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ABSTRACT

DDoS ATTACK DETECTION USING FREQUENCY DOMAIN

CHARACTERISTICS

Providing 24-hour service to the users, is one of the major concerns of network

administrators. A denial of service attack refers to a condition that a server cannot give

normal services to its legitimate clients due to the large amount of bogus packets sent

by an unknown source. In a distributed denial of service (DDoS) attack, an attacker

launches the attack on a server via a large number of unaware computers through

Internet. During a DDoS attack, the victim is forced to reply to the requests from

those infected nodes called zombies. The first step of countermeasure against these

types of threats is detection. Conventional methods analyze the contents of packets

arrived to the victim node to find an abnormality. Although they can identify some

simple attacks, they are almost unable to segregate the source of normal traffic from

attack one when attackers alter the source IP address into the normal source IP address.

Additionally the contents of the abnormal packets are usually changed intentionally

by attackers to be close to those in normal packets and therefore they can easily be

passed through a system employing traditional detection approaches. In this thesis, a

frequency domain analysis is proposed to detect DDoS attacks. The number of packets

received by the victim in a specific interval are sampled and considered as a random

process. Employing two different methods of power spectral density estimation, the

frequency characteristic of the time series is estimated. Using each spectrum estimation

methods, two sets of frequency characteristics, one for normal and another for DDoS

traffic, are acquired, and utilized by a signature based intrusion detection system to

detect abnormality.
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ÖZET

FREKANS TABANINDA DDoS SALDIRI TESPİTİ

Kullanıcılara 24 saat servis vermek ağ yöneticilerinin esas problemlerinden

biridir. Servis engeleme saldırıları sunucuya gelen büyük oranda sahte paketler

yüzünden sunucunun yasal kullanıcılara servis verememesi durumuna dayanmaktadır.

Dağıtık servis engelleme saldırılarında, saldırgan internet üzerindeki çok sayıda haber-

siz bilgisayar aracılığı ile bir sunucuya doğru saldırı başlatır. DDoS saldırısı sırasında

hedef bilgisayar, virus bulaşmış uçlardan gelen isteklere cevap vermeye zorlanır. Bu

tür tehditler karısında ilk adım saldırının tespitidir. Geleneksel yöntemler, hedef bil-

gisayara gelen paketlerin içeriği bir anormallik bulmak için incelenir. Bu yöntemler,

basit saldırıları tespit edebilmelerine rağmen saldırganlar, saldırı için normal kay-

nak IP’lerini kullandıklarında, saldırının kaynağını normal kaynaklardan ayırt etmekte

yetersizdirler. Ek olarak olağandışı paketlerin içeriği genellikle saldırganlar tarafından

normal paketlerle benzer olmaları için bilinçli bir şekilde değiştirilirler. Bu paketler

geleneksel saptama yaklaşımlarını kullanan bir sistemden kolaylıkla geçebilirler. Bu

tezde, frekans bölgesi incelemesi ile DDoS saldırılarının tespiti önerilmiştir. Belirli

bir zaman aralığında hedef bilgisayar tarafından alınan paketlerin sayısı örneklenerek

rastgele süreç olarak düşünülmüştür. İki farklı güç spektrum yoğunluk yöntemi kul-

lanılarak, zaman serisinin frekans karakteristiği kestirilmiştir. İki spektrum kestirim

modeli kullanılarak, bir normal bir DDoS trafiği olmak üzere iki farklı frekans karak-

teristiği elde edilmiş ve bu imza tabanlı bir saldırı tespit sistemi tarafından anormallik

tespiti için kullanılmıştır.
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1. INTRODUCTION

Nowadays, Internet has become an indispensable part of human life. A vast vari-

ety of applications such as paying bills, mobile networks, VOIP, On-line games, video

conference and so on, are used through Internet by people. Being without Internet

even for a short time is frustrating; therefore, securing the availability of web servers,

those provide services to their legitimate users, is the main concern of network ad-

ministrators. Among numerous threats present on Internet, the one that menaces the

availability of a website is denial of service attack (DoS). A DoS attack makes a website

out of reach by flooding its resource or bandwidth. The most harmful types of DoS

attacks are distributed denial of services (DDoS). In a DDoS attack, large number of

attackers invade to the server, and make it down.

Diagnosing DDoS attack is the main problem of detection systems. Conventional

detection methods use packet-level analysis to detect abnormality in the network. Al-

though these approaches can find abnormality to some degree, but if the attackers spoof

the source IP addresses, they are ineffective. In addition they cannot differ between

DoS and DDoS attacks. Therefore, a new method which identifies and classifies differ-

ent attacks is necessary. Working in the frequency domain instead of the time domain

would be an alternative. Considering the number of packets arriving to the server as a

random process, transferring it to the frequency domain and extracting the frequency

characteristics may help to distinguish between normal and abnormal traffics.

In this thesis, we will exploit the frequency characteristics of normal and DDoS

traffics. Then we will employ them in a detection system to find abnormality in the

network. The rest of this thesis is organized as follow: in the second Chapter we

will discuss the DDoS attacks in detail. Chapter 3 is devoted to frequency analysis.

Two different methods of spectrum estimation as well as previous works regarding to

frequency analysis will be considered in this chapter . In Chapter 4, we will show a

sparse representation method. The results will be discussed in Chapter 5 and finally

Chapter 7 will conclude this work.



2

2. DENIAL OF SERVICE ATTACKS

DoS and DDoS are considered as major problems in Internet and networks. In

these kinds of attacks, an attacker tries to make a server unavailable for its legitimate

users. This job is accomplished by either depleting the resource of the server or by

sending a large amount of illegal requests to the server. Users and their webservers

usually interact with each other through sending some legitimate packets and requests

such as http request. Each web server has a threshold value for the number of requests

per second. If the number of demands goes over the threshold, the server will be

incapable of handling all of them, and as a result the webserver goes into a non-active

mode where it will deny any requests. This situation is called denial of service, and

at this moment the server is out of reach from legitimate users. When a webserver is

about to be born, the number of users, and the host capacity are estimated. Therefore

each webserver has its own innate limitation.

