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ABSTRACT

EFFECT OF A CONSTANT HEAT SOURCE ON

EVAPORATIVE INSTABILITY IN A

SOLID-LIQUID-VAPOR SYSTEM

When a liquid underlies its own vapor, convection may arise due to evaporation

without gravity or surface tension gradient e�ects. This process is named as pure

evaporative convection. In this study, standard linear stability of a solid-liquid-vapor

system considering an evaporative liquid into its own vapor is investigated. A constant

heat source is considered in the solid part of the system and the e�ect of that heat

source on the linear stability is studied. Inputs to the system are the constant heat,

the depths of the solid, the liquid and the vapor and the physical parameters, which

are assumed to be constant while the output is the temperature di�erence at which

convection starts. The aim is to parametrically analyze this system and compare it

with a liquid-vapor system where the bottom plate is kept at constant hot and upper

plate at constant low temperature. In the study, the e�ect of the heat source number,

which appears in the energy balance equation for the solid part, the solid depth, the

liquid and the vapor �ows on the critical evaporation number and dispersion curve

are examined. It is concluded that the vapor �ow stabilizes the system while the heat

source number, the liquid �ow and the solid depth destabilize the system.
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ÖZET

KATI-SIVI-BUHAR S�STEM�NDE SAB�T ISI VEREN

KAYNA�IN BUHARLA�MA NEDEN�YLE OLU�AN

KARARSIZLIK ÜZER�NDEK� ETK�S�

Bir s�v� kendi buhar�n�n alt�ndayken, konveksiyon, yer çekimi ve yüzey geril-

imi de§isimi olmadan buharla³ma nedeniyle olu³abilir. Bu süreç sadece buharla³mayla

meydana gelen konveksiyon olarak adland�r�l�r. Bu çal�³mada, kat�-s�v�-buhar sistemi-

nin buharla³abilen bir s�v� ve onun kendi buhar� dü³ünülerek standart lineer stabilitesi

incelenmi³tir. Sistemin kat� bölümünde sabit bir �s� kayna§� dü³ünülmü³tür ve bu �s�

kayna§�n�n lineer stabilite üzerindeki etkisi ara³t�r�lm�³t�r. Sistemin girdileri sabit kabul

edilen �s�, kat�, s�v� ve buhar�n derinlikleri ve �ziksel parametrelerdir, d�³ar� verilen ise

konveksiyonun ba³lad�§� s�cakl�k fark�d�r. Amaç bu sistemi parametrik olarak analiz

etmek ve onu alttaki plakan�n s�cak olarak sabit tutuldu§u ve üstteki plakan�n daha

dü³ük s�cakl�kta sabit tutuldu§u s�v�-buhar sistemiyle kar³�la³t�rmakt�r. Çal�³mada,

kat� bölüm için enerji korunumu denkleminde gözüken �s� kayna§� say�s�n�n, kat� derin-

li§inin, s�v� ve buhar ak�³�n�n kritik buharla³ma say�s� üzerindeki etkisi incelenmi³tir.

Buhar ak�³� sistemi kararl� hale getirirken, �s� kayna§� say�s�n�n ve s�v� ak�³�n�n sistemi

karars�zla³t�rd�§� sonucuna var�lm�³t�r.
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1. INTRODUCTION

Evaporation and condensation are simply the change of liquid to the vapor state

and vice versa by using energy. This phenomenon may bring about an interfacial insta-

bility when the temperature drop goes beyond a critical value [1]. The abrupt waviness

of the previously �at surface at the interface describes this instability which a�ect the

�nal state of a product [2]. Many technologies such as the glass fabrication, surface

coating, the dry-eye syndrome, the drying of lake beds, thin-�lm evaporators and heat

pipe technology involve the evaporation process. In most of these applications, evap-

oration occurs with concentration gradient or temperature gradient or both. Merely,

the temperature gradient is taken into account in this study.

Previously, it was thought that the vapor does not a�ect the interfacial instability.

Initially, the model that does not contain the vapor dynamics was used in the previous

study of Burelbach et al. [3]. They studied the e�ects of the mass transfer rate in

the absence of thermodynamic equilibrium at the interface in thermocapillary, vapour

recoil, and rupture using non-linear instabilities. In the study, horizontal liquid layers

between the plates were used. The interface shape was obtained by long-wave evolution

equations. Recently, Oron [4] and Margerit et al. [5] used the same concept in their

systems. Margerit et al. analyzed their systems with 1.5 sided model. Liquid dynamics

and di�usion in the vapor is taken into consideration in this type of model.

There are three mechanisms that drive the convection: Rayleigh convection,

Marangoni convection and pure evaporation. Rayleigh convection which is also called

natural convection ensued from the density variation with respect to temperature in a

gravitational �eld. In Marangoni convection, variation of the surface tension with tem-

perature comes into the picture and it can occur without a gravitational �eld. Initially,

Pearson [6] expounded the e�ect of surface tension on cells stated in Bénard's study

and found that the surface tension causes cellular motion. The physics of the problem

convolutes if all the e�ects are incorporated even for a single-component system. In

this study, pure evaporation is taken into account for a pure liquid which contacts its
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own vapor in the absence of gravity and surface tension gradient. The best way to

acquire the gist of evaporative instability is neglecting all the e�ects such as gravity,

surface tension etc. and considering an evaporative liquid underlying its own vapor.

Fluid mechanics in the vapor phase is included in recent studies. Haut and

Colinet [7] investigated the e�ect of inert gas on Bénard instability which arises due

to surface tension in a system that liquid contacts its own vapor. They found that

the existence of inert gas improves the Bénard instability and comprehended that the

two layer system could be turned into a one layer system when the liquid layer is

thin enough. In addition, they introduced the heat transfer coe�cient by using Biot

number at the liquid-vapor interface. Ozen and Narayanan [8] used the linear stability

method to discern the e�ect of evaporative instability at the interface for �nite vapor

depth. They concluded that the vapor �ow stabilizes the system and liquid �ow has

counterproductive e�ect on stability. In their another study, they also collate the pure

marangoni with pure evaporation problem. The disparity between these two problems

is that the vapor has stabilizing e�ect and the transverse di�usion makes the crests

and troughs more wavy on pure evaporation problem. McFadden et al. [9] canvassed

the e�ect of entropy for the two phase system. They deduced that when the entropy of

the system dwindles, Marangoni e�ect mounts up in the system. Marangoni e�ect may

not come into being due to high pressure gradient with respect to the temperature.

