
JOINT OVERLAY ROUTING AND RELAY ASSIGNMENT FOR GREEN

NETWORKS

by

Fatma Ekici

B.S., Computer Engineering, Boğaziçi University, 2009

Submitted to the Institute for Graduate Studies in

Science and Engineering in partial fulfillment of

the requirements for the degree of

Master of Science

Graduate Program in Computer Engineering

Boğaziçi University

2014

ii

JOINT OVERLAY ROUTING AND RELAY ASSIGNMENT FOR GREEN

NETWORKS

APPROVED BY:

Prof. Fatih Alagöz

(Thesis Supervisor)

Assist. Prof. Didem Gözüpek

(Thesis Co-supervisor)

Prof. M. Ufuk Çağlayan

Assoc. Prof. Tuna Tuğcu

Assist. Prof. Berk Canberk

DATE OF APPROVAL: 02.06.2014

iii

ACKNOWLEDGEMENTS

I would like to express my special gratitude to my thesis advisor, Prof. Fatih

Alagöz and co-advisor Assist. Prof. Didem Gözüpek for their mentorship, guidance

and support throughout the whole process of this thesis. I also would like to thank

to TÜBİTAK (Türkiye Bilimsel ve Teknolojik Araştırma Kurumu) for their financial

support (BIDEB-2210 Fellowship) during my master study. The last but not the least,

I would like to thank my family for their invaluable support during my study.

iv

ABSTRACT

JOINT OVERLAY ROUTING AND RELAY ASSIGNMENT

FOR GREEN NETWORKS

Power consumption of information and communication technologies (ICT) has in-

creasingly become an important issue in the last years. Both energy costs and environ-

mental concerns call for energy aware “green” networking solutions in wired networks.

Overlay routing is an attractive method to enhance the performance and reliability of

routing mechanisms without the need to change the standards of the current underly-

ing routing. In this work, we focus on overlay routing in wired networks from an energy

efficiency perspective. We formulate an optimization problem called JORRA (Joint

Overlay Routing and Relay Assignment), which jointly determines the overlay routing

paths and relay nodes. We consider issues such as the relay costs, whether the network

elements can be put into sleep mode or not as well as the energy efficiency and relia-

bility trade off for source and destination pairs in the network. We formulate JORRA

as an integer linear program. Moreover, we propose two polynomial time heuristic

algorithms and demonstrate through performance evaluation that our heuristics are

suitable for practical implementation.

v

ÖZET

YEŞİL AĞLAR İÇİN BÜTÜNLEŞİK ÜSTTEN DESTEKLİ

ROTALAMA VE RÖLE ATAMASI

Veri ve iletişim teknolojilerinde enerji tüketimi son yıllarda önemli bir konu ha-

line gelmiştir. Enerji tüketim maliyetleri ve çevresel faktörler kablolu ağlarda yeşil

ağ çözümlerini gerektirmektedir. Üstten destekli rotalama, normalde kullanılan rota-

lama mekanizmalarının standartlarını değiştirmeye gerek kalmadan performansını ve

güvenilirliğini arttıran bir metottur. Bu çalışmada, kablolu ağlardaki üstten destekli

rotalama, enerji etkinliği açısından ele alınmıştır. Üstten destekli rotaları ve röle

düğümlerini belirleyen JORRA (Bütünleşik Üstten Destekli Yönlendirme ve Röle Ata-

ması) isimli bir optimizasyon problemi tanımladık. Ağdaki kaynak-hedef ikilileri için

enerji etkinliği ve güvenilirlik arasındaki dengenin yanısıra röle maliyetleri, ağ eleman-

larının uyutma modunun olup olmayacağı gibi konuları da göz önüne aldık. JORRA

problemini ILP olarak tanımladık. Bunun yanısıra polinom zamanlı iki buluşsal al-

goritma tasarlayarak performans değerlendirmesi ile bu algoritmaların pratik uygula-

malara elverişli olduğunu gösterdik.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iii

ABSTRACT . iv

ÖZET . v

LIST OF FIGURES . viii

LIST OF TABLES . x

LIST OF ACRONYMS/ABBREVIATIONS . xi

1. INTRODUCTION . 1

2. RELATED WORK AND SUMMARY OF CONTRIBUTIONS 4

2.1. Related Work . 4

2.2. Summary of Contributions . 7

2.3. Practical Implications . 8

3. PROBLEM FORMULATION . 9

4. HEURISTIC ALGORITHMS . 18

4.1. Minimum Cost Overlay Path Algorithm (MCOPA) 19

4.1.1. Undirected to Directed Graph Conversion 21

4.1.2. Path Selection Phase for MCOPA 22

4.1.3. Path Correction Phase for MCOPA 23

4.1.4. Relay Selection Phase for MCOPA 27

4.2. Minimum Cost Overlay Path Algorithm with Link Overlap Avoidance

(MCOPA-LOA) . 28

4.2.1. Path Selection Phase for MCOPA-LOA 30

4.2.2. Path Correction Phase for MCOPA-LOA 31

4.2.3. Relay Selection Phase for MCOPA-LOA 32

4.3. Time Complexity Analysis of Our Proposed Heuristics 32

4.3.1. Best Case Analysis . 32

4.3.2. Worst Case Analysis . 34

5. NUMERICAL EVALUATION . 37

5.1. Input Graph Generation . 37

5.2. Simulation Results . 40

vii

6. CONCLUSION . 60

REFERENCES . 62

viii

LIST OF FIGURES

Figure 4.1. Minimum Cost Overlay Path Algorithm (MCOPA). 20

Figure 4.2. Graph Conversion Algorithm. 22

Figure 4.3. Path Selection Phase for MCOPA. 23

Figure 4.4. Path Correction Phase for MCOPA. 26

Figure 4.5. Relay Selection Phase for MCOPA. 28

Figure 4.6. Minimum Cost Overlay Path Algorithm with Link Overlap Avoid-

ance (MCOPA− LOA). 29

Figure 4.7. Path Selection Phase for MCOPA− LOA. 31

Figure 5.1. Comparison of MCOPA, MCOPA-LOA and CPLEX outputs for

varying α with Waxman topology. 44

Figure 5.2. Comparison of MCOPA, MCOPA-LOA and CPLEX outputs for

varying η values with Waxman topology. 45

Figure 5.3. Comparison of MCOPA, MCOPA-LOA and CPLEX outputs for

varying sleep mode probability with Waxman topology. 47

Figure 5.4. Comparison of MCOPA, MCOPA-LOA and CPLEX outputs for

varying number of pairs with Waxman topology. 48

Figure 5.5. Comparison of MCOPA, MCOPA-LOA and CPLEX outputs for

varying graph domain size with Waxman topology. 49

ix

Figure 5.6. Comparison of MCOPA, MCOPA-LOA and CPLEX outputs for

varying η values with Inet topology generator. 52

Figure 5.7. Comparison of MCOPA, MCOPA-LOA and CPLEX outputs for

varying sleep mode probability with Inet topology generator. . 54

Figure 5.8. Comparison of MCOPA, MCOPA-LOA and CPLEX outputs for

varying number of pairs with Inet topology. 56

Figure 5.9. Comparison of MCOPA, MCOPA-LOA and CPLEX outputs for

varying number of nodes with Inet topology. 57

x

LIST OF TABLES

Table 3.1. Table for Input Variables. 10

Table 3.2. Table for Decision Variables. 12

Table 5.1. Power consumption of chassis and port types used in our experi-

ments. 40

Table 5.2. Parameter values used in experiments with Waxman topology. 42

Table 5.3. Parameter values used in experiments with INET topology gen-

erator. 51

xi

LIST OF ACRONYMS/ABBREVIATIONS

AS Autonomous System

ICT Information and Communication Technologies

ILP Integer Linear Program

JORRA Joint Overlay Routing and Relay Assignment

MCOPA Minimum Cost Overlay Path Algorithm

MCOPA− LOA Minimum Cost Overlay Path Algorithm with Link Overlap

Avoidance

MSF Minimum Spanning Forest

α Graph density metric for Waxman Topology

η Similarity metric between overlay path and underlay path

1

1. INTRODUCTION

Wired networks have traditionally been designed without considering energy ef-

ficiency. However, there is a continuous increase in their energy consumption and

therefore, energy efficiency has an increasing importance in wired networks. Powering

wired networks in USA costs approximately 0.5-2.4 billion dollars per year [1]. Studies

show that transmitting data through Internet takes more energy (in bits per Joule) than

transmitting data through wireless networks [2]. This increasing energy consumption

not only has financial burden in terms of electricity costs and cooling equipments but

also has an environmental cost. Already in 2007 information and communications tech-

nologies (ICT) industry accounted for 2% of the global CO2 emissions, same amount

as global air travel [3].

Providing alternate paths for a set of source and destination pairs in a com-

munication network achieves reliability and robustness against path failures. Overlay

routing has been proposed in recent years as an effective method to achieve path diver-

sity [4]. The alternate path that is different from the default (underlay) path is called

an overlay path. To coordinate the communication over the alternate path, some nodes

on the alternate path need to be equipped with extra functionality. These nodes are

called overlay nodes, relay nodes or infrastructure nodes. Some works in the literature

such as [5] propose a routing strategy that finds a path passing through the interme-

diate (relay) nodes assuming that the intermediate nodes are predetermined. Some

other works such as [4] study the reverse problem and focus on the relay placement

problem where an overlay path is a path that consists of two shortest paths, one from

the source to the relay node and another from the relay node to the destination. The

work in [6] follows a similar strategy except that the cost of the relay nodes is also

taken into account. In other words, the set of overlay paths is given as input to their

optimization problem. To the best of our knowledge, ours is the first study that jointly

determines the alternate paths and the relay nodes by also taking the relay costs into

account.

2

It is estimated that switches, hubs, and routers consume 6 TWh per year in the

US and costs about $500 million per year [7]. Some recent studies show that traffic

load of the routers has little effect on their energy consumption [8]. The main cause of

energy consumption is the switched-on network elements such as routers and interfaces.

Network elements are usually powered on 24/7 in the idle mode, during which they

consume a large amount of energy. Therefore, researchers have proposed to put the

devices into low-energy sleep states [2]. However, not all networking equipment can

be put into sleep mode due to hardware limitations or topological constraints. For

instance, authors in [2] state that the Internet hardware in 2003 does not have sleeping

capability. Moreover, some equipments such as gateways may take a long time to switch

to the active mode from the sleep mode and therefore putting these devices to sleep

mode may not be preferred [9]. Most studies on energy-aware wired networks [1,10,11]

focus on cases where all equipments can potentially be put into sleep mode. However,

modern energy-aware devices that have sleep functionalities will have to coexist with

devices that do not have these capabilities since it is not feasible to quickly upgrade all

of the Internet hardware at least for a considerable amount of time. In this work, while

determining the alternate paths, we suggest favoring the paths that pass through the

nodes that cannot be put into sleep mode. These devices will have to be in the active

state anyway; therefore, having the alternate paths utilize these nodes instead of other

nodes that can be put into sleep mode help decrease the overall energy consumption

in the network. Note here that we do not force the alternate paths to pass through

the nodes that cannot be put into sleep mode; if it is more advantageous in terms of

other criteria such as reliability, then the routing solution offered by our model may

not pass through the nodes that cannot be put into sleep mode. Our model basically

takes into account the potential savings from energy consumption that passing through

these nodes can offer. To the best of our knowledge, this thesis is the first study that

takes the different sleeping capabilities of the networking equipment into account.

On the one hand, making the alternate and default paths as disjoint as possible

is important in order to increase reliability and robustness. On the other hand, putting

the nodes and links that are not on a default or alternate path into sleep mode helps

decrease the energy consumption. Therefore, increasing the overlapping edges between

3

default and alternate paths help decrease the energy consumption in the network.

Furthermore, each source and destination pair may have a different reliability and

fault tolerance requirement depending on the applications they execute; i.e., some pairs

may tolerate more overlap with the default path and other alternate paths, whereas

some other pairs may tolerate very few or no overlap. In this thesis, we address the

reliability and energy efficiency tradeoff by also considering the heterogeneous fault

tolerance requirements of different source and destination pairs. To the best of our

knowledge, previous works on energy-aware routing in wired networks [10–13] do not

address these heterogeneous requirements.

The rest of this thesis is organized as follows: Chapter 2 discusses related work and

summarizes our contributions. Chapter 3 provides our problem formulation, whereas

Chapter 4 introduces our proposed heuristic algorithm. Chapter 5 presents simulation

results and Chapter 6 concludes the thesis.

4

2. RELATED WORK AND SUMMARY OF

CONTRIBUTIONS

2.1. Related Work

The usage of path diversity to provide fault tolerance and load balancing is ini-

tially introduced in [14] as dispersity routing. Studies in [15] show that in 30%-80% of

the cases, an alternate path with significantly superior quality exists on the Internet.

