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H. Tuğçe ÖZKAPTAN

B.S, Computer Engineering, Dokuz Eylul University, 2011

Submitted to the Institute for Graduate Studies in

Science and Engineering in partial fulfillment of

the requirements for the degree of

Master of Science

Graduate Program in Computer Engineering
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I would want to thank to my fiancé, Ali Yavuz Kahveci, who encouraged me, fed

me and made me feel I am not alone. I would also want to thank my lovely brother, my
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ABSTRACT

RANDOM DISCRIMINATIVE PROJECTION-BASED

FEATURE SELECTION FOR COMPUTATIONAL

PARALINGUISTICS

Computational paralinguistics deals with the underlying meaning of the verbal

messages. Understanding the meaning of verbal messages provides interpreting spoken

content and behaving accordingly like humans. It allows us to develop human like

machines. Hence, paralinguistic area is attracting increasing attention for research.

Paralinguistic analysis involves extracting features from raw speech data, chunking,

selecting relevant features and training the model. In this thesis, the focus is on the

feature selection step. Feature selection aims at finding a relevant and necessary set of

features to train generalizable models. The main challenge for feature selection methods

is the greedy-search nature of them. One major motivation for this study to develop an

efficient feature selection technique is the success of a recently developed discriminative

projection based feature selection method. Here, the method is enhanced by applying

the power of stochasticity to overcome traps in local minimum while reducing the

computational complexity. The proposed approach assigns weights both to groups

and to features individually in many randomly selected contexts and then combines

them for a final ranking. The efficacy of the proposed method is shown in two recent

challenge corpora to detect level of depression severity and conflict.
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ÖZET

HESAPLAMASAL PARALİNGUİSTİK İÇİN RASSAL

AYRIMSAYICI İZDÜŞÜM TABANLI ÖZNİTELİK SEÇİMİ

Hesaplamasal Paralinguistik, sözlü mesajın gerçek anlamıyla ilgilenir. Sözlü

mesajları anlamak insanlar gibi onları yorumlayıp buna göre davranabilme imkanı verir.

Bu da bize insan benzeri makineler geliştirebilme olanağı sağlar. Bu yüzden, paraligu-

istik alanı araştırma için giderek artan seviyede alaka topluyor. Paralinguistik analiz

işlem görmemiş veriden öznitelik çıkarımı, yığınlama, öznitelik seçimi ve model eğitimi

adımlarını kapsar. Bu tezde odaklanılan adım öznitelik seçimidir. Öznitelik seçimi

genellenebilir model eğitebilmek için ilgili ve gerekli özniteliklerin bulunmasını amaçlar.

Öznitelik seçimi yöntemlerindeki temel sorun onların fırsatçı algoritmaya dayalı arama

tabiatıdır. Bu çalışmadaki başlıca motivasyonumuz yakın zamanda geliştirilmiş olan

ayrımsayıcı izdüşüm tabanlı öznitelik seçimi yönteminin başarısıdır. Burada bu yöntem,

yerel mimimumlarda takılmanın üstesinden gelmek ve hesaplama karmaşıklığını azalt-

mak için rassallığın gücüne başvurularak geliştirilmiştir. Önerilen yöntem öznitelik

gruplarını ve özniteliklerin kendilerini bir çok rassal seçimli ortamda ağırlıklandırıp

sonrasında nihai sıralama için birleştirir. Önerilen yöntemin etkinliği depresyon cid-

diyet seviyesini ve çatışma seviyesini tespit amacıyla yakın zamanda düzenlenen iki

müsabaka probleminde gösterilmiştir.
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1. INTRODUCTION

Paralinguistics means ‘alongside linguistics’ (from the Greek preposition παρα) [1].

This discipline is interested in the meaning of verbal message in communication rather

than spoken content. The verbal message can be in acoustic form (vocal, non-verbal

phenomena) or in linguistics form (connotations of single units or of bunches of units).

In daily life, we continuously apply verbal message consciously or un-consciously to

explain what is in our minds, to show our feelings and to express ourselves in the light

of communication.

People track their partner’s age, gender, mood, emotion, intention and then re-

adapt their manner of speaking accordingly in human-human communication. They

also have the ability of interpret their partner’s attention. Capability of inference and

react like a human still an unachievable problem and paralinguistic is constantly devel-

oping into major field of speech analysis, as new human-machine interaction advance

over sheer speech recognition.

Schuller et al. [1] bundle paralinguistics under the heading of speaker classifica-

tion based on speech and language analysis. The authors point out to various scenarios

where speaker classification could be applied. Some of these scenarios have been men-

tioned in the literature or in media repeatedly while some of them already deployed as a

real-world application. A few examples for such scenarios are listed below to show how

paralinguistic speech analysis results in great advance in human–machine interaction

as well as in machine mediated human–human communication.

In the field of multimedia retrieval, paralinguistic information is of interest for

manifold types of media searches, such as highlights in sports games by measuring the

level of excitement in the reporter’s speech or simply looking for speakers belonging

to specific classes (such as age, gender, or charisma [2] ). In robotics, the analysis of

affective states (emotion, feeling) and personality is still very rudimentary in robotics

and often limits itself to tactile interactions. With a better modeling of these states and
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traits, we will be able to add social competence to humanoid or other highly interactive

and communicative robots [3,4], assistive robots [5], or to (virtual) agents [6]. In health

area, speech based classification can be used to help elderly people to live longer in their

homes by using an acoustic pain surveillance for detecting and classifying distress calls

automatically without using automated speech recognition [7]. On the other hand,

voice classification can be used to diagnose, monitor, and screen diseases and speech

disorders [8] such as Parkinson’s disease [9], patients who had their larynx removed

due to cancer, children with cleft lip and palate [10] or dysphonia [11]; or further

pathological effects [12]. Motivated by the success of previous works in health domain,

recent challenges introduce biomedical corpora e. g. for autism detection/diagnosis [13],

and depression level prediction [14] in order to help advance the field by providing

comparability and transparency to state-of-the-art studies.

As paralinguistic speech analysis includes many views, they can be gathered under

three main headings: speaker state, speaker trait and vocal behaviour. Speaker state

relates to the states changing over time i.e affection and intimacy [15], deception [16],

emotion [17],interest [18], intoxication [19], sleepiness [20], health state [21], and stress

[22] or zest. Speaker trait relates to permanent characteristics such as age and gender

[1], height [23], likeability [24], or personality. And the vocal behavior relates with

the non-verbal behavior such as sighs and yawns [25],laughs [26], [27], hesitations and

consent [18], and coughs [28].

When the spoken content rather than the speaker characteristics are concerned,

variants of Hidden Markov Models (HMM) are the industry standard. However, as

long as the states and traits are concerned, not the instantaneous changes of acoustic

features but their relative longer term (from few seconds to few minutes) summary is

important, due to the supra-segmental nature of the underlying phenomena [29]. Thus,

the state-of-the-art-results in the field are obtained by mapping the time-varying Low

Level Descriptor (LLD) contours (e. g. F0, MFCC 1-12, jitter, shimmer) onto a scalar

by means of a summarizing functional thus obtaining a fixed length vector. The applied

functionals can range from moments (e. g. mean, variance, kurtosis) to extremes (e. g.

min, max), and to coefficients of polynomials fit to these contours. This approach
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is being used in the INTERSPEECH COMPARE challenge series as baseline since

2009 [30], where the authors present 384 suprasegmental features. Benefiting from the

openSMILE toolkit that extracts a wide range features based on this approach [31], the

dimensionality and quality features increased in time. In COMPARE 2013 challenge,

the organizers provided a baseline acoustic feature set having a with 6 373 features.

Despite the success of the brute-forcing approach, this very high-dimensional feature

sets include a bulk of irrelevant and redundant features; and prone to curse of dimen-

sionality as the number of samples is usually at the order of few hundreds.

Since the feature extraction is not a bottleneck in the state-of-the-art pipeline,

which will be discussed in more detail in the next section, in this thesis reduction

of brute-forced openSMILE features is on focus. Although there are many successful

feature selection algorithms in literature, finding effective feature set in an efficient

way is still a challenging problem. In a recent study, Kaya et al. [32] proposed the use

of Canonical Correlation Analysis (CCA) to rank acoustic features for prediction of

level of depression. Although this method outputs results better than baseline, even

state-of-the-art at time of publication, it is still open to improvement. One avenue for

improvement, as in our recent work [33], is application of the discriminative projections

to domain information-based partitions of data in a divide-and-conquer manner. One

other direction is using stochasticity instead of domain knowledge to form the groups.

In my thesis, the motivation and the primary research direction is to improve

the method by applying a discriminative projection to randomly selected features,

thus obtaining an ensemble. Due to its usability both in regression and classifica-

tion tasks, CCA is used as discriminative projection. While preliminary work also

included Local Fisher Discriminant Analysis (LFDA), which is only applicable to clas-

sification. The hypothesis is tested on very high dimensional recent challenge corpora:

INTERSPEECH 2013 Computational Paralinguistics Challenge-Conflict sub-challenge

(CSC) [13] and AVEC 2013 Challenge-Depression sub-challenge(DSC) [14]. In both

corpora development set results obtained by the proposed method compare favorably

to challenge baselines as well as benchmarking SLCCA-Filter method.
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The remainder of this thesis is organized as follows. In Chapter 2, background

information on speech processing pipeline and relevant methods is given. In Chapter 3

the proposed method is presented. Chapter 4 provides experimental results on the

tested challenge corpora, whereas Chapter 5 concludes with future directions.
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2. BACKGROUND

In this chapter, the background information about paralinguistic speech process-

ing, feature reduction methods as well as related literature works is given.