That is to say that isothermal behavior of the system does not change; hence there

will be no driving force to be able to observe Marangoni e�ect. Huang and Joseph

[10] used incompressible pure liquid surmounted by its own vapor. In the system,

even though there was no convection, phase change appeared. They construed this

phenomenon as the condition of the temperature continuity could not be used when

high temperature di�erence is applied to the system. When the interface attains the

saturation temperature, they considered that there is no thermodynamic equilibrium at

the interface. Therefore, they used temperature discontinuity condition at the interface.

Figure 1.1 depicts the physical system of the study. There are three phases in the

system: solid, liquid and vapor. The solid part is taken to be copper as it is a widely

known conductive metal and water which contacts with its own vapor is taken as to be



3

the liquid. Straight, dashed wave lines and arrays in the �gure present the base, the

perturbed states and liquid-vapor motion owing to local evaporation and condensation,

respectively.The input variables are the constant physical properties, the �uid and the

solid depths and the heat �ux while the output is the critical temperature di�erence

at which convection starts. The only force that commences the evaporation is the

temperature di�erence. It should be noted that the pressure of the vapor at the upper

plate can be manipulated and reinforce the system to evaporate in the absence of

temperature di�erence. However, the change in the pressure at the upper plate is not

considered in this study. The system is analyzed by determining these input variables.

Figure 1.1. Sketch of the physical system.

Boundary conditions are another point of interest in evaporative instability. Es-

pecially, it is important to savvy how the interface temperature conditions are intro-

duced to the system. In general, the continuity of temperature is assumed together

with thermodynamic equilibrium condition. Shankar and Deshpande [11] found that

the condition for temperature continuity is not valid for polyatomic components as

they engender contamination at the interface and leads to temperature jump. Addi-

tionally, appliance of high temperature into the system causes the temperature jump

at the interface. They claimed that the continuum calculations of Plesset [12] is wrong

forasmuch as temperature jump was not considered in this study. The non-equilibrium

e�ects on interfacial Bénard-Marangoni instability which is a free surface con�guration

of Rayleigh-Bénard were studied by Margerit et al. [13]. On the other hand, Ward and

Stanga [14] came by with the continuity of the temperature at the interface as Shankar

and Deshpande [11]. They elucidated that the temperature discontinuity augments
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with the evaporation �ux. As a result, thermodynamic equilibrium stems from low

evaporation rate. In addition, lateral side walls were taken into consideration by Guo

and Narayanan [15]. They studied the linear and nonlinear analysis on evaporative in-

stability by taking the system open and closed. The closed system obviates the liquid

�ow much more than the vapor �ow.

Mechanical perturbation prompts local evaporation and local condensation at

the liquid-vapor interface for both systems, i.e. Figure 1.2 and Figure 1.3. Perturbed

interface and temperature pro�les are presented as dotted wave and dotted lines in

both �gures, respectively. The straight line at the liquid-vapor interface indicates the

interface temperature pro�le at the base state.

Figure 1.2. Heat input from the liquid side.

Figure 1.3. Heat input from the vapor side.

If the heat source is in the liquid side, a crest approaches to the heat sink and

is far away from the heat source. Consequently, the temperature gradient is smaller
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on the vapor side; therefore evaporation rate decreases on the crest which results in

the unstable interface. Another way to look at the same �gure is by the trough.

Evaporation rate increases at the trough which now becomes closer to the hot plate;

that enhances the instability. On the contrary, if the heat source is in the vapor side,

this time the trough is close to the heat sink and is distant from the heat source.

Similarly, one may also draw a conclusion on the stabilizing e�ect of evaporation by

considering the crest which approaches to the heat source where the evaporation rate

enhances thus �attens the interface. Additionally, these �gures denote that if the

interface is stable, it is stable for disturbances of all wave numbers or the other way

around if the interface is unstable, it is unstable for all disturbances.

If the �uid dynamics was reckoned without any other convective e�ects, the tem-

perature at the perturbed state would be the same as the temperature at the base

state. In the case of heat given from the liquid side, the temperature is higher at a

trough than a crest. Hence, the temperature is above the boiling point, evaporation

occurs at the trough while condensation takes place at the crest where the temperature

is colder than the boiling point. Since the evaporation and condensation take place

locally, upward �ow from the troughs and downward �ow from the crests arise. Once

again, instability is descried at every wave number.

Instability on the account of pressure di�erences are stabilized by the surface

tension in �uid dynamics problems. The surface tension manifests its e�ect mainly at

weak wave numbers. Nevertheless, the sophistication comes from the dependency of the

surface tension to the temperature. Furthermore, gravity causes another complication.

In the matter of light �uid at the bottom of a heavy �uid, the gravity may destabilize

the system if gravitational potential energy vanquishes the surface potential energy.

In this study, merely, the instability due to pure evaporation is considered. The

other e�ects such as temperature dependent surface tension and gravity are not taken

into consideration. In addition to all of these e�ects, the instability can occur even

in the �at interface due to the �uid motion but general case of de�ecting interface is

considered.
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2. MATHEMATICAL MODELLING

In the mathematical modeling part, initially, all governing equations which are the

momentum equations, the incompressibility conditions and the energy equations are

presented. Then, the boundary conditions and the interfacial equations are introduced.

All the equations are linearized and the base state and the perturbed state equations

are derived. Finally, the perturbed equations are expanded into the normal mode.

The base state of the system is merely a conductive state with a �at interface.

The linear stability of this base state subject to a temperature di�erence is investigated.

At that temperature di�erence, named the critical temperature di�erence, convection

starts.

2.1. Governing Equations

The Navier Stokes equations for incompressible and constant viscosity �uids are

given by,

ρL

(
∂vL

∂t
+ vL · ∇vL

)
= −∇pL + µL∇2vL (2.1)

and

ρG

(
∂vG

∂t
+ vG · ∇vG

)
= −∇pG + µG∇2vG (2.2)

Incompressibility conditions are given as,

∇ · vL = 0 (2.3)
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and

∇ · vG = 0 (2.4)

The problem is concerned with the temperature gradient which a�ects the energy

transport; thus, the energy equations are required in each phase. They are presented

as,

∂TS

∂t
= κS∇2TS +

Q̂S

ĈPS

(2.5)

∂TL

∂t
+ vL · ∇TL = κL∇2TL (2.6)

and

∂TG

∂t
+ vG · ∇TG = κG∇2TG (2.7)

In the aforementioned equations, v, p and T are the velocity, pressure and tem-

perature �elds, and subscripts S, L and G indicate the solid, liquid and vapor phases

respectively. The parameters, ĈP , Q̂S, g, ρ, µ and κ which denote speci�c heat ca-

pacity at constant pressure, mass rate of thermal energy production, gravity, density,

viscosity and thermal di�usivity, are assumed to be constants.

