

NAMED ENTITY RECOGNITION FOR TURKISH MICROBLOG TEXTS USING

SEMI-SUPERVISED LEARNING WITH WORD EMBEDDINGS

by

Eda Okur

B.S., Computer Engineering, Boğaziçi University, 2011

Submitted to the Institute for Graduate Studies in

Science and Engineering in partial fulfillment of

the requirements for the degree of

Master of Science

Graduate Program in Computer Engineering

Boğaziçi University

2015

 ii

NAMED ENTITY RECOGNITION FOR TURKISH MICROBLOG TEXTS USING

SEMI-SUPERVISED LEARNING WITH WORD EMBEDDINGS

APPROVED BY:

 Assist. Prof. Arzucan Özgür

 (Thesis Supervisor)

 Assoc. Prof. Banu Diri

 Prof. Tunga Güngör

DATE OF APPROVAL: 15.01.2015

 iii

ACKNOWLEDGEMENTS

 To begin with, I would like to express my deepest gratitude to my thesis supervisor,

Assist. Prof. Arzucan Özgür, for her support and guidance throughout my thesis. I

appreciate her very much for being so patient, understanding and kind to me with all her

genial attitude. I would also like to thank Prof. Tunga Güngör and Assoc. Prof. Banu Diri

for kindly accepting to be in my thesis committee and providing valuable feedback.

I would like to thank fellow graduate student Hakan Demir for his helpfulness and

knowledge. I am grateful that he supported me by sharing his valuable ideas that inspired

the initiation of my thesis.

I also feel beholden to all researchers who shared their data sets for academic usage

and who created publicly available tools in the name of science, which contributed a lot to

my thesis. Those researchers are mainly Haşim Sak, Taner Sezer, Anıl Bolat, Gökhan Tür,

Gülşen Eryiğit, Dilek Küçük and many more.

I am thankful to The Scientific and Technological Research Council of Turkey

(TÜBİTAK), The Science Fellowships and Grant Programmes Department (BİDEB) for

providing financial support with 2210 National Scholarship Programme for MSc Students

during my Master of Science studies.

I deeply thank my dearest friends for their emotional support and motivation during

my extensive working days, and for all pleasant time we shared.

Lastly, my deepest love and gratitude are reserved to my beloved family for their

unconditional love and support, and their high confidence and trust in me that always

makes me feel stronger.

 iv

ABSTRACT

NAMED ENTITY RECOGNITION FOR TURKISH MICROBLOG

TEXTS USING SEMI-SUPERVISED LEARNING WITH WORD

EMBEDDINGS

 Recently, due to the increasing popularity of social media and the value of

information contained within real data, the necessity for extracting information from

informal text types such as microblog texts has gained significant attention, together with

the challenges it brings to the Natural Language Processing (NLP) research community. In

this study, we focused on the Named Entity Recognition (NER) problem on informal text

types such as microblog texts for Turkish, which is a morphologically rich language. For

that purpose, we utilized a semi-supervised learning approach composed of an

unsupervised stage followed by a supervised stage based on neural networks. We applied a

fast unsupervised method for learning continuous representations of Turkish words in

vector space. We make use of these obtained word embeddings, together with language

independent features that are engineered to work better on informal text types, for

generating a Turkish NER system on microblog texts. For examining informal and short

texts in Turkish, we focused on the most popular microblogging environment called

Twitter and we evaluated our Turkish NER system on short and unstructured Twitter

messages called tweets. With our NER system, we achieved better F-score performances

than the published results of previously proposed NER systems on Turkish tweets. To be

more precise, we outperformed the state-of-the-art F-score by up to 11% on the same

Turkish Twitter data. The only language dependent stage of our system is the

normalization scheme we applied for Turkish microblog texts as a preprocessing step

before the NER application, which improves the performance of our NER system on

informal text types. Since we did not employ any language dependent features, other than

text normalization, we believe that our method can be easily adapted to microblog texts in

other morphologically rich languages.

 v

ÖZET

TÜRKÇE MİKROBLOG METİNLERİNDE YARI GÜDÜMLÜ

ÖĞRENME TEKNİĞİYLE KELİME TEMSİLLERİ KULLANARAK

VARLIK İSMİ TANIMA

 Günümüzde sosyal medya kullanımının artan popülerliği ve sosyal meydada

paylaşılan verilerin içerdiği bilginin değeri göz önüne alındığında, bu tür

yapılandırılmamış metinlerden bilgi çıkarımı yapabilmek büyük ilgi görmeye başlamıştır.

Bu durum doğal dil işleme araştırmaları açısından pek çok zorluğu da beraberinde

getirmiştir. Bu çalışmamızda morfolojik açıdan zengin bir dil olan Türkçe için varlık ismi

tanıma probleminin, özellikle mikroblog metinleri gibi yapılandırılmamış metinlerde

çözümüne odaklandık. Bu amaçla, güdümlü ve güdümsüz öğrenme aşamalarından oluşan

ve yapay sinir ağlarını baz alan yarı güdümlü bir öğrenme tekniği kullandık. İlk olarak

hızlı ve güdümsüz bir öğrenme metodu kullanarak çok boyutlu sürekli vektör uzayında

Türkçe kelime temsillerini elde ettik. Daha sonra gerek bu kelime temsillerini, gerekse

yapılandırılmamış mentinler için daha iyi sonuç verecek şekilde uyarlanmış, dilden

bağımsız öznitelikleri kullanarak bu tür metinler için bir Türkçe varlık ismi tanıma sistemi

geliştirdik. Yapılandırılmamış ve kısa Türkçe metinleri incelemek amacıyla, en popüler

mikroblog platformu olan Twitter üzerine yoğunlaştık ve geliştirdiğimiz sistemi tweet adı

verilen kısa Twitter mesajları üzerinde denedik. Sistemimizin Türkçe Twitter mesajları

üzerindeki performansının daha önce bu amaçla yayınlanmış sistemlerin performansından

daha iyi olduğunu gördük. Türkçe Twitter metinlerinde varlık ismi tanıma için yayınlanmış

en gelişkin sistemin F-ölçütü değerini %11 iyileştirme ile aşmış olduk. Sistemimizin dile

özgü tek aşaması, varlık isimleri tanınmadan önce Türkçe Twitter metinleri üzerinde

uyguladığımız Türkçe metin normalizasyonu aşamasıdır ve bu aşama yapılandırılmamış

metinlerde performansı artırmaktadır. Normalizasyon aşaması dışında dile özgü

öznitelikleri doğrudan kullanmadığımız için yöntemimizin morfolojik açıdan zengin diğer

dillerdeki yapılandırılmamış metinlere de kolayca uyarlanabileceğine inanıyoruz.

 vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS ... iii	

ABSTRACT ... iv	

ÖZET ... v	

LIST OF FIGURES ... viii	

LIST OF TABLES .. ix	

LIST OF ACRONYMS/ABBREVIATIONS .. xiii	

1. INTRODUCTION .. 1	

1.1. Named Entity Recognition .. 3	

1.2. Turkish NLP Challenges ... 7	

1.3. Twitter NLP Challenges .. 9	

1.4. Proposal ... 13	

1.5. Outline ... 15	

2. RELATED WORK ... 17	

2.1. Turkish Named Entity Recognition .. 17	

2.2. Named Entity Recognition for English Microblog Texts 20	

2.3. Named Entity Recognition for Turkish Microblog Texts 23	

2.4. Distributed Word Representations .. 25	

3. NAMED ENTITY RECOGNITION FOR TURKISH MICROBLOG TEXTS 28	

3.1. Unsupervised Stage ... 28	

3.1.1. Training Distributed Representations of Words ... 30	

3.1.2. Examination of Semantic Relations with Turkish Word Representations 34	

3.2. Supervised Stage ... 39	

3.2.1. The Learning Algorithm ... 40	

3.2.2. The General Framework ... 44	

3.3. Model Parameters ... 47	

3.3.1. Training on Different Text Types ... 47	

3.3.2. Testing on Different Twitter Data Sets ... 48	

3.3.3. Using Word Embeddings from Different Text Types 49	

3.3.4. Capitalization .. 50	

3.3.5. Normalization ... 51	

 vii

4. DATA SETS ... 53	

4.1. Unlabeled Data Sets .. 53	

4.1.1. Turkish News Corpus ... 53	

4.1.2. Turkish Tweets Corpus ... 54	

4.2. Labeled Data Sets .. 57	

4.2.1. Turkish News Data Set ... 58	

4.2.2. Turkish Twitter Data Sets ... 59	

5. EXPERIMENTS AND RESULTS ... 61	

5.1. Experiments with NER Models Trained on News Data ... 61	

5.1.1. Using Capitalization as a Feature ... 61	

5.1.2. Not Using Capitalization as a Feature .. 63	

5.1.3. Tweet Normalization .. 65	

5.1.4. The Effects of Word Embeddings Source, Capitalization, Normalization

 and Used Test Sets on NER Performance ... 68

5.1.5. The Effects of Using Word Embeddings Compared to Normalization 75	

5.2. Experiments with NER Models Trained on Twitter Data 79	

5.3. Comparison with the State-of-the-art .. 86	

6. CONCLUSION ... 92	

6.1. Future Work .. 94	

REFERENCES .. 96	

 viii

LIST OF FIGURES

Figure 1.1. An example sentence presented in [2] based on MUC-6 annotations. …… 4	

Figure 1.2. An example sentence presented in [5] based on MUC annotations. ……… 5	

Figure 1.3. Output sentence of a NER system presented in [5] for the input sentence

 shown in Figure 1.2. ………………………………………………………. 6	

Figure 3.1. Skip-gram model architecture where the aim is to learn the continuous

 vector representations of words in order to predict the surrounding

 words [18]. ……………………………………………………………….. 31

Figure 3.2. Multiclass perceptron as a simple two-layer neural network structure. …. 42	

Figure 3.3. Averaged multiclass perceptron algorithm [16]. ………………………… 43	

 ix

LIST OF TABLES

Table 3.1. Person name sample words and their closest neighbors. ………………….. 35	

Table 3.2. Location name sample words and their closest neighbors. ……………….. 37	

Table 3.3. Organization name sample words and their closest neighbors. …………… 39	

Table 4.1. BOUN web corpus size statistics taken from [44]. ……………………….. 54	

Table 4.2. Turkish tweets corpus size statistics. ……………………………………… 57	

Table 4.3. Number of words and named entities in labeled Turkish news data set [15]. 58	

Table 4.4. Number of tokens for each named entity type in annotated Turkish Twitter

 data set: TwitterDS-1 [29]. ………………………………………………… 60	

Table 4.5. Number of named entities for each named entity type in annotated Turkish

 Twitter data set: TwitterDS-2 [9]. …………………………………………. 60	

Table 5.1. Phrase-level and token-level performance results of NER Model Web on

 Turkish Twitter test sets, using capitalization feature. …………………….. 62	

Table 5.2. Phrase-level and token-level performance results of NER Model Tweets on

 Turkish Twitter test sets, using capitalization feature. …………………….. 62	

Table 5.3. Phrase-level and token-level performance results of NER Model Web+

 Tweets on Turkish Twitter test sets, using capitalization feature. ………… 63

Table 5.4. Phrase-level and token-level performance results of NER Model Web on

 Turkish Twitter test sets, without using capitalization feature. …………… 64

 x

Table 5.5. Phrase-level and token-level performance results of NER Model Tweets on

 Turkish Twitter test sets, without using capitalization feature. …………… 64	

Table 5.6. Phrase-level and token-level performance results of NER Model Web+

 Tweets on Turkish Twitter test sets, without using capitalization feature. .. 64	

Table 5.7. Phrase-level and token-level performance results of NER Model Web on

 normalized Turkish Twitter test sets, using capitalization feature. ……….. 65	

Table 5.8. Phrase-level and token-level performance results of NER Model Tweets on

 normalized Turkish Twitter test sets, using capitalization feature. ……….. 66	

Table 5.9. Phrase-level and token-level performance results of NER Model Web+

 Tweets on normalized Turkish Twitter test sets, using capitalization

 feature. …………………………………………………………………….. 66	

Table 5.10. Phrase-level and token-level performance results of NER Model Web on

 normalized Turkish Twitter test sets, without using capitalization feature. .. 67

Table 5.11. Phrase-level and token-level performance results of NER Model Tweets on

 normalized Turkish Twitter test sets, without using capitalization feature. .. 67

Table 5.12. Phrase-level and token-level performance results of NER Model Web+

 Tweets on normalized Turkish Twitter test sets, without using capitalization

 feature. ……………………………………………………………………… 67

Table 5.13. Phrase-level and token-level overall performance results to observe the

 effects of word embeddings source, capitalization and normalization on

 different Twitter test sets. ………………………………………………….. 68	

 xi

Table 5.14. Phrase-level and token-level overall performance results to show the effects

 of using word embeddings compared to normalization on different Twitter

 test sets. …………………………………………………………………….. 76	

Table 5.15. Overall performance results of Turkish NER models with normalization and

 capitalization that are trained on TwitterDS-2 with cross-validation and

 tested on TwitterDS-1_FT, compared to the results of models trained on

 news. ………………………………………………………………………... 81

Table 5.16. Overall performance results of Turkish NER models without normalization

 and without capitalization feature that are trained on TwitterDS-2 with cross-

 validation and tested on TwitterDS-1_FT, compared to the results of models

 trained on news. …………………………………………………………….. 82	

Table 5.17. Overall performance results of Turkish NER models with normalization and

 capitalization that are trained on TwitterDS-1_FT with cross-validation and

 tested on TwitterDS-2, compared to the results of models trained on news. . 84	

Table 5.18. Overall performance results of Turkish NER models without normalization

 and without capitalization feature that are trained on TwitterDS-1_FT with

 cross-validation and tested on TwitterDS-2, compared to the results of

 models trained on news. ……………………………………………………. 85

Table 5.19. Comparing the phrase-level performance results of previous Turkish Twitter

 NER systems with our proposed NER system on the same tweets data called

 TwitterDS-1. ………………………………………………………………... 87	

Table 5.20. Comparing the phrase-level performance results of previous Turkish Twitter

 NER systems with our proposed NER system on the same tweets data called

 TwitterDS-2. ………………………………………………………………... 88	

 xii

Table 5.21. Comparing the best phrase-level performance results of previous Turkish

 Twitter NER systems with our proposed NER system, all with its own best

 model parameter settings, on two tweets data sets called TwitterDS-1 and

 TwitterDS-2. ………………………………………………………………... 90	

 xiii

LIST OF ACRONYMS/ABBREVIATIONS

ANNIE A Nearly-New Information Extraction System

CoNLL Conference on Computational Natural Language Learning

CRF Conditional Random Fields

EMM Europe Media Monitor

GATE General Architecture for Text Engineering

HMM Hidden Markov Model

IE Information Extraction

IR Information Retrieval

KNN K-Nearest Neighbors

LDA Latent Dirichlet Allocation

MUC Message Understanding Conference

NER Named Entity Recognition

NLP Natural Language Processing

PLO Person - Location - Organization

 POS Part-of-Speech

 1

1. INTRODUCTION

Micro-blogging environments allow users to post short messages and they provide

a new form of communication that increased its popularity in the last decade. Among

these, Twitter is the most popular micro-blogging service founded in 2007 with more than

100 million users by 2010, and more than 500 million accounts by 2012. It is a form of

social networking site where short messages, or tweets, are shared to the followers of a

user in real-time. The most recent statistics by 20141 about Twitter usage indicate that

there are 271 million monthly active users, 500 million Tweets are sent per day and

Twitter supports 35+ languages.

Twitter became an interesting platform for exchanging ideas and thoughts,

following recent developments and news, or discussions on any possible topic. Since

Twitter has an enormously wide range of users with varying interests and sharing

preferences, a significant amount of content is being created rapidly. Therefore, mining

such platforms can extract valuable information. As a result, extracting information from

Twitter has become a hot topic of research in Information Retrieval (IR) recently.

There are many possible intentions for retrieving information from Twitter. Most of

the recent research about Twitter has focused on its network and community structure, like

applying link prediction analysis or ranking users on Twitter. A different branch of

research has focused on a systematic analysis of the textual content available on Twitter.

For the textual analysis side, one popular research area is opinion mining or sentiment

analysis, i.e. deciding whether a posted message is positive, negative or neutral. This

analysis is surely useful for companies or political parties to gather information about their

services and products. Another popular research area for Twitter text mining is content

analysis, or more specifically topic modeling. This area is useful for text classification and

filtering applications on Twitter. Moreover, event monitoring and trend analysis are also

other examples of useful application areas on microblog texts.

1 https://about.twitter.com/company
2 http://en.wikipedia.org/wiki/Named-entity_recognition

 2

 In order to build successful social media analysis applications, especially on

microblog texts, it is necessary to employ successful processing tools for Natural Language

Processing (NLP) tasks such as Named Entity Recognition (NER) as a building block for

larger analysis applications. NER is an important subtask of Information Extraction (IE)

and it is a critical stage for various NLP applications such as machine translation, question

answering, and opinion mining. The aim of NER is classifying and locating atomic

elements, or words, in a given text into predefined categories like the names of the persons,

locations and organizations. For instance, in the area of opinion mining, or sentiment

analysis, the sentiment of a given text should be based on named entities such as person

names for political popularity analysis, or organization names like companies and products

for public relations analysis on social media. Extracted named entities for location names

can also be used for event monitoring and disaster detection applications on microblog

texts.

NER is accepted as a solved problem in NLP for well-written texts in well-studied

languages like English, because state-of-the-art NER systems for English are considered to

produce near-human performance2 on formal text types such as news articles. However,

NER still needs further work for morphologically rich languages like Turkish due to its

complex structure that brings challenges for the NER task and also due to the fact that

language processing tools, data sets, and related sources are relatively rarer for Turkish

than for English. Moreover, most of the NER systems in the literature are designed for

formal texts such as news articles that have well-formed text structure. The performance of

these NER systems drops significantly when applied on real data consisting of the informal

text types such as microblog text, or tweets. Due to the increasing popularity of social

media and value of information carried within real data, the necessity for extracting

information from informal text types like tweets has gained significant attention recently,

together with the challenges it brings to the NLP research community.

In the remaining of this chapter, we will present some important background

information regarding NER, the Turkish language, and finally Twitter. We will also

mention about the challenges of Turkish for NLP and for NER, together with the

challenges of Twitter text data, which lack proper structure and formality from the

2 http://en.wikipedia.org/wiki/Named-entity_recognition

 3

language usage point of view, for NLP and for NER. After that, we will explain our

proposed methodology for solving the problem of NER for Turkish on tweets. Lastly, we

will list the general outline structure of our thesis study briefly.

1.1. Named Entity Recognition

 In this section, we will provide the necessary background information about the

NER task that will be useful to understand the rest of our study. We will define the

structure of the predefined categories used by most of the NER systems and we will also

examine the metrics that are commonly used for performance evaluation of NER systems.

 In 1995, the Named Entity Recognition (NER) task is firstly defined in a well-

structured manner at the 6th Message Understanding Conference (MUC-6). The aim of the

NER task is defined as: given an input text, identify all instances of the elements, i.e.

words, which belong to seven defined categories. The NER task is defined as consisting of

three subtasks (entity names, temporal expressions, number expressions) so that these

seven predefined categories are actually grouped into three subtasks. These seven

categories and three subtasks are defined in MUC-6 [1] as follows:

• ENAMEX (Named Entities): This subtask is defined for proper names, acronyms,

and various other unique identifiers. Such named entities are categorized via the

TYPE attribute as follows:

(i) ORGANIZATION: named corporate, governmental, or other organizational

entity

(ii) PERSON: named person or family

(iii) LOCATION: name of politically or geographically defined location (cities,

provinces, countries, international regions, bodies of water, mountains, etc.)

• TIMEX (Temporal Expressions): This subtask is defined for absolute temporal

expressions only. These tagged tokens are categorized via the TYPE attribute as

follows:

(i) DATE: complete or partial date expression

(ii) TIME: complete or partial expression of time of day

 4

• NUMEX (Number Expressions): This subtask is defined for two types of numeric

expressions, namely monetary expressions and percentages, which may be

expressed in either numeric or alphabetic form. The complete expression is covered

here that is categorized via the TYPE attribute as follows:

(i) MONEY: monetary expression

(ii) PERCENT: percentage

In this study, among these seven different predefined categories of MUC-6, our

main focus will be on ENAMEX type named entities. These are namely PERSON,

ORGANIZATION, and LOCATION. The reason behind this choice is mainly because

ENAMEX types are the most informative and thus most popular named entity types, which

have commonly been used in most of the NER studies so far. To provide a comparison

with the previous studies, we will also examine these three categories of named entities in

our study.

 MUC-6 [2] and MUC-7 [3] task definitions and evaluation designs have been

popular among most of the NER studies, which have used these MUC categories and

original guidelines in their NER systems, with minor differences. An example sentence

presented in the evaluation design of MUC-6 [2] that is annotated based on the above

seven categories can be found in Figure 1.1.

Mr. <ENAMEX TYPE="PERSON">Dooner</ENAMEX> met with <ENAMEX

TYPE="PERSON">Martin Puris</ENAMEX>, president and chief executive

officer of <ENAMEX TYPE="ORGANIZATION">Ammirati & Puris</ENAMEX>, about

<ENAMEX TYPE="ORGANIZATION">McCann</ENAMEX>'s acquiring the agency with

billings of <NUMEX TYPE="MONEY">$400 million</NUMEX>, but nothing has

materialized.

Figure 1.1. An example sentence presented in [2] based on MUC-6 annotations.

