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ABSTRACT

DISTRIBUTED DETECTION AND DECISION FUSION

USING PARTICLE FILTER CONCEPTS

In this thesis, a distributed detection and decision fusion system that operates

under non Gaussian noise with unknown parameters is developed. The main objective

is to find decision rules for the local detectors and the fusion center without making

unrealistic assumptions about statistics of the observed data. The proposed scheme

is based on concepts of using particles. In order to form a dynamical model of the

problem, observed data is modeled as an AR process which is driven by Gaussian

mixture noise. The proposed system consists of a particle filter, used for estimating

the unknown noise parameters, followed by particle swarm optimization (PSO) which

achieves distributed detection and decision fusion of local decisions. The fusion rule

is designed, without assuming independence of the decisions of the local sensors, by

using copula functions to relate the marginal densities of the sensor observations to

the statistical dependency between the sensor decisions. The parameter of the copula

function used is estimated using PSO. The probability of error values obtained by using

the proposed method are compared with theoretical values and promising results are

obtained.



v

ÖZET

PARÇACIK SÜZGEÇLEME TEMELLİ DAĞITIMLI SEZİM

VE KARAR TÜMLEŞTİRME

Bu tezde, Gauss olmayan ve değişken değerleri bilinmeyen gürültü altında çalışa-

bilen bir dağıtımlı sezim ve karar tümleştirme sistemi geliştirilmiştir. Öncelikli olarak

amaçlanan, yerel sezimleyici ve tümleştirme merkezi karar verme kurallarının, gözlem

verisi istatistiklerine dair gerçekçi olmayan varsayımlardan kaçınılarak belirlenmesidir.

Önerilen yapı parçacık temelli kavramlara dayandırılmaktadır. Problemin dinamik

bir modelinin kurulabilmesi için, gözlem verisi Gauss karışımı gürültü ile özbağlanımlı

süreç olarak modellenmiştir. Önerilen sistem bilinmeyen gürültü değişkenlerinin kestir-

imi için kullanılan bir parçacık süzgeci ve sonrasında dağıtımlı sezim ve yerel kararları

tümleştirmeyi gerçekleştiren parçacık sürü optimizasyonundan (PSO) oluşmaktadır.

Tümleştirme kuralı, algılayıcıların kararları arasında istatistiksel olarak bağımsızlık

varsayımında bulunmadan, copula fonksiyonu kullanılarak algılayıcı kararlarının mar-

jinal olasılık yoğunluklarının ortak olasılık yoğunluklarına ilişkilendirilmesiyle tasar-

lanmıştır. Kullanılan copula fonksiyonuna ait değişken PSO kullanılarak kestirilmek-

tedir. Önerilen yöntemlerle elde edilen hata olasılıkları teorik hata olasılıkları ile

karşılaştırıldığında umut vaat eden sonuçlar elde edilmiştir.
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1. INTRODUCTION

1.1. Problem Statement

Current multiple sensor-based signal processing mostly relies on a centralized

scheme where the individual sensors transmit the recorded data to a central fusion

center, which then either estimates the parameters of interest or makes a decision on

a postulated hypothesis. Centralized scheme has some disadvantages such as usage of

wide bandwidth and high computational complexity at the fusion center. Recently,

signal processing with distributed sensors has gained importance. In distributed de-

tection systems, each sensor processes information and transmits its corresponding

decision to a fusion center where a global decision is made. Using a distributed scheme

significantly reduces bandwidth and computational complexity in fusion center; thus

increases the robustness of the overall system as the influence of a single sensor to the

overall decision is reduced.

The challenge in a sensor network is to design the decision rules at the individ-

ual sensors and at the fusion center to achieve minimization of global probability of

error or a Bayesian risk parameter. In addition to minimizing the probability of error,

for example, other criteria such as minimization of the energy consumption and/or

maximization of the rate of transmission may be taken into account. This problem,

which has gained much attention in recent years, is referred to as multi-objective opti-

mization [1]. Recently an optimization method, namely Particle Swarm Optimization

(PSO), which aims to converge optimum thresholds dynamically based on particles is

suggested in [2] where observation noise is assumed to be known and Gaussian. Also,

the effectiveness of PSO in finding the thresholds of local detectors in distributed de-

tection scenario is shown through simulations; however performance of this method

has not been investigated using real data.

Often, strong assumptions such as the choice of a parametric model and a prob-

ability distribution function of the observations (typically the normal distribution) as
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well as assumptions on the optimal detector design such as linearity, stationarity, un-

correlatedness or independence are made in the design of decision rules. However, this

optimality is obtained only if the assumptions hold exactly, which is often unrealistic

in real life. Any deterioration from these strong assumptions may lead to performance

degradation and hence harm the robustness of the overall system [3], [4], [5], [6]. In

particular, measurement campaigns in numerous applications such as outdoor mobile

communication channels, radar and sonar systems, biomedical, seismology indicate the

presence of impulsive (heavy-tailed) noise, which can cause the detector to be sub-

optimal or even may cause them to fail.

Impulsive noise is generally modeled as alpha stable distribution, ε-contaminated

mixture model or Gaussian mixture model [5], [7]. Gençağa et al obtained promising

results in modeling seismological events as non-stationary autoregressive (AR) pro-

cesses driven by alpha stable noise [8], [9], [10]. Using a particle filter-based approach,

they successfully estimated the time-varying coefficients of the AR process and the

noise statistics. However, modeling impulsive noise as alpha stable distribution may

not be suitable in the context of distributed detection, since alpha stable distribution

cannot be expressed in a closed form and it requires numerical calculations to obtain

corresponding thresholds which may be an additional burden to the processors of the

local detectors.

Moreover, fusion of local decisions is an important task in distributed detection.

In [4], optimum fusion rule is described by weighing the individual decisions based

on the probability of detection of local detectors under the assumption that sensor

decisions are independent. When this assumption does not hold, overall performance

of the distributed detection system may behave poorly compared to the cases where

the dependency between decisions are embedded in the fusion decision rule. Local

decisions may still be correlated especially when the sensor locations are close, even

when the sensors make their decisions independently. However, taking dependency of

the decisions into account is not an easy task, since it requires the joint probability

density of the decisions. Bahadur-Lazarfeld expansion is proposed to compute the joint

probabilities [4]. Still, this approach may not be efficient when the dependency between
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the decisions are nonlinear.

Recently, copula theory has been introduced to the problem of fusion of correlated

decisions which provides an approach that does not necessarily require prior information

about the joint statistics of the sensor decisions [11]. Using a copula function, the

marginal densities of the sensor observations or the marginal probability mass functions

of the sensor decisions can be related to the joint probability density function of the

sensor decisions. Iyengar et al. proposes a copula solution to the joint processing of

heterogeneous data, specifically for a binary classification problem, where the observed

signals may be statistically dependent [12]. For the cases when parameters of the

copula function used is unknown, estimation of these parameters are attempted using

maximum likelihood estimation [11], [12].

Alternatively, sequential Monte Carlo methods can be used in the estimation

of the copula parameters [13], [14]. In this approach, a dynamic model is formed to

express the dependency between data sets by writing them as factor models that are

known priorly. However this approach may not be applied to the estimation of the

copula parameters used in the description of the dependency between local decisions,

when a dynamic model to describe this relation could not be formed using state space

equations.

In this thesis, a distributed detection scheme shown in Figure 1.1 is considered.

The main objective is to find decision rules for the local detectors and the fusion

center while avoiding to make unrealistic assumptions. Observation noise is modeled as

Gaussian mixture which may express multi-modalities or heavy-tails due to selection

of the parameters and also it is a generalization of ε-contaminated mixture model.

Therefore, we avoid Gaussianity assumption of observation noise and aim to infer its

parameters from observed data in a sequential way using particle filtering. The reason

for the operation of the system to be in a sequential manner is to provide adaptivity

to the cases where statistical properties of data change over time. In order to form a

dynamical model of the problem, observed data is modeled as an AR process which is

driven by Gaussian mixture noise. The parameters of the observation noise as well as
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the coefficients of the AR process are not presumably known and aimed to be estimated

using particle filters. As the noise parameters are estimated, local decision rules are

designed using the knowledge of noise parameters within PSO framework. Estimates of

the AR coefficients are not used in the PSO algorithm, however this step enables us to

investigate the most general version of our problem, i.e., when both the AR coefficients

and the noise parameters are unknown. Moreover, inferring additional knowledge from

the AR coefficients may be utilized in a future work of an early warning system for the

detection of earthquakes.

The thresholds of the local detectors are found within PSO framework using

estimated parameters of Gaussian mixture noise. For each observation, each local

detector makes a decision according to its threshold value which is obtained as weighted

sum of thresholds corresponding to the mixture parameters of the Gaussian mixture

noise. Then, local decisions are transmitted to the fusion center. We design the fusion

rule without assuming independence of the decisions of the local sensors. In order to

form the statistical dependency between the sensor decisions, copula theory is used.

Copula theory enables us to use copula functions to relate the marginal densities of the

sensor observations to the statistical dependency between the sensor decisions. Also,

we do not assume that the copula parameters are known; rather we aim to estimate

the parameter of the used copula by using PSO. For simplification Gaussian copula is

used as copula function, since it requires one parameter to be estimated.

Figure 1.1. Block diagram of the proposed distributed detection and decision fusion

system.
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Performance of the estimation of the observation noise parameters using particle

filtering are investigated in the experiments using both simulated and real seismolog-

ical data. Using these estimations, thresholds of the local detectors, and then local

decisions, are obtained. Local decisions are fused after estimating the copula param-

eter of the copula function which yields the joint probability distribution of the local

decisions. Performance of the overall distributed detection system is measured by the

probability of error of the system.

1.2. Contributions of the Thesis

In this work, particle based methods are applied to the problem of distributed

detection and decision fusion. The problem of finding decision rules for the local detec-

tors and the fusion center where the statistics of data are unknown or changing with

time is attempted using particle based methods, namely as PSO and particle filtering,

in a sequential manner. Therefore, typical assumptions made in design of decision

rules of distributed detection systems such as linearity, Gaussianity, stationarity of the

parametric model and uncorrelatedness of decisions are avoided. Our main contribu-

tion in this work is to propose modeling observations as AR process that is driven

by Gaussian mixture noise which enables estimation of observation noise parameters

sequentially using particle filtering. Another contribution of this work is to introduce

decision rules for the fusion center in which the correlation among decisions are es-

timated using particles. Here, copula theory is utilized in forming joint distribution

densities of the local decisions where the unknown parameter of the copula function

is estimated using PSO. Hence, a modified version of fusion rule is suggested which is

shown to increase performance of distributed detection system. Moreover, performance

of the proposed distributed detection system is tested in real seismological data for de-

tection of earthquakes which are obtained from different seismic stations in Turkey by

Boğaziçi University Kandilli Observatory and Earthquake Research Institute.

