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ABSTRACT

FACILITY LAYOUT PROBLEM UNDER UNCERTAINTY

The facility layout problem has usually been treated as a deterministic problem

and uncertainty regarding the problem parameters has seldom been addressed. In this

study, the aim is to investigate different ways of dealing with uncertainty to design a

facility layout which attains robust and efficient performance under all possible scenar-

ios. For this purpose, seven mathematical models based on the Quadratic Assignment

Problem (QAP) formulation have been developed. These formulations cover alternative

methodologies existing in stochastic and robust optimization literature such as mini-

mizing maximum cost, expected cost, maximum regret and p-robustness as well as new

approaches that combine them in different ways. The proposed models are solved using

Genetic Algorithms (GA) incorporating operators and local improvement schemes that

are specially selected and adapted for the models. As two of the models involve mul-

tiple objective functions, a Multi-Objective Evolutionary Algorithm (MOEA) has also

been developed. Extensive numerical analysis enables us to compare the performance

of these approaches in terms of robustness metrics and to gain important insights into

ways of treating the uncertainty issue in facility layout problem.
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ÖZET

BELİRSİZLİK ALTINDA TESİS YERLEŞİM PROBLEMİ

Tesis yerleşim problemi genellikle deterministik olarak ele alınmış ve problem

parametrelerindeki belirsizlikler nadiren dikkate alınmıştır. Bu çalışmadaki amaç, tüm

olası senaryolar altında gürbüz ve verimli performans gösteren bir tesis düzeni tasar-

layabilmek için belirsizlikle başa çıkmanın farklı yollarını araştırmaktır. Bu nedenle,

Kareli Atama Problemine (KAP) dayalı yedi matematiksel model geliştirilmiştir. Bu

formülasyonlar, rasgele ve gürbüz eniyileme yazınlarından maksimum maliyet, bek-

lenen maliyet, maksimum pişmanlık, p-gürbüzlük gibi alternatif yöntemleri ve bun-

ların yanı sıra bu yöntemleri farklı şekillerde birleştirmek isteyen yeni yaklaşımları

içermektedir. Önerilen modeller, özel olarak seçilen ve uyarlanan operatörler ve yerel

geliştirme programları içeren Genetik Algoritma (GA) kullanılarak çözülmüştür. Mod-

ellerin iki tanesi çok amaçlı amaç fonksiyonları içerdikleri için, bir Çok Amaçlı Evrimsel

Algoritma (ÇAEA) da geliştirilmiştir. Kapsamlı sayısal analiz, bu yaklaşımların perfor-

manslarını farklı gürbüzlük ölçütleri bazında karşılaştırmak ve tesis düzenlemesi proble-

minde belirsizlik sorununun tedavi yollarını kavrayabilmek için bize fayda sağlamaktadır.
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1. INTRODUCTION

Facility layout decisions are strategically important and difficult to reverse as

their monetary cost consequences may be huge. The effect of the related decisions

lasts for a long time horizon and the environment in which the facility operates might

change drastically. Decision maker has to deal with variability occurring in product

mix and demand quantities.

In spite of this inherent imprecision, the facility layout problem has usually been

treated as a static deterministic problem. The typical design objective is the minimiza-

tion of material handling cost, which is calculated from the product of flow densities

between departments and the distances between candidate locations. This problem is

often formulated as a Quadratic Assignment Problem (QAP) which is also selected as

the facility layout benchmark problem in this thesis.

QAP is one of the most difficult problems in the NP-hard class (Sahni and Gon-

zales, 1976) and it models many real-life problems in several of facilities design and

facilities location problems. During the past decades, several exact and heuristic algo-

rithms have been developed for solving this problem. However, uncertainty regarding

problem parameters has seldom been addressed even though the design parameters are

highly exposed to fluctuations during the long time horizon when layout decisions are

in effect.

Uncertainty can be caused by the lack of accuracy of the input data due to poor

measurements or external factors that have severe effects on the quality of layout design.

In our case, uncertainty and variability might occur in product mix, part routing and

process plans regarding the production amounts and these are all represented in the

flow matrix of the QAP formulation.

Optimization under uncertainty is usually handled as either stochastic optimiza-
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tion or robust optimization. The difference between these two approaches is mainly

based on the fact that in stochastic optimization, uncertain parameters are governed

by probability distributions that are known in advance by the decision maker where

these probability distributions are not necessary or in some cases not available for ro-

bust optimization. In robust optimization, the common attempt is to optimize the

worst-case performance of the system (Snyder, 2006) and the objective is to solve the

optimization problem not only for the nominal solutions but also for the robust optimal

solutions.

The uncertain parameters in both stochastic and robust optimization may be

either continuous or discrete where discrete parameters are defined by using scenario

approach. The scenario approach results in more manageable models and most robust-

ness measures do not require the decision maker to estimate scenario probabilities. In

this thesis, we implement the scenario approach.

The aim of this thesis is to investigate how the inaccuracy of input data affects the

layout design objective in order to design a facility which attains robust and efficient

performance under any possible realization of the uncertain parameters. As the defi-

nition of performing well varies from application to application choosing appropriate

performance measure is a significant part of the modeling process. For this purpose,

several QAP based mathematical formulations have been developed. These formula-

tions cover alternative methodologies existing in stochastic and robust optimization

literature; such as minimizing expected cost, maximum cost, maximum absolute and

relative regret and p-robustness where the first four formulations concentrate on dif-

ferent performance measure and the last approach aims to combine expected cost and

regret concepts.

Furthermore, two multi-objective formulations having different viewpoints are de-

veloped pursing the goal of generating solutions that behaves well in many aspects and

concerns. In the first multi-objective formulation, two of the performance measures are

used together. In the second multi-objective formulation, a totally different approach is
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taken and minimizing the cost of each scenario becomes a separate objective. This is a

natural approach as pointed out by Aissi et al. (2009), however rarely considered in the

robust optimization literature. So our last formulation dwells on the fact that robust

solutions should be in the Pareto front of a scenario-based multi-objective approach

and investigates the relationship among robust optimization and the multi-objective

version. Furthermore, Iancu and Trichakis (2013) remark that worst-case minimization

in robust optimization might lead to “un-optimized” decisions for the non-worst-case

scenarios and we take this into account in our solution procedures.

Proposed mathematical QAP based formulations are solved using a genetic al-

gorithm (GA) to search the optimal or Pareto optimal solutions for our formulations.

Operator and local improvement schemes are specially selected and adapted for our for-

mulations. For the multi-objective formulations, we proposed a multi-objective genetic

algorithm to approximate an efficient frontier in reasonable computation times. The

multi-objective genetic algorithm used in this thesis is developed after investigating

the vast wide approaches in multi-objective evolutionary algorithm (MOEA) literature

and is similar to Non-dominated Sorting Genetic Algorithm-II (NSGA-II) proposed by

Deb et al. (2002). Nevertheless, there are some modifications that address the specific

requirements of our formulations.

Extensive numerical analysis enables us to compare the performance of these

approaches in terms of robustness metrics and to gain important insights into ways of

treating the uncertainty issue in facility layout problem.

The rest of this thesis is organized as follows. Chapter 2 presents a literature re-

view on stochastic and robust optimization, the QAP, GA, multi-objective optimization

and multi-objective genetic algorithms. Chapter 3 presents the seven proposed formula-

tions based on the QAP in detail. In Chapter 4, both single and multi-objective genetic

algorithms developed are explained. Chapter 5 covers the numerical experiments and

comparisons of proposed methods. In the last chapter, Chapter 6, concluding main

findings are pointed and suggestions for future research are provided.
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2. LITERATURE REVIEW

This chapter provides a brief literature survey about the relevant topics with

this thesis. In Section 2.1, facility layout problems under uncertain environment in

literature and classifications of robust optimization methodology and terminology are

discussed. Then, Section 2.2 outlines QAP terminology with the solution techniques

referred. At the end of this chapter, multi-objective optimization literature is covered

in Section 2.3.

2.1. Stochastic and Robust Optimization

Facility layout decisions can be costly and it is difficult to reverse them thus their

impact spans for a long time. However, during this time, some of the parameters may

change rigorously. As a consequence, dealing with uncertainty in layout problems are

very important and various kinds of stochastic and robust optimization performance

measures aim to achieve this goal. To gain knowledge on both optimization paradigms,

books on both methodologies are provided. In Kouvelis and Yu (1997), a framework

for the robust discrete optimization is presented. The efficiency and expected perfor-

mance of robust solutions are discussed. Complexity of the computational results for

the robust formulations of various well-known problems including production planning

problem and assignment problem are illustrated and some solution techniques for these

problems are discussed.

Ben-Tal et al. (2009) explain the importance of handling with data uncertainty

in optimization and indicates this can affect the quality of the solutions severely. They

focus on modeling the robust counterparts of linear programming problems and extend

their finding to more general optimization problems.

A comprehensive survey presented by Beyer and Sendhoff (2007) also review the

current methodology with a detailed investigation on the different approaches in robust
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optimization. It is stated that the main focus in robust optimization researches are

the methods for developing mathematical programming, creating robust counterparts

of nonlinear problems and in the evolutionary algorithms.

For the stochastic programming problems, Shapiro and Dentcheva (2009) present

the modeling and theory of stochastic programming models with concentrating on its

foundations and presenting recent advances in the chosen areas. Modeling issues occur

in stochastic programming are explained in the context of specific models.

There are several articles discussing the uncertainty issue in layout design prob-

lems. The importance of nondeterministic models in the layout problems are also

covered using robust optimization methodology. The notion of robustness and the

robust optimization methodology has been studied by many articles and numerous

different techniques have been applied.

Benjaafar and Sheikhzadeh (2000) analyze facility layout designs under stochastic

environments and develop generalized models of QAP each based on different layout

design methodologies and includes additional allocation and department opening de-

cisions. Their models also involve robustness constraints and their evaluation for the

performances of different types of plant layout alternatives also involves robustness

concerns although, the term flexibility is used instead of robustness terminology.

Norman and Smith (2006) present a formulation for the unequal area facility

block layout problem that takes uncertainty into considering in the problem parameters

where these stochastic uncertain parameters are continuous with predefined probability

distributions.

To the best of our knowledge, robustness notion is first mentioned in a facility

design problem by Rosenblatt and Lee (1987). The model chosen to illustrate the

facility layout problem is QAP although only numerical analysis are shown without

mentioning the formulation. The uncertainty is caused by the fluctuations in the
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amount of produced items and all represented in the flow matrix with different level

each represented under a separate scenario. They have introduced the robustness

approach in a primitive manner and indicating that a solution is considered robust if

it performs well under as many as scenarios possible.

Kouvelis et al. (1992) state the importance of designing a robust facility layout

instead of just minimizing the expected material handling cost and define robustness

as being close to the optimal solution for a wide variety of demand scenarios. They

indicate that it would be unnecessary for a solution to be optimal under any specific

demand scenario and emphasize that knowing the probability of realization of each

scenario is unnecessary in robustness approaches which is the foundation of the p-

robustness approaches in prosecuting researches. They also extent their results for the

multi-period layout problem.

Snyder (2006) presents a comprehensive survey on the uncertainty treatments

in facility location problems in which almost every stochastic and robust performance

measures are stated and explained briefly. Also examples from more general logistic

problems are covered to illustrate different types of stochastic robust optimization

approaches.

There are various approaches that employ different concepts existing in robust

optimization literature. One of most applied approaches includes minimizing the cost

of the scenario that the maximum cost occurs and minimizing the maximum regret

occurred across all scenarios. The main attraction of the minimax measures is that

it is not required to estimate the scenario probabilities. A similar approach includes

minimizing the maximum regret where the regret for a scenario is the deviation from

the optimal solution for that scenario. Aissi et al. (2009) present a survey on the topic of

discrete minimax cost and minimax regret versions of the combinatorial optimizations

problems The minimax regret is covered with interval objective function coefficients,

in Mausser and Laguna (1999a) for linear programs, in Mausser and Laguna (1998)

for mixed integer formulations, and in Józefczyk and Siepak (2013) for scheduling
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problems. Heuristic solution techniques to solve minimax problems are in Mausser and

Laguna (1999b) for general mixed integer problems and in Serra and Marianov (1998)

for p-median problem.