 In addition to the predefıned categories of the NER task, the evaluation of NER

systems’ performances is also an important topic to be clarified here. NER systems are

usually evaluated by comparing their output versus the human labeled corpus output, or

gold standard. By using different evaluation metrics, we can achieve different evaluation

 5

performance results with the same NER system. Therefore, a guideline is also necessary

for the evaluation metric to compare different NER systems in terms of performance. Here,

we will examine two popular metrics that are commonly used to evaluate the performance

of a typical NER system. These are namely the MUC metric and the CoNLL metric,

defined as follows:

• MUC metric: MUC defines an F-score on two axes, namely TYPE score that

measures the ability to find the correct type and TEXT score that measures the

ability to find the exact text. To be more precise, TYPE score considers an

assignment as correct if the type of a named entity is assigned correctly by ignoring

the boundary of the entity as long as there is an overlap. On the other hand, TEXT

score evaluates an assignment to be correct if the boundary of a named entity is

detected correctly without taking into account the type of the entity. The overall

TYPE and TEXT scores are micro-averaged F-score. The overall MUC score is

defined as the average of these TYPE and TEXT scores.

• CoNLL metric: This metric is stricter than MUC metric since it concentrates on

finding phrase-level named entities. To be more precise, CoNLL metric evaluates

an assignment to be correct only if both the type and the boundary of a named

entity are assigned correctly. In this metric, the overall score is calculated by using

micro-averaging as well. CoNLL metric is defined in [4] and it is commonly used

in most of the recent NER studies.

 To understand the differences between these two metrics as scoring mechanism, an

example sentence annotated according to MUC guidelines is presented in [5] as follows:

 Unlike <ENAMEX TYPE="PERSON">Robert</ENAMEX>, <ENAMEX

TYPE="PERSON">John Briggs Jr</ENAMEX> contacted <ENAMEX

TYPE="ORGANIZATION">Wonderful Stockbrockers Inc</ENAMEX> in <ENAMEX

TYPE="LOCATION">New York</ENAMEX> and instructed them to sell all his

shares in <ENAMEX TYPE="ORGANIZATION">Acme</ENAMEX>.

Figure 1.2. An example sentence presented in [5] based on MUC annotations.

 6

 Suppose that this sentence with gold labels is given to a NER system as an input

and the following output sentence, presented again in [5], is produced:

 <ENAMEX TYPE="LOCATION">Unlike</ENAMEX> Robert, <ENAMEX

TYPE="ORGANIZATION">John Briggs Jr</ENAMEX> contacted Wonderful <ENAMEX

TYPE="ORGANIZATION">Stockbrockers</ENAMEX> Inc <TIMEX TYPE="DATE">in New

York</TIMEX> and instructed them to sell all his shares in <ENAMEX

TYPE="ORGANIZATION">Acme</ENAMEX>.

Figure 1.3. Output sentence of a NER system presented in [5] for the input sentence

shown in Figure 1.2.

 We need to keep three measures in mind in order to evaluate this output sentence.

These are the number of correctly annotated answers given as an output by the system (say

C), the number of total actual system predictions (say A), and the number of total possible

entities annotated with gold labels in the input data (say P). We know that precision shows

the number of correct outputs over the number of all outputs produced by the system,

whereas recall shows the number of correct outputs over the number of all outputs in the

golden data. In our case, precision is computed as C/A and recall is computed as C/P. Note

that the final MUC score is defined as the micro-averaged F-score that is the harmonic

mean of precision and recall computed over all entity segments, both on TYPE and TEXT

axes. We know that F1-score, or F-score, is defined as twice of the precision times recall

over precision plus recall, due to the definition of harmonic mean.

 For the example output sentence shown in Figure 1.3 and for the MUC metric, C is

4 (2 TYPE + 2 TEXT), A is 10 (5 TYPE + 5 TEXT), and P is 10 (5 TYPE + 5 TEXT). As

a result, precision is 40%, recall is 40%, and therefore the overall F-score for MUC metric

is 40%. As you can see, MUC metric gives partial credits for errors occurring on only

TYPE or only TEXT axis. Whereas for the CoNLL metric, since only one of the outputs of

the system exactly matches with the corresponding entity in the corpus presented by the

gold standard, C is only 1. In addition, A is 5 since the system guessed 5 entities, and P is 5

since there exist 5 true entities within the human-labeled data. As a result, precision is

20%, recall is 20% and thus the overall F-score for CoNLL metric is 20%. As you can see,

exact-match evaluation metrics like CoNLL metric puts an additional constraint on the

 7

systems output to be considered as correct, and therefore CoNLL metric is known to be

stricter than MUC metric.

 In this study, between these two different metrics, we will be using the CoNLL

metric for the evaluation of our NER system’s performance since it has become a

commonly accepted metric for the NER task recently.

 Note that although phrase-level F1-score, which is a strict one that the CoNLL

metric is based on, is a commonly used metric for NER task in general, we will report

token-level F1-score in addition to the phrase-level F1-score in this study. Token-level F1-

score is the same as what we obtain from the TYPE score component of the MUC metric.

It simply gives credit to partial extractions if the entity type is correct, by ignoring the

boundaries. Token-level F1-score is not as strict as phrase-level one for sure, and therefore

it is generally higher than the phrase-level one, but the reason we are also reporting this

value is that it can be useful for the NER task especially on tweets. We believe that

although the boundary of a named entity within a tweet is not 100% correct, determining

the correct type for such partial extractions is still important in the microblog domain,

since the tweets can be filtered or retrieved easily by using such partial matches. This

ability can still be very useful in many social media analysis related applications, and

therefore we believe it is profitable to report both phrase-level and token-level F1-scores

for NER systems on Twitter.

1.2. Turkish NLP Challenges

 In this section, we will provide the necessary background information about

Turkish NLP, especially the NER task for Turkish that will be useful to understand the rest

of our study. We will mention the structure of the Turkish language and explain the

difficulties and challenges it possesses for the NER task.

 Although NER is considered as a solved problem in NLP for well-written texts in

well-studied languages like English, it still needs some attention and more work for

morphologically rich languages, such as Turkish. This is mainly because the Turkish

language has complex structure that possesses extra challenges for the NER task. In

 8

addition to this complexity, language processing tools, data sets, and related sources are

relatively rarer for Turkish compared to those for English. Therefore, the achieved

accuracies of Turkish NER are still behind the reported results for English [6] and there is

still room for improvements.

 Turkish, as a morphologically rich language, is very different from English, since it

is accepted as a highly agglutinative language with an inflectional morphology. Such

languages have a common data sparsity problem, also known as lexical sparsity, since in

Turkish, it is possible to produce hundreds of different word forms from a single root,

especially if it is a verb. This production usually depends on the tense, mood, and the

person arguments. This phenomenon is also examined in the work of Hakkani-Tür [7], and

it is shown that on the English and Turkish corpora of around 10 million words, the

number of unique word forms is 97,734 for English, whereas it is 474,957 for Turkish. On

the other hand, if only the root forms are taken into account, the number of unique word

forms becomes 94,235 for Turkish. Therefore, it is concluded that from the same root

form, on average, five different word forms can be generated in Turkish that indicates the

data sparsity problem again. Therefore, in most of the NER studies for Turkish, lemmas or

stems are used instead of word forms to resolve this data sparsity problem. This requires

the analysis of the morphological structure of the language that is considered for the NER

task. Moreover, language specific features should be added to the NER system for the

success of most of the NER studies [6].

 Another challenge of Turkish for NLP and especially for NER, also stated in [6], is

that Turkish is a free word order language. This means that the position of the word within

a sentence may not give valuable clue about whether it is a named entity or not. In addition

to this difficulty, Turkish person names, especially the first names, are often also used as a

common words in a daily language like Deniz (sea), Özgür (free), Barış (peace), Gizem

(mystery), Mert (brave), Meltem (breeze), Rüya (dream), Nehir (river) etc. Note that in

Turkish, only the proper nouns have the initial letter capitalized, together with the

beginning of a sentence. However, this capitalization clue is valid only for formal text

types such as newspaper articles. This poses an additional difficulty for Turkish NER,

especially on informal texts. Note that we will cover the issues of informal text types for

NLP in the next section.

 9

Using gazetteer lists in a dictionary look-up style is a very common phenomenon

for a NER task and used by most of the NER systems. A gazetteer usually consists of a set

of lists, mostly manually extracted from web, containing common entity names such as

person names, location names, organization names etc. and possibly also their indicators.

Since the manually annotated data for training is relatively less for morphologically rich

languages like Turkish than for English, the usage of gazetteers gains more importance for

Turkish because gazetteers may help to overcome the lack of data. However for Turkish,

the problem is that these gazetteer lists that are specifically crawled for Turkish names are

not publicly available in general for the usage of other NER systems.

1.3. Twitter NLP Challenges

 In this section, we will provide the necessary background information about

informal text type such as microblog texts, especially about Twitter for NLP and

specifically for the NER task. We will mention the structure of Twitter short message

texts, called tweets, and explain the difficulties and challenges it poses for the NER task.

 There are several different challenges for NLP tasks on micro-blogging

environments like Twitter. Kireyev et al. [8] summarized these challenges for traditional

NLP technologies to be applied on Twitter data. The first challenge is the very short text

length. In Twitter, the text size is limited to 140 characters for each tweet. For text

classification, short texts contain sparse data and thus it is very difficult to classify them

accurately. This limitation brings an additional burden on the NER task, because it is

common in tweets to exclude crucial contextual clues such as titles for person names or

other useful informative indicators for named entities that can be found in long and formal

text types. Since each tweet is treated as a single document with only 140 characters, it is

also difficult to make use of non-local features such as content aggregation and prediction

history that are used for formal text types mainly composed of news articles, for the NER

task on tweets.

An additional challenge for NLP on tweets is the informal structure of the language

used on microblogging sites. The language used in Twitter is less formal; therefore the

 10

proper grammar rules and punctuations are missing in tweets quite often. Moreover,

tweets may contain abbreviations due to text length limitation, together with the Internet

slang words such as “omg” (oh my God), “lol” (laughing out loud) etc. In addition, Twitter

users may modify words to emphasize their feelings, such as using repeated vowels to

increase the strength of their messages. For all these reasons and more, traditional NLP

tools often fail to process such informal texts data. Therefore, it is necessary to identify

common words and keywords on Twitter that could be useful. In order to defuse such

issues of writing and spelling errors, abbreviations, slangs, and special modifications found

in tweets, it is recommended to apply a normalization step to correct and expand such

usages before using the NER system on tweets.

Especially for the NER task, Twitter introduces interesting challenges due to the

local and specific references found in tweets. To be more precise, Twitter messages may

refer to specific events, locations and other named entities together with the implied

references to locations [8]. In Twitter, using contracted forms and metonymic expressions

instead of full organization or location names is very common. For example, users may

refer to “Boğaziçi Üniversitesi” (Boğaziçi University) shortly as “boğaziçi” in tweets. It is

also common to use single forenames, surnames or even only nicknames instead of full

person names in tweets. Therefore, we cannot solely trust the predefined entity lists that

are prepared mostly from formal text type data, such as news articles, to work properly on

Twitter for NER. Even complex NER methods that work well on formal text types could

fail to recognize certain portions of named entities on informal text data like Twitter

messages.

Capitalization is another issue for the NER task on tweets. We know that most of

the successful NER systems use the capitalization feature as an important clue indicating

that the word with capitalized initial letter is a good candidate for a named entity. Although

this assumption is mostly valid for formal text types such as news articles where proper

capitalization schemes are almost always followed, since the editors revise these formal

texts before publication in terms of both grammar and spelling rules, it is not the case for

informal text types. Most of the Twitter users do not obey the capitalization rules for

person names, organizations and locations in their tweets, since tweets are considered as a

form of fast communication that is similar to SMS messages. Therefore, we cannot simply

 11

assume that if a word in a tweet lacks proper capitalization, then it is not a good

candidate for a named entity by the NER system. This issue is an important disadvantage

for informal text types for the NER task, since we cannot benefit from the capitalization

clue that plays an important role on the performance accuracy of successful NER systems

designed for formal text types.

In addition to lacking proper capitalization for named entities in informal text types,

another common punctuation violation seen in Twitter, also mentioned in [9], is not using

apostrophes properly to separate person, location, and organization names from their

attached suffixes. This makes the NER task even more difficult to apply on informal text

types since apostrophe usage is another helpful mechanism for separating proper nouns

from suffixes in order to recognize named entities efficiently. This burden requires a NER

system to use a successful morphological analyzer to detect named entities that lack

apostrophes.

Twitter specific language elements also reveal interesting aspects in terms of NER

on tweets. As an example, hashtags and their usage can be important to detect named

entities on Twitter. In Twitter, hashtags are special elements in tweets starting with “#” and

usually written without whitespaces, which are generally related with specific topics and

may include named entities quite often. According to a recent study [9], the appearance of

named entities within hashtags is observed in a way that in their data set of tweets, 70 of

the total of 153 hashtags have annotated named entities. Moreover, 14 of these 70 hashtags

are covered fully by the named entities such as person names. In addition, again in this

data set, there are 31 annotated multi-token named entities that are presented like hashtags

with no whitespaces. As a result, they concluded that 7.6% of named entities in their tweet

data set are found within hashtags or hashtag-like usages with no whitespaces. This trend is

also a challenge for a traditional NER system to work properly on tweets, because without

considering such Twitter specific cases, the system will miss to recognize named entities

that appear in hashtags or hashtag-like usages.

Twitter messages’ informality also plays an important role on creating additional

challenges for the Turkish NLP tasks. One of the most important challenges of Turkish

tweets for NLP, also mentioned in a recent work [10], is a trend of not using specific

 12

Turkish characters that are not found in the Latin alphabet (ç, ğ, ı, İ, ö, ş, ü) and instead,

using their equivalent counterparts of universal characters (c, g, i, I, o, s, u) in Turkish

tweets. Note that these language specific characters with special marks are known as

diacritics. The reason behind this trend of using non-diacritics in Turkish tweets might be

the usage of universal English keyboards, mostly on mobile devices, either to type faster or

just because it is the default. This usage may cause a typical Turkish NER system to ignore

named entities that originally have diacritics but used with non-diacritics versions in

tweets. One attempt to alleviate this problem might be instead of using strict lists of

person-location-organization names as lexical resources, we can add also non-diacritic

versions of named entities into those lists if any. Another approach might be applying

diacritic-based normalization on tweets before the NER system. However, this

normalization might also be problematic since this trend causes an ambiguity problem due

to the fact that these non-diacritic characters that are used instead of their diacritic

counterparts are also valid characters in Turkish and a word written in non-diacritic format

can have multiple diacritic counterparts with different meanings in Turkish. Moreover, if a

named entity with diacritics is used as its non-diacritic variant in a tweet, and if this non-

diacritic variant is also a valid word in Turkish, then the diacritic-based normalization will

ignore this word and as a result, Turkish NER system on tweets will not recognize this

named entity.

In the previous section, we mentioned about the gazetteers and their common usage

for the NER task. We stated that using gazetteer lists can be helpful especially when we

have comparably less annotated data for training of the NER systems, which can be the

case for morphologically rich languages such as Turkish. This problem is especially

significant when we focus on Turkish tweets because the amount of manually annotated

training data composed of tweets in Turkish for the NER task is much more scarce

compared to the English tweets or to the Turkish news articles. Therefore, the usage of

gazetteer lists can be a lot more helpful in the case of the NER task on Turkish tweets.

However, again the challenge is that these gazetteers manually extracted from the web for

Turkish are in general not publicly available for our usage on the NER task for Turkish

tweets. Moreover, even if we have public Turkish gazetteer lists prepared mostly for the

formal text types, these lists should be further customized for Twitter due to the previously

mentioned challenges of informal text types. In addition, these gazetteer lists would require

 13

frequent updates, since Twitter is a very dynamic environment in terms of content and

the new names of entities will continue to emerge in time to be added into such common

dictionary of entity names.

Part-of-speech (POS) tagging is also an important NLP task and it is another sort of

labeling task similar to the NER task. POS taggers simply assign to words the correct

syntactic category such as verb, noun, adjective and many more in given context. Applying

the POS taggers before the NER system and using the outputs of POS taggers as additional

morphological features for the NER task is a common phenomena. Although POS taggers

usually work with high accuracy for well-studied languages like English, there is also

performance degradation for POS taggers for morphologically rich languages like Turkish.

Moreover, similar to the NER task, POS taggers that are trained on the formal text types

such as news articles and achieved high performance on them usually suffer from

performance drop when applied directly on informal text types such as Twitter data.

Therefore, achieving a well-performed POS tagger for Turkish that is specialized on

Twitter data is another challenging research area and this situation creates an additional

difficulty for building a Turkish Twitter NER system that can benefit from a successful

Turkish Twitter POS tagger outputs. To the best of our knowledge, there is no such study

specialized on Turkish Twitter POS tagging so far that we can make use of its reliable

results to further improve the Turkish Twitter NER system.

1.4. Proposal

In order to accomplish the NER task on a challenging domain composed of

informal microblog texts in the morphologically rich Turkish language, we adopted a semi-

supervised learning approach based on neural networks that employs distributed

representations of words. At the first stage, we learnt continuous representations of words

in vector space, i.e. word embeddings, by employing a fast unsupervised learning method

on a huge unlabeled corpus in Turkish. In the second stage, we exploited Turkish word

embeddings together with language independent features and trained our neural network

on annotated data. Finally, we evaluated our NER system on annotated Turkish Twitter

messages with named entities. We have compared our results on two different Turkish

Twitter data sets with the state-of-the-art NER system proposed for Twitter data in Turkish

 14

and we have shown that our Turkish Twitter NER system outperforms the state-of-the-

art performance results by up to 11% and 9% in terms of F-score performance on these two

Turkish Twitter data sets.

Our proposed NER system is adapted to perform better on microblogging texts in

Turkish with various design choices. At the unsupervised stage, in addition to using a huge

corpus composed of Turkish news articles, we also explored using large amount of data

composed of Turkish tweets in order to learn Turkish word embeddings. Note that these

word embeddings are used as an important feature at the supervised stage and hence, we

propagated the specific language usages in tweets indirectly to our supervised stage and

trained our NER system with that additional knowledge. Moreover, we applied Twitter

processing on our tweets data in order to tag Twitter specific usages such as mentions,

hashtags, smileys, URLs etc. Exploiting Twitter specific keywords into our large Turkish

tweets corpus makes our system specialized towards informal microblog texts. Moreover,

we investigated the usage of the capitalization feature. We have shown that in order to

have a NER system that performs better on informal text types where we usually lack

proper capitalizations; the capitalization feature should be turned off. Furthermore, we

applied a Turkish text normalization scheme specially designed for social media data on

our tweets and we have shown that it also improves the performance. This text

normalization scheme involves tagging certain Twitter specific keywords such as hashtags,

mentions, retweets, smileys, URLs etc. which makes our final NER system specialized

towards microblog texts together with the similar processing performed on the unlabeled

Twitter corpus at the unsupervised stage. Since this normalization attempts to recover the

lacking capitalizations in tweets, we have shown that if you have a normalization stage

before applying NER on your data, the capitalization feature should be turned on again.

The last adaptation for microblogging environments we examined is training our NER

system on annotated Turkish tweets. We have shown that training the NER system even

with limited amount of annotated tweets leads to promising results.

We have shown that utilizing the word representations in a semi-supervised

learning approach is highly effective for Twitter NER and can result in state-of-the-art

performance even without using any language dependent features and gazetteer lists. Since

other than the normalization scheme we applied, we have not used any language dependent

 15

features to build our Turkish Twitter NER system, we believe that our approach can be

easily adapted to other morphologically rich languages.

Finally, the main contributions of our study can be summarized as follows:

• We outperformed the previous state-of-the-art performance for Turkish Twitter

NER by up to 11% improvements in terms of phrase-level F-score.

• A neural network based semi-supervised learning approach is adapted for the NER

task on Turkish microblog texts for the first time in the literature.

• We explored the usage of distributed word representations for the first time in

Twitter NER for Turkish.

• Using an additional large Turkish tweets corpus is proposed to learn more Twitter

specific Turkish word embeddings for Turkish NER on tweets, which is shown to

be useful for the first time.

• We compared the effects of using word embeddings versus text normalization and

we have shown that usage of word embeddings yields better NER performance

results than the recently proposed social media text normalization for Turkish NER

on Twitter.

• Unlike the previous Turkish NER models on tweets, we experimented with training

on Twitter data instead of news articles.

• Except the normalization stage, which is optional and is not the main reason for our

state-of-the-art performance, our Twitter NER system is language independent and

hence can be applied to other morphologically rich languages for the NER task on

microblog texts.

• We will make our attained Turkish word embeddings, both from Turkish web

corpus and Turkish tweets corpus, publicly available for future usages in various

NLP tasks for Turkish. We will also make our Twitter NER system for Turkish as a

public tool for further research such as sentiment analysis on Turkish tweets.

1.5. Outline

 In this first chapter, we presented an introduction to our study by explaining the

motivation and the problem, together with providing necessary background information

 16

and then describing our proposal for this problem of NER for Turkish on Twitter. Here

we will give a brief overview of the remainder of this thesis. In the next chapter, we will

examine the related work presented in the literature so far. In Chapter 3, the model and the

architecture of our system will be described in detail. The information about the sources

and the analytical settings of the data sets we used will be given in Chapter 4. In Chapter 5,

the experiments we conducted and their results will be presented in detail. Finally, the

thesis will be concluded with further discussions and future work in the last chapter.

 17

2. RELATED WORK

In this chapter, we will summarize the previous works that are closely related to our

study. In the first section, we will mention the Named Entity Recognition (NER) studies

within the area of Natural Language Processing (NLP) by examining the previous studies

on Turkish NER. Note that until now, these NER studies are mainly for formal texts

domains such as news articles for Turkish. In the second section we will summarize recent

and important studies on NER for informal texts domains such as microblog texts,

especially for Twitter, and mostly for English. After that, we will narrow down our scope

of interest in the third section and we will examine the existing studies on Twitter NER for

Turkish. Finally, we will explain the definition of word representations and their usage in

NLP tasks in the last section.