2.1. Paralinguistic Speech Processing

Before going further in paralinguistic speech analysis, i. e. the way we can extract

‘how’ something is said rather than ‘what’ is said; it will be suitable to give basic

definitions of voice and speech. Voice (or vocalization) is the sound produced by

humans and other vertebrates using the lungs and the vocal folds in the larynx, or

voice box. Speech is the verbal means of communicating and it is produced by precisely

coordinated muscle actions in the head, neck, chest, and abdomen1 . In the light of

these general definitions, we refer the characteristic of speaker’s voice as voice, while

the spoken language adding linguistic as speech in paralinguistic view.

Initially, one should handle the computational intelligence analysis from the

speech as a general pattern recognition paradigm. In pattern recognition, we learn

a model with pre-processed training data and then test the performance of the learner

with test data. The steps for constructing such a model are demonstrated in Figure

2.1.

Pre-processing step deals with extracting signal properties from raw speech data.

This raw data may be stored speech file or A/D converter output. Pre-processing step

also includes the removal of noise from speech signals. Feature extraction refers to

converting speech information to acoustic and linguistic representations.

Speech database usually contains audio stored files with labels (i.e age, gender,

emotion of speaker) of concerning job. Sometimes, spoken content with related speech

record is also found in database.

1http://www.nidcd.nih.gov/health/voice/pages/Default.aspx
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Figure 2.1. A unified model for The Computational Speech Analysis [29].

Model learning refers to training the classifier or regressor with the labeled data

in speech database. Parameter Selection deals with the finding optimum values for pa-

rameters specific to learner model. Acoustic and Language Model are mainly resembles

each other except that The Language Model also includes the dependency for linguistic

information.

Classification/Regression takes place after the model learning. Classifier tries to

predict discrete class labels or binary value like low/high. In case of regression, the

output is a continuous value like age of speaker or dimensions like potency,arousal,

and valence, typically ranging from −1 to +1. The remaining one, feature selection, is

the main concern of my thesis. After the feature extraction steps, we have too many

features even for a single frame in speech data. Despite the bulk of features seems

good, irrelevant and redundant features influence the success of model negatively. To

construct a good learner, we have to find an optimal feature set relevant to our task.
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2.2. Related Methods

2.2.1. Canonical Correlation Analysis

Proposed by Hotelling [34], CCA seeks to maximize the mutual correlation be-

tween two sets of variables by finding linear projections for each set. Mathematically ,

CCA seeks to maximize the mutual correlation between two views of the same semantic

phenomenon (e. g. audio and video of a speech) denoted X ∈ Rn×d and Y ∈ Rn×p,

where n denote the number of paired samples, via:

ρ(X, Y ) = max
w,v

corr(wTX, vTY ), (2.1)

where “corr” corresponds to Pearson’s correlation, w and v correspond to the projection

vectors of X and Y , respectively. Let CXY denote the cross-set covariance between the

sets X and Y , and similarly let CXX denote within set covariance for X. The problem

given in Equation 2.1 can be re-formulated as:

ρ(X, Y ) = sup
w,v

wTCXY v√
wTCXXw · vTCY Y v

. (2.2)

The formulation in Equation 2.2 can be converted into a generalized eigenproblem for

both projections (i. e. w and v), the solution can be shown [35] to have the form of:

C−1XXCXYC
−1
Y YCY Xw = λw, (2.3)

where the correlation appears to be the square root of eigenvalue:

ρ(X, Y ) =
√
λ. (2.4)

To attain maximal correlation, the eigenvector corresponding to the largest eigenvalue

in Equation 2.3 should be selected. Similarly, by restricting the new vectors to be

uncorrelated with the previous ones, it can be shown that the projection matrices for
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each set are spanned by the k eigenvectors corresponding to the k largest eigenvalues.

In short, when CCA is applied between X and Y we get:

[W,V, r, UX , UY ] = CCA(X, Y ), (2.5)

where W and V are composed of (sorted) eigenvectors from the eigenproblem in Equa-

tion 2.3, r is the m dimensional vector of canonical correlations given in Equation 2.4

while UX and UY are the covariates. In other words, UX = X × W , when features

in X are mean removed. The relationship between the canonical correlation and the

corresponding covariates is given by the the Pearson’s Correlation Coefficient (PCC):

ρi = PCC(U i
X , U

i
Y ), (2.6)

where i indexes the column. It is important to note that the maximum number of

covariates m in UX and UY are limited with the matrix rank of X and Y :

m = min(rank(X), rank(Y )) (2.7)

The non-linear version of CCA using the kernel trick is known as KCCA [35].

Also, Deep CCA (DCCA) is an efficient deep neural network alternative to KCCA [36].

2.2.2. Local Fisher Discriminant Analysis

It is known that when classes are multimodal, FDA faces anomalies [37]. It

is important to preserve the local structure in the embedded space while trying to

maximize the class separability. To retain the multimodality in the target space without

regarding the classes, Locality Preserving Projection (LPP) [38] is introduced as an

alternative to PCA. The approach uses the affinity matrix idea to weight (softly mask)

the projections. This idea inspired Sugiyama to extend traditional FDA to Local FDA
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by first reformulating the scatter matrices [39]:

Sw = 1/2
n∑
i,j

Aw
i,j(xi − xj)(xi − xj)′, (2.8)

Sb = 1/2
n∑
i,j

Ab
i,j(xi − xj)(xi − xj)′, (2.9)

where (′) denotes transpose and

Aw
i,j =

 1/nc if yi = yj = c,

0 if yi 6= yj,
(2.10)

Ab
i,j =

 1/n− 1/nc if yi = yj = c,

1/n if yi 6= yj,
(2.11)

Here the affinity matrices do not contain locality information but class information.

To obtain LFDA we have [39]:

Sw
= 1/2

n∑
i,j

Aw

i,j(xi − xj)(xi − xj)′, (2.12)

Sb
= 1/2

n∑
i,j

Ab

i,j(xi − xj)(xi − xj)′, (2.13)

and localized discriminative affinity matrices are defined as

Aw

i,j =

 Ai,j/nc if yi = yj = c,

0 if yi 6= yj,
(2.14)

Ab

i,j =

 Ai,j(1/n− 1/nc) if yi = yj = c,

1/n if yi 6= yj,
(2.15)

where Ai,j is the n× n regular affinity matrix keeping the unsupervised locality infor-

mation. Ai,j can simply be composed of 1s for k-nearest neighbors for each instance

and 0s for the rest. It is also possible to adopt a localized measure where the distance

to the k-th nearest neighbor is used as bandwidth in Gaussian similarity. Let D denote

the n×n Euclidean distance matrix of samples, dk is the n dimensional vector keeping
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the square root of the Euclidean distance of each sample to its k-th neighbor, and M./L

denote the element-wise division, we can obtain a smoother affinity matrix A via:

L = dkd
′
k, (2.16)

A = exp(−D./L). (2.17)

Once the scatter matrices are computed, the regular FDA eigenproblem can be used

to obtain the discriminative projection:

Sb
W = ΛSw

W. (2.18)

2.2.3. Extreme Learning Machines

Extreme Learning Machine (ELM) was first introduced a decade earlier [40] as

a fast alternative training method for Single Layer Feedforward Networks (SLFNs).

The rigorous theory of the ELM paradigm is presented in 2006 by Huang et al. [41],

where the authors compare the performance of ELM, SVM, and Back Propagation

(BP) learning based SLFN in terms of training time and accuracy. The basic ELM

paradigm has matured over the years to provide a unified framework for regression and

classification; and is related to generalized SLFN class including Least Square SVM

(LSSVM) [42, 43]. Due to fast and accurate results obtained via ELMs, the method

is applied in many real life tasks ranging from gesture recognition to representational

learning [44,45]. In this section, we provide a brief introduction to the paradigm.

The argument of basic ELM introduced by Huang et al. is that the first layer

(input layer) weights and biases of a neural network classifier do not depend on data

and can be randomly generated; the second layer (output weights) can be effectively

and efficiently solved via least squares [41]. It can be thought that the input layer

carried out unsupervised feature mapping, then the activation function outputs (the

output matrix) is subjected to a supervised learning procedure. Let x ∈ Rd denote
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an input sample, h(x) ∈ Rp denote the hidden node output. Similarly, let X ∈ Rn×d

denote the dataset and H ∈ Rn×p denote the hidden node output matrix. The hidden

node activation via randomly generated mapping matrix W and bias vector b is defined

as in regular SLFN:

H(l, t) = hl(x
t) = g(xt,wl, bl), l = 1, ..., L, t = 1, ..., N, (2.19)

where nonlinear activation function g() can be any infinitely differentiable bounded

function [41]. A common choice for g() is sigmoid function:

g(x, a, b) =
1

1 + exp (−(a · x + b))
. (2.20)

ELM proposes an unsupervised, even random generation of hidden node output

matrix H. The actual learning takes place in the second layer between H and the label

matrix T. T is composed of continuous annotations in case of regression therefore is a

vector. In the case of M-class classification, T is represented in one vs. all coding

Ti,m =

 +1 if yi = m,

−1 if yi 6= m.
(2.21)

The second level weights β are learned by least squares solution to a set of linear

equations Hβ = T. Proving first that random projections and nonlinear mapping with

L ≤ N result in a full rank H, the output weights can be learned via

β = H‡T, (2.22)

where H‡ is the Moore-Penrose generalized inverse [46] that gives not only minimum

L2 norm solution to ||Hβ −T||, but also minimizes the norm of projection ||β||. The

use of this special generalized inverse is motivated by Barlett’s theory stating that for

networks approximating an arbitrarily small training error, the smaller the norm of

weights is, the better the generalization capability of the network [47]. The universal
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approximation and classification capability of ELMs have been rigorously discussed

in the literature (cf. [43]), and are beyond the scope of this paper. However, it is

important to mention that ELM is related to Least Square SVMs via the following

output weight learning formulation:

β = HT (
I

C
+ HHT )−1T, (2.23)

where I is N ×N identity matrix, and C used to regularize the linear kernel HHT is

indeed the complexity parameter of LSSVM [42]. The approach is extended to use any

valid kernel. A popular choice for kernel function is Gaussian (RBF):

K(xk,xl) = φ(xk) · φ(xl) = exp(−||xk − xl||
σ2

) (2.24)

In both (basic and kernel) approaches, the prediction of x is given via ŷ = h(x)β.