Other widely applied techniques also exist such as p-robustness enlightened by

Snyder and Daskin (2006). The concept of p-robustness is clearly defined and the

aim of combining two measure of minimizing expected cost and minimizing worst-case

regret by placing the constraints related with the latter and putting the former in the

objective function is illustrated in a facility location problem. The same methodology is

named as γ-robustness in Lim and Sonmez (2013) where the facility relocation problem

is studied. In Liu et al. (2010) and in Peng et al. (2011) similar work is done for

modeling capacitated network design model.

Other examples for robust optimization approaches are α-reliable approaches

studied by Daskin et al. (1997) and Chen et al. (2006) both for facility location model-

ing and robust optimization for calculating conditional value at risk in Quaranta and

Zaffaroni (2008). These techniques include introducing some boundaries to maintain

the robust features in the feasible solution space.

2.2. Quadratic Assignment Problem (QAP) and Genetic Algorithm (GA)

QAP is one of the most difficult problems in the NP-hard class (Sahni and Gon-

zales, 1976). In Loiola et al. (2007), a comprehensive survey about QAP is presented

stating that many real-life problems in several areas such as; facilities location, com-

binatorial data analysis are modeled as QAP. Some of the most important QAP for-

mulations are stated and classified and a detailed discussion is made on the exact and

heuristic solution techniques, including metaheuristic strategies. In addition, the main

research trends and tendencies in the QAP literature are identified to guide future

researches and these material constructed a foundation for our QAP investigation.

In Zhang et al. (2013), general purpose mixed integer linear programming solvers
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are addressed to solve QAP. Different types of formulations are obtained by using

linearization techniques to find tight lower bounds and efficient performance to solve

test problems in reasonable times. In Resende et al. (1995) an interior point algorithm

for linear programming is developed to compute lower bounds for the QAP in order to

serve branch-and bound techniques to come up with optimal solutions with a convenient

effort. However, all these techniques are proved to be impractical for all but small-sized

problems. As QAP is computationally NP-hard, large problem instances can require

a great amount of time to be solved optimally by exact methods. The computational

difficulty in solving QAP motivated the development of many heuristic algorithms.

During the recent decades, almost every heuristic search technique has been

adopted to QAP. Pardalos and Resende (1994) has produced a greedy randomized

adaptive search, called GRASP. They claim that their solution technique is capable of

quickly producing good quality solutions for not only QAP but also a wide variety of

combinatorial optimization problems.

On the other hand, in many of the researches, metaheuristic techniques espe-

cially genetic algorithms, are employed to solve QAP. Taillard (1995) compared the

performances of three different tabu search algorithms and a hybrid genetic algorithm,

indicating that all these solution methods are efficient heuristics and none of among

them outperforms the other.

Tate and Smith (1995) are among the pioneers that consult genetic algorithms

to solve QAPs. The all main stages of the genetic algorithms including the tuning for

the parameters are investigated and they draw the conclusion that GAs are powerful

tools to overcome with the combinatorial problem like QAP.

Drezner (2005) proposes a compounded genetic algorithm consisting of two phases:

where the first phase evolves good solutions of the second phase. His algorithm is hy-

bridized with tabu search and successful results are obtained for the test problems in

QAPLIB. Later on, in Drezner (2008) some modifications mainly on diversification
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concerns are proposed and better results are obtained.

Misevicius (2003) proposes a genetic algorithm hybridized with the improvement

procedure called ruin and recreate procedure. In Misevicius (2004), a hybrid genetic

algorithm using some elements of tabu search at its local improvement stage, is pro-

posed.

Ahuja et al. (2000) propose a greedy genetic algorithm as it includes many greedy

principles on both intensification and diversification concerns. They also present several

alternatives for crossover operator, concepts of immigration and tournament and a

detailed fine tuning for the algorithm parameters. The methodology and the operator

schemes of this paper serves as a basis for the genetic algorithms developed in this

thesis.

Knowles and Corne (2002) present a multi-objective version of QAP (mQAP)

considering several flow and distance matrices. The authors state that mQAP can be

useful for some layout problems, such as hospital layout where different types of flows;

i.e. doctors, patients, nurses lead to different objectives. They investigate landscape

analysis issues for approximating Pareto front using mQAP as a benchmark. In their

paper, a hybrid local search algorithm is presented to approximate the Pareto front

and in Knowles and Corne (2003) they formulate some instance generators and test

suites for mQAP.

In Paquete and Stützle (2006), a two-phased local search procedure is followed

for solving the bi-objective QAP and ant colony optimization (ACO) metaheuristic

is employed for again the bi-objective QAP in López-Ibánez et al. (2004). There are

some works applying multi-objective evolutionary algorithms are employed for mQAP;

such as Kleeman et al. (2004) and Day and Lamont (2005) where some variations of

multi-objective messy genetic algorithm is used.
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2.3. Multi-objective Optimization and Multi-objective Evolutionary

Algorithms

In multi-objective optimization problems (MOP), the goal is to optimize k ob-

jective functions simultaneously (Coello et al., 2007). The objective function value for

each feasible solution becomes a vector function whose elements represents each objec-

tive function. In MOPs, two Euclidean spaces are considered: N -dimensional space of

the decision variables and K-dimensional space of the objective functions. A point in

the former space represents a solution and gives a specific point in the second space,

which displays the quality of this solution with regards to the objective function values.

The concept of optimality changes in MOPs and the goal is to find good compro-

mises (or trade-offs) among objectives rather than searching for a single global optimal

point (Marler and Arora, 2004). Although, single objective optimization problems

might have a unique optimal solution, MOPs present a set of solutions which produce

vectors whose components represent trade-off in objective space. A decision maker

then chooses an appropriate solution among this set of solutions. This brings us to the

Pareto terminology and the definitions adopted in multi-objective optimization.

Let us define a solution x ∈ X with the objective function vector, u = (u1, u2, ..., uK)

Since the formulations in thesis are all minimization problems, by definition of Pareto

dominance if there no such solution y ∈ X with the objective function vector, v =

(v1, v2, ..., vK) satisfies that for ∀k ∈ {1, ..., K}, uk ≥ vk
⋂
∃k ∈ {1, ..., K}, uk > vk,

then solution x is said to be a Pareto optimal solution. In other words, a solution is

Pareto optimal if there exists no any other feasible solution which would improve some

criterion without worsening at least one other criterion. Since the different objectives

are not given a priori weights, all these non-dominated solutions form a set called

Pareto optimal set. The aim in multi-objective optimization problems is to find all (or

at least a representative set of) Pareto optimal set to from the true Pareto front.

Coello (2000), Konak et al. (2006), and Zitzler et al. (2004) provide comprehensive
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surveys about the heuristic techniques for solving multi-objective problems. Evolution-

ary algorithms are even referred as “the” method for exploring the Pareto-optimal front

in multi-objective optimization problems (Deb, 2001). The primary reason for using

multi-objective evolutionary algorithms is their capability to find multiple Pareto op-

timal solutions in one single run (Jones et al., 2002). As MOEA is a metaheuristic

approach using evolutionary operators, their attempt is to find acceptable but approx-

imate Pareto-optimal solutions.

A successful MOEA must be capable of obtaining an approximate Pareto front

as close as possible to the true Pareto front (Konak et al., 2006). Preferably, the

members of the approximate Pareto front should be a subset of the Pareto optimal

set. In addition, the members of the approximate Pareto front should be distributed

homogeneously and should be diverse over of the in order to provide the decision-maker

a comprehensive picture of about the trade-offs. In other words, the approximate

Pareto front should represents the whole range of the true Pareto front.

Pierreval and Plaquin (1998) study a two-objective problem considering cell work-

load and traffic between cells as objectives. To solve the manufacturing cell formation

problem the formulated, they apply a multi-objective evolutionary algorithm called

niched Pareto evolutionary algorithm.

Coello and Christiansen (1998) propose two genetic algorithm based solution

methods that forms a basis to many other algorithms. Non-dominated sorting genetic

algorithm is first proposed by Srinivas and Deb (1994) and later on, modified and

an improved version of it proposed by Deb et al. (2002). As for the applications of

the multi-objective evolutionary algorithms, Coello and Lamont (2004) discuss the

applications of multi-objective evolutionary algorithms with providing real world case

studies.

In Zitzler et al. (2000), comparison is made between five alternatives of multi-

objective evolutionary algorithms each representing different fitness assignment and
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selection procedures with different ways to maintain the diversity concerns. Among

these alternatives, non-dominated with its elitist structure and success in preventing

premature convergence is concluded to be the most successful choice. As a conse-

quence, the multi-objective genetic algorithm developed in this thesis mainly consults

the operator schemes and methodology proposed by non-dominated sorting genetic

algorithm.

As for the robustness concerns in multi-objective optimization problems and

multi-objective evolutionary algorithms, Deb and Gupta (2005) describes the behavior

of the Pareto front with respect to the changes in variables. Two types of robust-

ness are defined for the solutions in the Pareto front and some conclusions are drawn

whether the obtained frontier is robust to the perturbations in the variables. However,

this study treats the robustness issue in a more like a sensitivity analysis concept. Li et

al. (2005) proposes a multi-objective genetic algorithm which they called robust multi-

objective genetic algorithm whose one objective function is identified as the robustness

index. They treat robustness concerns as a separate objective and again based on the

sensitivity estimations. Their study incorporates only two objective problems of which

one is the single objective of the initial problem and no generalization is provided for

higher dimensional problem cases.

In Iancu and Trichakis (2013), robust optimization problems are treated as multi-

objective problems where each uncertainty scenario is considered as a separate objec-

tive. Their aim is to find robust Pareto optimal solutions instead of only robust solu-

tions. This proposition is addressed in our generic algorithm and enables us to obtain

robust optimal solutions existing in the Pareto front and compare the quality of our

different formulations. They claim that the resulting problem has the same complexity

with the underlying robust optimization problem and provide numerical studies related

with the topics in portfolio optimization, inventory and project management.
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3. PROPOSED MODELS

In this section, we present seven different mathematical programming formula-

tions of QAP based facility layout problem which contain stochastic and/or robust

constraints and/or objectives. As the definition of performing well varies from ap-

plication to application, choosing an appropriate performance measure is part of the

modeling process. These formulations are formed to enable us to have a broader view

about the effects of different stochastic and robust optimization methodologies.

Since all of the formulations provided in this thesis use QAP as a basis framework,

the same notation is used for all the formulations. The summary for definitions of sets,

parameters and decision variable used in the formulations is as follows:

Table 3.1. Sets, parameters, and decision variable.

Sets:

I Set of departments

K Set of locations

S Set of scenarios

Parameters:

f s
ij Flow between departments i and j under scenario s

dkl Distance between locations k and l

ps Probability that scenario s occurs

p Desired robustness level, p ≥ 0

Decision variable:

xik Binary variable which takes value of 1

if department i is located at location k, and 0 otherwise

The sets and the decision variable are common for all the formulations; whereas
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not all of the parameters are used in each formulation. Some of these parameters are

identified specifically for the requirements of some formulations.

Before presenting the seven formulations developed in this paper, it will be in-

structive to provide a brief explanation about the conventional QAP itself. The integer

nonlinear programming formulation below forms the basis of the rest of the formula-

tions developed and will be referred as “classical QAP” at the remaining part of this

thesis:

Classical QAP formulation:

min
∑
i,j,k,l

fijdklxikxjl (3.1)

s.t. ∑
i

xik = 1 ∀k (3.2)

∑
k

xik = 1 ∀i (3.3)

xik ∈ {0, 1} ∀i, k (3.4)

Costs are assumed to occur from the movements between the departments and

fixed cost of opening a department is not considered. The objective is to find an

assignment of all departments to all locations such that the total travel distance of the

assignments is minimized. The first constraint set ensures that every location is used

by exactly one department and the second constraint ensures that every department

gets exactly one location.

To solve the classical QAP, a genetic algorithm is developed referring to the

procedures of past applications in literature. The steps and the performance of the

developed algorithm will be explained in Chapter 4 in detail.