To accomplish a DoS attack, the attacker makes use of a software to send multiple

http requests to desired webserver trying to prevent its legitimate service. As a result,

authentic users cannot reach to their server. If you want to connect to a web which

is under the attack by a DoS attack, you will encounter with timeout error in your

browser. These two attacks get their name based on the source of attack. If there is

just one single computer contributing in the attack, the attack called DoS attack; on

the other hand, if there are several systems and computers participating in the attack,

the attack is called DDoS attack [5].

Those computers and systems which are used in DDoS attack are usually un-

aware of contributing in the attack. These innocent computers are referred to zombies

or agents. The attacker exploits them by finding vulnerabilities on their systems [6].

To synchronize all systems, the DDoS attacker installs attack software on these com-

puters through a secure channel. This software is responsible to coordinate all systems

together to run an effective offense. During the attack all compromised systems begin

to send useless packets toward victim simultaneously. Suddenly, the victim faces with
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a large volume of malicious traffic which it is unable to handle all at the same time [7].

There are some characteristics which can be used to differentiate denial of service

attacks from other types of insulting and hacking. During an attack, the server un-

dergoes of a large volume of unusual traffic. The source IP address is usually spoofed

(fake IP address), and the source or destination port is assigned randomly depending

the type of attack [7]. The attacker must select the type of protocol of attack before

launching it. The protocol can be TCP, UDP or ICMP; therefore, when there is a de-

nial of service attack running on a victim, these protocols are dominant among others

in the traffic. In contrast to most of the hacking processes which can be traced back

very easily, the denial of services are very hard and time consuming to trace back to

find the source of the attack because of the source IP spoofing and employing of several

compromised system to make the attack possible. To decrease the possibility of tracing

back and identification the origin of the attack, the attacker usually employs a great

number of systems. He scans and intrudes the targeted system; finds a vulnerability

in the system and installs the attack software on it.

Network administrators usually employ intrusion detection systems (IDSs) to

cope with or to mitigate the effect of denial of service attacks. IDSs are those systems

used by network authorities to find the abnormalities in the traffic. Although different

methods have been invented to settle the problem of denial of services, but on the other

side, attackers have also developed their tools to run very complicated type of attacks.

2.1. DDoS Attack Architecture

According to the methods of implementation, DDoS attacks are categorized into

three different approaches: the agent-handler model, the Internet relay chat (IRC)-

based model and reflector model [1].
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2.1.1. Agent-Handler Model [1]

Figure 2.1 displays the block diagram of Agent-Handler model. It comprises of

three main parts: client, handler and agents [1]. The attacker exchanges information

with the rest of the attack system via client. The duty of the client is to make con-

nection possible between the attacker and other members. The client communicates

with agents and conveys the directions of the attacker to them by means of software

packages located through the Internet called handlers. Sometimes master and daemons

are used instead of the terms handler and agents respectively.

Figure 2.1. Agent-Handler model (reprinted from [2]).

2.1.2. IRC-based Model [1]

This model is similar to the previous one but, the handlers are substituted by

Internet relay chat (IRC) systems. IRC is a free on-line chatting system that provides

conversation environment for users siting before their computers [8]. The attacker takes

advantages of the existence of these systems on Internet to communicate with its agents.

Figure 2.2 displays this concept. The advantage of this method in comparison with the

agent-handler method is that the IRC provides attackers with additional benefits. The

system supplies the attacker with legitimate IRC ports for sending commands to the

agents. Using these ports makes tracing the DDoS command packets more difficult.
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Moreover, due to the large volume of traffic in IRC servers, the presence of the attacker

in the system is imperceptible. Another advantage of IRC based system is that the

attacker can log on to the IRC system and see a list of all available agents [9], instead

of keeping the track of available agents, .

Figure 2.2. IRC-based model (reprinted from [2]).

2.1.3. Reflector Model [1]

Attacker, handler, agent, and reflector are the four main parts of this model. The

principle of the attack is slightly similar to the previous ones. The difference is in the

way of attacking to the victim. Instead of assailing directly to the victim, the attacker

sends commands to the agents to forward packets with the victim IP address as the

source IP address to other uninfected computers over the Internet. These packets force

those healthy systems to answer to the traffic by sending return response. Because the

source IP addresses in the packets are spoofed to the victim’s IP address, all responses

will be directed to the victim. A reflector can be any host on the Internet which

responds to the requests. The attacker can also amplify the effect of this model by

sending the packets to the broadcast address of the reflector networks [10]. A message

sent to the broadcast address is received by all hosts attached to that network. In

this way the attacker multiplies the volume of packets directed to the victim and has

a severe impact on the performance of the victim’s server.
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2.2. Degree of Automation

The amount of attacker’s intervention in the process of initializing the attack

categorizes DDoS attacks into three different groups: manual, semi-automatic, and

automatic. In the manual model, the attacker scans all possible vulnerabilities of the

agents’ systems, penetrates into the system and finally embarks on the attack. In

semi-automatic, the attacker just commands the start of the attack. Handlers are

employed to manage agents. Handlers coordinate agents together and mange the time

and type of the attack. Having initialized, the attack will start. In automatic methods

all processes from choosing, and synchronizing of the agents to starting the attack are

done automatically. Because there is no sign of attackers in the automatic model, this

type of DDoS model is very hard to trace back.

2.3. DDoS Attack’s Target

According to the target of the attack in the victim system, the DDoS attacks are

further put into two groups: bandwidth depletion and resource depletion attacks.

2.3.1. Bandwidth Depletion

The bandwidth of the victim is consumed by the unwanted packets filled by

garbage data during a bandwidth attack. There is no further free bandwidth to handle

the demands from legitimate users, and as a result, the victim becomes unavailable for

its clients. Two major approaches are usually implemented in this method. In the first

one which is called as flood attack, the victim is flooded by a large amount of UDP

or ICMP packets. In the second one, known as amplification attack, packets, filled by

victim’s IP address as the source IP, are sent to the broadcast IP address. All clients

in that network will receive these packets and send back the reply to the victim. So,

the attack is amplified by the number of clients in the network.
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2.3.2. Resource Depletion

In this approach, the attack is performed by sending malformed packets. Upon

receiving a crooked packet, the server allocates some available resources to handle it.

Because the packet is not healthy, it misleads the system and forces the system to

allocate more resources to resolve it. The victim is engaged in coping with the problem

occurring in the packets and therefore can not respond appropriately to the demands

of normal users.