The above governing equations are solved subject to the following boundary and

initial conditions, at z = −HS, the bottom temperature is,

TS = Thot (2.8)

At z = −HL, the solid phase is considered impermeable and the condition is presented
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as,

vL · n = 0 (2.9)

where, n is the unit outward normal and is given by,

n =
−∂Z

∂x
i + k(

1 +
(
∂Z
∂x

)2
) 1

2

(2.10)

The derivation of the unit outward normal is given in Appendix A and i and k are

the unit vectors in x and z directions. The no-slip condition is used at the solid-liquid

interface as,

vL · t = 0 (2.11)

where t is the unit tangent vector and presented as,

t =
i + ∂Z

∂x
k(

1 +
(
∂Z
∂x

)2
) 1

2

(2.12)

The derivation of the unit tangent vector is given in Appendix A. The continuity of

the temperature is given as,

TS = TL (2.13)

Assuming Fourier's law for heat conduction, the conduction at the solid-liquid interface

is equal for both phases and the condition is given by,

kS
∂TS
∂z

= kL
∂TL
∂z

(2.14)

here, k denotes the thermal conductivity. At z = HG, the top wall is considered
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impermeable, i.e,

vG · n = 0 (2.15)

The no-slip condition is:

vG · t = 0 (2.16)

The top temperature is held constant as,

TG = Tcold (2.17)

At the liquid-vapor interface, z = Z(t, x), the no-slip condition at the interface is given

as,

vL · t = vGt (2.18)

The continuity of the temperature at the interface is read as,

TL = TG (2.19)

The mass balance at the interface is read as,

ρL (vL − u) · n= ρG(vG − u) · n (2.20)

Here, u · n is the interface speed and is given by,

u · n =
∂Z
∂t(

1 +
(
∂Z
∂x

)2
)1/2

(2.21)

The derivation of the interface speed is given in Appendix A. The total stress balance
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at the interface is read as,

{ρL (vL − u)vL − T L} · n + γ2Hn = {ρG (vG − u)vG −TG} · n (2.22)

Equation 2.22 is rearranged by using Eq. 2.20 and is presented as,

{ρL (vL − u) (vL − vG)− (T L − TG)} · n + γ2Hn = 0 (2.23)

Here, T , γ and 2H are the total stress tensor, the interfacial tension, and twice of

the surface mean curvature. The total stress tensor,T and twice the surface mean

curvature, 2H , are given as,

T = −pI + S (2.24)

and

2H =
∂2Z
∂x2(

1 +
(
∂Z
∂x

)2
)3/2

(2.25)

The total stress tensor is inserted into Eq. 2.23 and is read as,

{ρL (vL − u) (vL − vG)− [(pG − pL) I + (SL − SG)]} · n + γ2Hn = 0 (2.26)

where I is the identity tensor and S is the deviatoric part of the stress tensor. Addi-

tionally, the energy balance is required, which is given as,

ρL (vL − u)

{(
ÛL − ÛG

)
+

1

2

(
|vL|2 − |vG|2

)}
· n

+ (qL − qG) · n− {T L · vL − TG · vG} · n + γ2Hn · u = 0 (2.27)

where, Û stands for internal energy per unit mass and note that Eq. 2.27 is frame-

variant and it is subjected to an algebraic manipulation that is given in details in
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Appendix B to make the equation frame-invariant as,

ρL (vL − u)

{(
ĤL − ĤG

)
+

1

2

(
(vL − u)2 − (vG − u)2)} · n

+ (qL − qG) · n− {SL · (vL − u)− SG · (vG − u)} · n = 0 (2.28)

where Ĥ and q are the enthalpy per unit mass and the heat �ux vector, respectively

and the heat �ux is given by Fourier's law as,

q = −k∇T (2.29)

Eq. 2.28 is rearranged by using the heat �ux de�nition as,

ρL (vL − u)

{(
ĤL − ĤG

)
+

1

2

(
(vL − u)2 − (vG − u)2)} · n

− (kL∇TL − kG∇TG) · n− {SL · (vL − u)− SG · (vG − u)} · n = 0 (2.30)

To close the problem, the Clausius Clapeyron equation is used as an equilibrium rela-

tionship and given by,

(PG − PG0)− ρG L ln
(
TG
TG0

)
= 0 (2.31)

Here, PG0 and TG0are the base state temperatures of the �uid and L is the latent heat

of evaporation which is given by,

L = ĤL − ĤG (2.32)

2.2. Scaled Governing Equations

The governing equations are presented in their dimensionless form by using the

following scales,
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Liquid depth (−HL) :HL

Velocity : κL
HL

Time :HL

v̄
, H

2
L

κL

Pressure :µLv̄
HL

, µLκL
H2

L

Temperature : T−Tcold
4T

Heat : kL4T
HL

Velocity scaling is performed by considering the thermal di�usivity that serves

for the dissipation of the temperature perturbations because the temperature gradient

leads to an instability in this problem. Heat �ux is scaled by assuming Fourier's law

for the heat conduction. The temperature di�erence, 4T , is taken as (Thot − Tcold)

where Tcold is the reference temperature. Recall that in the study, the top, Tcold, and

the bottom, Thot, temperatures are kept constant. The dimensionless form is denoted

by asterisk.

The dimensionless momentum equations are read respectively for the liquid and

the vapor phases as,

1

Pr

(
∂v∗L
∂t∗

+ v∗L · ∇v∗L
)

= −∇p∗L +∇2v∗L (2.33)

and

1

Pr

νL
νG

(
∂v∗G
∂t∗

+ v∗G · ∇v∗G
)

= −µL
µG
∇p∗G +∇2v∗G (2.34)

Here,

Pr =
νL
κL

(2.35)

where Pr is the Prandtl number.
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The scaled incompressibility conditions are,

∇ · v∗L = 0 (2.36)

for the liquid phase and

∇ · v∗G = 0 (2.37)

for the vapor phase.

