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ABSTRACT

SEMI-SUPERVISED LEARNING BASED NAMED

ENTITY RECOGNITION FOR MORPHOLOGICALLY

RICH LANGUAGES

In this study, we addressed the Named Entity Recognition (NER) problem

for morphologically rich languages by employing a semi-supervised learning approach

based on neural networks. We adopted a fast unsupervised method for learning con-

tinuous vector representations of words, and used these representations along with

language independent features to develop a NER system. We evaluated our system

for the highly inflectional Turkish and Czech languages and obtained better F-score

performances than the previously published results for these languages. We improved

the state-of-the-art F-score by 2.26% for Turkish and 1.53% for Czech. Unlike the

previous state-of-the-art systems developed for these languages, our system does not

make use of any language dependent features. Therefore, we believe it can easily be

applied to other morphologically rich languages.
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ÖZET

MORFOLOJİK AÇIDAN ZENGİN DİLLERDE YARI

GÜDÜMLÜ ÖĞRENME TEKNİĞİYLE VARLIK İSMİ

TANIMA

Bu çalışmamızda morfolojik açıdan zengin dillerde varlık ismi tanıma problem-

inin çözümüyle ilgilendik. Bu bağlamda, yapay sinir ağlarına dayalı yarı güdümlü

öğrenme metodunu kullandık. İlk evrede, hızlı ve güdümsüz bir algoritma kullanarak

kelimelerin çok boyutlu sürekli uzaydaki vektör gösterimlerini elde ettik. İkinci evrede

ise, kelimelerin bu gösterimleri ile birlikte diğer bazı dil bağımsız öznitelikler de kul-

lanarak varlık ismi tanıma sistemi geliştirdik. Oluşturduğumuz bu sistemi çok çekimli

dillerden olan Türkçe ve Çekçe üzerinde denedik ve bu diller üzerinde yayınlanmış en

gelişkin sistemlerden daha iyi performanslar elde ettik. Türkçe’de en gelişkin sistemi

%2.26 ile, Çekçe’de ise en gelişkin sistemi %1.53 ile geliştirdik. Dile özgü öznitelikler

de kullanan bu en gelişkin sistemlerden farklı olarak, çalışmamızda tamamen dilden

bağımsız öznitelikler kullandık. Dolayısıyla yaptığımız bu çalışmanın morfolojik açıdan

zengin olan diğer dillere de kolaylıkla ve başarıyla uygulanabileceğini düşünüyoruz.
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1. INTRODUCTION

Named Entity Recognition (NER) locates and classifies words in a given text

into predefined categories. It is an important task prior to most further processes

intended to extract a broader syntactic or semantic representation of the text [5]. To

be more precise, NER is a constituent of many Natural Language Processing (NLP)

tasks including information extraction, machine translation, question answering, and

sentiment analysis. To illustrate, in the relation extraction sub-task of information

extraction, the relations are defined between named entities (e.g. PERSON works in

an ORGANIZATION). In the sentiment analysis field, the sentiment of a text can

be attributed to named entities including companies and products. Likewise, in the

question answering domain, the answers to questions are often named entities such as

people, dates, etc. Due to being a crucial subtask of a number of NLP tasks, NER has

been studied extensively by NLP researchers.

Named Entity Recognition was introduced at the 6th Message Understanding

Conference (MUC-6) as an understanding tasks. The task was to extract from a text

all the words corresponding to seven categories grouped under three subtasks. These

subtasks and the categories under them are described below [6]:

(i) ENAMEX: Proper names, acronyms, and other unique identifiers are considered

in this subtask. These entities are categorized via the TYPE attribute as follows:

• ORGANIZATION: named corporate, governmental, or other organizational

entities

• PERSON: named person or family

• LOCATION: name of politically or geographically defined location (cities,

provinces, countries, international regions, mountains, etc.)

(ii) TIMEX: Only temporal expressions are considered in this subtask. They are

categorized via the TYPE attribute as follows:

• DATE: partial or complete date expression

• TIME: partial or complete expression of time of day
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(iii) NUMEX: Numeric expressions are considered in this subtask. They can be money

or percentages and may be expressed in either numeric or alphabetic form. The

complete expression is covered in this task and is categorized via the TYPE

attribute as follows:

• MONEY: monetary expression

• PERCENT: percentage

An example sentence with MUC-6 annotations taken from Grishman and Sund-

heim [1] is shown in Figure 1.1. Most of the NER studies have been inspired by the

MUC-6 [1] and MUC-7 [7] evaluation programs. They have used the MUC categories

and guidelines as a starting point. Compared to these original guidelines, the basic

divergences in the studies that followed are the set of named entity categories used as

well as the way the context of an entity is represented and utilized [5].

Mr. <ENAMEX TYPE="PERSON">Dooner</ENAMEX> met with <ENAMEX TYPE="PERSON">Martin Puris

</ENAMEX>, president and chief executive officer of <ENAMEX TYPE="ORGANIZATION">Ammirati

& Puris</ENAMEX>, about <ENAMEX TYPE="ORGANIZATION">McCann</ENAMEX>’s acquiring the agency

with billings of <NUMEX TYPE="MONEY">$400 million</NUMEX>, but nothing has materialized.

Figure 1.1. An example sentence with MUC annotations taken from [1].

Conditional Random Fields (CRF) [8] are one of the most successful and widely

used techniques for sequence labeling in several NLP tasks including NER [9, 10, 11].

However, recently, the neural network based semi-supervised learning approach has

gained attention in the English NER studies [12, 13, 14, 15]. In the unsupervised

stage of this approach, continuous vector representation of words are attained using

a large amount of unlabeled data by employing a neural network. In the supervised

stage, these feature vectors along with additional features are fed to another neural

network to train a NER system. Since word representations constitute an important

part of this approach, it is crucial to find good representations. The initial methods

proposed to learn word representations have the drawback of large training durations

with typical values of a few weeks [14, 15]. Recently, Mikolov et al. [3] showed that

vector representations of words can be attained considerably faster, in a matter of

hours, by employing a simpler neural network model. Although both representations
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Table 1.1. Number of unique word forms in English and Turkish corpora of about

10M words [4].

Language Vocabulary size

English 97,734

Turkish 474,957

Turkish (only roots) 94,235

are comparable, to our best knowledge, up until now, these representations have not

been used for NER before.

Morphologically rich languages, such as Turkish, Czech and Hungarian, differ

substantially from English since they have agglutinative or inflectional morphologies.

In such languages production of hundreds of words from a given root is possible, which

result in data sparsity problem. To illustrate, consider the following Turkish word bul-

un-ama-yabil-en. It corresponds to The one that may possibly not be found in English.

To be more concrete, using English and Turkish corpora of around 10 million words,

Hakkani-Tür [4] showed that the vocabulary size for English is 97,734 and for Turkish

is 474,957. However, when only root forms are considered, the vocabulary size for

Turkish drops to 94,235, see Table 1.1. This analysis shows that 5 different Turkish

word forms are generated from the same root on average. Due to this data sparsity

problem, state-of-the-art systems for NER in morphologically rich languages usually

make use of the analysis of the morphological structures of the languages and require

language specific feature engineering [16, 17]. However, this makes them difficult to

adapt to other languages.