2.4. Intrusion Detection Systems (IDS)

To avoid suspicious activities and to monitor the traffic running in a network,

IDSs are employed by the network administrator. If an abnormal event is spotted by

the IDS, it will alert the administrator or it can takes action by itself to confront with

that activity. The latter is applied in a specific type of IDSs called intrusion prevention

system (IPS). An IDS is placed either in a host in the network or in a strategic section

of the network, the former is called host-based IDS (HIDS) and the later is known as

network-based IDS (NIDS). According to the method of detection, IDSs are grouped

into two categories: signature-based and anomaly-based. In the signature-based, all

incoming packets are compared with a database of attacks’ signatures created by using

the previous incidents. If the packets matches with a signature in the database, it will

be considered as an attack. In anomaly-based IDS, the system models the legitimate

traffics and if an incoming traffic violates this pattern, it will be considered as an attack.
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3. FREQUENCY DOMAIN ANALYSIS

To analyze the variation of a signal relating to the different frequency components

instead of using time domain, we map our interested time series to the frequency

domain. The main blocks of variation in frequency domain are sinusoid functions. A

time series X[n], where n is a positive integer and limited to N , can be defined as

a linear combination of some sinusoids with random amplitudes and fixed frequencies

{fi} [11]:

Xt = µ+

n/2∑
i=1

[Aicos(2πfit) +Bisin(2πfit) t = 1, 2, ..., N (3.1)

where µ is a constant, Ai and Bi are the amplitudes of the ith sinusoid component.

The frequency fi is related to N by:

fi =
i

N
1 < i <

N

2
(3.2)

We assume that Ai and Bi are zero-mean independent random variables with

the same variance σ2
i . With these assumptions we come to a conclusion that µ is the

expected value of X[n]:

E{Xt} = µ (3.3)

Then the variance of X[n] is:

σ2 = E{(Xt − µ)2} =

N/2∑
i=1

σ2
i (3.4)

and the autocorrelation function (ACF) of X[n] is:

ρk =

∑N/2
i=1 σ

2
i cos(2πfik)∑N/2
i=1 σ

2
i

(3.5)
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Equation (3.4) indicates that the total variance is the sum of variances corresponding

to the sinusoidal comportments at the different standard frequencies; therefore, the

variance of the time series is expressed as a function of frequency. This function is

expressed as the spectrum of X[n]. From (3.5) we find a relation between ACF and

spectrum. If we consider σ2
i as a spectral value, the ACF is a cosine transform of

the spectrum, similarly, the spectrum is the Fourier transform of the ACF; so, ACF

and Spectrum are complementary to each other, one in time domain and the other in

frequency domain [12].

3.1. Spectral Analysis

Spectral analysis is related to estimating the unknown spectrum of a process from

a limited number of data and finding the important frequency components contributing

to the variance of the signal [12]. In general, there are two main methods to extract

the frequency characteristic of a random process: non-parametric and parametric. In

non-parametric method the spectrum of the signal is obtained by taking the discrete

Fourier transform (DFT) using fast Fourier transform (FFT); on the other hand, in the

parametric approach, the signal is modeled as the response of a linear time invariant

(LTI) system, fed by a white noise as its input.

3.1.1. Non-parametric Approach

In non-parametric methods, also called DFT-based methods, there is no prior

assumption about the model of spectrum. Recall that the spectrum is the Fourier

transform of ACF of a time series. So if we estimate the ACF, then we can find

spectrum just by taking DFT. That is to say:

P (f) =
k=∞∑
k=−∞

r(k)e−j2πfk (3.6)

The problem is that, in reality we do not have infinite number of samples of a ran-

dom process. In practice, we estimate the autocorrelation with the limited number of
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samples of the observed time series. The ACF can be estimated from observed data

X[0], X[1], ..., X[N ] by:

r(k) =
1

N

N−1−k∑
n=0

X∗[n]X[n+ k] (3.7)

where X∗[n] is the conjugate of X[n]. Having estimated ACF, the spectrum is obtained

by using DFT. Generally, the non-parametric methods are considered as multiplying a

time series by a window and then estimating the PSD of that specific window [12]. The

simplest and most famous DFT-based method which implements rectangular window

is Periodogram method [12]. According to the window shape there are variety of non-

parametric methods such as Welch, Bartlett and so on [13, 14].

3.1.2. Parametric Approach

The alternative methods of PSD estimation are parametric methods. The as-

sumption is that the random process can be modeled by a parametric model; therefore,

”model-based methods” is another name for these approaches. They are further cate-

gorized to two different approaches: based on the polynomial model, or stand on the

eigenvector decomposition. In the two following sections, we will describe two different

model-based approaches of autoregressive and multiple signal classification methods.

3.1.2.1. Polynomial-based Approaches. In these methods, the observed time series is

assumed to be generated by processing a white noise (u[n]) with power of σ2 through

a rational stable and causal filter with the transfer function H(f) = B(f)
A(f)

. In the time

domain the filter equation is defined as:

X[n] +

p∑
k=1

akX[n− k] =

q∑
l=1

blu[n− l] (3.8)

The transfer function of this system is represented as:

H[f ] =

∑q
l=1 ble

−j2πfl

1 +
∑p

k=1 ake
−j2πfk

(3.9)
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Therefore the spectrum of the output which is our desired spectrum estimation, is

obtained by:

P (f) =

∣∣∑q
l=1 ble

−j2πfl
∣∣2 × σ2

|1 +
∑p

k=1 ake
−j2πfk |2

(3.10)

If both p and q are non-zero, the system is called autoregressive moving average and is

abbreviated by ARMA(p, q). If q is equal to zero and p is non-zero, the system is called

autoregressive and is abbreviated by AR(p) and finally, if p is zero and q is non-zero

the system is called moving average and it is abbreviated by MA(q). In this thesis, we

just concentrate on AR model. In AR, the time series is generated by a causal filter

which its input-output difference equation is given by:

X[n] = −
p∑

k=1

akX[n− k] + u[n] (3.11)

The transfer function of the model in (3.9) is simplified to

H[f ] =
1

1 +
∑p

k=1 ake
−j2πfk

(3.12)

and the corresponding estimated spectrum is derived by:

P (f) =
σ2

|1 +
∑p

k=1 ake
−j2πfk |2

(3.13)

To obtain the spectrum of the time series with autoregressive approach, we must find

{ak}pk=1 and the variance of the input noise (σ2). There are several methods to estimate

the parameters of AR model. Here we introduce three important ones: autocorrelation

(Yule-Walker), covariance, and modified covariance methods [15].
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3.1.2.2. Autocorrelation (Yule-Walker) Method. Considering (3.11), the autocorrela-

tion coefficient relation between the input and output is written as:

r[n] +

p∑
k=1

akr[n− k] = σ2 (3.14)

If we rewrite this equation for n = 0 to n = p, we obtain a set of linear equations which

can be arranged in a matrix form as below:


r(0) r(−1) . . . r(−n)

r(1) r(1) . . . r(−n+ 1)
...