The dimensionless energy equations are,

κL
κS

∂T ∗S
∂t∗

= ∇2T ∗S + φ (2.38)

where,

φ =
H2
LQ̂S

4T Ĉ PS
κS

(2.39)

∂T ∗L
∂t∗

+ (v∗L · ∇T ∗L) = ∇2T ∗L (2.40)

and

κL
κG

(
∂T ∗G
∂t∗

+ (v∗G · ∇T ∗G)

)
= ∇2T ∗G (2.41)
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2.3. Scaled Boundary and Interface Conditions

The scaled boundary conditions are presented as, at z∗ = −H∗S. The scaled

bottom temperature is,

T ∗S = 1 (2.42)

At the solid-liquid interface, located at z∗ = −1, the scaled impermeable condition is,

v∗L · n = 0 (2.43)

The scaled no-slip condition is,

v∗L · t = 0 (2.44)

The scaled continuity of the temperature is given as,

T ∗S = T ∗L (2.45)

Assuming Fourier's law for heat conduction, the conduction at the solid-liquid interface

is equal for both phases and the condition is given by,

∂T ∗S
∂z∗

=
kL
kS

∂T ∗L
∂z∗

(2.46)

At z∗ = H∗G, the scaled impermeable top wall condition is,

v∗G · n = 0 (2.47)

The scaled no-slip condition is,

v∗G · t = 0 (2.48)
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The scaled top temperature is,

T ∗G = 0 (2.49)

At the liquid-vapor interface, z∗ = Z∗(t, x), the no slip condition at the interface is

given as,

v∗L · t = v∗G · t (2.50)

The continuity of the temperature at the interface is read as,

T ∗L = T ∗G (2.51)

The dimensionless mass conservation equation at the interface is presented as,

(v∗L − u∗) · n− ρG
ρL

(v∗G − u∗) · n =0 (2.52)

The dimensionless stress balance equation at the interface, z∗ = Z∗(x, t), is presented

as,

Ca

{
1

Pr
(v∗L − u∗) (v∗L − v∗G)−

([
(p∗G − p∗L) I +

(
S∗L −

µG
µL

S∗G

)])}
· n+2H∗n = 0

(2.53)

Here,

Ca =
µLκL
γHL

where Ca is the thermal capillary number. The capillary number indicates the ratio

of the viscous to surface tension forces, The normal component of the stress balance is

presented as,

Ca

{
(p∗L − p∗G)− 2

(
∂v∗LZ

∂z∗
− µG
µL

∂v∗GZ

∂z∗

)}
+ 2H ∗ = 0 (2.54)
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The tangential component of the stress balance is read as,

(
∂v∗LX

∂z∗
+
∂v∗LZ

∂x∗

)
− µG
µL

(
∂v∗GX

∂z∗
+
∂v∗GZ

∂x∗

)
= 0 (2.55)

The dimensionless energy conservation equation at the interface is derived as,

(v∗L − u∗)

{
1 +

1

2
K
(
(v∗L − u∗)2 − (v∗G − u∗)2)} · n

− E
(
∇T ∗L −

kG
kL
∇T ∗G

)
· n− V

{
S∗L · (v∗L − u∗)− µG

µL
S∗G · (v∗G − u∗)

}
n = 0 (2.56)

Here,

K =
κ2
L

LH2
L

(2.57)

V =
νLκL
LH2

L

(2.58)

E =
kL4T
κLρLL

(2.59)

Here, E is the evaporation number. The scaled Clausius Clapeyron equation is,

ΠKE

(
P ∗G − P ∗G0

)
− ln

(
T ∗G
T ∗G0

)
= 0 (2.60)

where,

ΠKE =
ρL
ρG

νLκL
LH2

L

(2.61)
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2.4. Scaled Base State

The problem is linearized about a base state which is the �at interface for this

problem to obtain the commencement of the interfacial instability that comes from the

perturbed model. The base state is stationary; therefore there is no need to have mass

and momentum equations for velocity. Merely, the momentum equations are used to

�nd the pressure pro�les. In addition, the base state is a steady conducting phase in

the z direction.

2.4.1. Domain Equations and Boundary Conditions

The scaled momentum equations for the liquid and the vapor phases at the base

state are read as,

−∇∗0p∗L0
= 0 (2.62)

−ρL
ρG
∇∗0p∗G0

= 0 (2.63)

The scaled energy equation for the solid phase at the base state is,

∇2
0T
∗
S0

+ φ = 0 (2.64)

∇2
0T
∗
L0

= 0 (2.65)

for the liquid phase and

∇2
0T
∗
G0

= 0 (2.66)

for the vapor phase.



18

The boundary conditions at the base state are presented as, at z∗ = −H∗S, the

scaled bottom temperature is,

T ∗S0
= 1 (2.67)

At z∗ = −H∗L, the scaled continuity of temperature at the base state is given as,

T ∗S0
= T ∗L0

(2.68)

The scaled equal heat �uxes at the base state are presented as,

dT ∗S0

dz∗0
=
kL
kS

dT ∗L0

dz∗0
(2.69)

At z∗ = 0, the scaled continuity of the temperature at the interface is read as,

T ∗L0
= T ∗G0

(2.70)

The scaled heat �uxes at the base state are read as,

dT ∗L0

dz∗0
=
kG
kL

dT ∗G0

dz∗0
(2.71)

At z∗ = H∗G, the scaled top temperature at the base state is held constant as,

T ∗G0
= 0 (2.72)

2.5. Base Sate Solution

The base state solution for the temperature pro�les are,

T ∗S0
(z) = −φz

∗2

2
+ C1z

∗ + C2 (2.73)
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for the solid,

T ∗L0
= C3z

∗ + C4 (2.74)

for the liquid phase and,

T ∗G0
= C5z

∗ + C6 (2.75)

for the vapor phase. Here,

C1 =

φ
2

{[
1− 2

(
kS
kL
− kSHG

kGHL

)]
H2
L −H2

S

}
HS +

(
kS
kL
− 1
)
HL + kS

kG
HG

(2.76)

C2 = 1 + φ
H2
S

2
+ C1HS (2.77)

C3 =
kS
kL

(φHL + C1) (2.78)

C4 =
φ

2

{
H2
S −

(
1− kS

kL

)
H2
L

}
+

{
HS −

(
1− kS

kL

)
HLC1

}
+ 1 (2.79)

C5 =
kS
kG

(φHL + C1) (2.80)

and

C6 = −kS
kG
HG (φHL + C1) (2.81)
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The base state solution for the pressure gradients in the liquid and the vapor

phases are presented as,

dp∗L0

dz∗0
= 0 (2.82)

and

dp∗G0

dz∗0
= 0 (2.83)

respectively.

