. The agglomerative types of

hierarchical clustering techniques such as single-link, average-link or complete-link are

applied to the co-association matrix to obtain the final mostly representative partition

[118,119].

To obtain multiple clusterings, the k-means clustering algorithm can be run mul-

tiple times on the whole training set with different cluster seeds, and the hierarchical

clustering can be run multiple times on the selected subset of data points using boot-

strapping data resampling technique to create partitions. The cluster labels for each

partition are obtained by applying a clustering algorithm, then the cluster indices

of multiple clusterings are combined into the co-association matrix, and finally the

consensus partition is obtained applying a clustering algorithm on the co-association

matrix.

3.2.3.3. Proposed Cluster Stacking Method. We propose a cluster ensembles method

for multi-view datasets, called cluster stacking, to combine the multiple clustering

solutions of the views. Cluster stacking approach [39] is based on augmenting the

clustering indices of all the clustering trials into a consensus matrix and using this

augmented consensus partition as the final partition.

We construct an augmented cluster index matrix to combine the multiple clus-

terings of the views. This matrix is defined as:

C =


c11 c12 · · · c1V

c21 c22 · · · c2V
...

...
...

...

cB1 cB2 · · · cBV

 ∈ R(N ·B)×V , (3.11)

where cji ∈ RN×1 represents the cluster indices that belong to jth clustering run of view

i, B is the total number of clustering runs, N is the number of samples, and V is the

total number of views in the multi-view dataset. In order to avoid the label correspon-

dence problem between different clusterings of a view, we used completely different
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clustering indices in each partition. For this purpose, the cji vector is constructed by

assigning cluster indices between (j−1)×k+1 and j×k, so that the cluster indices get

different values for different runs of the same view. Thus, each view of the multi-view

dataset is reduced to a single variable. This mapping can be defined as:

Vi ∈ RN×di 7→ ci ∈ R(N ·B)×1, (3.12)

where Vi denotes the original data matrix of ith view, and di is the number of features

in Vi. The obtained augmented cluster index matrix, C can be used as input to a

clustering algorithm, and final partition of the objects can be obtained. Alternatively,

it can be used as input to a feature selection algorithm to identify the most relevant

views with the class/target variable.

The augmented cluster index matrix given in Equation 3.11 resembles the co-

variate correspondence matrix (see Section 3.3) that we propose to solve the covariate

correspondence problem encountered in ensemble CCA approach. In fact, the cluster

index matrix that we use to combine multiple clusterings of multiple views provided

a basis for solving the covariate correspondence problem of ensemble CCA using the

covariate correspondence matrix given in Equation 3.14.

3.2.4. Existing Ensemble Approaches to CCA

The existing studies that combine the ensemble idea and CCA are based on

separately extracting features from each subsample pair with CCA, then training a

classifier with the covariates, and finally combining the predictions of separate clas-

sifiers. In other words, they do not result in a final set of covariates by combining

multiple sets of covariates. Lau et al. [120] developed such an ensemble canonical cor-

relation prediction method. In his study, the term ensemble has been used to represent

different forecasts obtained by applying CCA to multiple sea surface temperature data

obtained from different ocean basis. The aim of this study was estimating summer

precipitation over the United States. Mo and Thiaw [121] applied the same ensem-

ble canonical correlation prediction idea in a meteorological study to predict summer
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rainfall over the Sahel. As predictors, they used the global sea surface temperature,

200-hPa streamfunction with zonal means removed, and forecasts or simulations from

the climate models. They performed CCA for each of these variables separately, so

obtained an ensemble of predicted precipitation fields, and combined these individual

CCA results by getting the equal weighted average of its members. Their observations

showed that each member has forecast skill over the different parts of the Sahel, and

therefore the ensemble mean of these members has higher skills than each of its indi-

vidual members. After this study, Mo [122] used the same ensemble CCA method to

predict summer (July–September) and winter (January–March) seasonal mean surface

temperature (Tsurf) with different predictors over the United States. He compared the

simple ensemble forecast and the superensemble forecast. While the simple ensemble

mean is the equally weighted average of the CCA results, the weighting function for

the superensemble forecast was determined by linear regression analysis. He concluded

that both ensemble forecasts improve skill of the individual members, and on average,

the superensemble gives the best performance.

In a more recent study, Zhang and Zhang [61] used ensemble idea for CCA with

the aim of extracting discriminative features. They proposed a discriminative CCA

method similar to the DCCA method of Sun et al. [36]. However, instead of using

all cross-view correlations between within-class examples, Zhang and Zhang [61] used

random cross-view correlations between within-class examples to integrate the class in-

formation into CCA. This random process enabled them to construct multiple feature

extractors based on CCA. They fused those feature extractors and proposed a method

called random correlation ensemble (RCE) for multi-view ensemble learning. While in

classical CCA approach only pairwise correlation terms are considered, DCCA of Sun

et al. [36] takes all within-class correlation terms into account. Unlike these methods,

RCE method includes only a random subset of within-class correlation terms to extract

diverse correlated features. Then, in RCE method, the obtained individual sets of cor-

related features are fed to classifiers separately, and the predictions of these classifiers

are combined using a combination technique such as majority voting or stacking. The

superiority of RCE method is expected to be originated from the fact that the diver-

sity of the ensemble members have been increased by creating them through including
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random within-class correlation terms. They validated the effectiveness of RCE by

comparing the discriminative ability of its features with those of CCA, discriminant

CCA (DCCA) of Sun et al. [36], trivial ensembles of CCA and DCCA which adopt

standard bagging and boosting strategies for ensemble learning. However, RCE, as the

former existing ensemble CCA approaches, does not combine multiple sets of covariates

to obtain a final set of covariates. It only resamples the two views to create an ensemble

of subsamples, applies CCA between each subsample pair individually to obtain a set

of covariates from each subsample, then feeds the covariates of each subsample pair

separately into classifiers, and finally combine the predictions of the classifiers.

3.3. Proposed Ensemble Canonical Correlation Analysis Method

Ensemble approaches have been effectively used in the field of machine learning

to improve the generalization capacity of classifiers and clusterings as mentioned in

Section 3.2.1 and Section 3.2.3. However, the existing studies embracing both CCA

and ensembles merely utilize CCA to extract covariates on each subsample separately,

train a classifier on this reduced set of dimensions defined by the covariates, and only

then combine the predictions of such separate classifiers [61, 121]. In other words,

combining multiple sets of covariates into a final set of covariates has not yet been

addressed in the literature. In this section, we first define the problem of combining

multiple sets of covariates, which in its simplest terms refers to the problem of finding

a final set of covariates by integrating sets of covariates extracted from CCA analyses

on various subsamples. Then, we propose an ensemble CCA (ECCA) method to deal

with this problem.

3.3.1. Ensemble Construction

Suppose that dataset D is composed of two views with N pairs of feature vectors

as

D = di = {(xi, yi), i = 1, 2, · · · , N},
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where di = (xi, yi), xi ∈ Rm, yi ∈ Rn, and N is the total number of instances in the

whole sample. We can consider the dataset D as a block matrix of centered datasets

X = [x1, x2, · · · , xN ] ∈ Rm×N

Y = [y1, y2, · · · , yN ] ∈ Rn×N .

In the ensemble CCA approach, firstly, D = (X, Y ) is resampled to construct

subsamples, Di
∗; thus producing X i

∗ and Y i
∗ pairs of subsamples of X and Y datasets.

In the context of this thesis, we consider three ensemble construction methods for

generating the ensemble from a given dataset D: bootstrap aggregating (BAGGING),

delete-a-group jackknife (JACKKNIFE), and partitioning the dataset (PARTITION)

but any other method can be used for this purpose. In bagging [92], a number of

subsamples, Di
∗, i = 1, 2, . . . , B, with N number of samples are generated by drawing

random samples with replacement uniformly from the original training set D. Jackknife

[123] method works by leaving out some portion of training data samples at a time

and using the rest subset as a subsample of the ensemble. In partitioning method, the

original training set D is randomly partitioned into B subsets, and thus B number of

subsamples is constituted, Di
∗, i = 1, 2, . . . , B, each with N

B
number of training samples.

3.3.2. Individual Sets of Covariates

The aim of ensemble CCA approach is to combine the individual sets of covariates

into a final consensus set of covariates. For this purpose, we need to obtain the individ-

ual sets of covariates from the subsample pairs of the ensemble, which are constructed

with one of the ensemble construction methods as given in Section 3.3.1.

The individual set of canonical vectors extracted from the ith subsample pair, X i
∗
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and Y i
∗ , can be denoted as

Wx = {W i
x}i=1,2,··· ,B

Wy = {W i
y}i=1,2,··· ,B (3.13)

where B is the total number of independent subsamples used, and W i
x denotes the set

of canonical vectors extracted using the ith ensemble set of view X, X i
∗. The matrices

Wx and Wy of size m × (k · B) and n × (k · B) contain the canonical vectors of X

and Y , respectively, in their columns where k is the total number of canonical vectors

extracted from each ensemble set.

3.3.3. Covariate Correspondence Problem

After obtaining k canonical vectors of each ensemble set (subsample), the aim

of ECCA method is to extract a final, consolidated k canonical vectors. However, we

cannot simply merge the covariate sets horizontally into matrices as

[
(W 1

x )TX1
∗ (W 2

x )TX2
∗ · · · (WB

x )TXB
∗

]
[

(W 1
y )TY 1

∗ (W 2
y )TY 2

∗ · · · (WB
y )TY B

∗

]

because, for example for the bootstrapping ensemble construction method, not all the

samples are chosen for inclusion in each Xb
∗ and Y b

∗ . When the bootstrapping method

is applied, the size of the horizontally concatenated matrix becomes k by (N ·B), and

the set of covariates of size k by N extracted from any subsample of the ensemble

belong to different resampled set of instances from the other subsamples. We call this

“the sample correspondence problem”. It must be noted that this problem also exists

for the other construction methods such as partitioning and jackknife.

On the other hand, we cannot merge the set of covariates extracted from sub-
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samples vertically either:

[
((W 1

x )TX1
∗ )

T ((W 2
x )TX2

∗ )
T · · · ((WB

x )TXB
∗ )T

]T
[

((W 1
y )TY 1

∗ )T ((W 2
y )TY 2

∗ )T · · · ((WB
y )TY B

∗ )T
]T

because the canonical vectors extracted from the subsample pair X i
∗ and Y i

∗ are not

guaranteed to match those extracted from the view pair Xj
∗ and Y j

∗ , where i 6= j.

Similar to the cluster correspondence problem [90], as the covariates extracted from

different subsample pairs do not have to correspond or match, we call this phenomenon

“the covariate correspondence problem”.

3.3.4. Ensemble CCA

The ensemble CCA problem can be defined as combining multiple sets of covari-

ates, which in its simplest terms refers to the problem of finding a final set of covariates

by integrating sets of covariates extracted from CCA analyses on various subsamples.

For this purpose, the set of covariates extracted from the subsamples of the ensemble

must be combined in a common matrix which does not suffer sample and covariate

correspondence problems. The algorithm of the proposed ECCA method to extract

first pair of canonical vectors is shown in Figure 3.3.

Our proposed ECCA method is based on using the following covariate correspon-

dence matrix for view X to solve both the sample and the covariate correspondence

problems that are addressed in Section 3.3.3:

Mx =


(W 1

x )TX1
∗ (W 2

x )TX1
∗ · · · (WB

x )TX1
∗

(W 1
x )TX2

∗ (W 2
x )TX2

∗ · · · (WB
x )TX2

∗
...

...
...

...

(W 1
x )TXB

∗ (W 2
x )TXB

∗ · · · (WB
x )TXB

∗

 (3.14)
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Input

N : Number of samples

X: [x1, x2, · · · , xN ] ∈ Rm×N

Y : [y1, y2, · · · , yN ] ∈ Rn×N

D: di = {(xi, yi), i = 1, 2, · · · , N}

B: Number of subsamples

Ne: Number of samples in each subsample

Output

wx: Final canonical vector of X

wy: Final canonical vector of Y

ρ: correlation coefficient between final covariates of X and Y

for i = 1 to B do

Resample D(X, Y ) to construct X i
∗ and Y i

∗ pair of subsamples of X and Y

end for

for i = 1 to B do

(W i
x,W

i
y) = arg maxa,b corr(a

TX i
∗, b

TX i
∗)

end for

X∗ = {X i
∗}i=1,2,··· ,B ∈ Rm×(Ne·B)

Y∗ = {Y i
∗}i=1,2,··· ,B ∈ Rn×(Ne·B)

Wx = {W i
x}i=1,2,··· ,B ∈ Rm×B

Wy = {W i
y}i=1,2,··· ,B ∈ Rn×B

Mx = WT
x ·X∗

My = WT
y ·Y∗

(wx, wy) = arg maxa,b corr(a
TWx

TX∗, b
TWy

TY∗)

ρ = corr(wT
x Wx

TX∗, w
T
y Wy

TY∗)

Figure 3.3. Ensemble canonical correlation analysis algorithm to extract first pair of

canonical vectors.
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which can also be denoted as

Mx =
[

WT
xX

1
∗ WT

xX
2
∗ · · · WT

xX
B
∗

]
= WT

x ·
[
X1
∗ X2

∗ · · · XB
∗

]
=
[
WT

x ·X∗
]
. (3.15)

X∗ is m by (N e ·B) matrix containing all the ensemble sets of view X where Ne is the

number of samples in each X i
∗, i = 1, 2, · · · , B.

