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ABSTRACT

TEXT NORMALIZATION USING LEXICAL AND

CONTEXTUAL FEATURES

The informal nature of social media text, renders it very difficult to be auto-

matically processed by natural language processing tools. Text normalization, which

corresponds to restoring the noisy words to their canonical forms, provides a solution

to this challenge. We introduce an unsupervised text normalization approach that uti-

lizes not only lexical, but also contextual and grammatical features of social text. The

contextual and grammatical features are extracted from a word association graph built

by using a large unlabeled social media text corpus. The graph encodes the relative

positions of the words with respect to each other, as well as their part-of-speech tags.

The lexical features are obtained by using the longest common subsequence ratio and

edit distance measures to encode the surface similarity among words, and the double

metaphone algorithm to represent the phonetic similarity. Unlike most of the recent

approaches that are based on generating normalization dictionaries, the proposed ap-

proach performs normalization by considering the context of the noisy words in the

input text. Our results show that it achieves state-of-the-art F-score performance on a

standard data set. In addition, the system can be tuned to achieve very high precision

without sacrificing much from recall.
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ÖZET

KELİME VE BAĞLAM BİLGİSİ TEMELLİ METİN

NORMALİZASYONU

Sosyal medya metinlerinde kullanılan dilin bozukluğu bu metinleri doğal dil

işleme araçları ile otomatik olarak işlemeyi çok zorlaştırmakta. Bu bozuk metinleri

düzeltip kitap biçimlerine dönüştürme bir diğer deyişle metin normalizasyonu, bu

soruna bir çözüm ortaya koymaktadır. Bu çalışmada, sosyal metinlerin sözcüksel ve

içeriksel özelliklerinin yanısıra dibilgisi özelliklerinden de faydalanılan gözetimsiz bir

metin normalizasyonu yaklaşımı sunuyoruz. İçeriksel ve dilbilgisel özellikler, büyük ve

etiketlenmemiş bir sosyal medya derlemi kullanarak oluşturduğumuz kelime ilişkilendirme

çizgesi yardımı ile hesaplanıyor. Bu çizge, kelimelerin metin içerisinde birbirleriyle

olan konum ilişkilerini ve cümle öğe bilgilerini (part-of-speech) içermektedir. Sözcüksel

özellikleri bulmada kelimelerin en uzun ortak altdizileri ve birbirine dönüşme uzaklıkları

gibi yazım benzerlikleri yanısıra çift metafon (double metaphone) gibi ses bilimsel ben-

zerlikleri göz önünde bulunduran yöntemlerden faydalanıldı. Yakın zamanda sıkça kul-

lanılan sözlük bazlı çalışmaların aksine, önerdiğimiz yaklaşım metin normalizasyonunu

düzeltilecek metnin içeriğini göz önünde bulundurarak uygulamaktadır. Standart veri

kümesi üzerinde literatürdeki sonuçlardan daha yüksek sonuçlara ulaşan sistemimiz

farklı parametreler kullanılarak kapsama (recall) degerinden ödün vermeden çok daha

yüksek kesinlik (precision) değerlerine ulaşabilmektedir.
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1. INTRODUCTION

Within the last decade, the common belief among Internet users that social text

has (or should have) its own lexical and grammatical features has naturally given birth

to an Internet language and jargon; which has been steadily growing and evolving ever

since [4,5]. This behavioral preference phenomenon brings another challenge of its own.

Not only is the Internet jargon itself growing and evolving in an exponential pace, but

also since the beginning of the World Wide Web, the Internet has its own slang. lol

meaning laughing out loudly, xoxo meaning kissing, 4u meaning for you are among

the most commonly used examples of this slang. In addition, these specific forms

of informal expressions in social text usually take many different lexical forms when

generated by each individual, even though the intended contextual meaning might

be the same [5]. In other words, with each different individual the same content is

being expressed (written) in different ways. Due to this unpredicted variety of such

expressions, it would be appropriate to call this divergency “noise” in social text.

The scope of the problem does not end there. In addition, within the last few

years, by the increasing use of mobile devices, social text has now been preferred to be

transcribed by using Speech-to-Text (STT) tools. This text input preference is getting

trendier and being used more frequently. The insufficient accuracy of such STT tools

brings considerable amount of “additional noise” to social text. Tools such as spell

checkers and slang dictionaries have been shown to be insufficient to cope with this

challenge long time ago [6].

Lastly, when we also consider the usual scarcity of attention when people post

messages on social media platforms, the problem of analyzing social text actually goes

beyond the reach of human cognitive capacity. The mass usage of such social media

platforms makes it impossible to derive analysis results in a limited time scope when

processed manually. In addition, most automatic Natural Language Processing (NLP)

tools such as named entity recognizers and dependency parsers generally perform poorly

on social media text [7].



2

Text normalization is a preprocessing step to restore noisy words in text to their

original (canonical) forms [8] to make use in NLP applications or more broadly to

understand the digitized text better. For example, talk 2 u later can be normalized

as talk to you later or similarly enormoooos, enrmss and enourmos can be normalized

as enormous. You can find more examples of normalized text in Table 1.1. These

noisy tokens are referred as Out of Vocabulary (OOV) words. The normalization task

restores the OOV words to their In Vocabulary (IV) forms. Table 1.2 shows sample

OOV words encountered in social media text and their corresponding IV forms.

Table 1.1. Sample tweets and their normalized forms.

Its a beautiful nite, lukin for smth fun

to do, I think I wanna be w ma frnds.

It’s a beautiful night, looking for

something fun to do, I think I want to

be with my friends.

Dnt always follow da crowd, stand 4

wat u blv in.

Don’t always follow the crowd, stand

for what you beleive in.

@Cloudy me tht go be sad wen the hang-

over hold me tmr!

@Cloudy me that going to be sad when

the hangover hold me tomorrow!