Another study [16] shows that more than 20% of Internet path failures are not recovered

within 10 minutes. Advantages of alternate paths are investigated also by [17–19].

One way of achieving path diversity is overlay routing, which refers to the usage

of alternate paths called overlay paths in addition to the default path between source

and destination pairs. Overlay path passes through a strategically placed node called

relay node, overlay node or infrastructure node. Relay nodes are equipped with extra

functionality to coordinate the communication across the overlay path.

The work in [4] focuses on the problem of placing the relay nodes such that every

pair has an overlay path that is as disjoint as possible from the default path and at the

same time passes through a relay node. When it is not possible to achieve complete

disjointness, a penalty metric is used for partially disjoint paths. The case where an

overlay path consists of two shortest paths, one from the source node to the relay node

and the other from the relay node to the destination node, is considered. In particular,

authors focus on the problem of finding the positions of relays in the network such that

every pair finds an overlay path that is maximally disjoint from the default path when

the number of relay nodes is given.

The work in [5] proposes a routing strategy that routes traffic to the destination

after ensuring that it passes through a pre-determined intermediate node. Their scheme

is oblivious of and robust to any changes in the traffic distribution. The focus is on

coping with traffic uncertainty; issues such as overlaps between different paths are not

5

addressed.

The deployment and management of overlay nodes over the physical infrastruc-

ture has a non-negligible cost since the overlay nodes have to be equipped with extra

functionality. The work in [6] is the first work in the literature that takes into account

the cost associated with deploying these relay nodes. Given a set of overlay and under-

lay paths, they focus on the problem of finding a set of overlay nodes with minimum

total cost such that the required routing properties are satisfied. In this thesis, un-

like the works in [4–6], we focus on an optimization problem that jointly finds overlay

paths and relay nodes. To the best of our knowledge, this thesis is the first one in the

literature that focuses on such a joint optimization. Moreover, as in [6], we also take

into account the costs associated with deploying the relay nodes.

Green networking is a recent paradigm that aims to address the increasing energy

consumption of ICT sector [2,3,20]. Due to environmental and financial reasons, green

networking concept presents an energy efficiency perspective on traditional networking

paradigms. To the best of our knowledge, overlay routing concept has not previously

been studied from a green networking perspective. Hence, to our knowledge, this thesis

is the first study in the literature that focuses on overlay routing for green networks.

Up until the emergence of the green networking paradigm, keeping network ele-

ments in always-on state even when they are inactive has been the main trend. Research

in green networks shows that the main cause of energy consumption in wired networks

is these switched-on and idle network elements. Therefore, researchers propose to put

the unused network elements into sleep mode in order to save power [2, 10, 12, 21, 22].

Studies in green networks assume that all networking devices can be put into sleep

mode. Nevertheless, some networking equipments, especially old equipments, do not

have this functionality [2] because of hardware limitations etc. To the best of our

knowledge, this thesis is the first study in the literature that takes into account the

fact that some networking devices cannot be put into sleep mode.

Green overlay routing not only requires an energy efficient routing scheme but

6

also a reliable communication over the overlay network. There are several studies on

energy efficient routing but ours is the first study on energy efficient overlay routing. In

essence, this thesis presents a routing algorithm that combines both energy efficiency

and resilience of the network. There are many studies in the literature about energy

efficient routing. In [12], energy efficiency is presented as the minimization of the

number of edges in a multicommodity integral flow problem. For this purpose the

number of active links in the network is minimized. Since multi-commodity integral

flow problem is NP-complete, two heuristics are suggested. The first one removes the

less loaded edges and checks if there is still a feasible solution without that edge and

continues until there is no feasible solution. Second heuristic differs from the first

one by making the edge selection randomly. A similar, but distributed approach is

presented in [23], where idle or underutilized links are switched off if this action does

not affect the network functionality. The process of switching on/off the links is fully

decentralized; i.e., it takes local decisions at random intervals and hence enables a more

robust solution with respect to centralized approaches. Another work related to energy

efficient routing uses a Steiner tree based algorithm [24], where authors show that the

method drastically increases the number of sleeping nodes and links in a network.

Their algorithm generates a Steiner tree connecting the source and destination nodes.

In addition, their method calculates bypass routes that replace long inefficient hop-

count routes to decrease the traffic congestion on the Steiner tree.

Energy saving on a network can also be obtained by partial shut down of cer-

tain network elements according to their loads and traffic patterns. This approach is

advocated in [25], where the energy consumption of network elements that is indepen-

dent of traffic load is questioned. It is suggested that the energy consumption should

be proportional to the current traffic load on that network element. This approach

requires traffic engineering, which is not always possible since it is expensive for some

systems to represent different network states in time domain due to critical data that

should not be lost in the network.

Energy efficient network design is also important like energy aware routing.

In [26], these two problems are addressed jointly and expressed as a mixed nonlinear

7

integer program. Energy aware routing is expressed as a non-linear multicommodity

flow problem, where links and nodes are powered off in order to reduce the overall net-

work power consumption. In [11], energy consumption models for nodes and different

types of links are constructed like in a real world system. A mixed integer program is

designed by taking the traffic matrix and link capacities of a real world system. The

work compares the energy saving model to the worst case scenario where no nodes or

links can be shut down.

In addition to overlay routing, placing the relay nodes over the overlay network

requires a strategic method. In many of the previous works [4, 6, 27], overlay node

selection is done before determining the overlay paths. In [27], random placement,

node degree-based and traffic-aware greedy heuristic algorithms are presented. Finally,

it is concluded from the experiments that a hybrid approach combining greedy and

random approaches provides the best tradeoff between computational efficiency and

accuracy. In contrast to previous studies, we do not make the relay node selection

at first stage. Instead, we make a joint optimization of path selection and relay node

selection.

2.2. Summary of Contributions

Our contributions can be summarized as follows:

(i) To the best of our knowledge, this thesis is the first work that focuses on joint

optimization of alternate path finding and relay node selection.

(ii) To the best of our knowledge, this thesis is the first work that takes into ac-

count and utilizes the fact that some networking devices may not have sleeping

capability.

(iii) To the best of our knowledge, this thesis is the first one in the literature that

addresses the reliability and energy efficiency tradeoff in green networks by tak-

ing into consideration the heterogeneous fault tolerance requirements of different

communication pairs.

(iv) To the best of our knowledge, this thesis is the first work that focuses on overlay

8

routing within the green networking paradigm.

(v) Since we do not make any assumption on network topologies, our approach in

this thesis is applicable for networks with general topologies.

2.3. Practical Implications

In this thesis, we propose heuristic algorithms that can be utilized in real life

situations where energy efficiency is needed when providing alternative paths for source

and destination nodes. In data centers, robustness against path failures is an important

issue. Our work addresses this issue in an energy efficient way. Algorithms in this

thesis can be applied to network structure of a data center in router level as well as the

network structure of Internet in AS level. In order to apply the algorithms to a real life

network, a centralized server having all information about energy consumption values

of routers and links should exist. This server should also have the information of source

and destination nodes and default routing scheme. Once this information is obtained,

algorithms can be run in a centralized server. In Section 4.3, we investigate the time

complexity analysis of our heuristic algorithms and prove that they have polynomial

worst case complexity. Therefore they are suitable for practical implementation.

9

3. PROBLEM FORMULATION

We model the network as an undirected graph G = (V,E), where V and E

represent the nodes and links, respectively, of the network. We are given a set of

source and destination pairs Q={(s1, d1), (s2, d2), · · · , (sp, dp), · · · , (sP , dP)}, where

Q ⊆ V × V and P is the total number of source and destination pairs. We are also

given a set of underlay paths, Pu, that altogether connects each source node to the

corresponding destination node. Underlay paths are default paths that are derived

from the underlying routing scheme. Furthermore, the following cost functions are also

provided as input to our problem formulation:

• A weight function W1 : V − Q → R that indicate the cost associated with relay

selection

• A weight function W2 : V → R that indicate the cost associated with the energy

consumption of the nodes

• A weight function W3 : E → R that indicate the cost associated with the energy

consumption of the links

10

Table 3.1. Table for Input Variables.

Input Variable Explanation

W i
1 = The cost incurred if node i is selected as a relay

W i
2 = The energy consumption of node i

W ij
3 = The energy consumption of the link that connects node i and j

gij =











1, if graph G contains the edge that connects vertices i and j

0, otherwise.

ti =











1, if vertex i cannot be put into sleep mode

0, otherwise.

tij =



























1, if the edge that connects vertices i and j

cannot be put into sleep mode

0, otherwise.

uij =











1, if the edge that connects vertices i and j is on an underlay path

0, otherwise.

kp ∈ Z = Maximum number of links that path p is allowed to share with other

(overlay or underlay) paths

r ∈ Z = Upper bound (threshold value) for the total relay cost

11

Table 3.1 outlines the input variables fed to our optimization problem. In essence,

the variable tij is a function of the input variable ti. In other words, the values for

tij are actually enforced by the values for ti; i.e., tij variables are not actually input

variables. However, for better clarity, we state tij as input variable in Table 3.1. The

fact that both ends of a link can be put into sleep mode implies that the link can be

put into sleep mode; i.e., tij ≤ ti + tj since having ti = tj = 0 enforces that tij = 0.

Moreover, the fact that any one end of a link cannot be put into sleep mode implies

that the link cannot be put into sleep mode; i.e., ti ≤ tij and tj ≤ tij since having

either ti = 1 or tj = 1 enforces that tij = 1. To summarize, the relationship between ti

and tij can be expressed as follows: ti ≤ tij ≤ ti + tj and tj ≤ tij.

12

Table 3.2. Table for Decision Variables.

Decision Variable Explanation

xij =























1, if the edge that connects vertices i and j is

selected in the overlay routing paths

0, otherwise.

x̂ij =











1, if either xij = 1 or xji = 1

0, otherwise.

xijp =























1, if the overlay path of pair p goes from node i to j

using the edge between them

0, otherwise.

x̂ijp =











1, if either xijp = 1 or xjip = 1

0, otherwise.

ni =











1, if node i is selected in the overlay routing paths

0, otherwise.

yijp =























1, if the overlay path of pair p shares the edge between node i and j

with another overlay or underlay path

0, otherwise.

sijp =























1, if uij = 1 or the overlay path of some pair p′ 6= p

uses the edge between node i and j

0, otherwise.

zi =











1, if vertex i is selected as a relay node

0, otherwise.

mip =























1, if vertex i is not a source/destination node

and is on the overlay path of pair p

0, otherwise.

wip =























1, if vertex i is on the overlay path of pair p

and is selected as a relay node

0, otherwise.

13

Table 3.2 outlines the decision variables used by our integer linear programming

formulation. The variable x̂ij equals 1 if either xij = 1 or xji = 1. Besides, x̂ij = 0

if both xij = 0 and xji = 0. In other words, x̂ij = 1 if the edge between node i and

j is used in either direction, whereas there is an implicit directionality from i to j in

variable xij . To put it in another way, x̂ij = x̂ji; however, it is not necessarily true that

xij = xji. Similar situation holds for the decision variables x̂ijp, xij and xji.

Each link belonging to any of the overlay paths consume energy that is equal to

W ij
3 ; hence, total energy consumption of the links that are part of the resulting overlay

routing paths is equal to

|V |
∑

i=1

|V |
∑

j=i

W ij
3 x̂ij . Besides, among the links that are not part

of any overlay path, the ones that cannot be put into sleep mode have an additional

energy consumption, which is equal to

|V |
∑

i=1

|V |
∑

j=i

tijW
ij
3 (1−x̂ij). A similar situation exists

for the nodes of the network: Each node belonging to any of the overlay paths consume

energy that is equal to W i
2; hence, total energy consumption of the nodes that are part

of the resulting overlay routing paths is equal to

|V |
∑

i=1

W i
2ni. Likewise, among the nodes

that are not part of any overlay path, the ones that cannot be put into sleep mode

have an additional energy consumption, which is equal to

|V |
∑

i=1

tiW
i
2(1− ni).

As a result, the objective function of our integer linear programming (ILP) for-

mulation for JORRA is as follows:

min
(

|V |
∑

i=1

|V |
∑

j=i

W ij
3 x̂ij +

|V |
∑

i=1

|V |
∑

j=i

tijW
ij
3 (1− x̂ij) +

|V |
∑

i=1

W i
2ni +

|V |
∑

i=1

tiW
i
2(1− ni)

)

(3.1)

Resulting overlay links can only be among the links that exist in the network.