The covariate correspondence matrix for view Y can also be written as:

My =


(W 1

y )TY 1
∗ (W 2

y )TY 1
∗ · · · (WB

y )TY 1
∗

(W 1
y )TY 2

∗ (W 2
y )TY 2

∗ · · · (WB
y )TY 2

∗
...

...
...

...

(W 1
y )TY B

∗ (W 2
y )TY B

∗ · · · (WB
y )TY B

∗


=
[

WT
y Y

1
∗ WT

y Y
2
∗ · · · WT

y Y
B
∗

]
= WT

y ·
[
Y 1
∗ Y 2

∗ · · · Y B
∗

]
=
[
WT

y ·Y∗
]
. (3.16)

The covariate correspondence matrix idea is similar to the augmented cluster in-

dex matrix that we propose for integrating multiple clustering solutions of each view of

a multi-view dataset. Each column of Mx is constituted by projecting all the subsam-

ples onto the canonical vector which has been explored between the subsample pair that

corresponds to that column. Thus, the covariate correspondence problem addressed

in Section 3.3.3 is solved, and the final set of covariates of the ECCA method can be

explored between Mx and My. The architecture of ECCA is shown in Figure 3.4.
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Figure 3.4. ECCA architecture.

Now, the training data of X and Y views are transformed to

WT
x ·X∗ ∈ R(k·B)×Ne and WT

y ·Y∗ ∈ R(k·B)×Ne ,

respectively. As the standard CCA problem we can find the top k most correlated

covariates of the two combined sets of subsample-covariates. Thus, the CCA problem

is turned into maximizing the correlation between the linear combinations of WT
x ·X∗
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and WT
y ·Y∗:

ρ = max
wx,wy

corr(wT
x Wx

TX∗, w
T
y Wy

TY∗)

= max
wx,wy

cov(wT
x Wx

TX∗, w
T
y Wy

TY∗)

σWx
TX∗σWy

TY∗

(3.17)

where cov denotes the covariance, and σ is the standard deviation.

The correlation expression given in Equation 3.17 can be rewritten as

ρ = max
wx,wy

E[(wT
x Wx

TX∗)(w
T
y Wy

TY∗)
T ]√

E[(wT
x Wx

TX∗)(wT
x Wx

TX∗)T ]E[(wT
y Wy

TY∗)(wT
y Wy

TY∗)T ]

= max
wx,wy

wT
xE[Wx

TX∗Wy
TY∗

T
]wy√

wT
xE[Wx

TX∗Wx
TX∗

T
]wxwT

y E[Wy
TY∗Wy

TY∗
T

]wy

(3.18)

in which E denotes the expectation.

Denoting the between-set sample covariance matrix by CXY, and within-set sam-

ple covariance matrices of Wx
TX∗ and Wy

TY∗ by CXX and CYY, respectively, we

obtain

ρ = max
wx,wy

wT
x CXYwy√

wT
x CXXwxwT

y CYYwy

. (3.19)

Since re-scaling of the canonical vectors wx or wy does not affect the solution of the

maximization problem given in Equation 3.19, the ECCA optimization problem given

in Equation 3.17 can be rewritten as:

ρ = max
wx,wy

wT
x CXYwy√

wT
x CXXwxwT

y CYYwy

subject to wT
x CXXwx = 1

wT
y CYYwy = 1. (3.20)
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Using the Lagrangian relaxation method, the above problem is reduced to:

CXYC−1YYCYXwx = δ2CXXwx (3.21)

which is an eigenvalue problem of the form Ax = δBx. The canonical vectors, wx

and wy, are obtained using the eigenvectors corresponding to the largest eigenvalues of

C−1XXCXYC−1YYCYX and C−1YYCYXC−1XXCXY. The projections of WT
x X∗ and WT

y Y∗

onto these canonical vectors, i.e. wT
x WT

x X∗ and wT
y WT

y Y∗, are called canonical vari-

ables (covariates) of ECCA.
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4. DISCRIMINATIVE ALTERNATING REGRESSION

In principle, CCA, itself, is a dimensionality reduction technique which aims

at finding maximally correlated projections of the views with each other rather than

preserving the discriminative information of the views. In other words, although CCA

features are used for classification, unlike supervised learning algorithms such as Linear

Discriminant Analysis (LDA), it does not utilize the class labels in its formulation while

fusing the views. On the other hand, the use of sensitive sample covariance matrices in

the traditional formulation of CCA results in ungeneralizable dependencies which do

not hold on unseen test examples.

In this chapter, we propose a method, D-AR (Discriminative Alternating Regres-

sion), which aims at exploring discriminative and robust features by incorporating the

class labels into the view fusion framework. Besides, using a multilayer perceptron

based alternating regression algorithm avoids the use of sensitive sample covariance

matrices, so increases the generalization capacity of the discriminative features.

4.1. Discriminative Canonical Correlation Analysis

The class information of the samples is not exploited in the traditional formu-

lation of CCA. The existing studies that aim to improve the discriminative ability

of CCA features are based on incorporating the class labels into feature fusion and

extraction framework. The straightforward approach to discriminative CCA (DCCA)

has been proposed by Sun et al. [36]. DCCA method employs the class information by

maximizing the correlation between feature vectors in the same class and minimizing

the correlation between feature vectors belonging to different classes. Suppose that we

have two different but related views,

X = [x1, x2, · · · , xN ] ∈ Rm×N

Y = [y1, y2, · · · , yN ] ∈ Rn×N ,
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where N is the number of instances. Then, the optimization problem of DCCA can be

written as:

ρ = max
wx,wy

(wT
xKwwy − η · wT

xKbwy)

subject to wT
xXX

Twx = 1

wT
y Y Y

Twy = 1, (4.1)

where Kw and Kb denote the correlations between the same classes and between dif-

ferent classes, respectively, such that:

Kw =

p∑
i=1

Ni∑
k=1

Ni∑
l=1

(xik − x)(yil − y)T

Kb =

p∑
i=1

p∑
j=1,j 6=i

Ni∑
k=1

Nj∑
l=1

(xik − x)(yjl − y)T , (4.2)

where p is the number of classes, Ni is the number of instances that belong to class i,

xij denotes the jth example in class i, and x and y denotes the global means of X and

Y , respectively. The global means x and y can be computed as:

x =
1

N

p∑
i=1

Ni∑
j=1

xij

y =
1

N

p∑
i=1

Ni∑
j=1

yij. (4.3)

Representing the mean centered data, X and Y , and class label vector, eNi
as

X = [x11, x
1
2, · · · , x1N1︸ ︷︷ ︸

instances of class 1

, · · · , xp1, x
p
2, · · · , x

p
Np︸ ︷︷ ︸

instances of class p

]

Y = [y11, y
1
2, · · · , y1N1︸ ︷︷ ︸

instances of class 1

, · · · , yp1, y
p
2, · · · , y

p
Np︸ ︷︷ ︸

instances of class p

]

eNi
= [0, · · · , 0︸ ︷︷ ︸∑i−1

j=1 Nj

, 1, · · · , 1︸ ︷︷ ︸
Ni

, 0, · · · , 0︸ ︷︷ ︸
N−

∑i
j=1 Nj

]T ∈ RN (4.4)
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the within-class correlation matrix, Kw, can be written as:

Kw =

p∑
i=1

Ni∑
k=1

Ni∑
l=1

xiky
i
l

T

=

p∑
i=1

(XeNi
)(Y eNi

)T

= XAY T (4.5)

where

A =



1N1×N1

. . .

1Ni×Ni

. . .

1Np×Np


∈ RN×N (4.6)

is a blocked diagonal matrix, and

1N = [1, · · · , 1]T ∈ RN . (4.7)

The between-class correlation matrix can be defined as:

Kb =

p∑
i=1

p∑
j=1,j 6=i

Ni∑
k=1

Nj∑
l=1

xiky
j
l

T

=

p∑
i=1

p∑
j=1

Ni∑
k=1

Nj∑
l=1

xiky
j
l

T −
p∑

i=1

Ni∑
k=1

Ni∑
l=1

xiky
i
l

T

= (X1N)(Y 1N)T −XAY T

= −XAY T (4.8)

where (X1N) = 0 and Y 1N = 0 because both X and Y are centered data. Thus,

we obtain the following relation between within-class and between-class correlation
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matrices:

Kw = −Kb. (4.9)

Now we can rewrite the optimization problem of DCCA given in Equation 4.1 as:

ρ = max
wx,wy

wT
xKwwy

subject to wT
xXX

Twx = 1

wT
y Y Y

Twy = 1. (4.10)

The above problem is reduced to the following eigenvalue problems similar to CCA:

Kw(Y Y T )−1KT
wwx = λ2XXTwx

KT
w (XXT )−1KwwY = λ2Y Y Twy. (4.11)

The eigenvectors that correspond to the largest eigenvalues of the above problem are the

extracted features of DCCA. Similar to LDA, DCCA has the limitation of extracting

less number of features than the number of classes because the rank of Kw is p− 1 for

high dimensional data where the number of features in X and Y are greater than p.

Sun et al. [36] fed the DCCA features to k-Nearest Neighbor and Naive Bayes

classifiers, and compared the discriminative ability of DCCA with CCA and Partial

Least Squares (PLS) on text categorization, face recognition, and handwritten digit

recognition datasets. They observed that DCCA features achieved higher classification

accuracy than those of the CCA and Partial Least Squares (PLS) methods. However,

it has recently been shown that [37] the projective directions explored by DCCA are

equal to the ones obtained from LDA with respect to an orthogonal transformation.

These relations between LDA and DCCA are elaborated by Shin and Park [37] utilizing

the relation between CCA and LDA which is given in Section 2.2. Therefore, in our

numerical experiments, we compared the discriminative ability of the D-AR features

with that of LDA in the D-AR experiments given in Section 5.2.
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4.2. Proposed Discriminative Alternating Regression Method

In this section, we propose a method, called Discriminative Alternating Regres-

sion (D-AR), to explore correlated and also discriminative features. D-AR utilizes

two (alternating) multi-layer perceptrons, each with a linear hidden layer, learning to

predict both the class-labels and the outputs of each other.

4.2.1. Architecture of D-AR Method

The architecture of our proposed D-AR method is based on the alternating re-

gression approach [81] implemented by a multi-layer neural network with a “linear”

hidden layer. The block diagram and MLP architecture of the D-AR method are

shown in Figure 4.1 and Figure 4.2, respectively. The input layer of the proposed MLP

based D-AR Network (D-ARNet) consists of the view features. The input layer of each

D-ARNet is transformed into a low-dimensional subspace (hidden layer) such that the

hidden layer is in turn transformable to the output layer containing output units that

can mutually maximize their match with their corresponding counterparts of the other

D-ARNet and also the predictor output units have maximum classification accuracy.

Output units consist of class labels and correlated features. The correlated features

are alternated between the two views whereas the original class labels are used in each

iteration of the algorithm.

The aim of the method is obtaining a subspace of the input features (k hidden

neurons where k < m and k < n) in the hidden layer which preserves both the com-

mon information with the other view and the class information. In other words, the

high-dimensional input space is reduced to a low-dimensional subspace in the bottle-

neck hidden layer [124] which is expected to possess the “correlated discriminative”

information. The overall algorithm of the method is shown in Figure 4.3.

The network is forced to explore the discriminative information which is contained

by both of the views. This correlated discriminative information is expected to be

more reliable and generalizable especially on datasets with small sample size and high-
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Figure 4.1. Block diagram of the proposed D-AR method. Dimensionality of X ∈

Rm×N and Y ∈ Rn×N are reduced from m and n to k, respectively, where m > p and

n > p. Correlated outputs (covariates) are alternated between the two views to

maximize their correlations during training.
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Figure 4.2. Architecture of the proposed D-AR method.
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Input

k: number of outputs

p: number of classes

N: number of instances

X: N×m training set of view 1

Y: N× n training set of view 2

η0: inhibition coefficient of output layer

Output

wx: input layer weights of view X

vx: hidden layer weights of view X

sx: correlated outputs of view X

rx: predicted class label vector of view X

zx: covariates of view X of size N× k

d: D-ARNet correlations of view X

Randomly initialize sy

repeat

Train D-AR network of view X

[wx, vx, d] = D-ARNetx (X, k, p, sy, η0)

zx = X×wx

[sx, rx] = zx × vx + vx
0

Scale sx: zero mean, unit standard deviation

Train D-AR network of view Y

[wy, vy, d] = D-ARNety (Y, k, p, sx, η0)

zy = Y ×wy

[sy, ry] = zy × vy + vy
0

Scale sy: zero mean, unit standard deviation

until convergence

Figure 4.3. Algorithm of the proposed D-AR method.
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dimensional input space. If the hidden layer is removed, the architecture reduces to a

traditional neural CCA model which is augmented by an independent perceptron that

performs classification. The hidden layer is forced to implement both LDA and CCA

simultaneously. The unusual use of “linear” hidden units, rather than the traditional

nonlinear ones such as sigmoidal ones, in the hidden layer is to preserve the linearity

of the transformation while performing the dimensionality reduction task. It must

also be noted that LDA, and consequently DCCA, have the limitation of extracting

less than number of classes dimensions (orthogonal projective directions) due to the

rank deficiency of the between-class scatter matrix [125] whereas the proposed D-AR

method does not suffer from this limitation.