1.3. Organization of the Thesis

The organization of this thesis is as follows:
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In Chapter 2, classical and modern approaches to detection theory are reviewed

and the distributed detection and decision problem is introduced. Application of the

PSO in the context of distributed detection is reviewed.

In Chapter 3, estimation theory is reviewed. Sampling techniques are introduced

and particle filtering is briefly explained.

Chapter 4 starts with a general description of the proposed distributed detection

system. Then, the proposed distributed detection system is explained in details within

three main parts: AR modeling of observations and estimation of noise parameters,

decision rules of the local detectors and decision fusion. Implementation details and

experimental results of the methods used are provided.

In Chapter 5, proposed distributed detection system is tested with real earthquake

data and results are compared with the results of the simulated data.

Chapter 6 concludes the thesis and includes comments about the future work on

the subject.
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2. DETECTION THEORY

In this chapter, we introduce detection theory concepts. We start with the hy-

pothesis testing, Neyman Pearson formulation of the detection problem and the Bayes’

formulation of the detection problem. Then, we relate the PSO algorithm to the

Bayesian approach of detection problem.

2.1. Hypothesis Testing

A statistical hypothesis is an assertion or a claim regarding the true value of an

unknown population parameter. Hypothesis testing is the use of statistics to determine

the probability of a given hypothesis to be true. Hypothesis testing is formulated in

terms of two hypotheses: null and alternative. The null hypothesis, denoted by H0,

represents the case when the assertation does not hold and it is the assumed outcome

of the experiments if the tested assertation is false. The alternative hypothesis, denoted

by H1, is the opposite, complementing H0. Thus, the hypothesis testing procedure is

about gathering evidence to find out if the null hypothesis H0 should be rejected and

the alternative hypothesis H1 accepted, or not. Statistical evidence is gathered from

the observation space that corresponds to a set of N observations: y1,y2,...,yN . The

conditional probability densities py|H0(Y|H0) and py|H1(Y|H1), that are assumed to

be completely known, map hypotheses to points in observation space according to a

decision rule [15]. There are four possible outcomes for each time a decision is made:

• H0 is true and H0 is chosen.

• H0 is true and H1 is chosen.

• H1 is true and H0 is chosen.

• H1 is true and H1 is chosen.

The choise of decision rule generally affects the values of two types of error in hypothesis

testing:
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• False alarm (α): Rejecting H0 when it is true.

• Miss (β): Accepting H0 when it is false.

where α and β denote the probabilities of false alarm and miss, which are denoted as

PFA and PM , respectively. The probability of accepting H1 when it is true is referred

to as probability of detection and denoted as PD.

Figure 2.1. Possible hypothesis testing errors.

Two of the most common decision criteria, the Neyman-Pearson and the Bayes

are presented next.

2.1.1. Bayesian Criterion

Bayes test is based on usage of prior knowledge upon the probability of occur-

rences of two hypotheses which are called as the a priori probabilities and denoted as

P0 and P1 . For each outcome of a decision, costs are assigned as C00, C10, C11, C01

where the first subscripts denote the hypothesis chosen and true hypothesis, respec-

tively. Bayesian criterion is formed in order to minimize the average cost or the risk R

which is defined as [15]:

R = C00P0Pr(choose H0|H0 is true) + C10P0Pr(choose H1|H0 is true)

+ C11P1Pr(choose H1|H1 is true) + C01P1Pr(choose H0|H1 is true). (2.1)



9

Since there are two hypotheses, the decision rule divides the observation space Z into

two regions: Z0 and Z1. Then the risk R can be written in terms of the transition

probabilities and decision regions:

R = C00P0

ˆ

Z0

py|H0(Y|H0)dY + C10P0

ˆ

Z1

py|H0(Y|H0)dY

+ C11P1

ˆ

Z1

py|H1(Y|H1)dY + C01P1

ˆ

Z0

py|H1(Y|H1)dY. (2.2)

Regions Z0 and Z1 are chosen such that R is minimized. Using the fact that Z=Z0+Z1

and ignoring the fixed costs, decision regions are generally defined as:

py|H1(Y|H1)

py|H0(Y|H0)

H1

≷

H0

P0(C10 − C00)

P1(C01 − C11)
, (2.3)

where the quantity on the left is named as the likelihood ratio and denoted by Λ(Y).

The quantity on the right of (2.3) is the threshold of the test and denoted by λ. Thus,

Bayesian criterion leads to likelihood ratio test (LRT) as:

Λ(Y)

H1

≷ λ.

H0

(2.4)

2.1.2. Neyman-Pearson Criterion

Neyman-Pearson approach to hypothesis testing uses error probabilities as con-

flicting objectives where probability of false alarm (PFA) is constrained and probability

of detection (PD) is maximized [15].

Neyman-Pearson Criterion: Constrain PFA = α′ ≤ α and design a test to

maximize PD under this constraint [15].
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This constraint on PFA can be satisfied by chosing λ such that:

PFA =

∞ˆ

λ

py|H0(Y|H0)dY = α′, (2.5)

where the density of y when H0 is true is denoted as py|H0(Y|H0). Similarly, the

value of PD for the given threshold can be found as:

PD =

∞ˆ

λ

py|H1(Y|H1)dY, (2.6)

where the density of y when H1 is true is denoted as py|H1(Y|H1).

A popular approach to Neyman Pearson criterion makes use of Lagrange multi-

pliers by constructing the function F [16]:

F = PM + λ′[PFA − α], (2.7)

where PM is probability of miss which is equal to (1 − PD) and λ′ is the Lagrange

multiplier. Substituting PM and PFA in the function F results in:

F = λ′(1− α) +

λˆ

−∞

[p(y|H1)− λ′p(y|H0)] dY. (2.8)

The first term in Eq. (2.8) is fixed, therefore minimizing the second term yields LRT

to be expressed as follows :

Λ(Y) =
p(y|H1)

p(y|H0)

H1

≷ λ′

H0

. (2.9)

The threshold λ of the test is the Lagrange multiplier λ′ which satisfies the constraint

in (2.5).
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2.1.3. Partical Swarm Optimization (PSO)

The PSO algorithm is a computational method that optimizes a given function

iteratively. It was originally represented by Kennedy and Eberhart in 1995 as a simu-

lation of social behaviors in a community [17]. The PSO algorithm has been applied to

multi-dimensional optimization problems where each particle is a possible solution to

the multi-dimensional optimization problem [18]. Particles continuously seek through

a multi-dimensional search space to find the optimum solution. Each solution is evalu-

ated upon a multi-objective performance function related to the optimization problem

being solved. As shown in Figure 2.2, the trajectories of the particles are affected by

the best solution achieved so far, called pbest, and the best solution achieved amongst

all particles, called gbest [19]. At each iteration, pbest and gbest are updated for each

particle. The algorithm continues until particles converge to the optimum solution of

the problem or the maximum number of iterations are reached.

Each particle in M -dimensional space is represented as xi = (xi1, x
i
2,..., x

i
M) where

i = {1, 2, ...N} is the particle number. The previous best positions (pbest) for each

particle are represented as pi = (pi1, p
i
2,..., p

i
M) and the velocity of the particles are as

νi = (νi1, ν
i
2,..., ν

i
M). At time instant t, the velocity of each particle is updated as:

νit,m = w.νit−1,m + U(0, 1).ϕ1.(pbest
i
t−1,m − xit−1,m) + U(0, 1).ϕ2.(gbestt−1,m − xit−1,m),

(2.10)

where U(0, 1) is a sample of uniform random number generator, ϕ1 is a weight de-

termining the effect of pbest, ϕ2 is a weight determining the effect of gbest and w is

a weight determining the effect of particle’s previous velocity on particle’s updated

velocity. The value of the particle is updated as:

xit,m = xit−1,m + νit,m. (2.11)
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Figure 2.2. Update of a particle in PSO algorithm.

2.1.3.1. Particle Swarm Optimization in Distributed Detection Scheme. In the distri-

buted detection problem, determination of local sensor thresholds are crucial. Sensor

thresholds can be determined by optimization of a multi-objective function that is com-

posed of sensors’ PFA and PD values. In this scheme, sensor thresholds are represented

by particles of M -dimension and the multi-objective optimization function Pe can be

written as a function of sensor thresholds (λ1, λ2, ..., λM) as [2]:

Pe(λ) = Pr(H0)Pr(H1|H0) + Pr(H1)Pr(H0|H1), (2.12)

where Pr(H1) and Pr(H0) denote the prior probability on H1 and H0, respectively.

Pr(H1|H0) is the probability of false alarm and Pr(H0|H1) is the probability of miss

which are described in (2.2). Dividing (2.7) by Pr(H1) and using the fact that

Pr(H0|H1) = 1 − Pr(H1|H1) results in that minimizing probability of error Pe(λ) is

equivalent to maximizing P̃e(λ) as:

P̃e(λ) = Pr(H1|H1)−
Pr(H0)

Pr(H1)
Pr(H1|H0). (2.13)

Initially, each of the particles are sampled independently and uniformly over a

region [λmin, λmax], which includes all the values that each particle can take. Positions
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of particles are propagated using the previous particle positions (λit−1), the previous

best particle (λbestt−1) and random noise samples q as:

λit =
λit−1 + λbestt−1

2
+ q. (2.14)

Then, the particle weights are updated as:

wit = wit−1P̃e(λ
i
t). (2.15)

Sequentially, the algorithm converges to the particles which maximize P̃e(λ), hence

the set of thresholds (λ1, λ2, ..., λM) which minimizes the probability of error can be

obtained.

2.2. Distributed Detection

This section introduces the distributed detection problem which has been com-

prehensively studied by Varshney et. al in his work [4]. Decision making can be

extended to cases where multiple decision makers are used. In classical multisensor

detection, all the sensors send their data to a central processing unit where decisions

are made. If sensors have processing capability, then certain amount of computation

can be performed locally and sensors also make decisions. In decentralized processing,

local sensors process data and their local decisions are sent to the central processing

unit which is generally referred to as the fusion center.