In case of multi-class classification the class with maximum score in ŷ is selected. In

our study we utilize kernel version of ELM.

2.3. Literature Review

The feature selection methods aim to automatically select a useful subset of signal

features to gain better classification performance than the large, non-selective baseline

feature set. By effective feature selection, we will benefit from followings [48,49]

• Enhanced classification performance due to the removal of noisy or unreliable

features.

• Lower computational costs in the final system due to reduced dimensionality in

feature extraction, model training and classification.

• Simpler classifiers with less input variables, which of-ten leads to better general-

ization ability towards new samples.

• Better hands-on understanding of the classification problem through discovery of
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relevant and irrelevant features.

As we mentioned previously, many machine learning system suffers from ‘curse of

dimensionality problem’ where data is to sparse with regard to high-dimensional feature

space. This effect causes over fitting of trained model on data and decrease reliability

of it. The solution is the selection of small but robust feature set by applying feature

selection methods. In literature, feature selection methods gathered under three main

groups: wrapper methods, filter methods and embedded methods.

Since the main goal is the find feature set which is optimal with underlying model

for task at hand, we can select features based on a criterion function c, such as G(S, D,

M) = c, where S denotes the feature set, D denotes the data and M is the underlying

model applied in the task. This criterion function can be based on overall classification

performance as in wrapper methods or some heuristic measures as in filter methods.

Even this approach seems applicable, it has already two drawbacks. The first is the

expense of search. The number of possible feature subsets grows exponentially as a

function of the initial feature pool size so; search for the best feature set requires

intelligent search algorithms or tricks. The second is the generalization problem. Since

the criterion function use a limited size subset of complete data, there is no guarantee

exist that the location of local maxima of criterion function with respect to S will

remain same for the unused data.

In wrapper methods, the success of the selected features measured by the criterion

function based on the overall classification/regression performance of the underlying

model with provided data set. So, features selected or eliminated based on the value

of criterion function. Sequential Backward Elimination (SBE) and Sequential Forward

Selection (SFS) are the basis wrapper methods.

Sequential Backward Elimination (SBE), proposed by Marill and Green [50],

starts with the complete feature set and sequentially eliminates features whose ab-

sence results in the best score.



14

Sequential Forward Selection (SFS), proposed by Whitney [51], works in the

opposite direction as the names imply. It starts with an empty set and sequentially

insert new features whose addition results in the best score.

The score of the feature insertion or deletion measured with respect to the previ-

ously selected feature set using a hill climbing scheme. Thus, these ‘greedy’ methods do

not guarantee to examine all possible subset. The finding optimal feature is depending

on the previously selected features. For both methods, newly selected feature set is a

subset of a larger feature set seen earlier or later. This is called as ‘nesting problem’

and researchers developed a new method, Sequential Forward Floating Search (SFFS),

to overcome this issue [52]. This method is widely used for feature selection in related

works. The main enhancement of SFFS is, it carries out sequential feature forward se-

lection but also backward elimination. By that way, we can get rid of nesting problem

and also have a greater chance to examine all possible combinations.

In filter methods, the role of classifier M in wrapper methods replaced with some

heuristic measures in the criterion function. Common measures are mutual informa-

tion, Pearson correlation, Mahalanobis distance. In simplest filter methods, features

assigned scores individually based on the criterion function and then ranked. Feature

subset either created by selecting distinct number of features from ranked features

or applying some threshold. The other filtering methods are feature subset selection

methods (Kohavi and John, 1997; Theodoridis and Koutroumbas, 2003). Correlation-

based feature selection (CFS) [53] and the minimum Redundancy Maximum relevance

(mRMR) approach [54] are well known examples. CFS and mRMR analyze correlation

and mutual information, respectively. Both attempt to maximize dependence between

the features and the class information, while simultaneously minimizing it between fea-

tures in the selected feature set. CFS measures the heuristic merit between a feature

set S and target t via [53]:

rS,t =
krti√

k + k(k − 1)rii
, (2.25)
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where k is number of features, rti denote average correlation between the features in

the subset and the target variable, and the term rii denote average inter-correlation

between features. Hall (1999) proposes several measures of dependence to compute

feature-feature and feature-target merits of a subset. When the target variable is

continuous, Pearson’s correlation coefficient is used. In the approach used in this thesis,

Equation 2.25 is simplified, keeping the notion of high relevance low redundancy. CFS

uses symmetrical uncertainty as the correlation measure when the class is nominal.

A measure based on information theory estimates the degree of dependency between

nominal features. Suppose X and Y are discrete random variables, Equations 2.26 and

2.27 give the entropy of Y before and after observing X.

H(Y ) = −
∑
y∈Y

p(y) log2 p(y), (2.26)

H(Y |X) = −
∑
x∈X

p(x)
∑
y∈Y

p(y|x) log2 p(y|x). (2.27)

The amount by which the entropy of Y decreases reflects additional information

about Y provided by X and is called the information gain [55], or, alternatively, mutual

information [56]. Mutual information is given in equation 2.28

MI = H(Y )−H(Y |X)

= H(X)−H(X|Y )

= H(Y ) +H(X)−H(X, Y ).

(2.28)

Information gain is a symmetrical measure that is, the amount of information

gained about Y after observing X is equal to the amount of information gained about

X after observing Y . Symmetry is a desirable property for a measure of feature-

feature intercorrelation to have. Unfortunately, information gain is biased in favor

of features with more values. Furthermore, the correlations in Equation 2.25 should
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be normalized to ensure they are comparable and have the same affect. Symmetrical

uncertainty [57] compensates for information gain’s bias toward attributes with more

values and normalizes its value to the range [0, 1]:

symetrical uncertainity = 2.0×
[

MI

H(X) +H(Y )

]
(2.29)

Similarly, mRMR drives the feature selection in a set X, at step k maximizing

the difference or ratio between relevance and redundancy terms [54]:

max
xj∈X−Sk−1

MI(xj, t)−
1

k − 1

∑
xi∈Sk−1

MI(xj, xi)

 , (2.30)

where MI(x, y) is mutual information between random variables x and y. In KCCAm-

RMR, Sakar et al. [58] improved mRMR feature selection using correlated functions of

variables (i. e. projections attained by CCA) weighted with corresponding correlations

with the target variable. In this work, MI is completely replaced with CCA.

Nowadays, the computational paralinguistic is very hot topic and many researchers

aim to develop a novel system in this area. But recently, the focus on system design

replaced with search for an efficient feature selection method. In INTERSPEECH 2013

Challenge,despite the brute-forced baseline feature sets provide the-state-of-the-art re-

sults, in some recent work the use of a small set of domain-knowledge inspired features

is shown to outperform the baseline set [59]. Important to note is that although ex-

tracted via an alternative way, the knowledge-inspired set used was a small subset of

the baseline features. This finding motivates the need for a robust feature subset. In

Table 2.1, a non-exhaustive summary of recent literature work on feature selection in

computational paralinguistics is given.
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Table 2.1. A Summary of Feature Selection (FS) Methods in Computational

Paralinguistics.

Work Paralinguistic Task Method

Torres et al.(2006) [60] Depression GP-Based Two-Stage FS

Park et al.(2006) [61] Emotion Interactive FS

Torres et al.(2007) [62] Depression GA-Based FS

Espinosa et al.(2011)

[63]

Emotion Bilingual Acoustic FS

Giannoulis and

Potamianos (2012)

[64]

Emotion mRMR + SBE

Räsänen et al. ( 2013)

[65]

Autism, Emotion and

Level of conflict

Random Subset FS

Kirchhoff et al. (2013)

[66]

Autism Submodular FS

Moore et al.(2014) [67] Emotion Correlation FS

Kaya et al.(2014) [32] Depression CCA based FS

Bejani et al.(2014)

[68]

Emotion ANOVA based FS

Kim et al.(2014) [69] Level of Conflict Automatic Relevance De-

termination
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Although the authors apply different feature selection methods from each other,

the main purposes are same for all: avoiding curse of dimensionality problem , elimi-

nating redundant features and finding relevant features. In [60], authors apply genetic

programming approach for feature selection. The authors state that the wrapper meth-

ods suffer from the computational expense. Hence, instead of using classifier for each

trial, they use it as a fitness function. While they apply genetic programming to select

optimal features, they use classifier in the fitness function. In this way, they do feature

selection and classifier design simultaneously. The evolutionary method they apply is

called as GPFS. Feature selection in the GPFS begins during the generation of the

initial population, where a feature set is randomly generated for each individual.Once

the initial population is created, the fitness of each individual is computed. The fitness

shows the classification accuracy. And then, they select the two individual which have

best fitness score and exposed them to crossover operations. The population evolve

with the newly created feature sets until convergence.In [62], authors extend their

previous GA-based work [60]. The authors stated that the previous approach suffer

from considering and evaluating features independently from each other. In this new

approach, they apply correlation based clustering and Two-stage Genetic Algorithm,

respectively. The main goal in their work is to find an optimal clustering which shows

best classification accuracy. A clustering is done based on the distance measure be-

tween features. Clustering can be seen as filtering and upon completion of this step,

they execute two stage-Genetic algorithm. In the first stage, they try to select clusters

which will be taken into classification phase. In the second stage, they analyze selected

clusters and search for a feature which best represents the cluster.