...
. . .

...

r(n) r(n− 1) . . . r(0)




1

a1
...

an

 =


σ2

0
...

0

 (3.15)

Additionally, by using r(−k) = r∗(k) and because the signal is real r(−k) = r(k), we

can write


r(0) r(1) . . . r(n)

r(1) r(1) . . . r(n− 1)
...

...
. . .

...

r(n) r(n− 1) . . . r(0)




1

a1
...

an

 =


σ2

0
...

0

 (3.16)

We call (3.16) as the autocorrelation normal equation. If we know {r(k)}, then we

can use all linear row equations except the first row to find {ai}. Having found all

coefficients, we substitute them in (3.16) and find the variance of noise (σ2). The most

left p × p matrix is autocorrelation (R) matrix, which is a Toeplitz matrix. If the R

matrix is positive definite, all roots are inside the unit circle and the system is stable.

In summary, to estimate the parameters of AR model using Yule-Walker estimation

method, first we estimate the autocorrelation coefficients of the observed time series by

using (3.14) and then we make use of the set of linear equations in (3.16) to calculate

the AR parameters. Because of the window effect caused by estimating autocorrelation

function, the Yule-Walker approach usually is not used in the case of short-length data

series.
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3.1.2.3. Covariance Method. In this method, parameters estimation is accomplished

by finding the solution to the set of linear equations:


r(1, 1) r(2, 1) . . . r(n, 1)

r(1, 2) r(2, 2) . . . r(n, 2)
...

...
. . .

...

r(1, n) r(2, n) . . . r(n, n)




a1

a2
...

an

 =


r(0, 1)

r(0, 2)
...

r(0, n)

 (3.17)

where

r(k, l) =
N−1∑
m=n

X(m− l)X∗(m− k) (3.18)

This matrix is not Toeplitz as the same as that one in autocorrelation method. The

advantage of this method over the previous one is that there is no window assumption;

therefore, for short data set the resolution of the obtained spectrum by this method is

higher than the results of autocorrelation method.

3.1.2.4. Modified Covariance Method. This approach is very similar to the covariance

method and the coefficients of AR are calculated by (3.17). The difference is in the

way of estimating autocorrelation parameters given by:

r(k, l) =
N−1∑
m=n

[X(m− l)X∗(m− k) +X(m− n+ l)X∗(m− n+ k) (3.19)

which is derived by minimizing the sum of the squares forward and backward errors:

εn(m) = ε+n (m) + ε−n (m) =
N−1∑
m=n

[|e+n (m)|2 + |e−n (m)|2] (3.20)

where

e+n (m) = X(m) +
n∑
k=1

an(k)X(m− k) (3.21)
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and

e−n (m) = X(m− n) +
n∑
k=1

a∗n(k)X(m− n+ k) (3.22)

are forward and backward prediction errors respectively [12]. The advantage of this

method over two previous ones, is that it gives statistically stable spectrum estimates

with higher resolution.

3.1.2.5. Eigenanalysis-based Methods. Eigenanalysis-based methods are those meth-

ods which assume that the signal consists of the sum of N sinusoid signals contaminated

with white noise. That is to say, we can consider the time series X[n] as:

X[n] =
N∑
k=1

Ake
jwkn + u[n] (3.23)

where {Ak} are complex numbers that represent the amplitude and phase of kth expo-

nential components and u[n] is a white noise. The autocorrelation of (3.23) is written

as:

Rx = Rsignal +Rnoise =
N∑
k=1

|Ak|2eke∗Tk + σ2
0I (3.24)

where ek = [1 ejwk ejwk ... ej(M−1)wk ] is the kth eigenvectors of Rsignal matrix. Equation

(3.24) can be rewritten as: Rx = EΛE∗T + σ2
0I, where E = [e1, ..., eN ]M×N and

Λ =


|A1|2 0 . . . 0

0 |A2|2 . . . 0
...

...
. . .

...

0 0 . . . |AN |2


M×N

(3.25)

Therefore, the autocorrelation matrix is decomposed into signal and noise subspaces.
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3.1.2.6. Pisarenko Harmonic Decomposition. In this approach, we assume that M =

N + 1, that is to say, the dimension of signal subspace is N and that of the noise is

one [16]. There is just one eigenvector Vn and its corresponding eigenvalue λn = σ2
0 for

the noise subspace and it is orthogonal to the subspace of the signal. We can write

e∗Ti un[k]e−jwik = 0 (3.26)

This equation results in a statement called annihilating filter described by:

Un(z) =
N∑
k=0

un[k]z−k =
N∏
k=0

(1− ejwkz−1). (3.27)

The frequencies of the signal are related to the angular positions of the zeros of this

filter in (3.27) which reside inside the unit circle. Assuming all eigenvectors are unit

norm, we can write:

uiRx = λiui

u∗Ti Rxui = λiu
∗T
i ui = λi

ui

[∑N
k=1 |AK |2eke∗Tk + σ2

0I
]

= λi∑N
k=1 |Ak|2

∣∣e∗Tk uk∣∣2 = λi − σ2
o

(3.28)

Having calculated signal frequencies, we can find the powers |A|2 by (3.28). By evalu-

ating (3.28) at different frequencies it is possible to obtain the so-called pseudo-spectra,

P̃ (ejw) =
1

|e∗T (w)umin|2
(3.29)