Distributed detection can be done in various configurations such as parallel, serial

or tree [3]. In paralel topology, each sensor makes hard decisions and send them to

a fusion center. However, sending less information to the fusion center may result

in performance degradation compared to classical detection methods. There are also

variations of parallel topology where additional information is monitored by the fusion

center. In some applications where a global decision is not necessary, sensors can make

local decisions in order to optimize a systemwide objective function. In this work
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parallel topology is selected due to its ease of implementation and wide usage.

Figure 2.3. Distributed detection with fusion in parallel configuration.

In serial (or tandem) detection topology, all of the sensors are connected in series

and receive observations from the common phenomenon directly. The first sensor makes

a decision upon its observations and send its decision to the second sensor. The second

sensor makes a decision upon its observations and the decision of the first sensor. Each

sensor after the first one makes its decision upon its observations and the decision of

the previous sensor (see Figure 2.4). This procedure continues until the last sensor in

the network makes its decision [4].

Figure 2.4. Distributed detection in serial configuration.

Another topology used in distributed detection systems is a tree network. In a

tree network, the configuration is represented by a directed tree (see Figure 2.5). The

fusion center becomes the root of the tree and local sensors send their information to

the fusion center using a certain path which is defined by a communication matrix [3].
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Finding optimum thresholds for tree networks are generally difficult to derive, since it

requires solving set of nonlinear equations. More information about tree networks can

be found in [20].

Figure 2.5. Distributed detection in tree configuration.

2.2.1. Distributed Detection in Parallel Configuration without Fusion

We consider a distributed detection system with M non-identical nodes as shown

in Figure 2.6. Each of the sensors observes a common phenomenon and makes decisions

locally. In this topology, it is assumed that sensors do not communicate with each

other and a fusion center. However due to the fact that systemwide optimization is

performed, sensors’ operations are assumed to be coupled [4]. The observation of the

jth sensor is denoted as yj and its decision is denoted as uj. Prior probabilities of

the null hypothesis H0 and the alternative hypothesis H1 are denoted as P0 and P1,

respectively.

Figure 2.6. M -sensor distributed detection without a fusion center.
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Bayesian approach of distributed detection aims to minimize the average cost of

decision making. For the two-sensor case, assuming independence of the sensors, the

Bayes risk function R can be written as follows [4]:

R =
∑
i,j,k

ˆ
y1,y2

PkCijkp(u1|y1)p(y1, y2|Hk), (2.16)

where Cijk represents the cost of detector 1 decidingHi and detector 2 decidingHj when

Hk is present. Likelihood ratio at detector 1 is given by the following expression [4]:

Λ(y1) =
p(y1|H1)

p(y1|H0)

u1 = 1

≷
P0

∑
j

´
y2
p(u2|y2)p(y2|y1, H0) [C1j0 − C0j0]

P1

∑
j

´
y2
p(u2|y2)p(y2|y1, H1) [C1j1 − C1j1]

u1 = 0

(2.17)

and threshold at the detector 1 is given by [3]:

λ1 =
P0

´
y2
p(y2|H0) {[C110 − C010] + p(u2 = 0|y2) [C100 − C000 − C010 − C110]}

P1

´
y2
p(y2|H0) {[C011 − C111] + p(u2 = 0|y2)C001 − C101 − C111 − C011}

.

(2.18)

Likelihood ratio and threshold of detector 2 can be written in a similar manner:

Λ(y2) =
p(y2|H1)

p(y2|H0)

u2 = 1

≷
P0

∑
j

´
y1
p(u1|y1)p(y1|y2, H0) [Cj10 − Cj00]

P1

∑
j

´
y1
p(u1|y1)p(y1|y2, H1) [Cj11 − Cj11]

u2 = 0

(2.19)

and

λ2 =
P0

´
y1
p(y1|H0) {[C110 − C010] + p(u1 = 0|y1) [C010 − C000 + C100 − C110]}

P1

´
y1
p(y1|H0) {[C011 − C111] + p(u1 = 0|y1)C001 − C011 + C111 − C101}

.

(2.20)

As can be seen from the above that the threshold of detector 1 is a function of

the threshold at detector 2 and, similarly, the threshold of detector 2 is a function of
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the threshold of detector 1. Finding thresholds that satisfy these coupled equations

results in finding locally optimum solutions. When there are multiple local minima,

these solutions must be examined to find the globally optimum solution.

2.2.2. Decision Fusion

In a distributed detection system, fusion center makes a global decision u0 that

is:

u0 =

0, if H0 is decided

1, otherwise

. (2.21)

As shown in Figure 2.3, local decisions are transmitted to a fusion center where the

local decisions are processed to obtain a global decision. The objective is to determine

the fusion rule to combine local decisions according to an optimization criterion. In

a distributed detection system where there are M sensors, there are 22M fusion rules.

Some commonly used logical functions as decision rules are AND and OR functions

which are represented in Table 2.1 by f2 and f8, respectively.

Table 2.1. Fusion decisions for two sensors.

u1 u2 f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16

0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

0 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Selecting the fusion rule among all possible choices may not provide a successful

combination of the local decisions. Some of the fusion rules such as all zero function f1

and all one function f16 would not be preferred in most situations, since these fusion

rules decide regardless of the local decisions. Design of a fusion rule can be carried out

using a Bayesian approach by minimizing an average cost.
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The probabilities of false alarm, detection and miss of ith sensor are, respectively,

given as follows:

PFAi = p(ui = 1|H0), (2.22)

PDi = p(ui = 1|H1) (2.23)

and

PMi = p(ui = 0|H1). (2.24)

Similarly, the probabilities of false alarm, detection and miss of the fusion center are

denoted as PFA, PD and PM , respectively.

Determination of a fusion rule can be regarded as a detection problem of two

hypotheses with two sensors where sensors’ decisions are used as observations. The

cost of global decision being Hi when Hj is present is denoted as Cij. Then, the

optimum fusion rule is given as follows [4]:

p(u1, u2, ..., uM |H1)

p(u1, u2, ..., uM |H0)

u0 = 1

≷
P0(C10 − C00)

P1(C01 − C11)
, η

u0 = 0

, (2.25)

where η represents threshold of the fusion center. Assuming independence of the sen-

sors, left hand side of (2.25) can be written as follows:
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p(u1, u2, ..., uM |H1)

p(u1, u2, ..., uM |H0)
=

M∏
i=1

p(ui|H1)

p(ui|H0)

=
∏
S1

p(ui = 1|H1)

p(ui = 1|H0)

∏
S0

p(ui = 0|H1)

p(ui = 0|H0)
(2.26)

=
∏
S1

1− PMi

PFAi

∏
S0

PMi

1− PFAi
,

where S1 and S0 represent the sets of all local decisions that are equal to 1 and 0,

respectively. Taking logarithm of (2.25) and substituting logarithm of the (2.26), (2.25)

can be written as follows:

∑
S1

log(
1− PMi

PFAi
) +

∑
S0

log(
PMi

1− PFAi
)

u0 = 1

≷ log η,

u0 = 0

(2.27)

which can also be expressed as:

M∑
i=1

log
(1− PMi)(1− PFAi)

PMiPFAi

ui +
M∑
i=1

log(
PMi

1− PFAi
)

u0 = 1

≷ log η,

u0 = 0

(2.28)

which implies that the optimum fusion rule is a comparison between a weighted sum of

the local decisions and a threshold where the weights are determined according to PM

and PFA values of the sensors while the threshold depends on the prior probabilities of

hypotheses and the costs as well as PM and PFA values of the sensors.

2.2.2.1. Fusion of Correlated Decisions. When the local decisions are statistically in-

dependent, the optimum fusion rule is described by (2.28). In cases where knowledge of

the joint distribution describing the dependecy between local decisions is not available,

fusion rule is designed under the assumption that decisions are conditionally indepen-

dent which may result in performance degradation [11]. When the sensor decisions
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collected at the fusion center are correlated, left hand side of (2.25) includes correla-

tion of the local decisions which leads to a more complex formulation of the problem.

In order to solve this problem, the Bahadur-Lazarfeld series expansion of probability

density functions is used in [21]. Then, optimum fusion rule in (2.28) is expressed as

follows:

M∑
i=1

log
(1− PMi)(1− PFAi)

PMiPFAi

ui +
M∑
i=1

log(
PMi

1− PFAi
)+

log
1 +

∑
i<jK

1
ijz

1
i z

1
j +

∑
i<j<kK

1
ijkz

1
i z

1
j z

1
k + ...+K1

12..nz
1
1z

1
2 ...z

1
n

1 + +
∑

i<jK
0
ijz

0
i z

0
j +

∑
i<j<kK

0
ijkz

0
i z

0
j z

0
k + ...+K0

12..nz
0
1z

0
2 ...z

0
n

u0 = 1

≷ log η,

u0 = 0

(2.29)

where

zhi =
ui − p(ui = 1|Hh)√

p(ui = 1|Hh) [1− p(ui = 1|Hh)]
, h = 0, 1 (2.30)

and

Kh
ij =

∑
u

zhi z
h
j p(u|Hh),

Kh
ijk =

∑
u

zhi z
h
j z

h
kp(u|Hh), (2.31)

...

Kh
12...n =

∑
u

zh1 z
h
2 ...z

h
np(u|Hh),

where correlation coefficients between the sensors {1, 2, ..., n} under hypothesis h are

denoted as Kh
12...n. When conditional correlation coefficients are all zero, (2.29) reduces

to (2.28).

This approach requires complete knowledge of the form of the joint distribution

of sensor observations. Moreover, when dependency between sensor decisions are non-

linear, this approach may not be efficient. In [11], copula theory is introduced to the
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problem of fusion of correlated decisions which provides an appoach that does not

necessarily require prior information about the joint statistics of the sensor decisions.

The joint probability density function of the sensor decisions are determined using

only the knowledge of the marginal densities of the sensor observations or the marginal

probability mass functions of the sensor decisions using copulas. The usage of copulas

while relating marginal distribution functions to a multivariate probability distribution

function is stated by Sklar’s theorem [22], [23].