In this study, we investigated using the neural network based semi-supervised

learning approach for NER in morphologically rich languages. Unlike the previous

semi-supervised NER studies, in the unsupervised stage for obtaining the word rep-

resentations, we used the approach of Mikolov et al. [3]. In the supervised stage, in

addition to these feature vectors, we benefited from additional language independent

features such as word capitalization patterns, previous tag prediction, etc. We deliber-
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Table 1.2. Overall F-score performance of the current state-of-the-art systems vs our

system.

Current state-

of-the-art

Our system

Turkish 89.59% 91.85%

Czech 74.08% 75.61%

ately refrained from using any language specific features in order to make our system

completely language independent and easily adaptable to other languages.

We evaluated the performance of our system on two highly inflectional morpho-

logically rich languages, namely Turkish and Czech. We reported our results using the

commonly accepted CoNLL metric [18]. The details of this metric are explained in

the related works chapter. Finally, we compared our results with the state-of-the-art

works for Turkish and Czech. The current state-of-the-art systems for Turkish and

Czech NER are based on CRF and make use of language dependent features. The

state-of-the-art result evaluated with respect to CoNLL metric for NER task in Turk-

ish is reported by Şeker and Eryiğit [16] and has a 89.59% performance without using

gazetteers. For the Czech language, it is reported by Konkol and Konoṕık [17] and

has a 74.08% performance with gazetteers. Our system achieved an F-score perfor-

mance of 91.85% for Turkish and 75.61% for Czech without using gazetteers and any

language-specific features. These results set the new state-of-the-art performances for

both Turkish and Czech NER. Table 1.2 shows the overall F-score performance of the

current state-of-the-art systems and our system. The detailed results are presented in

the experiments and results chapter.

The main contributions of our study can be summarized as follows: Firstly, we

show that the neural network based semi-supervised learning approach that makes use

of continuous word representations can be successfully applied to morphologically rich

languages without performing any language specific morphological analysis. Secondly,

we show that word representations obtained very fast by employing the approach of

Mikolov et al. [3] are useful for NER. Finally, we outperform the current state-of-
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the-art systems for Turkish and Czech NER without using any language dependent

features.

The remainder of this thesis is organized as follows. The related work is discussed

in the next chapter. The architecture of our system is described in Chapter 3. The

data sets are given in Chapter 4. The experiments and results are presented in Chapter

5, and the thesis is concluded in Chapter 6.
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2. RELATED WORK

In this chapter, we present the works related to our study. In the first section,

we explain what the word representations are and where they are used in NLP. Then,

we summarize the previous studies on Turkish and Czech NER in the second and third

section, respectively.

2.1. Distributed word representations

Finding distributed representations has a long history [19, 20]. In [19], Hinton et

al. describe distributed representations as follows: an entity is represented by a pattern

of activity distributed over a number of computing elements such that each computing

element is associated with representing many different entities. The power of this kind

of representation is that it benefits from the processing abilities of networks of simple,

neuron-like computing elements. Then, in the same year Rumelhart et al. [20] proposed

a learning procedure called as back-propagation, which is very impressive and one of

the most cited studies in the domain of neural networks. This procedure made possible

to learn distributed representations effectively and is based on back-propagating errors

in a layered neural network.

A neural network based architecture for building a probabilistic language model

was proposed by Bengio et al. [21]. Their goal was to estimate the probability function

for word sequences, expressed in terms of distributed representations. These repre-

sentations are learnt by employing a feed-forward neural network consisting of input,

projection, hidden and output layers. In this architecture, previous words to the cur-

rent word are encoded at the input layer using 1-of-V coding, where V is the size of

the vocabulary. The input layer is then projected to a projection layer using a shared

projection matrix. Next, this projection, which is simply the concatenation of vectors

of previous words, is passed through non-linear hidden layer and finally output of the

hidden layer is fed to softmax layer to compute probability distribution over all the

words in the vocabulary.
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Collobert and Weston [12] showed that these distributed representation of words

learnt from a language model are useful for a supervised neural network that aims to

accomplish various NLP tasks including part-of-speech tagging, chunking, NER, and

semantic role-labeling. In their later work, by implementing the same semi-supervised

technique, Collobert et al. [15] achieved state-of-the-art performance results in several

NLP tasks including NER. Their work improved the state-of-the-art accuracy for En-

glish NER from 89.31% to 89.59%. A neural network very similar to the one in [21] is

employed in [12] and [15] except that the number of hidden layers are increased and a

different cost function is used in the latter studies. One of the challenges for using this

approach is the long training times of the deep neural network, which can take up to

a few weeks, for obtaining the distributed representation of words.

In order to obtain continuous vector representations of words, Mikolov et al. [3]

used a similar neural network to the feed-forward neural network employed in [21].

However, Mikolov et al. [3] removed the non-linear hidden layer in their architecture

due to the fact that it is the layer that mainly causes the long training times. By

employing this new architecture, distributed representations of words can be attained

very fast (in a few hours with a computer having Intel core i7 processor and 8 GB

RAM). Although a simpler model than [21] and [15] is used, the resulting word vectors

are shown to perform better than [21] and [15] in a number of semantic and syntactic

tasks [3].

2.2. Turkish NER

Morphologically rich languages pose challenges for several NLP tasks including

NER. State-of-the-art systems developed for such languages usually depend on manu-

ally designed language specific features that utilize the rich morphological structures of

the words. In this study, we propose using the semi-supervised neural network based

approach for NER in morphologically rich languages without making use of any lan-

guage dependent features. We applied the proposed system to two morphologically

rich languages: Turkish and Czech.
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Before giving the related works done on Turkish NER, let us explain the two

metrics used commonly to evaluate the performances of the Turkish NER systems.

These are as follows:

(i) MUC metric: In this metric, two F-scores are maintained for each class of en-

tities, namely TYPE and TEXT scores. TYPE evaluates an assignment to be

correct if the type of a named entity is assigned accurately without consider-

ing the boundary. In contrast to TYPE, TEXT considers the boundaries of the

named entities and ignores their TYPEs. The overall TYPE and TEXT scores

are micro-averaged F-score and the overall MUC score is the average of TYPE

and TEXT scores.

(ii) CoNLL metric: Aside from Turkish NER studies, this metric is widely used in

the recent studies for evaluating NER systems and defined in [18]. In our study,

we also used this metric. The focus of this metric is to find phrase level named

entities. That is, it evaluates an assignment to be correct if both the boundary

and type of a named entity are assigned accurately. For computing the overall

score micro-averaging is used in this metric as well.

To illustrate the scoring mechanism of these metrics and the difference between them,

consider the example sentence with gold labels shown below in Figure 2.1.

Unlike <ENAMEX TYPE="PERSON">Robert</ENAMEX>, <ENAMEX TYPE="PERSON">John Briggs Jr</ENAMEX>

contacted <ENAMEX TYPE="ORGANIZATION">Wonderful Stockbrockers Inc</ENAMEX> in <ENAMEX TYPE=

"LOCATION">New York</ENAMEX> and instructed them to sell all his shares in <ENAMEX TYPE=

"ORGANIZATION">Acme</ENAMEX>.