We can model this natural requirement with the following constraint:

xij ≤ gij ; ∀i, j (3.2)

14

The following constraints model the relationships among the decision variables

x̂ij , xij , and xji:

xij ≤x̂ij ≤ xij + xji; ∀i, j (3.3)

x̂ij ≥ xji; ∀i, j (3.4)

A node is part of the overlay routing paths if any of its incident edges is selected

as part of the overlay paths. Besides, if none of the incident edges of a node is selected,

then the node is not part of the overlay routing paths. This relationship of the variables

x̂ij with the variable ni can be represented with the following set of constraints:

x̂ij ≤ ni ≤

|V |
∑

j=1

x̂ij ; ∀i, j (3.5)

Relationship between the variables xij and xijp also needs to be modeled. If

xij = 0, then xijp variables have to be equal to zero for all pairs p. In addition, if

xijp = 0 for all pairs p, then xij has to be equal to zero. We model these requirements

with the following constraints:

xijp ≤ xij ≤
P
∑

p=1

xijp; ∀i, j, p (3.6)

For a particular pair p, the pertinent xijp variables need to form a path from

the source node sp to the destination node dp of the pair p. The following constraints

achieve this goal:

15

|V |
∑

j=1

xijp −

|V |
∑

j=1

xjip =



























1 ; if i = sp,

−1 ; if i = dp

0 ; otherwise

(3.7)

Recall that the variable x̂ijp = 1 if either xijp = 1 or xjip = 1. Besides, x̂ijp = 0 if

both xijp = 0 and xjip = 0. In other words, x̂ijp = 1 if the edge between node i and j

is used in either direction, whereas there is an implicit directionality from i to j in the

variable xijp. To put it in another way, x̂ijp = x̂jip; however, it is not necessarily true

that xijp = xjip. This relationship can be modeled by the following constraints:

x̂ijp ≥ xjip; ∀i, j, p (3.8)

xijp ≤ x̂ijp ≤ xijp + xjip; ∀i, j, p (3.9)

The definition of the variable sijp states that sijp = 1 if uij = 1. Moreover,

sijp = 1 if x̂ijp′ = 1 for some p′ 6= p. In all other cases, sijp = 0; in other words, if all of

uij and x̂ijp′ variables equal zero, then sijp = 0. To put it in another way, sijp = 1 if the

link between node i and node j is used by some underlay path or another overlay path

different from path p. We can model these requirements by the following constraints:

uij ≤ sijp; ∀i, j, p (3.10)

x̂ijp′ ≤ sijp ≤ uij +

|P |
∑

p′=1,p′ 6=p

x̂ijp′; ∀i, j, p 6= p′ (3.11)

The definitions of the variables yijp, x̂ijp and sijp imply that yijp = x̂ijp × sijp.

In other words, yijp = 1 if the link between node i and node j is used by the path

connecting pair p and it is shared with some underlay or another overlay path. We

16

model this product of the decision variables by the following constraints:

yijp ≤ x̂ijp; ∀i, j, p (3.12)

x̂ijp + sijp − 1 ≤ yijp ≤ sijp; ∀i, j, p (3.13)

Maximum number of links that path p is allowed to share with other over-

lay/underlay paths is kp. This requirement can be modeled with the following con-

straint:

|V |
∑

i=1

|V |
∑

j=i

yijp ≤ kp; ∀p (3.14)

The definition of mip states that mip = 1 if vertex i is on the overlay path of pair

p, and mip = 0 otherwise. The following constraint achieves this condition:

x̂ijp ≤mip ≤

|V |
∑

j=1

x̂ijp; ∀i, j, p (3.15)

Note that a node that is not on any overlay path cannot be selected as a relay

node. This requirement can be modeled as follows: zi ≤

|V |
∑

j=1

x̂ij . Furthermore, note

that the definitions of the decision variables wip, mip and zi imply that wip = mip× zi.

We can model all of these requirements by the following set of constraints:

wip ≤ zi ≤

|V |
∑

j=1

x̂ij ; ∀i, p (3.16)

zi+mip − 1 ≤ wip ≤ mip; ∀i, p (3.17)

17

The following constraint ensures that there is at least one relay node on each

overlay path so that the communication over each overlay path can be coordinated:

|V |
∑

i=1,i 6∈Q

wip ≥ 1; ∀p (3.18)

Total cost of deploying relay nodes should not exceed a predetermined value

denoted by the input variable r. The following constraint serves this purpose:

|V |
∑

i=1,i 6∈{s,d|(s,d)∈Q}

W i
1zi ≤ r (3.19)

Finally, the constraint that all decision variables need to be binary decision vari-

ables can be stated as follows:

xij , x̂ij , xijp, x̂ijp, ni, yijp, sijp, zi, mip, wip ∈ {0, 1} (3.20)

18

4. HEURISTIC ALGORITHMS

Our analytical findings in [28] prove that JORRA is a computationally very

difficult problem. Therefore, designing efficient heuristic algorithms for JORRA is

vital. To this end, we propose in this chapter two polynomial-time heuristic algorithms

for JORRA.

Optimization software CPLEX [29] can be used to generate solutions for ILP

problems. When CPLEX finds an optimal solution, it indicates this situation as an

output. Finding an optimal solution might take too long time especially when the

problem size is very large. In such a case, the optimality tolerance parameter called

epgap can be set so that the computation ends when a solution within the provided

epgap percentage of the optimal solution is found. This way, CPLEX can be used to

efficiently find a (not necessarily optimal) solution to the ILP formulation in Equa-

tions (3.1)-(3.20) in Chapter 3. Nevertheless, in a real life setting, CPLEX or any

other optimization software may not be available. In addition, the network may be so

large and dense that the running times of the optimization software become too high.

Moreover, CPU and memory of the computer(s) may be insufficient to run the opti-

mization software for such large networks. In such cases, it becomes inconvenient to

use CPLEX. Therefore, we propose two polynomial-time heuristic algorithms, which we

call Minimum Cost Overlay Path Algorithm (MCOPA) and Minimum Cost

Overlay Path Algorithm with Link Overlap Avoidance (MCOPA-LOA). We

then compare the performance of our heuristic algorithms with the solutions obtained

from CPLEX.

Recall that we have proved in [28] that JORRA is NP-Hard in the strong sense

even in its special cases. Therefore, optimal solutions cannot be obtained in polynomial

time unless P = NP . As the problem size gets larger, CPLEX running times become

too high and we have to change epgap parameter to a higher value. Default value of

epgap is 0.0001 and it can take any value between 0.0 and 1.0. We set this parameter to

0.05 in our experiments in Chapter 3. This way, we obtain CPLEX solutions that are

19

either optimal or near optimal so that we can have a baseline to compare our heuristics

with.

Both heuristics consist of three consecutive phases: path selection, path correction

and relay node selection. In path selection phase, we construct overlay paths as an

initial temporary solution. In path correction phase, we check these overlay paths,

which were constructed in the path selection phase, for (in)feasibility. If any of these

overlay paths causes a constraint violation, we discard this path and find an alternative

path. In path correction phase, we use Yen’s k-shortest path algorithm [30] to find

alternative paths. In relay node selection phase, we select relay nodes among the

nodes constituting the overlay paths.

4.1. Minimum Cost Overlay Path Algorithm (MCOPA)

MCOPA is a greedy algorithm where most of the work is done in path correc-

tion phase. We first start by constructing a forest where all source and destination

pairs are connected. Afterwards, we choose the minimum energy paths, i.e., paths that

have minimum total energy consumption of nodes and links for that particular source

and destination pair, on the constructed forest as temporary overlay paths; this way,

an initial solution, which completes the path selection phase, is obtained. This ini-

tial solution already satisfies the constraints specified in (3.2)-(3.13) since the selected

temporary paths are on the input graph and they ensure the connectivity of the source

and destination pairs. The remaining constraints ((3.14)-(3.20)) are not completely

satisfied until the path correction and relay selection phases are finished.

After path selection, path correction is done on the temporary overlay paths. Path

correction is mainly associated with constraint (3.14), which states that the maximum

number of links that an overlay path p is allowed to share with other overlay and

underlay paths is kp. In order to satisfy this constraint, we check if any of the overlay

paths violate this constraint and we detect the pairs causing the constraint violation.

We correct the overlay paths of the violating pairs by finding alternative paths for

those pairs by using Yen’s k-shortest path algorithm [31].

20

After correcting all violations in overlay paths, MCOPA continues with relay

selection phase and ensures that total relay cost does not exceed the given upper

bound r. We select relay nodes among the nodes belonging to overlay paths and we do

not select a node as a relay if that node is a source or destination of an overlay path.

We also ensure that each source and destination pair has at least one relay node on

the overlay path that connects them. Therefore, in relay selection phase we satisfy the

constraints (3.15)-(3.20).

Figure 4.1 describes MCOPA, which takes as input the following: G = (V,E),

the set of source and destination pairs Q = {(s1, d1), · · · , (sp, dp), · · · , (sP , dP)}, the

set of underlay paths U = {u1, · · · , up, · · · , uP}, the set of upper limits for edge

sharing K = {k1, · · · , kp · · · , kP}, the upper bound r for total relay cost and cost

matrices W1 = [W i
1], W2 = [W i

2] and W3 = [W ij
3]. W i

1 indicates the relay cost and W i
2

indicates the energy consumption of the node i. W ij
3 gives the energy consumption

of the link between node i and node j. The output parameters are the set of overlay

paths Φ and the set of relay nodes R. F indicates the forest where all source and

destination pairs are connected.

Require: G,Q,U,K, r,W1 ,W2,W3

Ensure: Φ, R

1: Φ← ∅, R← ∅, F ← ∅

2: (Φ, F)← PathSelectionMCOPA (G,Q,W2,W3) ⊲ Described in Figure 4.3

3: Φ← PathCorrectionMCOPA (Φ, F,K,U) ⊲ Described in Figure 4.4

4: if Φ = ∅ then

5: return (∅, ∅)

6: end if

7: R← RelaySelectionMCOPA (Φ, Q,W1, r) ⊲ Described in Figure 4.5

8: return (Φ, R)

Figure 4.1. Minimum Cost Overlay Path Algorithm (MCOPA).

In Line 2, path selection phase of MCOPA is executed. Path selection phase

takes the graph D and the set of source and destination pairs Q as input. It constructs

21

an initial solution by generating the set of initial overlay paths Φ. It also returns a

forest F , which is later used in the path correction phase. The second phase is path

correction, which is executed by calling PathCorrectionMCOPA (Φ, F,K) in Line

3. Path correction phase iteratively runs Yen’s k-shortest path algorithm [30] for the

pairs having constraint violation. If path correction phase fails, it returns an empty

set. In this case, there is no need to continue with relay selection; hence we terminate

the algorithm immediately in Line 5 and declare that no feasible solution is found.

After path correction, relay node selection phase is executed in Line 7, which takes

as input the set of corrected overlay paths Φ and upper bound r for total relay cost.

If the relay selection phase cannot find a feasible solution, it returns an empty set.

Consequently, if MCOPA algorithm returns an empty set for either Φ and/or R, it

means the algorithm cannot find a feasible solution in that case. Detailed descriptions

of the methods we use in Figure 4.1 are given as follows:

4.1.1. Undirected to Directed Graph Conversion

We convert the undirected input graph G to a directed and edge weighted graph

since Dijkstra’s shortest path algorithm used in the path selection phase and Yen’s

k-shortest path algorithm do not handle the input graphs having both node weights

and link weights. Therefore, we need an algorithm to convert an undirected graph with

link and node weights to an equivalent directed graph having only link weights. Figure

4.2 gives the outline of this conversion algorithm. In Line 2, U is the set of vertices

for the directed graph. In other words, U is a copy of V , the vertex set of the original

input graph. The set of edges L is initially empty. In Lines 6 and 7, for each undirected

edge, two directed edges are created. Weight of a directed edge is the summation of

the weight of the original edge and the weight of the source node of the directed edge.

This calculation basically provides a new weight function for edges so that a suitable

input is prepared for Dijkstra’s algorithm, which assumes no weights on the ver-

tices and uses the edge weights only. The function returns the directed graph in Line 11.

22

1: function GraphConversion (G′ = (V ′, E′),W2,W3})

2: U ← V ′, L← ∅

3: for all e ∈ E′ do

4: i ← source node of e

5: j ← destination node of e

6: d1 ← directed edge from i to j with weight (W ij
3 +W i

2)

7: d2 ← directed edge from j to i with weight (W ij
3 +W j

2)

8: L← L ∪ {d1, d2}

9: end for

10: D ← (U,L)

11: return D

12: end function

Figure 4.2. Graph Conversion Algorithm.

4.1.2. Path Selection Phase for MCOPA

Path selection phase for MCOPA creates an initial solution for the main

algorithm MCOPA to begin with. Details of this phase are given in Figure 4.3. It

takes G′ = (V ′, E ′) and the set of source and destination pairs (Q) as input. It also

takes node and link energy consumption matrices (W2 and W3) as input. The first

step is to construct the minimum spanning forest of the input graph with respect to

W2 and W3 in Line 3. Therefore, when we calculate the minimum spanning forest, we

prune the graph G by selecting the links and nodes having lower energy consumption.