Sklar’s Theorem: Consider an M-dimensional distribution function F with

marginal distribution functions F1, F2, ..., FM . Then there exists a copula C, such that

for all x1, x2, ..., xM in [−∞,∞] ,

F (x1, x2, ..., xM) = C(F1(x1), F2(x2), ..., FM(xM)). (2.32)

Using Sklar’s theorem, the joint probability distributions in (2.25) are expressed in

terms of copulas. For the two-sensor case, the joint densities of the decisions given the

hypotheses at time instant t become as follows:

p(u1, u2|H1) = P
(1−u1t)(1−u2t)
00 P

(1−u1t)u2t
01 P

u1t(1−u2t)
10 P u1tu2t

11 (2.33)

and

p(u1, u2|H0) = Q
(1−u1t)(1−u2t)
00 Q

(1−u1t)u2t
01 Q

u1t(1−u2t)
10 Qu1tu2t

11 , (2.34)

where Pij and Qij denote the joint probabiliry mass functions of the sensor decisions

{i, j = 0, 1} which can be expressed using copula function C as follows:

P00 = C(1− p1, 1− p2),

P01 = 1− p1 − C(1− p1, 1− p2),

P10 = 1− p2 − C(1− p1, 1− p2),

P11 = p1 + p2 + C(1− p1, 1− p2)− 1 (2.35)
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and

Q00 = C(1− q1, 1− q2),

Q01 = 1− q1 − C(1− q1, 1− q2),

Q10 = 1− q2 − C(1− q1, 1− q2),

Q11 = q1 + q2 + C(1− q1, 1− q2)− 1, (2.36)

where the probabilities pi and qi {i = 1, 2} are defined, respectively, as follows:

pi =

ˆ λi

−∞
f(yi|H1) (2.37)

and

qi =

ˆ λi

−∞
f(yi|H0). (2.38)

For the two-sensor case, after obtaining the joint probability density of sensor

decisions and taking logarithm of both sides, (2.26) becomes:

log

[
p(u1, u2|H1)

p(u1, u2|H0)

]
= log

(
P10Q00

P00Q10

) T∑
t=1

u1,t + log

(
P01Q00

P00Q01

) T∑
t=1

u2,t

+ log

(
P00P11Q01Q10

P01P10Q00Q11

) T∑
t=1

u1,tu2,t, (2.39)

where t = 1, 2, .., T represent time value.
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3. ESTIMATION THEORY

In this chapter, we introduce estimation theory concepts. We start with briefly

explaining three of the most common classical estimation methods and sampling tech-

niques. Then, the sampling techniques are related to the sequential estimation methods

such as sequential importance sampling.

3.1. Classical Estimation

Estimation theory attempts to solve the problem of extracting values of param-

eters from continuous-time signals or data sets. Suppose there is a T -point data set

y = {y1, y2, ..., yT} that depends on an unknown parameter θ. Based on the data set,

an estimator is defined as:

θ̂ = g(y), (3.1)

where g is some function. Generally, the set of data y is assumed to be random and

have a probability distribution p(y|θ) that is parametrized by the unknown parameter

θ.

The three types of most common estimation procedures are presented next.

3.1.1. Minimum Mean-Square Error Estimation (MMSE)

One common measure of accuracy of the estimator is the mean square error that

is defined as [24]:

MSE(x),E[|x̂− x|2]. (3.2)

Suppose X and Y are two random variables that are independently and identically

distributed according to a joint probability density function px,y(x, y). The observed
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data set is Y and the estimator gives the predicted value of X by using a transformation

g as:

X̂ = g(X, θ). (3.3)

The mean square error of the estimation can be written as:

E[|X̂ −X|2] = E[|g(Y, θ)−X|2]. (3.4)

The process of finding the parameter θ̂MMSE that minimizes the mean square error is

known as the minimum mean square error estimator and defined as:

θ̂MMSE = argminθ(E[|g(Y, θ)−X|2]). (3.5)

In cases where the joint probability of density function is unknown, the parameter θ

can be estimated using the data set of samples (xt, yt) where t = 1, 2, ..., T using the

least squares error (LSE) criterion:

θ̂LSE = argminθ

T∑
i=1

(|g(yi, θ)− xi|2). (3.6)

3.1.2. Maximum Likelihood Estimation (MLE)

Assume that a set of random samples (observations) are independently drawn

from a probability density function p(y|θ) and denoted as y = y1, y2, ..., yN . Since the

samples are independently drawn, their joint likelihood can be written as [15]:

p(y|θ) =
T∏
i=1

p(yi|θ). (3.7)



25

The maximum likelihood estimate is the parameter θ̂MLE that maximizes the joint

likelihood as:

θ̂MLE = argmaxθp(y|θ) = argmaxθ

T∏
i=1

p(yi|θ). (3.8)

Since the logarithm is a monotonically decreasing function, MLE is generally written

in log-likelihood form as:

log(θ̂MLE) = argmaxθlog(p(y|θ)) = argmaxθ

T∑
i=1

log(p(yi|θ)). (3.9)

3.1.3. Maximum A Posteriori (MAP) Estimation

MMSE, LSE and MLE methods assume that the parameter θ is unknown but

deterministic. However, MAP estimation assumes that the parameter θ is also a ran-

dom variable and has a prior probability distribution p(θ). Given the observed data y,

the posterior probability distribution of the parameter θ can be found using the Bayes’

rule as:

p(θ|y) =
p(y|θ)p(θ)
p(y)

� p(y|θ)p(θ), (3.10)

where p(y) denotes probability density function of observations. The MAP estimate

of the parameter θ can be found as:

θ̂MAP = argmaxθp(θ|y). (3.11)

The MAP estimator enables us to use prior information that may be available upon

the parameter θ. If the prior probability distribution p(θ) is set to a constant value,

MAP estimation becomes equivalent to MLE [25] .
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3.2. Sampling Techniques

In cases where the probability densities and/or their integrals used in classical

estimation methods cannot be expressed analytically, numerical sampling methods can

be used to approximate the probability density functions and hence obtain the estimate

of desired parameters. Sampling a random variable from a desired probability density

is denoted as:

x ∼ p(x). (3.12)

Having N samples, the target probability density function p(x) can be approximated

as [26]:

p(x) ≈
N∑
i=1

[
p(xi)∑N
j=1 p(x

j)

]
δ(x− xi), (3.13)

where δ is the Dirac delta function and xi denotes ith sample {i = 1, 2, ...N}.

By definition, conditional expectation of function f(x) of a random variable x is

calculated using following integration:

I(f) =

ˆ
f(x)p(x|y)dx, (3.14)

where y denotes the observations. If the integral in (3.14) is intractable, then by using

(3.13), (3.14) can be approximated as:

Ep(x|y)[f(x)] = I(f) ≈
N∑
i=1

f(xi)

[
p(xi|y)∑N
j=1 p(x

j|y)

]
. (3.15)

In order to obtain an approximation to the desired probability density function, the

following requirements must be satisfied:

• The target probability density function must be suitable for random variables to
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be sampled from.

• These random variables must be able to be evaluated in the functional form of

the target probability density function.

Since probability density function of a random variable completely describes its prob-

abilistic features, sampling methods have the advantage of estimating of probability

density function of the desired parameter over classical estimation methods. Therefore,

once the probability density function is estimated, any estimation method can be used

to obtain an estimate of the desired parameter.

There are various types of sampling techniques, named as: uniform sampling, re-

jection sampling, importance sampling, sequential importance sampling, Markov Chain

Monte Carlo (MCMC) method, Metropolis-Hastings sampling, Gibbs sampling and

slice sampling. In the next sections importance sampling and sequential importance

sampling methods (particle filters) are introduced, since this thesis focuses on particle

filtering scheme. Details of other sampling methods can be found in [27].

3.2.1. Importance Sampling

Importance Sampling is a method of estimating a probability distribution where a

different distribution other than target distribution is used to draw samples from, which

is referred to as importance density and denoted as q(x). This sampling technique is

useful when it is not easy to draw samples form the target density and/or it is not

possible to express the target density analitically since it enables to draw samples form

the importance density which is easier to be sampled from. Using the importance

density, the expectation (3.15) can be expressed as follows [27]:

I(f) ≈

∑N
i=1 f(xi)

p(xi|y)

q(xi|y)
q(xi|y)


∑N

i=1

p(xi|y)

q(xi|y)
q(xi|y)


=

Eq(x)

f(x)
p(x)

q(x)


Eq(x)

p(x)

q(x)


. (3.16)
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The right hand side of (3.16) can be written as:

I(f) ≈

Eq(x)

f(x)
p(x)

q(x)


Eq(x)

p(x)

q(x)


=

∑N
i=1 f(xi)wi∑N

j=1w
j

, (3.17)

where the samples xi are drawn from the importance density for i = 1, 2, ...N and the

importance weights are defined as:

w(x),
p(x)

q(x)
. (3.18)

3.2.2. Sequential Importance Sampling

In some applications where data arrives sequentially or its statistical properties

change over time, processing data as a batch may result in obtaining incorrect statistics

or missing out important changes in the observed phenomenon. Such a dynamic system

can be given by the following state space equations [28]:

xt = ft(xt−1, vt), (3.19)

yt = ht(xt, nt),

where xt and yt represent the hidden state and observation at time instant t, respec-

tively. Process and observation functions are denoted by ft and ht, respectively. Process

noise is represented by vt and observation noise is represented by nt.

Here, the aim is to estimate the posterior density of the states p(x|y) sequentially

upon receiving observations. Sequential estimation of the posterior distribution of the

hidden variable is performed in two stages, namely prediction and update. In the

prediction stage, the current value of the hidden variable is predicted using previous
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observations and shown by the following equation referred to as Chapman-Kolmogorov

equation [26]:

p(xt|y1:t−1) =

ˆ
p(xt|xt−1)p(xt−1|y1:t−1)dxt−1, (3.20)

where y1:t−1 denotes previous observations, p(xt|xt−1) denotes state transition density

and p(xt−1|y1:t−1) denotes posterior density of the hidden variable at time t−1. In (3.20),

p(xt|xt−1) is used instead of p(xt|xt−1, y1:t−1) as (3.19) describes a Markov process

of order one. When new data yt is received at time t, the prior is updated by the

measurement using Bayes’ rule as:

p(xt|y1:t) = p(xt|, yt, y1:t−1)

=
p(yt|xt, y1:t−1)p(xt|y1:t−1)

p(yt|y1:t−1)
(3.21)

=
p(yt|xt)p(xt|y1:t−1)

p(yt|y1:t−1)
,

where the normalizing constant is given by the following equation:

p(yt|y1:t−1) =

ˆ
p(yt|xt)p(xt|y1:t−1)dxt. (3.22)

In the update stage, the measurement yt is used to modify the prior density to obtain

the posterior density of the hidden state. This recursive propagation of the posterior

density cannot be determined analytically in general, hence can be approximated using

importance sampling methods.