3.1.2.7. Multiple Signal Classification (MUSIC). This method was introduced in [17].

To improve the performance of Pisarenko estimator [16], the averaging was proposed

in [17]. This method takes advantage of using of multiple noise eigen-filters instead

of one which is used in [16]. The MUSIC procedure is based on the assumption that

the observed time series consists of a series of N complex sinusoids corrupted by an

additive white noise. Instead of having just one annihilating filter, MUSIC uses M−N
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eigenfilters. First the autocorrelation matrix of the time series Rx is estimated. The

eigenvectors V1, V2, ..., VM and corresponding eigenvalues λ1, λ2, ..., λM are extracted

from the matrix. The first N large eigenvectors V1 to VN are from signal subspace and

the rest of eigenvectors belong to the noise subspace. A group of complex sinusoids

e(w1), e(w2), , e(wN) vectors are employed to represent the signal subspace. If the

time series has a component at the wi frequency, the vector e(wi) is orthogonal to

VN+1, VN+2, , VM ; therefore, the peak value at wi is computed by

PSD(wi) =
1∑M

N+1 |eT (wi)vk|2
× 1

∆w
(3.30)

It should be noted that this method just indicates the frequency location in the time

series; as a result, the magnitude of each peak does not show the PSD at the cor-

responding frequency; so instead of PSD it is known as the pseudo PSD. The power

spectral density obtained by this technique has higher resolution in comparison with

those estimated by the FFT-based methods.

3.1.3. Non-parametric vs. Parametric

Because DFT-based methods carry out the estimation by windowing data, they

can introduce distortion to the estimated PSDs. The main advantage of these ap-

proaches is that the PSDs estimated by them do not have spurious frequency peaks;

on the other hand, model-based methods do not apply data windowing. If the PSDs

are obtained by wrong models in the model-based methods, they may consist of spuri-

ous frequency peaks. By choosing an appropriate model to estimate PSD, the results

usually are less biased and have a lower variances than those of estimated by non-

parametric methods.

3.1.4. Related Works

Despite the fact that DoS and DDoS attacks are new concepts in network security

problems, there are many papers considering the methods of detection and prevention

of these types of attacks. In this section we go through some previous works regarding
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to DDoS attack detection using frequency domain.

Cheng et al., in a study against DoS attack, proposed a method to identify normal

traffic to decrease the probability of false positive [18]. They considered TCP traffic

as the dominant normal traffic. Making use of periodicity in this type of protocol due

to the round time trip (RTT), they suggested that by analysing the PSD, the normal

traffic can be detected. They found the PSD using Welch windowing method [13].

In another works done by Alefiya et al., the authors used a combination of three

different methods to detect DoS and DDoS attacks [19]. The method consisted of

packet-header, transient ramp up and spectral analysis. For the spectral approach they

implemented normal DFT method, and to compare the results of abnormal traffics,

they employed normalized cumulative spectrum (NCS). The 60% of this value called

F (60%) in an attack used as the threshold to segregate DoS and DDoS. If this value

was located in lower frequencies, it was an indication of DDoS attack; otherwise, the

attack was considered to be a DoS traffic.

A special type of DDoS attack called shrew attack was considered in a work

done by Chen et al. [20]. They used the spectrum analysis to distinguish shrew from

normal traffic. The probability density functions of NCS of both normal and shrew

were estimated. A threshold was defined to separate traffics. If the value of the NCS

was less than the threshold, the traffic was considered as normal; otherwise, it was

shrew attack.

In a study done by Hashim et al., authors investigated the frequency signatures

of DoS and DDoS attacks in the next generation mobile network (NGMN) [21]. They

used these aspects as the signature to detect abnormality in the network. The Lomb

periodogram algorithm was employed to estimate the PSD of the traffic [22]. According

to their results obtained from a simulation, the main energy of DDoS attack resided

in lower frequency, however for DoS higher frequencies were dominant. To detect the

suspicious activity in the traffic, they proposed two levels of detection. At the first level,

called ”Mirror” effect, the cross-correlation of the underlying traffic and signature was
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obtained and if it was symmetric, they considered it as an attack. At the second

stage, known as ”Derivative”, the derivative of the cross-correlation was estimated and

according to its value the DoS and DDoS attack were segregated from each other.

Although in all studies, authors investigated the frequency domain to detect

denial of service attacks, but non of them considered parametric methods to find the

spectrum of the traffic. In addition, most of these studies were done in the simulation

environment. They also did not consider a practical model which can be implemented

in an IDS system. In this work, we not only consider parametric methods but also,

we compare it with a DFT-based approach. The data which we have used come from

a experimental result of DDoS attack. We also implement the results in a Signature-

based intrusion detection system.
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4. SIGNAL DECOMPOSITION BASED ON BASIC MATCHING

PURSUIT ALGORITHM

Representing an original signal with its fundamental constituents, which is so

called ”signal decomposition”, is a ubiquitous method in signal processing. Decom-

posing a signal not only provides a simple signal free from redundancy but also makes

sophisticated operations much simpler. In this approach the underlying complicated

signal is represented by a combination of its fundamental features called function seg-

ments or atoms. Recently, a new method of decomposition called sparse representation

has caught the attention of scientists. In this method a signal y ∈ Rn is decomposed

by using an over-complete dictionary matrix D ∈ Rn×k consisting of k signal-atoms for

columns {dj}kj=1. The model Dx obtained for y must satisfy ||y −Dx|| ≤ E. x ∈ Rk

comprises of representation coefficients. The process of estimating these coefficients

is called ”sparse coding ” or ”atom decomposition” and it is usually accomplished by

pursuit algorithms. In the following section we will describe one of the popular feature

extraction algorithms called basic matching pursuit decomposition.

4.1. Classical Matching Pursuit Decomposition

The matching pursuit decomposition (MPD) was originally introduced by Mallat

and Zhang [23]. MPD is an iterative algorithm. In each stage, the best atom is

determined by matching a portion of the signal to the segment functions. Once the

best match is obtained, it is extracted from signal and the algorithm proceeds onto the

next iteration. As a greedy based algorithm, MPD obtains the maximum amount of

energy possible per iteration [3]. The degree of similarity between atoms and the signal

is accomplished by cross-correlation. In each iteration, the best match is that one with

the largest cross-correlation value and its corresponding time delay. By definition Rk
x[n]

is the residual after k iterations, where the signal is x[n]. Prior to the first iteration an

initial value must be assigned to the residual which is shown in (4.1). The best fit atom

is chosen from dictionary D via performing cross-correlation with the residual shown

in (4.2). The nominated atom is subtracted from the signal (4.1). The next step starts
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with the new residual to find the next atom. dγi represents the ith matched atom and

aγ is it corresponding cross-correlation.