In [63], the authors search for acoustic features that are good enough to estimate

the emotional state based on the voice of a person independently from which language

they use.They use Linear Floating Forward Selection (LFFS) [70] to select features.

This method makes a hill-climbing search. It starts with the initial feature set, eval-

uates all possible inclusions of a single attribute and select the one which have best

evolutionary result. The search ends where there are no attribute to improve eval-

uation.In their experiments, they use LFFS with Fixed Width mode. In this mode,

initially k features are selected and the others are remains. At each step, features
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selected to be added replaced with the one feature from remaining set. In [61], authors

developed a new method, ‘Interactive Feature Selection’(IFS) for feature selection and

the results of IFS were applied to their own emotional recognition system. The IFS

based on reinforcement learning and requires responses from human users. This algo-

rithm is inductive and based on the rationale of correlation. This is finding a good

feature subset which contains features highly correlated with a class but uncorrelated

which each other. Their method starts with the full feature set. Every time a new

feature set and emotion identifier is inputted from user, it assigns a return sign (+1 if

an old emotion identifier equals the new emotion identifier, - otherwise). The product

of return sign and the difference of each other is stored. This iteration is repeated

during one episode. After the episode, each subset feature set is applied to objective

function and evaluation result is stored. If the next evaluation result is worse than

previous, the worst feature of selected feature set will be replaced with the best feature

among those that were not selected.In [66], the authors apply a novel feature selec-

tion technique.Their method based on submodular function optimization. They tested

their method on INTERSPEECH 2013 Autism-Challenge and achieve significant suc-

cess relative to baseline. In [64], the authors use Two-stage feature selection method.

They want to take advantages of wrapper and filter method together. Hence, they

use both types of feature selection methods respectively. In the first stage they ap-

ply mRMR filter method. In the second stage, they apply backward feature selection

wrapper strategy. In [67], the authors apply Correlation Feature Selection technique.

In [68], the authors claim that they use ANOVA (Analysis of Variance) technique to

select a feature subset. However, they do not give detailed information about how they

use ANOVA for feature selection in their work. In [69], the authors utilize a Bayesian

approach for regression of level of conflict, where feature selection is done by ARD.

In [65], a new feature selection method, Random Subset Feature Selection is

introduced. At each time, they select a random feature set by applying uniform distri-

bution on full feature set. Then, they measure relevance of each feature based on the

performance of the subset that the feature participates in. To compute the relevance,

the authors increase the points of features participating in a set providing higher than

average performance by a predefined value p, and similarly reduce the same amount
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for the features performing lower than the average. In this wrapper method, the per-

formance is measures with k-nearest neighbors classifier. After 300 000 iterations, the

features are ranked with respect to their points. Despite its good performance on chal-

lenging tasks, this method is weak in three aspects (i) Efficiency: It requires hundreds

of thousands classification iterations and hence does not scale to large data (ii) Feature

weighting: The relative weights of features in a classification are not taken into account,

all get the same reward/punishment. (iii) Feature group weighting: The method re-

wards/punishes based on relative performance to average but how better/worse is not

considered. In this thesis, the method proposed weights both the group and the par-

ticipating features separately in a principled way using CCA.
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3. PROPOSED METHOD

3.1. Discriminative Projection Based Filters

The proposed method in this thesis extends the recent work of Kaya et al. [32]

by applying the discriminative projection based ranking to random subsets of a large

feature set. The main idea behind the CCA based filter in [32] is as follows. When

all features on one view are subjected to CCA against the labels on the other view,

the absolute value of the projection matrix W can be used to rank the features. The

application to regression is straightforward since the resulting matrix is n×1, therefore

a vector. It can be applied in the same way to Two-class classification where the classes

can be denoted with 0 and 1 in the target vector. For C > 2, we can use the canonical

correlation value (ρi) to weight the corresponding projection column (eigenvector W i).

In short, SLCCA-Filter algorithm, which inputs the dataset X ∈ Rn×d and label matrix

T ∈ {0, 1}n×(C); and outputs feature ranking R is given as:

[W,V, ρ, UX , UY ] = CCA(X,T ), (3.1)

H =
m∑
i=1

abs(W i)ρi, (3.2)

R = sort(H,‘descend’), (3.3)

where as noted earlier m = min(rank(X), rank(Y )), and the 1-of-C coded label matrix

T is defined as

Ti,c =

 1 if yi = c,

0 if yi 6= c.
(3.4)

Since C classes have C−1 degrees of freedom, the rank of matrix T is C−1. Therefore

it is possible to remove any of the columns from 1-of-C coded matrix. The filter can be

applied to FDA or LFDA in a similar manner, where instead of the canonical correlation

value square root of the corresponding eigenvalue λi is used.
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3.2. Random Discriminative Projection Based Filters

As mentioned above the proposed method extends the idea of discriminative

projection based filters explained in Section 3.1. Though it looks efficient and valuable

to suppress redundant features, SLCCA-Filter has an important drawback, which gives

the motivation to this thesis study: the number of non-zero weight features in the

projection is upper-bounded by the rank of the data matrix. The reason for this lies in

the pseudo-inversion of the singular covariance matrix. Therefore, when dimensionality

is very high, many features that have unique information about the target variable will

be omitted. This problem is referred as irrelevant redundancy in the literature [58].

By means of random sampling of features, it is possible to evaluate feature rele-

vance/redundancy in different conditions and aggregate them to obtain a final ranking.

While the absolute value of feature projection matrix (eigenvectors of the correspond-

ing eigenproblem) provide information about feature level saliency (driven to zero if

the feature is redundant or irrelevant), the square root of the eigenvalue in a discrim-

inative projection is used to weight how good the feature group collectively performs.

As mention earlier, in case of K > 2 class classification the result is a K − 1 dimen-

sional projection. Here feature saliency in the projection matrix is weighted by the

corresponding eigenvalues (canonical correlation statistic ρ in CCA) also providing the

saliency for randomly chosen feature groups to be aggregated.

A Toy Example. Before proceeding to the details of the algorithm, the redun-

dancy elimination and relevance maximization properties of this method will be dis-

cussed with a toy example. Suppose we have three randomly generated vectors a, b and

c drawn independently from standard normal distribution. All vectors have 1000 × 1

dimensions. Let’s define a redundant feature d, the target variable t and the dataset

X as follows: d = a/2, t = 2 ∗ a + b, and X = [a b c d], respectively. The d vector

shows there exists a linear dependency between a and d. This means that one of them

is redundant. In addition, formulation of the target variable shows that c is irrelevant.

In the light of our motivation, the projection matrix of canonical correlation between
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X and t represents the feature ranking among a, b, c and d variables. Due to the linear

dependence among a and d, one of them is redundant therefore its weight should be

set to 0. After when X is subjected to CCA against t, we get the feature projection

matrix A = [−0.8988,−0.4494, 8.6264× 10−17, 0] where the weight of d is equal to 0.

The highest absolute weight is with a that is the biggest constituent of target vari-

able. We also see that the irrelevant variable c has almost zero weight. This example

shows that the method provides redundancy elimination and relevance maximization,

concurrently. However, linear dependence of features (matrix rank issue) may hinder

obtaining a more relevant and less redundant compact set. This is weakness is the

main motivation of this thesis study.

In Figure 3.2, psedo-code of the proposed method, Random SLCCA initial ver-

sion is given. Basically, we randomly generate feature indices in the size of total feature

dimension. Then, we select a predefined number of features to project. We locate the

selected features in original data and store as current training data matrix. After that,

we calculate the canonical correlation between data and target labels. The projection

matrix and canonical correlation values are used to form weighted feature saliency

vector. We perform these steps at each iteration and sum the weighted absolute pro-

jections. At the end, we sort the total weighted projection vector to get ranking of

features.

In the proposed method, maximum dimensions to select randomly at each iter-

ation is a critical parameter. The results of feature selection with small D were not

found to be good. We observed that this method requires a high number of iterations

T and randomly drawn features maxD to perform as good as baseline SLCCA. This is

undesired because we wish to keep the method scalable while increasing the accuracy.