In order to compute equations (3.20) and (3.21) in a sequential manner, impor-

tance sampling methods are modified to a new method which is known as sequential

importance sampling (SIS). In the SIS, the posteriori distribution of the hidden states

are approximated by N particles and corresponding normalized importance weights as
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follows:

p(x0:t|y1:t) ≈
N∑
i=1

w̃itδ(x0:t − xi0:t), (3.23)

where xi0:t represent particles {i = 1, 2, ..., N}and w̃it represent importance weights

which are normalized as follows:

w̃it =
w(xi0:t)∑N
j=1w(xj0:t)

, (3.24)

where w(xi0:t) denotes the unnormalized importance weight corresponding to the ith

particle, which is defined in importance sampling as follows:

w(xit) =
p(xi0:t|y1:t)
q(xi0:t|y1:t)

. (3.25)

In order to update the importance weights sequentially, importance density is needed

to be expressed in a sequential form. Suppose that at time t, approximation of

p(x0:t−1|y1:t−1) is available and p(x0:t|y1:t) is aimed to be approximated by using a

new set of particles. Then, the importance density is chosen to be in the following

form:

q(x0:t|y1:t) = q(xt|x0:t, y1:t)q(x0:t−1|y1:t−1), (3.26)

then the new samples xi0:t can be drawn from q(x0:t|y1:t) by augmenting the existing

samples and the new state. The importance weights are updated sequentially as shown

below [28]:

wit = wit−1
p(yt|xit)p(xit|xit−1)
q(xit|xi0:t−1, y1:t)

. (3.27)

In general, all of the previous states can be stored, however if only an estimate
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of p(xt|y1:t) is needed at each time state, then (3.27) can be written as

wit = wit−1
p(yt|xit)p(xit|xit−1)
q(xit|xit−1, y1:t)

(3.28)

and the posteriori density of the states can be approximated as (3.23).

The SIS algorithm enables us to estimate posterior densities of hidden variables in

a dynamic system without making restictive assumptions such as linearity, Gaussianity

or stationarity. However, one common problem, named as degeneracy phenomenon, of

the SIS algorithm is that after few iterations importance weights of a large number

of particles converge to zero. In [26], this problem is explained to have arisen from

the selection of the importance function as in (3.26) which causes the variance of the

importance weights increase in time. Degeneracy phenomenon results in having unnec-

essary computational burden while updating particles which have weights nearly zero

and hence negligible contribution to the approximation of p(xt|y1:t). In [29], the follow-

ing choice of importance function is shown to minimize the variance of the importance

weights and limit degeneracy:

q(xt|x(i)0:t, y1:t) = p(xt|x(i)0:t, y1:t), (3.29)

which is named as optimal importance function. However, in many scenarios sampling

from the optimal importance function is not possible, but it is aimed to be approxi-

mated [30].

Degeneracy is measured using effective sample size Neff as shown below [28]:

Neff =
N

1 + V ar(w̃it)
, (3.30)

where w̃it represents the unnormalized importance weight and N is the sample size.

Since (3.30) cannot be calculated analytically, an approximate to Neff is formed as
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shown below [26]:

N̂eff ≈
1∑N

i=1(w
i
t)

2
, (3.31)

where wit represents the normalized importance weight.

In order to reduce the effect of the degeneracy problem, resampling methods are

introduced to eliminate the particles that have small importance weights and produce

new particles from the existing particles which have higher importance weights . When

the value of N̂eff becomes smaller than a threshold value, resampling is performed.

The main idea of resampling is to generate a new set of particles from the existing

particles by using corresponding importance weights. For i = {1, 2, ...N}, a new index

value, j, for each i is found by sampling from the discrete distribution that is the

cumulative mass function of the importance weights. Then the particles corresponding

to new index value j are given place in the new set of particles. In this manner, the

particles with high importance weights survive in the resampling step and the particles

with small importance weights tend to be given no index and eliminated. At the end

of resampling step, all of the importance weights take equal value, i.e. 1/N. This

resampling scheme is generally referred to as systematic resampling.

There are other resampling techniques which can be found in [31], however sys-

tematic resampling is preferred in our work since it is simple to implement and has low

computational complexity.
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4. PARTICLE FILTER METHODS FOR DISTRIBUTED

DETECTION AND DECISION FUSION

In this chapter, we will investigate particle-based methods in distributed detection

problem. The common approach in distributed detection system design includes strong

assumptions such as Gaussianity of the observation noise, having knowledge about the

observation noise parameters, linearity and stationarity of the observed phenomenon

or uncorrelatedness of the local decisions. However, when these assumptions do not

hold exactly, the detectors become sub-optimal or they can even break down. In

order to avoid unrealistic assumptions, we aim to model the observed phenomenon

dynamically, infer statistical information using this dynamic model and using this

information, determine the decision rules for the distributed detection system.

In [2], a distributed detection scheme which operates dynamically based on par-

ticles is suggested, in which observation noise is assumed to be known and Gaussian.

However, it is shown that in some applications observed data may include heavy-tailed

(impulsive) noise [10], which harms Gaussianity assumption of observation noise. Mo-

tivated by Gençağa et. al, we model observed data as an AR process, in order to form

a dynamic model of the observed data which may include impulsive noise. Impulsive

noise is generally modeled as alpha stable distribution, ε-contaminated mixture model

or Gaussian mixture model [5], [7]. Gençağa et. al models impulsive noise as alpha-

stable and estimates the parameters representing the noise statistics using a Bayesian

approach [32]. However, alpha stable distribution cannot be expressed in a closed form

and it requires numerical calculations which may be additional burden to the processors

of the local detectors. In this thesis, observation noise is modeled as Gaussian mixture

which may express multi-modalities or heavy-tails depending on the choice of the pa-

rameters and also it is a generalization of ε-contaminated mixture model. Therefore,

we avoid Gaussianity assumption of observation noise and aim to infer its parameters

from observed data in a sequential way using particle filtering.
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In this study, the parameters of the observation noise as well as the coefficients

of the AR process are not known and aimed to be estimated using particle filters.

Therefore, the unknown parameter set is a vector which consists of the observation

noise parameters and the AR coefficients. As the noise parameters are estimated,

local decision rules are designed using a particle based framework, namely PSO, with

the knowledge of noise parameters. Estimates of the AR coefficients are not used in

the remaining part of distributed detection system, however this step is necessary to

introduce a method that is applicable to the most general version of our problem, i.e.,

when both the AR coefficients and the noise parameters are unknown. Moreover, AR

coefficients and their changes may be utilized in a future work of an early warning

system for the detection of earthquakes.

Using estimated parameters of Gaussian mixture noise, thresholds of the local

detectors are found within PSO framework where particles represent sensor thresholds.

As observations are received, local detectors make decisions according to the thresh-

old values and transmit them to the fusion center. Then, we consider the design of

the fusion rule without assuming independence of the decisions of the local sensors.

Here, the statistical dependency between the sensor decisions is formed by relating the

marginal densities of the sensor observations using copulas. Also, we do not assume

that the copula parameters are known; rather we aim to estimate the parameter of the

used copula by using PSO.

4.1. AR Modeling of Observations and Estimation of Noise Parameters

In order to estimate observation noise parameters sequentially, a dynamic model

for the observed data is required. Once a dynamic model is formed, particle filtering

enables us to estimate the desired parameters. Due to the abscence of a general phys-

ically motivated model, AR process in Gaussian mixture noise is used to model the

observed data. Then, our model is aimed to be applicable to the most general cases of

observation noise.
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Sensor observation at time t is modeled as a kth order AR process as follows:

yt = yτt−1at + nt, (4.1)

where the observation vector is yt−1 = [yt−1, yt−2, ..., yt−k] and AR coefficients are

represented by at = [at, at−1, ..., at−k]. Observation noise nt is described as a Gaussian

mixture with J components as shown below:

nt =
J∑
j=1

πjN (µj, σ
2
j ), (4.2)

where πj, µj and σ2
j represent weight, mean and variance of the jth component of

Gaussian mixture, respectively. Since nt is a probability density function, summation

of πj’s must be equal to 1, j = {1, 2, ..., J}. When there are two components in the

Gaussian mixture, it is possible to estimate one of the πj’s and find the other one as

(1 − πj). The noise parameters are placed in vector θt = [πt,µt,σ
2
t ]. Here, the aim

is to estimate the noise parameters and the AR coefficients jointly. Hence, the desired

parameters are placed in vector xt = [at,θt] which represents the state variables of

the process equation as in (3.19). Since we have no prior information regarding the

transition of the state variables, a random walk model is used to form a process equation

as follows:

xt = xt−1 + νt−1, (4.3)

where νt−1 denotes the process noise. Process noise is modeled as Gaussian, i.e. νt ∼

N (0,Σν) where the covariance matrix is diagonal as follows:

Σν = diag(σ2
a(1), σ

2
a(2), ..., σ

2
θ(1), σ

2
θ(2), ..., σ

2
θ(J)). (4.4)

Here, particle filtering enables us to sequentially estimate the elements of the hid-

den state vector xt [28]. Expressing the transition process as (4.3) and the observation
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process as (4.1), state space equations that form particle filtering scheme as in (3.19)

are defined. Importance function is chosen as the transition distribution p(xt|xt−1),

since a priori information about the states is not sufficient to construct a good ap-

proximation of the optimal importance function. Hence, particles are sampled from

the importance density as follows:

x
(i)
t ∼ N (x

(i)
t−1,Σν), (4.5)

where x
(i)
t denotes the drawn samples at time t. Substituting the transition density

as importance density in (3.28), importance weights are updated according to the

following:

wit = wit−1p(yt|xit), (4.6)

where p(yt|xit) is likelihood density which is expressed as follows when nt is mixture of

Gaussians with J components:

p(yt|xit) =
J∑
j=1

πit,jN (yt − yτt−1ait − µit,j, (σ2
t,j)

i). (4.7)

After updating the importance weights, these weights are normalized according to

(3.29). Then systematic resampling is performed. A pseudo-code of this method is

given in Table 4.1.
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Table 4.1. Pseudo-code for the AR modeling of observations and estimation of the

unknown parameters and coefficients.

Input: Sensor observations, initial distributions of the states (desired parameters), time

steps.

Output: Estimated states.

Initiation:

1. Draw particles xit = [at,πt,µt,σ
2
t ] {i = 1, 2, ..N} from the initial distributions of

the states:

ai0 ∼ U(−1, 1), πi0 ∼ U(0, 1)

µi0 ∼ N (mµ,Σj), (σ2
0)
i ∼ IW(ψσ,Λσ)

where m and Σ represent mean and covariance matrices of Gaussian distributions; ψ

and Λ represent scale matrix and degrees of freedom of Inverse-Wishart distributions.