I srsly need some legend of korra raight

nao #linplz

I seriously need some legend of korra

right now #linplz

Wat was tht for u lil shit, dnt u draw

on my enlgand

What was that for you little shit, don’t

you draw on my England

Work f a cos, not for applause. Live

life to exprss, not to imprss :)

Work for a cause, not for applause.

Live life to express, not to impress :)

Hav guts to say wat u desire.. Dnt beat

behind da bush!! And 1 mre thng no

mre say y r people’s man!!

Have guts to say what you desire..

Don’t beat behind the bush!! And one

more thing no more say you are peo-

ple’s man!!

There r sm songs u don’t want 2 listen

2 yl walking cos when u start dancing

ppl won’t knw y.

There are some songs you don’t want

to listen to while walking because when

you start dancing people won’t know

why.
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Table 1.2. Sample noisy tokens and their normalized forms.

Ill-formed word Normalization

ppl people

tmr tomorrow

havent haven’t

soooo so

raight right

raight alright

cos because

cos cause

r are

n and

mor more

doin doing

finge finger

tnks thanks

makeing making

friiied fried
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Every OOV word should not be considered for normalization. Social text is con-

tinuously evolving with new words and named entities that are not in the vocabularies

of the systems [9]. For example iPhone, WikiLeaks or tokenizing have not taken their

places in dictionaries yet, so they are OOV words, but they should not be normalized

to any other canonical word. In addition, an OOV word can sometimes lexically fit

an IV word (Ex: tanks is both an IV word and an OOV word with the canonical form

thanks).

The OOV tokens that should be considered for normalization are referred to

as ill-formed words. Ill-formed words can be normalized to different canonical words

depending on the context of the text. For example, if we look at last two examples

in Table 1.1, we see that “y” is normalized in the first as “why” and as “you” in the

latter. Another example would be “cos”, it has two common canonical forms “cause”

and “because”.

In [4] Choudhury et al. propose that OOV words observed in noisy text can be

classified into two groups, unintentional and intentional errors. The unintentional er-

rors are caused by (i) pressing of the wrong key, (ii) pressing of a key more than the

desired number of times, (iii) deletion of a character or (iv) inadequate knowledge of

spelling. As for the intentional errors, they can be categorized into four categories:

character deletion(“tlk” for “talk”, “msg” for “message”, “tomoro” for “tomorrow”,

“mob” for “mobile”), phonetic substitution (“nite” for “night”, “bk” for “back”, “u” for

“you”, “m8” for “mate”), abbreviations (“btw” for “by the way”, “kgp” for “Kharag-

pur”) and non-standard usage (“wanna” for “want to”, “betta” for “better”, “sumfin”

for “something”, “b/c” for “because”).

In this thesis, we propose a graph based text normalization method that utilizes

both contextual and grammatical features of social text. The contextual information of

words is modeled by a word association graph that is created from a large social media

text corpus. The graph represents the relative positions of the words in the social media

text messages and their Part-of-Speech (POS) tags. The lexical similarity features

among the words are modeled using the longest common subsequence ratio and edit
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distance that encode the surface similarity and the double metaphone algorithm that

encodes the phonetic similarity. The proposed approach is unsupervised, which is an

important advantage over supervised systems, given the continuously evolving language

in the social media domain. The same OOV word may have different appropriate

normalizations depending on the context of the input text message. Recently proposed

dictionary-based text normalization systems perform dictionary look-up and always

normalize the same OOV word to the same IV word regardless of the context of the

input text [8, 9]. On the other hand, the proposed approach does not only make use

of the general context information in a large corpus of social media text, but it also

makes use of the context of the OOV word in the input text message. Thus, an OOV

word can be normalized to different IV words depending on the context of the input

text. Another strength of the proposed system is that it achieves the state-of-the art

precision scores, without sacrificing from recall.
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2. RELATED WORK

Early work on text normalization mostly made use of the noisy channel model.

The first work that had a significant performance improvement over the previous re-

search was by Brill and Moore, 2000 [10]. They proposed a novel noisy channel model

for spell checking based on string to string edits. Their model depended on probabilis-

tic modeling of sub-string transformations. They ran their experiments first by using

the error model in isolation assuming that each word in the dictionary has uniform

probability. Their results showed that the longer the word the better performs their

character level noisy model. When they used a trigram language model that they built

by using the Brown corpus instead of the uniform distribution, their results improved.

Toutanova et al., 2002 improved this approach by extending the error model with

phonetic similarities over words [11]. Their approach is based on learning rules to

predict the pronunciation of a single letter in the word depending on the neighbour-

ing letters in the word. They used a trigram phone sequence language model and a

fourgram vowel sequence language model to re-rank the top n results. In addition,

they distinguish between the middle of the word versus the start and end of the word

and interpolate their model with the letter based model of Brill and Moore, 2000 [10].

Their extended and combined model substantially reduced the error rate of Brill and

Moore’s model, and performed best at top 3 results.

Choudhury et al., 2007 developed a supervised Hidden Markov Model based ap-

proach for normalizing Short Message Service (SMS) texts [4]. They proposed a word

for word decoding approach and used a dictionary based method to normalize com-

monly used abbreviations and non-standart usage (e.g. “how are” to “howz” or “are

not” to “aint”). Cook and Stevenson, 2009 have extended this model by introducing

an unsupervised noisy channel model [12]. Rather than using one generic model for

all word formations as in Choudhury et al., 2007, they used a mixture model in which

each different word formation type was modeled explicitly.
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The down side of these methods were: (i) they did not consider contextual features

and (ii) each of them assumed that tokens have unique normalizations. However,

that is not the case for the normalization task. The OOV tokens are ambiguous and

without contextual information it is not possible to build models that can disambiguate

transformations correctly.