Figure 2.1. An example sentence with gold labels taken from [2].

Let’s assume that this sentence is given to a NER system and the annotations

produced by the system is illustrated in Figure 2.2. For the sake of simplicity, we will

just show the computation of overall scores. Let’s say the number of correct annotations

predicted by the system is C, the total number of predictions done by the system is

T , and the total number of entities in the gold data is G. Then the precision becomes

C{T and the recall becomes C{G.
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<ENAMEX TYPE="LOCATION">Unlike</ENAMEX> Robert, <ENAMEX TYPE="ORGANIZATION">John Briggs Jr

</ENAMEX> contacted Wonderful <ENAMEX TYPE="ORGANIZATION">Stockbrockers</ENAMEX> Inc <ENAMEX

TYPE="PERSON">in New York</ENAMEX> and instructed them to sell all his shares in <ENAMEX

TYPE="ORGANIZATION">Acme</ENAMEX>.

Figure 2.2. Output of a system for the example sentence shown in Figure 2.1 [2].

For the MUC metric, C is 4 (2 TYPE and 2 TEXT), T is 10 (5 TYPE and 5

TEXT), and G is 10 (5 TYPE and 5 TEXT). Therefore, the precision and the recall are

4{10 “ 40%. Hence the overall F-score for MUC is also 40%. On the other hand, for

the CoNLL metric, C is 1 (only one of the predictions of the system matches exactly

with the gold labels), T is 5 (system makes 5 predictions), and G is 5 (there are totally

5 entities in the gold data). Therefore, the precision and the recall are 1{5 “ 20%.

Hence the overall F-score is also 20%. After describing the evaluation metrics, now we

can give the related studies done on Turkish NER.

One of the first studies on Turkish NER was conducted by Tür et al. [22]. They

combined four models namely lexical, contextual, morphological and name tag models

to estimate the named entity tag of a word. Firstly, the lexical information using only

word tokens are captured for building the lexical model. Next, in the contextual model,

the contextual information using the surrounding word tokens are captured. Then, the

morphological parses of the words are used to construct a morphological model which

captures the morphological information with respect to the corresponding case and

name tag information. Lastly, the name tag model is employed to capture the name

tag information. All of these models were based on Hidden Markov Model (HMM).

They evaluated their system with respect to the MUC metrics [1, 7] and reported an

F-score performance of 91.56% on the general news domain with ENAMEX type.

Tatar and Çiçekli [23] developed an automated rule learning system for named

entity recognition in Turkish. Similar to [22], they exploited lexical, morphological,

contextual and orthographic features in their study. As the lexical features, unlike

the work in [22], they provided gazetteer information of words to the system. They

used two level gazetteer hierarchy: the first level in the hierarchy corresponds to each
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named entity class (e.g. Person, Location and so on) and the second level in the

hierarchy details the gazetteer categorization (e.g. Location.Country, Location.City

and so on). As the morphological features, morphological parses of the words are fed

to the system. The information captured in the neighboring text of the named entities

is used by the system as contextual features. As the orthographic features, they used

the following four feature classes: Capitalization (Lower, Upper, Proper, Unclassified),

Length Class (Short, Middle, Long), Length (the length of the token), and Type Class

(Alpha, Numeric, Alphanumeric, Punctuation, Unclassified). They evaluated their

system on a specific domain of text, namely on terrorism news, using the MUC metric

with ENAMEX and TIMEX entity types and reported 91.08% F-score.

Yeniterzi employed word-level and morpheme-level models based on CRF [24].

The former model is the standard sequence of words representation, whilst the latter

one represents morphological features of a word as states as well, in addition to its

root. The word-level model looks at the word itself, its root form, its part-of-speech

tag, whether it is proper-noun or not and whether its initial letter is uppercase or not.

The morpheme-level model take the following features into account: the actual root

of the word and the morphemes of the word, the part-of-speech tag of the root and

the morphological tag of the morphemes, the proper-noun and the case feature of the

word. Yeniterzi [24] evaluated these models using the CoNLL metric with the training

set of the data set used in [22]. She reserved the 10% of this data for testing and used

the rest for training her models. She obtained an F-score performance of 88.71% with

word-level model and 88.94% with morpheme-level model.

Finally, the state-of-the-art work for Turkish NER was introduced by Şeker and

Eryiğit [16]. They also employed CRF to build up the NER model by exploiting mor-

phological, lexical, and gazetteer look-up features. As for the morphological features,

the following are taken into account: stem of the word, part-of-speech tag of the word,

all inflectional tags, the information that whether the word is nominal or not, and

whether the word is proper noun or not. In addition to case features that give the

information about lowercase and uppercase letters of the token, a binary feature is also

used to indicate whether the current token is the beginning of a sentence or not as the
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lexical features. Gazetteer look-up feature simply looks whether the current word is

included in previously prepared gazetteer lists or not. The training and test sets used in

their work are exactly the same with Yeniterzi [24]. They evaluated their system using

both the MUC and CoNLL metrics and reported an F-score performance of 89.59%

without gazetteers and 91.94% with gazetteers in CoNLL metric. They achieved an

F-score of 92.83% without gazetteers and 94.59% with gazetteers in MUC metric.

2.3. Czech NER

Most work on Czech NER differs from traditional NER tasks because the most

widely used corpus, which is the publicly available Czech Named Entity Corpus (CNEC)

prepared by Ševćıkova et al. [25], is tagged in a hierarchical manner. In this type of

annotation, a named entity belongs to a supertype and a type that results in different

evaluation metrics. Below are descriptions of the three metrics used commonly in most

of the Czech NER studies[17].

(i) Structured metric: In this metric, one can measure the performance of a system

with any of the following three tasks:

• Span recognition: In this task, the purpose is to find the spans of named

entities. Recognizing their types is not tackled.

• Supertype recognition: Here, the supertypes of named entities are considered

and their spans are neglected.

• Type recognition: Similar to supertype recognition, the span of an entity is

neglected in this metric too. The motivation in this task is to find types of

named entities.

(ii) Word by word metric: In this metric, each word is treated as a self-standing unit

with supertype and type of it are considered together as one tag. When a named

entity contains an embedded entity, the embedded entity takes the tag of the

outer entity.

(iii) CoNLL metric: Although this metric was explained in the previous section, it is

useful to describe it for Czech NER as well due to the hiearchical structure of the

data set. In this case, similar to general usage, both the span and the supertype
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should be correct. This means that if an entity consists of more than one word,

type or supertype of an embedded entity is not important but the supertype of

the phrase is considered to be important.

One of the first studies on Czech NER was done by Ševćıkova et al. [25]. As the

learning algorithm, they used decision trees. To construct the NER model, they used

a large set of features including capitalization pattern, lemma and part-of-speech tag

of a token, contextual features that look at surrounding tokens, etc. They evaluated

their system with CNEC corpus using structured metric and reported an F-score of

75% for span recognition, 68% for supertype recognition and 62% for type recognition

tasks.