4.2.2. Alternating Regression Procedure of D-AR

The training signals used for the outputs of the two perceptrons are evolved

through an alternating regression procedure. In the alternating regression procedure,

we minimize the differences in output covariates computed by the two perceptrons in

response to their coincident input vectors from view 1 and view 2. The procedure

is iterative and decreases the difference at each step by alternately re-training one

perceptron on the outputs of the other (while holding the other one fixed at its previous

evolution) and vice versa [74,78,126].

The total error function of the system can be generalized and written as:

Ex(wx, vx|X) = Ex
s + λEx

r (4.12)

whereX is the set of instances of the view; Ex
s and Ex

r are the errors of correlated output

units and class label units of the output layer, respectively; and, λ is the discrimination

factor that can be used to tune the trade-off between the prediction of the class labels

and correlation of the outputs in the proposed architecture. Clearly, when λ = 0,

we have D-AR equal to neural implementation of CCA (Neural implementation of

alternating regression). In this case, the class labels will not be incorporated into our

framework and the D-AR architecture will be essentially equivalent to the case where
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there is no hidden layer at all. With the increasing values of λ, the network will be

forced to give more weight to the error term of the class labels, Ex
r , and at the extreme

values of λ, each perceptron will behave like a simple perceptron that aims at learning

the class labels by using only its own features without interacting with the other view

(similar to LDA). The value of the discrimination factor λ can be optimized on the

training set to obtain the desired balance between the discrimination accuracy and the

correlations among the covariates.

The total error function of the system can be calculated as:

Ex(wx, vx|X) =
1

2

( N∑
t=1

k∑
i=1

(
syit − sxit

)2)− λ N∑
t=1

p∑
i=1

(
lit log rxit

)
(4.13)

where N is the number of instances, k is the number of features that will be extracted,

p is the number of classes, wx and vx are the hidden and output layer weights of view

X, lit is 1 if sample xt belongs to class i and 0 otherwise, rxit is the predicted value of

ith class for sample t. The correlated output value of view X for sample t of ith output

is denoted with sxit.

The update rules of the hidden layer weights, wx, of the D-ARNet multi-layer

perceptron architecture are extracted using the backpropagation algorithm [127]:

∂Ex

∂wx
hj

=
∂Ex

s

∂sxi

∂sxi
∂zxh

∂zxh
∂wx

hj

+ λ
∂Ex

r

∂rxi

∂rxi
∂zxh

∂zxh
∂wx

hj

(4.14)

where wx
hj is the hidden layer weight between the jth input feature and hth hidden unit

of view X, and zxh is the hth hidden unit of view X. The correlated output units and

predicted class values are:

sxit =
k∑

h=1

vxihz
x
ht + vxi0

rxit =
exp(vxihz

x
ht + vxi0)

p∑
k=1

exp(vxihz
x
ht + vxi0)

(4.15)
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where vxih is the output layer weight between the hth hidden and ith correlated output

unit of view X. Using gradient descent, we get the following update rules for the

hidden and output layer weights:

∆wx
hj = η1

N∑
t=1

[ k∑
i=1

(syit − sxit)vxih
]
xjt + λη2

N∑
t=1

[ k∑
i=1

(lit − rxit)vxih
]
xjt (4.16)

∆vxih = η1

N∑
t=1

(syit − sxit)zxht + λη2

N∑
t=1

(lit − rxit)zxht (4.17)

where η1 and η2 denote the learning factors of the covariates and class labels, respec-

tively.

4.2.3. Decorrelation of Output Units

The alternated output units which provide the correlation between the hidden

layer units of the views in D-AR algorithm must be decorrelated. Otherwise, they tend

to tune to the same direction which gives the minimum mean-square error. In [128],

Foldiak showed that a layer of simple Hebbian units connected by modifiable anti-

Hebbian feed-back connections can learn to discriminate the patterns of different classes

in such a way that statistical dependency between the elements of the representation

is reduced, while information is preserved. He obtained a sparse resulting code, which

is favourable if it is to be used as input to a subsequent supervised associative layer.

He showed the usefulness of the network on two simple problems.

Thus, we use the cascading anti-Hebbian inhibition algorithm for decorrelating

the outputs of each perceptron and force them tune to different, ideally orthogonal,

covariates. The cascading anti-Hebbian inhibition rule to decorrelate output sxi with

the already produced outputs is applied as follows:

sxit = sxit −
i−1∑
j=1

η0 × ρ(sxi , s
x
j )× sxjt,∀t ∈ X (4.18)

where η0 is the inhibition coefficient of outputs, and ρ(sxi , s
x
j ) is the correlation coeffi-
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cient between ith and jth outputs, sxi and sxj , of view X.
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5. EXPERIMENTS AND RESULTS

In this chapter, experimental results on various datasets are given in order to

show the superiority of our proposed methods over the alternative methods.

5.1. Ensemble Canonical Correlation Analysis Experiments

5.1.1. Methodology

In our ECCA experiments, we use bagging (ECCA-B), jack-knife (ECCA-J),

and partitioning (ECCA-P) ensemble construction methods for creating sufficient and

diverse subsamples. Unless otherwise specified, the methodology used in the evaluation

of ECCA experiments is as follows: The test set correlations of the variations of ECCA

are evaluated and compared against traditional CCA under various training set sizes

and number of subsamples in the ensemble. Besides, we present the box-plot figures

for statistical evaluation using a representative setting for each one of the ensemble

construction method: the number of subsamples for ECCA-B are taken as 10, the

number of folds for ECCA-J and the number of partitions for ECCA-P are set to 4.

We provide the box-plot figures for training sets with 100 and 200 samples which are

chosen randomly from the whole data, and the rest of the data is used as the test set.

The train-test splits are repeated 10 times for statistical significance.

We present the experimental results on emotion recognition, object recognition,

content-based retrieval, and multiple view object recognition datasets. We also evaluate

the robustness of ECCA covariates on a toy dataset.

Although canonical correlation based features are extracted without any super-

vision for class discrimination, as they are known to tune to prominent features that

are also useful for classification, we compare the discriminative power of the covari-

ates extracted by CCA and the proposed ECCA methods on the emotion recognition,

handwritten digit recognition, and content-based retrieval experimental datasets. We
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Figure 5.1. An exemplary video from CK+ dataset [129–131] (a) Acting begins with

neutral expression (b) An example frame between neutral and peak expression (c)

Happiness target expression.

use Support Vector Machines (SVMs) as the classifier to evaluate the discriminative

performances of the extracted covariates.

5.1.2. Emotion Recognition

The Cohn-Kanade Facial Expression Database (CK+) [129] consists of 320 video

clips each along with an emotion label recorded from 118 subjects. The video clips in

CK+ dataset belong to 7 different emotions which are anger, contempt, disgust, fear,

happiness, sadness, and surprise. Each video clip begins with a neutral expression and

proceeds to a peak expression where the emotion is most significant (see Figure 5.1).

Two types of feature representations extracted from CK+ dataset are used as

views in our experimental studies. The first view consists of appearance-based features

[132, 133] which is obtained using the difference image between the first frame of the

video clip (the neutral facial expression) and the corresponding last frame (the peak

frame of the emotion). Each sample in the appearance based-view has 4096 (64× 64)

features (pixels). The second view consists of the geometric features [130, 131] such

as the positions of the specific landmark points on the face and the shape of the

components of the face. They are obtained by subtracting the coordinates of landmark

points of the neutral face expression from the coordinates of the landmark points of the

target expression. Each sample is represented with 134 features in the geometric-based

view.
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(a) (b)

Figure 5.2. Average correlation of top 5 covariates extracted between appearance and

geometric based views of face dataset using (a) 100 training samples (b) 200 training

samples.

The average correlation of the top 5 covariates extracted between appearance and

geometric based views of CK+ dataset using 100 and 200 training samples are shown

in Figure 5.2. The central mark of each box in Figure 5.2 represents the median and

the box edges represent the 25th and the 75th percentiles. The whiskers extend to the

most extreme data points which are not considered as outliers. Outliers are visualized

by circles. As seen in Figure 5.2, with both 100 and 200 training samples, the notches

of ECCA-P do not overlap with the notches of any other method which shows that at

the 5% significance level, the true median of ECCA-P is significantly higher than CCA

and also the other ECCA methods. ECCA-B gives significantly higher correlations

than CCA for both 100 and 200 training samples, whereas ECCA-J is significantly

better than CCA only for 200 training samples. As the subsamples of ECCA-J have

more overlap with the original training set than those of the other ECCA variations,

ECCA-J shows the closest performance to CCA.

In Figure 5.3a, average correlation of the top 5 covariates are shown with increas-

ing number of training samples. As it is seen, the correlations show an increasing trend

for all the methods using more training samples. However, increasing the number of

training samples improves the generalization of the ECCA methods more than that of

CCA on the test set.
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(a) (b)

Figure 5.3. Average correlation of top 5 covariates extracted between appearance and

geometric based views of CK+ face dataset versus number of (a) training samples (b)

subsamples.

Figure 5.3b shows the number of ensemble sets (subsamples) versus average corre-

lation of the top 5 covariates using 200 training samples. It is seen that the correlations

of ECCA-J are in a decreasing trend with the increasing number of subsamples, whereas

correlations of ECCA-B and ECCA-P increase. This reveals that the performance of

ECCA-J is getting closer to CCA with more overlapping training samples in its sub-

samples and tends to tune dummy dependencies that gives very high correlations on the

training set but does not hold on the test set. The highest correlation is obtained with

ECCA-P by partitioning the training dataset into 9 subsets. However, the correlation

has a decreasing trend after 9 partitions because after this point the number of sam-

ples in the partitions becomes insufficient to learn covariates with good generalization

on the test set. The performance of ECCA-B increases until 12 ensemble sets; after

this point, a stable performance is observed, which is because most of the samples are

already chosen in subsamples, and so neither accuracy nor diversity of the subsamples

improves.

5.1.3. Handwritten Digit Recognition

The handwritten digit recognition dataset is available in the UCI machine learn-

ing data repository [47]. The dataset consists of features of handwritten numerals

(‘0’–‘9’) extracted from a collection of Dutch utility maps. There are 200 patterns per
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class (for a total of 2,000 patterns). In the dataset, there are six views. The CCA ex-

periments are performed on all view pairs. As we obtained similar results on all pairs,

as representative examples, only the experiments on the Fourier (76 Fourier coeffi-

cients of the character shapes)-Profile (216 profile correlations) and Profile-Karhunen

coefficients (64 Karhunen-Love coefficients) view pairs are elaborated.

As seen in Figure 5.4, all of the ECCA variations give significantly higher cor-

relations than CCA. For 100 training samples, ECCA-B and ECCA-P show similar

performances. However, in 2 out of 10 runs, ECCA-B produces outliers, showing that

ECCA-P is more stable than ECCA-B when the training sample size is comparably

small. When the number of training samples is increased to 200, ECCA-P gives signif-

icantly higher correlations than CCA and the other ECCA variations.

(a) (b)

Figure 5.4. Average correlation of top 5 covariates extracted between Fourier

coefficients and profile correlations views of handwritten digit dataset using (a) 100

training samples (b) 200 training samples.

It can be seen in Figure 5.5a that the correlations of ECCA-B and ECCA-P are

close to each other up to 140 training samples; after this point, using more training sam-

ples, ECCA-P outperforms ECCA-B because the number of samples in each partition

of the ECCA-P method becomes increasingly more sufficient (better generalization)

with more training samples. In Figure 5.5b, it is clearly seen that the correlations

obtained with ECCA-J method increases up to 4 subsamples, then worsens with the

increasing number of subsamples and gives almost the same correlations with CCA

after 12 subsamples. This shows that the performance of ECCA-J is getting closer to
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CCA with more subsamples. It is also observed in Figure 5.5b that the performance

of ECCA-B increases until 10 subsamples, and then again, as it is the case for the

emotion recognition dataset, a stable performance is observed. The highest correlation

is obtained with ECCA-P by partitioning the training set into 7 subsets, and parti-

tioning the dataset into more subsamples with insufficient number of instances results

in obtaining covariates with lower correlations.

(a) (b)

Figure 5.5. Average correlation of top 5 covariates extracted between Fourier

coefficients and profile correlations views of handwritten digit dataset versus the

number of (a) training samples (b) subsamples.

Experiments between Profile correlations and Karhunen-Love coefficients views

of handwritten digit recognition dataset give similar results to those obtained between

Fourier coefficients and Profile correlations views. As it is seen in Figure 5.6, ECCA-B

and ECCA-P methods give significantly higher correlations with 200 training samples

than CCA whereas only ECCA-P is significantly better than CCA with 100 training

samples.

Figure 5.7 shows the comparative performance of ECCA variations on profile

correlations - Karhunen-Love coefficients view pair with various training set sizes and

number of subsamples. As it can be seen, ECCA-P gave the highest average correlations

for all number of training samples from 100 to 200. Figure 5.7 also shows that the

performance of ECCA-B increases until 10 ensemble sets, and then a stable performance

is observed. The optimal number of partitions is 7 for ECCA-P. The average correlation

shows a decreasing trend after 7 partitions because the number of samples in the
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(a) (b)

Figure 5.6. Average correlation of top 5 covariates extracted between profile

correlations and Karhunen-Love coefficients views of handwritten digit dataset using

(a) 100 training samples (b) 200 training samples.

partitions are not enough to learn generalizable covariates.

(a) (b)

Figure 5.7. Average correlation of top 5 covariates extracted between profile

correlations and Karhunen-Love coefficients views of handwritten digit dataset versus

the number of (a) training samples (b) subsamples.