Aw et al., 2006 proposed a phrase-based statistical machine translation (MT)

model for the text normalization task [13]. They defined the problem as translating

the SMS language to the English language and based their model on two submodels: a

word based language model and a phrase based lexical mapping model (channel model).

Their phrase based model is an extended noisy channel model which does “many word”

to “many word” mappings such as “ysnite” → ”yesterday night”. Their system also

benefits from the input context and they argue that the strenght of their model is in

its ability to disambiguate mapping as in “2” to “two” or “to”, and “w” to “with” or

“who”. Making use of the whole conversation, this is the closest approach to ours in

the sense of utilizing contextual sensitivity and coverage.

Pennell and Liu, 2011 [14] on the other hand, proposed a character level MT

system, that is robust to new abbreviations. Their system has two phases. In the first

phase, a character level trained MT model is used to recognize common abbreviations

and to produce word hypotheses (making use of CMU lexicon). In the second phase, a

trigram language model is used to choose a hypothesis that fits into the input context.

They also used a reordering model and a word length penalty while scoring the assigned

translation.

The models described above are supervised models a drawback of which is that

they require annotated data. Annotated training data is not readily available and is

difficult to create especially for the rapidly evolving social media text [15].

More recent approaches handled the text normalization task by building normal-

ization lexicons. Han et al., 2011 developed a two phased model, where they only

consider the ill-formed OOV words for normalization [8]. First a confusion set is gen-
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erated using the lexical and phonetic distance features. Later, the candidates in the

confusion set are ranked using a mixture of dictionary look up, word similarity based

on lexical edit distance, phonemic edit distance, prefix sub-string, suffix sub-string and

longest common subsequence (LCS), as well as context support metrics.

Gouws et al., 2011 on the other hand, proposed an approach that depended highly

on user-centric information such as the geological location of the users and the twitter

client that the tweet is received from [3]. Using contextual metrics they modeled the

transformation distributions.

Liu et al., 2012 proposed a broad coverage normalization system, which inte-

grates an extended noisy channel model, that is based on enhanced letter transfor-

mations, visual priming, string and phonetic similarity [16]. They try to improve the

performance of the top n normalization candidates by integrating human perspective

modeling. Yang and Eisenstein, 2013 introduced an unsupervised log linear model for

text normalization [15]. Their joint statistical approach uses local context based on

language modeling and surface similarity. Along with dictionary based models, Yang

and Eisenstein’s model have obtained a significant improvement on the performance of

text normalization systems.

Hassan and Menezes, 2013 generated a normalization equivalence lexicon using

Markov random walks on a contextual similarity lattice [9]. Our approach is different

from theirs in several ways. First, our system makes use of the context of the OOV

word in the input text, whereas their system is a dictionary-based method that always

produces the same normalization to a given OOV word, regardless of its context in the

input text. Besides the tokens themselves, we make use of the POS tags in creating the

graph as well as the relative positions of the words in the social media text. Hassan

and Menezes, 2013 create a bipartite graph, that is relatively more conservative in

modeling the context of words. Context of a word is modeled as a window of words of

size five. That is, two words to the right of a word and two words to the left of a word

constitute the context of a word together. Even if one word is not the same, the context

is considered to be different. On the other hand, in our graph, each neighboring token
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contributes to the context information of a word, which leads to both a higher recall

and a higher precision. One other difficulty in their approach that it requires a big

clean corpus of English sentences, which is only avaliable commercially.
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3. METHODOLOGY

In this thesis, we propose a graph based approach that models both contextual

and lexical similarity features among an OOV word that requires normalization and

candidate IV words. A high level overview of our system is shown in Figure 3.1. An

input text is first preprocessed by tokenizing and Part-Of-Speech (POS) tagging. If

the text contains an OOV word, the normalization candidates are chosen by making

use of the contextual features which are extracted from a pre-generated directed word

association graph, as well as lexical similarity features. Lexical similarity features are

based on edit distance, longest common subsequence ratio, and double metaphone

distance. In addition, a slang dictionary is used as an external resource to enrich the

normalization candidate set. The details of the approach are explained in the following

sub-sections.

3.1. Preprocessing

Tokenization is the first step in our system. It is the process of breaking the text

into tokens, which are the smallest meaningful elements such as numbers, symbols, and

emoticons. After tokenization, the next step in the pipeline is Part-of-Speech (POS)

tagging each token using a POS tagger specifically designed for social media text.

Unlike the regular POS taggers designed for well-written newswire-like text, social

media POS taggers provide a broader set of tags specific to the peculiarities of social

text [1, 2]. Using this extended set of tags we can identify tokens such as discourse

markers (e.g. rt for retweets, cont. for a tweet whose content follows up in the coming

tweet) or URLs. This enables us to better model the context of the words in social

media text. A sample preprocessed sentence is shown in Table 3.1.

Table 3.1. Sample tokenized, POS tagged sentence (L: nominal+verbal, V: verb, D:

determiner, N: noun, P: Preposition, A: adjective, C: punctuation).

Let’sL startV thisD morningN wP aD beatifulA smileN .C
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Figure 3.1. High level overview of our system.

As shown in Table 3.2, after preprocessing, each token is assigned a POS tag with

a confidence score between 0 and 1. Later, we use these confidence scores in calculating

the edge weights in our context graph. Note that even though the words w and beatiful

are misspelled, they are tagged correctly by the tagger, with lower confidence scores

though.

Table 3.2. Sample POS tagger output obtained by using CMU Ark Tagger [1, 2].