Kravalová and Žabokrtský [26] developed a NER system by employing support

vector machines (SVM). They exploited morphological (part-of-speech tag, gender,

case and number), capitalization, gazetteer, lexical (lemma) and contextual (mentioned

features of preceding and succeeding tokens) features to build up the NER model. For

the evaluation, they used structured metric and achieved an F-score of 76% for span

recognition, 71% for supertype recognition and 68% for type recognition tasks on CNEC

corpus.

Maximum entropy based NER for Czech is introduced by Konkol and Konoṕık

[27]. They used a number of features similar to [26] to train the NER model such as

morphological (part-of-speech tag, case, number and gender), lexical (lemma), capital-

ization, gazetteer, contextual (mentioned features of preceding and succeeding tokens)

features and so on. They evaluated their system with CNEC corpus using word by

word metric and reported an F-score of 72.94%.

Král [28] developed a NER system by employing CRF. He exploited a number of

language independent and language dependent features to build the NER model. Lan-

guage independent features include word itself, its prefixes and suffixes, word length,

previous tag, prefixes and suffixes of neighbouring words and so on. As the language

dependent features, gazetteer lists, lemma, part-of-speech tag, etc. are utilized. He
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adopted a variant of CoNLL metric to evaluate his system on CNEC corpus and

achieved an F-score of 58.4%.

Another maximum entropy based NER system is developed by Straková et al

[29]. The classification features make use of the followings: form, lemma, part-of-

speech tag of current word and neighbouring words in window˘2, orthographic features

(capitalization, punctuation, lowercase and uppercase form of the word), prefixes and

suffixes of length 4, regular expressions identifying possible year, date and time and

gazetteer lists. For the evaluation, they used structured metric and reported an F-score

of 86.83% for span recognition, 82.82% for supertype recognition and 79.23% for type

recognition tasks on CNEC corpus.

Konkol and Konoṕık [17] build another NER system based on CRF. They utilized

a number of language independent and language dependent features such as lemma,

affixes, surrounding tokens, capitalization pattern, bi-gram language model, gazetteer

lists, etc. Although, their system was designed to perform well in flat named entities,

which corresponds to an evaluation with CoNLL metric, rather than hierarchical ones,

they evaluated their system using all the metrics in order to be comparable with pre-

vious works. They achieved an F-score of 79% in supertype recognition task, 75.61%

in word by word metric and 74.08% in CoNLL metric.

Among these studies, Straková et al. [29] and Konkol and Konoṕık [17] held

state-of-the-art results. However, only Konkol and Konoṕık [17] evaluated their system

according to the CoNLL metric. Therefore, we choose work of Konkol and Konoṕık

[17] as the baseline in our study.
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3. SEMI-SUPERVISED LEARNING BASED MODEL FOR

NER

Our neural network based system consists of two stages. The first stage makes use

of a huge amount of unlabeled data, whereas the second stage uses a rather restricted

amount of labeled data. This kind of learning is called semi-supervised learning due to

the fact that it makes use of both labeled and unlabeled data. The following subsections

describe the details of our system.

3.1. Unsupervised stage

The main feature used by our NER model is the continuous word representations

learned in the unsupervised stage. Therefore, it is important for our method to learn

good vector representations of words, which map semantically similar words close to

each other in the continuous vector space.

In order to obtain the continuous space vector representations of words, we used

the publicly available implementation of Mikolov et al. [3], word2vec1 , since it is

much faster than the methods proposed by Bengio et al. [21] and Collobert et al. [15].

Most of the complexity in the work of Bengio et al. [21] and Collobert et al. [15]

is introduced by the non-linear hidden layer in their models. Although this is what

makes their models strong, it has the drawback of the long training times to obtain the

vector representations of words, which restricts the amount of unlabeled data that can

be used. Due to the fact that the non-linear hidden layer is removed and the projection

layer is shared for all words in the architecture of Mikolov et al. [3], we were able to

train our model with a huge amount of unlabeled data. Benefiting from large amounts

of data is important, since as the amount of data increases, the obtained feature vectors

of words become more representative [3].

Among the techniques described in Mikolov et al. [3], we used the continuous

1https://code.google.com/p/word2vec/
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Figure 3.1. Architecture of the Skip-gram model that is employed to learn continuous

vector representation of words [3]. Initially, words are mapped to random

d-dimensional vectors. Then, each current word is fed to the log-linear classifier and

representation of words that are neighbor of the current word are predicted.

Skip-gram model since it has been shown to be more successful at obtaining semantic

representations of words [3]. In this architecture, the objective is to maximize the

classification of a word according to the other words in the same sentence. Initially,

words are mapped to random vectors of a specified dimension. Next, each current

word is fed to a log-linear classifier with a projection layer. Then, representation of

words that are neighbor of the current word are predicted. To be more formal, given a

sequence of words, w1, w2, . . . , wT , the goal of the Skip-gram model is to maximize the

average log probability

1

T

T
ÿ

t“1

»

—

–

k
ÿ

j“´k
j‰0

log ppwt`j|wtq

fi

ffi

fl

(3.1)

where k is the size of the predefined range. Given a word, the inner summation com-

putes the sum of the log probabilities of the previous and next k words to it. The

outer summation repeats this for all words. In the Skip-gram model, every word w is

associated with a learnable input and an output vector, uw and vw respectively. The
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probability of word wi given word wj is defined as [30]

ppwi|wjq “
exppuTwi

vwj
q

řV
l“1 exppuTl vwj

q
(3.2)

where V is the number of words in the vocabulary. The cost of computing the gradient

of this formula is expensive since it is proportional to the number of words in the

vocabulary which is typically a large number. Therefore, instead of the full softmax,

the hierarchical softmax [31] is employed that logarithmically reduces the complexity

of computing log ppwi|wjq. In the hierarchical softmax, the output layer is represented

with a binary tree with the V words as its leaves. It defines the probability of a word

w given word wg as follows [30]

ppw|wgq “

Lpwq´1
ź

j“1

σpvnpw, j ` 1q “ chpnpw, jqqw ¨ unpw,jq
Tvwgq (3.3)

where σpxq is the logistic function, npw, jq is the jth node on the path from the root

to word w, Lpwq is the length of this path and vxw is 1 if x is true and -1 otherwise.

It can be shown that
řV

w“1 ppw|wgq “ 1 [30]. In this formulation, every inner node n

of the tree has one representation un and each word w has one representation vw. The

cost of computing the gradient in this case is proportional to Lpwq whose upper bound

is log V . The model is trained using stochastic gradient descent and backpropagation

is used for computing the gradient.

As the ranges or dimensions of vectors increase, the quality of the resulting vectors

increases as well as the complexity. For our task, we chose the dimension as 200 and

the range as 5, that is the representation of the previous and the next two words are

predicted from the current token. The architecture we used is shown in Figure 3.1.