The classical QAP model is valid when both the flow and the distance matrices
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are assumed to be known deterministically. However, in this thesis we try to develop

ways of dealing with the uncertainty that might be present in these parameters. The

formulations developed in this thesis use a set of scenarios to express the variability

of the input external parameters. Each formulation suggests a different approach for

getting protection from the uncertainty.

Before introducing the stochastic and robustness measures presented in this the-

sis, let us define S, the set of the scenarios. For each scenario s, where s ∈ S, there is

a different deterministic minimization problem having a specific flow matrix. In this

paper, only the flows between the departments are defined distinctively for each pos-

sible scenario. The product mixes and the quantities of each product type produced

can easily change due to various reasons such as changes in demand or changes in the

production preferences. On the other hand, all scenarios share the same distance ma-

trix. In other words, distance matrix is not affected from the scenario realizations. It is

not meaningful that the distances between candidate locations will change in different

scenarios and the decision maker will be made to specify a different distance matrix for

each scenario. Even so, this assumption can be easily modified and the solution proce-

dures and results can be extended for the cases having also specific distance matrices

for each scenario.

3.1. Minimizing Expected Cost

In the first model, the objective is to minimize the expected cost of the assignment

of departments to locations under all possible scenarios in the scenario set. This model

includes stochastic component in the objective function and constraints are the same

as in the classical QAP.
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Model 1:

min
∑

i,j,k,l,s

psf
s
ijdklxikxjl (3.5)

s.t.

(3.2), (3.3), and (3.4)

The parameter ps, the probability that scenario s occurs, is used specifically in this

formulation. Stochastic optimization requires some degree of probability information

that is sometimes provided as probability mass/density functions or in our case distinct

probability values assigned for each scenario. Obviously, as all probable scenarios are

represented in the scenario set S, the sum of their probabilities must be equal to one.

∑
s

ps = 1 s ∈ S (3.6)

In this research, all ps values are assumed to be equal without loss of generality.

In other words, each scenario is equally likely to happen.

ps =
1

|S|
s ∈ S (3.7)

Solving this formulation is identical to solving the classical QAP. The only dif-

ference is that instead of a single set of flow parameters, we now have |S| of them. By

taking a weighted average with respect to the ps values, we can fit all flow parameters

into a single matrix and reduce the problem into the classical QAP.

f ∗ij =
∑
s

psf
s
ij ∀i, j (3.8)
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The classical QAP created by replacing Equation 3.5 with 3.7 in the previous

model.

min
∑
i,j,k,l

f ∗ijdklxikxjl (3.9)

s.t.

(3.2), (3.3), and (3.4)

3.2. Minimizing Maximum Cost

In the following three formulations, robust optimization methodology is prac-

ticed. As mentioned earlier, robust optimization approach often attempts to optimize

the worst-case performance of the system. This minimax structure makes robust opti-

mization problems more difficult to solve than stochastic optimization problems.

Two of the most common robutness measures that have been applied to facility

layout problems in the literature are minimax cost (minimize the maximum cost across

scenarios) and minimax regret (minimize maximum regret across scenarios). The pri-

mary attraction of minimax measures is that they do not require decision maker or

planner to estimate scenario probabilities. They can be used when no probability

information is known about uncertain parameters.

The minimax cost solution minimizes the maximum cost across all scenarios and

thus gives emphasis to the worst case. The minimax cost formulation is as follows:
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Model 2:

minCmax (3.10)

s.t. ∑
i,j,k,l

f s
ijdklxikxjl ≤ Cmax s ∈ S (3.11)

(3.2), (3.3), and (3.4)

The variable Cmax is defined as the maximum travel distance across all scenarios

and the objective is to minimize this parameter. Solving this model is again similar to

solve classical QAP when a genetic algorithm is employed. The only difference is for

calculating fitness values of the generated solutions. To calculate fitness of a solution,

total travel distance computation is made for each scenario and maximum of those

values is taken as fitness of the solution.

3.3. Minimizing Maximum Regret

The term regret is usually used in robust optimization terminology. The regret is

defined as the difference between the cost of a solution in a given scenario and the cost

of the optimal solution for that scenario. The minimax regret solution minimizes the

regret across all scenarios. The regret can be computed as either absolute or relative

difference and both of these two measures can be transformed into each other.

There is no need to develop models with the objective of minimizing expected

(average) regret. The reason is minimizing expected regret is equivalent to minimizing

expected cost (Snyder, 2006).
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3.3.1. Minimizing Maximum Absolute Regret

When the difference between the cost of a solution in a given scenario and the

cost of the optimal solution for that scenario is defined in terms of nominal units, this

is called the absolute regret of a solution. In our QAP formulation, absolute regret,

Rabs, of a solution for each scenario is calculated as follows:

∑
i,j,k,l

f s
ijdklxikxjl − c∗s = Rabs s ∈ S (3.12)

where, the parameter c∗s is the cost of the optimal solution for the scenario s and it is an

input to the regret model. The c∗s values are assumed to have been computed already

by solving |S| separate and deterministic QAPs. The variable Rabs
max is defined as the

maximum regret across all scenarios and the objective is to minimize this parameter.

Thus, the third formulation which is called absolute minimax regret solution is as

follows:

Model 3:

minRabs
max (3.13)

s.t. ∑
i,j,k,l

f s
ijdklxikxjl − c∗s ≤ Rabs

max s ∈ S (3.14)

(3.2), (3.3), and (3.4)

3.3.2. Minimizing Maximum Relative Regret

Minimizing relative regret formulation is very similar with the absolute regret

formulation except the way how regret is defined. When the difference between the

cost of a solution in a given scenario and the cost of the optimal solution for that

scenario is defined in terms of the percentage value of the optimal solution for that
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scenario, the relative regret, Rrel, of this solution is found. In our QAP formulation,

relative regret of a solution for each scenario is calculated as follows:

∑
i,j,k,l f

s
ijdklxikxjl − c∗s
c∗s

= Rrel s ∈ S (3.15)

The relative minimax regret solution is as follows:

Model 4:

minRrel
max (3.16)

s.t. ∑
i,j,k,l f

s
ijdklxikxjl − c∗s
c∗s

≤ Rrel
max s ∈ S (3.17)

(3.2), (3.3), and (3.4)

These four formulations given above use either stochastic optimization or robust

optimization alone. Combining these two methodologies may create solutions that are

satisfactory in terms of both methodologies. The subsequent formulation is developed

to achieve this goal.

3.4. p-Robustness

In the fifth formulation, p-robustness concept is employed. The notion of p-

robustness was first introduced by Kouvelis et al. (1992) in the context of facility layout

without referring to this robustness measure as p-robustness. The term “p-robust” was

first adopted by Snyder and Daskin (2006) to distinguish this robustness measure from

other measures.

The aim of p-robustness approach is to combine the advantages of both the

stochastic and robust optimization approaches. This is achieved by seeking the least-
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cost solution in the expected value that is p-robust; i.e., whose relative regret in each

scenario is no more than p, for given, p ≥ 0. This robustness coefficient, p, defined as

the maximum allowable regret and it is an external parameter that bounds the relative

regret in each scenario.

In p-robustness, constraints are placed on the maximum regret rather than mini-

mizing it. The relative regret is expressed in the same way as in the previous formula-

tion. Thereby, p-robustness measure can combine minimizing expected cost by putting

the stochastic measure into the objective function and putting the robustness mea-

sure in the constraints. The resulting robustness measure can be called as stochastic

p-robustness.

In our formulations, the same regret limit is set for every scenario, even though

it is sometimes convenient to specify a different regret limit ps for scenarios. As in the

case of Snyder and Daskin (2006), this parameter is fixed as p = ps for all s ∈ S. The

mathematical model is as follows:

Model 5:

min (3.5)

s.t. ∑
i,j,k,l

f s
ijdklxikxjl ≤ (1 + p)c∗s s ∈ S (3.18)

(3.2), (3.3), and (3.4)

Obtained formulation is similar with the formulation that aims to minimize the

expected cost except the fact that it also involves p-robustness condition. This ad-

ditional constraint clearly narrows the feasible solution space and the effect of this

tightening depends on the value that parameter p takes. Therefore, the choice of the

parameter p is very important and an additional search is required for the decision

maker. For instance, the constraint becomes redundant when p = ∞, and the formu-
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lation becomes equal with the first formulation. On the other hand, for small values of

p, there may be no feasible p-robust solutions for the problem. Thus, the p-robustness

constraint creates a feasibility issue that is not present in the prior formulations.

3.5. Multi-objective Approaches

In the last two models, formulations with multi-objective functions are developed

since one of the main goals is to produce solutions that perform well in many aspects

and concerns. In the first multi-objective formulation, objective functions of the two

formulations mentioned are combined aiming to develop a formulation that is able to

meet the requirements of both formulations. In the second approach, the objective

function is composed by a vector function whose elements represent the objectives of

the solution in each scenario separately.

3.5.1. Minimizing Expected Cost and Absolute Regret

This formulation involves a multi-objective function aiming to obtain a set of

feasible solutions that are satisfactory in terms of being robust to all possible scenarios.

In this formulation, the solutions are represented by 2-dimensional vectors composed of

expected cost and maximum absolute regret. A similar approach can be developed with

relative regret, but we omit this here since its effect will be similar to the p-robustness

case. Similarly, other robustness measures like minimizing maximum cost case can also

be employed as the second objective.

Model 6:

min
x

~F (x) = {f 1(x), f 2(x)},

where f 1(x) =
∑

i,j,k,l,s

psf
s
ijdklxikxjl and f 2(x) = Rabs

max (3.19)

s.t.

(3.2), (3.3), (3.4), and (3.14)
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3.5.2. The Multi-objective QAP (mQAP)

In mQAP introduced by Knowles and Corne (2002), different flow types are con-

sidered as multiple objectives. In our case each scenario becomes a separate objective

so number of objective functions is equal to the number of scenarios.

Model 7:

min
x

~C(x) = {c1(x), c2(x), ..., c|S|(x)},

where cs(x) =
∑
i,j,k,l

f s
ijdklxikxjl s ∈ S (3.20)

s.t.

(3.2), (3.3), and (3.4)

The motivation behind developing the mQAP formulation is the fact that ro-

bust optimization problems can be seen as a multi-objective optimization problems

with objectives corresponding to uncertainty scenarios. The optimum solutions for all

stochastic and robustness measures covered in this thesis must fall within the Pareto

front obtained from the mQAP formulation. This phenomenon called “Pareto robust

optimal solutions” by Iancu and Trichakis (2013) briefly explains that for every ro-

bustness measure one of the robust optimal solutions should also be a Pareto optimal

solution. This indicates that if there is only one robust optimal solution, then it must

be a member of the Pareto front.

Mathematical propositions for specific robustness measure are presented in Aissi

et al. (2009) stating that in a combinatorial minimization problem at least one optimal

solution of minimax cost and minimax regret versions of the problem must be a Pareto

optimal solution. It means that among all members of Pareto front, one solution

must have a minimum maximum cost or minimum maximum regret value. The strong

relationship between the robustness measures and the multi-objective version of our

benchmark problem enables us to obtain optimal solutions in terms of all robustness
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measures covered in this thesis if we find all members of the true Pareto front.

Similar proposition can also be offered for the expected cost measure. A solution

that is optimal in terms of the expected cost criterion must also be a Pareto optimal

solution for our mQAP formulation. The difference is that in the case of multiple

optimal solutions for the expected cost criterion, not only at least one of the optimal

solutions but all of them must also be Pareto optimal solutions.

Proposition 3.1. The optimal solution for the expected cost criterion must be a non-

dominated solution.

Proof. Let us define x ∈ X with the objective function vector, u = (u1, u2, ..., u|S|) as a

dominated solution and we want to show that it is an optimal solution for the expected

cost criterion.