Token POS tag Tag confidence

with Preposition 0.9963

a Determiner 0.9980

beautiful Adjective 0.9971

smile Noun 0.9712

Token POS tag Tag confidence

w Preposition 0.7486

a Determiner 0.9920

beatiful Adjective 0.9733

smile Noun 0.9806
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3.2. Graph construction

Contextual information of words is modeled through a word association graph

created by using a large corpus of social media text. The graph encodes the relative

positions of the POS tagged words in the text with respect to each other. After

preprocessing, each text message in the corpus is traversed in order to extract the

nodes and the edges of the graph. A node is defined with four properties: id, oov,

freq and tag. The token itself is the id field. The freq property indicates the node’s

frequency count in the dataset. The oov field is set to True if the token is an OOV

word. Following the prior work by Han and Baldwin, 2011 we used the GNU Aspell

dictionary (v0.60.6) to determine whether a word is OOV or not [8]. We also edited

the output of Aspell dictionary to accept letters other than “a” and “i” as OOV words.

A portion of the graph that covers parts of the sample sentence in Table 3.1 is shown

in Figure 3.2.

Figure 3.2. Portion of the word association graph for part of the sample sentence in

Table 3.1. (d: distance, w: edge weight).
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In the created word association graph, each node is a unique set of a token and

its POS tag. This helps us to identify the candidate IV words for a given OOV word by

considering not only lexical and contextual similarity, but also grammatical similarity

in terms of POS tags. For example if the token smile has been frequently seen as a

Noun or a Verb, and not in other forms in the dataset (e.g. Table 3.3), this provides

evidence that it is not a good IV candidate as a normalization for an OOV token that

has been tagged as a Pronoun. On the other hand, smile can be a good candidate for

a Noun or a Verb OOV token, if it is lexically and contextually similar to it.

Table 3.3. The different nodes in the word association graph representing the token

smile tagged with different POS tags.

node id freq oov tag

smile 3 False A

smile 3403 False N

smile 2796 False V

An edge is created between two nodes in the graph, if the corresponding word

pair (i.e. token/POS pair) are contextually associated. Two words are considered as

contextually associated if they satisfy the following criteria:

• The two words co-occur within a maximum word distance of tdistance in a text

message in the corpus.

• Each word has a minimum frequency of tfrequency in the corpus.

Figure 3.3. The directionality of the edges is based on the sequence of words in the

text messages in the corpus.
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The directionality of the edges is based on the sequence of words in the text

messages in the corpus (see Figure 3.3). In other words, an edge between two nodes

is directed from the earlier seen token towards the later seen token. For example,

Table 3.4 and Figure 3.4 show the edges that would be derived from a text including

the phrase “with a beautiful smile”. The from property indicates the first word and to

is the latter in the phrase. The direction and the distance together represent a unique

triplet. For each pair of nodes with a specific distance there is an edge with a positive

weight, if the two nodes are related. Each co-occurrence of two related nodes increases

the weight of the edge between them with an average of the nodes’ POS tag confidence

scores in the text message considered. If we are to expand the graph with the example

phrase shown in Table 3.4, the weight of the edge with distance 2 from the node with|P

to the node smile|N would increase by (0.9963 + 0.9712)/2, since the confidence score

of the POS tag for the token with is 0.9963 and the confidence score of the POS tag of

the token smile is 0.9712 as shown in Table 3.2.

Table 3.4. Example edges extracted from the sample phrase “with a beautiful smile”.

from to distance weight

with|P smile|N 2 89

a|D smile|N 1 274

beautiful|A smile|N 0 305

3.3. Graph Based Contextual Similarity

Our graph based contextual similarity method is based on the assumption that

an IV word that is the canonical form of an OOV word appears in the same context

with the corresponding OOV word. In other words, the two nodes in the graph share

several neighbors that co-occur within the same distances to the corresponding two

words in social media text. We also assume that an OOV word and its canonical form

should have the same POS tag.

Given an input text for normalization, the next step after preprocessing is finding

the normalization candidates for each OOV token in the input text. For each ill-formed
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Figure 3.4. Sample nodes and edges from the word association graph.

OOV token oi in the input text, first the list of tokens that co-occur with oi in the input

text and their positional distances to oi are extracted. This list is called the neighbor

list of token oi, i.e., NL(oi). Table 3.5 shows a sample neighbor list for the OOV token

beatiful|A from the sample sentence in Table 3.1.

Table 3.5. Example neighbor list for the OOV node beatiful|A.

id tag position

w P -2

a D -1

smile V 1

For each neighbor node nj in NL, the word association graph is traversed, and

the edges from or to the node nj are extracted. The resulting edge list EL(oi) has edges

in the form of (nj, ck) or (ck, nj), where ck is a candidate canonical form of the OOV

word oi. Here the neighbor node nj can be an OOV node, but the candidate node ck is

chosen among the IV nodes. The edges in EL(oi) are filtered by the relative distance

of nj to oi as given in the NL(oi). Any edge between nj and ck, whose distance is not

the same as the distance between nj and oi is removed.
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In addition to distance based filtering, POS tag based filtering is also performed

on the edges in EL(oi). Each candidate node should have the same POS tag with the

corresponding OOV token. For the OOV token oi that has the POS tag Ti, all the

edges that include candidates with a tag other than Ti are removed from the edge list

EL(oi). Thus, EL(oi) only contains edges where candidate nodes are tagged as Ti.

Figure 3.5 represents a portion from the graph where you can see the neighbours

and candidates of the OOV node “beatiful”. In the sample sentence in Table 3.1 there

is two OOV token to be normalized, o1 = w and o2 = beatiful. The neighbour list

of o2, NL(o2) includes n1 = with, n2 = a and n3 = smile. For each neighbor in

the NL(o2), the candidate nodes (c1 = broken, c2 = nice, c3 = new, c4 = beautiful,

c5 = big, c6 = nice, c7 = great) are extracted. As shown in Figure 3.5, there are 11

lines representing the edges between the neighbors of the OOV token and the candidate

nodes. These are representative edges in the EL(o2). Each member of the edge list

has the same tag (A for Adjective) as the OOV node “beatiful” and each has the same

distance to the neighbor node they are connected as the OOV node. We are simply

looking for the best replacements using the distance and POS tag properties.