Using the Skip-gram architecture with a huge amount of unlabeled data in Turk-

ish and Czech, we got the continuous space vector representations of words for both

languages. By using the word2vec tool, we examined sample words and their closest

neighbours in the vector space. We observed that the nearest neighbours are highly
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related semantically to the queried words. Sample words in Turkish and their seven

nearest neighbours in the vector space are shown in Table 3.1. The first words in

columns 1 and 2 are person names in Turkish, and our model lists seven other person

names as their nearest neighbours in the vector space. The first words in columns 3 and

4 are location names, “elazığ” is a city in Turkey and “ingiltere” (England) is a country

name. The seven closest neighbours to “elazığ” are also cities in Turkey and the closest

neighbors to “ingiltere” are also country names in Turkish. The first words of columns

5 and 6 are organization names, and organization entities are brought by our model

as the nearest neighbours. Finally, the first word of the last column, “klarnet” is the

name of a musical instrument (clarinet) and all of the seven closest neighbours to it

are also names of musical instruments.

ahmet ayşe elazığ ingiltere huawei dell klarnet

(name) (name) (city) (england) (org.) (org.) (clarinet)

osman zeynep çorum italya zte toshiba keman

(name) (name) (city) (italy) (org.) (org.) (violin)

mehmet necla erzurum almanya ericsson lenovo çello

(name) (name) (city) (germany) (org.) (org.) (cello)

ismail zeliha mardin fransa ibm nokia trompet

(name) (name) (city) (france) (org.) (org.) (trumpet)

ali hatice bitlis hollanda cisco samsung viyolonsel

(name) (name) (city) (holland) (org.) (org.) (violoncello)

mustafa fatma yozgat belçika fujitsu microsoft kontrbas

(name) (name) (city) (belgium) (org.) (org.) (contrabass)

cafer elif sivas ispanya lenovo apple akordeon

(name) (name) (city) (spain) (org.) (org.) (accordion)

salih filiz gümüşhane isveç nokia ibm flüt

(name) (name) (city) (sweden) (org.) (org.) (flute)

Table 3.1. Example words in Turkish and their seven closest neighbors.

The results in Table 3.1 show that semantically similar words in natural language

are placed close to each other in the vector space. This is a very useful feature, especially
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for NER, where the semantic roles of words have important effects on distinguishing

the named entity classes.

In addition to learning word representations, we also investigated the impact of

incorporating word clustering to our NER system. We utilized the word2vec tool to

cluster the resulting vector representations of the words using the k-means algorithm,

and included the computed cluster ids of the words as additional features to our final

NER system. Interestingly, these word vector clusters, which have not been used for

NER before, led to improvement in performance.

3.2. Supervised stage

The supervised learning stage is where the NER models are formed. Since the

features incorporated to form a model determine the quality of the resulting system,

researchers tend to use language dependent features to increase the performances of

their systems. The current state-of-the-art NER systems developed for morphologically

rich languages are also usually based on manually designed features that utilize the

language specific morphological analysis of the text. Although this approach usually

improves the performance of a system due to the usage of linguistic knowledge, it is

not portable and cannot be easily applied to different languages. In this study, we

refrained from employing such engineered features. Instead, we restricted ourselves to

only language independent features. In the following two subsections, we will explain

the learning algorithm we employed and the features we exploited to construct our

NER models.

3.2.1. Averaged Multiclass Perceptron

In order to train our models, we used the publicly available neural network im-

plementation of Ratinov and Roth[32]2 , where the model and the features are specified

with the LBJ [33]. In their work, they implemented a regularized averaged multiclass

perceptron [34]. Let us now explain the algorithm briefly.

2http://cogcomp.cs.illinois.edu/Data/ACL2010 NER Experiments.php
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The basis of averaged multiclass perceptron is the classical perceptron algorithm

invented by Rosenblatt [35]. Perceptron is a simple algorithm and allows for online

learning, that is it can processes instances in the training set one at a time. The online

perceptron algorithm initializes the weight vector, w “ rw1, . . . , wds
T , to all zeros. The

label of a new instance xt “ rx1, . . . , xds
T is predicted to be ŷt “ signpwTxtq. If this

prediction is false, the weight vector w is updated to w “ w ` ηpytxtq, where η is the

learning rate. If the prediction is correct then w stays as before. Then the same process

is applied to the next example. Note that labels, yt, are assumed to be in t´1,`1u.

The algorithm is run again and again through the training set until a weight vector is

found that satisfies a predefined stopping criteria.

Similar to other techniques for training linear classifiers, the perceptron algorithm

can be used for multiclass classification as well [36]. Like classical perceptron, online

learning can be performed in this case too. On each round t, the algorithm predicts a

label out of k possible labels from an instance vector xt P Rd. In each run, the aim of

the algorithm is obviously to minimize the number of prediction errors M , where:

M “

T
ÿ

t“1

1rŷ ‰ ys . (3.4)

Note that 1rP s is 1 if predicate P is true and 0 otherwise. The prediction ŷ is defined

to be:

ŷ “ arg max
jPrks

pWxqj , (3.5)

where W P Rkˆd is the weight matrix and pWxqj is the jth element of the vector

obtained by multiplying the weight matrix W with the instance vector x.

The performance of weight matrix W on an example pxt, ytq is determined by

checking whether W predicts yt correctly or not. After each round, the algorithm

may update its parameters in order to predict following instances more accurately. In

the beginning, the multiclass perceptron initializes weight matrix to all zeros, that is
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W 1 “ 0. Then, it updates the weight matrix as follows:

W t`1
“ W t

` ηU t , (3.6)

where U P Rkˆd is defined by

U t
r,j “ xt,jp1ryt “ rs ´ 1rŷ “ rsq . (3.7)

This means that if the algorithm predicts the label correctly, then no update is applied

to weight matrix, W . However, if it predicts false, the weight matrix W is updated

as follows: xt is added to the ytht row and subtracted from the ŷtht row of the W .

After training, the weight matrix is stored and used to predict the label of instances

during test. The prediction is again based on equation 3.5. The multiclass perceptron

network is shown in Figure 3.2, where a d dimensional input vector is assigned to one

of k possible classes.

In order to achieve better generalization, some modification to the classical per-

ceptron algorithm is proposed in [34]. In the classical approach, only the last weight

Figure 3.2. k-class perceptron where xj, j “ 1, . . . , d represent the inputs,

yi, i “ 1, . . . , k represent the outputs and Wij represent the weight of the arrow from

input xj to output yi. Inputs are multiplied with the corresponding weights and then

summed to give outputs. The maximum of outputs will be chosen to be the predicted

class.
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parameters are stored and used during tests. To see the drawback of this method, sup-

pose a perceptron learns a good weight matrix during training and predicts training

instances correctly. Thus, it does not update its weight parameters. However, suppose

further that when it reaches the last instance of the training, it makes a false pre-

diction and therefore updates its parameters. The update on this last example ruins

the weight vectors of correct and estimated classes that have done well so far. But, it

would be nice if previously found weight vectors were somehow not lost. In order to

benefit from previous weight parameters, different approaches are proposed including

voted and averaged perceptrons [34]. Since avereaged perceptron is used in our study,

let us only give the details of averaged perceptron.