In the first case, we select D, the dimension of randomly selected features to project, is

small as possible. The problem in this method is that we can not touch all of the fea-

tures and there exist a high possibility of skipping relevant features with small values

of maxD and K. In Figure 3.2 a simulated plot of the probability of skipping features

versus the number of iterations is shown for a set of maxD in a imaginary dataset of

10 000 features. We see, for example, that if we randomly draw 100 features to apply
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Input:

X: NxD dimensional data matrix

T: target matrix N x (C-1) in classification , N x 1 in regression

K : Number of iterations

maxD : maximum dimensions to select randomly at each iteration

Require X, T , maxD and K as input.

for i = 1 to K do

RandFeats ⇐ randperm(D);

FeatsIdxs ⇐ RandFeats(maxD);

Xrand ⇐ X(:, FeatsIdxs) ;

Apply CCA on selected feature set Xrand and target using Equation 3.1 ;

Compute the weight vector Hi using Equation 3.2 ;

Zero pad Hi for unselected features to obtain D dimensional saliency vector wi;

Cumulate weighted features in vector W : W⇐W + wi ;

end for

Obtain the sorted saliency,Ws and feature ranking R by applying Equation 3.3

on W ;

Figure 3.1. Random SLCCA Algorithm Initial Version.
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Figure 3.2. Probability of Skipping Features in Sampling with Replacement vs

Number of Iterations in an imaginary dataset having 10 000 features.

SLCCA, at 40 iterations still half of the features are untouched. This led to the second

version where we project both the randomly selected set and its complement set.

In the second version, we discriminatingly project the randomly selected feature

set and its complement but, the results were not good enough again. In this case, the

difference in dimensions between feature sets to be projected caused problems. If their

dimensions are not close to each other, the weights assigned to features in projection

matrix vary highly. Suppose we have data matrix X with dimensions N × 6373, where

N is the number of samples and 63732 is the feature dimension. If we select maxD

is equal to 100, we got N x 100 as randomly selected feature set while N x 6273

for the remaining set. After the projection of both feature sets, we can see that the

average weights for first 10 variables are around to 105 in randomly selected feature

set, as opposed to 10−1 in the complement set. This difference arose from the gap in

dimensions and can cause incompatibility.

As an alternative for previous two, we select maxD as half of the original feature

dimensionality in third version. With this approach, we can both access all features at

2This is the INTERSPEECH 2013 baseline feature set dimensionality.
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each iteration during projection and also achieve to get compatible feature weights in

projection matrix. This approach effectively eliminates the maxD parameter. In the

remaining part of this thesis, I report results with maxD = D/2. The final version of

the algorithm is given in Figure 3.3.

Input:

X: NxD dimensional data matrix

T: target matrix N x (C-1) in classification , N x 1 in regression

K : Number of iterations

maxD : maximum dimensions to select randomly at each iteration

Require X, T and K as input.

maxD ⇐ D / 2;

for i = 1 to K do

RandFeats ⇐ randperm(D);

FeatsIdxs ⇐ RandFeats(maxD);

Xrand ⇐ X(:, FeatsIdxs);

Xrand ⇐ X(:, FeatsIdxs);

Apply CCA on selected feature set X-rand and target using Equation 3.1;

Apply CCA on complement set Xrand and target using Equation 3.1;

Compute the weight vectors Hi and Hi for each projection using Equation 3.2;

Combine Hi and Hi to obtain D dimensional saliency vector wi;

Cumulate weighted features in vector W : W⇐W + wi ;

end for

Obtain the sorted saliency,Ws and feature ranking R by applying Equation 3.3

on W ;

Figure 3.3. Random SLCCA Algorithm Final Version.



27

4. EXPERIMENTS AND RESULTS

4.1. AVEC 2013 Depression Corpus

According to depression literature, people who suffer from mood disorders can be

recognized by their behaviors in social interaction. The psychologists and psychiatrists

consider the vocal and facial clues during diagnosis. For instance, depression could

result in expressive behavior such as dampened facial expressions, avoiding eye con-

tact, and using short sentences with flat intonation. Hence the mental health problem

often affects people at working age; this illness causes significant recession in economy,

justice and education system. This makes diagnosis and cure of the mental illness

important for our environment. Although the recent improvements in both health and

technology areas, automatic measurement and assessment of mood disorders have not

been deployed as a real word application yet. AVEC 2013 Depression Challenge and

Corpus [14] addresses this situation with an aim to develop predictive systems for use

of mental health practitioners.

AVEC 2013 uses a subset of the audio-visual depressive language corpus (AVDLC),

which includes 340 video clips of subjects performing a Human-Computer Interaction

task while being recorded by a webcam and a microphone. In AVDLC, the total num-

ber of subjects is 292 and only one person appears per clip, i. e. some subjects feature

in more than one clip. The speakers were recorded between one and four times, with

a period of two weeks between the measurements. Table 4.1 summarizes basic statis-

tics of the corpus [14]. Recorded behavior includes speaking out loud while solving a

task, counting from 1 to 10, read speech (excerpts of a novel and a fable), singing in

German, telling a story from the subjects’ own past (the best event and a sad event

from childhood). The depression levels were labeled per clip using Beck Depression

Inventory-II (BDI-II) [71], a subjective self-reported 21 item multiple-choice inventory.

For the AVEC 2013 challenge, the recordings were split into three partitions:

training, development, and test sets of 50 recordings each, respectively.
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Table 4.1. Statistics of the AVDLC [14].

Property Statistic

# of Clips 340

# of Subjects 292

Range of Clip Length 20-50 min.

Mean Clip Length 25 min.

Total Duration 240 hours

Age Range of Subjects 18-63 years

Mean±Std of Age of Subjects 31.5±12.3 years

BDI-II Score Range 0-45

4.1.1. AVEC 2013 Baseline Acoustic Feature Set

The AVEC 2013 audio baseline feature set consists of 2 268 features extracted

using TUM’s open source feature extractor openSMILE [31]. The features are com-

posed of 32 energy and spectral related low-level descriptors (LLD) x 42 functionals, 6

voicing related LLD x 32 functionals, 32 delta coefficients of the energy/spectral LLD

x 19 functionals, 6 delta coefficients of the voicing related LLD x 19 functionals, and

10 voiced/unvoiced durational features [14]. The complete list of LLDs and functionals

are given in Tables 4.3 and 4.2, respectively.

The audio features are computed on short episodes of audio data. Since the

Challenge dataset contains long continuous recordings, three segmentations have been

performed: (i) voice activity detection (VAD) based (ii) overlapping short fixed length

segments (3 seconds) and, (iii) overlapping long fixed length segments (20 seconds).

In short and long segmentation, the windows are shifted forward at a rate of one

second. Functionals are then computed over each segment. Together with the per

instance computation of functionals, the baseline feature set is provided in 4 versions

to grasp relatively short-long acoustic characteristics of speech intended for depression

and affect tasks. Both the challenge paper [14] and the benchmarking work of Kaya et
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Table 4.2. Set of all 42 functionals. 1Not applied to delta coefficient contours. 2For

delta coefficients the mean of only positive values is applied, otherwise the arithmetic

mean is applied. 3Not applied to voicing related LLD.

Statistical functionals (23)

(positive2) arithmetic mean, root quadratic mean,

standard deviation, flatness, skewness, kurtosis,

quartiles, inter-quartile ranges,

1 %, 99 % percentile, percentile range 1 %–99 %,

percentage of frames contour is above:

minimum + 25%, 50%, and 90 % of the range,

percentage of frames contour is rising,

maximum, mean, minimum segment length1,3,

standard deviation of segment length1,3

Regression functionals1 (4)

linear regression slope,

corresponding approximation error (linear),

quadratic regression coefficient a,

approximation error (linear)

Local minima/maxima related functionals1 (9)

mean and standard deviation of rising

and falling slopes (minimum to maximum),

mean and standard deviation of inter

maxima distances,

amplitude mean of maxima,

amplitude range of minima,

amplitude range of maxima

Other1,3 (6)

LP gain, LPC 1 – 5
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Table 4.3. AVEC 2013 low-level descriptors as given in [14].

Energy & spectral (32)

loudness (auditory model based)

zero crossing rate

energy in bands from 250 – 650 Hz, 1 kHz – 4 kHz

25 %, 50 %, 75 %, and 90 % spectral roll-off points,

spectral flux, entropy, variance, skewness, kurtosis,

psychoacousitc sharpness, harmonicity, flatness

MFCC 1-16

Voicing related (6)

F0 (sub-harmonic summation, followed by Viterbi

smoothing), probability of voicing

jitter, shimmer (local), jitter (delta: “jitter of jitter”)

logarithmic Harmonics-to-Noise Ratio (logHNR)

al. [32] that use the baseline set report the best results with long segmented features.

Therefore, in this thesis we focus on the long segmented baseline feature set. In long

segmented set, there are 23439, 23087 and 23399 instances for training, development

and test sets, respectively.

4.1.2. Experimental Results

In the experiments, the WEKA [72] implementation of CFS with “Best First”

search as and SLCCA-Filter methods were used as independent benchmarks. Bagging-

Tree (TreeBager) implementation in MATLAB is utilized as regressor on this corpus.

The hyper-parameters of CFS was left as default, while a set of hyper-parameters was

tested for SLCCA-Filter and Tree-Bagger. As detailed before, we followed the training,

development and testing protocol of the challenge.

The performance measures used in this corpus are MAE and RMSE, where the

latter is competition measure. The measures are defined as follows:
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MAE =
1

N

N∑
i=1

|ŷi − yi|, (4.1)

RMSE =

√√√√ 1

N

N∑
i=1

(ŷi − yi)2, (4.2)

where ŷi and yi denote the predicted and groundtruth scores, respectively.