2.6. Scaled Perturbed State

The scaled momentum equations for the liquid and the vapor phases at the per-

turbed state are read as,

1

Pr

∂v∗L1

∂t∗0
= −∇0p

∗
L1

+∇2
0v
∗
L1

(2.84)

and

1

Pr

νL
νG

∂v∗G1

∂t∗0
= −µL

µG
∇0p

∗
G1

+∇2
0v
∗
G1

(2.85)

The scaled energy equations for the solid, the liquid and the vapor at the per-

turbed state are presented as,

κL
κS

∂T ∗S1

∂t∗0
= ∇2∗

0 T
∗
S1

(2.86)

∂T ∗L1

∂t∗0
+
∂T ∗L0

∂z ∗0
v∗LZ1

= ∇2∗

0 T
∗
L1

(2.87)
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and

κL
κG

∂T ∗G1

∂t∗0
+
κL
κG

∂T ∗G0

∂z ∗0
v∗GZ1

= ∇2∗

0 T
∗
G1

(2.88)

respectively.

The scaled boundary conditions at perturbed state are presented as, at z∗ = −H∗S:

The scaled bottom temperature is,

T ∗S1
= 0 (2.89)

At z∗ = −1, the scaled impermeable condition is,

v∗LZ1
= 0 (2.90)

The scaled no-slip condition is,

v∗LX1
= 0 (2.91)

Assuming Fourier's law for heat conduction, the conduction at the solid-liquid interface

is equal for both phases and the condition is given by,

∂T ∗S1

∂z∗0
=
kL
kS

∂T ∗L1

∂z∗0
(2.92)

At z∗ = H∗G, the scaled impermeable top wall condition is,

v∗GZ1
= 0 (2.93)

The scaled no-slip condition is,

v∗GX1
= 0 (2.94)
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The scaled top temperature is,

T ∗G1
= 0 (2.95)

At the liquid-vapor interface, z∗ = 0, the no slip condition at the interface is given as,

v∗LX1
= v∗GX1

(2.96)

The continuity of the temperature at the interface is read as,

T ∗L1
+
dT ∗L0

dz∗0
Z∗1 = T ∗G1

+
dT ∗G0

dz∗0
Z∗1 (2.97)

The unit normal vector to order ε is presented as,

n = n0 + εn1 (2.98)

where,

n0 = k (2.99)

and

n1 = −∂Z1

∂x0

i (2.100)

The mass balance at the interface for the perturbed state is,

(
v ∗LZ1
− ∂Z ∗1
∂t∗0

)
=
ρG
ρL

(
v ∗GZ1

− ∂Z ∗1
∂t∗0

)
(2.101)

The twice of the scaled mean surface curvature in the normal component of the stress
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balance equation at the perturbed state is given as,

2H∗1 =
∂2Z∗1
∂x2∗

0

(2.102)

The scaled normal component of the stress balance at the perturbed state is presented

as,

Ca

{(
p∗L1
− p∗G1

)
+ Z1

(
dp∗L0

dz∗0
−
dp∗G0

dz∗0

)
− 2

(
∂v∗LZ1

∂z∗0
− µG
µL

∂v∗GZ1

∂z∗0

)}
+
∂2Z∗1
∂x2∗

0

= 0

(2.103)

The scaled tangential component of the stress balance at the perturbed state is given

as,

(
∂v∗LX1

∂z∗0
+
∂v∗LZ1

∂x∗0

)
− µG
µL

(
∂v∗GX1

∂z∗0
+
∂v∗GZ1

∂x∗0

)
= 0 (2.104)

The scaled energy conservation equation at the perturbed state is read as,

E

{(
∂T ∗L1

∂z∗0
+ Z∗1

∂2T ∗L0

∂z2∗
0

)
− kG
kL

(
∂T ∗G1

∂z∗0
+ Z∗1

∂2T ∗G0

∂z2∗
0

)}
+

(
v∗LZ1

− ∂Z∗1
∂t∗

)
= 0 (2.105)

The scaled Clausius Clapeyron equation at the perturbed state is,

ΠKE

(
P ∗G1

+
dp∗0
dz∗0

Z∗1

)
− 1

T ∗G0

(
T ∗G1

+
dT ∗G0

dz∗0
Z∗1

)
= 0 (2.106)

2.7. Normal Mode Expansion

The set of partial di�erential equations are turned into an eigenvalue problem by

using the normal mode expansion [16] which is shown on the liquid velocity as,

v∗L1
(x, z, t) = ṽL1(z)eσteikx + ¯̃vL1(z)eσte−ikx (2.107)
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where k is the wave number and σ is the growth constant of the given disturbance.

Also the over bar in ¯̃vL1represents the complex conjugate.

2.7.1. Scaled Perturbed Equations After Normal Mode Expansion

The momentum equations in the x and z directions for the liquid and vapor phases

are presented as,

1

Pr
σṽLX1

= −ikp̃L1
+

(
d2

dz
2

0

− k2

)
ṽLX1

(2.108)

1

Pr
σṽLZ1

= −
dp̃L1

dz0

+

(
d2

dz
2

0

− k2

)
ṽLZ1

(2.109)

1

Pr

νL
νG
σṽGX1

= −µL
µG

ikp̃G1
+

(
d2

dz
2

0

− k2

)
ṽGX1

(2.110)

and

1

Pr

νL
νG
σṽGZ1

= −µL
µG

dp̃G1

dz0

+

(
d2

dz∗
2

0

− k2

)
ṽGZ1

(2.111)

respectively.