Averaged multiclass perceptron is very similar to standard multiclass perceptron.

However, in this case, a weight matrix Wavg P Rkˆd is also maintained. Wavg is ini-

Data: Training data T “ tpxt, ytqu
|T |
t“1, learning rate η and number of epochs

N

Result: Learned averaged weight matrix Wavg

W ð 0;Wavg ð 0;

for n “ 1 to N do

for t “ 1 to T do

ŷ ð arg maxjpWxtqj;

if ŷ ‰ yt then

Wyt ð Wyt ` ηxt;

Wŷ ð Wŷ ´ ηxt;

end if

Wavg ð Wavg `W ;

end for

end for

Wavg ð Wavg{pN ˆ T q;

return Wavg;

Figure 3.3. Averaged multiclass perceptron algorithm.
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tialized to zero at first and after each iteration the weight matrix is added to it. After

training, Wavg is divided by the total number of iterations to give the average of all

weight matrices found during training. Wavg is then stored instead of the last weight

matrix and used during tests. The procedure is shown in Figure 3.3 (Note that Wk

represents kth row of W ). During training, after each epoch over the training set, we

measured the performance of the model. When the performance stayed same for 10

epochs, we stopped the training. As the learning rate, we defined η to be 0.1.

3.2.2. Training NER Models

In our framework, we did not change the architecture of Ratinov and Roth [32],

but added some extra features. We exploited both local and non-local features to

develop our models. These features are explained below.

(i) Local features: As the name suggests, features related to the neighbor of the

current token, xi, are considered in this case.

• Context: The tokens in the window of size two ci “ pxi´2, xi´1, xi, xi`1, xi`2q

• Previous tags: Named entity tag prediction of the previous three tokens

• Type information: Type information of the window ci, i.e. is-capitalized,

all-capitalized, all-digits, is-alphanumeric, and contains-apostrophe.

• Prefixes: First three and four characters of xi if it contains that many char-

acters

• Suffixes: Last one, two, three and four characters of xi if it contains that

many characters

• Word representations: Vector representation of each element in the window

ci

• word2vec clusters: We investigated the contribution of word2vec clusters

and tried different numbers of clusters to obtain the best performance im-

provement. Finally, we found that 2000 and 256 clusters suit best for the

Turkish and Czech NER tasks, respectively. We used the cluster id of each

element in the window ci.

(ii) Non-local features: In this case, sentence boundaries are ignored and global de-
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pendencies are considered.

• Context aggregation: The tokens that are the same as the current token

within a window of size 200 are investigated. The context features of each

of these tokens are aggregated [32].

• Extended prediction history: Tag predictions of the tokens that are the same

as the current token within the previous 1000 words are investigated. Then,

the tag distribution of the token is used as a feature [32].

When using the lexical features, we normalized the numbers as in the work of

Turian et al. [14]. To illustrate, 2014 is represented as *DDDD* and (0212) 153 69

74 is represented as (*DDDD*) *DDD* *DD* *DD*. This normalization enables us

to achieve a degree of abstraction to numeric expressions such as years and phone

numbers.

Besides the features used, the representation of the named entities also affects the

performance of a NER system. Among the alternative encoding schemes, such as BIO

and BILOU, we used BILOU as the representation scheme, since it has been shown to

perform better than the BIO representation [32].

In the BILOU representation scheme, see Figure 3.4, a named entity that has

multiple tokens is encoded as Beginning, Inside and Last, and as Unit if it has one

token. If the token is not a named entity it is encoded as Outside of any type of named

entity. During testing, after tagging with respect to the BILOU scheme, the tags are

Mr.(O) Dooner(PERSON_U) met(O) with(O) Martin(PERSON_B) Puris(PERSON_L) ,(O) president(O)

and(O) chief(O) executive(O) officer(O) of(O) Ammirati(ORGANIZATION_B) &(ORGANIZATION_I)

Puris(ORGANIZATION_L) ,(O) about(O) McCann(ORGANIZATION_U)’s(O) acquiring(O) the(O) agency(O)

with(O) billings(O) of(O) $400(MONEY_B) million(MONEY_L) ,(O) but(O) nothing(O) has(O)

materialized(O) .(O)

Figure 3.4. Annotation of the example sentence shown in Figure 1.1 with BILOU

representation. The named entity tag category of each token is indicated inside

parentheses.
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Mr.(O) Dooner(PERSON_B) met(O) with(O) Martin(PERSON_B) Puris(PERSON_I) ,(O) president(O)

and(O) chief(O) executive(O) officer(O) of(O) Ammirati(ORGANIZATION_B) &(ORGANIZATION_I)

Puris(ORGANIZATION_I) ,(O) about(O) McCann(ORGANIZATION_B)’s(O) acquiring(O) the(O) agency(O)

with(O) billings(O) of(O) $400(MONEY_B) million(MONEY_I) ,(O) but(O) nothing(O) has(O)

materialized(O) .(O)

Figure 3.5. Annotation of the example sentence shown in Figure 1.1 with BIO

representation. The named entity tag category of each token is indicated inside

parentheses.

converted to BIO tags, see Figure 3.5. That is, the tokens tagged as U and L are

changed to B and I, respectively. This is required for using the standard performance

evaluation method of CoNLL.

To be more concrete, let us give an example sentence and show the features

we used on it. Assume that we are going to label the following sentence: “Boğaziçi

University is located in İstanbul.” and there are only three categories of entities, namely

person, organization and location. Assume further that the system has already made

predictions for the first three words, B-ORG for Boğaziçi, L-ORG for University and

O for is. Now, the system is going to predict the tag of located. Let’s call the current

word as xt, its word representation as wt “ rw1, . . . , wds
T , its cluster id as it and its

tag as yt. Then each feature for “located”, xt, will be as follows:

• Context: (xt´2: university, xt´1: is, xt: located, xt`1: in, xt`2: istanbul)

• Previous tags: (yt´3: B-ORG, yt´2: L-ORG, yt´1: O)

• Type information: (is-capitalized: false, all-capitalized: false, all-digits: false,

is-alphanumeric: true, contains-apostrophe: false)

• Prefixes: (first three character of xt: loc, first four character of xt: loca)

• Suffixes: (last one character of xt: d, last two character of xt: ed, last three

character of xt: ted, last four character of xt: ated)

• Word representations: (wt´2, wt´1, wt, wt`1, wt`2)

• word2vec clusters: (it´2, it´1, it, it`1, it`2)

• Context aggregation: Assume there is only one same word with xt in the window
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of size 200 and it passes 15 tokens after it in the following sentence: İstanbul is

located on two continents. So, the feature vector is (xt`13: istanbul, xt`14: is,

xt`15:located, xt`16: on, xt`17: two)

• Extended prediction history: The tag distribution of xt by searching xt in previous

1000 tokens, assume it is computed to be (PER: 0.1, ORG: 0.1, LOC: 0.1, O: 0.7)

These feature vectors are concatenated and fed to the averaged perceptron to predict

the named entity tag of “located” as shown in Figure 3.2. Note that discrete variables

with three or more possible values are encoded using 1-of-N encoding. To illustrate,

let’s say we have only 4 alternatives for a type of feature that are usb, mouse, keyboard

and monitor. Then, their encoding will be as follows: 1000, 0100, 0010 and 0001.