R0
x[n] = x[n] (4.1)

aγ = argmaxdγi∈D
∣∣〈Rk

x[n], dγi
〉∣∣ (4.2)

Rk
x[n] = Rk−1

x [n]−
〈
Rk
x[n], dγi

〉
aγ (4.3)

To avoid of modeling noise or spurious features, if one of the following three criteria is

met the process will be ceased: a specified number of atoms are selected, the specified

amount of energy is extracted, or the d components remove below a certain threshold

amount of energy. Figure 4.1 displays the pseudo code of the MPD algorithm. The

process starts by generating a dictionary, and continues extracting the features until

one criterion is met. The original signal is reconstructed as :

Build dictionary: D = {dγ1, dγ2, ..., dγn}, where dγn = 1√
αn
d
(
t−βn
αn

)
ej2πknt.

Initialize Kstop, δstop, K = 0, R0
x[n], E0

x = ||R0
x||2.

MPD routine.

while k ≤ Kstop or E
k
x ≥ δstop do

αkγj = 〈Rk
x[n], dkγj〉.

Select dictionary element whose time correlation with the Rk
x[n] is maximum.

Rk
x[n] = Rk−1

x [n]− αkγjdkγj[n].

k = k + 1, Ek
x = ||Rk

x||2
end while

Figure 4.1. Matching pursuit algorithm. (reprinted from [3]).
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x̂ =
N∑
i=1

aγidγi (4.4)

4.2. K-SVD Dictionary Generation Method

K-SVD method was introduced by Aharon et al. [4]. This approach finds the

best dictionary from an over-complete dictionary for sparse representation of a signal.

A set of training signal Y = {yi}N ∈ Rn is fed to the system and the best fit dictionary

is obtained. The goal of this method is:

minD,Z
{
||Y −DZ||2F

}
subject to ∀i, ||zi||0 ≤ T0 (4.5)

Dictionary searching is achieved in two steps: sparse coding and codebook update

stages. At the first stage, the dictionary D is assumed to be constant and the sparse

coding process is carried out for N members of Y to find the corresponding matrix Z.

The penalty is written as:

||Y −DZ||2F =
N∑
i=1

||yi −Dzi||22 . (4.6)

By substituting (4.6) in (4.5) we obtain:

minzi
{
||yi −Dzi||22

}
subject to ||zi||0 ≤ T0 i = 1, 2, ..., N (4.7)

The problem (4.7) is addressed by using matching pursuit algorithm discussed in previ-

ous section. In the second step, one column of dictionary D, dk and its corresponding

coefficients residing in the ith row of Z, denoted as Zi
T are updated. The equation

(4.5) is written as:

||Y −DZ||2F =

∣∣∣∣∣
∣∣∣∣∣Y −

K∑
j=1

djz
j
T

∣∣∣∣∣
∣∣∣∣∣
2

F

=

∣∣∣∣∣
∣∣∣∣∣
(
Y −

∑
j 6=k

djz
j
T

)
− dkzkT

∣∣∣∣∣
∣∣∣∣∣
2

F

=
∣∣∣∣Ek − dkzkT ∣∣∣∣2F

(4.8)
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Ek is the error of estimation when the kth atom is excluded. A group of yis, those use

the atom dk, is defined as:

wk =
{
i|1 ≤ i ≤ K, zkT (i) 6= 0

}
(4.9)

Return to (4.5), the minimization is now equivalent to minimize:

∣∣∣∣ER
k − dkzKR

∣∣∣∣2
F

(4.10)

where Zk
R is the minimized version of Zk

T considering only non-zero entries, and ER
K is

obtained from Ek by choosing columns corresponding to wk. E
R
K is decomposed using

SVD decomposition method [24] to ER
K = U∆V T . The first column of U is the update

d̂k, and the product of the first column of V and ∆(1, 1) gives the coefficients of ZK
R .

Figure 4.2 displays the psudo code of K-SVD method.
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Task: Find the best dictionary to represent the data samples {yi}Ni=1 as sparse

compositions, by solving

minD,Z{||Y −DZ||2F} subject to ∀i, ||zi|| ≤ T0.

Initialization: Set the dictionary matrix D(0) ∈ Rn×k with l2 normalized

columns. Set J = 1.

while Convergence does not meet do

Sparse Coding Stage: Use any pursuit algorithm to compute the representation

vectors zi for each example yi, by approximating the solution of

i = 1, 2, ..., N, minzi{||yi −Dzi||
2
2} subject to ||zi||0 ≤ T0.

Codebook Update stage:

for all k = 1, 2, ..., K in DJ−1 do

Define the group of examples that use this atom, wk = {i|1 ≤ i ≤ N, xkT (i) 6=

0}.

Compute the overall representation error matrix, Ek, by

Ek = Y −
∑
j 6=k

djx
j
T .

Restrict Ek by choosing only the columns corresponding to wk, and obtain

ER
k .

Apply SVD decomposition ER
k = U∆V T . Choose the updated dictionary

column d̂k to be the first columns of U. Update the coefficient vector xkR to

be the first column of V multiplied by ∆(1, 1).

end for

Set J = J + 1.

end while

Figure 4.2. K-SVD Algorithm. (reprinted from [4]).
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5. EXPERIMENTAL REVIEW

In this section, we will discuss experiments and results relating to the frequency

characteristics of normal and DDoS traffics. This part consists of two subsections: first

we obtain the power spectral density of normal traffic and DDoS attack by means of

DFT-based and model-based approaches. The features extracted from the first part

will be used in a signature-based IDS. The normal and the attack features are used as

training and testing data sets for the system respectively.

5.1. Traffic Dataset

In order to gather traffic data, a wired local network consisting of 22 computers,

a server, and a router, was created in the Electrical and Electronics Dept. of Boğaziçi

University. One computer with Ubuntu 11.10 operated as a server and provided service

to its clients. The rest of computers acted as legitimate clients or zombies. Figure 5.1

displays the network layout of this experiment.

To run the normal traffic in the network, we used file transfer protocol (FTP).