In Table 4.4, we can see the comparison between SLCCA-Filter, CFS and AVEC

2013 Challenge baseline results. Kaya et al. report the state-of-the-art results using

SLCCA-Filter on this corpus/sub-challenge [32]. The Table 4.5 shows the comparison

between SLCCA-Filter and our method, SLCCA-Rand. Given results are obtained

using 10-Tree bagger as a regressor. We observe that the best results are obtained

using only 100 features as opposed to original dimensionality of 2 268. Moreover, the

best result obtained here outperforms the one reported with benchmark method [32].

The experiment results for different tree number is plotted in Figure 4.1. We also

compare the results with different classifiers by focusing on the most successful feature

set range in Table 4.6.

Table 4.4. Development Set Performances of Benchmark Methods per Segmentation.

Per Clip Long Segment

Method MAE RMSE MAE RMSE

All 9.75 11.89 7.93 10.24

CFS 9.30 11.46 8.24 10.22

SLCCA-Filter 8.92 11.00 7.84 10.22

In addition to these experiments, we investigate the effects of PCA on perfor-

mance to ensure that it can reduce the computational complexity. We apply PCA on

training data before the canonical correlation analysis in both methods SLCCA Filter

and SLCCA Rand. In this case the redundancy elimination-relevance maximization

process is divided into two. The unsupervised redundancy elimination is mostly done

by PCA, then the relevance maximization is handled by CCA. To combine both for



32

Table 4.5. Experiment results with using 10 Tree Bagger and D=1100.

Method SLCCA-RAND SLCCA-Filter

# of features MAE RMSE MAE RMSE

50 7.94 10.21 8.52 10.61

100 7.57 9.71 8.13 10.31

150 7.84 9.81 8.06 10.23

200 7.82 10.07 7.96 10.45

250 8.11 10.49 8.05 10.39

300 8.01 10.42 7.98 10.31

350 8.10 10.59 7.78 10.20

400 8.14 10.59 8.18 10.68

Table 4.6. Comparison of Best RMSE Performances of Bagging Tree(T=10), Elm

Linear and Elm RBF Kernel (K=10 / 100).

Method Bagging Tree ELM Linear ELM RBF ELM RBF

# feats/Params (T=10) - (K=10) (K=100)

50 10.21 10.72 9.89 9.84

100 9.71 10.65 9.64 9.95

150 9.81 10.92 9.59 9.88

200 10.07 10.84 9.91 10.07



33

50 100 150 200 250 300 350 400
9.7

9.8

9.9

10

10.1

10.2

10.3

10.4

10.5

10.6

10.7

# of Ranked Features

R
oo

t M
ea

n 
S

qu
ar

e 
E

rr
or

 

 

SLCCA−Rand T=10
SLCCA−Filter T=10
SLCCA−Rand T=20
SLCCA−Filter T=20
SLCCA−Rand T=40
SLCCA−Filter T=40
CFS

Figure 4.1. Regression Results Comparison Based on Tree Number.
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selection of features in the original space we have an auxiliary matrix

Ŵ = WPCA × ΛPCA ×WCCA × ρCCA, (4.3)

where WPCA/CCA are projection matrices learned sequentially; ΛPCA and ρCCA are

diagonal matrices with corresponding eigenvalues/canonical correlations sorted in de-

scending order. Note that we do not need to keep all eigenvectors for PCA. In this

strategy, the feature ranking is obtained by sorting with respect to absolute value of

Ŵ . The advantages of PCA are denoising/uncorrelating the data and reducing the

computational load of CCA.

The table 4.7 shows the comparison of RMSE values for SLCCA Filter and

PCASLCCA Filter methods by using Elm Linear. Experiment results for SLCCA

Rand and PCASLCCA Rand methods are given in tables 4.8. The listed results indi-

cate that using PCA before applying canonical correlation analysis increases the model

succes for this range of selected feature number.
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Table 4.7. Comparison of SLCCA Filter and PCASLCCA Filter with ELM Linear

Kernel.

# of features SLCCA Filter PCASLCCA Filter

50 11.79 11.42

75 11.68 10.77

100 11.6 10.7

125 11.68 10.71

150 11.71 10.57

175 11.69 11.03

200 11.63 11.0

225 11.59 10.6

250 11.54 10.84

275 11.5 10.55

300 11.55 10.66

325 11.5 10.55

350 11.39 10.53

375 11.37 10.59

400 11.34 10.49
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Table 4.8. Comparison of SLCCA Rand and PCASLCCA Rand by using ELM Linear

Kernel.

# of features SLCCA Rand PCASLCCA Rand

50 11.79 11.29

75 11.68 10.7

100 11.60 10.68

125 11.68 10.80

150 11.71 10.51

175 11.69 10.67

200 11.63 10.82

225 11.59 10.67

250 11.54 10.72

275 11.50 10.35

300 11.55 10.32

325 11.50 10.59

350 11.39 10.55

375 11.37 10.59

400 11.34 10.52
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4.2. INTERSPEECH 2013 Conflict Corpus

In response to the increased number of partitions to former Interspeech Chal-

lenges, they extend their scope by adding Conflict Corpus. The Conflict Sub-Challenge

allows automatically analyzing group discussions with the aim of recognizing conflict.

The works on this corpus are important since they improve paralinguistic researches

with involving dyadic speech and speaker group analysis in realistic everyday commu-

nication.

The Interspeech 2013 Conflict Sub-Challenge [13] uses the “SSPNet Conflict

Corpus”(SC2) [73]. It contains 1 430 clips of 30 seconds extracted from 45 political

debates televised in Switzerland. The clips are in French. The corpus includes 138

subjects in total: 23 females (1 moderator and 22 participants) and 133 males (3 mod-

erators and 120 participants).The statistics about the corpus summarized in Table 4.9

.

Table 4.9. Statistics of the Conflict Corpus.

Property Statistic

# of Clips 1430

# of Subjects 138

# of Female 23 (1 moderator , 22 participants)

#of Male 133 (3 moderator, 120 participants)

# of Political Debate 45

Total Duration 30 second

Conflict Score Range (−10,+10)

The clips have been annotated following the process illustrated in [74] with re-

spect to conflict level by roughly 550 assessors recruited via Amazon Mechanical Turk.

Each clip is assigned a continuous conflict score in the range [10, +10], giving rise

to a straightforward regression task. A binary classification task is created based on

these labels, namely to classify into ‘high’ (> 0) or ‘low’ (< 0) level of conflict. The

distribution among partitions is illustrated in Table 4.10 for classification.
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Table 4.10. Partitioning of the SSPNet Conflict Corpus into train,development, and

test sets for binary classification [13].

# train dev test total

low 471 127 226 824

high 322 113 171 606

total 793 240 397 1430

4.2.1. INTERSPEECH 2013 Baseline Acoustic Feature Set

The Interspeech 2013 Challenge baseline acoustic feature set was created by mod-

ifying the acoustic features set of previous challenge, Interspeech 2012 Spekar Trait

Challenge [75]. The acoustic feature set from previous challenge created by using

TUM’s open-source openSMILE feature extractor and provide extracted feature sets

on a per-chunk level and a configuration file to allow for additional frame-level feature

extraction.The feature set consists of 4 energy related LLD, 54 spectral LLD and 6

voicing LLD.The complete list of functionals and LLDs are given in Table 4.12 and

4.11, respectively. Totaly, the previous challenge includes 6 125 features. In our chal-

lenge, they modified this feature set by improving voice quality features (jitter and

shimmer), adding Viterbi smoothing for F0 and simplifying some applied functionals.

Altogether, the 2013 COMPARE feature set contains 6 373 features.
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Table 4.11. 65 provided low-level descriptors as given in [75].

4 energy related LLD

Sum of auditory spectrum (loudness)

Sum of RASTA-style filtered auditory spectrum

RMS Energy

Zero-Crossing Rate

54 Spectral LLD

RASTA-style auditory spectrum, bands 1-26 (0–8 kHz)

MFCC 1–14

Spectral energy 250–650 Hz, 1 k–4 kHz

Spectral Roll Off Point 0.25, 0.50, 0.75, 0.90

Spectral Flux, Entropy, Variance, Skewness, Kurtosis,

Slope, Psychoacoustic Sharpness, Harmonicity

6 voicing related LLD

F0 by SHS + Viterbi smoothing, Probability of voicing

logarithmic HNR, Jitter (local, delta), Shimmer (local)
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Table 4.12. Applied functionals. 1 : arithmetic mean of LLD / positive ∆ LLD 2:

only applied to voice related LLD. 3: not applied to voice related LLD except F0.
4:

only applied to F0.