Each edge in EL(oi) consists of a neighbor node nj, a candidate node ck and

an edge weight edgeWeight(nj, ck). The edge weight represents the likelihood or the

strength of association between the neighbor node nj and the candidate node ck. As

described in the previous section the edge weights are computed based on the frequency

of co-occurrence of two tokens, as well as the confidence scores of their POS tags.

The edge weights of the edges in EL(o2) are shown in Figure 3.5. The edges

that are connected to the OOV neighbor “w” have smaller edge weights such as 3,5,26.

On the other hand, the edges that are connected to common words have higher edge

weight (e.g. the edge weight of the edge between nodes “a” and “new” is 24388). This

indicates that those words are non OOV and more common words, and they co-occur

very often in the same form (“a new”).

Although this edge weight metric is reasonable for identifying the most likely
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Figure 3.5. A portion of the graph that includes the OOV token “beatiful”, its neigh-

bors and the candidate nodes that each neighbor is connected to. Thick lines shows

the edge list with relative weights.

canonical form for the OOV word oi, it has the drawback of favoring words with

high frequencies like these common words or stop words. Therefore, to avoid over-

rated words and get contextually relative candidates, we normalize the edge weight

edgeWeight(nj, ck) with the frequency of the candidate node ck as shown in Equa-

tion 3.1.

edgeWeightNormalized(nj, ck) = edgeWeight(nj, ck)/frequency(ck) (3.1)
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Equation 3.1 provides a metric that captures contextual similarity based on binary

associations. In order to achieve a more comprehensive contextual coverage, a contex-

tual similarity feature is built based on the sum of the binary association scores of sev-

eral neighbors. As shown in Equation 3.2, for a candidate node ck the total edge weight

score is the sum of the normalized edge weight scores edgeWeightNormalized(nj, ck),

which are the edge weights coming from the different neighbors of the OOV token oi.

We expect this contextual similarity feature to favor and identify the candidates which

are (i) related to many neighbors, and (ii) have a high association score with each

neighbor.

edgeWeightScore(oi, ck) =
∑

(nj ,ck)or(ck,nj)∈EL(oi)

edgeWeightNormalized(nj, ck) (3.2)

Figure 3.6 includes the top three candidates sorted by their scores. The candidate

node “beautiful”, c4, has a frequency of 17900. Both three neighbors were paired

in the edge list with it with the weights 2, 2918 and 305 respectively (Figure 3.5).

After normalizing the edge weight by the frequency of the candidate node c4, sum

of those normalized weights gives us the edge weight score of the candidate node:

edgeWeightScore(o2, c4) = 0.18.

Figure 3.6. Candidates for “beatiful” sorted by their edge weight scores.
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Our word association graph includes both OOV and IV tokens, and our OOV

detection depends on the spellchecker which fails to identify some OOV tokens that

have the same spelling with an IV word. In order to propose better canonical forms,

the frequencies of the normalization candidates in the social media corpus have also

been incorporated to the contextual similarity feature. Nodes with higher frequencies

lead to tokens that are in their most likely grammatical forms.

The final contextual similarity of the token oi and the candidate ck is the weighted

sum of the total edge weight score and the frequency score of the candidate (See

Equation 3.3). The frequency score of the candidate is a real number between 0 and

1. It is proportional to the frequency of the candidate with respect to the frequencies

of the other candidates in the corpus. Since the total edge weight score is our primary

contextual resource, we may want to favor edge weight score. We give the frequency

score a weight 0 ≤ β ≤ 1 to be able to limit its effect on the total contextual similarity

score.

contextSimScore(oi, ck) = edgeWeightScore(oi, ck) + β ∗ freqScore(ck) (3.3)

Hereby, we have the candidate list CL(oi) for the OOV token oi that includes all

the unique candidates in EL(oi) and their contextual similarity scores calculated.

3.4. Lexical Similarity

Following the prior work in [8, 9], our lexical similarity features are based on

edit distance [17], double metaphone (phonetic edit distance) [18], and a similarity

function [19] which is based on Longest Common Subsequence Ratio (LCSR) [20].

Edit distance or in other words Levenshtein distance between two words is defined

as the minimum number of single character changes such as insertion, deletion and

substitution to convert one word into another. Edit distance has major application in
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NLP especially in the spell checking.

Double metaphone is an extended word edit distance measure, that not only

considers the characters but also the English pronunciations of the words. Like the

Soundex algorithm, metaphone algorithm [21] encodes words. Similar sounding words,

in other words phoneticly similar words shares the same keys in these encodings. Meta-

phone is an extended and more accurate version of Soundex. Double metaphone came

out 10 years later than the metaphone and is called the second generation of the meta-

phone algorithm. Double metaphone produces two keys instead of one, presenting a

more valid coverage for some irregularities.

The similarity cost function we are using is defined by Contractor et al., 2010 [19],

as the ratio between the LCSR of two words and the Edit Distance (ED) between their

skeletons (the skeleton of a word is obtained by removing its vowels). The LCSR and

the cost function are shown in Equation 3.4 and Equation 3.5. From now on we will

refer to the simCost in Equation 3.5 as LCSR ED.

LCSR(oj, ck) =
length(LCS(oj, ck))

max(length(oj), length(ck))
(3.4)

simCost(oj, ck) =
LCSR(oj, ck)

ED(oj, ck)
(3.5)

Following the tradition that is inspired from [22] before lexical similarity calculations,

any repetitions of characters three or more times in OOV tokens are reduced to two

(e.g. goooood is reduced to good). Then, the edit distance, phonetic edit distance, and

LCSR ED between each candidate in CL(oi) and the OOV token oi are calculated. Edit

distance and phonetic edit distance are used to filter the candidates. Any candidate in

CL(oi) with an edit distance greater than tedit and phonetic edit distance greater than

tphonetic to oi has been removed from the candidate list CL(oi).