By the definition of Pareto dominance if x is a dominated solution, there must

be at least one solution y ∈ X with the objective function vector, v = (v1, v2, ..., v|S|)

satisfies that for ∀s ∈ S, us ≥ vs
⋂
∃s ∈ S, us > vs. However if this is the case then the

expected cost of solution y is strictly less than the expected cost of solution x meaning

than solution x cannot be an optimal solution for the expected cost criterion. Hence,

by proof with contradiction, the optimal solution for the expected cost criterion must

be a non-dominated solution. �

By using mQAP model, instead of evaluating each performance measure sepa-

rately, we can approximate the Pareto front in a single algorithm dedicated to mQAP

formulation and select the appropriate member based on our chosen performance mea-

sure.

Our mQAP formulation can also include the p-robustness constraint by adding

Equation (3.18) to the model and employ p-robustness condition after the formulation

is solved and Pareto optimal solutions are obtained. Since both the objective space
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and p-robustness constraints are defined for the same dimensions, each p-robustness

constraint limits the feasible region by only one dimension and they are all orthogonal

with one another. After the implementation of p-robustness condition, the decision

maker will be able to reconsider his choice from the remaining Pareto optimal solutions,

again depending on the robustness parameter p.
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4. SOLUTION METHODS

This chapter explicates the solution technique used to solve the conventional

integer linear formulation of QAP and other seven QAP-based stochastic and robust

formulations developed in this thesis. The choice of the solution method takes into

consideration of the features of the QAP itself as well as the formulations created. QAP

is a combinatorial optimization problem in which either exact or heuristic methods

can be used to solve. Exact algorithms include branch-and-bound (BB), dynamic

programming (DP), cutting plane (CP) and branch-and-cut (BC) techniques.

As QAP is computationally NP-hard (Sahni and Gonzales, 1976), large problem

instances can require a great amount of time to be solved optimally by exact meth-

ods. Thus, metaheuristic solution approaches like simulated annealing (SA), genetic

algorithms (GA), scatter search, ant colony optimization (ACO), tabu search (TS) and

variable neighborhood search (VNS) have become viable choices. On the other hand,

the multi-objective structure of some of our formulations leads us to the use of a GA

based algorithm since such algorithms are shown to work very satisfactorily in multi-

objective domains. Therefore, to remain compatible and comparable, GA becomes

natural choice to use across all formulations proposed.

4.1. Genetic Algorithm (GA)

4.1.1. Overview of the GA

This section explains the features of the employed GA and its variations regarding

mainly the objective functions of formulations developed. Parameters and operator

schemes are going to be presented as well as the pseudo codes for single objective and

multi-objective genetic algorithms in the consecutive sections.

Genetic Algorithm (GA) concept was first introduced by Holland (1975) and be-
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came one of the most popular heuristic algorithms to solve optimization problems.

Basically, GAs imitates the process of evolution on solving an optimization problem by

treating each feasible solution as an individual. The objective function values deter-

mines the fitness of the corresponding individuals. A population is formed by a subset

of individuals.

GAs are general solution techniques, also known as metaheuristics, and they

include a priori strategies like crossover and mutation that can be adapted to the

specifications of problem structure. While implementing a GA, there is a substantial

extent of flexibility in the choice and ordering of these strategies.

The general implementation of the GA includes operations of creating an initial

population (preferably feasible). During their iterations, GAs contain one or more pop-

ulation of feasible solutions; such as parent population and child (offspring) population.

Certain types of operations can be executed on these populations based on how

these populations are defined. Various selection and crossover operator schemes in-

spired by laws of nature are designed to generate fitter offspring and they must be

adapted specifically for our formulations.

In addition, mutation/immigration and local search operators may also be added

into GAs due to diversification and intensification concerns respectively. By striking

a balance between intensification and diversification concerns, the developed GA will

result in obtaining qualified and diversified solutions.

At the end of this section, the main loop of GA developed specifically for the

single objective formulations including all mentioned operators will be presented and

illuminated.
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4.1.2. Solution Representation and Fitness Calculation

An individual is encoded by a chromosome composed of n genes each represents

the location index that departments can be assigned to. This representation is schemed

in Figure 4.1.

Figure 4.1. Solution Representation.

In Figure 4.1, department 1 is assigned to location 4, department 2 is assigned

to location 8 and so forth. In general, values in this permutation store the assignment

of department i to location k. Ensuring all values are different from each other, all

possible permutations produce feasible solutions. Therefore, it can be concluded that

the number of feasible solutions in a QAP of size n is n!.

Fitness value of each individual is simply determined by calculating the objective

function values of the corresponding solution. So, for the first four models fitness value

calculation is straightforward.

However, in p-robustness formulation, the infeasibility occurring due to the p-

robustness constraint can be handled by adding a penalty function to the objective.

Thus, fitness value indicates a penalty term resulting from the violation of the p-

robustness constraints, in addition to the expected cost. The amount of penalty is not

treated as a fixed term but it dynamically changes during the course of the search.

Namely, as the number of iterations of GA increase, penalty of an infeasible solu-

tion will increase, so that the search will be directed towards feasibility. Furthermore,

penalty of each individual will be calculated independently. Such an approach of pe-

nalizing is classified as “variable penalty” in Gen and Cheng (1996). Our proposed

variable penalty calculation procedure works as follows: Expected cost of an individ-

ual is calculated only once at the creation. The fitness of a given individual in iteration
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t is:

(fitness)t = −((expectedcost) + ptcoef ∗ (violation)) (4.1)

In Equation 4.1, the penalty coefficient, ptcoef , is the penalizing multiplier to

normalize a unit amount of violation in the objective function. In this thesis, the

variability is caused by manipulating the penalty coefficient based on the iteration

number, t, of the genetic algorithm.

The intuitive thought for this coefficient is to initiate it with small values and

increase it exponentially to ensure that none of the solutions is infeasible at the last

generation of the algorithm. The initial value of the penalty coefficient is chosen to be

small compared with the expected cost component of fitness value to allow infeasible

solutions at the earlier iterations of the algorithm.

pinitialcoef = p0coef = 0.01 ∗ (expectedcost) (4.2)

Then, the penalty coefficient is increased exponentially to ensure that at the end

of the iterations, an individual violating the p-robustness constraints is not allowed to

exist in the final population.

pfinalcoef = pmaxIter
coef = 100 ∗ (expectedcost) (4.3)

The multiplier for the penalty coefficient depends on the predetermined initial

and final values of the penalty coefficient and also the number of total iterations in the
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algorithm.

(multiplier)maxIter =
pfinalcoef

pinitialcoef

(4.4)

In each iteration, penalty coefficient and therefore fitness values of all members

of the population are updated by using the following rule.

pt+1
coef = (multiplier) ∗ ptcoef (4.5)

It must be noted that this update mechanism is unique for the p-robustness

formulation and none of the other formulations has a dynamic fitness value calculation

procedure.

4.1.3. Initial Population Generation

The creation of the initial population certainly affects the final population of a

GA. The performance measures for an initial population are the average fitness value

and the diversity within the population. There are several constructive heuristics

suggested in QAP literature, such as GRASP (Pardalos and Resende, 1994) aiming to

perform well under these criteria. However, the structure of this methodology does not

fit to our case due to the presence of scenarios since it is not possible to calculate the

move cost at each greedy step when there are more than one scenario.

One possible alternative is to produce individuals with random permutations.

The numbers from 1 to n are mixed in a random manner so that the result reflects

a distinct individual. Generating individuals in this way creates no problem about

infeasibility issue and requires minor computational burden. Diversity concerns will

also be satisfied as all individuals are spread out through the solution space equally.

For this reason, when generating the initial population, individuals are produced in a
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random manner.

The only exceptional individuals are the optimal solutions achieved from solving

|S| separate scenario QAPs. Our preliminary analysis supports the idea that including

these individuals in the initial population increases the quality of our GA. Briefly,

after adding the optimal solutions of scenario QAPs,the rest of the initial population is

generated in a random manner and the algorithm for generating the initial population

is provided in Figure 4.2.

Algorithm “Random” Generate Initial Population

Initialize populationSize

Initialize population : P ← ∅

Add scenario optimals to P

Initialize i← |S|

while i < populationSize do:

Generate a solution with random permution and add it to P

i← i+ 1

end while

Figure 4.2. Pseudo Code for “Random” generating initial population.

4.1.4. Selection and Crossover

The performance of GA is often very sensitive to parent selection strategy and

crossover operators. Selection procedure refers to the decision process of parents that

will apply the crossover operator. Three alternative selection procedures and two al-

ternative crossover operators are built and experimented during our research after a

detailed investigation of the related literature. The selection procedures are named as

“random”, “binary tournament” and “modified binary tournament”, and the crossover

operators are named as “one-order” and “path swap”. In the literature, selection cri-

teria typically give a higher priority to individuals with better fitness values as this is
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the case in the last two of the selection procedures adopted and experimented in this

thesis. In contrast, each individual is given equally likely chance to be selected in the

first selection procedure.

Algorithm “Random” Selection

Initialize parentSize, population : P

Initialize parentPopulation : Ppar ← ∅

Initialize i← 1

while i < parentSize do:

Add a random individual from P to Ppar

i← i+ 1

end while

Figure 4.3. Pseudo Code for “Random” selection.

In binary tournament selection procedure, individual with a better fitness value

is favored among the two individuals that have been chosen from the population P . In

case of tie between the candidates, one of them is selected randomly. The comparison

between the candidate individuals is made with respect to their fitness values.

Algorithm “Binary Tournament” Selection

Initialize parentSize, population : P

Initialize parentPopulation : Ppar ← ∅

Initialize i← 1

while i < parentSize do:

Choose two random individuals from P as candidates

Compare candidates and add fitter candidate to Ppar

i← i+ 1

end while

Figure 4.4. Pseudo Code for “Binary Tournament” selection.
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To take into account the genotypes, we have proposed a selection procure called

modified binary tournament. In modified binary tournament, first parent is selected in

the same way with binary tournament only considering fitness values of two candidate

individuals. In contrast, second parent is selected considering the similarity between

the candidates and already chosen parent. Similarity between two individuals is defined

as the number of genes they have in common. The candidate individual which has less

number of common genes with the first parent is selected as the second parent. In

this way, parents with different characteristics go into crossover operation in order to

diversify.

Algorithm “Modified Binary Tournament” Selection

Initialize parentSize, population : P

Initialize parentPopulation : Ppar ← ∅

Initialize i← 1

while i < parentSize do:

Choose two random individuals from P as candidates

Compare candidates and select fitter candidate as first parent

Choose two random individuals from P as candidates

Evaluate similarity between candidates and first parent

Select the dissimilar candidate as second candidate

Add first and second parents to Ppar

i← i+ 2

end while

Figure 4.5. Pseudo Code for “Modified Binary Tournament” selection.

As for the crossover operator schemes, two different approaches are tested. First

of these approaches, called order crossover (Davis, 1985), is more conventional and has

applications in different types of encoding schemes than the permutation representation

employed in this thesis. In our research we used one-order crossover operator scheme.
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In one-order crossover, two parents generate two children by cutting the chro-

mosomes of both parents into two pieces at a random point and switching the second

parts of their chromosomes. The infeasibilities caused from duplicated and unapparent

genes are repaired by following the order of permutations in the parents.

In path crossover approach proposed by Ahuja et al. (2000), the aim is again

producing offspring that combines good characteristics of both parents. The “path”

connecting the parents is formed by creating new solutions through move operations

(i.e. swap, insert) that make the parents look more alike at each step. It is stated that

swap operator performs better.

In path swap operator scheme, starting from a random position of the chromo-

somes, the alleles of the two parents at that position are examined. If the corresponding

alleles of two parents are different, a swap operation is performed within both parents.

Two resulting solutions are inspected and whichever solution is fitter, a move is made

by the corresponding parent, thus forming nodes on the path. In the next iteration,

this new node is considered as the parent and compared with the other parent. In each

swap operation, two parents look more alike and the path swap scheme continues until

all alleles of two parents become the same and the full path is formed.

Path swap crossover is illustrated in Figure 4.6. In this iteration of swap opera-

tion, first position is examined. In the first parent, department 5 is at first location and

in the second parent department 2 is at first location. There are two choices that two

parents can move closer to each other: by swapping the locations of the departments 5

and 2 in the first parent or by swapping the locations of the departments 2 and 1 in the

second parent. After performing two swap operations, fitness of the resulting two indi-

viduals are compared and the swap operation is performed for which the corresponding

individual has a better fitness.