5.1.4. Video Retrieval Evaluation

The TREC Video Retrieval Evaluation (TRECVID) 2003 [134] dataset consists of

1078 manually labeled video shots that belong to 5 categories. The TRECVID dataset

is used with the purposes of content-based analysis and retrieval from digital video.

Each shot of the dataset is represented with two views: 1894-dimensional binary vector
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(a) (b)

Figure 5.8. Average correlation of top 5 covariates extracted between text and color

histogram based views of TRECVID 2003 dataset using (a) 100 training samples (b)

200 training samples.

of text features and a 165-dimensional vector of HSV color histogram.

The correlations of CCA and the ECCA methods with 100 and 200 training

samples are shown in Figure 5.8. As it can be seen, ECCA-P and ECCA-J produce

significantly higher correlations than CCA for both 100 and 200 training samples,

whereas ECCA-B is significantly better than CCA only for 200 training samples. It

must also be noted the correlations obtained on TRECVID dataset is comparably

lower than those on emotion and handwritten datasets. One of the reasons for these

low correlations is the high dimensionality of the views of TRECVID dataset. Although

we have applied PCA as a preprocessing step to reduce the dimension of the first view

by preserving the 98% of the variance, further improvements may be obtained using a

more sophisticated dimensionality reduction technique.

As seen in Figure 5.9a, ECCA-P is again the most successful method on TRECVID

2003 dataset in extracting correlated features. While ECCA-B and ECCA-J perform

similarly with various number of training samples, both of them are superior over CCA

in terms of average correlation. Figure 5.9b points out that the performance of ECCA-

P variation increases up to 8 partitions, whereas it decreases after this point since the

partitions fall short of sufficient number of training samples to learn generalizable co-

variates. The optimal numbers of ensemble sets for ECCA-J and ECCA-B are observed
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(a) (b)

Figure 5.9. Average correlation of top 5 covariates extracted between text and color

histogram based views of TRECVID 2003 dataset versus the number of (a) training

samples (b) subsamples.

as 4 and 10, respectively, on TRECVID 2003 dataset. Also, the results obtained on

TRECVID dataset with various number of subsamples validate the results obtained on

emotion and handwritten datasets.

5.1.5. Object Recognition

The Columbia Object Image Library (COIL-100) [135] dataset consists of images

of natural 100 objects taken under different viewing angles (see Figure 5.10). The

objects were placed on a motorized turntable against a black background and the

turntable was rotated through 360 degrees to vary object pose with respect to a fixed

color camera. The images of the objects were taken at pose intervals of 5 degrees, so

each object has 72 poses.

We have generated a two-view dataset by taking poses separated by 45 degrees.

We pick a random starting point in the interval from 0 to 360 degrees and generate 8

pairs of poses for the training set. For each training pose, there are two poses separated

by 5 degrees (to the left and right), we use those as the starting points and generate

16 test examples (again pairing them up with poses that are 45 degrees apart). This

test set is called test set 1. We have repeated the same procedure for poses separated

from the training examples by 10 degrees for generating test set 2 (a slightly harder
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Figure 5.10. Exemplary objects from the COIL-100 object dataset.

(a) (b) (c)

Figure 5.11. Exemplary training samples of multi-view COIL-100 dataset.

test set). For test set 3 and 4, we have used 15 and 20 degree separation, respectively;

thus, exhausting all COIL images into a training set of 800 samples and for test sets,

each one having 1600 samples. The features are the pixel values of 32×32 image of the

corresponding object. Some training set samples of View 1 and 2 are shown in Figure

5.11.

The canonical vectors extracted using the whole training set of COIL-100 dataset

are applied on each test set. The correlations of the top 5 covariates can be seen in

Table 5.1. It is seen that the correlations of CCA covariates on test set 1 are comparable

with the ensemble methods. However, the canonical vectors of CCA explored on the

training set do not generalize well on the other test sets when compared with the ECCA

variations. This shows that CCA overfits on the training set and gives high correlations

on test set 1 that consists of only 5 degrees rotated poses of training samples. However,

these training correlations do not hold so well on the other three harder test sets which

consists of 10, 15, and 20 degrees rotated poses of training samples. On the other hand,

ECCA methods give more stable correlations. While ECCA-B is the most successful
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method for test sets 1 and 2, ECCA-P yields higher correlations on test sets 3 and 4.

Besides, ECCA-P gives the most consistent correlations on the test sets which reveals

that the canonical vectors explored by ECCA-P generalize better on the test sets.

Table 5.1. Test set correlations of top 5 covariates extracted between views of

COIL-100 object dataset.

Test set 1 Test set 2

ρ CCA ECCA-B ECCA-J ECCA-P CCA ECCA-B ECCA-J ECCA-P

ρ1 0.93 0.95 0.95 0.95 0.90 0.92 0.91 0.95

ρ2 0.94 0.96 0.96 0.93 0.87 0.91 0.92 0.93

ρ3 0.93 0.95 0.94 0.92 0.87 0.92 0.90 0.91

ρ4 0.92 0.93 0.93 0.89 0.85 0.89 0.88 0.89

ρ5 0.91 0.93 0.92 0.84 0.81 0.86 0.85 0.80

avg 0.93 0.94 0.94 0.91 0.86 0.90 0.89 0.89

Test set 3 Test set 4

ρ CCA ECCA-B ECCA-J ECCA-P CCA ECCA-B ECCA-J ECCA-P

ρ1 0.85 0.89 0.87 0.94 0.83 0.87 0.84 0.93

ρ2 0.83 0.89 0.90 0.92 0.81 0.87 0.90 0.91

ρ3 0.85 0.91 0.88 0.89 0.82 0.89 0.86 0.90

ρ4 0.82 0.88 0.86 0.88 0.81 0.88 0.86 0.87

ρ5 0.79 0.84 0.82 0.80 0.78 0.84 0.82 0.82

avg 0.83 0.88 0.87 0.89 0.81 0.87 0.85 0.89

As it is seen in Figure 5.12, on test set 1 the correlations of ECCA-P reveal an

increasing trend with the increase in number of subsamples. However, on the other test

sets the trend is decreasing, which reveals that the small partitions are not sufficient

to learn canonical vectors that can generalize. In other words, the individual sets

of covariates extracted on each subsample overfit the training set when the training

sample size is small. It can also be observed in Table 5.1 that ECCA-J method shows

the most similar performance to CCA as it is also observed for the other experimental

datasets. ECCA-B is again the most robust method to the number of subsamples.
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(a) (b)

(c) (d)

Figure 5.12. Number of ensemble sets versus average correlation of top 5 covariates

extracted between rotated views of COIL object dataset. (a) test set 1 (b) test set 2

(c) test set 3 (d) test set 4.

5.1.6. Toy Dataset

The toy dataset consists of two views, each of which has two features. The

common information of the views is the radius of a circle. In order to generate a

sample of the two views, first, the common radius value, r, is randomly generated in

unit interval. Then, for each view, a random angle value α in the interval of [0, 2π] is

generated, and the features of the view are computed as (r cosα)2 and (r sinα)2. The

feature values of the samples of the views are shown in Figure 5.13. The algorithm

used to generate the toy dataset is summarized in Figure 5.14.

In realistic settings, some of the samples in each view are corrupted due to an
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Figure 5.13. Feature values of the samples of the toy dataset. r cosα1(x1) and

r sinα1(x2) are features of view 1(X) whereas r cosα2(y1) and r sinα2(y2) are features

view 2 (Y ).

independent noise process or view corruption [56]. This is because one of the multiple

sensors used in collection of multi-view data can be temporarily in an erroneous condi-

tion or may have temporarily calibration problems. Due to the sensitivity of covariance

matrix, CCA is effected by such noisy observations and can tune to dependencies with

poor generalization on the test set. With the aim of comparing the generalization ca-

pability of the CCA and ECCA methods in a similar realistic setting, after generating

100 training samples, a few samples of each view are corrupted. Then, the CCA and

ECCA methods are used to extract the covariate pair between the views of the toy

dataset. The test set with 1000 clean samples is generated using the same procedure,

and the test set correlations of the covariates are obtained for each method. This

process is repeated for 100 times for statistical significance and the change in average

correlation of the CCA and ECCA covariates with increasing number of corrupted sam-

ples is shown in Figure 5.15. It can be seen that ECCA-P and ECCA-J methods are

more robust than CCA against outliers even on such a small dataset. ECCA-B cannot
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Input

N: number of samples

Output

X: view 1 dataset of size N× 2

Y : view 2 dataset of size N× 2

for i = 1 to N do

Randomly generate radius (r) value in unit interval

Generate view 1 features:

Randomly generate angle value (α1) in interval [0, 2π]

X(i, 1) = (r cosα1)
2

X(i, 2) = (r sinα1)
2

Generate view 2 features:

Randomly generate angle value (α2) in interval [0, 2π]

Y (i, 1) = (r cosα2)
2

Y (i, 2) = (r sinα2)
2

end for

Figure 5.14. Toy dataset generation algorithm.

significantly outperform CCA because the subsamples generated with bootstrapping

ensemble construction method are not sufficiently diverse on this small dataset. It is

also observed that ECCA-P is the most robust method against number of corrupted

samples on the toy dataset.

5.1.7. Usefulness of Covariates for Classification

CCA based features are extracted without any supervision for class discrimina-

tion, but as they are known to tune to prominent features that are also useful for
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Figure 5.15. Correlation of the covariate extracted between the views of toy dataset

versus number of corrupted samples.

classification, we evaluate the discriminative power of CCA and ECCA covariates on

the emotion recognition, handwritten digit recognition, and content-based retrieval ex-

perimental datasets. As the classifier, we use Support Vector Machines (SVMs) which

is a very popular machine learning algorithm [136]. SVMs aims to find the optimally

placed hyperplanes to discriminate the classes from each other. The closest samples to

these hyperplanes are called support vectors, and the solution is defined in terms of this

subset of samples which limits the complexity of the problem. We use the linear kernel

LIBSVM [137] implementation of SVMs which supports multiclass classification. The

complexity of the linear kernel SVMs is controlled by the Cost (C) parameter. Higher

values of C may result in overfitting to the training set. In order to avoid overfitting,

we used the default value of LIBSVM (C = 1) in our experiments.

As seen in Figure 5.16, for 200 training samples, view 1 covariates of ECCA-

P have best classification performance whereas view 2 covariates of all the ECCA

variations have significantly better classification performance than those of CCA. The

view 2 covariates of ECCA variations achieved similar accuracies. However, it must be



90

noted that the difference between the lower and upper quartiles of ECCA-J is less than

the other ECCA variations, showing that the covariates of ECCA-J method give more

stable accuracies with different training examples than those of the other methods.

This originates from the fact that the diversity among the subsamples of the ECCA-J

is less than the diversity of the other ECCA methods. Therefore, the SVMs accuracies

achieved by the individual set of covariates of ECCA-J deviate less than those of the

other ECCA variations. It is also seen in Figure 5.16 that the difference between the

lower and upper quartiles of the CCA accuracies is more than those of the ECCA

variations. This reveals that the classification performances of the CCA covariates

extracted from different training sets have greater variability when compared with

those of the ECCA variations.

Figure 5.17 presents the trend of SVMs accuracy on emotion recognition dataset

with the increasing number of training samples. It can be seen that the discriminative

power of both view 1 and view 2 covariates of ECCA-P rise using more training samples.

However, for ECCA-J and ECCA-B, while view 1 covariates of these methods tend to

have less discriminative power, view 2 covariates of these methods perform higher

accuracies. It is also seen that increasing the number of training examples do not

significantly enhance the performance of CCA, which is because CCA tends to learn

very small relations with high correlation between the views and such relations do not

have generalizable discriminative information.

Figure 5.18 shows SVM accuracies on the test set obtained using the top 5 co-

variates of the handwritten digit dataset. To sum up, ECCA-P achieved the highest

classification accuracy with both of the view covariates. While for Fourier coefficients

view ECCA-B and ECC-J methods are not significantly better than CCA, for profile

correlations view both of them outperform CCA. Again, similar to the results obtained

on emotion recognition dataset, the most stable performance is shown by ECCA-J

since its subsamples are less diverse when compared with those of the other ECCA

methods. In general, it can be said that the classification performances of the ECCA

methods are equal or significantly better than CCA. Figure 5.19 shows the SVM ac-

curacies on the test set as a function of the number of training samples. The SVM
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(a) (b)

Figure 5.16. SVM accuracy obtained using top 5 covariates extracted between

appearance and geometric based views of CK+ dataset using 200 training samples.

(a) appearance-based (b) geometric based.

(a) (b)

Figure 5.17. Number of training samples versus SVM accuracy obtained using top 5

covariates extracted between appearance and geometric based views of CK+ dataset.

(a) appearance-based (b) geometric based.

model of ECCA-P achieves the best classification performance with the covariates of

the Fourier view. On the other hand, with profile correlations, the ECCA variations

yield similar performances. The SVMs accuracies of ECCA variations are increasing

or show a stable performance for both of the views. However, while the accuracies

obtained with the view 1 CCA covariates are increasing, the accuracies of view 2 CCA

covariates are in a decreasing trend. This is because the CCA correlations between

view 1 and view 2 covariates are increasing with more training examples, and the clas-

sification performances of the highly correlated view 1 and view 2 covariates converge
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to each other.