Continuity equations are read for the liquid and the vapor as,

ikṽLX1
+
dṽLZ1

dz0

= 0 (2.112)

and

ikṽGX1
+
dṽGZ1

dz0

= 0 (2.113)
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The energy equations are presented for the solid, the liquid and the

σ
κL
κS
T̃S1 =

(
d2

dz
2

0

− k2

)
T̃S1 (2.114)

σT̃L1 +
dTL0

dz0

ṽLZ1
=

(
d2

dz
2

0

− k2

)
T̃L1 (2.115)

σ
κL
κG
T̃G1 +

κL
κG

∂dTG0

dz0

ṽGZ1
=

(
d2

dz
2

0

− k2

)
T̃G1 (2.116)

The scaled boundary conditions at the perturbed state are subject to normal

mode expansion as, at z∗ = −H∗S, the scaled bottom temperature is,

T̃S1 = 0 (2.117)

At z∗ = −1, the scaled impermeable condition is,

ṽLZ1
= 0 (2.118)

The scaled no slip condition is,

ṽLX1
= 0 (2.119)

The continuity of the temperature at the interface is read as,

T̃S1 = T̃L1 (2.120)
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Heat �uxes for both phases are read by,

dT̃S1

dz0

=
kL
kS

dT̃L1

dz0

(2.121)

At z∗ = H∗G, the scaled impermeable top wall condition is,

ṽGZ1
= 0 (2.122)

The scaled no-slip condition is,

ṽGX1
= 0 (2.123)

The scaled top temperature is,

T̃G1 = 0 (2.124)

At the liquid-vapor interface, z∗ = 0, the no-slip condition at the interface is given as,

ṽLX1
= ṽGX1

(2.125)

The continuity of the temperature at the interface is read as,

T̃L1 +
dTL0

dz0

Z̃1 = T̃G1 +
dTG0

dz0

Z̃1 (2.126)

The scaled mass conservation equation is presented as,

(
ṽLZ1
− σZ̃1

)
− ρG
ρL

(
ṽGZ1

− σZ̃1

)
=0 (2.127)

The scaled stress balance equation is presented, respectively for the normal and the
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tangential components as

Ca

{
(p̃L1 − p̃G1) + Z̃1

(
dpL0

dz0

− dpG0

dz0

)
− 2

[
dṽLZ1

dz0

− µG
µL

dṽGZ1

dz0

]}
− k2Z̃1= 0 (2.128)

and

dṽLX1

dz0

+ ikṽLZ1
− µG
µL

(
dṽGX1

dz∗0
+ ikṽGZ1

)
= 0 (2.129)

The scaled energy conservation equation is,

E

{
dT̃L1

dz0

+ Z̃1
d2TL0

dz2
0

− kG
kL

(
dT̃G1

dz0

+ Z̃1
d2TG0

dz2
0

)}
+
(
ṽLZ1

− σZ̃1

)
= 0 (2.130)

The scaled Clausius Clapeyron equation is,

ΠKE

(
p̃G1 −

dp0

dz0

Z̃1

)
− 1

TG0

(
T̃G1 +

dTG0

dz0

Z̃1

)
= 0 (2.131)

2.8. Solution Procedure

The solution for the linear ordinary di�erential equations is performed by using

the Chebyshev-Spectral method [17]. The equations in the study are turned into an

eigenvalue problem. The eigenvalue is either σ or the evaporation number, E, when σ

is set equal to zero. The graphs of σ and evaporation number, E, versus wave number

with di�erent parameters are analyzed in the study.
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3. RESULTS AND DISCUSSIONS

The linear stability of the solid-liquid-vapor system heated from the solid side is

investigated. The solid part of the system is used as a heat source and the e�ect of this

heat source on the linear stability is explained. In the system, the physical parameters

are assumed to be constant. Inputs are the heat, the physical parameters, the depths

of the solid, the liquid and the vapor phases while the output is the temperature

di�erence at which convection starts. The physical properties for the liquid at 100◦C

and its saturated vapor under atmospheric pressure.

In the mathematical modeling part, initially, the set of partial di�erential equa-

tions are linearized and the problem is turned into an eigenvalue problem via the normal

mode expansion. When it comes to the interface equations, all of them are rendered

frame invariant. This can be observed in the force and the energy equations. The

nonlinearities in the equations stem from the domain variables such as the e�ect of the

interface temperature pro�le on the pressure pro�le that also a�ects the �ow pro�les.

Finally, the problem is solved by using the Chebyshev spectral method [17].

The boundary conditions are completed by the Clausius Clapeyron equation as

low evaporation rate is conjectured. Due to low evaporation rate, it could also be

assumed that there is thermodynamic equilibrium at the interface. By making use of

this conjecture, the Clausius Clapeyron equation could be derived. It is important to

note that the equation solely comprises the perturbed pressure and temperature terms

from the vapor side.

It is important to bring the dimensionless numbers to the attention. The im-

portant dimensionless numbers in this study are the evaporation number and the heat

source numbers denoted as E and φ, respectively. Both dimensionless numbers include

the temperature di�erence as a variable. Evaporation number which appears in the en-

ergy balance equation increases with the temperture di�erence. On the other hand, the

heat source number has one more variable which is the heat �ux. Note that again the
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heat �ux is taken as to be constant in this study for the sake of simplicity. Comprising

the two variables means that their values would change in terms of one another at a

constant value of heat source number that makes the problem interesting. The phys-

ical meaning of the evaporation and heat source numbers relies on the temperature

di�erence that literally gives the critical temperature di�erence at which convection

starts.

The surface tension gradient and the e�ect of gravity are omitted. The surface

tension gradient and the e�ect of gravity relates to Marangoni convection and Rayleigh

convection, respectively. In the absence of gravity, pressure gradient does not exist at

the base state and this makes the problem easier to cope with.

3.1. E�ect of Heat Source Number on the Critical Evaporation Number

The e�ect of small values of heat source number on the evaporation number is

presented in Figure 3.1. It was found that the small values of the dimensionless heat

source has no e�ect on the evaporation number up to a value of 0.01. After this

verge, the evaporation number dwindles for large values of heat source number that

is indicated in Figure 3.2 and attains a saturation point but it is not indicated in the

�gure. When the evaporation number decreases, the system becomes unstable as the

temperature increases at the interface. Each curve represents a neutral curve, above

which the system is unstable and below which it is stable to given disturbances.

The dimensionless vapor depth is taken as 0.1 to be able to make a comparison

with the study of Ozen and Narayanan [18]. The result of Ozen and Narayanan [18] is

recovered by taking the heat source as zero.
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Figure 3.1. Critical evaporation number versus wave number for small values of

dimensionless heat source for HS = 1 and HG = 0.1.

Figure 3.2. Critical evaporation number versus wave number for large values of

dimensionless heat source for HS = 1 and HG = 0.1.