Functionals applied to LLD / ∆ LLD

quartiles 1–3, 3 inter-quartile ranges

1 % percentile (≈min), 99 % percentile (≈ max)

position of min / max

percentile range 1 %–99%

arithmetic mean1, root quadratic mean

contour centroid, flatness

standard deviation, skewness, kurtosis

rel. duration LLD is above / below 25 / 50 / 75 / 90 % range

rel. duration LLD is rising / falling

rel. duration LLD has positive / negative curvature2

gain of linear prediction (LP), LP Coefficients 1–5

mean, max, min, std. dev. of segment length3

Functionals applied to LLD only

mean of peak distances

standard deviation of peak distances

mean value of peaks

mean value of peaks – arithmetic mean

mean / std.dev. of rising / falling slopes

mean / std.dev. of inter maxima distances

amplitude mean of maxima / minima

amplitude range of maxima

linear regression slope, offset, quadratic error

quadratic regression a, b, offset, quadratic error

percentage of non-zero frames 4



41

4.2.2. Experimental Results

As in the Depression challenge, we used the WEKA [72] implementation of CFS

with “Best First” search as and SLCCA-Filter methods as independent benchmarks

for Conflict challenge. We used Unweighted Average Recall (UAR), which is the mean

of individual recalls, as primary evaluation measure:

UAR =
1

C

C∑
c=1

TP (c)/P (c), (4.4)

where C is the number of classes; TP (c) and P (c) denote the number of true positive

instances and total positive instances for class c, respectively.

For classification we applied Linear Support Vector Machine implementation

in WEKA [72] and for each task, we choose the SVM complexity parameter C ∈

{10−5, 10−4, 10−3, 10−2, 10−1, 1, 10, 100}. We do classification on selected features ranked

using both regression labels and classification labels.

The Figures 4.2 and 4.3 correspond to comparative performances of class-labels

based vs. regression labels based raking learning using SLCCA-Rand and SLCCA-

Filter methods, respectively. Noth figures show that the classification with features

ranked by regression labels gives better UAR values than those ranked by class labels.

The results in these figures are obtained by using Linear SVM as classifier. In the light

of this comparison, we observe the advantage of regression labels for classification.

As mentioned before, we compared the SLCCA-Rand method with SLCCA-Filter

and CFS. The baseline and CFS results are similar to each other and they have maxi-

mum UAR score of 79.1% and 74.5%, respectively. In Figure 4.4, we can see that the

SLLCA-Rand method gives better UAR values than both SLCCA-Filter and baseline

on Conflict data. Moreover, we see that the results obtained by the proposed method

(SLCCA-Rand) yields a smoother (less fluctuating) trajectory with respect to number

of ranked features. Thus, it is easier to estimate the optimal number of features.
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Figure 4.2. Comparison of Feature Ranking Learned from Regression Labels and

Classification Labels - (SLCCA-Rand).
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Figure 4.3. Comparison of Feature Ranking Learned from Regression Labels and

Classification Labels - (SLCCA-Filter).
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Figure 4.4. SLLCA-Rand, SLCCA-Filter and Baseline Comparison using Regression

Labels for Feature Selection.

The experiments related to comparison of PCA versions of the methods are also

investigated for Conflict data. Table 4.13 shows the results for SLLCA Filter and

PCASLCCA Filter and table 4.14 for SLCCA Rand and PCASLCCA Rand, respec-

tively. Different from Depression corpus, the experiment results indicate that PCA

version of base methods is not successful for Conflict corpus.

We finally evaluate the proposed method on the challenge test set using the

setting giving the best development set UAR performance. We restrict our test set

trials to four: we use the first 500 features that yield the best development set results

learned from the training set and the same number of features ranked by training and

development set together both with the two best SVM complexity parameters. Using

the features learned from the training set a test set UAR of 83.2% is reached. The UAR

results improve to 84.2% when the proposed filter method is applied to the combined

(training and development) set. The results achieved advance the state-of-the-art UAR

(83.9%) on this corpus/protocol presented by the challenge winner [65].
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Table 4.13. Comparison of SLCCA Filter and PCASLCCA Filter by using ELM

Linear Kernel.

# of features SLCCA Filter PCASLCCA Filter

50 79.15 67.35

100 85.25 72.56

150 81.71 73.83

200 78.76 71.52

250 77.73 74.13

300 81.02 73.40

350 79.64 73.84

400 79.54 73.01

450 78.22 73.89

500 78.66 73.99

550 78.66 75.12

600 77.78 74.87

650 77.28 76.10

700 77.28 76.94

750 76.45 76.99

800 76.89 78.27

850 76.84 78.66

900 77.68 78.32

950 76.94 77.38

1000 77.33 77.82



45

Table 4.14. Comparison of SLCCA Rand and PCASLCCA Rand by using ELM

Linear Kernel.

# of features SLCCA Rand PCASLCCA Rand

50 72.92 67.84

100 77.50 74.87

150 76.25 72.75

200 78.33 72.45

250 77.92 75.11

300 81.25 75.41

350 82.08 76.89

400 82.08 74.58

450 80.83 73.84

500 81.67 74.73

550 82.50 75.17

600 83.75 75.17

650 82.92 78.32

700 83.75 77.48

750 82.50 79.20

800 83.75 78.36

850 83.75 79.25

900 82.08 77.53

950 82.08 78.36

1000 82.08 78.36
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5. CONCLUSION

In this thesis, a novel feature selection approach, based on a recently introduced

discriminative projection based filter, is proposed. As a preliminary study not discussed

in this thesis, the base feature selection method was applied to groups of features

partitioned by the LLD information [33]. The success of that study on INTERSPEECH

2014 Physical-Load sub-challenge further motivated this study. While the preliminary

work used domain-knowledge hints to divide-and-conquer the large feature set, the

proposed method in this thesis does not necessitate domain knowledge. It uses the

power of stochasticity to obtain feature subsets to avoid the curse of dimensionality. It

overcomes the traps of local minimum commonly observed in greedy filter methods by

learning feature level and feature group level weights in a variety of random contexts.

The efficacy of the proposed method is evaluated in two recent challenge cor-

pora where the method is compared with challenge baseline, and two other benchmark

methods. Correlation based Feature Selection [53] and the base method extended here,

SLCCA-Filter [32] are used as benchmark methods. In both datasets, the proposed

method performs better using the corresponding challenge competition measures Un-

weighted Average Recall (UAR) for classification and Root Mean Square Error (RMSE)

for regression.

While the challenge in INTERSPEECH 2013 Conflict corpus was intended for

binary classification, the baseline data provided also contains regression labels. We ob-

serve that learning ranking using regression labels yields better results than using class

labels both in SLCCA-Filter and in SLCCA-Rand. The decreased observed perfor-

mance in feature selection using class labels is attributed to loss of information during

discretization. It is intuitive that regression labels have more information to drive cor-

relation based feature selection. This point needs further investigation, and might be

of valuable use in classification tasks where regression labels are available.
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Apart from the increased performance in terms of classification/regression, uti-

lizing a divide-and-conquer method is important to reduce the learning/memory com-

plexity. First, the data need not be totally loaded into memory for feature selection.

This might be an important advantage considering the shift to utilize BIG DATA in

machine learning. Moreover, considering the O(D3) complexity of covariance inversion,

the speed up is cubic when the feature set is partitioned into subsets.

In the final version of the proposed method, we split the feature set randomly into

two and apply a discriminative projection (here CCA) to both partitions. Here, one

of the parameters of the initial version is effectively eliminated. However, it is possible

to introduce another parameter to the algorithm to control the number of partitions.

The extension in this direction is left for future work.

The proposed method can further be investigated with other learners such as Ar-

tificial Neural Networks and Mixture Models. The choice of SVMs and Tree Bagging in

this thesis was motivated by the speed of learning and comparability with the previous

work on the same corpora.

The idea of feature selection from random subsets can be applied in other filter

methods as well. However, in case where the filter method does not provide feature

saliency, the aggregation of features can be at binary (e. g. set intersection/union) level

rather than the elaborate approach use herein.
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APPENDIX A: DETAILED RESULT TABLES

Table A.1. UAR (%) Performance of SLCCA-Rand Ranking Based on Regression

Labels (D=3150, T=20).

#F/C 10−5 10−4 10−3 0.01 0.1 1 10 100 Max

50 50.00 50.00 55.75 63.08 65.43 65.88 65.48 64.99 65.9

100 50.00 50.00 67.80 70.35 71.19 70.45 70.40 70.89 71.2

150 50.00 50.00 69.62 72.07 70.64 72.32 71.13 72.76 72.8

200 50.00 50.44 71.93 73.89 75.86 77.33 77.72 75.90 77.7

250 50.00 53.10 72.42 72.22 74.43 72.95 76.89 72.80 76.9

300 50.00 57.52 76.01 79.25 79.35 76.35 75.07 75.07 79.3

350 50.00 61.06 75.96 78.86 79.79 76.35 75.21 75.21 79.8

400 50.00 63.32 77.38 81.90 76.79 75.61 76.49 76.49 81.9

450 50.00 65.09 77.82 82.49 74.97 74.08 74.08 74.08 82.5

500 50.00 66.86 77.38 83.28 76.64 76.74 76.74 76.74 83.3

550 50.00 67.75 78.66 82.93 76.35 74.67 74.67 74.67 82.9

600 50.00 68.24 79.59 81.61 75.95 74.97 74.97 74.97 81.6

650 50.00 69.12 81.31 82.44 77.43 76.98 76.98 76.98 82.4

700 50.00 69.52 80.04 81.12 76.25 76.64 76.64 76.64 81.1

750 50.00 69.08 79.64 80.58 78.71 79.15 79.15 79.15 80.6

800 50.00 69.08 80.58 80.58 76.49 76.49 76.49 76.49 80.6

850 50.00 70.01 80.09 79.64 75.71 75.71 75.71 75.71 80.1

900 50.00 70.45 79.84 80.13 75.21 75.21 75.21 75.21 80.1

950 50.00 70.50 80.63 80.58 74.92 74.92 74.92 74.92 80.6

1000 50.00 71.78 80.67 80.63 74.03 74.03 74.03 74.03 80.7
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Table A.2. UAR (%) Performance of SLCCA-Rand Ranking Based on Class Labels

(D=3150, T=20). Columns represent varying SVM complexity parameter C, whereas

rows correspond to varying number of ranked features (#F).