Once the path is built, the nodes are considered as candidate children. The fittest

member of the path is selected as the first child. In addition to that, one of the initial
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Figure 4.6. Illustration for path swap crossover.

parents is chosen as the second child based on fitness value comparison between two

parents. If the generated child is fitter than both parents, the parent which is less

similar to the first child (having less number of alleles in common) is chosen as second

child. Pseudo code for path swap crossover is presented in Figure 4.7.
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Algorithm “Path Swap” Crossover

Initialize parentPopulation : Ppar

Initialize childPopulation : Pchi ← ∅

Initialize i← 1

while i < parentSize do:

Initialize parent1← Ppar[i], parent2← Ppar[i+ 1]

Initialize child1← ∅, child2← ∅

List all different indices between parent1 and parent2

Initialize pathPopulation : Ppath ← ∅

foreach index in list of different indices

Perform swap to both parents

Among transfered parents, add the one with better fitness to Ppath

end foreach

Select the fittest child in Ppath as child1

if child1 is fitter than both parents

Select parent that is dissimilar with child1 as child2

else

Select fitter parent as child2

end if

Add child1 and child2 to Pchi

i← i+ 2

end while

Figure 4.7. Pseudo Code for “Path Swap” crossover.

4.1.5. Immigration and Local Improvement

Immigration operator, a variation of mutation operator, aims to increase diversity

in the population by introducing new individuals that significantly differ from the

individuals so far. In each iteration, some pre-specified percentage of the current
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population is removed and newly introduced solutions, called immigrants, replace these

members.

The individuals that will be replaced by the immigrants are determined after

all members of the transient population have been sorted based on the fitness values.

Once the poorest members of the population are identified, they are substituted with

the immigrants created.

For the generation stage of immigrants, Ahuja et al. (2000) propose a process that

makes use of the historical frequency information similar to the long-term memory in

TS literature (Glover and Laguna, 1999). In this approach, the aim is to produce im-

migrants that have genetic representation significantly different from the individuals

generated until that moment.All past and present information regarding the number

of times each department has been assigned to each location is stored in a nxn matrix

called “population history”. The higher values in the population history matrix indi-

cate that the corresponding assignment is observed in many individuals whereas the

lower values indicate fewer individuals in the past and present populations have the

corresponding assignment in their permutation. The methodology they used targets to

create new assignments including the lower values in the population history matrix by

choosing departments in a random sequence and disperse them to the lowest possible

location assignment. This procedure allows to search unexplored regions of the solution

space.

However, by generating immigrants with this methodology, there is a high chance

that the fitness of immigrants will be below than other members already existing in the

current population. The outcome is that they rarely qualify as parent individuals and

contribute to create new offspring. In addition, it is likely for them to be eliminated

at the very next iterations. Therefore, all immigrant individuals are subjected to

the local improvement operation right after their creation. In this way, the unexplored

regions of the solution space are intensively investigated and individuals with hopefully

fair fitness values are incorporated into the population which will lead to improve the
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overall quality. Pseudo code for immigration is presented in Figure 4.8.

Algorithm Immigration

Initialize migrateCount← immigrationRate ∗ populationSize

Initialize population : P , immigrantPopulation : Pmig ← ∅

Initialize i← 1

while i < migrateCount do:

Generate new individual called immigrant based on populationHistory

Compare candidates and select fitter candidate as first parent

Apply local improvement to immigrant

Add immigrant to Pmig

i← i+ 1

end while

Replace worst migrateCount members of P with Pmig

Figure 4.8. Pseudo Code for immigration.

As for the local improvement operator, the 2-exchange neighborhood local search

is used. In 2-opt local search, neighbor solutions are generated by swapping two genes

in the permutation of an existing solution. If fitness value of a candidate neighbor

individual is better than fitness value of an existing individual, the existing individual

is transformed into this candidate neighbor and the same local search procedure is

restarted. This local improvement process is carried on until an individual having a

fitness value better than whole of its neighborhood is obtained. Thus, it is guaranteed

that the consequential individual is at a 2-opt local optimum. Pseudo code for local

improvement is presented in Figure 4.9.

Some pre-specified percentage of the current population are placed into local

improvement operation in each iteration. This percentage is determined by the local

improvement rate parameter. However, as the individuals obtained from immigration

have already entered the local improvement, the effective local improvement rate is the
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higher the actual local improvement rate.

Algorithm “2-Opt” Local Improvement

Initialize localImprovementRate, populationSize

Initialize population : P , currentSolution← ∅, neighborSolution← ∅

Initialize i← 1

while i < populationSize do:

if rand(0, 1) < localImprovementRate

currentSolution← population[i]

Initialize flag ← true

while flag do:

flag ← false

foreach neighborSolution in neighbor(currentSolution)

Compare currentSolution and neighborSolution

if neighborSolution is better than currentSolution

currentSolution← neighborSolution

flag ← true

end if

end foreach

end while

end if

i← i+ 1

end while

Figure 4.9. Pseudo Code for “2-opt” local improvement.

By adjusting the values of immigration rate and local improvement rate parame-

ters properly, the one can ensure the genetic algorithm developed satisfies diversification

and intensification concerns. These two parameters can have values between zero and

one. Assigning values close to zero indicates the underuse and values close to one indi-

cates the overuse of the corresponding operators. Thus, the choice for these parameters
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must be done carefully. At the fine tuning stage of the genetic algorithm, several levels

for both the immigration rate and local improvement rate are experimented.

4.1.6. The Main Loop of GA

The outline of the GA dedicated for single objective formulations is presented

in Figure 4.10. After generating an initial population, the main loop of the algorithm

which includes selection, crossover, immigration and local improvement; runs for a

certain number of iterations (or generations). In each iteration, after child population

is generated, it is sorted based on fitness values and statistics regarding best solution

and position history are updated. The same procedure is applied also after immigration

and local improvement operators are executed.
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Algorithm Main Loop of GA

Initialize immigrationRate, localImprovementRate, populationSize, maxIteration

Initialize positionHistory

Initialize iterationCount← 1

Generate initial population : P

Update bestSolution and positionHistory

Initialize parentPopulation : Ppar ← ∅,

while iterationCount < maxIteration do:

Initialize parentPopulation : Ppar ← ∅, childPopulation : Pchi ← ∅

Select Ppar from population

Generate Pchi from Ppar with Crossover

Sort Pchi

Update bestSolution and positionHistory

Apply Immigration to Pchi

Apply Local Improvement to Pchi

P ← Pchi

Update bestSolution and positionHistory

iterationCount← iterationCount+ 1

end while

Figure 4.10. Pseudo Code for the main loop of GA.

4.2. Proposed Multi-objective Genetic Algorithm

In this section, we will introduce the proposed multi-objective genetic algorithm

to approximate an efficient Pareto front in reasonable computation times.

The MOEA techniques are classified into different categories relying on the se-

quence of two main stages of the algorithm (Deb and Gupta, 2005). These two stages

are searching the solution space with respect to objective functions and deciding on
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what kind of tradeoffs between the priorities of the objectives are convenient from the

decision maker perspective. Some techniques make decision about the priority ranks

of the objectives before searching the solution space, whereas some do the reverse.

The choice in our research is to find as many as solutions in the Pareto front and

then leave the rest of the multi-criteria decision making process to a decision maker.

This is called “A Posteriori” technique. Among the sub-techniques in “A Posteriori”

techniques, such as independent sampling, aggregation selection, and Pareto selection;

an algorithm in the last sub-technique is selected. In Zitzler et al. (2000), some of the

most applied MOEAs from different sub-techniques are compared and the performances

are evaluated regarding with the success of having close approximation to the true

Pareto front and diversity concerns not only about avoiding local optimums but also

obtaining the entire Pareto front. Based on their findings, NSGA-II which has been

developed by Deb et al. (2002) is adopted for solving our multi-objective formulations.

In NSGA-II, sorting of individuals requires the calculation of two attributes for

each individual: non-domination rank and crowding distance. In the calculation stage

of non-domination rank, all solutions are examined in regard to whether they are dom-

inated by any other solution or not. Then, all non-dominated solutions are ranked as

one. After excluding these non-dominated solutions, the same is done for the solu-

tions in the remaining set and the non-dominated solutions are ranked as two and this

procedure is implemented until all individuals in the entire population are ranked.

After the assignment of non-domination ranks, a front for each rank is formed and

crowding distances are assigned. The goal in crowding distance assignment is to ensure

that every region of a front is represented by enough number of individuals (i.e. the

individuals are not crowded into certain regions) In the crowding distance computation,

all solutions are assigned distance values equal to the absolute normalized difference

in the objective function values of two adjacent solutions in the same front. This

procedure is done for every objective function and distances are added up for each

individual. At a result, individuals take place in the scarce regions of their fronts will
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have high crowding distance values and they will be preferred for reproduction in GA.

After the assignment of two attributes, solutions are sorted primarily based on

their non-domination ranks and solutions in the same front are sorted based on their

crowding distance assignment.

In NSGA-II, the population and the child population generated are combined and

sorted based on the non-dominated sorting criteria in each iteration. Since all previous

and current members are included in the combined population, elitism is ensured.

Then, the set of best individuals with size equal to population size parameter is kept

and declared as the new generation of population.

Evidently, some modifications will be necessary on NSGA-II to address the spe-

cific characteristics of our problem. When generating the initial population, optimal

solutions achieved from solving |S| separate scenario QAPs are included in the initial

population. We observed that this greatly enhances the capability of the search in

representing the whole range of the Pareto front, by introducing genetic material from

the extreme ends of the objective function space. Another enhancement that provided

the search with valuable genetic information is achieved by making us of the final

populations of the |S| separate scenario QAPs. All final populations are combined

and members of the first front of this combined population are added to the initial

population. The remaining members of the initial population are generated randomly.

Preliminary results of our algorithm hinted the need for additional diversity. It

is observed that the crowding distance assignment is inadequate to prevent premature

convergence. An attribute called duplication factor is introduced to each individual.

In duplication factor assignment, every unique solution is ranked as one and their

replicas are ranked with the number of times the same solution is observed in the

current population. Thus, it is preferred to have small values for the duplication factor

and in our modification, solutions are sorted primarily based their duplication factor

values and then sorted on the attributes proposed by NSGA-II. The outline of the



44

multi-objective GA is presented in Figure 4.11.

Immigration is implemented exactly in the same way as in our single objective GA

implementation. However, in path crossover, binary tournament and local improvement

procedures comparison of individuals requires some adaptations. In path crossover,

after the swap moves the child that dominates the other is selected to be included

on the path. After the path is complete, candidate children created on the path are

sorted based on non-dominated sorting criteria. Similarly in binary tournament, non-

dominated sorting criteria are used for parent selection. In local improvement, we move

to a neighbor solution only if it dominates the current solution.
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Algorithm Main Loop of Multi-objective GA

Initialize immigrationRate, localImprovementRate, populationSize, maxIteration

Initialize positionHistory

Initialize iterationCount← 1

Generate initial population : P

Update bestSolution and positionHistory

Initialize parentPopulation : Ppar ← ∅,

while iterationCount < maxIteration do:

Initialize parentPopulation : Ppar ← ∅, childPopulation : Pchi ← ∅

Select Ppar from population

Generate Pchi from Ppar with Crossover

Apply non-dominated sorting on Pchi

Update bestSolution and positionHistory

Apply Immigration to Pchi

Apply Local Improvement to Pchi

Update bestSolution and positionHistory

Combine P and Pchi as combinedPopulation : Pcom

Apply non-dominated sorting on Pcom

P ← best populationSize solutions in Pcom

Update bestSolution and positionHistory

iterationCount← iterationCount+ 1

end while

Figure 4.11. Pseudo Code for the main loop of multi-objective GA.
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5. NUMERICAL RESULTS AND PERFORMANCE OF

THE PROPOSED SOLUTION METHODS

In this chapter, performances of the solution methods developed in this thesis

are presented with extensive numerical analyses. In Section 5.1, required experimental

setting, fine tuning and the validation for our GA are displayed. Section 5.2 clarifies

the methodology followed to generate the problem instances used. Finally, in Section

5.3, several types of numerical analysis regarding the evaluation and comparison of the

performances of the different formulations are presented.