After calculating MSF in Line 3, next step is to obtain an edge weighted digraph

D from MSF which is undirected. Line 4 performs this task using the algorithm in

Figure 11. The reason for this conversion is to provide a graph in the right form for

Dijkstra’s shortest path algorithm. After conversion to a directed graph, we detect

the minimum energy paths for each source and destination pair (sp, dp) and construct

the set of overlay paths in Lines 6 and 7. Afterwards, we construct the graph H

in Lines 10 and 11 as follows: We first remove all edges and nodes except the ones

on the minimum energy paths from MSF and obtain the Steiner Forest F in Line

10. We then add all edges and nodes of G′ that cannot be put into sleep mode to

23

F since these edges cause energy consumption in any case and hence they have to

be part of the overlay graph when we calculate the total energy consumption. This

way, we construct a graph H where all source and destination pairs are connected

with minimum energy consumption paths. Note that H is not necessarily a forest

since adding extra edges in Line 11 might cause some loops in graph H . H contains

all the links and nodes that cannot be put into sleep mode. Moreover, H does not

contain any link or node having sleep mode unless it resides on a minimum energy

path connecting some source and destination pair. At the end of the phase, we return

the directed version of H since the next step of MCOPA requires a directed graph

where Yen’s k-shortest path algorithm is used if necessary.

1: function PathSelectionMCOPA (G′ = (V ′, E′), Q = {(sp, dp) | p =

1, · · · , P}, W2, W3)

2: Φ← ∅, F ← ∅

3: Construct the minimum spanning forest MSF on G′ by using Prim’s algorithm wrt

W2 and W3.

4: D ← GraphConversion(MSF,W2,W3)

5: for all (sp, dp) ∈ Q do

6: p ← Minimum energy path for (sp, dp) on D using Dijkstra’s algorithm

7: Φ← Φ ∪ {p}

8: Mark all edges of p as unremovable on MSF

9: end for

10: F ← MSF \ {e ∈MSF | e is not marked}

11: H ← F ∪ {e ∈ E | e does not have sleep mode}

12: return (Φ, GraphConversion(H,W2,W3))

13: end function

Figure 4.3. Path Selection Phase for MCOPA.

4.1.3. Path Correction Phase for MCOPA

Path correction phase (Figure 4.4) initially checks if any of the overlay paths

causes the violation of constraint (3.14). If there is no such path, the function termi-

nates and we continue with relay selection. Otherwise, we find alternative paths for

24

the paths causing constraint violations. Path correction phase takes as input the set

of initial overlay paths Φ, which were already determined in the path selection phase.

Other parameters are as follows: Graph G′, in which we search for alternative paths,

K, which is the set of kp values for each source and destination pair and U , which is

the set of underlay paths. Lines 3-6 identify the paths that violate constraint (3.14).

At the end of Line 6, the set Ω consists of paths that violate constraint (3.14). Our

idea here is to replace these paths with other possible paths such that the total number

of paths that violate constraint (3.14) decreases. To this end, we calculate alternative

paths for the constraint violating paths by using Yen’s k-shortest path algorithm [31],

which finds k shortest paths between a given source and destination where the first

path is the shortest one, the second path is the second shortest one etc. In lines 10-20

we first calculate κ shortest paths for path p in terms of energy consumption and we

then select the minimum energy path among them such that the size of Ω is decreased.

Note that Ω is the set of paths having constraint violation. The for loop in Line 12

processes the paths in the list of k-shortest paths for the path p. In Line 13 we change

the path p that has constraint violation with the alternative path π. Changing the

overlay path p might affect all other overlay paths in terms of constraint violations

since the number of shared links might have been changed. Therefore, in the for loop

starting from Line 14, we recalculate the number of violations for each overlay path

and construct the set Ω′, which is the new set of paths having constraint violations.

In Line 18, we compare the size of Ω′ with the previous set containing paths that have

violations. If the number of paths having constraint violation is smaller, we choose π

as the best alternative for the path p and then we proceed with the next overlay path

with constraint violation.

κ is the k value given as an input to Yen’s k-shortest path algorithm. It is crucial

to choose an appropriate k value so that the k-shortest path algorithm finds enough

number of alternative paths. Intuitively, a constant value for k might not be suitable

for all input graphs. As the size of the input graph increases, k should increase as

well. On the other hand, a larger graph might not necessarily imply that there are

many alternative paths between source and destination nodes if the graph is sparse.

Density of the input graph is a more determinative factor on k rather than the number

25

of edges. In a dense graph, it is more likely to find many alternative paths. Therefore,

we take the graph density into consideration while choosing the value for k. We have

experimentally seen that k values that are proportional to the average degree of G,

which is also an indicator of graph density, incur more feasible solutions. The average

degree of a graph G shows how many edges are in set E compared to the number of

vertices in set V . Because each edge is incident to two vertices and is counted while

calculating the degree of both vertices, the average degree of an undirected graph is

2×|E|/|V |. Therefore, we choose κ proportional to 2×|E|/|V |. Another factor that we

should take into account while choosing k is the number of source and destination pairs

P . When there is a high number of source and destination pairs, it is more likely for

an overlay path to have shared links causing constraint violation. In this case, we need

more alternative paths to correct constraint violations. Because of these reasons, we

set κ to ⌈|E|/|V |⌉×P , which is used as the k value for Yen’s k-shortest path algorithm.

We also use κ for the termination condition of the while loop in Line 8. If the size

of Ω does not change for κ iterations, i.e. we can not make any further improvements

on the overlay paths having violation, we terminate the algorithm in Line 22. At the

end of the phase, if we succeed to correct all paths having violation, we return the

new set of overlay paths; otherwise, we return an empty set meaning that we could

not find a feasible solution.

26

1: function PathCorrectionMCOPA (Φ = {pi | i = 1, · · · , P}, G′ = (V ′, E′), K =

{kp | p = 1, · · · , P}, U = {up | p = 1, · · · , P})

2: Ω← ∅ ⊲ Ω is the set of paths that violate constraint (3.14).

3: for all p ∈ Φ do

4: s← Number of links that p shares with the other paths in U and Φ

5: if s > kp then Ω← Ω ∪ {p}

6: end for

7: κ← ⌈|E′|/|V ′|⌉ ∗ P

8: while |Ω| > 0 do

9: for all p ∈ Ω do ⊲ A is the list of the k-shortest paths in terms of energy

consumption

10: A← {ρi | ρi = ith minimum energy path for (sp, dp), i = {1, · · · , κ}

11: bestAlternative← p

12: for all π ∈ A do ⊲ A is sorted in ascending order wrt. path length.

13: Ω′ ← ∅, p← π

14: for all t ∈ Φ do

15: s← Number of links that t shares with the other paths in U and Φ

16: if s > kt then Ω′ ← Ω′ ∪ {t}

17: end for

18: if |Ω′| < |Ω| then bestAlternative← π, Ω← Ω′, break

19: end for

20: p← bestAlternative

21: end for

22: if |Ω| has not been changed for κ iterations then break

23: end while

24: if |Ω| > 0 then return ∅

25: return Φ

26: end function

Figure 4.4. Path Correction Phase for MCOPA.

27

4.1.4. Relay Selection Phase for MCOPA

After determining overlay paths, the next step is to choose relay nodes. Each

source destination pair should have at least one relay node that coordinates the com-

munication among them along the overlay path. Relay node selection phase, which

we outline in Figure 4.5, is a simple greedy heuristic that selects relay nodes among

nodes residing on overlay paths. In Line 3 we detect all nodes residing on an overlay

path and collect them in the set Υ. Afterwards, we exclude the nodes that are either

source or destination node from Υ (Line 4). For all nodes on overlay paths, we define

a metric, which we call relay metric, to be used in determining whether the node will

be selected as relay or not (Line 6). Relay metric is denoted as rη for node η, which is

as follows:

rη =
W η

1
∣

∣p ∈ Φ | p ∋ η
∣

∣

(4.1)

where p ∋ η refers to a path p that contains node η. Hence,
∣

∣p ∈ Φ | p ∋ η
∣

∣ refers

to the number of overlay paths that contain node η. Recall that W η
1 refers to the cost

associated with selecting node η as a relay node. Our rationale for using equation

(4.1) is the following: As the relay cost W η
1 of a node η increases, its chances of being

selected as a relay node decreases. In addition, as the number of overlay paths that

contain the node increases, its chances of being selected as a relay node increases.

Since the goal is to find a set of relay nodes with as little total cost as possible such

that each overlay path has at least one relay vertex, a node with a higher relay cost

might be a better candidate to be a relay node than the node with a lower relay cost

if it resides on many overlay paths. We choose the node with the minimum relay

metric rη (Line 10) and repeat relay metric calculation in each iteration. We repeat

this process until all source and destination pairs have a relay node. At the end of

each iteration, we recalculate in line 16 the relay metric for nodes that have not yet

been selected as a relay node. We make this recalculation because in each iteration

28

the number of pairs that a node can connect changes and this number might decrease

or stay the same. This change affects the relay metric of nodes. Therefore, we update

the relay metric of all nodes and make the relay selection over the updated values.

1: function RelaySelectionMCOPA (Φ = {pi | i = 1, · · · , P}, Q = {(sp, dp) | p =

1, · · · , P}, r)

2: R← ∅ ⊲ R is the set of relay nodes, initially empty.

3: Υ← {η ∈ p | p ∈ Φ} ⊲ Υ is the set of nodes on overlay paths.

4: Υ← Υ \ {s, d | (s, d) ∈ Q}

5: for all η ∈ Υ do

6: rη ← (W η
1 / |{p ∈ Φ | p ∋ η}|)

7: end for

8: Ψ← ∅ ⊲ Ψ is the set of overlay paths having at least one relay node.

9: while |Ψ| < |Φ| do

10: υ ← arg min
x∈Υ

{rx}

11: R← R ∪ {υ}

12: Υ← Υ \ {υ}

13: Ψ← Ψ ∪ {p ∈ Φ | p ∋ υ}

14: if |Ψ| == |Φ| then break

15: for all η ∈ Υ do ⊲ Recalculate relay metric for all nodes on the overlay graph.

16: rη ← (W η
1 / |{p ∈ Φ | p 6∈ Ψ and p ∋ η}|)

17: end for

18: end while

19: if
∑

υ∈R

rυ > r then return ∅

20: return R

21: end function

Figure 4.5. Relay Selection Phase for MCOPA.

4.2. Minimum Cost Overlay Path Algorithm with Link Overlap Avoidance

(MCOPA-LOA)

In our experimental analysis (see Chapter 5), we have seen that MCOPA does

not perform well in terms of finding feasible solutions on sparse graphs. Therefore,

29

it is necessary to design another algorithm that produces more feasible solutions. To

this end, we propose (MCOPA − LOA), which is another greedy algorithm and an

improved version of MCOPA. We outline (MCOPA − LOA) in Figure 4.6. Unlike

MCOPA, MCOPA − LOA does not create a feasible forest in path selection phase

(Line 3). Instead, it selects initial overlay paths in a way that avoids using any link

that is already being used by an underlay path or overlay path. The algorithm does

not completely forbid any link sharing but it discourages it by setting the energy cost

of the already used links to a high value.

The algorithm has nearly the same steps of MCOPA except that the path selec-

tion phase (Line 3) does not create a feasible forest connecting all source and destination

pairs. Another difference is that we convert the input graph to a directed graph at

the very beginning and instead of the feasible forest, we give the full input graph D

to the path correction phase (Line 3). In Line 6, the algorithm terminates if the path

correction step is unsuccessful. Otherwise, it continues with relay node selection step

(Line 8). Finally, it returns the set of overlay paths Φ and the set of relay nodes R.

Since path correction and relay node selection phases are the same as the ones

used in MCOPA, we only give the details of path selection phase in Figure 4.7.

Require: G,Q,U,K, r,W1 ,W2,W3

Ensure: Φ, R

1: Φ← ∅, R← ∅

2: D ← GraphConversion (G,W2,W3)

3: Φ← PathSelectionMCOPALOA (D, Q, U)

4: Φ← PathCorrectionMCOPA (Φ, D, K, U)

5: if Φ = ∅ then

6: return (∅, ∅)

7: end if

8: R← RelaySelectionMCOPA(Φ, Q, W1, r)

9: return (Φ, R)

Figure 4.6. Minimum Cost Overlay Path Algorithm with Link Overlap Avoidance

(MCOPA− LOA).

30

4.2.1. Path Selection Phase for MCOPA-LOA

Path selection phase ofMCOPA−LOA is different from the one used inMCOPA

in two aspects: First, MCOPA − LOA avoids the usage of a link by more than one

path. Second, unlike MCOPA, MCOPA−LOA does not eliminate from the solution

the network elements that have sleep mode and that are not on a minimum energy

path between some source and destination pair.