#F/C 10−5 10−4 10−3 0.01 0.1 1 10 100 Max

50 50.00 50.00 66.08 72.47 74.82 74.78 74.78 74.78 74.82

100 50.00 50.00 69.52 72.96 73.55 72.81 73.30 74.18 74.18

150 50.00 50.44 71.88 70.94 74.82 78.32 76.79 75.51 78.32

200 50.00 50.44 72.42 72.66 74.87 75.27 74.72 75.61 75.61

250 50.00 53.54 76.84 77.13 79.00 76.59 77.48 79.00 79.00

300 50.00 57.96 75.17 75.41 78.26 78.36 75.80 75.80 78.36

350 50.00 61.11 74.73 78.12 77.77 74.18 72.90 72.90 78.12

400 50.00 62.00 77.38 77.77 77.33 76.00 76.83 76.83 77.77

450 50.00 65.54 78.27 78.17 77.87 78.02 78.02 78.02 78.27

500 50.00 66.86 77.43 79.40 79.20 77.33 77.33 77.33 79.40

550 50.00 67.75 77.82 77.23 74.43 74.92 74.92 74.92 77.82

600 50.00 67.75 76.55 79.84 77.87 76.29 76.29 76.29 79.84

650 50.00 69.08 77.33 80.28 77.52 75.46 75.46 75.46 80.28

700 50.00 69.08 77.43 80.63 75.41 74.57 74.57 74.57 80.63

750 50.00 69.57 79.20 80.58 77.18 77.62 77.62 77.62 80.58

800 50.00 69.17 79.69 80.18 77.52 76.74 76.74 76.74 80.18

850 50.00 70.01 79.64 79.25 75.41 76.64 76.64 76.64 79.64

900 50.00 70.99 80.18 80.53 79.49 79.49 79.49 79.49 80.53

950 50.00 70.99 80.97 79.79 77.87 77.87 77.87 77.87 80.97

1000 50.00 71.43 80.67 78.95 77.03 77.03 77.03 77.03 80.67
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Table A.3. UAR (%) Performance of SLCCA-Filter Ranking Based on Regression

Labels (D=3150, T=20). Columns represent varying SVM complexity parameter C,

whereas rows correspond to varying number of ranked features (#F).

#F/C 10−5 10−4 10−3 0.01 0.1 1 10 100 Max

50 50.00 50.00 67.31 74.78 76.15 76.15 76.15 75.32 76.15

100 50.00 50.00 74.43 78.86 80.28 76.99 76.94 75.71 80.28

150 50.00 50.44 74.83 77.53 75.86 73.84 74.78 75.12 77.53

200 50.00 52.21 76.35 78.27 77.67 76.40 75.51 75.26 78.27

250 50.00 53.54 74.48 78.32 72.56 73.79 71.57 72.75 78.32

300 50.00 58.46 76.50 80.72 74.72 76.00 72.55 71.77 80.72

350 50.00 61.11 77.3 80.4 75.21 73.58 72.85 72.85 80.43

400 50.00 62.44 76.94 80.67 77.33 72.36 74.08 74.08 80.67

450 50.00 65.09 78.66 81.46 75.60 73.54 73.54 73.54 81.46

500 50.00 65.98 76.40 77.48 73.88 73.24 73.24 73.24 77.48

550 50.00 66.81 75.96 76.69 75.51 74.72 74.72 74.72 76.69

600 50.00 67.26 75.51 75.32 74.57 75.51 75.51 75.51 75.51

650 50.00 67.26 75.51 77.43 72.80 74.62 74.62 74.62 77.43

700 50.00 68.14 76.40 75.36 74.97 72.46 72.46 72.46 76.40

750 50.00 68.58 77.28 76.40 74.23 74.23 74.23 74.23 77.28

800 50.00 67.70 76.40 75.86 75.85 75.85 75.85 75.85 76.40

850 50.00 66.81 74.58 76.30 75.26 75.26 75.26 75.26 76.30

900 50.00 67.70 75.02 77.67 76.69 76.69 76.69 76.69 77.67

950 50.00 66.81 75.07 76.35 79.89 79.89 79.89 79.89 79.89

1000 50.00 65.93 76.35 77.58 79.40 79.40 79.40 79.40 79.40
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Table A.4. UAR (%) Performance of SLCCA-Filter Ranking Based on Class Labels

(D=3150, T=20). Columns represent varying SVM complexity parameter C, whereas

rows correspond to varying number of ranked features (#F).

#F/C 10−5 10−4 10−3 0.01 0.1 1 10 100 Max

50 50 50 64.31 74.28 76.10 74.97 73.99 75.27 76.10

100 50.00 50.00 74.39 79.99 76.40 74.72 74.23 77.13 79.99

150 50.00 50.44 73.25 79.50 77.53 77.18 75.07 75.81 79.50

200 50.00 50.44 76.25 77.92 74.63 75.17 70.69 66.71 77.92

250 50.00 52.21 77.19 77.33 75.21 69.90 69.61 70.69 77.33

300 50.00 55.80 77.19 77.92 74.13 69.60 66.61 67.00 77.92

350 50.00 59.78 75.56 76.89 74.52 70.39 69.95 69.95 76.89

400 50.00 61.55 76.35 76.10 75.21 70.83 70.00 70.00 76.35

450 50.00 64.21 75.96 76.59 74.77 73.25 73.25 73.25 76.59

500 50.00 65.54 77.28 76.20 73.54 75.21 75.21 75.21 77.28

550 50.00 66.37 76.40 75.27 73.98 73.89 73.89 73.89 76.40

600 50.00 67.26 75.51 76.64 74.62 72.90 72.90 72.90 76.64

650 50.00 67.26 75.51 76.99 74.92 75.36 75.36 75.36 76.99

700 50.00 68.58 76.84 76.79 73.79 72.95 72.95 72.95 76.84

750 50.00 68.58 77.73 77.28 75.90 75.90 75.90 75.90 77.73

800 50.00 67.70 76.40 75.86 75.85 75.85 75.85 75.85 76.40

850 50.00 66.81 74.58 76.30 75.26 75.26 75.26 75.26 76.30

900 50.00 67.70 75.02 77.67 76.69 76.69 76.69 76.69 77.67

950 50.00 66.81 75.07 76.35 79.89 79.89 79.89 79.89 79.89

1000 50.00 65.93 76.35 77.58 79.40 79.40 79.40 79.40 79.40
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and E. Nöth, “{PEAKS} – A System for The Automatic Evaluation of Voice and

Speech Disorders”, Speech Communication, Vol. 51, No. 5, pp. 425 – 437, 2009.

11. Malyska, N., T. F. Quatieri and D. Sturim, “Automatic Dysphonia Recognition

using Biologically Inspired Amplitude-Modulation Features”, Proceedings IEEE

International Conference on Acoustics, Speech, and Signal Processing (ICASSP

2005), pp. 873–876, 2005.

12. Dibazar, A., S. Narayanan and T. Berger, “Feature Analysis for Automatic De-

tection of Pathological Speech”, Engineering in Medicine and Biology, 2002. 24th

Annual Conference and the Annual Fall Meeting of the Biomedical Engineering

Society EMBS/BMES Conference, 2002. Proceedings of the Second Joint , Vol. 1,

pp. 182–183 vol.1, 2002.

13. Schuller, B., S. Steidl, A. Batliner, A. Vinciarelli, K. Scherer, F. Ringeval,

M. Chetouani, F. Weninger, F. Eyben, E. Marchi, M. Mortillaro, H. Salamin,

A. Polychroniou, F. Valente and S. Kim, “The INTERSPEECH 2013 Compu-

tational Paralinguistics Challenge: Social Signals, Conflict, Emotion, Autism”,

Proceedings of the INTERSPEECH , pp. 148–152, ISCA, Lyon, France, 2013.

14. Valstar, M., B. Schuller, K. Smith, F. Eyben, B. Jiang, S. Bilakhia, S. Schnieder,

R. Cowie and M. Pantic, “AVEC 2013–The Continuous Audio/Visual Emotion



54

and Depression Recognition Challenge”, Proceeding of the 3rd ACM International

Workshop on Audio/Visual Emotion Challenge, AVEC ’13, pp. 3–10, 2013.

15. Batliner, A., B. Schuller, S. Schaeffler and S. Steidl, “Mothers, Adults, Children,

Pets; Towards The Acoustics of Intimacy”, Proceedings IEEE International Con-

ference on Acoustics, Speech and Signal Processing (ICASSP 2008), pp. 4497–4500,

2008.

16. Enos, F., E. Shriberg, M. Graciarena, J. Hirschberg and A. Stolcke, “Detecting

Deception using Critical Segments”, Proceedings of the INTERSPEECH , pp. 2281–

2284, 2007.

17. Zhao, X., S. Zhang and B. Lei, “Robust Emotion Recognition in Noisy Speech via

Sparse Representation”, Neural Computing and Applications , Vol. 24, No. 7-8, pp.

1539–1553, 2014.

18. Schuller, B., R. Müller, F. Eyben, J. Gast, B. Hörnler, M. Wöllmer, G. Rigoll,
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