Our algorithms are coded in C# programming language in Microsoft Visual Stu-

dio 2013. All experiments are carried out on a PC with 3.60 GHz Intel R©CoreTM i7-3820

CPU and 32 GB RAM, running under 64-bit Windows 7 operating system.

5.1. Settings for the GA

In this section, experiments to investigate the effects of different types of operator

schemes and different levels of parameters are designed. Operator schemes setting are

presented in Section 5.1.1 and fine tuning of the parameter values are presented in Sec-

tion 5.1.2. After completing these experiments, performance of our genetic algorithm

will be verified with test problems and will be presented in Section 5.1.3.

5.1.1. Operator Schemes Setting

To build the most successful genetic algorithm, we should first to choose which

operator schemes must be selected among the possible operator schemes created. There

are three selection operator schemes and two for crossover operator schemes. The six

different combinations tested are listed in Table 5.1.
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Table 5.1. Combinations for testing operator schemes.

Abbreviation Selection Crossover

R- OO Random One-order

R - PS Random Path Swap

BT - OO Binary Tournament One-order

BT - PS Binary Tournament Path Swap

MBT - OO Modified Binary Tournament One-order

MBT - PS Modified Binary Tournament Path Swap

To make a comparison and choice between these alternatives ten problem in-

stances with different sizes and properties from the QAPLIB (Burkard et al., 1997)

which is composed of a much-studied suite of problems and being referenced by nu-

merous researches, are selected and 10 replications are made for each instance.

The comparison criteria among the operator scheme alternatives are the number

of times the optimal solution is found in Table 5.2 and the solution time required for

the algorithms to terminate in Table 5.3. The best results in each problem instance

are bolded.

Form the results, it can be claimed that path swap crossover performs better than

the one-order crossover since the settings using path swap crossover reach a higher

number for finding the optimal solutions. Especially, the one with binary tournament

selection scheme can be recognized as the most successful setting.

After investigating the time requirements, binary tournament scheme is observed

to have the least time consuming among the selection operator alternatives as the

minimum values always occur under that scheme. In addition, it can be noted that

path swap crossover consumes less time than one-order crossover. As a result, binary

tournament selection and path swap crossover operator setting is chosen for our GA.



48

Table 5.2. Number of optimal solutions found in 10 replications for each operator

scheme setting.

Problem Name Problem Size R-OO R-PS BT-OO BT-PS MBT-OO MBT-PS

chr12a 12 10 10 10 10 10 10

tai12a 12 10 10 10 10 10 10

esc16a 16 10 10 10 10 10 10

els19 19 4 8 3 8 6 10

had20 20 10 10 10 10 10 10

rou20 20 4 4 3 5 2 1

scr20 20 9 8 10 10 10 10

bur26a 26 10 10 10 10 10 10

kra30a 30 6 5 5 6 2 6

kra32 32 8 9 7 9 8 8

TOTAL 81 84 78 88 78 85

Table 5.3. Time spent (in seconds) for each operator scheme setting cumulative of 10

replications.

Problem Name Problem Size R-OO R-PS BT-OO BT-PS MBT-OO MBT-PS

chr12a 12 9 8 9 8 9 9

tai12a 12 7 6 7 6 7 7

esc16a 16 10 11 10 11 10 11

els19 19 98 91 88 90 98 91

had20 20 94 83 85 82 95 83

rou20 20 39 35 38 34 39 35

scr20 20 45 40 44 38 44 41

bur26a 26 218 198 216 194 218 194

kra30a 30 319 270 312 264 321 271

kra32 32 396 347 389 345 394 349
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5.1.2. Fine Tuning of Parameter Values

There are four main parameters in our genetic algorithm. These are the popula-

tion size, number of maximum iteration, immigration rate and local improvement rate.

The values of the first two parameters are determined after some pilot runs and both

populationSize and maxIteration parameter values are determined as 100.

For immigrationRate and localImprovementRate, some levels are selected and

full design of experiment is made using the preselected operator schemes. Same com-

parison criteria are used with Section 5.1.1 and the results are displayed in Table 5.4

and 5.5.

From the results, it can be noted that using immigration and local improvement

excessively does not help algorithm to improve but increases the time requirement. As

the local improvement rate increases, our algorithm faces the problem of premature

convergence. Although there is no significant difference between the results of different

levels, the decision for these two parameters are made in favor of the setting that reaches

the highest number of finding the optimal solution. Therefore, after the fine tuning

of the parameter values, immigrationRate is set to 0.4 and localImprovementRate is

set to 0.2.

5.1.3. Validation of the GA

As the final choices are made for both the operator schemes and genetic algorithm

parameters, the quality of the obtained solutions and the speed of solving the prob-

lems instances evaluated by solving test cases available in QAPLIB. 20 test problems

covering a wide range of problem sizes and characteristics are selected to validate the

performance of our GA to solve classical QAP formulation.

The primary evaluation criterion for our algorithm is the objective function values

of the best solutions found. In order to improve the solution quality and reduce the
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effect of the randomness, the solutions are replicated with 10 different seeds. Thus,

both best and average objective function values obtained through 10 replications are

presented in Table 5.6. For the last four problems the comparison is made with the

best upper bound values available in the QAPLIB.

The columns in the right side presents the best value in the objective values found

in 10 replications. The percentage gap between the optimal solutions provided and the

best solution found by our GA is equal to zero in almost all of the problems. Only

for the problems with size larger than 36, the gap between the best solution found by

our algorithm and the optimal takes values greater than zero. Even so, the gap takes

values about only one percent.

The columns in the left side present the average of objective values found in 10

replications. As for the average performance of our algorithm, it can be observed that

our algorithm finds the optimal solution in every run for the smaller problems. In

addition, the gap never reaches to three percent even for the larger problem sizes.

The time required in seconds for our algorithm to complete a single replication

and 10 replications are also provided in Table 5.6. It takes only about 10 seconds to

complete a replication to solve a problem of size 12, 5 minutes to solve a problem of

size 30, and half an hour to solve a problem of size 150.

Taking all these results into consideration, it can be claimed that of our GA is ad-

equate to solve classical QAP formulation since all test problems are solved successfully

and optimal solutions are obtained in almost every test problem.
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5.2. Creating Problem Instances

For numerical studies, QAP instances with different scenarios are needed. Sce-

narios corresponding to a problem instance will be defined by different flow matrices

over a given distance matrix. Unfortunately, the problems given in the QAPLIB are

not suitable for this purpose, therefore we generate our test problems randomly by

means of a C# code.

To create the single distance matrix for each problem instance certain rules are

followed. Each entity that represents the distance between the two locations is gener-

ated using a discrete uniform distribution with predefined upper and lower bound. In

all problem instances, distance matrices are defined as symmetrical meaning that the

distance from location k to l is the same with the distance from l to k. Finally, the

diagonal entities of the distance matrix are always equal to zero.

For generating |S| number of the flow matrices for each problem instance, a more

complex arrangement is implemented. Flow matrices are not generated only from a

random variable distribution. Each flow entity is assumed to be composed from several

product flows. Prior to the generation stage of the flow matrices, a product pool is

formed including products with distinct characteristics presented in Table 5.7. Each

product visits the departments in a certain sequence and it has lower and upper bound

values for its flow quantities. For each scenario, different combinations of products

are selected randomly to form the aggregate flow matrix. The flow quantities are

also generated randomly within the lower and upper bounds specified for each product

meaning that even the same product is used in different flow matrices, its flow quantities

vary from one another in each different realization of the product.
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Table 5.7. Product features.

Product Name Department Count
Demand

Lower Bound Upper Bound

Product A 2 50 100

Product B 5 50 100

Product C 8 50 100

Product D 10 50 100

Product E 2 70 100

Product F 5 70 100

Product G 8 70 100

Product H 10 70 100

Product I 2 50 200

Product J 5 50 200

Product K 8 50 200

Product L 10 50 200

Product M 2 70 200

Product N 5 70 200

Product O 8 70 200

Product P 10 70 200

The difference between the flow matrices results not only from the random struc-

ture of product flows. In addition to that, the choice of which products are going to

be used in also differs in each flow matrix. These two factors are combined to create

the varying structure of the flow matrices. Similar with the procedure of generating

distance matrix, flow matrices are assumed to be symmetric meaning that the flow

from department i to j is the same with the flow from j to i. Last of all, the diagonal

entities of the flow matrix are always zero too.

After generating a set of flow matrices and their corresponding distance matrix,

the next task is to create problem instances. In our problem instance settings, each

problem consists of three scenarios. Three scenarios allow 3-dimensional graphical

analysis therefore it is helpful in terms of demonstration. Additionally, three scenarios
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are also adequate to represent most real life applications. For instance; first scenario

symbolizes high demand case, second is medium and the third is low demand case.

Scenario selection for problem instances is based on the best objective function

values found in scenario QAPs. Thus, before forming a problem instance, each scenario

is solved separately. Since our GA is used to solve these classical QAPs, results are

not guaranteed to be optimal but still claimed to be close to optimal relying on the

validation of the algorithm.

There are two types of problem instance settings. At the first setting, problem

instances consist of scenarios having best objective values very far from one another.

These are called problems with dissimilar scenarios. At the second setting, the situ-

ation is exactly the opposite and called problems with similar scenarios. Possessing

problems with both dissimilar and similar scenarios enables us to observe how the

performance of our formulations alters.

Six different problem sizes are selected for our experimentations, in parallel to

the general problem sizes of problem instances available in QAPLIB. These are 12,

18, 20, 22, 25, and 30. Two problem instance groups with different problem sizes are

obtained and the rest of the research is made using these problem instance groups,

dissimilar scenarios and similar scenarios. Best objective values obtained from solving

36 classical QAPs are used in our problem instances are presented in Table 5.8 and

5.9. The range values reflects the types of the problem instances.
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Table 5.8. Problem instances with dissimilar scenarios.

Problem Name Problem Size High Medium Low Range

F3size12seed121 148 12 268184 185788 69746 198438

F3size18seed181 239 18 147438 112898 55854 91584

F3size20seed201 234 20 125382 61930 30608 94774

F3size22seed221 569 22 147382 68632 17460 129922

F3size25seed251 149 25 123666 77780 5978 117688

F3size30seed301 129 30 126910 78784 4654 122256

Table 5.9. Problem instances with similar scenarios.

Problem Name Problem Size High Medium Low Range

F3size12seed121 259 12 159416 154222 152852 6564

F3size18seed181 578 18 122754 122516 117962 4792

F3size20seed201 169 20 80018 79838 76120 3898

F3size22seed221 124 22 108144 102408 91870 16274

F3size25seed251 567 25 66894 60888 57304 9590

F3size30seed301 358 30 61076 57926 54682 6394

These twelve problem instances are successfully solved by our GAs each based on

different formulation created during this research to enhance different stochastic and

robust performance measures.

5.3. Results and Comparison

Extensive numerical study enables us to achieve our purpose of comparing per-

formances of different approaches in terms of robustness metrics and to gain important

insights into ways of treating the uncertainty issue in facility layout problem.

It is important to recall that the classical QAPs corresponding to each scenario

in our problem instances are solved beforehand since their optimal objective function
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values are necessary for the formulations containing the regret criteria. The informa-

tion generated during the GA search for the scenario solutions is exploited for initial

population generation in the other GA for our models (i.e., the permutations of the

scenario optimal are used as seed individual in the initial populations; the Pareto opti-

mal solutions in the final population of scenario GAs are used in the initial population

for the multi-objective cases.)

5.3.1. Results and Comparison of the First Four Models

At the initial stage of our analysis, results of the first four formulations are eval-

uated. All of these formulations have single objective functions and cover different

robustness metrics. In the current and the following sections of this thesis, the names

of the formulations used are “expected cost”, “minimax cost”, “absolute minimax re-

gret” and “relative minimax regret”.