2.1. Turkish Named Entity Recognition

 Turkish is a morphologically rich and also highly agglutinative language. Such

morphologically rich languages usually bring out interesting challenges for NLP tasks such

as NER. In this section, we will explain the significant previous studies on NER for

Turkish.

 Tür et al. [11] presented the first comprehensive study on NER for Turkish. In this

work, they studied different information extraction tasks; one of them was name tagging

that we are interested in. Note that within NER, finding only the names is called name

tagging. They used four different feature sources as models for this task of tagging names.

These models were the lexical, contextual, morphological and name tag models. The

lexical model captures lexical information using only word tokens. Then, the contextual

information using the surrounding context of the word tokens is captured by the contextual

model. Then, the morphological information with respect to the corresponding case and

name tag information is captured by the morphological model using the morphological

parses of the words. Finally, the name tag model captures the name tag information. They

used HMM (Hidden Markov Model) based model for all these four stages. For the

 18

evaluation, they used MUC metrics and general news text as a domain. With ENAMEX

type only, their F-score performance is stated as 91.56%.

 Küçük and Yazıcı [12] proposed a hybrid named entity recognizer for Turkish by

incorporating statistical methods to their rule based NER system for Turkish, which was

presented previously in Küçük and Yazıcı [13]. They used ENAMEX, TIMEX, and

NUMEX entity types. However, they did not provide the performance scores for each of

these three entity types, therefore we do not know their performance on ENAMEX entity

types only. They have raised the F-score performance on general news text domain to

90.13% from 87.96%, which was stated in their previous work [13]. However, their results

are not comparable with similar works, since they used an evaluation metric that gives

more credit to partial matches and it is different from the CoNLL and MUC metrics. This

study is important since it compares the different domains for Turkish NER for the first

time. They used general news text, financial news text, historical text, and child stories to

evaluate their system.

 Tatar and Çiçekli [14] presented an automatic rule learning system for Turkish

NER that exploits different features of text. In this study, the features used are grouped as

lexical, morphological, contextual and orthographic features. For lexical features, in

addition to the tokens themselves, they also used gazetteer information (e.g. list of person

names, list of city names) of words mapped to the tokens. Here they used two-level

gazetteer hierarchy where the first level corresponds to each named entity class (e.g.

Person, Location etc.) and the second level details the gazetteer categorization (e.g.

Location.Country, Location.City etc.). Morphological parses of the words are used as

morphological features and the information captured in the surrounding text of the named

entities is used as contextual features. For orthographic features, they selected four

primitive features as Capitalization (Lower, Upper, Proper, Unclassified), Length Class

(Short, Middle, Long), Length (the length of the token), and Type Class (Alpha, Numeric,

Alphanumeric, Punctuation, Unclassified). Their evaluation strategy of looking for exact

matches is compatible with the CoNLL metric, even though they did not state that they

used the CoNNL metric. Their domain of text is based on terrorism news for evaluation.

They achieved 91.08% F-score on ENAMEX and TIMEX types, and this score is

calculated as 90.63% for the ENAMEX types only.

 19

 Yeniterzi [15] introduced using Conditional Random Fields (CRF) for the first time

for Turkish NER and utilized the effect of morphology for this task. She constructed two

models, namely word-level and morpheme-level models, both based on CRF. The word-

level model is the commonly used sequence of words representation that takes into account

the word token itself, the root forms of the words, the Part-of-Speech tags of the words,

whether the word is proper noun or not, and whether the word has uppercase initial letter

or not. In the morpheme-level model, to see the effect of morphological tags, the following

features are used: the actual root of the word and morphemes of the word, the Part-of-

Speech tag of the root and the morphological tag for the morphemes, the root-morph

feature which differentiates roots and morphemes, the proper-noun feature and the case

feature of the word. The same training and test data based on the general news domain is

used as in [11]. The results are given in CoNLL metric for ENAMEX types and an F-score

performance of 88.71% is reported with the word-level model, whereas an F-score of

88.94% is obtained with the morpheme-level model.

 Şeker and Eryiğit [6] presented the current state-of-the-art work for Turkish NER.

This CRF-based approach proposed for general news text is reported to outperform the

previous proposals in the literature on the ENAMEX types for Turkish NER. Their model

makes use of morphological, lexical, and gazetteer look-up features. The morphological

features are listed as stem of the word, Part-of-Speech tag of the word, noun case of the

word that states whether it is non nominal or one of the eight values for nominal, whether

the word is proper noun or not, and all inflectional tags after the POS category. The lexical

features are the case feature that carries the information about lowercase and uppercase

letters used in the token, and the start of the sentence feature indicating the token is the

beginning of a sentence or not. Gazetteer look-up features are binary features indicating

whether the current token is present in the corresponding gazetteer lists or not. Note that

they prepared two kinds of gazetteers called base and generator gazetteers. Their base

gazetteers are large for first names, surnames, and location names, whereas their generator

gazetteers are relatively small for location, organization, and person names. Again, the

same training and test data based on the general news domain is used as in [11] and [15].

They used both CoNLL and MUC metrics for evaluation on the ENAMEX types. In

CoNLL metric, they achieved an F-score of 89.59% without gazetteers and 91.94% with

 20

gazetteers. In MUC metric, an F-score performance of 92.83% without gazetteers and

94.59% with gazetteers is reported.

 Demir [16] conducted a very recent study on NER for morphologically rich

languages, namely Turkish and Czech, which is then published by Demir and Özgür [17].

For this task, they used a semi-supervised learning approach based on neural networks. In

the unsupervised stage, they adopted a fast unsupervised method for learning continuous

vector representations of words and these representations are fed to the supervised stage as

additional features. This study is quite different from the previous proposals, since their

system does not exploit any language dependent features and as a result, this system can be

adapted to other morphologically rich languages easily. It is also shown that word

representations obtained very fast by following the approach of Mikolov et al. [18] are

very useful for NER. Again, the same training and test data based on the general news

domain is used as in [6], [11] and [15]. In this work, the CoNLL metric is used for the

evaluation on ENAMEX types. They achieved an F-score performance of 91.85% for

Turkish without using gazetteers and any language-specific features. It is important to note

here that even without using language dependent features such as morphological features,

this system outperforms the previous state-of-the-art system [6] that achieved an F-score of

89.59% without gazetteers in CoNLL metric for ENAMEX types on the same training and

test data.

2.2. Named Entity Recognition for English Microblog Texts

 Named Entity Recognition for English is a well-known and deeply studied area in

NLP, and there are many significant studies in the literature for NER. However, the NER

studies on microblog texts are relatively limited and quite recent. Surely, Twitter is the

most popular and widely used microblog site and extracting information from tweets

becomes more and more valuable these days. In this section, we will summarize important

recent studies for the NER task on Twitter data for English.

 Ritter et al. [19] presented a two-phase NER system for tweets, namely T-NER.

They used Conditional Random Fields (CRF) for named entity segmentation. In addition,

they employed labeled topic modeling by using labeled Latent Dirichlet Allocation

 21

(Labeled-LDA) [20] to utilize the open-domain database of Freebase dictionaries as a

source of supervision for subsequent named entity classification. Note that in this study,

not only NER but actually a pipeline approach is used that performs first tokenization and

then POS tagging and then chunking before using topic models to extract named entities.

They used Brendan O’Connor’s Twitter tokenizer [21] for English, and implemented their

own POS tagger for Twitter called T-POS, and their own chunker called T-CHUNK that

performs shallow parsing on tweets. They also built a capitalization classifier, T-CAP, to

determine if capitalization is informative or not within a tweet. For NER, they used

orthographic, contextual, and dictionary features where their dictionary is composed of a

set of type-lists gathered from Freebase. They also used Brown clusters [22] and outputs of

T-POS, T-CHUNK, and T-CAP while generating features. For these tweet-specific NLP

tools, they included tweet-specific features such as retweets, usernames, hashtags and

URLs. It is reported that T-NER achieved an F-score performance of 59% on PLO

(Person, Location, Organization) entity types.

Liu et al. [23] proposed a hybrid NER approach on tweets that is based on K-

Nearest Neighbors (KNN) classifiers and linear CRF labeler, which are applied

sequentially under a semi-supervised learning framework. Their KNN classifier gathers

global evidence among recently labeled tweets to manage word level classification and

their CRF labeler utilizes information from a single tweet and also from the gazetteers. As

for the features, their KNN classifier extracts bag-of-words features and their CRF model

extracts orthographic, lexical, and gazetteer related features. For evaluation, they used PLO

types plus the PRODUCT entity type and reported to achieve an F-score performance of

80.2%.

In their later study, Liu et al. [24] this time presented a factor graph-based method

that jointly performs named entity normalization (NEN) and NER for Twitter, which

allows these two different tasks to reinforce each other. For orthographic features they

used whether a word is capitalized or not, alphanumeric or contains any slashes, stop word

or not. They also used the word prefixes and suffixes as features. For lexical features they

used the lemmas and POS tags of the previous, current and next words; whether the current

word is an out-of-vocabulary word; whether it is a hashtag, a link, or a user account. For

gazetteer related features, they manually constructed a named entity dictionary from

 22

different sources such as Wikipedia, Freebase, news articles and gazetteers that was

used in their previous work [23]. For evaluation, again they used PLO types plus the

PRODUCT entity type and reported to achieve an F-score performance of 83.6% this time.

Li et al. [25] described an unsupervised approach that performs Named Entity

Recognition by means of only discovering the presence of named entities regardless of

their types for targeted tweets, namely TwiNER. It is a two-step approach, which does not

depend on any linguistic features. The first step is partitioning tweets into valid segments

of phrases using global context gathered from the World Wide Web, by using resources

like Wikipedia. The second step is applying a random walk model on this segment graph,

which exploits the local context in tweets. Although this system is only targeted on

recognizing all possible named entities in a given Twitter stream and does not care about

categorizing the types of named entities, it is still a notable study because even though it

employs an unsupervised method, TwiNER is reported to achieve a comparable F-score

performance with the supervised systems when applied on the same data.

Oliveira et al. [26] proposed a filter-based approach for NER on Twitter data,

namely FS-NER (Filter Stream NER). Their system is characterized by the use of

lightweight filters that process tweets. Five different filters cover the features they used as

follows: term, context, affix, dictionary, and noun filters. The term filter estimates the

probability of the given term being an entity. The context filter captures unknown entities

by examining the surrounding terms. The affix filter employs the fragments of an

observation to decide whether it is an entity or not. The dictionary filter exploits a list of

names of correlated entities to understand if the given term is an entity. The noun filter

only takes into account terms with capitalized first letter to infer whether it is an entity.

Note that all these filters are independent from the grammar rules, which makes their

system language-independent. In this study, they defined seven entity types of their own

for evaluation purposes and it is reported that FS-NER performs on average 3% better than

their baseline based on CRF. Moreover, FS-NER’s ability to process large amounts of data

in real-time is claimed to make it more practical.

Lastly, Bontcheva et al. [27] described an NLP pipeline for an information

extraction system specialized for microblog texts, namely TwitIE. It is actually an

 23

adaptation of the general purpose ANNIE component of the GATE NLP framework.

They took the name gazetteer lookups and sentence splitter modules directly from ANNIE

without any modification for Twitter, but adapted all the other components for Twitter

including the language identifier, tokenizer, normalizer, POS tagger, and finally the named

entity recognizer. Their tweet tokenizer considers URLs and abbreviations as one token,

hashtags and user mentions as two tokens with a separate annotation, including the

preserved capitalization and orthography features. Their tweet normalizer employs a

combination of generic and social media specific spelling correction dictionaries for

identifying and correcting errors by using distance heuristics. Their Twitter POS tagger is

an adaptation of Stanford POS tagger [28] by training on tweets and by including

additional tag labels for URLs, retweets, hashtags, and user mentions. Finally, the NER

component of TwitIE benefits from the Twitter-specific modifications in the earlier

components as we mentioned, especially their POS tagger. This system is stated to

outperform T-NER [19] by achieving an F-score performance of 80% on PLO entity types.

2.3. Named Entity Recognition for Turkish Microblog Texts

 We have examined the important studies on Turkish NER and also significant

recent studies on Twitter NER, mostly for English. In this section, we will mention about

previous studies on the intersection of these two, namely on Turkish Twitter NER. To the

best of our knowledge, there exist only three studies addressing NER on Twitter for

Turkish, which are published only within the last two years.

 Çelikkaya et al. [29] presented the first study for Turkish NER on social media

data, such as microblog texts like Twitter. They adopted a CRF-based NER system that

was presented by Şeker and Eryiğit [6] and evaluated this system on informal Turkish data

from different domains such as forum data, speech data and Twitter data for the first time.

Note that this system is trained on formal data of news articles as it was before, but tested

on informal data of tweets this time. An important part of this initial study is that they

prepared a manually annotated data set of Turkish tweets for testing, which contains about

5K tweets and 54K tokens and it includes ENAMEX, TIMEX, and NUMEX entities. The

number of annotated PLOs is reported as 1,336. They used the same features such as

morphological, lexical, and gazetteer lookup features stated in [6]. Additionally, for the

 24

informal texts domain, they created their own text normalizer and processed the input

with this before the other stages. This normalizer works on slang words, repeated

characters, hashtags, mentions, smiley icons, vocatives, emo style writings, and

capitalization. This initial study is reported to reach an F-score performance of 19.28% in

CoNLL metric with ENAMEX entity types on their Turkish tweets data.

 Küçük et al. [9] proposed the second study in the literature on NER for Turkish

with Twitter data. This study is in fact an adaptation of a multilingual rule-based NER

system of the Europe Media Monitor (EMM) that processes news articles, presented before

by Pouliquen and Steinberger [30], for Turkish. Here, a new data set of 2,320 tweets in

Turkish is annotated manually with named entities and presented as a public data set. Their

annotation includes ENAMEX, TIMEX, and NUMEX entity types, plus a MISC type that

stands for names of TV programs / series, movies, music bands and products. Their

evaluation is however only on the ENAMEX types, or PLOs for comparison and this

publicly available data set contains around 2.3K tweets, 21K tokens and 980 annotated

PLOs. They did not give any credit to partial extractions, so their results are comparable to

the CoNLL metric. This initial adaptation is stated to achieve an F-score performance of

37.24% on their new tweet data set, and 29.64% on the tweet data set which was presented

before by Çelikkaya et al. [29]. As an improvement, they extended the resources of this

rule-based NER system with frequently used organization and person names found in

Turkish news articles. This attempt raised their final F-score to 42.68% on their new

Twitter data set, and to 36.11% on the Twitter data set of Çelikkaya et al. [29].

 In their later study, Küçük and Steinberger [10] proposed some improvements for

NER on Turkish Twitter data. In this study, again they used two different Turkish Twitter

data sets, one of them is presented in their previous study [9], which they call Twitter Set-

1, and the other one is based on the data set presented by Çelikkaya et al. [29], which they

call Twitter Set-2. Here they used a rule-based NER system that was presented before for

Turkish news articles by Küçük and Yazıcı [13]. This system exploits lexical resources

like PLO lists and patterns for the named entity extractions, and it includes a simple

morphological analyzer together with a configuration of using capitalization clue or not.

Here they evaluated their results with both strict metrics where partially extracted named

entities are given no credit, which is comparable to the CoNLL metric, and partial metrics

 25

where partial extractions take credit as well. They also evaluated the overall results only

for PLOs, or ENAMEX types, as well as for 7 types including the ENAMEX, TIMEX and

NUMEX entity types. Here we will discuss their results for PLOs only obtained using the

strict CoNLL like metric. The initial system without any improvements attempts reached

an F-score performance of 46.55% on Tweet Set-1 and 30.19% on Tweet Set-2. Their first

improvement is relaxing the capitalization constraint of the rule-based NER system they

used. By setting the capitalization feature off, the system regards all tokens as possible

Named Entity (NE) candidates without checking whether their initial character is

capitalized or not. With this improvement, they achieved an F-score of 47.76% on Tweet

Set-1 and 36.63% on Tweet Set-2. The second improvement is done by diacritics-based

expansion to their lexical resources used by this rule-based NER system. They simply

expanded the entries to include both diacritic and non-diacritic variants in their lexical

resources. With this improvement, together with the capitalization feature off, they

obtained an F-score performance of 48.13% on Tweet Set-1 and 38.01% on Tweet Set-2.

Their last attempt for improvement is exploiting simple tweet normalization by decreasing

consecutively repeated characters in words within tweets, by using the list of Turkish

unique words of Zemberek [31] for double-check. This last attempt, together with the

relaxation of the capitalization constraint, is evaluated only on Tweet Set-1 and achieves

an F-score of 47.92% with the strict metrics. They did not combine all these three

improvements attempts together for evaluation, so we cannot conclude that this simplistic

normalization is really an overall improvement or not.

2.4. Distributed Word Representations

Vector space distributed representations of words are helpful for learning

algorithms to reach better results in many NLP tasks, since it provides a method for

grouping similar words together. The earliest studies on distributed representations date

back to 1986 by Hinton et al. [32] and by Rumelhart et al. [33]. Distributed representations

are defined by Hinton et al. [32] such that given a network, entities can be represented by a

pattern of activity in a large number of units where each such unit is representing a micro-

feature of the entity. The benefit of this type of representation is that, it provides efficiency

for using the processing abilities of networks of simple, neuron-like units. Within the same

year, Rumelhart et al. [33] described a new learning method called back propagation for

 26

the first time in networks of neuron-like units. This study was the earliest usage of

distributed representations and it provides an efficient way of learning distributed

representations using back propagating errors.

 The idea of using distributed word representations in vector space is applied to

statistical language modeling for the first time by using a neural network based approach

with a significant success by Bengio et al. [34]. The approach is based on learning a

distributed representation of each word, which is also called a word embedding. Each

dimension of a word embedding represents a hidden feature of this word and is used in

order to capture this word’s semantic and grammatical properties. In this study, they used

these learned distributed feature vectors for words, which are basically continuous real

vectors, in order to capture the similarities between words. One of the most important

results obtained from this study is that, significantly better results for statistical language

modeling can be achieved when using the neural network as an underlying predictive

model for learning distributed word representations, compared to the best of the n-gram

based models.

 A similar approach is presented by Collobert and Weston [35] later on by using

neural networks to share distributed word representations across various NLP tasks such as

Part-of-Speech Tagging, chunking, Named Entity Recognition, semantic role labeling, and

syntactic parsing. Here, a neural language model is proposed which is faster to train than

traditional neural language models, which were slow due to the complexity that is

proportional to the size of the vocabulary for every computation. This faster approach,

similar to the one in [34], allows making use of a large unlabeled corpus for learning

distributed word representations. Later on, Collobert et al. [36] again proposed to use

distributed word representations together with the supervised neural network and by

suggesting this semi-supervised method, they achieved state-of-the art results for the above

NLP tasks. Note that they reached state-of-the-art results for English NER as well using

this semi-supervised approach.

 Although these approaches presented in [34-36] are faster than the traditional

approaches of learning distributed word representations, and although it allows a scaling to

large corpora, it is still suffering from very long training times of the deep neural networks

 27

with many layers. To illustrate the speed challenge, note that it can take weeks to get

distributed word representations using these methods. Later on, Mikolov et al. [18] showed

that continuous vector representations of words could be obtained much faster without

sacrificing from the performance. In [18], a similar approach is used with neural networks

as presented in [34]. In order to fasten the process of generating word embeddings, the

non-linear hidden layer is removed from the architecture since it was the main source of

the slowness during the training. This efficient method presented in [18] uses the current

word as an input to the projection layer in the neural network and it attempts to predict the

words before and after the current word within a certain range. The increased speed is

reported being in the order of billions of words per hour. Therefore, we can extract word

embeddings within a few hours instead of a few weeks now, which is a significant

improvement. It is shown that although this efficient method presented in [18] is much

more simplistic than the ones presented in [34] and [36], the obtained word representations

are better than [34] and [36] in terms of performance for various NLP tasks. By increasing

the efficiency of extracting continuous word representations, Mikolov et al. [18] allowed

us to use high quality word vectors that are promising to become an important building

block for many NLP applications.

 28

3. NAMED ENTITY RECOGNITION FOR TURKISH

MICROBLOG TEXTS

In this chapter, we will present the details of our methodology of using semi-

supervised learning with word embeddings for the task of Named Entity Recognition for

Turkish microblog texts, i.e. on Turkish Twitter data.

Semi-supervised learning is a type of learning technique that makes use of

unlabeled data in addition to the labeled data at the training stage. Typically, a large

amount of unlabeled data is used together with a relatively small amount of labeled data in

the semi-supervised learning approach. It is known that using unlabeled data in addition to

the smaller amount of labeled data may provide significant improvement in terms of

learning accuracy.

In this study, we present a neural network based architecture consisting of two

stages. The first stage is the unsupervised stage, which benefits from the large amount of

unlabeled data. The second stage is the supervised stage where a comparably smaller

amount of labeled data is used for training the model and testing its performance. The

description of our system in details can be found in the following sections.

3.1. Unsupervised Stage

 In the unsupervised stage, our aim is to learn distributed word representations, or

word embeddings, in continuous vector space. If we can obtain distributed representations

of words with a high quality, then we can expect that in this continuous vector space,

semantically similar words will be close to each other. This will provide a useful additional

knowledge base in terms of our NER task for Turkish microblog texts.

 In order to achieve good representation of words, we need a huge amount of

unlabeled Turkish corpus to feed the system in the unsupervised stage. The reason we are

employing an unsupervised stage as a first stage of our system stems from the known fact

that, as word vectors can be trained on large unlabeled text corpus, they can provide

 29

generalization for NLP systems trained with limited amount of labeled data in the

supervised stage.