FTP is a TCP-based network protocol providing the facility of exchanging files through

a network. During normal traffic there was no attack in the network. The second traffic

pattern was DDoS traffic which was generated by traffic generator software (Tfgen) [25].

During the attack session, all 22 zombies contributed in flooding the victim. To run

the attack, we implemented UDP (connectionless computer networking protocol) flood

attack. In a UDP flood attack large number of UDP packets are sent to the random

ports of the victim. The system is forced into sending back many ICMP packets and

finally the system becomes out of reach for its normal users. We used offline process to

find frequency features. It means that the data was sampled and then analyzed. Using

’tcpdump’ function , a built-in code in Linux-based systems to monitor the network

traffic, the total traffics between the victim’s node and the rest of the network in both

normal and attack sessions were saved for further process. These two tcpdump files

were changed into comma separated values (CSV) files by Wireshark software [26].
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Figure 5.1. Network layout.

MATLAB R2013b environment was selected to analyze traffic patterns [27].

5.2. Power Spectral Density

For each data set, the number of packets in a specific interval were acquired.

These numbers can be modeled as a random process X[t] where t ∈ [0 n] and n ∈ N.

The obtained random process was further divided into 100, 128-length subsets. For

each subset, the power spectral density was estimated and finally the averaged PSD

was calculated.

5.2.1. DFT-based PSD Estimation

For non-parametric method, the Hanning windowing approach was chosen to find

the PSD of the traffic [28]. Two different sampling rates of 0.5 ms and 1 ms were used
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to compare the resolution of the PSDs. According to the Nyquist Sampling theorem

the maximum frequency that can be realized with 1 KHz and 2 KHz are 500 Hz and

1 KHz respectively [28]. Figure 5.2 displays the normalized averaged PSD estimated

for normal traffic. The frequency axis is normalized to reside between 0 and 1. The

energy of normal traffic is almost evenly distributed in different frequencies. Figure

Figure 5.2. Normal PSD estimated by DFT method, sampling Frequency, (a) 1 KHz,

(b) 2 KHz.

5.3 displays the power spectral density of DDoS attack. In contrast to the spectrum

of normal traffic, the main part of energy resides in lower frequencies. Although there

are some spikes in higher frequencies, they are negligible in comparison to the amount

of energy located in lower part. Considering the PSD distributions of two traffics, the

lower bound of frequencies is the distinguishable part which can be used to separate and

to detect DDoS attack from the normal one. Furthermore, because we just concentrate
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on lower bound of the frequencies, 1 ms sampling rate is enough for the detection

process.

Figure 5.3. DDoS PSD estimated by DFT method, Sampling Frequency, (a) 1 KHz,

(b) 2 KHz.

5.2.2. Model-based PSD Estimation

As mentioned before, in contrast to the non-parametric method which is based

on the discrete Fourier transform, in the parametric approach, the signal is modeled

as the output of a filter whose input is a white noise. In the section we first compare

PSDs obtained by AR and MUSIC methods, then we concentrate on the AR and the

roots of the polynomial and finally we will discuss the PSDs acquired by AR model.
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5.2.2.1. MUSIC vs. AR. The spectrum of normal and DDoS traffics were estimated

by two different methods of MUSIC and AR, the former is eigenbased and the latter

is polynomial based models. The order was chosen 10 for both methods. MUSIC

approach is based on eigenvector decomposition approaches to estimate power spectral

density. Because the amplitude of peaks in the estimation carries no information

regarding to the true power of each frequency component, the PSD estimated by this

method is usually called pseudo PSD. Modified covariance was used to estimate the

parameters of AR model. Figure 5.4 compares the results of PSD estimation with these

two methods. Figure 5.4(a) makes a comparison between the normal PSDs. The AR

result is much smoother than that of MUSIC, and the resolution of MUSIC estimation

is higher beside to that of AR method. Figure 5.4(b) compares the PSDs of the DDoS

attack, and there is no significant difference between them. In this thesis we just

consider AR model, and the MUSIC estimation will be postponed to future works. We

continue the rest of this thesis concentrating on AR model.

5.2.2.2. AR Parameter Estimation . The parameters of AR were estimated by three

different methods of Yule-Walker, covariance and modified covariance. Figure 5.5(a)

displays the average of normalized power spectral density of normal traffic over 100

intervals derived by using these three approaches. The frequency domain of [0 π] has

been normalized to lie between 0 and 1. Despite the fact that Yule-Walker introduces

windows effect in estimating PSD, the difference is trivial and all three graphs almost

overlap.

Figure 5.5(b) illustrates the results of power spectral density in the case of DDoS

attack obtained by three different approaches of solving AR model. The results of

covariance and modified covariance overlap each other, and the difference of the Yule-

Walkers is also negligible next to two other methods. we can draw a conclusion that

all three methods are acceptable enough to estimate power spectral density for both

cases. In this experiment we used modified covariance method.
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Figure 5.4. PSD estimated by AR and MUSIC, (a) Normal, (b) DDoS.

5.2.2.3. AR Model Order Selection. In employing the AR model, an important con-

sideration which must be taken into account prior to implementation is the order, p,

of the model. Small values of p result in a smooth PSD which has low resolution and

detail relating to the interested spectrum (underestimating); on the other hand, choos-

ing large values of p introduce feigned details to the obtained PSD (overestimating).

In general there are four different methods to estimate the order of the AR including

final prediction error (FPE), minimum information theoretical criteria (AIC), criterion

autoregressive transfer function (CAT), and first zero crossing (FZC) [29]. Overesti-

mating the order of the model has less effect on the estimation than the underestimating

the order. As a rule of thumb, Haykin and Kesler suggest a range between 5 to 20

percent of N as the order of the AR model which is for our experiment (N = 128), it

is between 6.4 and 25.6 [30]. Ulrych and Ooe recommend that the order lies between
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Figure 5.5. PSD estimated by AR using Yule-Walker, covariance, and modified covari-

ance, (a) Normal, (b) DDoS.

N
3
− 1 and N

2
− 1 [30]. To investigate the effect of the order of the model on the un-

derlying spectrum, the power spectral density was estimated with different values of p

comprising of 2, 4, 8, 10, and 12. Figure 5.6 displays the averaged normalized PSD over

100, 128-length samples of normal and DDoS traffics. The frequency axis is normalized

to reside between 0 and 1. For orders of 2 and 4 results are almost smooth and there

is no more information regarding to the frequency characteristics of the traffics. For

the other orders outcomes are very similar and the difference almost immaterial.