Figures 3.3 and 3.4 depict the behavior of the temperature pro�le at the base

state. The di�erence between these two �gures is the value of the dimensionless heat

source that is 1 for Figure 3.3 and 4 for Figure 3.4. It is concluded that the the

base state temperature increases with heat source number. It can be �gured out from
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the �gures that the temperature di�erence between the vapor and the liquid phases

increases owing to the solid phase.

Figure 3.3. Dimensionless base temperature versus dimensionless position for

φ = 1, HS = 1, HG = 0.1.

Figure 3.4. Dimensionless base temperature versus dimensionless position for

φ = 4, HS = 1, HG = 0.1.
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3.2. E�ect of Vapor Depth on Dispersion Curve

In the previous studies, it was found that the vapor depth increment makes

the system more stable due to its thermal resistance and the vapor �ow. However,

after a point vapor depth does not a�ect the system stability because of the thermal

di�usivity. In this study, again the same result is found and it is depicted in Figure

Figure 3.5 for small values and 3.6 for large values of vapor depth. However, two-phase

system, liquid-vapor, is more stable than the three-phase system, solid-liquid-vapor,

because there is a heat source in the three phase system which increases the interface

temperature between the solid and the liquid. The e�ect of heat source on interfacial

instability can be seen in the base state solution that contains the heat source number

in the solid part of the energy equation.

Figures 3.7 and 3.8 shows the dispersion curves to investigate the behavior of the

system at weak wavenumbers for small and large values of vapor depth, respectively.

Abrupt increment was observed at weak wave numbers because the stabilizing e�ect of

the surface tension does not prevail there. Note that the highest vapor depth has the

strongest stabilizing e�ect in the system.

3.3. E�ect of Vapor Depth on Evaporation Number

Evaporation number decreases while the vapor depth increases because of the sta-

bilizing e�ect of the vapor depth. Figures 3.9 and 3.10 depict two values of heat source

number, 0 and 4. Heat source number leads to a decrease in evaporation number and

it can be noticed from Figure 3.10 that there is a saturation point for the evaporation

number as it gradually decreases and reaches a saturation point.
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Figure 3.5. Dispersion curve to depict the e�ect of small vapor depth for φ = 1 and

HS = 1.

Figure 3.6. Dispersion curve to depict the e�ect of large vapor depth φ = 1 and

HS = 1.
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Figure 3.7. Dispersion curve versus wavenumber to depict the e�ect of small vapor

depth for weak values of wave number for φ = 1 and HS = 1.

Figure 3.8. Dispersion curve versus wavenumber to depict the e�ect of large vapor

depth for weak values of wave number for φ = 1 and HS = 1.
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Figure 3.9. E�ect of vapor depth on the critical evaporation number versus wave

number for φ = 0, HS = 1, HG = 0.1.

Figure 3.10. E�ect of the vapor depth on the critical evaporation number versus wave

number for φ = 4, HS = 1, HG = 0.1.

3.4. E�ect of Solid Depth on Dispersion Curve

Higher solid depth results in an increasing instability and this increment does not

reach a saturation point. It can be seen from Figure 3.11 that the unstable behavior
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of the system always increases with solid depth. Besides, it can be deduced from

Figure 3.12 that small solid depths do not a�ect the system instability much. The

dimensionless vapor depth and the heat source are 0.1 and 1, respectively.

Figure 3.11. Dispersion curve to depict the e�ect of the solid depth for

φ = 0, HG = 0.1.

Figure 3.12. Dispersion curve to depict the e�ect of the solid depth for

φ = 0, HG = 0.1.
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Figure zooms on small wave numbers with various solid depths for the dispersion

curve. Convergence could not be achieved for the dimensionless solid depths of 5 and

6.

Figure 3.13. Dispersion curve to depict the e�ect of the solid depth for small wave

numbers for φ = 0, HG = 0.1.

3.5. E�ect of Solid Depth on Evaporation Number

In Figure 3.14, the dimensionless heat source is zero and as expected it is observed

that zero value of the dimensionless heat source does not a�ect the instability of the

system for di�erent solid depths.

Figure 3.15 is acquired when the dimensionless heat source is taken as 1. In the

presence of the heat source number, the evaporation number decreases as the solid

depth becomes larger.
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Figure 3.14. Critical evaporation number versus wavenumber for φ = 0.

Figure 3.15. Critical evaporation number versus wavenumber for φ = 1.

The e�ect of solid depth on the base state temperature pro�le was also investi-

gated and it is presented in Figures 3.16 and 3.17. Now, the increase in temperature

di�erence is higher than the previous case. The results can be veri�ed by looking at

the base state solution.
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Figure 3.16. Dimensionless temperature versus dimensionless length for HS = 2.

Figure 3.17. Dimensionless temperature versus dimensionless length for HS = 5.
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4. CONCLUSIONS

The aim of this study is to inquire into the e�ect of solid depth and heat source

on the critical temperature di�erence at which convection starts for a solid-liquid-vapor

system. In the study, it is conjectured that the physical parameters are constant and all

the e�ects coming from the surface tension gradient and gravity are omitted; merely,

the pure evaporation is considered. By using these assumptions, the mathematical

model of the system is derived. Initially, the base state model which is the state

of the system before convection commences is presented. The solely driving force in

order to evaporate the system is the temperature di�erence. The other forces like

concentration, surface tension gradient and gravity are not taken into consideration.

Since the dimensionless heat source contains both the temperature di�erence and the

heat �ux, the ambit of their values relied on each other. After all, the normal mode

expansion is performed in order to linearize the problem about the base state. The

linear ordinary di�erential equations are solved by using Chebyshev spectral method

which emanates from the method of weighted residuals.

The solid, the liquid and the vapor depths have impact on the stability of the

system. An increase in the vapor depth results in a more stable system owing to

thermal resistance and vapor dynamics. On the other hand, the liquid and the solid

depths oppose to the e�ect of vapor depth on the stability of the system. Note that

the e�ect of the liquid depth can be seen in the heat source number. Stability of the

system decreases with the liquid and the solid depths. The e�ect of the liquid �ow

which is the reason for the instability strengthens with the depth. The reason for the

instability with the solid depth is the base state solution. The base state solution is

more comlex with respect to previous studies inasmuch as the solid part is added to

the system. The base state solution involves the dimensionless heat source; therefore

the interface temperature increases which also makes the system unstable.