2. Set initial importance weights to equal value, i.e. 1/N .

For t=1:T

3. Draw new particles xit {i = 1...N} from transition density using process equation

in (4.3):

x
(i)
t ∼ N (x

(i)
t−1,Σν)

4. Calculate the importance weights by substituting (4.7) in (4.6):

wit = wit−1

J∑
j=1

πit,jN (yt − yτt−1ait − µit,j, (σ2
t,j)

i)

5. Normalize the importance weights:

w̃it =
wit∑N
j=1w

j
t

6. Resample the particles and go to step 3.

end
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4.1.1. Experiments with First Order AR Simulated Data

A 1st order AR process in additive Gaussian mixture noise, with two components,

which can be expressed in the following form:

yt = yt−1at +
2∑
j=1

πjN (µj, σ
2
j ) (4.8)

is simulated. For parameter estimates, average of 20 Monte Carlo simulations are

used. The parameter estimation results are evaluated using the Normalized Mean

Square Errors (NMSE), which can be given as follows:

NMSEt =

∑20
l=1(θ̂t,l − θ)2∑20
l=1

∑T
t=1 θ

2
t

, (4.9)

where T and θ denote data length and the desired parameter, respectively.

4.1.1.1. Constant AR and noise parameters. Parameters of the Gaussian mixture are

π=[0.2, 0.8], µ=[2, 0.5], σ2 = [1, 2]. AR coefficient is taken to be 0.8. In the ex-

periment, 500 particles are used and data lenght is 1000. Process noise is constant,

and chosen as Σν = diag(10−6, 10−6, 10−6, 10−6, 10−6, 10−6). Initially, the values of the

particles of means and variances are drawn from µ0 ∼ N (1, 1) and σ2
0 ∼ IW(5, 10),

respectively.

In Figure 4.1, estimates of the noise parameters and AR coefficient are shown.

Performance of the method is examined by calculating NMSE of the estimations which

is given by Figure 4.2. It can be observed from Figure 4.1 and 4.2 that the estimated

values of the parameters converge to their true values, yet there are also fluctuations

in the estimations due to the process noise. The reason for that is the choice of

the elements of the covariance matrix in (4.4). For this selection of the variance of

the process noise the parameter value converges to its true value after an acceptable

number of samples, however it may also result in observable jitters.
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Figure 4.1. Estimation of constant parameters a) σ2(1) = 3, b) σ2(2) = 1, c)

µ(1) = 2, d) µ(2) = −1, e) π(1) = 0.2, f) a = 0.8.

Figure 4.2. NMSE of estimation of constant parameters a) σ2(1), b) σ2(2), c) µ(1), d)

µ(2), e) π(1), f) a.
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4.1.1.2. Time-varying AR and constant noise parameters. Parameters of the Gaus-

sian mixture are π=[0.2, 0.8], µ=[2, 0.5], σ2 = [1, 2]. AR coefficient is taken to be

0.8 until the 1000 th sample, where it changes abruptly to 0.3. In the experiment, 500

particles are used and data lenght is 2000. Process noise is constant, and chosen as

Σν = diag(10−6, 10−6, 10−6, 10−6, 10−6, 10−6). Initially, the values of the particles of

means and variances are drawn from µ0 ∼ N (1, 1) and σ2
0 ∼ IW(5, 10), respectively.

In Figure 4.3, estimates of the noise parameters and AR coefficient are shown.

Performance of the method is examined by calculating NMSE of the estimations which

is given by Figure 4.4.

Figure 4.3. Estimation of parameters a)σ2(1) = 3, b) σ2(2) = 1, c) µ(1) = 2, d)

µ(2) = −1, e) π(1) = 0.2, f) a = 0.8 until 1000th sample, then a = 0.3.

As Figure 4.4 reveals, an abrupt change in the AR coefficient may result in

observable deviations in the estimation of the noise parameters. As expected NMSE

of the AR coefficient abruptly inceases at t = 1000, then it falls below its previous
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values. NMSE of the variances also indicates a change in the model. The reason for

that is placing all of the unknown parameters in the same vector which has only one

weight. Comparing Figure 4.1 and 4.3, it can be said that the Gaussian mixture weight

π converges quicker in the latter which may have occured due to having a closer initial

starting point to true value of the coefficient.

Figure 4.4. NMSE of estimation of parameters a) σ2(1), b) σ2(2), c) µ(1), d) µ(2), e)

π(1), f) a.

In a more realistic approach, changes in the AR coefficient may also be smoother.

In this experiment, AR coefficient has a sinusoidal change. The values of the noise pa-

rameters are π=[0.8, 0.2], µ=[2, 0.5], σ2 = [1, 2] and the AR coefficient is a sinusoidal

given as in Figure 4.5. In order to AR process to be stable, maximum value of AR coeffi-

cient becomes 0.998. In this experiment, 500 particles are used and data length is 2000.

Process noise is constant, and chosen as Σν = diag(10−6, 10−6, 10−6, 10−6, 10−6, 10−6).

Initially, the values of the particles of means and variances are drawn from µ0 ∼ N (1, 1)

and σ2
0 ∼ IW(5, 10), respectively.
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In Figure 4.5, estimates of the noise parameters and AR coefficient are shown.

Figure 4.5. Estimation of parameters a) σ2(1) = 3, b) σ2(2) = 1, c) µ(1) = 2, d)

µ(2) = −1, e) π(1) = 0.8, f) a = 0.499(1 + sin(t)).

Performance of the method is examined by calculating NMSE of the estimations

which is given by Figure 4.6. It can be observed from Figure 4.5 and 4.6 that even

all of the parameters are treated as one particle, a smooth change of an element in

the particle vector does not significantly degrade performance of the estimation of the

parameters. Moreover, changing the AR coefficient as sinusoidal which reaches to zero

enables us to conclude about the performance of the estimator in the abscence of a

signal, i.e. when hypothesis H0 is true. As expected, the AR coefficient becomes very

small and the estimation performances of the noise parameters are generally preserved.
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Figure 4.6. NMSE of estimation of parameters a) σ2(1), b) σ2(2), c) µ(1), d) µ(2), e)

π(1), f) a.

4.1.1.3. Constant AR and time varying noise parameters. The weights and the means

of the Gaussian mixture are π=[0.2, 0.8], µ=[2, 0.5] where the variances of the Gaus-

sian mixture are taken to be σ2 = [1, 2] until the 1000 th sample, where they change

abruptly to σ2 = [1, 10].

In the experiment, 500 particles are used and data length is 2000. Process noise

is constant, and chosen as Σν = diag(10−6, 10−6, 10−6, 10−6, 10−6, 10−6). Initially, the

values of the particles of means and variances are drawn from µ0 ∼ N (1, 1) and σ2
0 ∼

IW(5, 10), respectively.

In Figure 4.7, estimates of the noise parameters and AR coefficient are shown.

Then, performance of the method is examined by calculating NMSE of the estimations

which is given by Figure 4.8.
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Figure 4.7. Estimation of parameters a) σ2(1) = 1, b) σ2(2) = 2 until 1000th sample,

then σ2(2) = 10, c) µ(1) = 2, d) µ(2) = −1, e) π(1) = 0.2, f) a = 0.8.

Figure 4.8. NMSE of estimation of parameters a) σ2(1), b) σ2(2), c) µ(1), d) µ(2), e)

π(1), f) a.
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Figure 4.7 and Figure 4.8 demonstrate that changing one variance term of the

Gaussian mixture does not significantly affect estimation performance of the other

parameters in the model. Similar to as in Figure 4.1, the Gaussian mixture weight π

starts from a further value than its true value which results in a slower convergence.

4.1.2. Experiments with Second Order AR Simulated Data

In some cases, higher order of AR processes may be necessary while modeling

data. In order to test the algorithm with, a 2nd order AR process in additive Gaussian

mixture noise, with two components, which can be expressed in the following form:

yt = yt−1at(1) + yt−2at(2) +
2∑
j=1

πjN (µj, σ
2
j )

is simulated. For parameter estimates, average of 20 Monte Carlo simulations are used.

The parameter estimation results are evaluated using NMSE.

4.1.2.1. Constant AR and noise parameters. Parameters of the Gaussian mixture are

π=[0.2, 0.8], µ=[1, 1], σ2 = [25, 1]. AR coefficients are 0.5 and −0.75. In the exper-

iment, 500 particles are used and data lenght is 1000. Process noise is constant, and

chosen as Σν = diag(10−6, 10−6, 10−6, 10−6, 10−6, 10−6, 10−6). Initially, the values of the

particles of means and variances are drawn from µ0 ∼ N (1, 1) and σ2
0 ∼ IW(5, 10),

respectively.

In Figure 4.9, estimates of the noise parameters and AR coefficients are shown.

Then, performance of the method is examined by calculating NMSE of the estimations

which is given by Figure 4.10.
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Figure 4.9. Estimation of parameters a) σ2(1) = 25, b) σ2(2) = 1, c) µ(1) = 1, d)

µ(2) = 1, e) π(1) = 0.2, f) a(1) = 0.5, g) a(2) = −0.75.

Figure 4.9 and 4.10 show that second order modeling of data does not degrade

the estimation performance of the algorithm. In this experiment, initial values of the

AR coefficients a(1) and a(2) and the Gaussian mixture weight π are relatively further

from their true values, therefore it takes more samples for their estimates to converge

their true values, as expected. In addition to this, estimation of µ(2) shows that

starting from the exact value parameter may still result in non zero NMSE values due

to jittering from process noise.
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Figure 4.10. NMSE of estimation of parameters a) σ2(1), b) σ2(2), c) µ(1), d) µ(2), e)

π(1), f) a(1), g) a(2).

4.1.2.2. Time varying first AR coefficient and other parameters are constant. Param-

eters of the Gaussian mixture are π=[0.2, 0.8], µ=[1, 1], σ2 = [25, 1]. First AR coeffi-

cient is 0.5 until 1100th sample and it changes to 0.3. Second AR coefficient is −0.75.

In the experiment, 500 particles are used and data lenght is 3300. Process noise is

constant, and chosen as Σν = diag(10−6, 10−6, 10−6, 10−6, 10−6, 10−6, 10−6). Initially,

the values of the particles of means and variances are drawn from µ0 ∼ N (1, 1) and

σ2
0 ∼ IW(5, 10), respectively.

In Figure 4.11, estimates of the noise parameters and AR coefficients are shown.