First of all, we set the energy cost of all links on underlay paths to a high

cost so that we obstruct overlay paths to share any links with underlay paths

(Line 4). Afterwards, we start determining initial overlay paths for source and

destination pairs until all pairs have an overlay path (Line 6). In Lines 9 and 10, we

calculate the minimum energy paths for each (sp, dp) pair in Q. Each path in the

set of minimum energy paths is a candidate overlay path. Afterwards, among these

minimum energy paths in Ψ, we take the path p with the shortest path length in

terms of hop count and set this path as a definite overlay path for the corresponding

source and destination pair (sp, dp) (Lines 12, 13). Since path p is selected to be

a definite overlay path, we should aim to make the sharing of this path’s links

with other overlay paths as small as possible. For this purpose, in Line 14 we set

the energy cost of all links on path p to a high cost value. Moreover, we remove

(sp, dp) from Q since this pair has an overlay path and should not be considered in

the next iterations. The function returns the set of initial overlay paths Φ as an output.

31

1: function PathSelectionMCOPALOA(G′ = (V ′, E′), Q = {(sp, dp) | p =

1, · · · , P}, U = {up | p = 1, · · · , P})

2: Φ← ∅

3: for all up ∈ U do

4: Set the energy cost of links on up to HIGH-COST on G′

5: end for

6: while |Q| > 0 do

7: Ψ← ∅ ⊲ Ψ is the set of minimum energy paths on G′ for all pairs in Q

8: for all (si, di) ∈ Q do

9: π ← minimum energy path for (si, di) on G′

10: Ψ← Ψ ∪ {π}

11: end for

12: p← arg min
π∈Ψ

(PL(π)) ⊲ PL(π) is the length of path π

13: Φ← Φ ∪ {p}

14: Set the energy cost of links on p to HIGH-COST on G′

15: Q← Q \ {(sp, dp)}

16: end while

17: return Φ

18: end function

Figure 4.7. Path Selection Phase for MCOPA− LOA.

4.2.2. Path Correction Phase for MCOPA-LOA

Path correction phase is the same as the one used in MCOPA. Details can be

found in Figure 4.4. The only difference is that in MCOPA we give a forest as input

parameter, whereas in MCOPA − LOA we give the whole graph D as input. This

property of MCOPA− LOA might cause it to find more alternative paths and hence

increases the possibility of correcting an overlay path with violated constraint(s). On

the other hand, using the whole graph in this phase causes the total energy cost to be

higher since there is no elimination of the network elements with sleep mode.

32

4.2.3. Relay Selection Phase for MCOPA-LOA

Relay node selection is the third and final step in MCOPA − LOA. If relay

node selection returns an empty set, it means the algorithm has failed to find a feasible

solution. Relay node selection phase is the same as the one used in MCOPA. Details

can be found in Figure 4.5.

4.3. Time Complexity Analysis of Our Proposed Heuristics

4.3.1. Best Case Analysis

The best case for both MCOPA and MCOPA−LOA is the situation where the

path selection phase creates overlay paths having no constraint violation. In this case,

we would not need to execute the path correction phase and we would directly proceed

to the relay selection. As for the relay selection, the best case occurs when we select a

node as a relay node and this node already connects all source and destination pairs.

Since only the path selection phase is specific to each heuristic, let us first determine

the best case time complexity of the path selection phases. For the sake of simplicity,

we assume that number of vertices is V , number of edges is E and number of pairs is

P .

Path Selection Phase for MCOPA: The basic operations that are done in this

phase are the calculation of the minimum spanning forest on the input graph, conver-

sion of the input graph to a digraph and running Dijkstra’s algorithm for each source

and destination pair. Other operations take constant time; hence, they can be ignored.

We use Prim’s algorithm for MSF calculation with a priority queue. Complexity of

this calculation is Θ(E log V) since we use a priority queue. Graph conversion algo-

rithm in Figure 4.2 basically consists of a single for loop where each iteration performs

construction of two edges and adding these edges to the newly constructed graph.

Since the for loop contains E iterations, the complexity of graph conversion algorithm

is Θ(E). Running the shortest path algorithm has Θ(E log V) complexity since we use

Dijkstra’s algorithm with priority queue. Overall, the best case complexity of the path

33

selection phase is Θ(E log V) + Θ(E) + PΘ(E log V), which reduces to Θ(PE log V).

Path Selection Phase for MCOPA− LOA: Path selection phase of MCOPA−

LOA mainly consists of a main while loop, which processes the list of the source and

destination pairs Q. Size of the list Q decreases exactly by one in each iteration.

Single iteration of this while loop means running the shortest path algorithm for P

times. Therefore, the best case complexity of this phase is as follows:

P
∑

i=1

i Θ(E log V) =
P (P − 1)

2
Θ(E log V) = Θ(P 2E log V) (4.2)

Path Correction Phase: The best case complexity of path correction phase for

both heuristics is Θ(1) because in the best case, overlay paths resulting from the path

selection phase would cause no constraint violations. Therefore, complexity of the

path correction phase has no impact on the best case complexity of MCOPA and

MCOPA− LOA.

Relay Node Selection Phase: The best case of this phase occurs when a single

relay node is enough for all source and destination pairs. It means that the while loop

in Line 9 of the relay selection phase in Figure 4.5 executes just once. The first step

is the calculation of the relay metric for the nodes that reside on the overlay paths.

This step, i.e. the for loop in Line 6, has Θ(V) complexity. Afterwards, in the while

loop we search for the node having the minimum relay metric, which also has Θ(V)

complexity. Since the while loop executes once in the best case, the overall complexity

of the relay selection function phase is Θ(V).

The best case time complexity of two heuristics is the summation of the com-

plexity of three phases, namely path selection, path correction and relay selection.

For MCOPA the best case complexity is Θ(P E log V) + Θ(1) + Θ(V), which re-

duces to Θ(P E log V), whereas for MCOPA − LOA the best case complexity is

34

Θ(P 2E log V) + Θ(1) + Θ(V), which reduces to Θ(P 2E log V).

4.3.2. Worst Case Analysis

Worst case scenario for our heuristics occurs when all overlay paths obtained in

the path selection phase have at least one violated constraint. In this case, we need

to find another path for each pair in the path correction phase. Moreover, we should

also consider the worst case of the relay node selection phase, which occurs when each

source and destination pair has a distinct relay node that is not shared with any other

pair. In the following, we determine the worst case complexity of the three phases of

our heuristic algorithms.

Path Selection Phase for MCOPA: Recall that path selection operation is exe-

cuted for all source and destination pairs. Therefore, path selection phase entails an

inevitable computational work, which is the same for both worst case and best case sce-

narios. To this end, the worst case complexity of the path selection phase for MCOPA

is Θ(PE log V).

Path Selection Phase forMCOPA−LOA: LikeMCOPA, path selection phase of

MCOPA−LOA has the same worst case complexity in its best case since it executes

the same operation for each source and destination pair. Therefore, the worst case

complexity of this phase for MCOPA− LOA is Θ(P 2E log V).

Path Correction Phase: Path correction phase is the same for both heuristics.

In the worst case, all source and destination pairs would have at least one constraint

violation requiring the path correction phase to run for each overlay path between

source and destination pairs. For each pair, we need to run Yen’s k-shortest path

algorithm and select the best alternative path among k-shortest paths and thereby

reducing the number of pairs having constraint violation. Since we try all paths one

by one in the for loop in line 12 of Figure 4.4, in the worst case the for loop does not

terminate until we get to the last path in the list A. Therefore, the path assignment

and recalculation of the number of shared edges in the for loop in Line 12 executes

35

κ times. Moreover, in Line 14 recalculation of the number of shared edges has Θ(P)

complexity. Hence, if we denote the complexity of Yen’s k-shortest path algorithm

by CkSPA, the worst case complexity of the outer for loop starting from Line 9 is

P (CkSPA + κΘ(P)). The while loop in Line 8 terminates when the size of the paths

with violations reduces to zero. Moreover, if the size of this list does not change for

κ iterations we terminate the while loop. The worst case of this while loop occurs

when the size of the list reduces just by one and this reduction occurs once in (κ− 1)

iterations since κ iterations without any change would cause the loop to terminate.

Therefore, we need to multiply P (CkSPA + κΘ(P)) with (κ − 1)P , which results in

P 2κ(CkSPA + κΘ(P)).

The worst case complexity of Yen’s k-shortest path algorithm is CkSPA = Θ(κV (E+

V log V)) [31]. When we plug in κ = ⌈E/V ⌉ × P and CkSPA = Θ(κV (E + V log V)),

the worst case complexity of path correction phase becomes:

P 2κ(Θ(κV (E + V log V)) + Θ(κP)) = P 3(E/V)(Θ(EP (E + V log V)) + Θ((E/V)P 2))

= Θ(E2P 4((E + V log V)/V)) + Θ((E2P 5)/V 2)

= Θ(E2P 4(E/V + log V + P/V 2))

Relay Node Selection Phase: The worst case of this phase occurs when each source

and destination pair has its own distinct relay node and it does not share the relay

node with any other pair. In other words, in the worst case, the while loop in Line 9 of

the relay selection phase (see Figure 4.6) executes P times. The first step of this phase

is the calculation of the relay metric for the nodes that reside on the overlay paths.

This step, i.e. the for loop in lines 5-7, has Θ(V) complexity. Because in each iteration

we recalculate the relay metric in Line 16 for all nodes on the overlay graph, the while

loop in line 9 has Θ(V) complexity for each iteration. Since we have P iterations of the

while loop, in the worst case, complexity of the while loop becomes Θ(PV). Therefore,

the overall worst case complexity is Θ(PV).

36

The worst case complexity of MCOPA is Θ(PE log V)+Θ(E2P 4(E/V +log V +

P/V 2)) + Θ(PV), which reduces to Θ(E2P 4(E/V + log V + P/V 2)). For MCOPA−

LOA, the worst case complexity is Θ(P 2E log V) + Θ(E2P 4(E/V + log V + P/V 2)) +

Θ(PV), where the middle term dominates and the complexity becomes the same as in

MCOPA. Therefore, we conclude that both heuristics have Θ(E2P 4(E/V + log V +

P/V 2)) worst case complexity. Furthermore, for dense graphs where E = Θ(V 2), the

worst case complexity becomes Θ(P 4V 5 + P 5V 2) for both heuristics.

37

5. NUMERICAL EVALUATION

In this chapter, the main objective of experiments is to comparatively evaluate

the performance of MCOPA, MCOPA − LOA and CPLEX solutions under various

parameter settings. In particular, we compare average energy consumption values and

number of feasible outputs of two heuristics and CPLEX output. We implemented

both heuristics in Java. ILP formulation in (3.1)-(3.20) is also implemented in Java

with CPLEX Java library.

In order to evaluate the performance of heuristics and compare them with the

CPLEX output, it is required to generate input graphs and energy consumption values

that are similar to the real life situation. We first generate input graphs and afterwards,

we set the link and node energy consumption values on input graphs.

5.1. Input Graph Generation

In our experiments, we basically make use of two topology generators. The first

one is a random generator that implements Waxman’s topology model [32, 33]. The

second topology generator we use is INET topology generator [34], which reflects the

characteristics of the Internet more closely than the Waxman generator [27]. Moreover,

INET provides an AS-level Internet topology, whereas Waxman provides a router level

topology.

Waxman’s topology model [33] is a commonly used probabilistic model to gen-

erate Internet-like graphs representing the networks that resemble the ones on the

Internet. In the original formulation by Waxman, such graphs have a pre-determined

number N of nodes, which are uniformly distributed over a square coordinate grid.

An n × n grid indicates N = n2, where we say that the domain size is n × n. The

probability of the existence of a link between the generic nodes u and v in the Waxman

model is as follows:

38

P (u, v) = αe−d/(βL) (5.1)

Here, d is the Euclidean distance between nodes u and v, L is the maximum

possible distance between two generic nodes, and α and β are fractional parameters in

the (0, 1] range. A higher α indicates a higher number of links and leads to a denser

output graph. On the other hand, a higher β value indicates that the density of long

links is higher than the density of the short links.

Waxman’s topology model is popular for generating router level Internet topolo-

gies. In our experiments with Waxman model, we take β = 0.2 and α varying between

0.1 and 1.0. We change α to obtain dense or sparse graphs and observe the impact of

graph density on the performance of our heuristic algorithms.

INET topology generator provides graphs that have topologies very close to the

AS-level topology of the Internet. Therefore, we prefer INET for our second set of

experiments. INET generator takes as input the number of nodes, which should not

be less than 3037. This number represents the number of ASs on the Internet in

November 1997. Another important parameter for INET is the fraction of degree-one

nodes, which slightly affects the density of the graph.

After generating the graph structure, the second step is to determine the link and

node energy consumption values. Total energy consumption of the network consists

of the energy consumption of the nodes and links. In order to assign realistic energy

consumption values to links and nodes, we adopt the power benchmarking model pre-

sented in [8]. We consider a system consisting of network switches, some of which can

be put into sleep mode. Moreover, the links between switches are Ethernet cables and

as in [35], they can be put into sleep mode if both ends of the link can be put into

sleep mode.