For the remaining candidates, the total lexical similarity score (Equation 3.6) is

calculated using LCSR ED and edit distance score1 . Similar to contextual similarity

1an approximate string comparison measure (between 0.0 and 1.0) using the edit distance
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score, here we have one main lexical similarity feature and one minor lexical similarity

feature. The major lexical similarity feature is LCSR ED and edit distance score is the

minor. We assigned a weight 0 ≤ λ ≤ 1 to the edit distance score to be able to lower

its contribuiton while calculating the total lexical similarity score.

lexSimScore(oi, ck) = LCSR ED(oi, ck) + λ ∗ editDistScore(oi, ck) (3.6)

3.5. External Score

Since some social media text messages are extremely short and contain several

OOV words, they do not provide sufficient context, i.e., IV neighbors, to enable the

extraction of good candidates from the word association graph. Therefore, we extended

the candidate list obtained through contextual similarity as described in the previous

section, by including all the tokens in the word association graph that satisfy the edit

distance and phonetic edit distance criteria. We also incorporated candidates from

external resources, in other words from a slang dictionary and a transliteration table

of numbers and pronouns (Table 3.6). If a candidate occurs in the slang dictionary

or in the transliteration table as a correspondence to its OOV word, it is assigned an

external score of 1, otherwise it is assigned an external score of 0.

The transliterations are first used in Gouws et al.’s work [3]. The transliteration

table they have built has only numbers in common with ours. Besides the token and

its transliteration we also use its POS tag information, which was not available in their

system (Table 3.6).

The external score favors the well known interpretations of common OOV words.

However unlike the dictionary based methodologies, our system does not return the

corresponding unabbreviated word in the slang dictionary or in the transliteration table

directly. Only an external score gets assigned and the candidate still needs to compete

https://sourceforge.net/projects/febrl/
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Table 3.6. Transliteration Candidates extended from [3].

token tag Transliteration

1 “$” “one”

2 “$” “two”

3 “$” “three”

4 “$” “for”

5 “$” “five”

6 “$” “six”

7 “$” “seven”

8 “$” “eight”

9 “$” “nine”

0 “$” “zero”

2 “P” “to”

“w” “P” “with”

“im” “L” “I’m”

“cont” “˜” “continued”

with other candidates which may have higher contextual similarities and one of those

contextually more similar candidates may be returned as the correct normalization

instead of the candidate found equivalent to the OOV word in the slang dictionary (or

in the transliteration table).

Some example entries from slang dictionary are shown in Table 3.7. The first

and third examples in the table present why choosing directly the equivalent word

in the dictionary as the correct normalization is a bad idea. The first word in the

table is “2”. It is widely used as an abbreviation for the word “too”, however it is

also used in place of the word “to”. Similarly “bc” can be normalized as “back” or

“because” depending on the context of the sentence. That is why we do not return the

corresponding candidate words directly but only increase their score using the external

score metric. The other examples in Table 3.7 may give some idea about the overall

content of the slang dictionary.
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Table 3.7. Some entries from the slang dictionary at http://www.noslang.com/.

slang correspondence

“2” “too”

“acc” “account”

“bc” “ because”

“cr” “can’t remember”

“dmi” “don’t mention it”

“dupe” “duplicate”

“gfx” “graphics”

“h/e” “however”

“h4kz0r5” “hackers”

“iag” “it’s all good”

“indie” “independent”

“j00” “you”

“nemore” “anymore”

“y” “why”

3.6. Overall Scoring

As shown in Equation 3.7, the final score of a candidate IV token ck for an OOV

token oi is the sum of its lexical similarity score, contextual similarity score and external

score with respect to oi.

candScore(oi, ck) = lexSimScore(oi, ck) + contextSimScore(oi, ck)

+ externalScore(oi, ck)
(3.7)
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4. EXPERIMENTS

4.1. Data sets

We used the LexNorm1.1 dataset [8] and Pennell et al.’s trigram dataset [14,23] to

evaluate our proposed approach. LexNorm1.1 contains 549 tweets with 1184 manually

annotated ill-formed OOV tokens. It has been used by recent text normalization studies

for evaluation, which enables us to directly compare our performance results with

results obtained by the recent previous work. The trigram dataset on the other hand

is an SMS-like corpus collected from twitter status updates sent via SMS. The dataset

does not include the complete tweet text but trigrams from tweets and one OOV word

in each trigram is annotated. In total 4661 twitter status messages and 7769 tokens are

annotated, previous work has used 80 % for training and the rest as test set, similarly

we used the same 20 % of the dataset as test set to be able to report our results on the

same basis as previous work.

4.2. Graph Generation

We used a large corpus of social media text to construct our word association

graph. We extracted 1.5 GB of English tweets from Stanford’s 476 million Twit-

ter Dataset [24]. The language identification of tweets was performed by using the

langid.py Python library [25,26].

CMU Ark Tagger, which is a social media specific POS tagger achieving an ac-

curacy of 95% over social media text [1,2], is used for tokenizing and POS tagging the

tweets. Besides the standard POS tags, the POS tagset of the Ark Tagger includes

some extra POS tags specific to social media including URLs and emoticons; Twitter

hashtags (#); and twitter at-mentions (@). One other tag that is special to social me-

dia is “˜” which means the token is specific to a discourse function of twitter such as

rt, cont.. Lastly G stands for miscellaneous words including multi word abbreviations

like btw (by the way), nw (no way), and smh (somehow).
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We made use of these social media specific tags to disambiguate some OOV

tokens. For example if OOV token “cont” is tagged with the discourse function tag G,

we added “continued” to the candidate list as an external node.