 A word representation is usually a vector associated with each word, where each

dimension of this vector is actually representing a feature. The value of each dimension is

defined to be representing the amount of activity for that specific feature. To represent a

word as a vector, we can use either a local representation or a distributed representation.

 The traditional approach for representing words as vectors is known as one-hot

vector representation where only one of the vector elements is active for each word. If we

have a vocabulary of size |V|, then each word is represented as a vector of size |V| where

only the index of this word is one and the rest is zero. This representation is known as local

representation. Although one-hot vector representation of words is easy to interpret, it is

not possible to show correlation between two different words with this local representation,

and hence it is not very useful for the NER task. In addition, parameters estimated with

one-hot representation will be poor for rare words in the corpus. Furthermore, the local

representation model lacks the treatment for out-of-vocabulary words that are not found in

the corpus.

 In contrast, the distributed representation is representing each word as a dense

vector of continuous values, or real values, instead of discrete values of one and zero. This

vector is a lower dimensional vector where each dimension represents a latent feature for a

word. By having lower dimensional dense vectors, and by having real values at each

dimension instead of having only a single one and |V|-1 zeroes, distributed word

representations are helpful to solve the sparsity problem. On the other hand, distributed

word representations are trained with a huge unlabeled corpus using unsupervised learning.

If this unlabeled corpus is huge enough, then we expect that distributed word

representations will capture the syntactic and semantic properties of each word and this

will provide a mechanism to obtain similar representations for semantically and

syntactically close words. For all these reasons, we will use the distributed word

representations in continuous vector space, which is also called word embeddings, instead

of the local representations of words in our study.

 30

 In this study, we make use of the publicly available tool presented by Mikolov et

al. [18], which is called word2vec3, to obtain the word embeddings. The neural network

approach proposed in [18] is similar to the feed-forward neural networks presented before

by Bengio et al. [34] and Collobert at al [36], where we have four layers including the

input layer, projection layer, hidden layer, and output layer. To be more precise, the

previous words to the current word are encoded in the input layer and then projected to the

projection layer with a shared projection matrix. This projection is actually the

concatenation of the feature vectors of the previous words. After that, the projection is

given to the non-linear hidden layer and then the output is given to the softmax function in

order to a receive probability distribution over all the words in the vocabulary. In such a

model presented in [34] and [36], the computation between the projection layer and the

hidden layer is complex due to the fact that the values are dense and real. On the other

hand, the method used in [18] is much faster in terms of training times since the non-linear

hidden layer is removed from the architecture, which was the main cause for the

complexity and hence very long training times. This long training time was creating a

limitation for the amount of unlabeled data to be used as an input to extract good word

embeddings. It is shown that more training data of unlabeled texts improves the quality of

the obtained word vectors, because as the unlabeled data size increases, we can obtain

more representative feature vectors of words. Therefore, removing the non-linear hidden

layer and making the projection layer shared by all words is a significant improvement in

[18], which allows us to use a larger unlabeled corpus in the unsupervised stage and thus

obtain better word embeddings.

3.1.1. Training Distributed Representations of Words

 In this section, we will describe the model architectures for efficiently learning

distributed word representations in continuous vector space from a huge amount of

unlabeled data. Mikolov et al. [18] proposed two model architectures to learn word

embeddings with minimized complexity. These two new log linear models both remove

the non-linear hidden layer and compensate the representative power loss of word

embeddings by increasing the possibility to be trained on much larger data.

3 https://code.google.com/p/word2vec/

 31

 The first model for generating word embeddings in an efficient manner,

proposed in [18], is called continuous bag-of-words model, where the hidden layer is

removed and the projection layer is shared for all words, not just the projection matrix. As

a result, all words from a certain range, i.e. window, are projected into the same position in

this model. The weight matrix between the input and projections layers is shared by all

inputs. It is called bag-of-words model since the projection is independent of the order of

words and it is named as continuous bag-of-wards since it makes use of continuous vector

space distributed representations of the context. Here, a log linear classifier is used to

classify the current word given the past and future of the word in certain window size.

Hierarchical softmax is also used to increase the efficiency further.

Figure 3.1. Skip-gram model architecture where the aim is to learn the continuous vector

representations of words in order to predict the surrounding words [18].

 The second model proposed in [18] for learning word representations efficiently is

called continuous skip-gram model that is very similar to the first model. The difference is

that instead of predicting the current word based on context as in the first model, the skip-

gram model aims to maximize the classification of a word based on the other words within

 32

the sentence. The skip-gram model uses the current word as an input to the projection

layer with a log-linear classifier and it attempts to predict the representation of the

neighboring words within a certain range before and after the current word. Mikolov et al.

[18] showed that the continuous skip-gram model is better than the continuous bag-of-

words model in terms of obtaining semantic representations of words. In our study, we also

used the continuous skip-gram model in order to obtain better representations of words for

Turkish. The skip-gram model architecture we used in our study is shown in Figure 3.1

where the range is taken as 5 so that the previous and next 2 words are predicted from the

current word.

 The goal of training the skip-gram model is to obtain continuous word

representations that can be used to predict the neighboring words within a sentence. To be

more precise, given a sequence of input words w1, w2, …, wT, the objective function of the

skip-gram model is to maximize the average log probability [37]

1
𝑇 log𝑝 𝑤!!! 𝑤!

!

!!!!
!!!

!

!!!

where c is the size of the training range of context and T is the number of words in a given

sequence. Here we are calculating the sum of the log probabilities of the previous and next

c words of a given word, and then summing them up for all words in the given sequence.

 The skip-gram model defines the above inner probability, i.e. the probability of

word wi given wj, using the softmax function as [37]

𝑝 𝑤! 𝑤! =
exp (𝑢!!

! 𝑣!!)
exp (𝑢!! 𝑣!!)

!
!!!

where uw and vw are the input and output vector representations of word w, respectively,

and V is the number of words in the vocabulary. The above formula in not practical to

compute since the cost of computing the denominator is proportional to V which is the

number of all words in the vocabulary and hence very large.

(3.1)

(3.2)

 33

 In order to compute the probability p(wi|wj) efficiently, using hierarchical softmax

instead of full softmax is proposed in [38]. In the hierarchical softmax, the output layer is

represented as a binary tree having V words at its leaves and therefore the complexity is

reduced logarithmically since instead of evaluating V output nodes in the neural network,

we need to evaluate only log2(V) nodes with the hierarchical softmax approach. In this

model, each word w can be reached by a certain path from the root of this binary tree. The

probability of a word w given wI is defined as [37]

𝑝 𝑤 𝑤! = 𝜎 𝑛 𝑤, 𝑗 + 1 = 𝑐ℎ(𝑛 𝑤, 𝑗) ∙ 𝑢! !,!
! 𝑣!!

! ! ! !

!!!

where σ(x) = 1/(1 + exp(-x)), n(w,j) is the jth node on the path from the root to w, and L(w)

is the length of this path. For any inner node n of the tree, ch(n) is defined to be an

arbitrary fixed child of n and 𝑥 is 1 if x is true and -1 otherwise. The fact that

𝑝 𝑤 𝑤!!
!!! = 1 can be verified [37]. With this hierarchical softmax formula, we have

one representation vw for each word w and one representation un for every inner node n of

the tree. In this model, backpropagation error is used together with stochastic gradient

descent to learn high-quality word representations efficiently.

 While training the distributed word representations in continuous vector space

using a large unlabeled corpus, the chosen dimension of the vectors is important as well as

the predefined range of the surrounding words. As the desired vector dimensions increase,

which is denoted as d in Figure 3.1, the representativeness and quality of the obtained word

embeddings improve together with a cost of complexity. Similarly, as the predefined range

of neighboring words increases in order to predict the current word, the prediction

accuracy improves again with an additional cost of computational complexity [37]. In this

study, for our NER task on Turkish Twitter data, we have chosen 200 as the dimension of

the obtained word vectors. The range of the surrounding words is chosen to be 5, so that

we will predict the distributed representations of the previous 2 words and next 2 words

using the current word. This vector size and range decisions are aligned with the choices

made in a previous study [17] for the NER task on Turkish structured data.

(3.3)

 34

 Another important aspect of training word embeddings in continuous vector space

with skip-gram model is the amount of unlabeled corpus used for training. As discussed in

[37], using large amount of data for training is crucial in terms of the quality of the word

representations obtained and it can easily affect the resulting accuracy of various NLP

tasks that make use of these word embeddings. Mikolov et al. [18] used a data set of size

1.6B words for English to train word embeddings. For the Turkish NER task on news

domain, Demir and Özgür [17] used a Turkish corpus of 1.02B words in order to obtain

word embeddings. Since this unlabeled Turkish corpus used in [17] is not publicly

available, in our study we used a different Turkish corpus with size 423M words, called

BOUN Web Corpus4 composed of Turkish news articles and webpage contents. This is the

largest Turkish corpus we could obtain and therefore it should be noted that its size, i.e.

number of words and tokens in it, could affect the quality and representative coverage of

the trained word embeddings with the skip-gram model. Note also that this data set is

composed of formal text types in Turkish, but in this study we will test our Turkish NER

system on informal text types, such as Turkish microblog texts and more specifically on

Turkish tweets. Therefore, we also experiment with word embeddings obtained from large

training data composed of unlabeled Turkish tweets. The details of those huge Turkish data

sets used in this study to obtain word embeddings will be explained in detail in the next

chapter.

3.1.2. Examination of Semantic Relations with Turkish Word Representations

 It is shown that word embeddings obtained from a large corpus can capture various

interesting linguistic regularities and semantically related words are expected to be close to

each other in vector space with distributed representations. The word2vec tool we used in

this study allows us to train the model on a large corpus in any language and then query a

word to list its closest neighbors in vector space. On our trained model with huge

unlabeled data in Turkish, we examined some sample Turkish words and observed that the

listed closest words are semantically highly related to the query word. Since our task is

NER, we focused on ENAMEX type named entities, namely person, location, and

organization names in Turkish while querying words to examine their closest neighbors.

4 http://79.123.177.209/~hasim/langres/BounWebCorpus.tgz

 35

Table 3.1. Person name sample words and their closest neighbors.

tuğçe

(female name)

zeliha

(female name)

musa

(male name)

acar

(surname)

alex

(soccer player name)

esra

(female name)

gülnur

(female name)

bekir

(male name)

kızılkan

(surname)

nobre

(soccer player name)

tuğba

(female name)

şerife

(female name)

cafer

(male name)

ülger

(surname)

anelka

(soccer player name)

zehra

(female name)

neriman

(female name)

muhammet

(male name)

toksoy

(surname)

appiah

(soccer player name)

büşra

(female name)

gülsen

(female name)

abdurrahman

(male name)

çavuşoğlu

(surname)

deivid

(soccer player name)

aysun

(female name)

bedriye

(female name)

mahmut

(male name)

balkış

(surname)

luciano

(soccer player name)

selin

(female name)

serpil

(female name)

elyasa

(male name)

taştop

(surname)

ailton

(soccer player name)

didem

(female name)

necla

(female name)

seyit

(male name)

öztürk

(surname)

marcio

(soccer player name)

 We have shown sample person names as query words on the top row, and below

them we have listed the seven closest words in vector space to the input query word in

Table 3.1. The top words in the first three columns of this table are Turkish person names

and our word embeddings model lists other person names below as their closest neighbors.

Note that the query words in the first two columns are female person names in Turkish and

their nearest neighbors are also female names, whereas the query word in the third column

is a male person name in Turkish and so are its neighbors. The query word in the fourth

column is a common surname in Turkish and interestingly, its closest neighbors are also

surnames. In the last column, we queried a non-Turkish person name and since it is the

name of a famous football player in Turkey, its nearest neighbors are also other famous

non-Turkish football player names known well in Turkey. More interestingly, if we

compare the first two columns, we may realize that the first query word seems to be a type

of modern female person name in Turkish that is used mostly in cities, whereas the second

query word seems to be a type of a female person name mostly used in rural areas.

 36

Surprisingly, which might be obvious only for a native Turkish speaker, most of their

closest words are also female names that seem to carry this distinction. Another interesting

comment to be added here is that, the male person name queried on column three is

actually an Arabic name and its nearest neighbors are mostly common Arabic male names

used also in Turkey. This examination illustrates that semantically related words are also

close to each other in vector space. This feature is very valuable for the NER task since it

can help distinguishing named entities based on semantic roles of words. Moreover,

traditional language dependent NER models usually benefits from gazetteer lists where

common person names are kept as a lookup table to help detecting named entities. These

lists are manually constructed for a specific language which is an expensive task, and they

can lack surnames and non-Turkish common names where adding also those is an extra

burden. However, by employing word embeddings that are obtained with a large Turkish

corpus using an unsupervised learning method, we might cover these gazetteer lists and

even many more deep semantic relations between words in a specific language without this

manual name gathering burden.

 Similarly, we have shown location names as query words on the top row, and we

have listed below their seven nearest words in vector space in Table 3.2. All the nearest

words are also location names as expected. On the first column, we have a country name in

Turkish as a query word and all its closest neighbors are also country names in Turkish.

Note that since the query country word is a Nordic country name, most of its top neighbors

are also Nordic countries. On the second column, we queried a city name in Turkey and

observed that its seven closest neighbors are also cities of Turkey, and most of them are

even within the same region called Black Sea. On the third and fourth columns, the query

words are county names of certain cities and their nearest words are also mostly county or

smaller district names within the same city of Turkey. On the fifth and sixth columns, we

queried location names as certain districts of Istanbul and observed that the resultant

closest words are also district names of Istanbul, which are either geographically or socio-

economically close to the query district name. It is quite interesting to see that on column

five, when the query word is a district name having a population with a low socio-

economic status, most of the closets district names listed also seem to have this property.

Similarly on column six, when the query district name is where people with a high socio-

economic status live, most of its nearest words seem to be also district names having this

 37

status. These examples show how strong word representations can be to capture

semantic relations in natural language and how valuable they can be for NLP tasks such as

NER. Again, these word embeddings might be a better and cheaper alternative for location

names gazetteers used for the NER task, since they are automatically extracted without

labeled data and since they can capture many more locational clues, such as a specific port

name of a certain city can be very close in vector space to a county name within the same

city, which might be hard to capture with generic location names gazetteers.

Table 3.2. Location name sample words and their closest neighbors.

isveç

(sweden)

giresun

(city)

lapseki

(county of

çanakkale)

kadıköy

(county of

istanbul)

gültepe

(district of

istanbul)

tarabya

(district of

istanbul)

norveç

(norway)

artvin

(city)

eceabat

(county of

çanakkale)

üsküdar

(county of

istanbul)

çeliktepe

(district of

istanbul)

ortaköy

(district of

istanbul)

hollanda

(netherlands)

gümüşhane

(city)

kabatepe

(district of

çanakkalel)

beyoğlu

(county of

istanbul)

nurtepe

(district of

istanbul)

etiler

(district of

istanbul)

belçika

(belgium)

bayburt

(city)

geyikli

(district of

çanakkalel)

eminönü

(county of

istanbul)

reşitpaşa

(district of

istanbul)

kireçburnu

(district of

istanbul)

danimarka

(denmark)

çorum

(city)

yükyeri

(port of

çanakkale)

bakırköy

(county of

istanbul)

kağıthane

(district of

istanbul)

arnavutköy

(district of

istanbul)

ispanya

(spain)

bartın

(city)

gökçeada

(county of

çanakkale)

zeytinburnu

(county of

istanbul)

aydınevler

(district of

istanbul)

emirgan

(district of

istanbul)

portekiz

(portugal)

sinop

(city)

bozcaada

(county of

çanakkale)

kağıthane

(county of

istanbul)

güvercintepe

(district of

istanbul)

vaniköy

(district of

istanbul)

polonya

(poland)

kastamonu

(city)

gelibolu

(county of

çanakkale)

mecidiyeköy

(county of

istanbul)

harmantepe

(district of

istanbul)

unkapı

(district of

istanbul)

 38

 Finally, we have investigated organization names as query words on the top row,

and we have listed their seven nearest neighbor words in vector space below in Table 3.3.

Our model lists mostly organization entities as closest words to our query words as

expected. On the first column of this table, a Japanese technology company name is

queried as an organization entity name and we obtained other Japanese technology

company names as closest neighbors, plus a South Korean and a Taiwanese one. On the

second column, a query word is a mobile phone company name and so are most of its

closest words, plus some mobile phone models are listed as related. Note that these

specific model names of certain products can be useful to detect organizational named

entities. On the third and fourth columns, we investigated automobile manufacturer

company names as a query word and observed that similar company names are mostly

placed as closest words. When we query with a luxury car company name, its neighboring

words also seem to be mostly luxury brands where the top closest ones are also from the

same country, and when a regular car company name is queried, we receive mostly other

regular car company names as nearest words again where the closest ones are also from the

same country. On the fifth column, we have a football club name in Turkish as a query

word for organization entity and its closest neighbors are also other football club names in

Turkish, where the top nearest ones are the most popular ones. Since football is a very

popular topic on Twitter, it is important to detect those club names as organizational

entities, which is seen quite often in Turkish Twitter data sets. On the last column, a

university name in Turkey is queried as an organization name on our model, which is

actually a short name for this university and this type of informal usage is quite common in

tweets data sets. We observed that its closest neighbors are also other Turkish university

names, again with a short name type of usage. Interestingly, the closest words list also

includes the same university name queried but with typos or diacritic variations, or the

abbreviation mostly used for this university. Since such typos, diacritics, and abbreviations

are very common in informal text types such as Twitter data; placing those kinds of

variations of words very close to each other in vector space with word embeddings is a

very crucial property where a NER system on informal text types could effectively benefit

from. Maybe it will not replace the proper normalization scheme to be applied on informal

text types, but if this representative power of word embeddings can be used together even

with a simpler normalization scheme, the observed effects of word embeddings can be

interesting to be examined.

 39

Table 3.3. Organization name sample words and their closest neighbors.

toshiba

(org.)

nokia

(org.)

porsche

(org.)

peugeot

(org.)

galatasaray

(football club)

boğaziçi

(university)

panasonic

(org.)

samsung

(org.)

bmw

(org.)

citroen

(org.)

fenerbahçe

(football club)

bilkent

(university)

sony

(org.)

motorola

(org.)

volkswagen

(org.)

renault

(org.)

beşiktaş

(football club)

bogaziçi

(boğaziçi w/o

diacritic)

sanyo

(org.)

sagem

(org.)

audi

(org.)

bmw

(org.)

trabzonspor

(football club)

bü

(abbreviation

of boğaziçi)

fujitsu

(org.)

w300i

(nokia model)

volvo

(org.)

volkswagen

(org.)

gençlerbirliği

(football club)

yeditepe

(university)

hitachi

(org.)

z530i

(nokia model)

jaguar

(org.)

opel

(org.)

ankaragücü

(football club)

bahçeşehir

(university)

samsung

(org.)

siemens

(org.)

carrera

(porsche brand)

ducato

(fiat model)

bursaspor

(football club)

odtü

(university)

benq

(org.)

w710i

(nokia model)

maserati

(org.)

daihatsu

(org.)

istanbulspor

(football club)

bağaziçi

(boğaziçi with

typo)

 This examination results we presented for closest words in vector space in Table

3.1, Table 3.2 and Table 3.3 show that semantically related words in Turkish are placed

close to each other using the unsupervised model we employed. For the NER task, this is a

very valuable feature because semantic roles of words can be crucial for recognizing

named entities.

3.2. Supervised Stage

The second stage of our neural network based architecture for the NER task on

Turkish microblog texts is the supervised stage. At this stage, a comparably smaller

amount of labeled data is used for training and constructing the final NER models. The

 40

learning algorithm we used and the features we employed to form the NER models at

the supervised stage will be explained in detail in the following sections.

3.2.1. The Learning Algorithm

 To train our neural network based NER model, we used the implementation

presented by Ratinov and Roth [39], which is publicly available5. In this work, their

implementation of the NER model is based on the regularized averaged multiclass

perceptron algorithm, which is presented by Freund and Schapire [40]. This averaged

multiclass perceptron algorithm is based on the classical perceptron algorithm proposed by

Rosenblatt [41] and applied as a supervised classification algorithm. We will explain the

perceptron algorithm briefly below.

 Perceptron is a primary computational node in neural networks. Perceptron is a

linear classification algorithm that allows for online learning, which means it can process

elements in the training set one at a time. It simply makes predictions using the weighted

sum of the input feature vector. Here we define a weight vector w = [w1, …, wd]T where d

is the number of features we use. The simple perceptron algorithm initializes the weight

vector to all zeros, and then the class of a new instance xt = [x1, …, xd]T is predicted as 𝑦t =

sign (wT xt) where sign(s) is 1 if s > 0, and -1 otherwise. If this prediction is true, then the

weight vector stays the same but if it is false, the weight vector is updated as w = w + 𝜂 (yt

xt) where 𝜂 is the learning rate. After that, this procedure is applied to the next instance and

this perceptron algorithm is run over and over again through the training set until a

predefined stopping criteria is met with the currently obtained weight vector. Note that

here the classes, or labels, are defined to be in {-1, +1} and hence the classical perceptron

algorithm is a binary classification algorithm.

 This simple perceptron algorithm can be easily applied to multiclass classification,

as shown in [42]. With this linear online multiclass version of the perceptron algorithm, a

prediction out of k classes is made for a d-dimensional instance vector xt as an input at

each round t. Note that this online learning is performed in a sequence of consecutive

5 http://cogcomp.cs.illinois.edu/Data/ACL2010_NER_Experiments.php

 41

rounds. The goal is defined to minimize the number of prediction mistakes M on each

run over the training set, which is defined as

𝑀 = 𝟏 𝑦! ≠ 𝑦!

!