39

Energy consumption caused by cables can be ignored since cables are not active

network elements; physically removing the cables from network has little effect on total

energy consumption [36]. Therefore, we ignore the impact of cables in terms of energy

consumption. On the other hand, while disconnecting the cable, if the associated

network ports are also put into sleep mode, total energy consumption might decrease.

Hence, we assume that the energy cost of a link is associated with the network ports

where the link is connected. In summary, the energy consumption of a link is simply

the sum of the energy consumptions of the associated network ports.

As mentioned by [37] and [8], total power consumption of a switch depends on

the power consumption of the chassis, linecards and active ports on the linecards.

Depending on the type of the switch, ports on the linecards of the switch can be put

into sleep mode. A switch might have several linecards which can be put into sleep

mode individually. However, for the sake of simplicity, we assume in our simulations

that individual linecards cannot be put into sleep mode. For this reason, for a switch

that is powered on, we add the power consumption of all linecards to the chassis power

consumption of the switch. The work in [37] makes the same assumption for both

Rack switches and Tier 2 switches; i.e. they include the cost of all linecards while

computing the power consumption of the switch. In other words, in our simulations, a

linecard is put into sleep mode only if the switch is completely put into sleep mode. We

use a simplified version of the switch configuration described in [37]. We assume that

there are two types of switches. Type 1 switch has one linecard with 48 ports and 146

Watts of chassis power consumption including the consumption of the linecard. Type

2 switch has six linecards, each having 24 ports and 39 Watts of power consumption.

We include the cost of linecards to the cost of the chassis of Type 2 switch, which

is 54 Watts. Hence, the chassis power consumption of Type 2 switch becomes 288

watts. In our simulations, if a node has 48 or less incident links, we set the node as

Type 1. Otherwise, we set the node as Type 2 and assign energy consumption values

accordingly. As in [37], we assume that the linespeed of a port can be 10 Mbps, 100

Mbps or 1 Gbps. When we generate the input graphs, these three possible values for

the linespeeds of the ports are equally likely. Power consumption values of the ports

having the same linespeed are different for Type 1 and Type 2 switches. Typically,

40

Table 5.1. Power consumption of chassis and port types used in our experiments.

Configuration Type 1 (in Watts) Type 2 (in Watts)

Powerchassis 146 288

Power10Mbps port 0.12 0.42

Power100Mbps port 0.18 0.48

Power1Gbps port 0.87 0.9

ports of Type 2 switches have higher power consumption. Detailed description of

power consumption values can be seen in Table 5.1.

Energy consumption of a link is associated with the power consumption of the

ports at the ends of the links. Therefore, the energy consumption of a 10 Mbps link is

0.24 Watts and 0.84 Watts, if both ends are Type 1 and Type 2, respectively. Likewise,

energy consumption of a 10 Mbps link with one end Type 1 and the other end Type 2

is 0.54 Watts. When a link is put into sleep mode, we assume that both ports are put

into sleep mode. If all ports of a switch are in sleep mode, the switch is also in sleep

mode. If a switch does not have a sleep mode, none of its ports can be put into sleep

mode. Recall that our problem formulation takes these facts into consideration.

5.2. Simulation Results

In all experiments, we consider the case where the relay cost of each node is

equal to each other; i.e., all relay costs are equal to one. Since there is one relay node

for each communication pair, r, which is the upper bound (threshold value) for the

total relay cost, equals P , which is the total number of communication pairs in our

experiments. Moreover, we set the underlay path for each communication pair as the

path with minimum number of hops.

In our first set of experiments, we execute our heuristic algorithms and the

CPLEX implementations of our ILP formulation with 100 randomly generated input

graphs that are based on the Waxman topology. We then comparatively evaluate their

performance in terms of average energy consumption and number of feasible solutions.

41

We evaluate the impact of the following parameters: α, η, probability of having sleep

mode, number of pairs, and domain size.

To begin with, the parameter α, which takes values in the range (0, 1], is the link

density parameter that linearly affects the probability of the existence of a link between

two arbitrary nodes in Waxman topology. Therefore, a higher α implies an input graph

with higher density. In order to evaluate the impact of kp, we define the parameter

η = kp/Length(up), where up is the underlay path for pair p. η takes values in the

range [0, 1] and represents the proportion of links on an overlay path that are allowed

to be shared with underlay paths and other overlay paths. This way, it basically helps

us to determine the upper limit kp value for a pair p. While giving a kp value as an

input to the algorithms, it is more realistic that kp takes a value proportional to the

length of the underlay path of the pair p rather than being constant for all pairs.

The relationship between η and kp is as follows: kp = η×Length(up), where up is

the underlay path for pair p. Probability of having a sleep mode is a value in the [0, 1]

range and related only to the nodes. If a node has a sleep mode, it can be put into sleep

mode if none of its ports are currently used; i.e., all of its ports are inactive. Number

of pairs is a parameter that might make it difficult to find a feasible solution. It might

also cause the average energy consumption to increase. Table 5.2 shows the details of

the experimental setup related to Waxman topology generator. In our experiments,

in order to test the effect of a parameter, as the parameter under consideration takes

values in the range specified in Table 5.2, we set the other parameters to their middle

values. This way, we make sure that only the parameter under consideration has an

effect on test results. The middle values for α, η, and probability of sleep mode are

0.5, while the middle values for the number of pairs and domain size are 50 and 25,

respectively. For example, when we test the effect of α, we set η and probability of

sleep mode to 0.5 and run the tests with 50 pairs on a graph that is produced by

Waxman generator on a 25 by 25 domain size. The same logic applies when we test

other parameters.

We illustrate in Figure 5.1 the results of the experiments that are related to the

42

Table 5.2. Parameter values used in experiments with Waxman topology.

Parameter Value Range

α {0.1, 0.2, · · · , 1.0}

η {0.1, 0.2, · · · , 1.0}

Probability of Sleep Mode {0.1, 0.2, · · · , 1.0}

Number of Pairs {10, 20, 30, · · · , 90, 100}

Domain Size {10 × 10, 20 × 20, 30× 30, 40× 40, 50× 50}

first parameter in Table 5.2. Recall that α is a parameter that directly affects the

density of the input graph; hence, a higher α might help the algorithms to find more

feasible solutions. We define the overlay graph as the 2-tuple consisting of the set of

links on overlay paths and the set of nodes on overlay paths. Nodes and links that

cannot be put into sleep mode are also included in these sets since they contribute

to the energy consumption irrespective of whether they are on the overlay paths. In

fact, the energy consumption of the overlay graph that we just defined corresponds

to the objective function in our ILP formulation. We compare in Figure 5.1a the

performance of our heuristics and CPLEX in terms of the average energy consumption

of the resulting overlay graph. As expected, the average energy consumption becomes

lower as α gets closer to 1.0. Since a higher α value causes a denser input graph, it

becomes easier to find a shorter alternative path, leading to more feasible solutions

on the average. This situation causes the total energy consumption of the overlay

graph to decrease. The energy consumption does not decrease any more after α = 0.7.

The reason for this behavior is as follows: the input graph becomes dense enough

after α = 0.5; hence, adding excessive links does not change the length or the total

energy consumption of the overlay paths. Another fact that can be inferred from

Figure 5.1a is that in terms of energy consumption, MCOPA has better performance

than MCOPA − LOA until α = 0.5 in terms of energy consumption. There are

basically two reasons for this behaviour. First, a denser graph is more suitable to

find alternative paths that are disjoint from the underlay paths. Therefore, overlay

paths found by MCOPA − LOA are likely to be shorter for dense graphs compared

to sparse graphs. Second, pruning of the nodes having sleep mode causes MCOPA

to produce longer paths, which in turn leads to more energy consumption. In case of

43

sparse graphs, since the primary objective of MCOPA− LOA is disjointness, it finds

longer and more costly overlay paths compared to MCOPA. Therefore, we conclude

that MCOPA−LOA performs better than MCOPA for dense graphs. Furthermore,

the results of MCOPA−LOA gets very close to CPLEX results as the graph becomes

denser. On the other hand, Figure 5.1b shows the comparison of our heuristics and

CPLEX solutions in terms of the number of feasible solutions. As expected, CPLEX

always gives the highest number of feasible solutions. Besides, MCOPA−LOA always

finds more feasible solutions than MCOPA until α = 0.7. Starting from α = 0.7, two

heuristics find the same number of feasible solutions. Therefore, MCOPA−LOA has

closer performance to CPLEX compared to MCOPA in terms of satisfying the ILP

constraints.

We investigate in Figure 5.2 the effect of η. As we mentioned before, η determines

the kp value for a pair p. A lower value of η means that the overlay paths have less

overlapping edges with the underlay and other overlay paths. As η increases, there is

a nearly quadratic decrease in the average energy consumption. This decrease is more

apparent on the curve belonging to CPLEX output. This result can be explained as

follows: As η increases, kp values also increase, allowing more shared links between

overlay and underlay paths. Therefore, the produced overlay paths are shorter; hence,

the energy consumption of the overlay graph is smaller. MCOPA − LOA has lower

average energy consumption than MCOPA until η is 0.6. The reason for this behavior

is as follows: MCOPA−LOA aims to find maximally disjoint overlay paths regardless

of kp values. Even if η is very low, MCOPA − LOA already finds disjoint paths

which satisfies the constraints related to kp. As η gets higher, MCOPA−LOA might

find unnecessarily disjoint paths, while MCOPA finds a feasible solution with more

shared links. Due to this behavior, MCOPA− LOA has higher energy consumption

than MCOPA for η values greater than 0.6. As for the number of feasible solutions,

MCOPA−LOA always finds more feasible solutions thanMCOPA, which can be seen

in Figure 5.2b. Also in Figure 5.2b, as η gets higher, the number of feasible solutions

increases. Because higher η values lead to higher kp values, higher number of shared

edges does not create constraint violations. Therefore, the number of feasible solutions

found by heuristics and CPLEX increases.

44

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

4
x 10

4

α

A
ve

ra
ge

 E
ne

rg
y

C
on

su
m

pt
io

n
(W

at
ts

)

MCOPA
MCOPA−LOA
CPLEX

(a) Average energy consumption with varying α

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70

80

90

100

α

N
um

be
r

of
 F

ea
si

bl
e

S
ol

ut
io

ns

MCOPA
MCOPA−LOA
CPLEX

(b) Number of feasible solutions with varying α

Figure 5.1. Comparison of MCOPA, MCOPA-LOA and CPLEX outputs for varying

α with Waxman topology.

45

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

4
x 10

4

η

A
ve

ra
ge

 E
ne

rg
y

C
on

su
m

pt
io

n
(W

at
ts

)

MCOPA
MCOPA−LOA
CPLEX

(a) Average energy consumption with varying η

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70

80

90

100

η

N
um

be
r

of
 F

ea
si

bl
e

S
ol

ut
io

ns

MCOPA
MCOPA−LOA
CPLEX

(b) Number of feasible solutions with varying η

Figure 5.2. Comparison of MCOPA, MCOPA-LOA and CPLEX outputs for varying

η values with Waxman topology.

The ratio of nodes that can be put into sleep mode is also an important parameter

that has impact on the average energy consumption of the resulting overlay graphs. We

investigate in Figure 5.3a the average energy consumption resulting from two heuristics

and CPLEX solutions. We see that having more nodes that have sleep mode causes

a linear decrease on the average energy consumption. This behavior is expected since

a higher ratio of nodes having sleep mode means saving energy from more nodes and

46

links that are not being used. In Figure 5.3a, MCOPA and MCOPA−LOA give akin

average energy consumption; however, the average energy consumption of MCOPA is

slightly lower than MCOPA−LOA. The reason for this difference is that MCOPA−

LOA prunes in path selection phase the nodes having sleep mode, whereas MCOPA−

LOA does not prune these nodes and construct paths by selecting nodes regardless

of their capability of being put in sleep mode. Pruning the nodes with sleep mode

means that the resulting overlay paths prefer the nodes that do not have a sleep mode.

Notice that nodes that do not have a sleep mode already contribute to the overall energy

consumption irrespective of whether any overlay path uses them. Preferring these nodes

without sleeping capability increases the possibility of the nodes that actually have a

sleep mode to transition to the sleeping state and hence save from energy consumption.

However, beginning from the probability value of 0.7, MCOPA−LOA leads to lower

energy consumption. The reason for this situation is as follows: As the number of

nodes having sleep mode increases, MCOPA prunes more nodes at the path selection

phase. As the number of nodes decrease on the graph, the graph becomes sparser,

which causes the alternative paths found in the path correction phase of MCOPA to

be longer, resulting in higher energy consumption. Figure 5.3b shows the number of

feasible solutions with varying probability of sleep mode. This figure shows us that

the ratio of nodes having sleep mode does not have much impact on the number of

feasible solutions found by CPLEX and MCOPA− LOA. However, MCOPA has a

decreasing trend in terms of the number of feasible solutions. Since MCOPA prunes

the nodes having sleep mode, it becomes more difficult to find alternative paths for an

overlay path having constraint violation. This behaviour causes less feasible solutions

for MCOPA.