Then, performance of the method is examined by calculating NMSE of the estimations

which is given by Figure 4.12.
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Figure 4.11. Estimation of parameters a) σ2(1) = 25, b) σ2(2) = 1, c) µ(1) = 1, d)

µ(2) = 1, e) π(1) = 0.2, f) a(1) = 0.5 until 1100th sample and it changes to 0.3, g)

a(2) = −0.75.

Figure 4.11 and Figure 4.12 demonstrate that changing one AR coefficient does

not significantly affect estimation performance of the other parameters in the model.

Since the abrupt change in first AR coefficient is relatively small compared to its value,

NMSE has smaller increase than it is in Figure 4.4. As in the previous experiment,

second AR coefficient starts from a further value than its true value which results in a

slower convergence.
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Figure 4.12. NMSE of estimation of parameters a) σ2(1), b) σ2(2), c) µ(1), d) µ(2), e)

π(1), f) a(1), g) a(2).

4.2. Local Detector Thresholds

In this section, local decision rules of the distributed detection system are de-

signed. Parallel configuration with M sensors as in Figure 2.3 is considered to be the

distributed detection scheme due to its ease of ease of implementation and wide us-

age [4]. In this scheme, the sensors do not communicate with each other and the fusion

center. Here, we assume that binary hypothesis testing problem is examined by the

local detectors. Observed data at each sensor can be expressed as follows:

yi = ni when H0 is true

yi = s+ ni otherwise

, (4.10)

where s, yi and ni represent the common phenomenon (signal), observed data and

observation noise at ith sensor, respectively. Instead of making assumptions about
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the observation noise, decision rules of the detectors are designed using the statistical

knowledge gathered in previous section. Since the observation noise is modeled as

mixture of Gaussians; estimating weights, means and variances of the mixtures enables

us to obtain sensor threshold as a weighted sum of thresholds corresponding to Gaussian

mixtures.

Let ym denote received data by the mth sensor, then the mth sensor employs a

decision rule to make its decision, um. This procedure requires determining a threshold

value λm for each of the sensors. Motivated by [2], sensor thresholds are determined

by minimizing a probability of error which can be defined using PM and PFA of each

sensor as a function of the sensor thresholds λ = [λ, λ2, ..., λM ] as follows:

Pe(λ) = Pr(H0)PFA + Pr(H1)PM , (4.11)

where Pr(H1) and Pr(H0) denote the prior probability on H1 and H0, respectively. Di-

viding (4.9) by Pr(H1) and using the fact that PFA = 1−PD results in that minimizing

the probability of error Pe(λ) is equivalent to maximizing P̃e(λ) as:

P̃e(λ) = PD −
Pr(H0)

Pr(H1)
PFA. (4.12)

Probability of detection and probability of false alarm can be described for the mth

sensor as functions of the sensor threshold λm, respectively, as follows:

PD,m =

ˆ ∞
λm

p(ym|H1)dym (4.13)

and

PFA,m =

ˆ ∞
λm

p(ym|H0)dym. (4.14)

Finding λ = [λ, λ2, ..., λM ] values which yield to the maximum value P̃e(λ) is a subject

of multi-objective optimization. Since a global optimization is performed while de-
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termining the threshold set λ, it is assumed that the sensors’ operations are coupled.

Then, PD and PFA in (4.12) can be written as follows:

PD =
∑
u∈H1

M∏
m=1

[umPD,m + (1− um)(1− PD,m)] (4.15)

and

PFA =
∑
u∈H1

M∏
m=1

[umPFA,m + (1− um)(1− PFA,m)] . (4.16)

It can be seen from above that substituting (4.15) and (4.16) in (4.12) requires finding

thresholds by considering a large search space, especially as the number of sensors

increases. In order to obtain the threshold set that maximizes P̃e(λ), a continuous

space of all possible threshold values is searched using PSO algorithm.

Initially, each of the particles λit=0, {i = 1, 2, ..., N} are sampled independently

and uniformly from a region [λmin, λmax], which includes all the values that each particle

can take. Inital weights of the particles are determined as follows:

wit=0 = P̃e(λ
i
t=0). (4.17)

Then, these weights are normalized and particles are resampled according to their

weights. Position of the particle which corresponds to the heighest weight is stored at

each iteration. In the following steps of the algorithm, positions of the particles are

found using previous particle positions (λit−1) and previous best particle (λbestt−1) as

follows:

λit =
λit−1 + λbestt−1

2
+ q, (4.18)

where q represents uniformly sampled noise for jittering particle trajectories. Particle
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weights are updated as follows:

wit = wit−1P̃e(λ
i
t). (4.19)

After normalization of these weights, resampling of the particles are performed. Se-

quentially, the algorithm converges to the particles and corresponding weights which

maximize P̃e(λ), hence the set of thresholds (λ1, λ2, ..., λM) which minimizes the prob-

ability of error Pe(λ) can be obtained. A pseudo-code of this method is given in Table

4.2.
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Table 4.2. Pseudo-code for using PSO in the determination of sensor thresholds.

Input: Estimated noise parameters for all of the sensors, time steps, maximum and

minimum values of all possible values that thresholds may take.

Output: Local decisions of the sensors.

Initiation:

1. Draw particles λi0 = [λi1,0, λ
i
2,0, ..., λ

i
M,0] {i = 1, 2, ..N} uniformly over region

[λmin, λmax].

2. Calculate P̃e(λ
i
0) and set initial importance weights as follows:

wi0 = P̃e(λ
i
0)

3. Normalize the weights.

4. Resample the particles.

For t=1:T

5. Propogate particles λit {i = 1...N} by adding uniformly drawn noise samples q:

λit =
λit−1 + λbestt−1

2
+ q

6. Update the particle weights:

wit = wit−1P̃e(λ
i
t)

7. Normalize the weights.

8. Keep the best performing particle λbestt.

9. Make local decisions ut = ut,1, ut,2, ..., ut,m, ..., ut,M as follows:

ut,m =

0 if λbestt,m > yt,m

1 otherwise

10. Resample the particles and go to step 5.

end



54

4.3. Decision Fusion

In this section, design of the fusion rule of the distributed detection system

depicted in Figure 2.3 is considered. The local detectors transmit their decisions

u = [u1, u2, ..., uM ] to the fusion center which combines local decisions according to

an optimization criterion to make a global decision, u0. The optimum fusion rule is

given by (2.28) under the assumption that sensor decisions are independent. When

the assumption of independence of the decisions does not hold, overall performance of

the distributed detection system may degrade. Even for the cases where sensors make

their decisions independently, their decisions may be still correlated especially when

the sensor locations are close. In order to utilize the correlation of the decisions in the

fusion center, the joint probability density of the decisions are required. An alternative

method utilizes the Bahadur-Lazarfeld expansion to compute the joint probabilities [4].

However, when dependency between sensor decisions are nonlinear, this approach may

not be efficient. Moreover, this approach requires prior information about the joint

statistics of sensor observations or decisions.

Here, we use copula theory which is introduced to the problem of fusion of cor-

related decisions in [11]. Copula theory provides an appoach that does not necessarily

require prior information about the joint statistics of the sensor decisions. This ap-

proach enables us to determine the joint probability density function of the sensor

decisions using only the knowledge of the marginal densities of the sensor observations

or the marginal probability mass functions of the sensor decisions. When copula pa-

rameters are known, (3.33)-(3.36) can be used to obtain the joint probability density

function of the sensor decisions. In cases when copula parameters are unknown, batch

estimation methods are used to estimate the parameters under each hypothesis, then

the unknown copula parameters are replaced by their respective estimate. However

estimating copula parameters for each hypothesis from batch of decisions may perform

poorly in cases where the copula parameters change over time as the true hypothesis

change. Therefore we suggest a sequential estimation of copula parameters by using a

particle-based method.
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A sequential Monte Carlo method, namely Gibbs sampling, is introduced to the

estimation of the copula parameters [13]. In this approach, dependency between data

sets is modeled by introducing time-variation into the densities by writing them as

factor models. Since copula relates the marginal distribution functions of local decisions

to the joint probability distribution function, a dynamic model to describe this relation

could not be formed using state space equations. Thus, particle filter can not be used

for this purpose and PSO method is utilized to obtain the copula parameters which

yields the maximum value of a cost function. Motivated by MLE, the parametric

likelihood function of the unknown copula parameters is chosen as the cost function

to be maximized. In this work, we specifically deal with Gaussian copula, since it is a

widely used copula type in signal processing and it requires a single parameter to be

estimated [23].

Suppose that ρkl specify the correlation between the random variables uk and ul

{k, l = 1, 2, ...,M}. The Gaussian copula cg embeds correlation using the correlation

matrix Σ as follows:

cg(uk, ul) =
1

|Σ|1/2
exp

[
[φ−1(uk) φ

−1(ul)]
τ (Σ−1 − I)[φ−1(uk) φ

−1(ul)]

2

]
, (4.20)

where I is the identity matrix and Σ is defined as:

Σ =

1 if k = l

ρkl otherwise

(4.21)

and φ denotes the univariate Gaussian distribution function [11]. For simplicity, we

assume that the number of sensors is two and the correlation parameter under H0 is

either known or negligible. Then, the parametric likelihood function of ρ under H1 can

be expressed using (2.33) as follows:

p(u1, u2|ρ) = P00(ρ)(1−u1)(1−u2)P01(ρ)(1−u1)u2P10(ρ)u1(1−u2)P11(ρ)u1u2 , (4.22)
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where P00(ρ), P01(ρ), P10(ρ) and P11(ρ) are defined by (2.35) and can be expressed

using Gaussian copula in (4.20) for two-sensor case as follows:

P00 =C(1− p1, 1− p2),

P01 =1− p1 − C(1− p1, 1− p2),

P10 =1− p2 − C(1− p1, 1− p2), (4.23)

P11 =p1 + p2 + C(1− p1, 1− p2)− 1,

where C(1− p1, 1− p2) and Σ are expressed as follows:

C(1− p1, 1− p2) =
1

|Σ|1/2
exp

[
[φ−1(u1) φ

−1(u2)]
τ (Σ−1 − I)[φ−1(u1) φ

−1(u2)]

2

]
(4.24)

and

Σ =

 1 ρ

ρ 1

 .
PSO algorithm described in Table 4.2 is utilized to find ρ which maximizes the cost

function given by (4.22).