(a) (b)

Figure 5.18. SVM accuracy obtained using top 5 covariates extracted between Fourier

coefficients and profile correlations views of handwritten digit dataset using 200

training samples. (a) Fourier coefficients (b) profile correlations.

(a) (b)

Figure 5.19. Number of training samples versus SVM accuracy obtained using top 5

covariates extracted between Fourier coefficients and profile correlations views of

handwritten digit dataset (a) Fourier coefficients (b) profile correlations.

Figure 5.20 shows the SVM accuracies obtained on TRECVID dataset. The

results in Figure 5.20 reveal that view 1 covariates of all ECCA methods extracted

using 200 training samples have more discriminative power than CCA. However, it

must also be noted that only the superiority of ECCA-B and ECCA-P accuracies

are significant. For view 2 covariates, it is seen that all the ECCA methods have

significantly more discriminative power than CCA.
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(a) (b)

Figure 5.20. SVM accuracy obtained using top 5 covariates extracted between text

and color histogram based views of TRECVID dataset using 200 training samples.

(a) text-based (b) histogram-based.

5.1.8. Discussion

We observe that using resampling we can generate a number of CCA trials, when

combined resulting in covariates with higher correlations on the test set. As a repre-

sentative example, the CCA trials on the individual subsamples of the emotion dataset

(see Section 5.1.2) produce average test set correlation of around 0.4; when combined

by the proposed method we obtain the test correlation of 0.7. Similar to the combina-

tion of weak classifiers to obtain an ensemble with better classification accuracy and

generalization, the proposed ensemble CCA also takes advantage of weak correlations

obtained from subsamples.

In order to show that weak correlations obtained on the subsamples contribute to

the production of higher ECCA correlations, principal component analysis (PCA) [50]

can be applied on the subsamples instead of CCA. However, combining the principal

components in a similar fashion to the proposed combination approach (Equation 3.15)

does not yield correlations as high as those obtained with ECCA. Again as a repre-

sentative example, on the emotion dataset, using the PCA as the first step gives 0.6

average correlation whereas the ECCA covariates (using CCA as the first step) have

significantly higher test set correlations of around 0.7. Note that even the use of PCA

prior to the final combination step that utilize CCA outperforms the results obtained
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by the classical CCA applied on the whole dataset. This result is promising in that the

proposed approach may be giving us a framework that can be used to obtain ensemble

dimensionality reduction; i.e. if PCA is used to combine PCA projections it may give

us a robust set of dimensions with high-variance dimensions. Another future direction

is to apply the proposed ensemble CCA approach to the other implementations of CCA,

for example, the neural implementation of CCA is known to improve the generalization

and its ensemble version can further improve its generalization.

5.2. Discriminative Alternating Regression Experiments

5.2.1. Methodology

In our Discriminative Alternating Regression (D-AR) experiments, the discrimi-

native power of the covariates extracted with the proposed D-AR method are evaluated

and compared against of the traditional CCA, PCA+CCA, AR, and LDA methods un-

der various training set sizes. In the application of the proposed D-AR algorithm, we

use 0.05 as the learning factor for the weight updates. The number of epochs and the

total number of alternation iterations are experimentally found to be optimal around

30 and 80, respectively. For the sake of simplicity, we have used the discrimination

factor, λ, as 1. The coefficient of inhibition among the output units is set to 1.0.

The obtained covariates are fed to linear kernel Support Vector Machine (SVM) and

k-Nearest Neighbor (k-NN) classifiers.

5.2.2. Emotion Recognition

The Cohn-Kanade Facial Expression Database (CK+) [129] consists of 327 video

clips each along with an emotion label recorded from 118 subjects. The video clips in

CK+ dataset belong to 7 different emotions which are anger, contempt, disgust, fear,

happiness, sadness, and surprise. The details of the dataset is given in Section 5.1.2.

For statistical significance, the dataset is shuffled 10 times, and different training

and test sets are generated in each run. In Figure 5.21, the obtained average SVM and



95

k-NN (k=3) classifier test set accuracies are shown with respect to increasing number

of training samples per class. As seen, both view 1 and view 2 covariates of D-AR

give significantly higher accuracies with SVM as well as k-NN (paired t-test, p < 0.05).

While LDA as a supervised dimensionality reduction has the closest performance to D-

AR, the CCA, PCA+CCA, and AR methods showed no significant superiority over each

other. The results also point out that both SVM and k-NN classifiers accomplished

85% classification accuracy with view 2 covariates of D-AR extracted with only 10

samples per class.

(a) (b)

(c) (d)

Figure 5.21. Number of training samples per class versus accuracies of covariates of

(a) view 1 (SVM) (b) view 2 (SVM) (c) view 1 (3-NN) (d) view 2 (3-NN).

Figure 5.22 shows the classification accuracies obtained using 5 training samples

per class versus the number of features extracted. As LDA can extract only C − 1

features when applied to a dataset with C classes, in Figure 5.22, the classification

accuracies are shown up to 6 covariates on the 7-class CK+ dataset. Again, D-AR



96

features give significantly higher accuracies than those of its alternatives for all number

of outputs.

(a) (b)

(c) (d)

Figure 5.22. Number of outputs (covariates) versus accuracies obtained on emotion

recognition dataset using 5 training samples per class with covariates of (a) view 1

(SVM) (b) view 2 (SVM) (c) view 1 (3-NN) (d) view 2 (3-NN).

In Figure 5.23, the relationship between discriminative power and correlation of

the obtained outputs with D-AR method is shown with increasing value of discrimina-

tion factor, λ. In fact, when λ=0, we obtain the covariates of AR, in which case the

class labels are not incorporated and the D-AR architecture is equivalent to the case

where simple perceptrons (without the hidden layer) are alternated. Both the accuracy

and the correlation of the outputs increase as the value of the discrimination factor

goes up to around 1.0, whereas after this point they show a slow decreasing trend. This

shows that utilizing the class labels in CCA increases its discriminative power up to a

point. However, with much higher values of λ, as more weight is given to the prediction
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of the class labels, the correlations of the extracted outputs decrease and the system

converges to a single view LDA. Thus, along with the covariate correlations, the overall

classification accuracy of a two view system is also compromised because each view end

up using its own single view features without interaction with the other view.

(a) (b)

(c) (d)

Figure 5.23. Discrimination factor versus average correlation and accuracy obtained

on emotion recognition dataset with (a) SVM (view 1) (b) SVM (view 2) (c) 3-NN

(view 1) (d) 3-NN (view 2).

The convergence of the top 3 output units obtained with 5 training samples per

class is shown in Figure 5.24. It can be seen that after 50 alternation iterations the

output units converge on both training and test sets. In Figure 5.25, the average corre-

lation of top 3 covariates and average mean squared errors (MSEs) of view 1 and view

2 class outputs are shown with respect to the number of alternation iterations of D-AR

method. To demonstrate the relationship between the classification performance and

mutual maximization of covariate correlations, in Figure 5.25, it is seen that the MSEs
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of classification (MSEs between the class outputs and actual class labels) decreases as

the average covariate correlation increases.

(a) (b)

Figure 5.24. Convergence of D-AR covariates on (a) training set and (b) test set of

emotion recogntion dataset.
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Figure 5.25. Average correlation of top 3 covariates and average mean squared errors

of view 1 and view 2 class outputs on (a) training set and (b) test set of CK+ dataset.

5.2.3. Object Recognition

The Columbia Object Image Library [135] dataset consist of images of natural

100 objects taken under different viewing angles. We have chosen 58 objects and

categorized them into 6 classes which are vehicle, cup, animal knick-knack, fruit, round-

shaped box, and rectangular-shaped box. The details of the dataset and its views are
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given in Section 5.1.5.

Figure 5.26 shows SVM accuracies obtained with view 1 covariates on the test

sets. It is seen that D-AR features have higher discriminative power on unseen test

examples than those of the other methods (paired t-test, p < 0.05). In Figure 5.26, it is

also seen that after D-AR, the supervised LDA features are the second most accurate

method showing that feature extraction should benefit from the class-label information

if available as D-AR does. While CCA performs better up to first 3 covariates than

PCA+CCA and AR, AR gave significantly higher accuracies than CCA with 4 and 5

covariates. This indicates that CCA is successful at exploring the prominent correlated

features; but it tunes to dummy dependencies on training set which do not hold on

test set while exploring the less correlated features due to its sensitivity to outliers and

noisy samples.

The k-NN accuracies obtained on test sets are shown in Figure 5.27. It can be

seen that D-AR yields significantly highest accuracies (paired t-test, p < 0.05) on test

sets 1, 2, 4, whereas the superiority of D-AR over LDA is not significant on test set 2.

The accuracies obtained with view 2 covariates on object dataset are not shown as the

views see the same training examples in different orders and thereby produce similar

features.

5.3. KCCAmRMR Experiments

5.3.1. Methodology

In our KCCAmRMR experiments, we use a plain CCA implementation [72] for the

KCCA implementation (as shown in Figure 2.4). Therefore, due to the computational

time and space such kernels take when facing with large number of data samples, we

select medium-sized datasets from UCI machine learning repository [47]. However,

as KCCA is subjected to single variables for both sets, other fast approximations to

kernels can be easily adopted for large datasets.
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(a) (b)

(c) (d)

Figure 5.26. Number of outputs versus SVM accuracies obtained with view 1

covariates on (a) test set 1 (b) test set 2 (c) test set 3 (d) test set 4 of object

recognition dataset.

We firstly revisit the toy problem on which we have shown that using mRMR

can lead to inaccurate orderings of the variables because it does not deal with the

type of the dependency, but only with its quantity. Then we give the experimental

results on UCI datasets. For all the datasets, we normalize linear-valued features

to zero-mean and unit-variance before feeding the selected features into KCCA for

covariate extraction and also into SVMs for final classification; however, in mutual

information computations during the selection phase, we discretize them to 9 discrete

levels as in [40, 48] by converting the feature values between µ − σ/2 and µ + σ/2

to 0, the four intervals of size σ to the right of µ + σ/2 to discrete levels from 1

to 4, and the four intervals of size σ to the left of µ − σ/2 to discrete levels from

−1 to −4 whereas very large positive or negative feature values are truncated and
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(a) (b)

(c) (d)

Figure 5.27. Number of outputs versus k -NN accuracies obtained with view 1

covariates on (a) test set 1 (b) test set 2 (c) test set 3 (d) test set 4 of object

recognition dataset.

discretized to ±4 appropriately. For KCCA computations, we set the g (kernel width)

parameter of the kernel of the KCCAmRMR to 10.0 in all experiments. Since KCCA

explores multiple correlated functions between the features and the target, we use the

explored functions with correlation coefficient equal or greater than 0.10 for the UCI

datasets (simply discarding the very low correlations for improving the time and space

complexity of the algorithm).

5.3.2. Toy Problem from Section 2.4.2 (Revisited)

We reconsider the artificial example given in Section 2.4.2 (see Figure 2.3). In

the first iteration, our method KCCAmRMR chooses X1 as it has the highest mutual
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information with the target variable t. As seen in Table 5.2, the highest correlation

coefficient, ρ, with 0.6545 is naturally obtained between f1(X1) and g1(t) (correlated

functions between X1 and t). In the second iteration, the relevance term is computed

as the mutual information between t and the correlated function fj(Xj) of Xj for

all the remaining features; that is, for simplicity we use a single covariate for each

feature and denote it fj(Xj), for j = 2, 3, 4. As for the redundancy term, we calculate

the mutual information between f1(X1) and fj(Xj). This redundancy term gives us

an approximation to the relevant redundancy (RR) because the correlated functions

f1(X1) and fj(Xj) are presumably filtered out of the irrelevant information to t.

Table 5.2. Mutual information among correlated functions and correlation coefficient

ρ with the respective functions of the target variable t.

f1(X1) f2(X2) f3(X3) f4(X4)

f1(X1) 2.1233 1.2416 0.1043 0.0068

f2(X2) 1.2416 2.0876 0.1086 0.0062

f3(X3) 0.1043 0.1086 1.8307 0.0053

f4(X4) 0.0068 0.0062 0.0053 1.4720

ρ 0.6545 0.6353 0.4469 0.1734

It can be seen from Figure 2.3 that X3 possesses r7 and r8 as common information

with the target t, and only r8 is redundant with the already selected variable X1.

Consequently, r7 is the unique information that X3 possess about t, and X3 has a

KCCAmRMR score of 0.0042. As it can be easily seen in Figure 2.3, X4 has no

redundancy with the selected variable X1, and r2 is the common information that

it possess about t, and has a KCCAmRMR score of 0.0004 in this second iteration.

Therefore, as a correct choice, X3 will be the second feature selected by our method

as it is the variable with the highest KCCAmRMR score. However, as explained in

Section 2.4.2, in the second step, mRMR chooses X4 as a mistake since it cancels out

r7 of X3 with r9. Table 5.3 shows KCCAmRMR scores of each variable during all

iterations (first iteration being their true mutual information with the target).
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Table 5.3. KCCAmRMR scores of variables in each iteration.

X1 X2 X3 X4 Selected Variable

Iteration 1 0.4826 0.4536 0.2218 0.0399 X1

Iteration 2 - -0.3672 0.0042 0.0004 X3

Iteration 3 - -0.1245 - 0.0006 X4

Iteration 4 - -0.0336 - - X2

5.3.3. UCI Datasets

We rank the top m features of the benchmark datasets with mRMR and KC-

CAmRMR and feed into SVMs. The number of features, samples, and classes of the

benchmark datasets are shown in Table 5.4. We show the number of selected features

with mRMR and KCCAmRMR versus classification accuracies of SVMs in Figure 5.28

for all datasets. The means and standard deviations of the top classification accuracies

on the datasets are also shown in Table 5.4.