!!!

where T is the total number of rounds at each run over the training set, or simply T is the

total number of instances in the training set. Here, the predicted class 𝑦 is defined as

𝑦 = argmax
!∈[!]

 (𝑊𝑥)!

where 1[π] is 1 if predicate π is true and 0 otherwise, and (𝑊𝑥)! is the jth element of the

vector obtained by multiplying the weight matrix W, W ∈ ℝ!"#, with the instance vector x.

Again, this weight matrix is initialized to all zeros at the beginning of the multiclass

perceptron algorithm. At the end of each round, based on whether the weight matrix

predicts the current label correctly or not, the algorithm updates its weight matrix with

parameters in order to predict the future instances better. If the label is predicted correctly,

then the weight matrix is not updated at all. On the other hand, if a false label is predicted,

the weight matrix is updated such that after each round t, xt is added to the yt
th row and

subtracted from 𝑦t
th row of the weight matrix W. To be more precise, the weight matrix is

updated as follows

𝑊!!! = 𝑊! + 𝜂𝑈!

where W1 = 0 at the initial step and where the matrix Ut, Ut 𝜖 ℝ!"#, is defined as

𝑈!,!! = 𝑥!,! 1 𝑦! = 𝑟 − 1 𝑦! = 𝑟

 At the end of training, the final weight vector is stored and it is used to predict the

class, or label, using equation 3.5, for each instance in the test set. In Figure 3.2, we

present an illustration of the multiclass perceptron network, which is simply a two-layer

neural network composed of an input layer and an output layer. Note that here, a d-

(3.5)

(3.4)

(3.6)

(3.7)

 42

dimensional input vector xi, where i = 1, …, d , is assigned to one output class yj , where

j = 1, …, k , out of k possible classes. Wij represents the weight of the arrow from input xi

to output yj. With this illustration, the input values are multiplied with the corresponding

weight values and summed up to construct the output values. The predicted class or label

will be based on the maximum of these resulting output values.

Figure 3.2. Multiclass perceptron as a simple two-layer neural network structure.

 Note that in this classical perceptron algorithm, only the final weight vector values

are kept as the learnt parameters and used for the test instances. However, Freud and

Schapire [40] proposed that it would be better if we can store also the previously estimated

weight matrix values. The idea stems from the fact that a previously achieved and stable

weight matrix can be ruined with updates at the last instances of the training set.

 To achieve improved generalization by employing the previous weight matrix

parameters, modifications to the standard perceptron algorithm are proposed in [40]. One

of these modifications is called the averaged perceptron approach that we also used in our

study. This approach is actually very similar to the classical multiclass perceptron

algorithm; but in the averaged multiclass perceptron algorithm, we keep track of the

average weight matrix, Wavg ∈ ℝ!"#, as well. The average weight matrix is initialized to all

zeros at the beginning and at each iteration, the current weight matrix is added to Wavg.

When the training is over, this matrix is divided by the total number of iterations during the

 43

training and hence, the average of all weight matrices is obtained. With this new

approach, instead of the final weight matrix values, we simply return the average weight

matrix Wavg values and use these parameters for the test instances. This averaged multiclass

perceptron algorithm is also shown in Figure 3.3, which is taken from [16].

Figure 3.3. Averaged multiclass perceptron algorithm [16].

 In this algorithm, Wr represents the rth row of W. In our study, we chose the

learning rate 𝜂 to be 0.1. Moreover, we used the stopping criteria during the training of our

model such that if the performance does not improve for the last 10 epochs, the training

stops. Here, epoch represents each run over the training set. The performance we used for

checking the stopping criteria is the one that we measure after each epoch over the whole

training set. The epoch that performed best is then chosen to be our final model.

 44

3.2.2. The General Framework

 In this section, we will describe the features we used to train our NER model and

the representation of the named entities we employed will be explored together with the

other design choices we made to complete our framework.

 In our study, the framework we used is similar to the one presented by Ratinov and

Roth [39] and also employed in [17] for Turkish NER. As done in [39] and [17], we

explored both local and non-local features to construct our Turkish NER model, but we did

not finally use non-local features since they have no benefit for the domain of short Twitter

messages. The features we examined for our NER system are listed as follows:

• Local features: These are the features mostly related to the previous and next

tokens of the current token xi. The local features we exploited are as follows:

(i) Context: All tokens in the current window with size two, i.e. ci = (xi-2, xi-1,

xi, xi+1, xi+2)

(ii) Capitalization: A Boolean feature indicating whether the first letter of a

token is upper-case or not. This feature is generated for all the tokens in the

current window ci

(iii) Word type information: Type information of tokens in the current window

ci, i.e. all-digits, contains-apostrophe, all-capitalized and all-non-letters

(iv) Token prefixes: First characters with length three and four, if exists, of

current token xi

(v) Token suffixes: Last characters with length one to four, if exists, of current

token xi

(vi) Previous tags: Named entity tag predictions of the previous two tokens, i.e.

yi-1, yi-2

(vii) Word embeddings: d-dimensional vector representations of the words in the

current window ci, i.e. (ei-2, ei-1, ei, ei+1, ei+2)

• Non-local features: These are the features where global and hence non-local

dependencies are taken into account. The non-local features we exploited are as

follows:

 45

(i) Context aggregation: When tokens that are identical to the current token

appear in several location in the text, in addition to the context features of

the current token, we aggregate the context features of all such tokens

within a window of size 200, as proposed in [39].

(ii) Extended prediction history: When making a prediction for the current

token, the tag assignment distribution for all tokens in the previous 1000

words that are identical to the current token is recorded, as proposed in [39].

This tag distribution of the current token is then used as an extended

prediction history feature.

 Note that although non-local features are proven to be useful for the NER task on

long and formal text types such as news articles, their usage and benefit is questionable for

informal and short text types. In Twitter, the text size is limited to 140 characters for each

tweet. This limitation brings an additional burden on the NER task for tweets. Due to the

fact that each tweet is treated as a single document with only 140 characters, it is difficult

to make use of non-local features such as context aggregation and prediction history for the

NER task on tweets, whereas these features are generally used for formal text types mainly

composed of news articles. With this motivation, firstly we have checked the benefit of

these non-local features with our Turkish NER system tested on Turkish tweets, and

observed that we achieve better results without those non-local features, which actually

makes sense. Therefore, throughout this study, we decided not to use non-local features for

our NER models designed to work on Turkish tweets. We have also tested our models,

which use word embeddings, with and without the capitalization feature on tweets and we

have seen that not using the capitalization feature is better for tweets without

normalization, whereas using the capitalization feature is better if we apply a normalization

scheme on Turkish tweets first. We will present the details of our findings about the best

set of those features for the NER task on Turkish Twitter data in the experiments and

results chapter.

Another important point about those explored features is that, since we have trained

our Turkish NER models on annotated Turkish news data instead of Turkish tweets data,

due to the lack of enough amount of annotated Turkish Twitter data, we could not explore

Twitter specific features much at this stage. However, our NER system still has Twitter

 46

specific parts such that during the Turkish text normalization stage on tweets before we

apply NER on them, which will be explained in detail in the next section, we have

extracted Twitter specific keywords for certain Twitter text usages such as mentions,

hashtags, smileys and URLs. In addition, we have also extracted Twitter specific keywords

on our large Turkish tweets corpus during the Twitter processing stage, which will be

explained in detail later in the data sets chapter, and again this makes our Turkish NER

system Twitter specific. Moreover, since we have trained our Turkish word embeddings by

using this additional corpus composed of Turkish tweets, and since we used word

embeddings obtained from those processed tweets corpus as a crucial feature for our NER

model, our word embeddings feature can be thought as a Twitter specific feature for our

NER model.

 The representation scheme for named entities is significantly important in terms of

performance for a NER system. The two most popular such encoding schemes are BIO and

BILOU. The BIO scheme identifies the Beginning, the Inside and the Outside of the text

segments, which are named entities in our case. On the other hand, the BILOU

representation scheme identifies the Beginning, the Inside and the Last tokens of multi-

token named entities, plus the Outside if it is not a named entity and the Unit length if the

entity has single token. Obviously, BILOU scheme allows a more expressive model to be

learnt compared to the BIO scheme. Since it is shown in [39] that BILOU representation

scheme significantly outperforms the mostly used BIO encoding scheme, we make use of

the BILOU encoding scheme for tagging named entities in our study. After we tag the

named entities using the BILOU encoding scheme, the tags are converted to BIO tags

while testing since this was necessary to use the standard CoNLL performance evaluation.

During this conversion, the tags U and L are simply converted into B and I, respectively.

 In our model, the feature vectors are concatenated and then given to the averaged

multiclass perceptron as shown in Figure 3.2 in order to predict the named entity tag of a

given word. At this stage, we have used 1-of-N encoding for discrete variables with three

or more alternative values. For instance, if we have only four possible values for a type of

a feature, their encoding will be as follows: 1000, 0100, 0010 and 0001. On the other hand,

since the system can observe an unknown feature during testing that has not been observed

in the training, an encoding for unknown features is necessary too. As a result, the final

 47

encoding in our example will be as follows: 10000, 01000, 00100, 00010 and 00001,

where the first four encodings are for the known features and the last encoding is for

unknowns. Note also that we normalized the numbers as done in [39]. As an example,

2015 is represented as *DDDD* and (0212) 123 45 67 is represented as (*DDDD*)

DDD *DD* *DD*. This type of numeric normalization allows to achieve a degree of

abstraction for numeric expressions such as phone numbers, years etc.

 The experiments we performed with different models having the variations of this

general framework and the detailed comparison of their results for the NER task on

Turkish Twitter data will be presented in the experiments and results chapter of this study.

We will explain these model parameters, where most of them convert our generic model

into a microblog texts specific model, in detail in the following section.

3.3. Model Parameters

 In this section, we will mention about the differences between the various NER

models we experimented with and evaluated on Turkish Twitter data. We have a list of

model design options or experimental setting options that we can manipulate in order to

see their effects on the NER task for Turkish tweets. These are namely the types of

annotated texts we used for training, the variations on the annotated Twitter test sets, the

unlabeled source text type of word embeddings, using the capitalization feature or not, and

finally applying normalization on tweets data sets.

3.3.1. Training on Different Text Types

 Since our task is recognizing named entities on Turkish Twitter messages, which

are informal text types and hence very different in nature from formal text types such as

news articles, a successful NER model for Turkish tweets ideally should be trained on

labeled data composed of similar informal text types, i.e. Turkish tweets. On the other

hand, the amount of annotated data used for training a NER system highly effects its

generalization ability and hence the performance on unknown test data in the future.

 48

 Since we lack a large amount of Turkish Twitter data annotated with named

entities, our first attempt is to train a NER model on a large amount of annotated Turkish

news data, similar to what has been done in previous works on Turkish Twitter NER,

presented in [9] and [29]. Although we have a limited amount of annotated Turkish tweets

data, our second attempt is to train a NER model on this relatively small amount of tweets

data with 10-fold cross-validation and compare its results with our first attempt.

3.3.2. Testing on Different Twitter Data Sets

 Our Turkish NER system will always be tested on microblog texts data, i.e. Turkish

Twitter data sets annotated with named entities. We have two different data sets for that

purpose, which will be explained in detail later in the data sets chapter. These are namely

TwitterDS-1 composed of around 5K tweets and TwitterDS-2 composed of around 2.3K

tweets, presented in [29] and [9], respectively.

 In TwitterDS-1, we observed some serious problems that can affect the

performance of our final NER system. The first problem we observed is that, it is not

annotated properly such that a lot of named entities that should be annotated are missed

and hence remained as not annotated. For this problem, we have no solution since it

requires manual check on all 5K tweets. Nevertheless, we can still use this data set as it is

for comparison with the previously proposed NER models on Turkish tweets. However, as

we will see in the experiments and result chapter, the results reported on this data set are

comparably worse than the results reported on TwitterDS-2, which might have been caused

by this missed annotations.

 The second problem we observed in TwitterDS-1 is that, as also discussed in [9],

53 named entities annotated as location names are actually referring to organization names

with metonymic readings. When we examined these entities, we observed that in all of

them, football club names are actually referred with their home city names. Such examples

are harder to be recognized correctly by a NER system since contextual clues are highly

required together with semantic relations, which are limited in short text messages such as

tweets. Therefore, if we leave such entities with location tags, the performance will be

better compared to when we correct them with organization tags. For the sake of

 49

measuring the actual performance, we have corrected these location names as

organization names and we will call this updated version of the first Twitter data set as

TwitterDS-1_LTOC where LTOC stands for location-to-organization-corrected for such

cases. We will use both TwitterDS-1 and TwitterDS-1_LTOC data sets as test sets in all of

our experiments.

 The third problem we observed in TwitterDS-1 is that it includes some non-Turkish

tweets. To be more precise, we realized that 291 tweets out of 5040 are non-Turkish in

TwitterDS-1, which may affect the performance of our NER system designed for Turkish,

i.e. trained on labeled Turkish data and using Turkish word embeddings. By non-Turkish

tweets we mean the messages are composed of completely non-Turkish words, not the

ones having both Turkish and non-Turkish words together, since it is quite common to use

some non-Turkish words such as foreign names or lyrics etc. in Turkish tweets. As an

improvement, we manually filtered out those non-Turkish tweets both from TwitterDS-1

and TwitterDS-1_LTOC and renamed them as TwitterDS-1_FT and TwitterDS-

1_LTOC_FT respectively, where FT stands for fully Turkish. In addition to TwitterDS-1

and TwitterDS-1_LTOC data sets, we will also use both TwitterDS-1_FT and TwitterDS-

1_LTOC_FT data sets as test sets in all of our experiments to observe their effects on

performance.

 On TwitterDS-2, we have not observed the above problems and therefore we leave

it as it is, as a much healthier annotated test set for our Turkish NER system. In [9], it is

noted that non-Turkish tweets have already been manually filtered out from TwitterDS-2,

which is consistent with what we have observed. All in all, we mainly have two different

annotated Turkish Twitter test sets, but since we created three additional ones with

corrections from the first set, we will have five different test sets in total to be used in all of

our experiments.

3.3.3. Using Word Embeddings from Different Text Types

 Since our task is NER on informal text types such as Turkish tweets, not on formal

text types such as Turkish news, the type of texts found in the unlabeled Turkish corpus

used to attain the word embeddings can affect the performance results. With this intuition,

 50

in addition to learning Turkish word embedding from the BOUN Web Corpus mostly

containing formal text types such as news articles, we also experimented with the word

embeddings attained from an unlabeled Turkish corpus composed of only informal text

types, i.e. tweets, at the unsupervised stage. As a third option, we will compare the effects

of word embeddings obtained from the combination of these two Turkish corpora, large

amount of unlabeled Turkish news corpus plus unlabeled Turkish tweets corpus, which can

be interesting to examine for the Turkish NER task on tweets.

 With this motivation, we trained basically three different models for Turkish NER

task on Twitter. The first model uses only the word embedding obtained from the BOUN

Web Corpus, where we will explain its details in the data sets chapter. The second model

uses only the word embeddings obtained from our tweets corpus, which has nearly half of

the size compared to the BOUN Web Corpus, where its details will be examined again in

the next chapter. The third and the final model uses a combined corpus composed of both

the BOUN Web Corpus and tweets corpus in order to attain word embeddings, which will

be used as an important feature during the training of our NER system at the supervised

stage. We will report and compare the results of all these three basic models in our

experiments.

3.3.4. Capitalization

 In our general NER model framework, we mentioned about the capitalization

feature as a local feature, which basically takes into account the capitalization of tokens in

the current window. It is an important feature especially for formal text types such as

Turkish news data, where proper capitalization of named entities is widely seen. However,

we realized that proper capitalizations of named entities are often missed in informal text

types such as Turkish tweets, due to their unstructured nature and everyday language type

of usage. With this motivation, we evaluated our Turkish NER models firstly trained by

using the capitalization feature and then also trained by not using the capitalization feature

in order to compare its effects. In the second case, where we relaxed this capitalization, our

Turkish NER models may consider all tokens as possible named entity candidates without

checking whether their initial letters are capitalized or not, so that capitalization is not a

 51

strong clue for named entities anymore. We will report and compare the performance

results of both types of models in our experiments.

3.3.5. Normalization

 The nature of real data, especially for microblog texts such as tweets, is highly

noisy which creates a great burden and challenge when performing NLP tasks on them. We

mentioned about those Twitter NLP challenges in Section 1.3. In order to neutralize the

issues of writing and spelling errors, such as punctuation violations with lack of proper

capitalization or apostrophes, usage of non-diacritic characters especially in Turkish

tweets, abbreviations, slangs and special modifications found in tweets, it is highly

recommended to apply a normalization scheme to correct and expand such usages before

using the NER system on tweets.

 With this motivation, we experimented on both non-normalized and normalized

Turkish tweet sets in order to see the effect of tweet normalization as a preprocessing step

for the Turkish NER task on tweets, especially with our proposed models using word

embeddings. For that purpose, we have used the web-based Turkish normalization

interface 6 presented as a component of ITU Turkish Natural Language Processing

Pipeline7, which we will call as ITU Normalizer in our study. This normalizer tool is

publicly available for research purpose and the details of this work are presented in a

recent publication by Torunoğlu and Eryiğit [43]. It is the first study on Turkish text

normalization that is publicly available where the model is designed and tested especially

for Turkish social media text. This model has mainly two stages as ill formed word

detection and candidate word generation. The second part contains seven stages, namely

letter case transformer, replacement rules and lexicon lookup, proper noun detector,

deasciificator that corrects non-diacritics, vowel restoration, accent normalizer and spelling

corrector where all of those runs sequentially. During this normalization, at the

replacement rules stage they also labeled Twitter-specific words and usages such as

mentions, hashtags, smileys, vocatives and Twitter-keywords like RT for retweets etc.

6 http://tools.nlp.itu.edu.tr/Normalization
7 http://tools.nlp.itu.edu.tr/

 52

In addition to this normalization scheme, we also applied our own post

processing steps such that we replaced the Twitter specific keywords given by ITU

Normalizer into our own format of Twitter related keywords such as TwitterMention,

TwitterHashtag, TwitterSmiley, TwitterUrl etc. We performed this process on top since we

already applied this type of Twitter keyword tagging scheme on our huge unlabeled

Twitter corpus where we obtained our Turkish word embedding from, as we will explain in

Section 4.1.2 and we call this as Twitter processing. In order to have consistency between

Twitter specific keywords, we believe that this step was necessary and observed that it

improves the performance when our tweets corpus is used for training the word

embeddings in our NER models.

Another additional processing we applied is keeping the PLO tagging format texts,

such as “[PER person_name]”, after this normalization. We realized that if we apply

normalization on a Twitter data set annotated with named entities, which includes certain

PLO tagging texts, then we lose some of our PLO tagger texts with correct format, such

that “[PER oguz]” becomes “pera Oğuz]” after this normalization. The results of

normalization also vary with those additional PLO tag texts, which are meaningless and

out-of-vocabulary words for Turkish. In order to avoid this problem, we firstly removed all

PLO tagger keywords together with their square brackets from the annotated tweets data

and obtained a raw tweets version of it. Then we normalized this raw data and then added

those PLO tagging structure in order to obtain an annotated and properly normalized

Turkish Twitter data set.

We applied this normalization method on all five of our annotated Twitter data sets

with variations as explained in Section 3.3.2. As a result, we obtained five additional

normalized Twitter data sets annotated with named entities, namely TwitterDS-1_Norm,

TwitterDS-1_LTOC_Norm, TwitterDS-1_FT_Norm, TwitterDS-1_LTOC_FT_Norm and

TwitterDS-2_Norm. We will report the performance results on all of those five normalized

data sets and compare them with the results obtained on the not normalized version of each

in our experiments.

 53

4. DATA SETS

In this chapter, we will present the details of the data sets we have used for training

and testing of our NER system. In general, we have used two groups of Turkish data sets.

The first group is the unlabeled data set that we have used in the unsupervised stage to

obtain Turkish word embeddings and the second group is the labeled, i.e. annotated with

named entities, data set that we have used in the supervised stage for training and testing.

4.1. Unlabeled Data Sets

 In the unsupervised stage, we used two different groups of large unlabeled data

sets, or corpora. The first group of data is composed of huge amount of formal texts that

are collected from Turkish news articles and web documents with no annotations for

training purposes of our Turkish word embeddings at the unsupervised stage. The second

group of data is composed of informal text types that are collected from a large amount of

Turkish Twitter messages with no annotations.

4.1.1. Turkish News Corpus

 We used the Turkish corpus8 prepared by Sak et al. [44] in the unsupervised stage

in order to learn Turkish word embeddings. It is a large text corpus for Turkish that is

compiled from the web and composed of four sub corpora. Three of them are collected

from three popular Turkish newspapers, called as “NewsCor”, and the other one is

collected by general sampling of Turkish web pages, called as “GenCor”. The combination

of these two corpora is called “BOUN Corpus”. This corpus is further cleaned after

processing by using certain heuristics and a morphological parser. You can find the details

of this work in [44]. We further tokenized the data using the open source Zemberek9 tool

developed for Turkish and also applied lowercasing. The goal of lowercasing this corpus is

to limit the number of unique words.

8 A text corpus compiled from the web: http://79.123.177.209/~hasim/langres/BounWebCorpus.tgz
9 https://github.com/ahmetaa/zemberek-nlp

 54

Table 4.1. BOUN web corpus size statistics taken from [44].