The next important parameter that must be taken into account in AR model

selection is the stability of the system. To assure that an AR system is dynamically

stable, all roots of so-called characteristic equation must reside inside the unit circle
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Figure 5.6. PSD estimated by AR using different orders of 2, 4, 8, 10, and 12, (a)

Normal, (b) DDoS.

[30]. Figure 5.7 displays the roots distribution of normal and DDoS attack for different

orders of 8, 10, 12 (we did not consider orders of 2 and 4 for our estimation regarding

to the results obtained from the previous part). The AR model is stable for all different

orders, although just in one sample of 12th order, two roots are outside the unit circle.

To guarantee to get higher resolution and to assure the stability of the system,

the order of the AR model, employed in PSD estimation, was chosen to be 10 in this

experiment. Figure 5.8 displays the averaged normalized power spectral density of the

normal traffic. The frequency was normalized to locate between 0 and 1. Similar to

the DFT-based result, the energy is distributed along different frequencies. Figure 5.9
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Figure 5.7. Characteristic equation roots distribution of orders : 8, 10, and 12, (a)

Normal, (b) DDoS.

Figure 5.8. Normal PSD estimated by AR(10).

illustrates the averaged normalized spectrum of DDoS attack. Most of the energy is

suited in lower bound of frequencies similar to that of DFT-based method.

5.3. Signature-based IDS Using K-SVD Dictionary Generation Method

In the previous section we got two sets of PSDs for each method of spectrum

estimation. The first one belongs to the normal traffic and the second one of the DDoS
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Figure 5.9. DDoS PSD estimated by AR(10).

attack. Each set is a matrix consisting of 100, 128-length vectors of spectrum. In

this section we use these to matrices as a training and test signal of a signature-based

intrusion detection system illustrated in Figure 5.10. At the first stage, The matrix

Figure 5.10. Signature-based IDS system block diagram.

of normal PSDs is fed to the system as a training data. The system makes use of

K-SVD dictionary generator to create the normal signature dictionary with the size of

128× 40. The initial matrix is created with the first 40 signals of the training matrix.

The maximum number of iterations for the K-SVD algorithm is set to be 30. Figure

5.11 displays the dictionary error norm in each step. At the second stage, the DDoS

spectrum set is fed to the system, and it tries to generate signals of the DDoS set by

means of the dictionary obtained from the first stage and by applying basic matching
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Figure 5.11. Dictionary error norm at each iteration step.

pursuit algorithm. The error norm R2, the difference between the produced one and

the original data, is obtained and compared with R1. Figure 5.12 displays the receiver

operating characteristics (ROC) for these sets of training and test data. For DFT-

Based method the ROC is 100%. The threshold of R1 for DFT-based and Model-based

are 1 and 2.1 respectively. The inefficiency of AR approach in modeling the random

process or the inappropriate order selection are two possible reasons of low performance

of model-based approach regarding ROC.
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Figure 5.12. ROC, (a) DFT-based, (b) Model-based.
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6. CONCLUSIONS

Making a server unavailable for its legitimate users is the main goal of a denial

of service attack. In a distributed version of these type of attacks an army consisting

of numerous numbers of zombies invades to a victim. The victim begins responding

to the meaningless requests from those zombies. Trying to meet the demands from

zombies causes the system to not be able to give services to its legitimate users.

One of the approaches to handle DDoS attacks might be increasing the available

resource of the victim, but when it comes to a large amount of request it will be

also incompetent. When a DDoS attack is running on a system, the first stage is the

detection of the source of the attack. A server has many users from different resource

so finding the abnormal packets and their sources is necessary. Packet level analysis

method is one of the methods of the detection. In this method the content of the

packet is examined to find abnormality. Different protocols and applications use some

specific packets information that unique for themselves. For example TCP protocol has

some specifications which are represented by some bits in the payload of the packets.

So if a TCP packet has data other than its usual condition, it may be an attack

packet. Attackers disguise their malicious packets by modifying them to be similar to

normal ones, and therefore the packet level is impotent to identify attack. Moreover,

the IP address in an attack packet is spoofed to make the trace back analysis hard.

An alternative method to packet level which can solve the drawbacks of the previous

method is flow level analysis. Instead of looking at packets content, the flows of packets

are taken into account.

In this thesis, a flow level approach which considering the spectrum characteristics

of the packet traffic was employed. At the first step, a test bed consisting of 22

computers, a router and a server (victim) was implemented. Two different traffics

including normal and DDoS attack were run in the test bed separately. FTP protocol

was used for normal traffic and the DDoS attack was generated by Tfgen software.

For each traffic, the number of packets arriving to the node of the server was sampled



37

every 1 ms. The obtained set created a random process that was further divided into

100 128-length subsets.

The frequency characteristic for each subset was estimated with two methods

of DFT-based and model-based spectrum estimation. Hanning windowing method

was chosen in DFT-based method. For model based approach, AR model with the

order of 10 was applied to estimate PSD of the traffic. Finally for each method, two

matrices with the size of 100 × 128 each consisting of PSDs of subsets of normal and

DDoS traffics were acquired. According to the results of these two methods of PSD

estimation, the energy of normal traffic was distributed in different frequencies and

there was no dominant frequency interval; on the other hand, DDoS attack energy

mostly resided in lower frequency bound.

At the second step, a signature-based IDS whose dictionary was generated by

K-SVD method is implemented. For each method of PSD estimation, the normal

matrix was used to train the system and the DDoS one was used to test the system

and error residual was obtained. The ROC was sketched for both methods to find

the threshold of residual to segregate attack from normal traffic. The performance of

the DFT-based method considering the ROC which was 100%, was better than that

of the model-based method. The thresholds were 1 and 2.1 for the DFT-based and

the model-based respectively. The inefficiency of AR approach in modeling the random

process or the inappropriate order selection are two possible reasons of low performance

of model-based approach regarding ROC.

In the future work, we will consider other methods of model-based approach

rather than AR model to estimate the PSD. Additionally we will consider an anomaly-

based IDS instead of the signature-based system.
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