However, since the system may encounter an unknown feature during testing, which

it has not seen in the training, we need to consider an encoding for unknown features

as well. Therefore, the final encoding will be: 10000, 01000, 00100, 00010 and 00001,

where the first four ones are for the known features and the last one is for unknowns.

The performance of our model and the contribution of each feature to the model

are presented in the experiments and results chapter.
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4. DATA SETS

In this section, we provide the details of the unlabeled and labeled data sets that

we used for training and testing our system.

4.1. Turkish data sets

In the unsupervised stage, we used data collected from several Turkish news

sites. We tokenized the data by using the publicly available zemberek3 tool and then

lowercased it. By lowercasing, we aimed to limit the number of words. The data that

we used in this stage contain 63.72M sentences that correspond to a total of 1.02B

words and 1.36M unique words.

In the supervised stage, we used the data set prepared by Tür et al. [22] which is

the most commonly used one for evaluating Turkish NER systems including the state-

of-the-art system proposed by Şeker and Eryiğit [16]. It is partitioned into training

and test sets, that contain 450K words and 50K words, respectively. This data

set is annotated according to the ENAMEX tags, that is, it contains person (PER),

location (LOC) and organization (ORG) entities. An example sentence from the data

set is shown below (It means: Brazilian artist Tania Maria, who is a vocal and piano

virtuoso, will give the festival’s opening concert in İstanbul).

Festival ’in <b_enamex TYPE="LOCATION">_Istanbul<e_enamex> ’daki

açılış konserini vokal ve piyano virtüözü Brezilyalı sanatçı <b_enamex

TYPE="PERSON">Tania Maria<e_enamex> yapacak

Number of entities in the training and test sets are shown in Table 4.1. It is worth

noting that no matter an entity consists of only one token or more, it is counted as one

since the CoNLL evaluation task consider phrases and not tokens.

3https://github.com/ahmetaa/zemberek-nlp
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Table 4.1. Number of entities in the Turkish data set.

Train Test

PER 14481 1594

ORG 9034 864

LOC 9409 1090

4.2. Czech data sets

For the unlabeled data, we used the publicly available data crawled from Czech

news sites provided by the ACL machine translation workshop4 . We tokenized the

data using the Moses tokenizer5 and then applied lowercasing. This data set contains

36.42M sentences corresponding to 635.99M words and 906K unique words.

While training and testing our Czech NER system in the supervised stage, we

used the CNEC 1.1 data set prepared by Ševćıková et al. [25]. It is divided into

training, development, and test sets, which contain 124K, 15K and 15K tokens,

respectively. The number of entities in these sets are shown in Table 4.2. Unlike

the traditional tagging schemes, CNEC is annotated by using two level hierarchical

named entities. The first level is named as supertype and the second level is named as

type. An example sentence from the data set is shown below (It means: It’s a bitter

disappointment and warning for our hockey, but the misery continued even in the duel

with Devils Milan. ).

Pro náš hokej trpké poznánı́ a výstraha , ale trápenı́ pokračovalo i

v souboji s <ic Devils <gu Milán>> .

The first character of a tag determines the supertype of a named entity and the second

character determines its type. In the example sentence, “i” tells us that “Devils Milán”

is an institution name, “c” tells us that “Devils” is a cultural/educational/scientific in-

4http://www.statmt.org/wmt14/translation-task.html
5https://github.com/moses-smt/mosesdecoder/tree/master/scripts/tokenizer
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Table 4.2. Number of entities in the CNEC 1.1 data set.

Train Dev. Test

Addr. 109 23 14

Geo. 2890 399 340

Inst. 2595 322 309

Media 244 34 32

Person 3704 497 472

Time 2384 275 361

Other 2432 321 378

stitution, “g” tells us that “Milán” is a geographical name, and lastly “u” tells us

that “Milán” is a castle/chateau. Although this type of tagging is much more infor-

mative than the traditional ones, it leads to different types of evaluation approaches.

Therefore, we used the transformed version of this data set prepared by Konkol and

Konoṕık [17]. The original corpus used 10 supertypes and 62 types, whilst the trans-

formed corpus uses only 7 supertypes. These are as follows: address (Addr.), geography

(Geo.), institution (Inst.), media, person, time and other (for miscellaneous named en-

tities). This transformation aims to make the data set compatible with the CoNLL

evaluation metric, so that the results become comparable with other systems.
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5. EXPERIMENTS AND RESULTS

In this chapter, we present the performance of our system and compare the results

with the state-of-the-art studies. For the sake of demonstration of our final system,

we prepared a simple web interface where a user can enter a text and see the named

entities in the text found by our system6 . A screenshot from the web interface with

an example Turkish sentence tagged by our system is shown in Figure 5.1.

Figure 5.1. An example Turkish text tagged by our system on our simple web

interface. Blue, yellow and red colors are used for person, organization, and location

entities, respectively.

In the evaluation phase, we first trained our word representations. Then, we

trained our NER models using these word representations. The first stage took around

1 hour for Turkish words and 30 minutes for Czech words due to the different sizes

of the corpora for these languages. In the second stage, training a NER model for

a language took around 7 hours. All experiments were performed with a computer

having 16 GB RAM and Intel Core i7 processor.

In order to explore the contribution of each feature we used, we trained six differ-

ent models for each language. We chose context features to be the base and added each

feature to it. The results are evaluated with respect to the CoNLL metric and shown in

6We thank Erdem Orman for his contributions to the implemention of the web interface.
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Table 5.1. The first row corresponds to the results obtained when only the context

features are used in Turkish NER. Each successive row shows the performance of the

corresponding feature combined with the context features.

Features PER ORG LOC Overall

Context features 81.65 74.96 88.43 82.21

Previous tags 84.84 78.86 89.23 84.84

Word type 88.49 78.85 89.32 86.43

Affixes 83.04 76.82 87.96 83.10

Word represent. 91.24 79.95 90.50 88.28

word2vec clusters 88.73 77.03 89.43 86.15

Table 5.2. The first row corresponds to the results obtained when only the context

features are used in Czech NER. Each successive row shows the performance of the

corresponding feature combined with the context features.

Features Addr. Geo. Inst. Media Other Person Time Overall

Context features 22.22 56.18 29.88 34.04 50.14 40.59 86.42 53.70

+ Previous tags 33.33 56.51 36.65 37.50 58.13 45.31 88.24 58.36

+ Word type 25.00 61.04 37.44 40.82 48.78 61.69 87.34 59.84

+ Affixes 23.53 61.49 33.52 36.74 49.59 54.39 85.60 57.45

+ Word represent. 35.29 69.25 46.26 42.31 51.58 66.25 88.98 64.72

+ word2vec clusters 22.22 64.07 37.62 42.31 51.25 58.23 88.46 60.53

Table 5.1 and Table 5.2. The first rows in the tables correspond to the results obtained

when only the context features are used. Each successive row shows the performance

of the corresponding feature combined with the base feature. These experiments show

that the order of importance of each feature to NER performance seems to be parallel.