Corpus Words Tokens Types

Milliyet 59 M 68 M 1.1 M

Ntvmsnbc 75 M 86 M 1.2 M

Radikal 50 M 58 M 1.0 M

NewsCor 184 M 212 M 2.2 M

GenCor 239 M 279 M 3.0 M

BOUN Corpus 423 M 491 M 4.1 M

 The unlabeled data set, namely the BOUN Web Corpus, which we used in the

unsupervised stage, contains around 423M words and around 491M tokens in total. The

total number of types, or the vocabulary size, in the corpus is reported as 4.1M. The

detailed statistical information, taken from [44], about the number of words (i.e. all words

found in the corpus), number of tokens (i.e. all words plus lexical units like punctuation

marks) and number of types (i.e. distinct tokens, or vocabulary size) of all four sub corpora

grouped under “NewsCor” and “GenCor” within this large Turkish corpus is presented in

Table 4.1.

 We benefit from this huge unlabeled data in the unsupervised stage for obtaining

the continuous space vector representations of words in Turkish. Our ability to train our

model with large amount of unlabeled data is notable because as the amount of data

increases, the representativeness of the feature vectors of the words that are obtained from

the corpus increases as well. This situation also means that these highly representative

feature vectors of words will be more useful in the supervised stage where we will use

these word representations as additional features for our supervised stage of our NER

system.

4.1.2. Turkish Tweets Corpus

 Note that our task is recognizing named entities on informal text types such as

Turkish Twitter data, not on formal text types such as Turkish news media data. Therefore,

the type of texts found in the huge amount of unlabeled Turkish data set used to obtain

 55

word embeddings at the unsupervised stage might be important. Based on this intuition,

in addition to the BOUN Web Corpus composed of mostly formal text types, we also

explored a large unlabeled Turkish corpus composed of only informal text types, i.e. short

Twitter messages called tweets. We thought that comparing the effects of word

embeddings obtained from a huge amount of unlabeled Turkish tweets corpus in addition

to the Turkish news corpus might be interesting for the NER task on Turkish Twitter data.

In order to construct a large unlabeled Turkish tweets data set, we have used two different

tweets corpora in Turkish.

 The first unlabeled Turkish tweets corpus we used is called TS TweetS corpus10

that is composed of around 1M Turkish tweets with around 13M words, prepared by Taner

Sezer [45] and released recently in February 2014. TS TweetS is one of the four existing

corpora located under the TS Corpus project and is publicly available at TS Corpus

server11. Note that although TS TweetS corpus originally includes specific tags for

morphological analysis, POS and other special tags for Internet language, we only used the

untagged version of this 1M tweets corpus in order to obtain word embeddings from

unlabeled Turkish corpus.

 The second unlabeled Turkish tweets corpus we used is called 20 million Turkish

Tweets12, which is composed of around 20M tweets, prepared by Bolat and Amasyalı from

Kemik13 NLP Group of Yıldız Technical University. This raw Turkish tweets data set is

publicly available and we will refer to this corpus as Kemik Tweets. Note that at each line

of this raw data set, we have the detailed date and time information of the tweet, the

username of the owner of this tweet and finally the text body of the tweet. We processed

this raw data set in order to obtain only text bodies of tweets and after that, the size of this

processed Turkish tweets corpus is measured to be having around 228M words in total.

 In order to construct a huge amount of unlabeled Turkish tweets corpus, we

combined these two tweets corpora and we obtained around 21M Turkish tweets in total.

As a preprocessing, firstly we processed this combined large raw tweets corpus in order to

10 http://tscorpus.com/en
11 http://gui.tscorpus.com/
12 http://www.kemik.yildiz.edu.tr/data/File/20milyontweet.rar
13 http://www.kemik.yildiz.edu.tr/?language=en

 56

extract only text bodies of tweets. After that, since this data set is composed of Twitter

specific texts, we applied what we call Twitter processing where we replaced

“@<username>”s with TwitterMention, “#<hashtag>”s with TwitterHashtag, smileys with

TwitterSmiley and URLs with TwitterUrl keywords. After that, we applied tokenization on

this tweets corpus using again the publicly available Zemberek tool designed for Turkish.

Finally, we applied lowercasing on this unlabeled Turkish tweets corpus just like we did on

Turkish news corpus, with the aim of limiting the number of unique words. After these

preprocessing steps, using the word2vec tool, we obtained Turkish word embeddings using

this large amount of combined and preprocessed Turkish tweets corpus.

 The purpose of this Twitter processing is to limit the number of unique words to be

represented in the vector space. To be more precise, each username on Twitter is often a

unique composition and usually not a common word or phrase in natural language, and so

are the Twitter specific hashtags which are composed of multiple words with no space.

Moreover, URL texts are also unique compositions of characters with specific format,

which usually have no meaning in natural language, similar to what we have with the

smileys. Replacing such Twitter specific or internet specific sequence of characters with

fixed keywords allows us to decrease the sparsity in vector representations of words

obtained from Turkish Twitter corpus, and enables us to achieve a degree of abstraction

which in turn hopefully increases the representative power of the obtained Turkish word

embeddings. In addition, this Twitter processing prevents us from problems with

tokenization on tweets corpus, since we observed that unnecessarily increased number of

tokens are extracted, which usually have no meaning in natural language, especially with

URLs and smileys when we leave them as they are.

 The data size of this combined and preprocessed Turkish tweets corpus, in terms of

number of words and number of tokens, is summarized in Table 4.2 together with the sizes

of the two different tweets corpora that we combined to obtain the Turkish Twitter corpus.

You can also observe the effects of the preprocessing steps on this combined raw tweets

corpus by examining the number of words and tokens obtained from the last three rows of

Table 4.2. Note that since TweetS corpus was already tokenized, the number of words and

tokens in tweet bodies are found to be the same after processing, i.e. after getting tweet text

 57

bodies only, and even after Twitter processing, as expected. Therefore, we benefit from

Twitter processing step mainly on the other corpus, which is much larger than the first one.

Table 4.2. Turkish tweets corpus size statistics.

Corpus Tweets Words Tokens

TS TweetS (Raw) 1 M 15 M 20 M

Kemik Tweets (Raw) 20 M 398 M 579 M

Tweets Corpus (Raw) 21 M 413 M 599 M

TS TweetS (Processed) 1 M 13 M 13 M

Kemik Tweets (Processed) 20 M 228 M 314 M

Tweets Corpus (Processed) 21 M 241 M 327 M

TS TweetS (Twitter Processed) 1 M 13 M 13 M

Kemik Tweets (Twitter Processed) 20 M 228 M 280 M

Tweets Corpus (Twitter Processed) 21 M 241 M 293 M

 After processing the combined raw corpus in order to get tweet bodies only and

then applying Twitter processing to replace Twitter specific texts with predefined

keywords, we finally have around 241M words and around 293M tokens in total in this

large corpus of Turkish tweets. This is the largest Turkish tweets corpus we could obtain

publicly and its size is comparably less than the Turkish news corpus composed of around

423M words and around 491M tokens.

4.2. Labeled Data Sets

 In the supervised stage, we used two different groups of labeled data sets for

training and testing purposes of our Turkish Twitter NER system. The first group of data is

composed of formal text types that are collected from Turkish news articles and annotated

with named entities for training purposes of our NER system. The second group of data is

composed of informal text types that are collected from Turkish Twitter messages and

annotated with named entities for testing purposes of our NER system. The details of these

two different groups of annotated Turkish data sets can be found in the following sections,

together with their resource information.

 58

4.2.1. Turkish News Data Set

 The labeled Turkish news data set, which is used for training purposes during the

supervised stage, is the one prepared by Tür et al. [11]. This data set is commonly used for

performance evaluation of NER systems for Turkish, including the ones presented in [6],

[15] and [17]. It is based on the general news domain that is collected from online Turkish

newspaper articles and therefore it is composed of formal text types, mostly with proper

spelling and grammar. In total, this data set is composed of around 500K words. Yeniterzi

[15] partitioned this data set into training and test sets such that one tenth of the data with

around 50K words is reserved for testing and the rest with around 450K words is used for

training purposes. The whole data set is annotated with respect to the ENAMEX types, or

PLOs only. In total, it includes around 24K person names, 14K location names, and 16K

organization names. You can find the number of words and number of named entities, as

presented in [15], after the training and test sets partitioning in Table 4.3.

Table 4.3. Number of words and named entities in the labeled Turkish news data set [15].

 Train Test

Data Size (#words) 445,498 47,344

Person 21,701 2,400

Location 12,138 1,402

Organization 14,510 1,595

Total PLOs 48,349 5,397

 Note that we ignored the test partition and only used the training partition of this

labeled Turkish news data set for the training purposes of our NER system. The test

partition of this data set is used as a validation set during the training phase of our NER

system. Another important point to state here is that, these numbers of named entities

presented in Table 4.3 are all based on token-level. If we count the named entities

composed of multiple tokens as only one entity, then these numbers will drop to 14,481

person names, 9,409 location names and 9,034 organization names in the training partition,

as presented in [17], with a total of 32,924 PLOs in the training partition which we used for

 59

training purposes. Since the CoNLL evaluation task takes into account only phrases and

not tokens, this last counting mechanism can be much more meaningful to visualize the

size of the data set in terms of named entities.

4.2.2. Turkish Twitter Data Sets

 The labeled Turkish Twitter data sets, which are used for testing purposes during

the supervised stage, are composed of two different data sets. Both of them are composed

of Twitter messages, or tweets collected from the most popular microblogging site Twitter.

Therefore, they both contain informal text types that lack proper spelling and grammar

rules and their nature is different from formal texts such as the ones from the news domain.

 The first labeled Twitter data set, which we call TwitterDS-1, is composed of

Turkish tweets prepared by Çelikkaya et al. [29]. It is annotated manually based on the

guidelines of the MUC-6 NER task. To the best of our knowledge, it is the first data set

collected and annotated especially for the Turkish Twitter NER task. It contains

ENAMEX, NUMEX, and TIMEX entity types. We will use only the ENAMEX type

named entities in our supervised stage. The size of this data set is given as around 50K

tokens. It contains 1,336 PLO tokens in total. The exact number of tokens for each type of

named entities, as presented in [29], is given in Table 4.4.

 The second labeled Twitter data set, which we call TwitterDS-2, is composed of

Turkish tweets prepared by Küçük et al. [9]. It is composed of 2,320 tweets after the

cleaning process of filtering the non-Turkish tweets and retweets. The data size is reported

as around 21K tokens. This data set is also annotated manually following the NER

guidelines of MUC. It contains ENAMEX, NUMEX and TIMEX entity types, plus a

MISC type which is defined for names of TV programs, movies, music bands, products

and other named entity types found in the data set. Note that we will only use its

ENAMEX type named entities in our supervised stage. This data set contains 980 PLO

phrases in total. The exact number of annotated named entities and their types, as

 60

presented in [9], are given in Table 4.5. Note that this annotated Turkish Twitter data set

is publicly available14 with the Tweed ID’s and their corresponding named entity tags.

Table 4.4. Number of tokens for each named entity type in the annotated Turkish Twitter

data set: TwitterDS-1 [29].

TwitterDS-1

Data Size (#tokens) 54,283

Person 676

Location 241

Organization 419

Total PLOs 1,336

Date 60

Time 23

Money 14

Percentage 4

Total Basic Seven Types 1,437

Table 4.5. Number of named entities for each named entity type in the annotated Turkish

Twitter data set: TwitterDS-2 [9].

TwitterDS-2

Data Size (#words) 20,752

Person 457

Location 282

Organization 241

Total PLOs 980

Date 201

Time 5

Money 16

Percentage 9

Total Basic Seven Types 1,211

MISC (others) 111

Total Annotated Types 1,322

14 http://optima.jrc.it/Resources/ 2014_JRC_Twitter_TR_NER-dataset.zip

 61

5. EXPERIMENTS AND RESULTS

In this chapter, we will present the details of various experimental setups and the

performance evaluation of our different models. We will also compare the results of our

NER models with the state-of-the-art systems developed for NER in Turkish tweets.

 We have a list of experimental setting options or model design options that we can

alter in order to observe their effects on the Turkish NER task for tweets. These are the

types of annotated texts we used for training, the variations on the annotated Twitter test

sets, the unlabeled source text type of word embeddings, using the capitalization feature or

not, and finally applying normalization on tweets data sets. In Section 3.3, we have

explained the differences between our various NER models that we have experimented

with. In this chapter, we will present the results of each such system and compare their

performance results on Turkish Twitter data.

5.1. Experiments with NER Models Trained on News Data

 Throughout this section, we will present the performance results of our various

Turkish NER models trained on annotated Turkish news data prepared by Tür et al. [11].

5.1.1. Using Capitalization as a Feature

 In this subsection, we will present both the phrase-level and token-level

performance results of our three different Turkish NER models using the capitalization

feature as a clue for recognizing named entities. These are the test results obtained on the

five different annotated Turkish Twitter data sets that we described in Section 3.3.2.

 In the first NER model, we used word embeddings obtained from Turkish web

corpus, called BOUN Web Corpus, and we name this model as NER Model Web. In the

second NER model, we used word embeddings obtained from Turkish tweets corpus and

we name this model as NER Model Tweets. The third and also the final model in terms of

 62

word embeddings source is constructed by using word embedding learnt from the

composition of these two corpora, and we name this model as NER Model Web+Tweets.

 Note that all of these Turkish NER models’ results on all five tweets data sets are

evaluated with respect to the CoNLL metric and shown in the phrase-level results parts of

Table 5.1, Table 5.2 and Table 5.3 for NER Model Web, NER Model Tweets and NER

Model Web+Tweets, respectively. We also reported token-level results, which are

generally higher than phrase-level results as expected, since we believe that partially

correct predictions can also be valuable in the context of tweets for various applications

such as filtering or fetching tweets with named entities.

Table 5.1. Phrase-level and token-level F-score performance results of NER Model Web

on Turkish Twitter test sets, using the capitalization feature.

NER Model Web Phrase-level Token-level

Test Set PER LOC ORG Overall PER LOC ORG Overall

TwitterDS-1_LTOC 31.36 44.82 31.37 33.68 39.33 45.07 31.10 38.12

TwitterDS-1 31.36 51.98 35.17 36.55 39.33 51.22 34.44 40.42

TwitterDS-1_LTOC_FT 37.06 45.73 33.00 37.37 46.59 45.85 32.68 42.51

TwitterDS-1_FT 37.06 52.87 37.05 40.53 46.59 51.98 36.26 45.06

TwitterDS-2 49.86 66.39 41.83 53.14 62.46 65.15 50.20 60.23

Table 5.2. Phrase-level and token-level F-score performance results of NER Model

Tweets on Turkish Twitter test sets, using the capitalization feature.

NER Model Tweets Phrase-level Token-level

Test Set PER LOC ORG Overall PER LOC ORG Overall

TwitterDS-1_LTOC 31.26 41.33 30.18 32.51 37.68 42.70 31.14 36.60

TwitterDS-1 31.26 49.01 33.21 35.14 37.68 49.15 33.93 38.69

TwitterDS-1_LTOC_FT 37.28 42.71 34.67 37.42 45.34 43.43 35.37 42.20

TwitterDS-1_FT 37.28 50.29 38.72 40.44 45.34 49.88 39.02 44.61

TwitterDS-2 42.78 65.42 32.84 47.72 58.02 64.87 44.09 56.68

 63

Table 5.3. Phrase-level and token-level F-score performance results of NER Model

Web+Tweets on Turkish Twitter test sets, using the capitalization feature.

NER Model Web+Tweets Phrase-level Token-level

Test Set PER LOC ORG Overall PER LOC ORG Overall

TwitterDS-1_LTOC 35.03 41.75 32.11 35.30 42.59 41.60 31.67 39.57

TwitterDS-1 35.03 49.43 35.93 38.11 42.59 48.28 34.98 41.83

TwitterDS-1_LTOC_FT 41.08 42.47 32.87 38.76 50.19 42.20 32.92 43.94

TwitterDS-1_FT 41.08 50.14 36.89 41.86 50.19 48.88 36.51 46.46

TwitterDS-2 54.10 64.69 39.07 54.01 65.65 63.14 49.50 61.16

 We are leaving the discussions of comparing the results of these three Turkish NER

models, together with the discussions of the results on different Turkish tweets test sets and

their variations for overall comparison to Section 5.1.4, since it will be healthier to

compare them all after we report the results of all our Turkish NER models, i.e. with and

without the capitalization feature, with and without tweets normalization.

5.1.2. Not Using Capitalization as a Feature

 In this subsection, we will present both the phrase-level and token-level

performance results of our three different Turkish NER models, this time without using the

capitalization feature as a clue for recognizing named entities. Again, the below

performance results are the test results obtained on the five different annotated Turkish

Twitter data sets. In Table 5.4, Table 5.5 and Table 5.6, we have reported our performance

results of NER Model Web, NER Model Tweets and NER Model Web+Tweets

respectively, where this time we did not use capitalization as a feature for all three models.

 As before, we reported both phrase-level, which are evaluated based on the CoNLL

metric, and token-level performance results of the Turkish NER models we explored. Note

that all of our NER systems are evaluated only on ENAMEX type named entities, or PLOs.

In addition to the overall PLO performances, we are also reporting phrase-level and token-

level results for each type of named entities, namely person, location and organization

entities throughout this experiments and results chapter.

 64

Table 5.4. Phrase-level and token-level F-score performance results of NER Model Web

on Turkish Twitter test sets, without using the capitalization feature.

NER Model Web Phrase-level Token-level

Test Set PER LOC ORG Overall PER LOC ORG Overall

TwitterDS-1_LTOC 30.25 48.12 34.20 34.56 43.42 47.62 34.01 41.82

TwitterDS-1 30.25 61.50 37.27 38.52 43.42 59.47 36.77 44.98

TwitterDS-1_LTOC_FT 34.14 48.82 34.98 37.26 48.82 48.22 34.84 44.98

TwitterDS-1_FT 34.14 62.28 38.22 41.63 48.82 60.13 37.77 48.51

TwitterDS-2 45.12 72.91 44.77 54.09 63.69 70.12 55.49 63.64

Table 5.5. Phrase-level and token-level F-score performance results of NER Model

Tweets on Turkish Twitter test sets, without using the capitalization feature.

NER Model Tweets Phrase-level Token-level

Test Set PER LOC ORG Overall PER LOC ORG Overall

TwitterDS-1_LTOC 24.30 45.24 27.49 28.32 33.39 45.41 27.77 33.64

TwitterDS-1 24.30 58.82 29.33 31.57 33.39 57.27 29.48 36.24

TwitterDS-1_LTOC_FT 29.79 45.92 30.00 32.61 41.11 46.00 30.39 39.02

TwitterDS-1_FT 29.79 59.59 32.29 36.43 41.11 57.92 32.54 42.10

TwitterDS-2 40.12 69.09 33.54 48.15 60.90 66.10 48.32 59.49

Table 5.6. Phrase-level and token-level F-score performance results of NER Model

Web+Tweets on Turkish Twitter test sets, without using the capitalization feature.

NER Model Web+Tweets Phrase-level Token-level

Test Set PER LOC ORG Overall PER LOC ORG Overall

TwitterDS-1_LTOC 33.93 46.29 33.60 36.27 46.65 46.04 35.58 43.98

TwitterDS-1 33.93 60.25 37.79 40.18 46.65 58.39 38.55 47.11

TwitterDS-1_LTOC_FT 39.14 47.09 35.48 39.62 52.50 46.73 36.36 47.34

TwitterDS-1_FT 39.14 61.15 38.87 44.00 52.50 59.16 39.53 50.87

TwitterDS-2 52.06 72.40 37.76 55.45 68.25 70.13 51.53 64.95

 65

5.1.3. Tweet Normalization

 In this subsection, we will present both the phrase-level and token-level

performance results of our Turkish NER models by applying text normalization on tweets

as a preprocessing step before testing. These test results are obtained on the normalized

versions of the five different Turkish Twitter data sets annotated with named entities. Note

that we will report the performance results on the normalized Twitter test sets with two

different groups of models where we used capitalization as a feature while training the first

group of Turkish NER models, and then did not use capitalization as a feature while

training the second group of our NER models. Within each such group, we have three

different NER models again, based on the source text type of the used word embeddings.

 At first, we explored both the phrase-level and token-level performance results of

our Turkish NER models that use the capitalization clue as a valid feature to recognize

named entities, on the normalized Turkish Twitter data sets. We presented their results in

Table 5.7, Table 5.8 and Table 5.9 for NER Model Web, NER Model Tweets and NER

Model Web+Tweets, respectively. Since the Turkish Twitter text normalization scheme we

applied is dealing with the frequently missing capitalizations issues in tweets, we are

expecting that this time turning the capitalization feature off will not help, and even make

the performance worse compared to when capitalization is on, as it is the case with formal

text types such as news articles where we already have proper initial capitalizations for

PLO type named entities.

Table 5.7. Phrase-level and token-level F-score performance results of NER Model Web

on normalized Turkish Twitter test sets, using the capitalization feature.

NER Model Web Phrase-level Token-level

Test Set PER LOC ORG Overall PER LOC ORG Overall

TwitterDS-1_LTOC_Norm 31.56 46.45 42.76 37.80 40.96 48.28 40.00 42.03

TwitterDS-1_Norm 31.56 59.52 46.48 41.82 40.96 59.64 43.24 45.40

TwitterDS-1_LTOC_FT_Norm 37.10 47.09 43.84 41.34 48.23 48.84 41.47 46.38

TwitterDS-1_FT_Norm 37.10 60.24 47.79 45.74 48.23 60.25 44.99 50.09

TwitterDS-2_Norm 52.40 66.11 45.67 55.20 63.85 65.17 54.07 61.88

 66

Table 5.8. Phrase-level and token-level F-score performance results of NER Model

Tweets on normalized Turkish Twitter test sets, using the capitalization feature.