4.4. Performance of the overall system

In this experiment, a distributed detection system with two sensors and a fusion

center is simulated. The signal is simulated using a multi-variate Gaussian probability

density with means equal to µ and variances equal to σ2 as follows:

S = [s1 s2]
τ = N ([µµ],Σ), (4.25)

where the covariance matrix Σ is as follows:

Σ = σ2

 1 ρ

ρ 1
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and ρ denotes the correlation coefficient. Here, the parameters of the multi-variate

Gaussian density is taken as µ=40, σ2 = 10 and ρ = 0.8.

Observation noise is simulated as Gaussian mixtures for both of the sensors.

Then, observed data at each sensor can be expressed as follows:

yi = ni when H0 is true

yi = si + ni otherwise

, (4.26)

where ni is as follows:

ni =
2∑
j=1

πjN (µj, σ
2
j ).

At sensor 1, observation noise parameters are π1=[0.2, 0.8], µ1=[5, 5], σ2
1 = [5, 1].

At sensor 2, observation noise parameters are π2=[0.2, 0.8], µ2=[1, 1], σ2
2 = [15, 1].

Using a switching function, the signal is present within the observed data (H1) with

probability 0.2. For both of the sensors, H0 is true until 1600th sample where it changes

to H1.

The number of particles used in PSO is 500. Random noise q in (4.18) is sampled

from uniform distribution U(−0.001, 0.001). First noise parameters are estimated from

the observed data given by (4.23) using the algorithm in Table 4.1. Initially, the

values of the particles of means and variances are drawn from µ0 ∼ N (1, 1) and σ2
0 ∼

IW(5, 10), respectively.

After estimating observation noise statistics, sensor thresholds are calculated us-

ing the algorithm in Table 4.2. Using each component of the Gaussian mixture, a

threshold is estimated; then the sensor threshold is found as a weighted sum where the

weights are estimated values of πi for ith sensor. Sensor thresholds and decisions are

presented in Figure 4.13. Real threshold values for sensor 1 and sensor 2 are calculated

as 42.5 and 34.5, respectively. Optimum results refer to the decision rules given in [4].
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Figure 4.13. Sensor observations, thresholds and corresponding local decisions a)

Sensor 1 observations and its threshold, b) Sensor 1 decisions, c) Sensor 2

observations and its threshold, d) Sensor 2 decisions.

Figure 4.13 demonstrates that the thresholds converges to their theoretical values

and hypothesis H1 after 1600th sample is detected. However there are few such as the

misses observed in sensor 1 at samples between 1600− 2000.

Estimated value of the correlation coefficient using PSO and its true value (0.8)

are given in Figure 4.14. MLE estimate of the copula parameter results in to 0.78 which

is closer than the result of PSO. Using PSO the parameter estimation performance is

not as good as it is with MLE which is a batch estimation method, however PSO is a

method which performs sequentially.

Also for different ρ values, estimation results using PSO algorithm are compared

in Figure 4.15. Final values of the estimations of ρ values for 0.8, 0.6, 0.2 and 0.2

are 0.76, 0.58, 0.32 and 0.01, respectively. Performance of the method is examined by

calculating NMSE of the estimations which is given by Figure 4.16. It can be observed

that for higher values of ρ, estimation performance is better compared to cases of where

values of ρ decreases to zero which could be a result of using sensor decisions in the

estimation of correlation instead of observed data.
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Figure 4.14. Estimated value of the correlation coefficient and its true value.

Figure 4.15. Estimated and true values of ρ (in blue and red, respectively) a)ρ = 0.8,

b) ρ = 0.6, c) ρ = 0.4, d) ρ = 0.2.
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Figure 4.16. NMSE of estimations of ρ a)ρ = 0.8, b) ρ = 0.6, c) ρ = 0.4, d) ρ = 0.2.

The signal and the global decision given by the fusion center are given in Figure

4.17.

Figure 4.17. The signal and the decision of the fusion center a) the signal, b) global

decision.
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Figure 4.17 shows that the fusion decisions describe the true hypothesis of the

signal. Probability of error values are obtained for two cases, where uncorrelatedness of

the local decisions is assumed and correlation is taken into account using the estimated

copula parameter. In Figure 4.18, the probability of error when it is assumed that local

decisions are uncorrelated is shown. Figure 4.19 shows the probability of error when

the correlation among local decisions are utilized in the fusion rule using Gaussian

copula whose parameter is estimated using PSO.

Figure 4.18. Probability of error when it is assumed that local decisions are

uncorrelated and optimum value.

The probability of error when the local decisions are assumed to be uncorrelated is

higher than optimum value obtained by (2.29)-(2.31). However, when copula function

is used probability of error that is achieved approaches to its optimum value. Hence,

it can be concluded that considering the correlation among the sensor decisions results

in improvement in detection performance than not considering correlation.
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Figure 4.19. Probability of error when Gaussian copula with estimated parameter is

used and optimum value.

In addition to the probability of error, receiver operating characteristics (ROC)

curve is a graph for illustrating performance of the detection. ROC curve obtained by

the proposed decision rules and the optimum ROC curve are given in Figure 4.20.

Figure 4.20. ROC curves of the simulation and optimum (theoretical).
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It can be observed from Figure 4.20 that in the simulations ROC curve of optimum

decision rules result better. Our distributed detection system become closer to optimum

as PFA increases.
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5. EXPERIMENTS WITH EARTHQUAKE DATA

The performance of the proposed method is tested on real earthquake data pro-

vided from the National Earthquake Monitoring Center (UDIM) of Boğaziçi University

Kandilli Observatory and Earthquake Research Institute (KOERI). In the experiment,

earthquake data from two different sensors are used. Observations of the first and

second sensors are given in Figure 5.1. It is given that the earthquake occurs at time

t = 24140.

Earthquake signal is modeled as 2nd order AR process as in (4.1), observation

noises on the sensors are modeled as mixture of two Gaussian components as in (4.2).

Noise parameters and AR coefficient are estimated for each sensor. Estimated noise

parameters are fed to PSO method; the local and global (by fusion) decisions are made.

Figure 5.1. Sensor observations a) Sensor 1 b) Sensor 2.
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It can be observed from Figure 5.1 that data between 2100 − 2700th samples

indicate significant seismic activities. Also, between 3200 − 3500th samples there are

observable activities in seismic data which represent after-shocks.

In Figure 5.2 and 5.3, estimated parameters of the sensors 1 and 2 are given, re-

spectively. In this experiment, true values of the estimated parameters are not available

since real data is used. Hence, NMSE could not be calculated in this experiment.

Figure 5.2. Estimated parameters of the Sensor 1 a) σ2(1), b) σ2(2), c) µ(1), d) µ(2),

e) π(1), f) a(1) and a(2) (red).

It can be observed from Figure 5.2 and Figure 5.3 that means of the Gaussian

mixtures are the same; however variances of the Gaussian mixtures differ in both of the

sensors, especially after t = 2140. For both of the sensors, AR coefficients also show

the effects of the earthquake after t = 2140, as well as t = 3400 where after-shocks

occurred. This experiment demonstrates that having change in the type of seismic

activity results in having changes in the AR coefficients, as expected.
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Figure 5.3. Estimated parameters of the Sensor 2 a) σ2(1), b) σ2(2), c) µ(1), d) µ(2),

e) π(1), f) a(1) and a(2) (red).

Thresholds of the sensors upon observed data are presented in Figure 5.4. It can

be observed that, the sensor thresholds change when the estimated noise parameters,

specifically, variances change after t = 2140.

Decision of the fusion center is given in Figure 5.5 which shows that the earth-

quake at t = 2141 is detected, however there are false alarms also. The fusion decision

at 3400 may have occurred due to after-shocks. It can be concluded that these findings

are consistent with the ground truth the experts specified.
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Figure 5.4. Observed data and thresholds of the sensors a) Sensor 1 b) Sensor 2.

Figure 5.5. Fusion decision.
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6. CONCLUSION

In this thesis, usage of particle filtering concepts in distributed detection is inves-

tigated. Decision rules for the local detectors and fusion center are developed. Strong

assumptions such as the choice of a parametric model and a probability distribution

function of the observations as well as assumptions on the optimal detector design such

as linearity, stationarity, uncorrelatedness or independence are avoided in the design of

decision rules.

First, observed data is modeled as an AR process driven by Gaussian mixture

noise. The parameters of the observation noise as well as the coefficients of the AR

process are estimated using particle filters that enables adaptivity to time variations

both in signal and noise statistics. With the estimation of noise parameters, sensor

decisions are estimated using PSO algorithm and a final decision is given. After the

noise parameters are estimated, local decision rules are designed using the knowledge

of noise parameters. PSO framework is utilized in obtaining the threshold values of the

local detectors. Then, local decisions are transmitted to the fusion center. The fusion

rule is designed without assuming independence of the decisions of the local sensors.

In order to form the statistical dependency between the sensor decisions, Gaussian

copula function is used and its parameter is estimated using PSO. Performance of the

estimation of the observation noise parameters using particle filtering are investigated

in the experiments using simulated and earthquake data. Performance of the overall

distributed detection system is measured by the probability of error of the system and

ROC curve. Estimation performance of the observation noise parameters are illustrated

using NMSE.

The experiments demonstrate that the selection of the variance of the process

noise of the parameter affects its convergence time to its true value within an accept-

able time interval, however it may also results in observable jitters. Choice of a smaller

variance of the process noise could reduce these jitters, but for this case the convergence

time would be greater. Moreover, it is observed that when initial values of the param-
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eters start from further values than their true values, then their convergences become

slower than it is for the case where they start with initial values closer to their true

values. Therefore, it could be concluded as the choice of initial values and variance of

process noise are important issues within the proposed system. The distributed detec-

tion system obtained a higher probability of error than optimum probability of error

obtained by (2.29)-(2.31), when the local decisions are assumed to be uncorrelated.

When the correlation between the decisions are utilized using Gaussian copula, proba-

bility of error value obtained become smaller. In the experiments with real earthquake

data, the proposed system yields promising results as the obtained thresholds detect

seismic activities that are observed. The experiments demonstrated that sequentially

estimating unknown parameters and decision rules provide adaptivity to changes.

It can be concluded that the proposed system can operate under non Gaussian

noise without the necessity of making strong assumptions or requiring prior knowledge

about statistics of observations. For some experiments the performance may not reach

to those with optimum (theoretical), however it provides operating sequentially which

is an advantage in real life applications, especially in dynamic environments. As future

work, this scheme would be improved to work using additional knowledge from the AR

coefficients for an early warning system for the detection of earthquakes. Furthermore,

higher order of AR modeling may be utilized for different applications.
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