The primary criterion in evaluation of the performances of different formulations

is the objective values found in terms of all stochastic and robustness approaches. Each

formulation is dedicated to a different measure and throughout their corresponding

algorithms, the comparison of solutions are made based on their own measures. For

instance, minimax cost algorithm efforts to attain individuals with least maximum cost

values in their final populations.

Our analysis tries to capture whether each of these formulations are justifiable on

their own right and whether they are distinct in behavior and leading us to different

solutions where robustness is interpreted in a different way. In other words, we have

targeted to find an answer to the question of how a solution proposed by one formulation

behaves in other performance measures that are not originally addressed in the solution

procedure of its formulation.

In order to construct our analysis, all 12 problems instance are solved with all of

the formulations developed. To reduce the effect of randomness, solution procedures
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are replicated 10 times and the best and average performances are evaluated.

The numerical results can be seen at the following tables. Each table is dedicated

to a different performance measure. The comparison criterion is expected cost in

Table 5.10, maximum cost in Table 5.11, maximum absolute regret in Table 5.12, and

maximum relative regret in Table 5.13. The rows of the tables correspond to the results

for each problem instance and the columns of the tables correspond to the results of

each formulation. So in each column, the best solution’s behavior is provided in terms

of the criterion used in that table. Two columns are reserved for each formulation, one

column for the best of ten replications and one for the average of ten replications. For

instance, the expected cost values of the best solutions found by four formulations are

provided in Table 5.10.

It is important to recall that only one of the formulations actually aims to per-

formance measure used in that table. So, in Table 5.10, only the expected cost formu-

lation’s objective is to generate solutions with minimum expected cost values. Other

formulations try to generate solutions based on their own performance measures and

after their best solutions are obtained, expected cost values of those solutions are cal-

culated and provided in Table 5.10.

In each row, best results among different formulations are bolded meaning that

the corresponding formulation of the bolded cell outperforms the others in terms of the

criterion of that table.

The problem instances are grouped in terms of whether they are composed of

dissimilar or similar scenarios and then sorted based on their problem sizes. At the

end of each problem instance group, one row is dedicated for the numbers displaying

how many times a formulation provided the best results among all formulations to

see whether there is any effect of a problem instance being composed of dissimilar or

similar scenarios. High numbers mean the corresponding formulation performs usually

better.
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The results in the tables above reveal that each formulation leads up to solutions

with distinct characteristics. Each formulation can only cover the measure that is

dedicated and none of them can substitute the other. In order to obtain solutions

with least expected cost values, the formulation that is dedicated to find expected cost

optimum must be employed and the similar conclusion might be made for the rest of

the formulations. Other formulations can obtain the best results in only a few problem

instances and this is the case when problem sizes are small.

To conclude, we may say that no matter what type of problem instance group

or problem size is selected these results are the same. All measures are meaningful

but exclusive with one another. Decision maker needs to determine which robustness

measure to optimize and then employ its corresponding algorithm.

The exception of these results exist for the absolute minimax regret and relative

minimax regret formulations in the problem instances composing of similar scenarios.

The reason is when the optimal objective function values of scenarios are close with

each other, the constraints in the absolute minimax regret and relative minimax regret

formulations where regret is defined become alike and their results become indistinct.

So, in the cases where variability across the scenarios is not severe, two models can be

used interchangeable.

Furthermore, the average time required in seconds for a single run of each algo-

rithm is presented in Table 5.14 since time requirement may also be another comparison

criterion. From the results, it can be claimed that there is no significant difference be-

tween execution times of algorithms.
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Table 5.14. Average time spent (in seconds) during algorithms.

Problem Name Problem Size
Expected

Cost

Minimax

Cost

Absolute

Minimax

Regret

Relative

Minimax

Regret

F3size12seed121 148 12 14,53 13,46 13,28 13,53

F3size12seed121 259 12 15,14 13,52 13,85 14,07

F3size18seed181 239 18 60,12 57,49 54,51 49,47

F3size18seed181 578 18 62,21 54,16 54,24 54,52

F3size20seed201 169 20 91,50 78,38 78,80 79,93

F3size20seed201 234 20 85,49 92,28 80,10 84,84

F3size22seed221 124 22 158,40 137,47 136,59 134,87

F3size22seed221 569 22 130,63 135,05 121,02 136,57

F3size25seed251 567 25 218,64 200,60 196,06 188,51

F3size25seed251 149 25 207,00 198,54 188,70 315,99

F3size30seed301 358 30 337,22 312,57 313,67 316,85

F3size30seed301 129 30 377,23 371,11 358,74 426,70

5.3.2. Results of p-Robustness Model

The p-robustness methodology aims to combine the advantages of both stochastic

and robust optimization approaches by seeking the least-cost solution in the expected

value that is p-robust. By determining an appropriate value for the p parameter, the

one can achieve solutions performing well in expected cost and having maximum regret

value less than this determined robustness parameter.

In order to determine the p values, first the behaviors of the solutions generated

by expected cost and relative minimax regret models should be examined. The results

for the former model might have the least expected cost values but higher maximum

relative regret values. Similarly, the results for the latter model might have the least

maximum relative regret values but higher expected cost values. If p is chosen to be
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higher than the maximum relative regret values obtained from the expected cost model,

the p-robustness constraint will be redundant as the solutions from the expected cost

model already satisfies this constraint. Also, if p is chosen to be less than the maximum

relative regret values obtained from the minimax relative regret model, there may be no

feasible solutions available as the p-robustness constraint makes the problem infeasible.

Therefore, in our p-robustness analysis, there should be some significant amount

of difference between the maximum relative regret results of two formulations and

problems are solved with several levels for the p parameter. When we examine the

results of the previous section, only three problem instances where problem size is

large and problem instances are composed of dissimilar scenarios are suitable to make

p-robustness analysis.

The results of the solutions obtained from p-robustness formulation are presented

in Table 5.15, 5.16, and 5.17, each for one problem instance. Each row presents the

results of the best solution obtained from ten replications where the first row is for

expected cost model and the last row is for minimax relative regret model. Two related

criteria which are expected cost criterion and maximum relative regret criterion are

presented in two columns. It can be observed that as p value is scaled down in each

row, solutions keep satisfying this maximum allowable regret value but their expected

costs increase. If p takes smaller values the results obtained from minimax relative

regret formulation, there may be no feasible p-robust solutions for the problem as it is

observed in every problem instances and presented in tables.
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Table 5.15. p-robustness Analysis on “F3size22seed221 569 ”.

Model Name

Expected

Cost

Criterion

Maximum

Relative

Regret

Expected Cost 103384.67 2.813

p-robustness, p= 3 103384.67 2.813

p-robustness, p= 2 108593.67 1.876

p-robustness, p= 1 109382.00 0.907

p-robustness, p= 0.75 118343.67 0.720

p-robustness, p= 0.5 no feasible solution

Relative Minimax Regret 121852.67 0.591

Table 5.16. p-robustness Analysis on “F3size25seed251 149 ”.

Model Name

Expected

Cost

Criterion

Maximum

Relative

Regret

Expected Cost 82711.33 3.165

p-robustness, p= 5 82711.33 3.165

p-robustness, p= 3 87339.67 2.821

p-robustness, p= 1 90234.67 0.882

p-robustness, p= 0.5 95505.33 0.425

p-robustness, p= 0.4 no feasible solution

Relative Minimax Regret 95505.33 0.425
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Table 5.17. p-robustness Analysis on “F3size30seed301 129 ”.

Model Name

Expected

Cost

Criterion

Maximum

Relative

Regret

Expected Cost 91438.67 3.300

p-robustness, p= 5 91438.67 3.300

p-robustness, p= 3 97922.67 2.890

p-robustness, p= 2 101160.33 1.504

p-robustness, p= 1 102398.67 0.967

p-robustness, p= 0.5 no feasible solution

Relative Minimax Regret 104400.67 0.505

The behavior of solutions obtained from p-robustness formulation can also be

observed in Figure 5.1, 5.2, and 5.3 where x-axis corresponds the expected cost val-

ues of solutions and y-axis corresponds maximum relative regret values. The results

of p-robustness formulations with different p parameters are able to produce feasible

solutions are plotted as well as the results of both expected cost and relative minimax

regret formulations.

Figure 5.1. p-robustness results for problem instance “F3size22seed221 569 ”.
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Figure 5.2. p-robustness results for problem instance “F3size25seed251 149 ”.

Figure 5.3. p-robustness results for problem instance “F3size30seed301 129 ”.

The advantage of employing p-robustness formulation is that as a decision maker,

we can select an appropriate value for p and obtain the least cost solution that satisfies

the corresponding p-robustness constraint. This enables us to have control over the

maximum regret value of the solutions thereby combine the benefits of the two criteria.
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The drawback for p-robustness approach is that it is required to solve the same

problem several times to obtain a set of p-robust solutions displaying the behavior with

respect to p-robustness constraint. The time requirement of solving the problem for

only a specified p value is almost equal is to solve the problem with the preceding

formulations, so it is needed to wait for a much longer time to obtain valuable results

from p-robustness approach.

5.3.3. Results of Expected Cost & Absolute Regret Model

Expected Cost & Absolute Regret formulation employs two objectives covered in

the previous formulations in a collaborate manner and aims to obtain a set of feasible

solutions that are satisfactory in terms of behaving well on average and being robust

to all possible scenarios. With its multi-objective structure, we are able to produce the

Pareto front in a single run and produce more information than the two separate runs

corresponds to expected cost and absolute minimax regret formulations.

In our analysis, the final populations of 10 replications of the multi-objective GA

are combined and then sorted based on the non-dominated sorting criteria to produce a

single Pareto front. The solutions in the Pareto front obtained for one problem instance

are represented by 2-dimensional vectors composed of expected cost and maximum

absolute regret values in Figure 5.6 where x-axis corresponds the expected cost values

of solutions and y-axis corresponds maximum absolute regret values. The solutions

found by the related single objective formulations are also added to this plot. It is

important to recall that the front obtained from our multi-objective genetic algorithm

is an approximate Pareto front and based on the performance of our algorithm, there

may be other non-dominated solutions not presented in this plot.
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Figure 5.4. Expected Cost & Absolute Regret results for problem instance

“F3size30seed301 358 ”.

The detailed numerical results with the expected cost and maximum absolute re-

gret comparison criteria are presented in Table 5.18 as this multi-objective formulation

aims to find good solutions based on these two measures. Similar with the analysis

made on single objective formulations, the rows of the tables correspond to the results

in each problem instance and the columns of the tables correspond to the results of

each formulation.

Best solutions found in Pareto front are compared with solutions proposed by

single objective formulations. For instance, the solution proposed by expected cost

formulation is compared with the results of the member of the Pareto front having the

least expected cost value in Table 5.18. In this way, we can evaluate the performance

of our multi-objective algorithm in terms of finding as good solutions as the single

objective formulations.

Additionally, Tables 5.19 and 5.20 also present the comparison of the members

of the Pareto front and the best solutions proposed by single objective formulations
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each dedicated to a different performance measure. Each column in Table 5.19 presents

the results of a problem instance composed of dissimilar scenarios and each column in

Table 5.20 presents the results of a problem instance composed of similar scenarios.

Table 5.19. Expected Cost & Absolute Regret Analysis: dissimilar scenarios.

Comparison Criteria
Dissimilar Scenario Sizes

12 18 20 22 25 30

Expected Cost 1.00 1.00 1.00 1.00 1.00 0.97

Maximum Cost 1.08 1.10 1.00 1.08 1.13 1.11

Maximum Absolute Regret 1.00 1.00 0.88 0.96 1.01 0.74

Maximum Relative Regret 1.00 1.44 1.32 2.68 4.96 6.82

The values are the ratios of the performances of the multi-objective algorithm

over the single objective ones. A value less than one indicates that the multi-objective

algorithm is capable of finding a member in its Pareto front such that the member

performs better than the solutions proposed by the single objective formulations. The

ratio equal to one means both formulations lead up with the same solutions and the

ratio greater than one means there is no such solution in the Pareto front that performs

better than the solutions proposed by the single objective formulations.

Table 5.20. Expected Cost & Absolute Regret Analysis: similar scenarios.