For the future work, non-constant heat source can be used and this might bring an

additional nonlinearity. Moreover, non-constant physical properties can be appended
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to the study and the geometry of the system can be turned into a cylinder.
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APPENDIX A: SURFACE VARIABLES

The surface is presented as:

f = z − Z(x, t) = 0 (A.1)

The unit normal vector is acquired by dividing the gradient of f into its scalar

value:

n =
∇f
|∇f |

(A.2)

Here:

∇f =
∂f

∂x
i +

∂f

∂x
k (A.3)

The normal stress balance is read as:

n =
−∂Z

∂x
i + k[

1 +
(
∂Z
∂x

)2
] 1

2

(A.4)

The unit tangential vector is deduced by the same token using the relation of

n · t = 0:

t =
i + ∂Z

∂x
k[

1 +
(
∂Z
∂x

)2
] 1

2

(A.5)



43

A surface is represented as:

f(r, t) = 0. (A.6)

When the surface budges as ∆s with time, ∆t, in the direction of its normal, f(r ±

∆sn, t+ ∆t) is presented as:

f(r±∆sn, t+ ∆t) = f(r, t)±∆sn.∇f(r, t) + ∆t
∂f(r, t)

∂t
+ ... (A.7)

Eq. A.7 equals to Eq. A.6 as:

f(r±∆sn, t+ ∆t) = f(r, t) = 0 (A.8)

Then Eq. A.8 turns into:

±∆sn.∇f(r, t) = −∆t
∂f(r, t)

∂t
(A.9)

The normal speed of the surface at the interface is read as:

u = ±∆s

∆t
= −

∂f(r, t)
∂t

n · v∇f(r, t)
(A.10)

Eq. A.10 can be presented by using the unit normal as:

u = −
∂f
∂t

|∇f |
(A.11)

Finally, the normal speed is read as:

u =
∂Z
∂t[

1 +
(
∂Z
∂x

)2
] 1

2

(A.12)
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APPENDIX B: ENERGY BALANCE FOR A 1-D PURE

SYSTEM

Energy balance in its frame variant form is read by:

ρL (vL − u)

{(
ÛL − ÛG

)
+

1

2

(
|vL|2 − |vG|2

)}
· n

+ (qL − qG) · n− {T L · vL − TG · vG} · n (B.1)

The dot product of the stress balance with uis taken as:

{ρL (vL − u) (vL − vG)− (T L − TG)} · n · u + γ2Hn · u = 0 (B.2)

Eq. B.2 is subtracted from Eq. B.1 and the result is obtained as:

ρL (vL − u)

{(
ÛL − ÛG

)
+

1

2

(
|vL|2 − |vG|2

)
− (vL − vG) · u

}
· n

+ (qL − qG) · n− {T L · (vL − u)− TG · (vG − u)} · n = 0 (B.3)

The following relation is used to get rid of the terms which make Eq. B.3 look frame

variant:

1

2
(vL − u) · (vL − u) =

1

2
|vL|2 − vL · u +

1

2
|u|2 (B.4)

1

2
|vL|2 =

1

2
(vL − u)2 + vL · u−

1

2
|u|2 (B.5)

1

2

(
|vL|2 − |vG|2

)
=

1

2
(vL − u)2 + vL · u−

1

2
|u|2

− 1

2
(vG − u)2 − vG · u +

1

2
|u|2 (B.6)
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1

2

(
|vL|2 − |vG|2

)
=

1

2

{
(vL − u)2 − (vG − u)2}+ (vL − vG) · u (B.7)

Eq. B.7 is inserted into Eq. B.3 and the result is:

ρL (vL − u)

{(
ÛL − ÛG

)
+

1

2

(
(vL − u)2 − (vG − u)2)} · n

+ (qL − qG) · n− {T L · (vL − u)− TG · (vG − u)} · n = 0 (B.8)

The following equations are used for the stress tensor and the internal energy.

T = −pI + S (B.9)

Û = Ĥ − p

ρ
(B.10)

Lastly, energy balance equation is acquired as:

ρL (vL − u)

{(
ĤL − ĤG

)
+

1

2

(
(vL − u)2 − (vG − u)2)} · n + (qL − qG) · n

+ {SL (vL − u)− SG · (vG − u)} · n = 0 (B.11)
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APPENDIX C: THERMODYNAMIC EQUILIBRIUM AT

THE INTERFACE

The thermodynamic equilibrium at the interface is described by:

ĜL = ĜV (C.1)

Here, ĜL and ĜG are the liquid and vapor Gibbs free energies per unit mass, respec-

tively. Surface can be in any shape; therefore Eq. C.1 is now represented as:

ĜLCURV ED
= ĜGCURV ED

(C.2)

and

ĜLFLAT
= ĜGFLAT

(C.3)

The following equation is acquired from Eq. C.2 and C.3 as:

(
ĜLCURV ED

− ĜLFLAT

)
−
(
ĜGCURV ED

− ĜGFLAT

)
= 0 (C.4)

The de�nition of the Gibbs free energy is:

dĜ = −ŜdT + V̂ dP (C.5)

Here, Ŝ and V̂ denotes the entropy and the volume per unit mass, respectively. If the

change in the entropy and the volume per unit mass with the temperature and the

pressure does not a�ect signi�cantly, Eq. C.5 becomes:

(
ŜG − ŜL

)
dT − 1

ρG
dPG = 0 (C.6)
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Also Eq. C.7 equals to zero:

(
ĜG − ĜL

)
=
(
ĤG − ĤL

)
−
(
ŜG − ŜL

)
T (C.7)

Eq. C.7 is inserted into Eq. C.6 for the entropy per unit mass:

ĤG − ĤL

T
dT + V̂LdPL −

RT

PG
dPG = 0 (C.8)

Latent heat of evaporation is de�ned as:

L = ĤG − ĤL (C.9)

Eq. C.9 is inserted into Eq. C.8 and it is integrated as:

TCURV ED∫
TFLAT

L
T 2
dT +

PLCURV ED∫
PLFLAT

V̂L
T
dPL −

PGCURV ED∫
PGFLAT

R

PG
dPG = 0 (C.10)

L
(

1

Tcurved
− 1

Tflat

)
+
V̂L
T

(
1

PLCURV ED

− 1

PLFLAT

)
−R (lnPGCURV ED

− lnPGFLAT
) = 0

(C.11)

Pressure variation in the liquid phase can be omitted; hence Eq. C.11 can be read as:

L
(

1

Tcurved
− 1

Tflat

)
−R (lnPGCURV ED

− lnPGFLAT
) = 0 (C.12)
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