Table 5.4. SVMs average classification accuracies on UCI datasets with various

number of features selected by mRMR and KCCAmRMR as input.

# of

features

# of

samples

# of

classes

mRMR

Accuracy (%)

KCCAmRMR

Accuracy (%)

Arrhythmia 270 452 16 69.94±0.97 70.49±0.98

Control Chart 99 600 6 78.31±5.27 83.41±8.69

Ionosphere 34 351 2 92.24±3.03 92.51±2.92

Libras 90 360 15 67.49±16.84 69.67±17.26

Sonar 60 208 2 77.57±2.34 80.58±3.47

Soybean 35 307 19 77.93±15.27 77.79±15.14

The average of SVMs accuracies with KCCAmRMR features is higher than with

mRMR features for all the datasets in Table 5.4 except of soybean dataset for which the

results are very close. It is also seen in Figure 5.28 that the superiority among mRMR

and KCCAmRMR on soybean dataset varies with selected number of features. The

maximum accuracy (approximately 90%) is obtained with 14 features by KCCAmRMR
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which is reached by mRMR with 20 features. For sonar and control chart datasets,

SVMs using features selected by KCCAmRMR is clearly superior to those using mRMR

features; whereas the difference in accuracies for libras and ionosphere datasets is not

obvious. For arrhythmia dataset, SVMs with KCCAmRMR features achieves 72%

accuracy with only 25 features whereas the one with mRMR features achieves the same

accuracy with 40 features. This probably originates from the mRMR method’s problem

of computation of relevant redundancy as we discussed in Section 2.4.2. Actually, we

also see in Figure 5.28 that mRMR starts picking up ‘good’ features and catches the

accuracy of KCCAmRMR but with more features which contradicts with the claim of

mRMR method of selecting a minimal and compact subset of features.

5.4. Cluster Stacking Experiments

We present the experimental results of cluster stacking method (see Section

3.2.3.3) on a protein dataset with multiple views that are used to predict protein

structure. In this section, we firstly give the description of the dataset and outline the

methodology we followed. Then, we present the experimental results on this dataset.

5.4.1. Methodology

As described in Section 5.4.2, the protein dataset consists of 51 views. In this

thesis, we evaluate the success of our cluster stacking approach with the aim of ranking

the views of this multi-view protein dataset according to their discriminative power and

selecting a minimal subset of views for the prediction of the protein structures.

As known, the use of individual feature selection methods such as mRMR de-

scribed in Section 2.4.1 for selecting a minimal subset of views is not suitable since

they ignore the presence of the views, dismantle them, and treat their variables inter-

mixed along with those of others at best results in a complex uninterpretable predictive

system for such multi-view datasets. For example, the multi-view protein dataset is

treated as a single view dataset consisting of 1447 features. As the selected feature

subset will comprise individual features from most of the views, this approach requires
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(a) (b)

(c) (d)

(e) (f)

Figure 5.28. Number of selected features with mRMR and KCCAmRMR versus

classification accuracies using SVMs.

measuring or computing majority of the views and results in a complex uninterpretable

predictive system for researchers in these fields. Considering this, in order to choose a

minimal subset of views without dismantling the views into individual features, rather
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than presenting an N × n data matrix to the feature selection algorithm (where N

denotes the number of samples and n the number of features), we firstly apply clus-

tering to each view and for each sample, the feature vector of that view is replaced

by the index of the cluster it belongs to. Thus, the dimensionality of each view is

reduced to one and the whole dataset becomes N × V , where V denotes the number

of views. Due to the presence of randomness of clustering outcomes and availability

of many different clustering methods, a mechanism for combining multiple clusterings

is required to produce a more robust representation that avoids variations from one

clustering to another. On this basis, we use our proposed cluster stacking approach and

also co-association matrix based cluster ensembles given in Section 3.2.3.2) methods

while reducing each view into a single variable, then apply mRMR to select a minimal

set of views, and compare the discriminative power of the cluster ensembles methods

by feeding the selected views to a classifier.

After reducing each view down to a single variable using the clustering of the

views, we feed the dataset to mRMR for individual feature selection. As a preprocessing

step, variables are discretized similar to [48] but using σ/3 step-size to obtain more

discrete levels, i.e. the values between ν−σ/6 and ν+σ/6 are converted to 0, and bins

of size σ/3 are created both on left and right of the bin 0; however, it must be noted

that similar results are obtained with other discretization parameters. For statistical

significance, the single clustering is repeated 30 times and the average accuracy of the

multiple runs is computed.

There are several methods to create multiple partitions for cluster ensembles

methods. In our experiments, for k-means clustering, we create 30 different partitions

(i.e. the number of runs of k-means is set to 30) using all of the data observations with

different random cluster seeds since k-means clustering algorithm has already a built-in

randomness due to the starting cluster seeds. The number of clusters, k, is set to an

initial value of 15 with the option of removing empty clusters during iterations. On

the other hand, hierarchical clustering techniques do not have built-in randomness and

they do not need any iterative optimization procedure to converge, so different runs of

hierarchical clustering techniques with the same observations and parameters result in
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the same clustering indices. Therefore, in order to create multiple partitions to obtain

a final more representative partition, multiple subsets of observations are generated

using bootstrapping data resampling technique [138]. Number of partitions is set to 30

as in k-means clustering and maximum number of clusters to keep in the hierarchical

tree is set to 15. The single, average, and complete linkage criterions are tried and it

is seen that the best results are obtained with complete linkage.

The features of the selected views by mRMR are fed into Support Vector Machine

(SVMs) classifier. The kernel type of SVMs is determined as gaussian. The cost and

kernel width parameters of the SVMs model are fixed to 50 and 1/n, respectively,

where n is the number of features. We bipartitioned the dataset randomly for train

and test sets. The clustering algorithms and selection of views with mRMR are applied

on the training set, and SVMs is trained on the training set using the features of the

selected views. Finally, the obtained model is applied on the yet unseen test set and

the unbiased prediction accuracy is obtained.

5.4.2. Description of Protein Dataset

Prediction of numerous functions and structures has a significant role in the

comprehension of proteins. The multi-view dataset used in this thesis to evaluate the

performance of the proposed cluster stacking approach is related to the structures of

the proteins. These predictions are not only important in terms of their biological

and medical functions but also one of the most challenging areas in bioinformatics

due to high number of features and highly unbalanced class-prior distributions. The

structure prediction dataset used contains 1086 proteins that are classified into four

classes (with the number of samples in each class): alpha (223), beta (292), alpha and

beta (331), and alpha + beta (240). Further details can be obtained from [70,139,140].

The definitions of these protein structural classes, which are based on the standard

developed by Levitt and Chothia [141], are summarized as follows:

• All-Alpha - proteins with only small number of strands

• All-Beta - proteins with only small amount of helices
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• Alpha and Beta - proteins that include both helices and strands and where strands

are mostly parallel

• Alpha + Beta - proteins with both helices and strands and where strands are

mostly anti-parallel

The proteins in this dataset are characterized by using a vector of 1447 features

obtained from their sequence information, which have been shown to be very effective

descriptors in previous studies [70, 139]. The dataset has seven main sets of views

(with the number of features in each view): view 1 - amino acid composition (20),

view 2 - dipeptide composition (400), view 3 - Moreau-broto autocorrelation (240),

view 4 - Moran autocorrelation (240), view 5 - Geary autocorrelation (240), view 6 -

composition-transition-distribution (147), and view 7 - sequence-order (160). Further

there are 51 sub-subsets of these main views, each with varying number of features

from 3 to 400 on which view selection methods are applied.

5.4.3. Results

The prediction accuracies obtained with individual feature selection (IFS), se-

lected views using k-means as a single clustering (SC) algorithm, selected views with

multiple clusterings using k-means clustering as the base clustering algorithm for our

cluster stacking (CS) and co-association matrix based (CO-ASM) cluster ensembles

methods, and all the features of the views as a single view (SV) into SVMs are shown

in Table 5.5. The significance of the difference in accuracy is assessed by the two-

sample t-test. For individual feature selection, we show the results from 100 to 500

selected features. For view selection, we show the results from 3 to 7 selected views.

As it is seen from the results, the first 100 individually selected features with mRMR

belong to 8 distinct views. On the other hand, the first 3 selected views using cluster

stacking consist of only 63 features totally and perform higher accuracy than selected

100 individual features. We also see that the views selected with cluster stacking and

co-association cluster ensembles give better results than the views selected with single

clustering.
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Table 5.5. Prediction accuracies of SVMs with inputs of mRMR selected features and

views (k-means clustering).

IFS SV SC (1) CS (2)
CO-
ASM

# of features
(# of views) Accu. Accu. # of views Accuracy

Level of
significance (1-2)

100 (8) 44.1

54.5

3 48.2 50.0 44.4 NS

200 (15) 51.4 4 53.4 55.7 45.1 *

300 (25) 53.3 5 53.6 56.9 51.9 *

400 (31) 55.5 6 54.1 57.5 58.6 *

500 (42) 56.5 7 56.5 58.4 58.4 **

**, p <0.01; *, p <0.05; NS, Not Significant

The obtained results show that using the consensus partitions of each view for

view selection with mRMR by combining the solutions of many single clusterings results

in more predictive SVMs classification models. The difference in accuracy between the

single clustering mRMR and cluster stacking mRMR are statistically significant (two-

sample t-test, Table 5.5) for the number of 4, 5, 6, and 7 selected views. The highest

accuracy is achieved using the top-6 ranking views of co-association cluster ensembles

method. However, with smaller number of selected views, i.e. with top-3, top-4, top-5

mRMR ranking views, the prediction models of the cluster stacking approach are better

than the prediction models of co-association cluster ensembles. It is also seen that

after selecting 400 individual features with mRMR, the accuracy of individual feature

selection is getting closer to the accuracies of view selection methods. However, these

400 features belong to 31 distinct views meaning high computational cost to measure

them. Besides, the interpretation and analysis of the system with 31 views is much

more difficult than the one with 5 views.

The prediction accuracies obtained by feeding the selected views which are re-

duced to a single variable using hierarchical clustering are shown in Table 5.6. The

individual feature selection and single view results are also included in Table 5.6 for

comparison purposes. The results are similar to those obtained with k-means cluster-

ing (see Table 5.5). The highest accuracy is achieved using the top-7 ranking views of
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cluster stacking. Also for other selected number of views, cluster stacking has higher

accuracies than the other methods. A statistically significant difference in accuracy be-

tween the single clustering mRMR and cluster stacking mRMR is found for all selected

number of views.

Table 5.6. Prediction accuracies of SVMs with inputs of mRMR selected features and

views (hierarchical clustering).

IFS SV SC (1) CS (2)
CO-
ASM

# of features
(# of views) Accu. Accu. # of views Accuracy

Level of
significance (1-2)

100 (8) 44.1

54.5

3 48.2 53.8 50.8 *

200 (15) 51.4 4 51.1 55.6 51.6 *

300 (25) 53.3 5 52.8 55.8 51.8 *

400 (31) 55.5 6 53.5 55.8 52.3 *

500 (42) 56.5 7 54.4 57.1 55.8 *

*, p <0.01

Cluster stacking approach can be best explained as follows. The mutual infor-

mation matrices obtained in multiple clustering runs can be averaged, and then this

matrix can be given to mRMR for rankings the views. Based on this averaged mutual

information scores, the rankings will be more robust since it is computed over many

clusterings instead of a single one. The mRMR code now needs to be modified so that

it uses a V ×V mutual information matrix instead of the original N×n dataset, where

n is the number of features. However, in [39], we play the role of the plain-user of the

mRMR feature selection package. Without any need for performing any modification

of its source code, our approach stacks the outputs of multiple clusterings and then

gives them to mRMR. Using the augmented clustering indices is the alternative way of

the aforementioned averaging of the mutual information matrices of many clustering

runs. The resulting augmented matrix of size (N ×B)× V is fed into mRMR directly

to get the robust view rankings.

The simulation results on a multi-view protein structure prediction dataset showed

that using the consensus partitions of each view for view selection with mRMR by
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combining the solutions of many single clusterings results in more predictive SVMs

classification models. We have also compared the proposed cluster stacking approach

with co-association cluster ensembles method. We observed that while the highest

accuracy is achieved using the top-6 ranking views of co-association cluster ensembles

method, with smaller number of selected views, i.e. with top-3, top-4, top-5 mRMR

ranking views, the prediction models of the cluster stacking approach are better than

the prediction models of co-association cluster ensembles.

5.4.4. Discussion

The single clustering approach is based on firstly reducing the dimensionality of

each view to one by applying the clustering algorithm for once. Then, we use the

cluster indices of the views as input to mRMR. Therefore, the internal mechanisms

of the mRMR method operate on the V × V (where V stands for the number of

views) mutual information matrix storing the pairwise mutual information scores of the

clustered views. Cluster stacking approach, on the other hand, can be best explained

as follows. The mutual information matrices obtained in multiple clustering runs can

be averaged, and then this matrix may be given to mRMR to rank the views. The

rankings of the views will be more robust when their mutual dependence is computed

based on this mutual information matrix since the dependence is computed over many

clusterings instead of a single one. However, the mRMR code needs to be modified to

implement this algorithm so that it uses a V ×V mutual information matrix instead of

the original N × n dataset. In other words, the columns of this matrix are not feature

vectors but the averaged pairwise mutual information scores between the clusterings of

the views. However, in the application of our cluster stacking approach together with

mRMR, we play the role of the plain-user of the mRMR feature selection package.