NER Model Tweets Phrase-level Token-level

Test Set PER LOC ORG Overall PER LOC ORG Overall

TwitterDS-1_LTOC_Norm 32.14 44.44 42.81 37.65 40.73 46.61 40.97 41.84

TwitterDS-1_Norm 32.14 57.68 46.42 41.54 40.73 58.00 44.26 45.06

TwitterDS-1_LTOC_FT_Norm 38.47 45.06 45.13 41.94 49.08 47.14 43.06 46.99

TwitterDS-1_FT_Norm 38.47 58.37 49.20 46.27 49.08 58.59 46.75 50.61

TwitterDS-2_Norm 49.71 66.12 37.02 52.23 62.63 65.67 48.56 60.21

Table 5.9. Phrase-level and token-level F-score performance results of NER Model

Web+Tweets on normalized Turkish Twitter test sets, using the capitalization feature.

NER Model Web+Tweets Phrase-level Token-level

Test Set PER LOC ORG Overall PER LOC ORG Overall

TwitterDS-1_LTOC_Norm 33.90 44.97 44.05 38.97 43.38 46.01 41.81 43.44

TwitterDS-1_Norm 33.90 57.68 47.94 42.79 43.38 57.14 45.28 46.67

TwitterDS-1_LTOC_FT_Norm 39.44 45.60 45.01 42.44 50.75 46.54 43.30 47.81

TwitterDS-1_FT_Norm 39.44 58.37 49.10 46.61 50.75 57.72 47.06 51.37

TwitterDS-2_Norm 57.42 65.55 43.35 56.79 67.18 63.75 52.53 62.80

 Secondly, this time we used our Turkish NER models that are trained without using

the capitalization feature and explored their performance on the normalized versions of our

annotated Turkish tweets sets. We presented these results in Table 5.10, Table 5.11 and

Table 5.12 for NER Model Web, NER Model Tweets and NER Model Web+Tweets,

respectively. It ıs observed that on normalized tweets sets, these results without

capitalization in general are not as good as the results we obtained with the capitalization

feature used as a strong clue for named entities. This situation is consistent with our

expectations since we know that the capitalization feature helps for NER models tested on

formal text types, and our normalization scheme partially converts the informal texts into

more structured formal texts. Moreover, the results show that Turkish text normalization

on tweets before using the NER system improves the performance results obtained on

these normalized tweets sets for almost all Turkish NER models we explored.

 67

Table 5.10. Phrase-level and token-level F-score performance results of NER Model Web

on normalized Turkish Twitter test sets, without using the capitalization feature.

NER Model Web Phrase-level Token-level

Test Set PER LOC ORG Overall PER LOC ORG Overall

TwitterDS-1_LTOC_Norm 29.11 45.71 42.36 36.43 40.27 45.78 40.81 41.43

TwitterDS-1_Norm 29.11 58.77 45.98 40.50 40.27 57.48 44.18 44.81

TwitterDS-1_LTOC_FT_Norm 32.91 46.32 44.69 39.63 45.13 46.29 42.95 44.75

TwitterDS-1_FT_Norm 32.91 59.45 48.78 44.17 45.13 58.05 46.74 48.54

TwitterDS-2_Norm 47.70 72.26 43.40 54.75 64.85 69.57 53.14 63.53

Table 5.11. Phrase-level and token-level F-score performance results of NER Model

Tweets on normalized Turkish Twitter test sets, without using the capitalization feature.

NER Model Tweets Phrase-level Token-level

Test Set PER LOC ORG Overall PER LOC ORG Overall

TwitterDS-1_LTOC_Norm 27.01 46.56 42.49 35.34 37.25 47.01 41.19 40.03

TwitterDS-1_Norm 27.01 59.72 46.10 39.31 37.25 58.55 44.60 43.33

TwitterDS-1_LTOC_FT_Norm 33.92 47.19 44.97 40.35 45.84 47.53 43.49 45.53

TwitterDS-1_FT_Norm 33.92 60.42 49.09 44.91 45.84 59.13 47.36 49.31

TwitterDS-2_Norm 41.62 70.00 33.85 49.43 60.91 66.78 47.46 59.52

Table 5.12. Phrase-level and token-level F-score performance results of NER Model

Web+Tweets on normalized Turkish Twitter test sets, without using the capitalization

feature.

NER Model Web+Tweets Phrase-level Token-level

Test Set PER LOC ORG Overall PER LOC ORG Overall

TwitterDS-1_LTOC_Norm 31.10 43.86 43.97 37.15 43.53 44.69 42.86 43.57

TwitterDS-1_Norm 31.10 57.21 47.84 41.04 43.53 56.47 46.50 46.77

TwitterDS-1_LTOC_FT_Norm 36.82 44.56 44.93 40.93 49.51 45.29 43.58 47.07

TwitterDS-1_FT_Norm 36.82 58.01 49.00 45.27 49.51 57.14 47.40 50.68

TwitterDS-2_Norm 52.91 72.91 37.98 56.12 68.53 70.57 50.20 64.88

 68

5.1.4. The Effects of Word Embeddings Source, Capitalization, Normalization and

Used Test Sets on NER Performance

 In this section, we will compare and discuss the results of our various Turkish NER

models we presented so far, together with the discussions of the variations in results on

different Turkish tweets test sets for overall comparison. Until now, we explored four main

model parameters or experimental setup parameters affecting the performance results of

our NER system. These are namely the variations in Twitter test sets, the source of corpus

used for word embeddings, the capitalization feature and finally the normalization scheme.

Table 5.13. Phrase-level and token-level overall performance results to observe the effects

of word embeddings source, capitalization and normalization on different Twitter test sets.

Test Set Cap
Phrase-level (Overall) Token-level (Overall)

Web Twt Web+Twt Web Twt Web+Twt

TwitterDS-1_LTOC
ON 33.68 32.51 35.30 38.12 36.60 39.57

OFF 34.56 28.32 36.27 41.82 33.64 43.98

TwitterDS-1_LTOC_Norm
ON 37.80 37.65 38.97 42.03 41.84 43.44

OFF 36.43 35.34 37.15 41.43 40.03 43.57

TwitterDS-1
ON 36.55 35.14 38.11 40.42 38.69 41.83

OFF 38.52 31.57 40.18 44.98 36.24 47.11

TwitterDS-1_Norm
ON 41.82 41.54 42.79 45.40 45.06 46.67

OFF 40.50 39.31 41.04 44.81 43.33 46.77

TwitterDS-1_LTOC_FT
ON 37.37 37.42 38.76 42.51 42.20 43.94

OFF 37.26 32.61 39.62 44.98 39.02 47.34

TwitterDS-1_LTOC_FT_Norm
ON 41.34 41.94 42.44 46.38 46.99 47.81

OFF 39.63 40.35 40.93 44.75 45.53 47.07

TwitterDS-1_FT
ON 40.53 40.44 41.86 45.06 44.61 46.46

OFF 41.63 36.43 44.00 48.51 42.10 50.87

TwitterDS-1_FT_Norm
ON 45.74 46.27 46.61 50.09 50.61 51.37

OFF 44.17 44.91 45.27 48.54 49.31 50.68

TwitterDS-2
ON 53.14 47.72 54.01 60.23 56.68 61.16

OFF 54.09 48.15 55.45 63.64 59.49 64.95

TwitterDS-2_Norm
ON 55.20 52.23 56.79 61.88 60.21 62.80

OFF 54.75 49.43 56.12 63.53 59.52 64.88

 69

 In Table 5.13, we combined all of the overall results we obtained so far with all

of our Turkish NER systems, by varying each of the four parameters mentioned above in

order to observe and compare their effects on NER performance. Note that the bold entries

within each column indicate better results between two options of capitalization, either

turned on so that it is used as a feature by a NER model, or turned off so that it is not used,

on their corresponding test set. Moreover, the underlined bold entries show the best result

for the corresponding test set, with varying source text type of word embeddings and also

varying capitalization. We have one bold and underlined performance result for phrase-

level F-score and one bold and underlined entry for token-level F-score for each test set

presented in Table 5.13.

 To begin, let us discuss first the variations of performance results reported on

different Turkish tweets test data sets. As we explained in Section 3.3.2, we mainly have

two different data sets for testing our NER system. These original data sets are namely

TwitterDS-1 composed of around 5K tweets with 1366 tagged PLOs and TwitterDS-2

composed of around 2.3K tweets having 980 tagged PLOs. Since we have observed some

problems in TwitterDS-1, we manually created modified versions of this tweets data set.

 The first modified version of TwitterDS-1 is where we corrected around 50 entities

annotated as location but actually referring to football club names by replacing the location

tags with organization tags, and called this set TwitterDS-1_LTOC. We did this for the

sake of making the test data more realistic that reflects the actual usage of named entities

on microblog texts. Since such entities with metonymic readings are harder to be

recognized correctly for a NER system especially on tweets, the overall performance

results show that all of our NER systems perform better on TwitterDS-1 than on

TwitterDS-1_LTOC as expected. To be more precise, the phrase-level performance results

on TwitterDS-1 and on TwitterDS-1_LTOC differ around 3-4%.

 The second modification we performed on TwitterDS-1 is that, we manually

removed all completely non-Turkish tweets that include no Turkish words, not even one, in

order to have a healthier and fully Turkish Twitter data for our Turkish NER system. We

performed this modification on both TwitterDS-1 and TwitterDS-1_LTOC, and called

them TwitterDS-1_FT and TwitterDS-1_LTOC_FT respectively. As seen from the results,

 70

making the test set composed of only Turkish tweets increases the phrase-level NER

performance around 3-5% for both TwitterDS-1 and TwitterDS-1_LTOC, which is also

expected.

 Although we performed those modifications on TwitterDS-1 in order to increase

the representativeness of the test set, we still have problems with this data set since certain

portions of named entities are missed to be annotated, which causes a decrease in

performance for the NER system. We can see its effects when we compare the results on

the two original data sets, TwitterDS-1 and TwitterDS-2. We observed that around 14-18%

phrase-level performance improvements are obtained on TwitterDS-2 compared to the

results on TwitterDS-1. Even if we compare TwitterDS-2 with the modified version of

TwitterDS-1 that performs best, which is the fully Turkish version called TwitterDS-1_FT,

we still have around 11-13% phrase-level performance improvements obtained on

TwitterDS-2 compared to TwitterDS-1_FT. We have seen that TwitterDS-2 is a better

Turkish Twitter test set with properly tagged named entities, and hence we should consider

the results on this set in order to better assess the performance of our NER system.

 Another important point to discuss here is the effects of word embeddings source

corpus on the performance of our Turkish NER system. In Table 5.13, the columns with

name Web, Twt and Web+Twt are reserved for the results of our basic three NER models

called NER Model Web, NER Model Tweets and NER Model Web+Tweets, respectively.

The only difference between them is the text type of large Turkish corpus used for training

word embeddings at the unsupervised stage which are then used as a crucial feature at the

supervised stage of our NER system. In NER Model Web, we used BOUN Web Corpus in

Turkish whereas in NER Model Tweets, we used our own combined Tweets Corpus in

Turkish to attain Turkish word embeddings. In NER Model Web+Tweets, we combined

these two corpora from Turkish web news articles and tweets, and used it as a source

corpus for word embeddings.

 We have seen from the results of these three models that, on TwitterDS-1 and on

all its variations, the NER Model Web+Tweets generally performed slightly better than the

other two models, and the NER Model Tweets generally performed worse than the other

two models. However, note that the differences on phrase-level performances between

 71

these three models are around 1-2% in general. We cannot directly conclude that adding

Turkish tweets corpus to the Turkish news corpus as an additional source for word

embeddings significantly improves the performance of the final NER system, but it helps

for sure.

 If we compare the performance results of these three models on TwitterDS-2, we

observe that there is a significant drop in phrase-level performances, around 3-6%, when

we only use the Tweets Corpus, compared to the other two models. Although the results of

NER Model Web and NER Model Web+Tweets are very close with around 1% difference

of phrase-level performance, our best model on TwitterDS-2 is again the NER Model

Web+Tweets.

 We may explain the performance drop of NER Model Tweets compared to NER

Model Web with the data size differences of these two corpora since the number of words

in our Tweets Corpus is nearly 60% of the number of words in the BOUN Web Corpus,

which may affect the representativeness of word embeddings. However, this size

difference may not explain achieving close results with NER Model Web and NER Model

Web+Tweets, where NER Model Web+Tweets performed slightly better both on

TwitterDS-2 and on TwitterDS-1 and its variations in general.

 The reason behind such results can be the fact that although we are changing the

source of Turkish word embeddings at the unsupervised stage, at the supervised stage we

are still training all of these NER models on an annotated Turkish news data set instead of

tweets data set due to the lack of large amount of annotated Turkish tweets data for

training. Since those Turkish word embeddings are used as a feature during this training at

the supervised stage, the model parameters are tuned based on the news data at the

training, and not based on tweets data. Therefore, adding a tweets corpus in addition to the

news corpus for word embeddings may not be as effective as we desired while testing on

tweets data. We believe that in the future if we have a large amount of annotated Turkish

tweets, than with high reliability we can easily train these NER models on huge Turkish

Twitter data at the supervised stage and then can observe better the effects of adding

Turkish tweets corpus to the Turkish news corpus as a source for word embeddings.

 72

 Using the capitalization in texts as a clue for named entities is a valuable feature

for the NER task, especially for formal text types. In our general NER model framework,

we explained the capitalization feature we used which basically takes into account the

capitalization pattern of tokens in the current window. In formal text types such as news

articles, proper capitalization of named entities is very common. However, proper

capitalizations of named entities are often missed in informal text types such as tweets.

With this motivation, for all of our Turkish NER models, we created two version of each

model where we keep the capitalization feature in the first case and removed it during the

training in the second case. We have reported the performance results of both versions for

each Turkish NER model in Table 5.13 with the Cap column, where ON means it is used

as a feature during training and OFF means it is not used, in order to compare the effects of

using capitalization.

 Since the results have shown that NER Model Web+Tweets performed better on all

variations of TwitterDS-1 without normalization, let us discuss the effects of capitalization

on this test set based on this model. We observed that when we turn the capitalization

feature off during the training at the supervised stage, the phrase-level performance

improves around 1-2% on all four test sets as variations of TwitterDS-1 without

normalization, compared to the cases with the capitalization feature is on. Again, since we

observed that NER Model Web+Tweets performed better on TwitterDS-2 without

normalization, let us discuss the effects of capitalization on this test set based on this

model. We observed that again the phrase-level performance increases around 1% on not

normalized TwitterDS-2 when the capitalization feature is not used compared to the case

where we use it during training. These results are consistent with our expectations since,

especially with word embeddings from lowercased corpus, using the capitalization pattern

as a clue for named entities during the training can be misleading when we test on tweets

data, where we do not always have named entities with proper capitalization.

 Note that the effect of the capitalization feature is completely different when we

have normalized versions of Twitter data as test sets for our NER models. We know that

on formal text types such as news articles where we already have proper capitalizations for

ENAMEX type named entities, using the capitalization as a clue for named entities

improves the performance of a NER system. Since the Turkish Twitter text normalization

 73

scheme we applied includes a letter case transformation stage, frequently missing

capitalizations issues in tweets will be resolved to some extend after normalization.

Therefore, we were expecting that on normalized Turkish tweets data, turning the

capitalization feature off may not help, and may even decrease the performance compared

to models where the capitalization feature is used. In Table 5.13, it is observed that for all

of our three NER models and on all of our five normalized Twitter test sets, the phrase-

level performance results obtained by using the capitalization feature are always better

than the phrase-level result obtained without using it. To be more precise, turning the

capitalization feature off decreases the phrase-level performance results around 1-3% on

normalized Turkish Twitter data. This is consistent with our expectations since our Turkish

text normalization scheme partially converts the informal texts into more structured formal

texts on which using the capitalization feature is known to be useful for the NER task. All

in all, we can conclude that if you have no normalization on tweets data, it is better to turn

the capitalization feature off, whereas if you use a text normalization scheme on tweets, it

is better to keep the capitalization feature in order to increase the performance of Turkish

NER, especially with word embeddings.

 The final discussion we will present here is the effects of Turkish text

normalization on the final performance of our Turkish NER models on Twitter. It is

observed in Table 5.13 that Turkish text normalization scheme applied on tweets as a

preprocessing step for the NER system improves the performance results obtained for

almost all Turkish NER models we explored with all normalized tweets sets. To be more

precise, if we take into account both of our two best models, NER Model Web and NER

Model Web+Tweets, we observe that when the capitalization is on, the phrase-level

performance results are increased by around 4-6% on the normalized versions of

TwitterDS-1 and all its variants, compared to the results on not normalized versions of

these test sets. When the capitalization is off, we still have an improvement with

normalization but this time the phrase-level performance results of these NER systems

increase around 1-3% on the normalized version of all TwitterDS-1 variants. Similarly, on

the normalized version of TwitterDS-2, compared to the not normalized version of this set,

we have an improvement on phrase-level performance results by around 2-3% when the

capitalization is on, and by around 1-2% when the capitalization is off, again with NER

Model Web and NER Model Web+Tweets.

 74

 We can conclude that for both capitalization on and capitalization off cases, and on

all of our Turkish Twitter test sets, tweets normalization improves the performance, but the

range of improvement differs such that when we use the capitalization as a feature, we

benefit more from the Turkish tweets normalization scheme. This is consistent with our

expectations since the normalizer can correct some of the missing capitalizations in

Turkish tweets and the effect of this correction on NER performance will be higher when

we use the capitalization as a clue for named entities.

 Note that the Turkish NER performance improvements with normalization are

higher on TwitterDS-1 and its variants than on TwitterDS-2, i.e. around 4-6% and around

2-3%, respectively. We believe that this situation can have two reasons behind. Firstly,

since TwitterDS-1 and even its best variant have problems like missed named entities

without annotations, whereas TwitterDS-2 is a much healthier Turkish tweets set with

proper annotations of named entities, before normalization we have around 16%

performance differences on TwitterDS-2 and on TwitterDS-1. Even with the results on the

best variant of TwitterDS-1, which is the fully Turkish version called TwitterDS-1_FT; we

still have around 13% performance differences compared to the results on TwitterDS-2

before normalization. This means that there is much more space for improvements on

TwitterDS-1 than on TwitterDS-2, which can explain the differences in normalization

scheme effects on the NER performance for these two test sets. Secondly, since the

researchers [43] that prepared the first annotated Turkish Twitter data set, TwitterDS-1, are

the same researchers that proposed this normalizer we used, it might be the case that some

rules used in this Turkish tweets normalizer are inspired by this tweets data set, and hence

this normalizer works better on TwitterDS-1 than on TwitterDS-2.

 As a final remark, after all these comparisons and discussions, we have obtained

the best performance results of our Turkish NER system by using NER Model

Web+Tweets in general, with keeping the capitalization feature on and applying Turkish

tweets normalization. The best phrase-level performance of our Turkish NER system is

reported as around 57% on the normalized version of TwitterDS-2 and around 47% on the

fully Turkish and normalized version of TwitterDS-1.

 75

5.1.5. The Effects of Using Word Embeddings Compared to Normalization

 In this section, we will compare and discuss the results of our Turkish NER models

we presented so far, which benefits highly from word embeddings, with the results of our

baseline Turkish NER model trained without word embeddings. We will compare the

performance results on different Turkish tweets test sets, both without normalization and

with normalization for overall comparison. We intend to show here the real effects of the

word embeddings we employed on the final performance of our NER models. We will

compare the improvements achieved by using word embeddings versus by applying text

normalization on Turkish tweets.

 In Table 5.14, we have reported both the phrase-level and token-level performance

results of our NER systems on three different Twitter data sets. These test sets are namely

TwitterDS-1 that is the first and original labeled Turkish tweets data presented in [29],

TwitterDS-1_FT which is the improved version of TwitterDS-1 filtered by removing fully

non-Turkish tweets, and TwitterDS-2 that is the original set presented in [9]. The NER

models are built by adding different features or performing normalization at each step on

top of the baseline model. Our baseline NER model for comparison is built by adding only

language independent and generic features as explained in Section 3.2.2. These are the

local features such as context features, word type information, affixes, and previous tags.

Note that we did not use the capitalization feature in the baseline NER model in order to

assess its effects on Twitter data.

 In the first part, i.e. the top four rows of the results presented in Table 5.14, we

added only the normalization stage to our baseline NER system, and then added only the

word embeddings feature, denoted with WordE (W&T) below, where we used Turkish

Web and Tweets corpus together to learn the word representations, which has been shown

to perform better than using only the Web corpus before, and finally applied both

normalization on Twitter data and used the word embeddings feature together, all without

the capitalization feature. In the second part, i.e. the last four rows of the results shown in

Table 5.14, we followed the same process but this time by using the capitalization feature

in addition to our baseline NER model.

 76

Table 5.14. Phrase-level and token-level overall F-score performance results to show

the effects of using word embeddings compared to normalization on different Twitter sets.

NER Model

Phrase-level (Overall) Token-level (Overall)

Twitter

DS-1

Twitter

DS-1_FT

Twitter

DS-2

Twitter

DS-1

Twitter

DS-1_FT

Twitter

DS-2

Baseline (BL) 22.16 25.98 35.16 26.06 30.46 41.95

BL + Norm 33.05 39.23 37.17 36.26 42.66 44.58

BL + WordE (W&T) 40.18 44.00 55.45 47.11 50.87 64.95

BL + WordE (W&T) + Norm 41.04 45.27 56.12 46.77 50.68 64.88

Baseline (BL) + Cap 27.16 30.21 37.32 30.35 33.86 43.48

BL + Cap + Norm 36.70 40.78 42.18 39.03 43.66 49.95

BL + Cap + WordE (W&T) 38.11 41.86 54.01 41.83 46.46 61.16

BL + Cap + WordE (W&T) + Norm 42.79 46.61 56.79 46.67 51.37 62.80

 Let us discuss first the models without the capitalization feature for Turkish Twitter

NER. As shown in Table 5.14, we gain a lot in terms of F-score performance when we

employ only the word embeddings on top of our baseline NER model. To be more precise,

we achieved an improvement of phrase-level performance by 18% on TwitterDS-1 and

TwitterDS-1_FT, and by 20% on TwitterDS-2 by adding only the Turkish word

embeddings feature, where we used the Turkish Web corpus and Turkish Tweets corpus

together, on top of our baseline NER system. On the other hand, if we apply only the

Turkish text normalization scheme, which is specialized for social media texts, on our

Twitter data sets as a pre-step for NER, we achieved phrase-level F-score performance

improvements of around 11% on TwitterDS-1, 13% on TwitterDS-1_FT and 2% on

TwitterDS-2 compared to the baseline.