47

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

2.6

2.8

3

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6
x 10

4

Probability of A Node to Have Sleep Mode

A
ve

ra
ge

 E
ne

rg
y

C
on

su
m

pt
io

n
(W

at
ts

)

MCOPA
MCOPA−LOA
CPLEX

(a) Average energy consumption with varying sleep mode

probability

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70

80

90

100

Probability of A Node to Have Sleep Mode

N
um

be
r

of
 F

ea
si

bl
e

S
ol

ut
io

ns

MCOPA
MCOPA−LOA
CPLEX

(b) Number of feasible solutions with varying sleep mode

probability

Figure 5.3. Comparison of MCOPA, MCOPA-LOA and CPLEX outputs for varying

sleep mode probability with Waxman topology.

48

0 10 20 30 40 50 60 70 80 90 100 110
1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

x 10
4

Number of Pairs

A
ve

ra
ge

 E
ne

rg
y

C
on

su
m

pt
io

n
(W

at
ts

)

MCOPA
MCOPA−LOA
CPLEX

(a) Average energy consumption with varying number of

pairs

0 10 20 30 40 50 60 70 80 90 100 110
0

10

20

30

40

50

60

70

80

90

100

Number of Pairs

N
um

be
r

of
 F

ea
si

bl
e

S
ol

ut
io

ns

MCOPA
MCOPA−LOA
CPLEX

(b) Number of feasible solutions with varying number of

pairs

Figure 5.4. Comparison of MCOPA, MCOPA-LOA and CPLEX outputs for varying

number of pairs with Waxman topology.

We show in Figures 5.4a and 5.4b the impact of varying the number of pairs while

the graph size and density stay constant. Number of pairs has a nearly linear effect

on heuristics and CPLEX results in terms of average energy consumption. However,

the gap between MCOPA and MCOPA − LOA increases as the number of pairs

becomes higher. For lower values, we see that MCOPA− LOA results in less energy

49

consumption than MCOPA. Both algorithms perform close to CPLEX solutions in

terms of average energy consumption. Figure 5.4b shows the performance in terms

of the number of feasible solutions. MCOPA − LOA mostly leads to higher number

of feasible solutions. Nevertheless, as the number of pairs increases, the number of

feasible solutions produced by both heuristics become very close to each other. This

behavior is caused by the difficulty of finding disjoint overlay paths for higher number

of source and destination pairs.

5 10 15 20 25 30 35 40 45 50 55

0.5

1

1.5

2

2.5

x 10
5

n for nxn domain size

A
ve

ra
ge

 E
ne

rg
y

C
on

su
m

pt
io

n
(W

at
ts

)

MCOPA
MCOPA−LOA
CPLEX

(a) Average energy consumption with varying domain size

5 10 15 20 25 30 35 40 45 50 55
0

10

20

30

40

50

60

70

80

90

100

n for nxn domain size

N
um

be
r

of
 F

ea
si

bl
e

S
ol

ut
io

ns

MCOPA
MCOPA−LOA
CPLEX

(b) Number of feasible solutions with varying domain size

Figure 5.5. Comparison of MCOPA, MCOPA-LOA and CPLEX outputs for varying

graph domain size with Waxman topology.

50

Figure 5.5 displays the effect of the domain size while all other parameters stay

constant. The domain size for Waxman topology is related to the size of the input

graph. Figure 5.5a shows that the average energy consumption increases quadratically

as the domain size increases. As the network gets larger, the hop count of the paths

between the source and destination pairs also gets larger. Therefore, the average energy

consumption increases. Furthermore, as the number of nodes in the network gets larger,

the number of nodes that cannot be put into sleep mode also gets larger. Hence, this

increase also contributes to the increase in the average energy consumption. Moreover,

we see in Figure 5.5b that the number of feasible solutions increases very fast and

becomes 100 for both heuristics and CPLEX as domain size becomes 40 × 40. The

reason for this behavior is that the enlargement of the network creates more possibilities

for alternate paths and decreases the overlap between overlay and underlay paths.

Again, MCOPA − LOA has better performance than MCOPA in terms of finding

feasible solutions.

In the second set of experiments, we evaluate the performance of our heuristics

on the input graphs that are generated by INET topology generator. We again run

our experiments on 100 randomly generated input graphs. Note that the most basic

difference between INET and Waxman generators is that Waxman generates router

level topologies while INET generates AS-level topologies. Furthermore, while it is

possible to produce dense graphs with Waxman, INET generates proportionally sparse

graphs with nearly 2N links for N nodes given by the user. While generating graphs

with INET, we give the number of nodes, the fraction of degree one nodes and the seed

number as input. We choose the fraction of degree one nodes to be 0.1 because we

aim not to generate very sparse graphs since observing the actual performance of our

heuristics would be extremely difficult in such a situation. As in Waxman experiments,

we compare the average energy consumption and number of feasible solutions of our

heuristic algorithms and CPLEX solutions. We evaluate the impact of the following

parameters: η, probability of having sleep mode, number of pairs, and number of nodes.

Note that the only parameter that is different from the ones in Waxman experiments

is the number of nodes in the input graph. INET enables user control on the number

of nodes while in Waxman we can not give this parameter as an input; i.e., we cannot

51

Table 5.3. Parameter values used in experiments with INET topology generator.

Parameter Value Range

η {0.1, 0.2, · · · , 1.0}

Probability of Sleep Mode {0.1, 0.2, · · · , 1.0}

Number of Pairs {50, 60, 70, · · · , 130, 140}

Number of Nodes {3037, 3500, 4000, · · · , 6000}

predetermine the number of nodes in Waxman generator. Table 5.3 shows the details

of the experimental setup related to the INET topology generator.

52

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
8

8.1

8.2

8.3

8.4

8.5

8.6

8.7

8.8

8.9

9
x 10

4

η

A
ve

ra
ge

 E
ne

rg
y

C
on

su
m

pt
io

n
(W

at
ts

)

MCOPA
MCOPA−LOA
CPLEX

(a) Average energy consumption with varying η

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70

80

90

100

η

N
um

be
r

of
 F

ea
si

bl
e

S
ol

ut
io

ns

MCOPA
MCOPA−LOA
CPLEX

(b) Number of feasible solutions with varying η

Figure 5.6. Comparison of MCOPA, MCOPA-LOA and CPLEX outputs for varying

η values with Inet topology generator.

Figure 5.6 displays the effect of η when we run heuristics and CPLEX on INET

generated graphs with 4500 nodes and 100 pairs. We see in Figures 5.6a and 5.6b that

changing η has the same effect as in Waxman experiments. When η increases, we have

more tolerance for overlapping edges and hence, an overlay path does not need to prefer

a longer path to avoid sharing links with other paths. This situation enables the overlay

paths to be shorter and explains the decrease in the average energy consumption in

53

Figure 5.6a. Furthermore, there is an important difference between INET results and

Waxman results. In Waxman experiments with varying η, we have obtained feasible

solutions after η is 0.1, while in INET experiments we start to obtain feasible solutions

after η is 0.3. This behavior can be explained by the sparsity of INET generated graphs.

Moreover, Inet’s hierarchical tree structure causes the number of shared edges to be

higher compared to Waxman topology. When the number of shares edges is higher,

neither of the algorithms can find feasible solutions in case of lower η values. An

example of INET’s hierarchical structure can be seen in [27], where there are multiple

trees which are connected through their root nodes. Root nodes have higher degree,

whereas leaf nodes have degree one in this structure. When the source and destination

pairs are on leaf nodes or very close to the leaf nodes, links starting from these nodes

inevitably overlap with underlay and other overlay paths. These overlaps also cause

the performance gap between our heuristics to be lower in terms of finding feasible

solutions. Since the overlap is higher and inevitable compared to Waxman, heuristics

have a closer performance in Figure 5.6b compared to the results in Figure 5.2b.

54

0 0.2 0.4 0.6 0.8 1
2

4

6

8

10

12

14
x 10

4

Ratio Of Sleep Mode

A
ve

ra
ge

 E
ne

rg
y

C
on

su
m

pt
io

n
(W

at
ts

)

MCOPA
MCOPA−LOA
CPLEX

(a) Average energy consumption with varying sleep mode

probability

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

70

80

90

100

Ratio Of Sleep Mode

N
um

be
r

of
 F

ea
si

bl
e

S
ol

ut
io

ns

MCOPA
MCOPA−LOA
CPLEX

(b) Number of feasible solutions with varying sleep mode

probability

Figure 5.7. Comparison of MCOPA, MCOPA-LOA and CPLEX outputs for varying

sleep mode probability with Inet topology generator.

Figure 5.7 displays the impact of the probability of having sleep mode on the

performance of our heuristics and CPLEX solutions. Figure 5.7a shows that the aver-

age energy consumption decreases as the probability of sleep mode increases because

higher number of nodes can save from power by means of the sleep state. This de-

55

crease is higher compared to the Waxman tests in Figure 5.3a because Waxman tests

are executed with 400 nodes and 50 pairs, while INET tests here are executed with

4500 nodes and 100 pairs. Therefore, sleep mode probability has more effect on the

average energy consumption in INET topologies. Figure 5.7b displays the number of

feasible solutions with varying sleep mode probability. This probability does not have a

significant impact except that it causes a decrease in MCOPA starting from 0.3. The

reason for this behavior is the pruning of the nodes having sleep mode at the beginning

steps of MCOPA.

56

40 50 60 70 80 90 100 110 120 130 140 150

7.8

8

8.2

8.4

8.6

8.8

9

9.2

9.4
x 10

4

Number of Pairs

A
ve

ra
ge

 E
ne

rg
y

C
on

su
m

pt
io

n
(W

at
ts

)

MCOPA
MCOPA−LOA
CPLEX

(a) Average energy consumption with varying number of

pairs

40 50 60 70 80 90 100 110 120 130 140 150
0

10

20

30

40

50

60

70

80

90

100

Number Of Pairs

N
um

be
r

of
 F

ea
si

bl
e

S
ol

ut
io

ns

MCOPA
MCOPA−LOA
CPLEX

(b) Number of feasible solutions with varying number of

pairs

Figure 5.8. Comparison of MCOPA, MCOPA-LOA and CPLEX outputs for varying

number of pairs with Inet topology.

Figure 5.8 shows the impact of increasing number of communication pairs on

INET generated networks. We vary the number of pairs between 50 and 140. Figure

5.8a shows that average energy consumption linearly increases when the number of pairs

increases. The gap between MCOPA and MCOPA− LOA increases as the number

of pairs increases because MCOPA − LOA aims to find paths as disjoint as possible

57

and this behavior increases the path lengths and average energy consumption. Figure

5.8a shows the number of feasible solutions with varying number of pairs. In general,

MCOPA− LOA gives higher number of feasible solutions than MCOPA. However,

the gap between two heuristics decreases with higher number of pairs because finding

disjoint paths becomes more difficult as the number of pairs increases.

3000 3500 4000 4500 5000 5500 6000

4

5

6

7

8

9

10

11

12

13

x 10
4

Number of Nodes

A
ve

ra
ge

 E
ne

rg
y

C
on

su
m

pt
io

n
(W

at
ts

)

MCOPA
MCOPA−LOA
CPLEX

(a) Average energy consumption with varying number of

nodes

3000 3500 4000 4500 5000 5500 6000
0

10

20

30

40

50

60

70

80

90

100

Number Of Nodes

N
um

be
r

of
 F

ea
si

bl
e

S
ol

ut
io

ns

MCOPA
MCOPA−LOA
CPLEX

(b) Number of feasible solutions with varying number of

nodes

Figure 5.9. Comparison of MCOPA, MCOPA-LOA and CPLEX outputs for varying

number of nodes with Inet topology.