Thus, mRMR can be directly applied using the columns of augmented cluster index

matrix C (given in Equation 3.11) as regular variables to get the consensus top-m

views. This simply corresponds to modifying the dependency (Equation 2.29) and



112

redundancy (Equation 2.30) terms of mRMR as follows:

D =
1

|S|
∑
Ci∈S

I(Ci; t), (5.1)

R =
1

|S|2
∑

Ci,Cj∈S

I(Ci;Cj), (5.2)

where Ci represents the ith column of C, S is the selected set of views, and t is the

target variable such as the structure of the protein in this thesis. Without any need

for performing any modification of its source code, our approach stacks the outputs of

multiple clusterings and then gives them to mRMR. Using the augmented clustering

indices is the alternative way of the aforementioned averaging of the mutual information

matrices of many clustering runs. The resulting augmented matrix of size (N ×B)×V

is fed to mRMR directly to get the robust view rankings where B is the number of

clustering runs.

The co-association matrix based cluster ensembles method is based on combining

the multiple clusterings of a view into a matrix, and then finding the consensus parti-

tion by applying the clustering algorithm to this matrix. This final partition is used to

compute the mRMR score of the view for view selection. The computational complex-

ity of constructing the co-association based matrix is O(B × N2) for each view. So,

the computational complexity of mutual information computation is O(V × B ×N2);

that is we have to apply a clustering of co-association matrix which takes O(B ×N2)

complexity for each one of the V views. On the other hand, our cluster stacking ap-

proach only stacks the cluster indices of the multiple clusterings of each view into a

column vector, i.e., unlike co-association based matrix method, constructing a matrix

is not required to represent the similarities between the pairs of samples by number of

clusters shared by these samples in multiple clusterings. Thus, the complexity of our

method is only limited with the complexity of the single clustering method we prefer

to use.
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5.5. Parallel Interacting Multi-view Learning Experiments

In this section, the proposed Parallel Interacting Multi-view Learning (PIML)

method [42, 43] is demonstrated and compared with the classical ensemble approach

on two protein datasets (secondary structure and subnuclear location prediction from

sequence features) and one dataset on arrhythmia type prediction. For the protein

datasets, we have the structure prediction and sub-nuclear location prediction tasks.

These protein datasets are split into views using different sequence-driven protein

feature extraction methods. For the arrhythmia dataset, we use random subspace

method [102] to randomly split it into views. The task is to predict the type of ar-

rhythmia.

5.5.1. Methodology

We use LIBSVM [137] implementation of Support Vector Machines (SVMs) as the

classifier in the implementation of our PIML method. This package supports multiclass

classification and can also produce the class posterior probability estimates of each one

of the class labels for (multi)classification problems. For the comparison of single view,

classical ensemble, and our proposed PIML methods on the protein datasets, firstly,

we find the most suitable kernel type and parameter values of SVMs for each view.

For this purpose, we try linear and Radian Basis Function (RBF) kernels, and various

values for SVMs parameters C (cost) (C = 1, 2, 5, 10, 25, 50, 100) and g (the spread

parameter) (g = 0.5/k, 1/k, 2/k, 5/k, etc, where k is the number of features in the

view) for the RBF kernel. We train each view independently with all the combinations

of kernel types and parameter values given above and determine the best fitted settings

using 10-fold cross validation. For each SVMs parameter setting, firstly the training

set is divided into 10 folds, then SVM is trained using the training examples of all the

folds except the left-out fold, and finally the obtained model is applied on the left-out

fold to obtain the accuracy. Thus, only training set examples are used to find the

optimum SVM settings of each view. The optimized models are tested on unseen test

examples only for comparing the individual accuracies before and after the interaction

of the views, in other words test set examples are not used during the optimization of
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individual SVM models. For the arrhythmia dataset, we use linear kernel SVMs since

it gives better results when compared with polynomial and RBF kernels, and follow

the same strategy with protein datasets for the optimization of the parameters and

train-test splits.

5.5.2. Protein Datasets

The description of the protein datasets and the experimental results of PIML on

protein datasets are presented in this section.

5.5.2.1. Description of Protein Datasets. In PIML experiments, we are concerned with

the prediction of structure and sub-nuclear locations of the proteins. Making these pre-

dictions are challenging due to high number of features, small sample size, and highly

unbalanced class-prior distributions. The structure prediction dataset used contains

1086 proteins that are classified into four classes (with the number of samples in each

class): alpha (223), beta (292), alpha and beta (331), and alpha + beta (240). The

details of this dataset is given in Section 5.4.2. The sub-nuclear location prediction

dataset contains 714 proteins that are classified into nine classes (with the number

of samples in each class): Chromatin (99), Heterochromatin (22), Nuclear Envelope

(61), Nuclear Matrix (29), Nuclear Pore Complex (79), Nuclear Speckle (67), Nucleolus

(307), Nucleoplasm (37) and Nuclear PML Body (13). Further details about protein

datasets used in this study can be obtained from [3,70,140].

The proteins in these datasets are characterized by using a vector of 1447 and

1497 features, respectively, obtained from their sequence information, which have been

shown to be very effective descriptors in previous studies [3, 70]. The views of protein

datasets are obtained using different sequence-driven protein feature extraction meth-

ods. The first dataset has seven main sets of views (with the number of features in each

view): view 1 - amino acid composition (20), view 2 - dipeptide composition (400), view

3 - Moreau-broto autocorrelation (240), view 4 - Moran autocorrelation (240), view 5

- Geary autocorrelation (240), view 6 - composition-transition-distribution (147), and
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view 7 - sequence-order (160). The second dataset consists of the same 7 views as the

first dataset with an additional 50-feature view called pseudo amino acid composition

as the 8th view. Further there are 52 sub-subsets of these main views, each with vary-

ing number of features from 3 to 400. However, it should be noted that only the 8

main subsets are used as the independent views in our PIML experiments.

5.5.2.2. Results. We firstly train each view of the protein datasets individually, then

test the obtained models on the test sets to find the optimal parameters by following

the strategy described in Section 5.5.1. As seen in Table 5.7 and Table 5.8, the best

results for protein datasets are obtained with RBF kernel. After finding the optimal

SVMs setting of each individual view, we implement the interaction among the views

proposed by PIML. For this task, we firstly train a separate SVM for each view with

their determined best settings. Then we test the obtained models of each view on the

training set. All the views are retrained using the features of the view along with the

class posterior probability estimates obtained from the classifiers of the other views.

For the protein structure prediction dataset, the size of the attached feature vector for

each sample is 4 × 6 = 24 where 4 is the number of classes and 6 is the number of

(other) views. In the protein sub-nuclear prediction dataset, there are 9 classes and 8

views. Thus, the size of the attached feature vector for each sample is 9× 7 = 63.

The average and standard deviation of the 10-fold cross validation test set accu-

racies are shown in Table 5.7 and Table 5.8 for each view. As it is seen, the individual

accuracy of each view is improved using the proposed technique with both linear and

Gaussian kernels. The highest accuracies (60% and 58%) on the test sets of the struc-

ture and sub-nuclear prediction datasets are obtained using view 2 both with PIML.

For the structure prediction dataset, the results of the combination of the in-

dependent view and PIML predictions with different techniques are shown in Table

5.9. The highest final accuracy with 59.7% is obtained by combining the predictions

of PIML using class posterior probability estimates as input to simple voting in which

equal weighted class probability estimates are used. Since the distribution of classes is
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Table 5.7. Protein structure prediction dataset: Average SVMs accuracies of views

obtained using 10-fold cross validation.
SVM
kernel Method V1 V2 V3 V4 V5 V6 V7

Single

view

Linear
Ind. 44± 2.2 43± 2.5 39± 1.8 40± 3.1 40± 3.0 41± 2.1 43± 2.5

47± 0.4
PIML 50± 2.8 43± 3.1 45± 2.1 44± 4.0 48± 3.1 47± 2.5 48± 2.0

RBF
Ind. 51± 5.4 53± 3.0 51± 5.2 48± 3.3 45± 0.2 48± 3.8 49± 5.9

53± 0.5
PIML 59± 3.7 60± 3.4 58± 3.6 58± 2.9 58± 3.0 58± 3.4 57± 2.3

Table 5.8. Protein sub-nuclear location prediction dataset: Average SVMs accuracies

of views obtained using 10-fold cross validation.
SVM
kernel Method V1 V2 V3 V4 V5 V6 V7 V8

Linear
Ind. 42± 3.7 45± 4.0 38± 3.5 46± 3.2 38± 3.8 37± 2.4 42± 3.4 39± 2.1

PIML 47± 3.5 52± 4.1 49± 3.4 50± 3.6 50± 4.0 47± 2.9 46± 3.1 45± 2.7

RBF
Ind. 50± 4.9 54± 4.7 48± 5.0 48± 2.4 47± 2.7 52± 2.3 47± 3.0 52± 3.6

PIML 56± 6.8 58± 5.3 57± 4.8 56± 4.7 57± 5.5 57± 3.6 56± 5.2 56± 6.2

imbalanced, for assessing the prediction performance of the methods, we present the

accuracies of each class (i.e., sensitivity of the classes) and also the average accuracy

which is computed as the number of samples for each class is equal. PIML with simple

voting again gives the highest equally weighted accuracy (59.1%).

Table 5.9. Protein structure prediction dataset: Average ensemble SVMs accuracies

obtained using 10-fold cross validation.
Class
(# of samples) Hard voting Simple voting Weighted voting

Ensemble PIML Ensemble PIML Ensemble PIML

Alpha (223) 8.2± 7.0 64.8± 8.6 56.9± 7.0 62.8± 7.3 57.8± 6.8 64.5± 5.5

Beta (292) 73.4± 8.1 71.3± 6.0 70.2± 8.1 72.0± 7.0 80.1± 8.6 71.9± 7.7

Alpha and Beta (331) 81.5± 6.9 68.9± 7.9 86.5± 6.9 69.4± 6.5 75.5± 7.0 69.5± 8.1

Alpha + Beta (240) 3.8± 4.5 28.2± 9.1 7.9± 4.5 29.2± 9.4 11.3± 11.0 26.8± 13

Weighted average 57.2± 6.7 59.3± 8.4 58.4± 6.6 59.7± 8.0 58.9± 8.0 59.1± 8.5

Average 54.2± 6.5 58.3± 7.9 55.1± 6.5 59.1± 7.8 57.5± 1.2 58.1± 8.5

As PIML already creates an ensemble of multiple stackings, it results in a better

accuracy than making single ensemble stacking. We see similar results in Table 5.10

which belongs to the sub-nuclear prediction dataset. It is seen that the highest accuracy

is obtained with simple voting PIML. Classical ensemble approach performs better in
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terms of classification accuracy only for the prediction nucleolus proteins class. How-

ever, this originates from the fact that ensemble method does not learn a generalizable

model enough to discriminate the classes with small sample size from each other and

thus labels most of the test examples as nucleolus proteins which has the highest prior

probability with 307 samples.

Table 5.10. Protein sub-nuclear location prediction dataset: Average ensemble SVMs

accuracies obtained using 10-fold cross validation.
Class
(# of samples) Hard voting Simple voting Weighted voting

Ensemble PIML Ensemble PIML Ensemble PIML

Chromatin (99) 39.4± 1.2 45.5± 2.4 44.4± 2.1 51.5± 3.8 58.5± 2.89 64.5± 3.4

Heterochromatin (22) 0 13.6± 2.3 0 13.6± 2.3 13.6± 4.6 27.2± 4.4

Nucl. envelope (61) 24.6± 0.9 49.2± 3.2 47.2± 3.2 50.2± 3.0 44.3± 3.4 49.2± 2.9

Nuclear matrix (29) 10.3± 0.0 10.3± 0.0 10.3± 0.0 10.3± 0.0 20.7± 5.9 20.7± 5.9

Nucl. pore complex (79) 46.1± 3.6 56.7± 5.7 56.7± 4.1 64.6± 5.9 56.9± 4.1 65.7± 4.4

Nucl. speckle (67) 8.9± 0.0 58.2± 4.7 58.2± 3.9 59.8± 4.2 40.3± 3.6 48.2± 4.9

Nucleolus (307) 90.9± 6.7 68.4± 4.3 76.1± 4.6 73.2± 4.9 79.0± 2.0 70.2± 2.5

Nucleoplasm (37) 0 16.2± 1.5 16.2± 1.5 24.3± 2.0 16.2± 4.4 24.3± 4.8

Nucl. PML body (13) 0 0 0 0 0 0

Weighted average 52.1± 2.7 54.2± 3.0 53.8± 3.2 57.0± 3.3 56.3± 3.3 56.3± 3.7

Average 24.5± 1.4 35.3± 2.7 34.3± 2.2 38.6± 2.9 36.6± 3.4 42.8± 3.7

As another measure of comparison, we compute the average posterior probability

estimates of the correctly classified samples for both ensemble and PIML algorithms.

The results which are shown in Table 5.11 for both protein datasets reveal to what

extent the classical ensemble and PIML methods are confident for the samples which

are correctly classified. It is seen that PIML results in more confident predictions than

those of classical ensemble approach.