We think that this is because both languages are similar in terms of their morphol-

ogy. The results indicate that the word representation feature contributes most and

the word2vec clusters feature, which has not been tried for NER before, contributes

remarkably.

We also examined the cumulative contribution of features. The results are shown

in Table 5.3 and Table 5.4. The first rows in the tables correspond to the results

obtained when only the context features are used. Each successive row shows the
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Table 5.3. The first row corresponds to the results obtained when only the context

features are used in Turkish NER. Each successive row shows the performance

obtained after including the corresponding feature to the model cumulatively.

Features PER ORG LOC Overall

Context features 81.65 74.96 88.43 82.21

+ Previous tags 84.84 78.86 89.23 84.84

+ Word type 91.45 82.45 90.17 88.94

+ Affixes 92.26 83.53 90.73 89.73

+ Word represent. 94.36 85.51 92.61 91.71

+ word2vec clusters 94.69 85.78 92.40 91.85

Table 5.4. The first row corresponds to the results obtained when only the context

features are used in Czech NER. Each successive row shows the performance obtained

after including the corresponding feature to the model cumulatively.

Features Addr. Geo. Inst. Media Other Person Time Overall

Context features 22.22 56.18 29.88 34.04 50.14 40.59 86.42 53.70

+ Previous tags 33.33 56.51 36.65 37.50 58.13 45.31 88.24 58.36

+ Word type 44.44 61.13 44.52 47.83 60.09 65.59 88.86 64.68

+ Affixes 44.44 67.14 48.00 44.00 62.99 70.31 90.27 68.38

+ Word represent. 33.33 76.77 64.18 53.85 64.82 80.36 89.90 75.52

+ word2vec clusters 33.33 76.03 62.86 54.90 65.81 81.39 89.96 75.61

performance obtained after including the corresponding feature to the model in the

previous row. Since previous tag, word type and affix features are disjoint, they con-

tribute as much as they did to the base feature. However, this is not the same for word

representation feature. This is because it learns a part of these features as well.

The comparison between our system and the state-of-the-art system for Turkish

[16] is given in Table 5.5. In Şeker and Eryiğit [16], CRF is employed as the learning

algorithm. In addition to some language independent features, a number of language

dependent features are also used. To be more precise, the stems of words, their part of

speech tags, all inflectional features of the tokens, and information whether a token is a

proper noun or not, are used. Including these language dependent features resulted in

an F-measure of 89.59% in CoNLL metric without using gazetteers, and an F-measure
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Table 5.5. Comparison of our system with the state-of-the-art Turkish NER.

System PER ORG LOC Overall

Şeker and Eryiğit, (2012)

without gazetteer

90.65 86.12 90.74 89.59

Our final system 94.69 85.78 92.40 91.85

Table 5.6. Comparison of our system with the state-of-the-art Czech NER.

System Addr. Geo. Inst. Media Other Person Time Overall

Konkol and

Konoṕık, (2013)

58.33 77.37 67.02 39.13 55.96 82.29 86.68 74.08

Our final system 33.33 76.03 62.86 54.90 65.81 81.39 89.96 75.61

performance of 91.94% with gazetteers. Gazetteers are simply sets of lists containing

names of entities such as people, locations, organisations, time expressions and so on.

They are shown to increase performance of NER systems and exploited as follows:

Each gazetteer list is designed to contain one type of entities. Next, boolean features

indicating whether the word is found in each of these lists or not are attained [15].

Then, gazetteer features along with other features are used to develop a NER model.

While predicting the named entity tag of a word, it is possible to use gazetteer feature

of previous and next words to the current word as well [14]. Our system outperforms

these results without using any language dependent features, when gazetteers are not

included7 .

We also compared our system with the state-of-the-art Czech NER system [17].

The comparison is shown in Table 5.6. In fact, both Straková et al. [29] and Konkol

and Konoṕık [17] hold state-of-the-art results for Czech NER. However, only Konkol

and Konoṕık [17] evaluate their system according to the CoNLL metric. Therefore, we

were able to compare our system with theirs. They report an F-score performance of

74.08% with gazetteers. As the learning algorithm, they used CRF. Their approach

includes some language dependent features such as word lemmas obtained by language

7We were not able to make a comparison of our system with the gazetteer feature added, since the
gazetteers used in Şeker and Eryiğit [16] are not publicly available.
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specific morphological analysis and gazetteer lists. It is worth noting that our system

does not use any gazetteers and still outperforms their approach with an F-score of

75.61%.

The number of entities in the training sets are not distributed uniformly, see

Table 4.1 and Table 4.2. Analyzing the training set sizes for each tag suggests that

the performance of our system is relatively lower when there is less training data, as

expected. For instance, there are only 109 Address tags in the Czech training set

but over 2000 Time tags. This is one possible reason why Address tag perform worse

compared to Time tag. In addition to this, the test sizes for the Address and Media tags

are 14 and 32 respectively, which make their performance evaluation fragile. Therefore,

results obtained for these classes of entities may possibly not represent the quality of

the model.
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6. CONCLUSIONS AND FUTURE WORKS

In this study, we investigated using semi-supervised learning based on distributed

word representations and neural networks for NER in morphologically rich languages.

First, we learned continuous space vector representations of words from a huge amount

of unlabeled data collected from a number of news sites. Then, by using these vector

representations of words and additional features extracted from the data, we trained

an averaged perceptron using labeled data sets to learn NER models for Turkish and

Czech, which are highly inflectional morphologically rich languages. Finally, we evalu-

ated our method using the CoNNL metrics and compared our results with the state-of-

the-art systems proposed for Turkish and Czech, which make use of language-specific

morphological analysis. We showed that utilizing the continuous vector space represen-

tations of words in a semi-supervised setting is a powerful approach for NER, and can

result in state-of-the-art performance without using any language dependent features

for morphologically rich languages. Therefore, we believe, this approach can be easily

applied to other languages.

The task of sentiment analysis draws high attention both from academia and

industry. Recognizing named entities is an important subtask of sentiment analysis

since the sentiment of a text can be attributed to companies, organizations or people.

Therefore, adapting the proposed system to the social media domain and evaluating

its performance, e.g. on Twitter data, would be a nice extension to this study.

In this study, we restricted ourselves to consider language independent features

only. However, language dependent features may be exploited as well. Thus, a potential

improvement to this study would be to investigate whether the performance of the

proposed system can be further improved by incorporating language-specific features

and gazetteers.

Although the perceptron algorithm is old and simple, it has proven to be suc-

cessful in many practical problems [36]. However, its decision boundaries can only be
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linear. This restricts the algorithm to only linearly solvable problems. Therefore, an-

other potential direction for improvement would be to employ a multilayer perceptron

in the supervised stage. Multilayer perceptron is a modification of the standard linear

perceptron and can distinguish data that are not linearly separable. Hence, it may

result in better performances than the linear perceptron used in this study.
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