Comparison Criteria
Similar Scenario Sizes

12 18 20 22 25 30

Expected Cost 1.00 1.00 0.99 1.00 1.03 0.95

Maximum Cost 1.00 1.00 0.97 1.00 1.04 0.96

Maximum Absolute Regret 1.00 1.00 0.97 0.98 1.01 0.91

Maximum Relative Regret 1.00 0.93 0.90 1.08 0.99 0.87

The ratios in the first and the third rows in Table 5.19 and 5.20 are usually less

than or equal to one, or close to one at least. This means, the multi-objective algorithm
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is capable of finding as good solutions as the single objective ones. The ratios in the

second and the fourth rows might take slightly large values indicating the Pareto front

found by our multi-objective algorithm does not include solutions performing well under

those measure. This fact also supports the results found in Section 5.3.1. As it has been

mentioned, the performance measures cannot substitute each other and a formulation

whose objective does not include minimax cost and minimax relative regret objectives

to perform well in the corresponding measures.

An observation regarding the expected cost and minimax absolute regret for-

mulation is that its front includes only a few number of solutions. As in Figure 5.6,

there are only six members including two solution can also be found by single objective

formulations and this case is more apparent when the problem size is smaller. For

instance, when the optimum solution for expected cost and maximum absolute regret

measures are the same solution, the corresponding Pareto front is composed of only

one solution.

The reason of lack of members is that the formulation has two objective hence the

front is 2-dimensional. If there were more than two objective, it would be harder for a

solution to be dominated by another solution since dominating requires an improvement

in all objectives. The other reason is the choice of the objectives. Both objectives

are composed of minimizing a performance measure and even they do not serve the

same measure they might be highly correlated. For instance, a solution which has a

low expected cost value is likely to have a low maximum absolute regret value too.

This correlation may be the primary reason that lacks the number of non-dominated

solutions.

5.3.4. Results of mQAP Model

The case is quite different when we want to investigate the results of the multi-

objective QAP formulation that include three objective functions as the number of

scenarios in our problem instances are equal to three. We want to evaluate the per-
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formance of multiple solutions located at the same front. The results are shown in

MATLAB with version R2012a.

In Figure 5.5 and 5.6, the Pareto fronts obtained from our multi-objective genetic

algorithm in two problem instances are presented as well as the solutions proposed by

single objective formulations in order to make a visual comparison. The bowl shapes

of the fronts can be detected.

Figure 5.5. mQAP front for problem instance “F3size25seed251 149 ”.

If solutions generated by single objective formulations reside on the front, it means

that our multi-objective algorithm is capable of finding as good solutions as the single

objective formulations have found for the corresponding performance measure. If solu-

tions generated by single objective formulations are above the front, it means that our

multi-objective algorithm finds better solutions than the single objective formulations.

Finally, if solutions generated by single objective formulations are below the front, it

means that our multi-objective algorithm missed some members of the true Pareto

front.
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Figure 5.6. mQAP front for problem instance “F3size30seed301 358 ”.

The comparison can also be made through the detailed numerical results that are

presented in Table 5.21, and 5.22. Similar with the analysis made in Section 5.3.1, the

columns of the tables represents the results of each formulation and the rows of the

tables displays the results in each problem instance.

In each comparison, the solutions proposed by single objective formulation are

compared with a distinct member of Pareto front proposed by mQAP formulation.

The aim here is to show to that our multi-objective genetic algorithm is capable of

finding the members of true Pareto front and while doing so, it is capable of finding as

many members as possible in order not to miss any member which may represent the

optimal solution for a performance measure we work.

The comparison results indicates that our mQAP formulations is adequate to find

the optimal solutions. Tables 5.23 and 5.24 also present the comparison of the members

of the Pareto front and the best solutions proposed by single objective formulations.

The values are again the ratios of the performances of the multi-objective algorithm

over the single objective ones.
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Unlike the analysis in the previous section, for evaluating the quality of our multi-

objective genetic algorithm, it is required to examine the ratios in all rows. The ratios

are usually less than or equal to one or at least close to one. This indicates that our

algorithm performs as well as the single objective algorithms. The one can construct

the Pareto front and then by evaluating only the members of this front, he can find a

fulfilling solution based on his requirements.

Table 5.23. mQAP Analysis: dissimilar scenarios.

Comparison Criteria
Dissimilar Scenario Sizes

12 18 20 22 25 30

Expected Cost 1.00 1.02 1.00 1.00 0.98 0.95

Maximum Cost 1.00 1.01 1.00 1.01 1.00 1.00

Maximum Absolute Regret 1.00 1.10 1.004 1.001 1.00 0.67

Maximum Relative Regret 1.00 1.08 0.97 1.08 0.95 0.89

Table 5.24. mQAP Analysis: similar scenarios.

Comparison Criteria
Similar Scenario Sizes

12 18 20 22 25 30

Expected Cost 1.00 1.01 0.99 1.03 1.03 0.97

Maximum Cost 1.00 1.00 0.98 1.03 1.04 1.003

Maximum Absolute Regret 1.00 1.00 0.97 1.06 1.05 1.07

Maximum Relative Regret 1.00 0.93 0.90 1.04 1.09 1.004

What’s more, the time requirement for our multi-objective algorithm is the same

as the time requirements of the single objective algorithms. Instead of solving the

problems several times each for a different performance measure, we can solve the multi-

objective algorithm and obtain the Pareto front which is composed of good compromises

between the scenario objectives and include the optimal solutions for every performance

measure.
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On the other hand, the ratios that are greater than one indicates that we did not

manage to find all members of the true Pareto front or the front we obtained includes

dominated solutions. This is the case especially for the problems composing of similar

scenarios and with large sizes. To investigate the reasons behind, some further analysis

is required. As the Pareto fronts are formed by combining the fronts of ten replications,

the number of solutions in the combined Pareto front might be significantly larger than

the population size parameter applied in our multi-objective genetic algorithm. this

indicates that, a single run of the algorithm is not capable of forming the entire Pareto

front due to its population size parameter. To observe the effect of the population

size parameter, experimentations with population size 200 are held and the sizes of the

resulting Pareto front are summarized in Table 5.25.

Table 5.25. Front sizes for different population size levels.

Problem Name
Population Size

100 200

F3size12seed121 148 57 57

F3size12seed121 259 80 81

F3size18seed181 239 182 243

F3size18seed181 578 162 196

F3size20seed201 234 162 200

F3size20seed201 169 147 154

F3size22seed221 569 208 262

F3size22seed221 124 144 178

F3size25seed251 149 134 164

F3size25seed251 567 170 215

F3size30seed301 129 152 216

F3size30seed301 358 222 319

Tables 5.26 and 5.27 present the updates ratios for the comparison of the members

of the Pareto front and the best solutions proposed by single objective formulations.

The values are again the ratios of the performances of the multi-objective algorithm over
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the single objective ones and the results indicate that there is a significant improvement

by the multi-objective algorithm as the ratios are usually less than or equal to one.

On the other hand, increase in the population size of our multi-objective algorithm

increases the time requirement.

Table 5.26. mQAP Analysis: dissimilar scenarios with population size: 200.

Comparison Criteria
Dissimilar Scenario Sizes

12 18 20 22 25 30

Expected Cost 1.00 1.00 1.00 1.00 0.98 0.94

Maximum Cost 1.00 1.01 1.00 1.01 1.00 1.00

Maximum Absolute Regret 1.00 1.00 0.88 0.93 1.07 0.99

Maximum Relative Regret 1.00 1.00 0.97 1.05 0.95 0.81

Table 5.27. mQAP Analysis: similar scenarios with population size: 200.

Comparison Criteria
Similar Scenario Sizes

12 18 20 22 25 30

Expected Cost 1.00 1.01 0.99 1.03 1.03 0.95

Maximum Cost 1.00 1.00 0.98 1.00 0.99 0.98

Maximum Absolute Regret 1.00 1.00 0.97 0.98 0.99 0.99

Maximum Relative Regret 1.00 0.93 0.90 1.04 1.03 0.89

It can be concluded that to obtain satisfactory results from the multi-objective

algorithm, population size parameter should be determined large enough to approxi-

mate the true Pareto front successfully. As the problem size increases, the requirement

for the population size parameter may be large.

Another aspect that affects the performance of our multi-objective genetic algo-

rithm is number of scenarios in the problem instances. It is clear that as the number

of scenarios increases the count of the solutions in the true Pareto front increases and

the requirement for the population size will also increase. to observe this effect, we
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have made experimentations by combining scenarios to build new problem instances

composed of 6 scenarios. each problem instance is solved successfully by our single

objective algorithms and the then solved by mQAP formulation with population size

equal to 1000. The ratios of the performances are presented in Table 5.28.

Table 5.28. mQAP Analysis: problem instances with 6 scenarios.

Comparison Criteria
Problem Sizes

12 18 20 22 25 30

Expected Cost 1.00 1.00 1.01 1.01 1.01 1.02

Maximum Cost 1.00 1.003 1.03 1.00 1.02 1.04

Maximum Absolute Regret 1.13 1.05 1.00 1.22 1.27 1.32

Maximum Relative Regret 1.00 1.01 1.03 1.06 1.05 1.08

Although the time requirement becomes very large compared to the ones with

single objectives, the results indicate there is still need for increasing the population

size parameter to obtain a good representative set of the true Pareto front. It is clear

that additional work is required for the proposed multi-objective genetic algorithm to

solve problem instances with large number of scenarios effectively and in reasonable

times.
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6. CONCLUSION

In this thesis, the aim is to investigate different ways of dealing with uncertainty to

design a facility layout which attains robust and efficient performance under all possible

scenarios. The QAP is selected as our benchmark problem and we formulate seven

QAP-based formulations each covers different stochastic and robustness performance

measures. Proposed formulations are solved using a GA with operators and local

improvement schemes specially selected and adapted from literature. To the best of

our knowledge, QAP has never been investigated in this context previously.

We also propose a multi-objective genetic algorithm which is similar to NSGA-II

introduced by Deb et al. (2002) to approximate the Pareto front in our multi-objective

formulations. The motivation behind developing multi-objective formulations comes

from the strong relationship between robustness measures and the multi-objective for-

mulations as pointed out by Aissi et al. (2009). Instead of evaluating each performance

measure separately we can approximate the Pareto front in a single algorithm dedi-

cated to mQAP formulation and select the appropriate member based on our chosen

performance measure.

After the experimental setting, fine tuning and the validation for our proposed

GA, problem instances of different sizes and characteristic are generated in order to

evaluate the performances of the formulations developed. Extensive numerical analysis

enables us to compare the performance of these approaches in terms of robustness

metrics and to gain important insights into ways of treating the uncertainty issue in

facility layout problem. We find that each robustness measure we discussed are distinct

in behavior and cannot substitute one another leading us to different solutions where

robustness is interpreted in a different way. Furthermore, we observe that the proposed

GA procedure is capable of finding very good solutions to these problem.

The approximated Pareto front generated by the mQAP formulation offers the



84

decision maker a plenty of good quality solutions that include the optimal solutions for

all robustness measures covered in this thesis. In fact, in the three scenarios case, the

MOEA adapted from NSGA-II outperforms the single objective robust optimization

GAs on most of the instances. This is a very promising result which was not previously

investigated in the literature. Furthermore, it is also useful in many real life cases, since

for many decision makers it might be natural and convenient to generate only three

scenarios to represent the uncertainty in demand. However, as the problem gets larger

in terms of its size and the number of scenarios, it becomes difficult to obtain close

approximation of the Pareto front and represents the whole range of it.

As a future research topic, it is clear that additional work is required to the

proposed multi-objective genetic algorithm to solve problem in instances with large

number of scenarios efficiently and in reasonable times. Considering the results found

in this thesis, it will be a noteworthy attempt to draw out the properties of the extended

problem instances in depth, such as discovering the size and landscape of the Pareto

front and developing appropriate search strategies.

Finally, the observation obtained about the potential of the multi-objective ver-

sion for the QAP may be generalized to combinatorial optimization problems. It is

hoped that this study will stimulate further investigation in this topic.
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