58

Unlike Waxman, the number of nodes is under user’s control in INET topology

generator. Figure 5.9 displays the impact of increasing number of nodes while all other

parameters are constant. Recall that INET topology generator runs when the number

of nodes is greater than or equal to 3037. Starting from 3037, we increase the number

of nodes until 6000. Figure 5.9a shows that average energy consumption increases

linearly as the number of nodes increases. The reason is the following: INET places

the nodes on a 10,000 by 10,000 plane, which has the default size. When the number of

nodes increases, network density does not change as long as the fraction of degree one

nodes does not change. Instead, the trees in the tree structure of the INET generated

network enlarge and this situation increases the probability of source and destination

nodes to be further away from each other. This behavior causes the paths to become

longer, which explains the linear increase in the average energy consumption. Another

important reason for this behavior is that we do not change the ratio of nodes having

sleep mode. When the number of nodes increases, the number of nodes and links

that does not have a sleep mode also increases and this increase leads to extra energy

consumption of the resulting overlay graph. Figure 5.9b shows the number of feasible

solutions when the number of nodes increases. There is a fast increase in the number

of feasible solutions until some point where it gets slower. The initial fast increase

is due to the fact that as the number of nodes increases, the number of shared links

tends to get lower. However, after some point the rate of increase decreases. Here,

again the reason is that adding extra nodes to the graph using INET does not make

the graph denser; it only enlarges the tree structure of the graph. The hierarchical

tree structure of INET topology is responsible for this behavior. A sample structure

of INET topology is given in [27], which explains that this structure might cause some

inevitable shared links between paths. When the source and destination nodes are on

different trees of INET topology, a bottleneck occurs where the trees are connected. All

paths whose source and destination nodes are on different trees tend to use the same

nodes where this connection occurs. This situation has a counter-effect on finding

feasible solutions since these kinds of paths have shared links that cannot be corrected

with an alternative path. This phenomenon explains why the rate of increase of the

number of feasible solutions is not as high as before. The performance gap between

heuristics gets smaller with higher number of nodes because the number of pairs is

59

constant and as the number of nodes increases, the number of shared links tends to

get lower. Therefore, heuristics perform better and more closely.

To sum up, MCOPA−LOA performs in general better than MCOPA in terms

of finding feasible solutions. However, the same observation is not true when we com-

pare them in terms of average energy consumption; in some cases, MCOPA gives

lower energy consumption than MCOPA− LOA. For instance when the input graph

is sparse, the number of pairs is very high or η is very high, i.e., kp values are high,

MCOPA yields lower average energy consumption than MCOPA− LOA. Through-

out our experiments we have seen that both heuristics perform very close to CPLEX

in terms of average energy consumption. We have also observed that MCOPA−LOA

yields more feasible solutions than MCOPA. Furthermore, both heuristics have low

computational complexity, which makes them suitable for finding energy efficient over-

lay paths. Note also that the centralized nature of our proposed heuristic algorithms

is in line with the recently emerging software defined networking paradigm [38], where

data and control plane are separated such that decisions such as routing can be made

in a logically centralized manner.

60

6. CONCLUSION

Overlay routing is an important concept for wired networks since it provides a

more reliable routing mechanism. It supports and maintains the connection between

source and destination pairs by finding alternative paths and relay nodes for each pair.

Energy efficiency of the overlay network is as crucial as the energy efficiency of the

underlying routing scheme. To the best of our knowledge, this study is the first in

the literature that considers both energy efficiency and relay node selection on overlay

networks.

In this study, we have investigated overlay routing on wired networks in terms

of energy efficiency and relay selection. We have formulated an optimization problem

called JORRA (Joint Overlay Routing and Relay Assignment) as an integer linear

program, where the goal is to minimize the energy consumption. We have implemented

our proposed formulation by using the optimization software CPLEX . Moreover, we

have proved that JORRA is APX-Hard in addition to being NP-Hard in the strong

sense even in its special cases. For this reason, we have designed two computationally

efficient heuristic algorithms, namelyMCOPA andMCOPA−LOA. MCOPA−LOA

is an improved version of MCOPA and has a higher computational complexity. We

have made experiments by using Internet like network topologies and demonstrated

that our proposed algorithms provide very close performance to the CPLEX solutions.

Furthermore, we have observed thatMCOPA−LOA finds more feasible solutions than

MCOPA.

As a future work, we plan to add extra constraints to our integer linear pro-

gramming formulation such that each link has a specific upper limit for the number

of overlay paths that can use it. This way, heterogeneity in the reliability aspects of

different links can be addressed. We also plan to propose a distributed algorithm for a

distributed environment where a centralized server having all information about energy

consumption values and underlay paths does not exist. In such a scenario, we plan to

consider the case where there are some specialized servers in the network having local

61

information as well as the situation with an entirely distributed environment where

each node possesses information about its neighbouring nodes.

62

REFERENCES

1. Fisher, W., M. Suchara and J. Rexford, “Greening Backbone Networks: Reducing

Energy Consumption by Shutting off Cables in Bundled Links”, ACM SIGCOMM

Workshop on Green networking , pp. 29–34, 2010.

2. Gupta, M. and S. Singh, “Greening of the Internet”, ACM SIGCOMM , pp. 19–26,

2003.

3. Fettweis, G. and E. Zimmermann, “ICT Energy Consumption Trends and Chal-

lenges”, International Symposium on Wireless Personal Multimedia Communica-

tions , 2008.

4. Cha, M., S. Moon, C. Park and A. Shaikh, “Placing Relay Nodes for Intra-domain

Path Diversity”, IEEE International Conference on Computer Communications

(INFOCOM), Vol. 1, pp. 1–12, 2006.

5. Kodialam, M., T. Lakshman and S. Sengupta, “Efficient and Robust Routing of

Highly Variable Traffic”, Workshop on Hot Topics in Networks (HotNets-III), 2004.

6. Cohen, R. and D. Raz, “Cost Effective Resource Allocation of Overlay Routing

Relay Nodes”, IEEE International Conference on Computer Communications (IN-

FOCOM), pp. 3236–3244, 2011.

7. Christensen, K. and B. Nordman, “Reducing the Energy Consumption of Net-

worked Devices”, IEEE 802.3 Tutorial , 2005.

8. Mahadevan, P., P. Sharma, S. Banerjee and P. Ranganathan, “A Power Bench-

marking Framework for Network Devices”, Proceedings of the 8th International

IFIP-TC 6 Networking Conference, NETWORKING ’09, pp. 795–808, Springer-

Verlag, Berlin, Heidelberg, 2009.

63

9. Goma, E., M. Canini, A. Lopez Toledo, N. Laoutaris, D. Kostić, P. Rodriguez,

R. Stanojević and P. Yagüe Valentin, “Insomnia in the Access: or How to Curb

Access Network Related Energy Consumption”, ACM SIGCOMM , pp. 338–349,

2011.

10. Chiaraviglio, L., M. Mellia and F. Neri, “Reducing Power Consumption in Back-

bone Networks”, IEEE International Conference on Communications (ICC), pp.

1–6, 2009.

11. Bianzino, A., C. Chaudet, F. Larroca, D. Rossi and J. Rougier, “Energy-aware

Routing: A Reality Check”, IEEE GLOBECOM Workshops , pp. 1422–1427, 2010.

12. Giroire, F., D. Mazauric, J. Moulierac and B. Onfroy, “Minimizing Routing En-

ergy Consumption: From Theoretical to Practical Results”, IEEE International

Conference on Green Computing and Communications (GreenCom), pp. 252–259,

2010.

13. Chiaraviglio, L. and I. Matta, “GreenCoop: Cooperative Green Routing with En-

ergy Efficient Servers”, International Conference on Energy-Efficient Computing

and Networking , pp. 191–194, 2010.

14. Maxemchuk, N., “Dispersity Routing”, IEEE International Conference on Com-

munications (ICC), Vol. 75, pp. 41–10, 1975.

15. Savage, S., A. Collins, E. Hoffman, J. Snell and T. Anderson, “The End to End

Effects of Internet Path Selection”, ACM SIGCOMM Computer Communication

Review , Vol. 29, pp. 289–299, 1999.

16. Feamster, N., D. G. Andersen, H. Balakrishnan and M. F. Kaashoek, “Measuring

the Effects of Internet Path Faults on Reactive Routing”, ACM SIGMETRICS

Performance Evaluation Review , Vol. 31, pp. 126–137, 2003.

17. Patek, S., R. Venkateswaran and J. Liebeherr, “Enhancing Aggregate QoS Through

64

Alternate Routing”, IEEE Global Telecommunications Conference (GLOBECOM),

Vol. 1, pp. 611–615, 2000.

18. Savage, S., T. Anderson, A. Aggarwal, D. Becker, N. Cardwell, A. Collins, E. Hoff-

man, J. Snell, A. Vahdat, G. Voelker et al., “Detour: Informed Internet Routing

and Transport”, IEEE Micro, Vol. 19, No. 1, pp. 50–59, 1999.

19. Subramanian, L., I. Stoica, H. Balakrishnan and R. Katz, “OverQoS: Offering

Internet QoS Using Overlays”, Vol. 33, pp. 11–16, 2003.

20. Bianzino, A. P., C. Chaudet, D. Rossi and J.-L. Rougier, “A Survey of Green

Networking Research”, IEEE Communications Surveys & Tutorials , Vol. 14, No. 1,

pp. 3–20, 2012.

21. Nedevschi, S., L. Popa, G. Iannaccone, S. Ratnasamy and D. Wetherall, “Reduc-

ing Network Energy Consumption via Sleeping and Rate Adaptation”, USENIX

Symposium on Networked System Design and Implementation (NSDI), Vol. 8, pp.

323–336, 2008.

22. Bianzino, A. P., C. Chaudet, S. Moretti, J.-L. Rougier, L. Chiaraviglio and

E. Le Rouzic, “Enabling Sleep Mode in Backbone IP-networks: A Criticality-

driven Tradeoff”, EEE International Conference on Communications (ICC), pp.

5946–5950, 2012.

23. Bianzino, A. P., L. Chiaraviglio, M. Mellia and J.-L. Rougier, “GRiDA: GReen

Distributed Algorithm for Energy-efficient IP Backbone Networks”, Computer Net-

works , Vol. 56, No. 14, pp. 3219–3232, 2012.

24. Matsuura, H., “Energy-saving Routing Algorithm Using Steiner Tree”, Integrated

Network Management (IM 2013), 2013 IFIP/IEEE International Symposium on,

pp. 378–386, 2013.

25. Addis, B., A. Capone, G. Carello, L. Gianoli and B. Sanso, “Energy Management

65

Through Optimized Routing and Device Powering for Greener Communication

Networks”, Vol. PP, pp. 1–1, 2013.

26. Garroppo, R. G., S. Giordano, G. Nencioni and M. G. Scutella, “Mixed Integer

Non-Linear Programming Models for Green Network Design”, Computers & Op-

erations Research, Vol. 40, No. 1, pp. 273 – 281, 2013.

27. Roy, S., H. Pucha, Z. Zhang, Y. Hu and L. Qiu, “On the Placement of Infrastructure

Overlay Nodes”, Networking, IEEE/ACM Transactions on, Vol. 17, No. 4, pp.

1298–1311, 2009.

28. Ekici, F. and D. Gözüpek, “Joint Overlay Routing and Relay Assignment for Green

Networks”, Submitted to Computer Networks , 2014.

29. “IBM ILog CPLEX Optimizer”, http://www-

01.ibm.com/software/commerce/optimization/ cplex-optimizer/.

30. Yen, J. Y., “Finding the K Shortest Loopless Paths in a Network”, Management

Science, Theory Series , Vol. 17, pp. 712–716, 1971.

31. Martins, E. and M. Pascoal, “A New Implementation of Yen’s Ranking Loopless

Paths Algorithm”, Quarterly Journal of the Belgian, French and Italian Operations

Research Societies , Vol. 1, No. 2, pp. 121–133, 2003.

32. Kaj, I. and R. Gaigalas, “Waxman Random Network Topology Generator”,

http://www2.math.uu.se/research/telecom/software/stgraphs.html.

33. Waxman, B., “Routing of Multipoint Connections”, Selected Areas in Communi-

cations, IEEE Journal on, Vol. 6, No. 9, pp. 1617–1622, 1988.

34. Jin, C., Q. Chen and S. Jamin, “Inet: Internet Topology Generator”,

http://topology.eecs.umich.edu/inet.

35. Ricciardi, S., D. Careglio, U. Fiore, F. Palmieri, G. Santos-Boada and J. Solé-

66

Pareta, “Analyzing Local Strategies for Energy-efficient Networking”, Proceedings

of the IFIP TC 6th International Conference on Networking , NETWORKING’11,

pp. 291–300, 2011.

36. Sohan, R., A. Rice, A. W. Moore and K. Mansley, “Characterizing 10 Gbps Net-

work Interface Energy Consumption”, IEEE Conference on Local Computer Net-

works (LCN), pp. 268–271, 2010.

37. Mahadevan, P., P. Sharma, S. Banerjee and P. Ranganathan, “Energy Aware Net-

work Operations”, Proceedings of the 28th IEEE International Conference on Com-

puter Communications Workshops , INFOCOM’09, pp. 25–30, IEEE Press, Piscat-

away, NJ, USA, 2009.

38. Oliveira Silva, F., J. de Souza Pereira, P. Rosa and S. Kofuji, “Enabling Future In-

ternet Architecture Research and Experimentation by Using Software Defined Net-

working”, IEEE European Workshop on Software Defined Networking (EWSDN),

pp. 73–78, 2012.