After tokenization, we removed the tokens that were POS tagged as mention (e.g.

@brendon), discourse marker (e.g. RT), URL, email address, emoticon, numeral and

punctuation. The remaining tokens are used to build the word association graph.

After constructing the graph we only kept the nodes with a frequency greater than 8.

For the performance related reasons, the relatedness thresholds tdistance and tfrequency

were chosen as 3 and 8, respectively. The resulting graph contains 105428 nodes and

46609603 edges.

4.3. Candidate Set Generation

While extending the candidate set with lexical features we use tedit ≤ 2 ∨ tphonetic ≤ 1

to keep up with the settings in Han et al. [8]. In other words, IV words that are within

2 character edit distance of a given OOV word or 1 character edit distance of a given

OOV word under phonemic transcription were chosen as lexical similarity candidates.

4.4. Evaluation Metrics

The main evaluation metrics we have been used in this thesis are precision, recall

and F-Measure. We run our text normalization method on our two test sets that are

introduced in Section 4.1 and calculated each metric regarding to following definitions.

Precision (Equation 4.1) calculates the proportion of correctly normalized words

among the OOV words that we could produce a normalization for. Recall (Equa-

tion 4.2) shows the amount of correct normalizations over the words that require nor-

malization (ill-formaed OOV words). The main metric that we consider while evaluat-

ing the performance of our system is F-Measure (Equation 4.3) which is the harmonic

mean of precision and recall values.
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Precision =
# of correctly normalized words

# of normalized words
(4.1)

Recall =
# of correctly normalized words

# of words requiring normalization
(4.2)

F-Measure =
2 ∗ Precision ∗ Recall

Precision + Recall
(4.3)
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5. RESULTS AND ANALYSIS

The results obtained by our proposed Contextual Word Association Graph (CWA-

Graph) system on the LexNorm1.1 dataset, as well as the results of recent studies that

used the same data set for evaluation are presented in Table 5.1.

Table 5.1. Results obtained on the LexNorm1.1 dataset.

Method Precision Recall F-measure

Han and Baldwin, 2011 75.30 75.30 75.30

Liu et al., 2011 84.13 78.38 81.15

Hassan and Menezes, 2013 85.37 56.40 69.93

Yang et al., 2013 82.09 82.09 82.09

CWA-Graph 85.50 79.20 82.20

Our CWA-Graph approach achieves the best F-measure (82.20) and precision

(85.50) among the recent previous studies. The high precision value is obtained without

compromising much from recall (79.20). Our recall is the second best among others.

The F-score (82.09) obtained by Yang et al.’s system is close to ours and the second

best F-score, which on the other hand, has a lower precision than our approach [15].

Table 5.2 show the results of our system on the trigram SMS-like dataset. Without

any modification to our system or to the parameters, we were able to improve results

of Pennell et al. [14].

Table 5.2. Results obtained on the trigram SMS-like dataset.

Method Precision Recall F-measure

Pennell et al., 2011 69.70 69.70 69.70

CWA-Graph 77.5 67.7 72.3

The earlier work we compare our system with, assumes that the words to be

normalized are given in advance. We also made the same assumption. However unlike
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other systems [8, 15, 16], our system does not propose a normalization if there are

no candidates that are lexically similar, grammatically correct and contextually close

enough. For this reason, we managed to achieve a higher precision compared to the

other systems. Besides, we made sure that the candidates have a minimum similarity

either contextual, lexical, external or some degree of each feature. The results shown

at Table 5.3 and Table 5.4 show that our approach can obtain even higher values of

precision by tuning the system threshold (i.e. the minimum score in Equation 3.7 to

return a token as a candidate canonical form of an OVV token).

Table 5.3. Comparison of results for different threshold values on LexNorm1.1, the

setup we have used for our other experiments is shown in bold.

Threshold Precision Recall F-measure

≤ 1 81.2 80.8 81.0

1.1 81.5 80.8 81.2

1.2 82.2 80.7 81.4

1.3 83.7 80.2 81.9

1.4 84.2 80.0 82.0

1.5 85.5 79.2 82.2

1.6 88.8 75.1 81.4

1.7 91.1 72.8 80.9

1.8 92.3 67.6 78.0

2 94.1 56.4 70.5

We also test our system on different window sizes. The window size is defined by

the number of total neighbours of an OOV word in the given text. When we run our

system with a contextual association threshold tdistance = 3, which means two words

are considered as contextually associated, if they are within a maximum word distance

of 3 in the text, 3 words to the left and 3 words to the right are taken into account for

finding contextually similar candidates. For example when we look at the first example

in Table 5.5, the tdistance is set to 3 and for the OOV word “w”, the window size is 7.
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Table 5.4. Comparison of results for different threshold values on trigram dataset, the

setup we have used for our other experiments is shown in bold.

Threshold Precision Recall F-measure

≤ 0.8 72.2 68.9 70.5

1 72.1 68.8 70.4

1.1 72.6 68.8 70.7

1.2 73.1 68.8 70.9

1.3 74.3 68.2 71.1

1.4 75.5 67.8 71.4

1.5 77.5 67.7 72.3

1.6 80.8 64.8 71.9

1.7 83.3 58.4 68.7

1.8 86.1 52.1 64.9

1.9 87.6 45.4 59.8

2.1 91.2 33.8 49.3

On the other hand, in the second example, OOV word “beatiful” has 3 neighbors on

the left but only one neighbour on the right, ending up with a window size 5 when the

maximum window size set to 7. Thus the window size is defined by our threshold is

only a maximum value, since the OOV word may or may not have enough neighbors

to fit the maximum window size. From now on we will refer to maximum window size

as just window size.

Considering twitter’s limit on message lenght and users’ tendency of using url and

long hastags but short texts, the optimal window size is as expected relatively small.