Table 5.11. Average posterior probability estimates of correctly classified samples by

ensemble and piml algorithms.
Method Dataset Hard voting Simple voting Weighted voting

Ensemble
Structure

0.68± 0.035 0.73± 0.051 0.75± 0.052

PIML 0.68± 0.035 0.77± 0.043 0.76± 0.060

Ensemble
Sub-nuclear

0.53± 0.060 0.58± 0.075 0.60± 0.094

PIML 0.57± 0.048 0.59± 0.085 0.60± 0.087
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5.5.3. Arrhythmia Dataset

In this section, we present the comparative results of classical ensemble and PIML

methods on an experimental dataset regarding arrhythmia.

5.5.3.1. Description of Arrhythmia Dataset. The arrhythmia dataset [142] which is

available on the UCI machine learning archive [47] contains 452 samples from 16 classes.

The aim is to classify the sample in one of the 16 groups of arrhythmia. The explanation

of these groups are as follows: class 1 means ‘normal’, classes 2 to 15 refer to different

classes of arrhythmia, and class 16 refers to one of the unclassified arrhythmia types

[143]. The dataset consists of 279 features. We generated various number of feature

subsets using the attribute bagging method [102] and use the obtained multi-view

dataset in our experiments to evaluate the performance of ensemble and PIML methods.

5.5.3.2. Results. The overall accuracies obtained by combining the predictions of in-

dividual views in order to obtain the final predictions using hard voting, simple voting

and weighted voting strategies are shown in Table 5.12. As seen, the classification

performance of our proposed PIML method is better than that of the classical ensem-

ble with all the voting strategies. The SVMs accuracy obtained when the arrhythmia

dataset is used as single view (67.7 ± 2.8%) is also lower than the SVMs accuracy

obtained with PIML. The PIML accuracies are comparable with the accuracies ob-

tained by Peng et al. [48] considering that they converted the multi-class arrhythmia

type prediction problem to a binary classification problem aiming to discriminate the

normal class from the abnormal.

5.5.4. Discussion

The experimental results on protein and arrhythmia datasets show that PIML

achieves better predictions than the classical ensemble approach because it aims at us-

ing the views in a more sophisticated way by considering the possible interdependences

among the views. In PIML algorithm, features of each view are augmented by the class
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Table 5.12. Arrhythmia dataset: 10-fold cross validation results with various number

of views.
# of views Hard Voting Simple voting Weighted voting

Ensemble PIML Ensemble PIML Ensemble PIML

5 65.7± 4.2 71.7± 4.2 65.0± 3.8 71.9± 4.4 63.0± 4.7 68.9± 4.7

10 67.7± 3.9 71.5± 3.5 67.5± 3.6 71.3± 3.8 64.9± 4.9 69.2± 4.2

15 67.5± 3.7 70.3± 3.9 67.0± 3.3 70.6± 4.3 65.7± 5.6 67.8± 4.0

20 67.0± 4.6 70.6± 4.8 67.0± 3.2 70.4± 4.4 65.9± 5.0 68.5± 3.9

25 67.0± 4.2 70.8± 4.9 66.6± 5.5 71.0± 4.9 65.2± 5.3 69.1± 4.7

30 67.0± 3.5 70.5± 5.2 66.8± 3.0 71.2± 5.4 65.7± 5.1 70.1± 5.1

Average 67.0± 4.0 70.9± 4.4 66.7± 3.7 71.1± 4.4 65.1± 5.1 69.0± 4.5

posterior probability estimates of the other views. Ensemble approach to supervised

multi-view learning assumes the views are conditionally independent given the class

labels but views of real multi-view datasets can be interdependent. PIML algorithm

models these dependencies without going into the extent of merging the features of all

views (i.e. the single view approach) by interacting during learning and also prevents

curse of dimensionality in contrast to single-view learning by merging only the original

features of the individual view with the summary information of the other views. Thus,

PIML can be seen, at least, as an ensemble of stacking networks, in which rather than

creating a single stacking that uses all the estimates from all the views, the estimate of

each view is utilized multiple times, thus leading to multiple stackings to be ensembled,

which in turn leading to higher number of blocking configurations and more confident

posterior probability estimates.



120

6. CONCLUSIONS AND FUTURE WORK

Canonical correlation analysis (CCA) is a well-established statistical method

which maximizes the correlation between linear combinations of two sets of variables.

Although CCA has been proposed by Hotelling [5] a long time ago, it has gained

considerable interest in the recent machine learning studies due to the rapid rise of

multi-view datasets, which consist of multiple types of data about the same underlying

phenomenon. CCA has been used for many purposes in the literature but most of

them utilize CCA for correlation detection and feature extraction.

Naturally, the growing interest in CCA applications has led to studies focusing

on the improvement of CCA from many aspects. This thesis presents our efforts to

improve the robustness and discriminative ability of CCA. Experimental results on

various datasets demonstrate the usefulness of the proposed methods. Besides, we

show that CCA can be used in a feature selection algorithm to quantify the relations

between features and target variable. This thesis also includes our works on ensemble

classification and clustering.

6.1. Contributions of the Thesis

In this thesis, we propose an ensemble CCA approach to improve the generaliza-

tion capability of CCA. The generalization capability of a machine learning algorithm

determines how well it will perform on a new test set. Combining diverse and suffi-

cient models, ensemble approaches have been successfully applied for obtaining better

classification accuracy than the individual learners. They have also found use in com-

bining multiple clusterings to obtain better partitioning of the datasets. Despite the

fact that the ensemble approach can be utilized effectively for classification, regression,

clustering, and so on, it has not been applied to CCA based dimensionality reduction.

This thesis introduces an ensemble CCA method, which aims at reaching a final set

of covariates by combining sets of covariates obtained from various resamplings. The

ECCA approach combines many weak correlations obtained from resampled subsets
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of the views with the aim of producing a final set of stronger correlations with good

generalization on the unseen test set examples.

As CCA is a technique for dimensionality reduction, we perform experiments to

evaluate the generalization of ECCA on both the test set correlations of the covariates

and the test set accuracy of classification performed on these reduced dimensions. We

present the experimental results on emotion recognition, handwritten digit recognition,

content-based retrieval, and multiple view object recognition. We also evaluate the

robustness of ECCA covariates on a toy dataset.

Besides the superiority of the proposed ECCA approach over the traditional CCA,

our experimental results show that when the subsamples used in the ensemble have

high diversity (less overlap), ECCA yields higher correlations. Thus, when the sample

size is large enough when compared with the dataset dimensionality, the Partitioning

Ensemble CCA (ECCA-P) gives higher correlations and classification accuracy. More-

over, not having enough diversity among the subsamples, jackknife approach (ECCA-J)

performs only slightly better than the traditional CCA. Also, bagging approach to cre-

ate the subsamples has been found to be the most robust to the number of groups to

consider. That is, as ECCA-B can create as many groups using bagging and may keep

both the diversity and sufficiency high enough. Whereas, when the number of groups

is large, ECCA-P may suffer from low sufficiency and ECCA-J may suffer from low

diversity. As the diversity and sufficiency are shown to be necessary conditions for the

ensemble approaches to work for classification and clustering problems, the results ob-

tained by ensemble CCA also show that diverse and sufficient subsamples are required

for the ensemble approach to outperform the CCA models based on both the individual

subsamples and the whole sample. Thus, under the diversity and sufficiency conditions,

ECCA has been shown to have better generalization than that of the traditional CCA.

This thesis also introduces a discriminative feature extraction method by a neural

implementation of CCA, called Discriminative Alternating Regression (D-AR). Given

two different representations of the same underlying phenomenon, CCA is used as a

feature extraction method and the extracted features are generally used in classification
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algorithms to deal with the curse of dimensionality. However, the use of CCA in

classification problems mainly suffers from the fact that CCA does not utilize the class

labels in its traditional analytical solution. Therefore, CCA tends to preserve highly

correlated features instead of less correlated but more discriminative features in the

reduced subspace. The proposed D-AR method integrates the class labels into its

feature extraction framework, and so can really take advantage of the class labels in

CCA computation and also avoids the use of sensitive sample covariance matrices.

D-AR is a linear dimensionality reduction method based on the alternating re-

gression approach implemented by a multi-layer neural network with a “linear” hidden

layer. In the hidden layer, feature vectors of each view is transformed into a low-

dimensional subspace that preserves correlated and also discriminative information.

For a comparison with the alternative linear two-view dimensionality reduction tech-

niques CCA, PCA+CCA, alternating regression, and LDA methods are used. We have

applied these methods for feature extraction on emotion recognition and object recog-

nition datasets. The experimental results show that the covariates extracted by D-AR

have higher classification accuracies.

In Chapter 2, after giving an overview of existing studies that use CCA for differ-

ent tasks, we show that CCA can also be used for feature selection. As stated in feature

selection literature, for obtaining a minimal yet expressive subset of variables, while

maximizing the joint dependency with the target variable, the redundancy among se-

lected variables must also be reduced to a minimum. One of the most successful studies

is by Peng et. al. [48] called mRMR (minimum Redundancy – Maximum Relevance)

approach which is based on choosing a subset that aims at minimizing the pairwise

redundancies in the set among the selected variables while maximizing the overall rele-

vance with the target variable. It is true that such redundancies (variables with nearly

the same information content about the target variable) must be avoided in order to

obtain a minimal subset that maximizes the joint inferential dependency with the tar-

get variable. However, as for the redundancy term of a candidate variable, mRMR

approach computes plainly its mutual information with the already selected variables,

and does not consider whether that redundancy is related to the target variable or not.
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As a more effective redundancy term, in this thesis, we propose a method called

Kernel Canonical Correlation Analysis-mRMR (KCCAmRMR) which deals with the

part of the redundancy between the correlated functions (with the target variable) of

the candidate and the selected variables. Computing the redundancies between the

correlated functions quantifies the unique information that a candidate variables pos-

sesses about the target (i.e. unique in the sense that different contribution from what

is already learnable from the selected variables). We utilize kernel canonical correlation

analysis (KCCA) to explore the correlated functions (covariates) between features and

the target variable and use these functions while computing the relevance and redun-

dancy terms in a similar fashion to mRMR. Experimental results on benchmark data

sets from the UCI Machine Learning Repository show that the proposed KCCAm-

RMR method can choose better set of features than mRMR and opens a promising

alternative way in feature selection using the renowned CCA and kernel methods.

We also present our preliminary studies based on multi-view clustering and classi-

fication. We propose a cluster ensembles method for multi-view datasets, called cluster

stacking, to combine the multiple clustering solutions of the views. Cluster stacking

approach is based on augmenting the clustering indices of all the clustering trials into

a consensus matrix and using this augmented consensus partition as the final parti-

tion. The augmented cluster index matrix used to combine the solutions of multiple

clusterings resembles the covariate correspondence matrix that we propose to solve the

covariate correspondence problem encountered in ensemble CCA approach. In fact, the

cluster index matrix that we use to combine multiple clusterings of multiple views pro-

vided a basis for us to propose the covariate correspondence matrix to address the co-

variate correspondence problem of ensemble CCA. We present the experimental results

of our cluster stacking approach on a protein dataset with multiple views that are used

to predict protein structure. We also propose a multi-view ensemble learning technique

called Parallel Interacting View Learning (PIML) for classification problems. PIML is

shown to be suitable for predictive tasks in high dimensional biomedical/bioinformatics

datasets. The experimental results on two real protein datasets (secondary structure

and subnuclear location prediction from sequence features) and one real dataset on

arrhythmia type prediction show that PIML achieves better predictions than the clas-
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sical ensemble approach because it aims at using the views in a more sophisticated way

by considering the possible interdependences among the views.

6.2. Future Work

The results obtained in Section 5.1 show that the proposed ensemble approach to

CCA may be giving us a framework that can be used to obtain ensemble dimensionality

reduction (see also Discussion Section, Section 5.1.8). For example, firstly an ensemble

construction method such as bootstrapping can be used to obtain many subsamples of

the original dataset, then PCA can be applied separately to each subsample, and the

obtained PCA projections can be combined using a similar approach to ECCA. Such

an approach may give us a robust set of reduced dimensions with high-variance.

The proposed ensemble CCA approach is used to improve the generalization

capability of traditional CCA. As a future direction, ensemble approach can be used

to further improve the generalization of existing robust CCA methods, e.g. the neural

implementation of CCA is known to improve the generalization and its ensemble version

can further improve its generalization.

In this thesis, we have proposed two separate methods to improve CCA: ECCA to

obtain more generalizable covariates and D-AR to incorporate the class labels into the

framework of CCA. The preliminary results on the emotion recognition task showed

that the generalization capacity of D-AR features on unseen test set examples can be

increased by combining the ECCA and D-AR methods.

The nonlinear extensions of the proposed method ECCA and D-AR are straight-

forward. The nonlinear version of ECCA can be implemented using kernel trick. As

for D-AR, the “linear” hidden layer of its multi-layer neural network architecture can

be replaced with a nonlinear activation function to obtain D-AR features that can

distinguish data that are not linearly separable.

In the KCCAmRMR framework, we have used only the first pair of correlated
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functions to quantify the redundancy among features and the target variable. As a

future direction, more than just a single pair of correlated functions can be extracted

and used possibly using to better represent the relations between features and the

target variable.

As another future direction, the proposed PIML method may be improved by

utilizing the multi-kernel methods for combining the original view features and the

class posterior probability estimates. Thus, different kernels will be applicable to the

data and posterior probabilities.
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