As shown in Table 5.6, the system achives best results with a window size of 7. This

is also the setup we have used for our experiments. With higher window sizes OOV

tokens get context information from outer word phrases which include contextually less

relevant words. Choosing a smaller window size shortens the execution time, but on

the other hand this results in missing some important contextual information.
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Table 5.5. Window size examples from our sample sentence from Table 3.1 for OOV

words “w” and “beatiful” with tdistance = 3 and tdistance = 2.

Max window size Sentence

7 Let’s start this morning w a beatiful smile .

7 Let’s start this morning w a beatiful smile .

5 Let’s start this morning w a beatiful smile .

5 Let’s start this morning w a beatiful smile .

As described in Section 3.3 and 3.4 both contextual and lexical similarity is cal-

culated using two metrics, one major and one minor. The major contextual similarity

metric is the edge weight score of the candidates and the major lexical similarity met-

ric is the LCSR which is shown to perform good on finding lexical similarity [8, 9].

For the minor metrics frequency score and edit distance score we introduced β and λ

parameters respectively to be able to tune their contribution to the overall ranking.

We made experiments with different λ and β values. The performance of the

Table 5.6. Comparison of results for different window sizes.

Window size Precision Recall F-measure

3 85.3 79.0 82.0

5 85.6 79.1 82.2

7 85.5 79.2 82.2

9 85.2 79.0 82.0



31

system for different values of λ and β tested on Lexnorm1.1 is shown in Figure 5.1.

The best results are obtained when β = 0.5 in the range of 0.3 ≤ λ ≤ 1 for Lexnorm1.1

(Figure 5.1) and a narrower range of 0.8 ≤ λ ≤ 1 for the trigram dataset.

Figure 5.1. Results on LexNorm1.1 for different λ and β values.

We choose β = 0.5 and λ = 0.5 values in our main system. However it is possible

to increase these results using higher λ values (Figure 5.2).
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Figure 5.2. Results on LexNorm1.1 for β = 0.5 and 0 ≤ λ ≤ 1.0.

Figure 5.3. Results on LexNorm1.1 and trigram dataset for β = 0.5 and 0.4 ≤ λ ≤ 0.9.
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6. CONCLUSION AND FUTURE WORK

In this thesis, we present an unsupervised graph based approach for contextual

text normalization. The proposed approach can analyze grammatical and contextual

information from the noisy input text. The task of normalization is highly dependent

on understanding and capturing the dynamics of the informal nature of noisy text.

Our word association graph is built using a large unlabeled social media corpus. It

helps to derive contextual and grammatical analysis on both clean and noisy data.

It is important to emphesize the difference between using corpus based contextual

information and using contextual information of the input text (input context). We use

corpus based contextual information for building our CWA-Graph. The graph encodes

the context information of words with regard to other words they are contextually

associated with. Given an input text that includes an OOV word to normalize, each

neighbouring word in the input text gives us context information that we can associate

the OOV word with candidates. We use this input based context information to find

the correct normalization of the OOV word using contextual associations.

Using input context to find the correct normalization of OOV words is the major

advantage of our system. Many other systems use the corpus based contextual informa-

tion to find the normalizations, however this approach is led by statistical information,

in other words it finds which IV word the OOV word is commonly normalized to. How-

ever, using input context to find normalizations helps us find the correct normalization,

even if it is not the statistically dominant one. That way we can use statictical infor-

mation to connect/associate the words and use input context to associate the correct

normalization with the OOV word.

We compared our approach with the recent social media text normalization sys-

tems and achieved state-of-the-art precision and F-measure scores. We reported our

results on two datasets. The first one was the standard text normalization dataset

derived from Twitter. Our results on this dataset showed that our system can serve
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as a high precision text normalization system which is highly preferable as an NLP

preprocessing step [9]. Our system achieved over 94 % precision where the highest

precision in the literature at the same recall level is 85.37 % [9].

The second dataset we tested our approach is a SMS-like trigram dataset. This

tests showed that the CWA-Graph can perform good on SMS data as well. However

the trigram nature of the dataset resulted in input texts which are very limited with

regard to contextual information. Nevertheless, our system achieved over 72 % F-

Measure using this contextual information even though it is limited because the SMS-

like nature of the dataset makes it rich on abbreviations. Abbreaviations are difficult to

normalize using only lexical features due to the higher edit distance values. Not filtering

candidates with higher degree of lexical distances results in huge lists of candidates [8],

which makes it harder to choose the right candidates. Overall, although being around

8 % lower than standard data set, the performance of our system on SMS-like data is

reasonably high.

The two lexical metrics that we used (LCSR and edit distance) have already

been shown to perform good on text normalization [8,9]. However LCSR was a better

approach than the simple edit distance score. Depending on this assumption we choose

one major metric for both lexical and contextual similarity calculations and lowered

the weight of the second metric (minor metric). When we run our system with different

values of the minor metric parameters, the following observations are made.

• It is possible to increase the performance of the system by tuning the minor

metrics.

• The system performs best for the values of weights that are closer to 0.5.

• The system performs worse when the weights are set to 0 (not using the minor

features) and set to 1 (giving equal weight to the minor feature and major feature).

That showed that lowering the contribution of these minor metrics increases the

overall performance of the normalization task both contextually and lexically, whereas,

the absence of these minor metrics or making them also the major metrics by assigning
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the weights as 1 leads to loss in performance.

Except for the double metaphone algorithm that encodes the phonetic similarities

among words in English, the proposed approach is highly language independent. The

system does not require a clean corpus or an annotated corpus, the CWA-Graph can

be built by using the publicly avaliable social media text.

As future work, OOV detection can be added to the system. Another task to do

next could be integrating the normalization system into an application. This way we

can measure how well the normalization system performs as a preprocessing step in

NLP applications. The last item in our future work list is adopting the system to be

able to work on languages other than English.
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