 Note that without capitalization, adding both the word embeddings and

normalization on top of our baseline NER model results in the best phrase-level

performance on all three Twitter data sets. However, the effect of normalization on

performance is much less now, when we already have the word embeddings in our NER

model. For instance, without capitalization, the normalization on top of word embeddings

improves the phrase-level performance results by only 1% on all three Turkish tweets sets,

where the improvements were around 11-13% on TwitterDS-1 variations when we apply

 77

normalization on top of the baseline model without word embeddings. This indicates

that our word embeddings feature already covers some of the effects of normalization,

since the unstructured words with typos and all other informality problems are already

automatically placed close to their normalized forms in vector space.

 Let us now discuss the models with the capitalization feature for Turkish Twitter

NER. As shown in the last four rows of Table 5.14, we still improve a lot in terms of NER

performance when we use only the word embeddings on top of our baseline NER model

with capitalization feature. To be more precise, we achieved an improvement of phrase-

level performance by around 11% on TwitterDS-1 and TwitterDS-1_FT, and by 17% on

TwitterDS-2 by adding only the Turkish word embeddings to our baseline NER system

with capitalization. However, if we apply only the Turkish social media text normalization

scheme on our Twitter sets before the NER, we achieved phrase-level performance

improvements of around 9-10% on TwitterDS-1 and TwitterDS-1_FT, and 5% on

TwitterDS-2 compared to the baseline with capitalization.

 Once again, adding both the word embeddings and normalization to our baseline

NER model with capitalization results in the best phrase-level performance on all Twitter

sets, and even slightly better than the same model without capitalization. In contrast, the

effect of normalization on performance is lessened now, when we already have the word

embeddings. To illustrate, with capitalization, the normalization on top of word

embeddings improves the phrase-level performance results by nearly 5% and 3% on

TwitterDS-1 and TwitterDS-2 respectively, where the improvements were around 9% and

5% on TwitterDS-1 and TwitterDS-2 respectively, when we apply normalization on top of

the baseline model plus capitalization without word embeddings. This shows that our word

embeddings feature still covers the certain portion of the effects of normalization, but this

portion is less with capitalization compared to the case without capitalization.

 Note that all NER models in Table 5.14, except the one with adding only word

embeddings on top of the baseline, benefit from the capitalization feature. This is expected

when we apply a normalization scheme that has a capitalization correction stage using

lexical resources. However, if we compare the effect of the capitalization feature on the

baseline and the baseline plus word embeddings models, we observe that if you employ

 78

word embeddings then it is better to turn off the capitalization. This makes sense since

we already lowercased our large corpus we used to attain word embeddings. Lowercasing

the corpus is recommended previously in order to limit the number of words in the

vocabulary and hence decreases the sparsity problem together with increased efficiency for

our unsupervised stage. Since the lowercasing step is shown to increase the

representativeness of the obtained word embeddings, we keep this as it is. However, if you

have a normalizer stage in your NER system, the best results are achieved with

normalization and capitalization together with the word embeddings, as shown in the

phrase-level NER performance results in the last row of Table 5.14.

 All in all, in this section we have shown that using word embeddings that are learnt

with an unsupervised approach from a large unlabeled corpus composed of web articles

and tweets is much better than applying a Twitter specific text normalizer in terms of NER

performance. This is a very important conclusion to draw, since building a text normalizer,

especially for informal text types such as microblog texts, requires a lot of language

dependent and domain specific features and rules, together with extensive lexical resources

that are manually constructed for specific languages and domains. Moreover, for

morphologically rich languages like Turkish, text normalization for unstructured data is a

challenging task and requires successful morphological analysis. On the other hand,

extracting word embeddings from a large unlabeled corpus in a certain language is a lot

easier and yet more effective than the much more complex text normalization. There is no

dependency on language specific analyzers or rules for word embeddings; the only

necessity is to have a large corpus, without any manual tagging, in a certain language in

order to automatically learn the semantic relations between words and certain

morphological patterns in that natural language. Moreover, tailoring your attained word

embeddings for a certain text domain is more straightforward with word embeddings,

which requires only having a large unlabeled corpus from that specific domain to increase

the representativeness of word embeddings. In our case, we have shown in the previous

sections that even by adding a comparably less amount of corpus composed of Turkish

tweets into our larger corpus composed of Turkish web articles, the observed

improvements on Turkish Twitter data are promising.

 79

5.2. Experiments with NER Models Trained on Twitter Data

 Note that until now, we presented our results of Turkish NER models that are

trained on a large annotated Turkish news data set, and tested on a relatively small

annotated Turkish tweets data sets. Although an ideal Turkish NER model designed to

work properly on Turkish Twitter data set should be trained also on similar informal text

types, we preferred to train on Turkish news data due to the lack of a large annotated

Turkish tweets data set for training.

 Although we have a limited amount of annotated Turkish Twitter data, our second

attempt here is to train a NER model on this relatively small amount of tweets data with

10-fold cross-validation and compare its results with our first attempt. The purpose of

performing 10-fold cross-validation here is to prevent the overfitting problem, which is

especially likely when the size of the training data set is small. Throughout this section, we

will present the performance results of our Turkish NER models trained on two different

annotated Turkish Twitter data sets prepared by Küçük et al. [9] and Çelikkaya et al. [29].

 Based on the previous results we presented, here we will only reproduce NER

models that performed better before. To be more precise, we will not reproduce NER

models using only Turkish Twitter corpus as a source for word embeddings since we have

observed that this model performed worse compared to the ones using the Turkish web

corpus or the Turkish web plus tweets corpus for obtaining the word embeddings.

Moreover, since our results have shown that NER models that did not use capitalization as

a feature during training perform better than the ones using capitalization on not

normalized Twitter data, we will only reproduce the models without capitalization from the

not normalized tweets data sets at this stage. Furthermore, since we have observed that

models using capitalization generally result in better performance on normalized tweets,

we will only reproduce the models with the capitalization feature turned on for training on

the normalized Twitter data. Finally, among the five different annotated Turkish Twitter

data sets we explained in Section 3.3.2, we will use the best two of them, based on our

previous performance results on them, as training set for the following experiments. These

tweets data sets are namely TwitterDS-1_FT that is the fully Turkish version of TwitterDS-

 80

1, the original annotated set presented in [29], where we manually eliminated the non-

Turkish tweets, and TwitterDS-2 that is presented in [9].

 Since we have limited amount of tweets within the two different annotated data

sets, we used one set for training and validation with 10-fold cross-validation, and we used

the other set for testing in this section. Namely, we trained our NER models on TwitterDS-

1_FT in order to test on TwitterDS-2, and similarly we trained the other NER models on

TwitterDS-2 in order to test on TwitterDS-1_FT. Ideally, if the training set and test set

come from different partitions of the same data set with large amount of tweets, the

performance results will reflect the real nature of the whole set. However, we are restricted

with the number of tweets and PLO samples here and we have to somehow use both tweets

data sets. Note that we mentioned about the differences of these two sets, TwitterDS-1 and

TwitterDS-2, and concluded that TwitterDS-2 is a healthier data set with properly

annotated named entities for Turkish. Therefore, we expect that the models trained on

TwitterDS-2 will perform better than the models trained on TwitterDS-1_FT.

 At the beginning, we will report the results we obtained from NER models trained

and validated on TwitterDS-2 and tested on TwitterDS-1_FT, all with 10-fold cross-

validation. We will start with our best models where we applied normalization as a

preprocessing step and hence we turned the capitalization feature on. We have compared

these results with the results of our previous models trained and validated on a much larger

amount of annotated Turkish news. Moreover, we also experimented with different NER

models by using only the unlabeled Turkish web corpus for learning word embeddings and

using the unlabeled Turkish tweets corpus in addition to this news corpus to attain word

embeddings. Both phrase-level and token-level performance results of these NER models

for overall PLOs on TwitterDS-1_FT and their comparison can be found in Table 5.15.

Note that for the models trained on tweets, we applied 10-fold cross-validation and hence

we reported mean values of F-scores together with standard deviation values over 10

rounds with different partitions of training an validation sets. We have also reported the

mean performance results we obtained on the validation sets together with the test set.

 Although we have a relatively small number of PLO samples in the annotated

tweets set compared to the annotated news set, the performance result presented in Table

 81

5.15 are very promising. To be more precise, the news set used for training and

validation is composed of around 500K words and 54K PLOs, whereas the TwitterDS-2

set we used here for training and validation is composed of around 21K words and only

980 PLOs. Despite this large size difference that is crucial for a better training with

supervised learning, when the normalization is applied and capitalization feature is used on

all models in Table 5.15, we observed an improvement of nearly 3% on phrase-level F-

scores of our NER models on TwitterDS-1_FT when we train on Turkish tweets, namely

TwitterDS-2, instead of Turkish news.

Table 5.15. Overall F-score performance results of the Turkish NER models with

normalization and capitalization that are trained on TwitterDS-2 with cross-validation and

tested on TwitterDS-1_FT, compared to the results of models trained on news.

Word

Embeddings

Trained

On
Norm Cap Test Set

10-fold

Cross

Val

Phrase-

level

(Overall)

Token-

level

(Overall)

Web News Yes ON
Twitter

DS-1_FT
- 45.74 50.09

Web
Twitter

DS-2
Yes ON

Twitter

DS-2 (Val)

Mean 64.62 67.40

STD 7.49 7.98

Twitter

DS-1_FT

Mean 48.75 52.08

STD 1.13 1.09

Web +

Tweets
News Yes ON

Twitter

DS-1_FT
- 46.61 51.37

Web +

Tweets

Twitter

DS-2
Yes ON

Twitter

DS-2 (Val)

Mean 65.26 67.46

STD 8.15 7.84

Twitter

DS-1_FT

Mean 48.96 52.39

STD 1.22 1.23

 Note that the mean validation performance results, presented in Table 5.15, of our

NER models trained each time on different 90% training partition of TwitterDS-2 is much

higher than the test results, since we used the other 10% validation partition again from

TwitterDS-2 and hence, they have a similar nature. However, when we tested these models

on the whole TwitterDS-1, which is a larger and completely different test set, the

 82

performance results drop as expected. Note also that the standard deviation on the

validation results is relatively higher than the standard deviation we have on the test results

over 10 rounds. This shows the necessity to apply 10-fold cross-validation on such small

data sets so that good or bad results are not obtained just by coincidence on a small test set.

 Note also that adding tweets corpus in addition to the news corpus as an unlabeled

Turkish text source for learning word embeddings improves the performance results on

validation and test sets only very slightly. We believe that if we have a large amount of

labeled tweets set for training together with a huge amount of unlabeled tweets corpus with

a more representative word representations, we may observe the real effects of the source

text type of word embeddings in the future.

Table 5.16. Overall F-score performance results of the Turkish NER models without

normalization and without the capitalization feature, which are trained on TwitterDS-2 and

tested on TwitterDS-1_FT, and compared with the results of the models trained on news.

Word

Embeddings

Trained

On
Norm Cap Test Set

10-fold

Cross

Val

Phrase-

level

(Overall)

Token-

level

(Overall)

Web News No OFF
Twitter

DS-1_FT
- 41.63 48.51

Web
Twitter

DS-2
No OFF

Twitter

DS-2 (Val)

Mean 61.92 63.99

STD 6.61 6.56

Twitter

DS-1_FT

Mean 41.06 43.42

STD 2.32 2.35

Web +

Tweets
News No OFF

Twitter

DS-1_FT
- 44.00 50.87

Web +

Tweets

Twitter

DS-2
No OFF

Twitter

DS-2 (Val)

Mean 65.39 66.35

STD 8.03 7.18

Twitter

DS-1_FT

Mean 43.43 45.78

STD 2.07 2.14

 Next, we have presented the results of our models this time where no normalization

is applied before the NER and hence the capitalization feature is off, again trained and

 83

validated on TwitterDS-2 with cross-validation and tested on TwitterDS-1_FT. We have

compared these results with the results of our previous models trained and validated on the

large annotated Turkish news set, with the same capitalization and normalization settings.

Similarly, we also experimented with different NER models by using only unlabeled

Turkish web corpus and using an additional unlabeled tweets corpus. Both phrase-level

and token-level performance results of these NER models for overall PLOs on TwitterDS-

1_FT and their comparison can be found in Table 5.16.

 Despite the large size and number of PLO samples differences between the

annotated news data having 54K PLOs and tweets data called TwitterDS-2 having only

980 PLOs we used for training and validation, we found the performance results presented

in Table 5.16 still very promising. To be more precise, when the normalization is not

applied and the capitalization feature is therefore not used on all models in Table 5.16, we

still achieve nearly the same phrase-level F-scores with our NER models on TwitterDS-

1_FT when we train on a small amount of Turkish tweets instead of a large amount of

Turkish news. Moreover, comparing the results in Table 5.15 and Table 5.16, we observe

that applying normalization on Turkish tweets yields in better performance improvements

when we train our NER models on Twitter data compared to when we train on news data.

Lastly, adding Turkish tweets corpus to the web corpus to attain word embeddings also

yields in better performance improvements when we do not apply normalization, which

indicates that the word embeddings obtained from tweets corpus help to cover some

portion of structural problems we observe in informal texts which are partly corrected after

normalization and hence the embeddings from tweets will not help as before, which is also

expected.

 Similarly to what we observed in Table 5.15, again the mean validation

performance results presented in Table 5.16 of our NER models trained and validated on

TwitterDS-2 is much higher than the test results we obtained on TwitterDS-1_FT, which is

expected since these two sets are shown to have some characteristic differences before.

Note also that the standard deviation on the validation results is relatively higher than the

standard deviation we have on the test results over 10 rounds. This again shows the

necessity to apply 10-fold cross-validation on such small data sets in order not to obtain

good or bad results by coincidence with the chosen partitioning.

 84

 Up until now, we have experimented with the NER models trained and validated on

TwitterDS-2 and tested on TwitterDS-1_FT. Now we will continue with the other way

around, i.e. with the NER models trained and validated on TwitterDS-1_FT and then tested

on TwitterDS-2. Note that since TwitterDS-1_FT is shown to be a problematic data set

with many missing annotations for named entities, TwitterDS-2 is actually a healthier data

set with proper annotations. Therefore, we do not expect any improvements and we expect

a decrease in NER performance when we train on TwitterDS-1_FT and test on TwitterDS-

2, compared to the models trained on news data.

Table 5.17. Overall F-score performance results of the Turkish NER models with

normalization and capitalization that are trained on TwitterDS-1_FT with cross-validation

and tested on TwitterDS-2, compared to the results of models trained on news.

Word

Embeddings

Trained

On
Norm Cap Test Set

10-fold

Cross

Val

Phrase-

level

(Overall)

Token-

level

(Overall)

Web News Yes ON
Twitter

DS-2
- 55.20 61.88

Web
Twitter

DS-1_FT
Yes ON

TwitterDS-

1_FT (Val)

Mean 57.33 59.32

STD 6.13 6.42

Twitter

DS-2

Mean 44.52 47.60

STD 1.35 1.56

Web +

Tweets
News Yes ON

Twitter

DS-2
- 56.79 62.80

Web +

Tweets

Twitter

DS-1_FT
Yes ON

TwitterDS-

1_FT (Val)

Mean 58.43 59.42

STD 6.61 6.37

Twitter

DS-2

Mean 44.87 48.09

STD 1.43 1.66

 In Table 5.17 and 5.18, we presented the performance results of the NER models

trained and validated on TwitterDS-1_FT and tested on TwitterDS-2, and compared these

results with the models trained on news data. In the first case, we applied normalization

 85

and turned the capitalization feature on whereas in the second case, we did not apply

normalization and hence the capitalization feature is off.

Table 5.18. Overall F-score performance results of the Turkish NER models without

normalization and without the capitalization feature that are trained on TwitterDS-1_FT

and tested on TwitterDS-2, compared to the results of the models trained on news.

Word

Embeddings

Trained

On
Norm Cap Test Set

10-fold

Cross

Val

Phrase-

level

(Overall)

Token-

level

(Overall)

Web News No OFF
Twitter

DS-2
- 54.09 63.64

Web
Twitter

DS-1_FT
No OFF

TwitterDS-

1_FT (Val)

Mean 54.86 55.04

STD 5.78 5.96

Twitter

DS-2

Mean 40.88 40.93

STD 1.43 1.47

Web +

Tweets
News No OFF

Twitter

DS-2
- 55.45 64.95

Web +

Tweets

Twitter

DS-1_FT
No OFF

TwitterDS-

1_FT (Val)

Mean 58.33 57.40

STD 5.92 6.03

Twitter

DS-2

Mean 43.25 43.29

STD 1.64 1.85

 As we have observed from the results presented in Table 5.17 and Table 5.18, there

are significant drops in the performance results on the same test set TwitterDS-2 when we

train our NER models on TwitterDS-1_FT instead of the news data. This performance

differences cannot only be explained by the different data size and number of PLO samples

in these two different training sets, since we have seen that although TwitterDS-2 is also a

small set, we obtained either nearly the same or better performance results when we train

our models on it instead of news. This indicates that TwitterDS-1_FT is a problematic

annotated tweets data set, which is not suitable for training a NER system. Although this

training set is problematic, the mean performance results on the validation sets are much

higher since both the training and validation partitions are sampled from the same tweets

data, TwitterDS-1_FT, and hence share the same nature. However, this is not enough since

 86

we need our NER system to work properly on completely unknown Turkish tweets in

the future. By comparing the differences in the performance results with the model trained

on TwitterDS-1_FT and TwitterDS-2, we can conclude that having a healthier annotated

Turkish tweets data set is crucial for training a NER system in order to succeed on

unknown future tweets, together with the necessity of having a sufficient number of PLO

samples within this labeled Twitter set.

 The experiments we employed in this section, especially the ones where we used a

healthier tweets data set, TwitterDS-2, as a training set instead of news data, tells us that if

both the training set and test set share a similar nature in terms of text types, such as formal

versus informal texts or long versus short texts, we can obtain better NER prediction

results as expected. We believe that if we can increase the size of the training data

composed of annotated Turkish tweets; the performance will get even better. Therefore it

is a must to firstly construct a large amount of Turkish Twitter data annotated with named

entities in order to have successful Turkish Twitter NER systems with acceptable

prediction accuracies in the future. It is also important to keep this labeled Turkish tweets

data up to date for training since the discussed topics and hence the mentioned named

entities may vary in time especially for dynamic microblogging environments such as

Twitter.

5.3. Comparison with the State-of-the-art

 To the best of our knowledge, there have been three studies on Twitter NER for

Turkish, which are published very recently by Çelikkaya et al. [29] in 2013, by Küçük et

al. [9] in 2014, and by Küçük and Steinberger [10] in 2014. In this section, we will

compare the results of these previous Turkish Twitter NER systems with our proposed

model and show that our Twitter NER system for Turkish outperforms the state-of-the-art

performance for the same NLP task.

 In Table 5.19, we have listed the phrase-level performance results for overall PLOs,

i.e. ENAMEX type named entities, on the same Turkish tweets test set called TwitterDS-1,

in order to compare the previously proposed Turkish Twitter NER systems with our own

system. We have already explained the details of these three recent previous Twitter NER

 87

systems for Turkish in Section 2.3. For the sake of a healthier comparison, we tried to

report the results with the most similar settings possible for different NER systems. We

used the same training set with the first system in our study, but the second NER system

uses a different multilingual news data and the third system, which is rule based, does not

have a training phase at all. We should compare the results with capitalization on and off,

with normalization or with no normalization etc. separately in order to see the real

improvements achieved with our Turkish Twitter NER system. Although we keep these

parameters and test sets exactly the same, since all previous NER systems use gazetteer

lists for named entities whereas our system does not, and since they did not report their

results without those gazetteer entities, this model parameter is not exactly the same for all

systems in Table 5.19.

Table 5.19. Comparing the phrase-level F-score performance results of previous Turkish

Twitter NER systems with our proposed NER system on the same tweets data called

TwitterDS-1.

System
Trained

On
Test Set Gazetteer

Phrase-level (Overall)

No

Normalization
Normalization

Cap

ON

Cap

OFF

Cap

ON

Cap

OFF

Çelikkaya et

al., (2013)

Turkish

News [11]
TwitterDS-1 Yes 12.23 13.88 19.28 15.27

Küçük et al.,

(2014)

EMM

News [10]
TwitterDS-1 Yes 29.64 - - -

Küçük and

Steinberger,

(2014)

No

Training

Phase

TwitterDS-1 Yes 30.11 36.63 - -

Our NER

System

Turkish

News [11]
TwitterDS-1 No 38.11 40.18 42.79 41.04

 We have observed from this chart that, even without gazetteers, our proposed

Turkish Twitter NER system outperforms the reported results of all previous systems using

gazetteers, with the same combination of capitalization and normalization choices, and on

 88

the same test set in Turkish called TwitterDS-1. To be more precise, the closest

performance results to our system are achieved with the latest study on Turkish Twitter

NER by Küçük and Steinberger [10], in which they achieved phrase-level F-score

performance of 30.11% and 36.63% when capitalization is on and off respectively, without

normalization on TwitterDS-1 and with additional gazetteer features only. We improved

those results by around 8% and 4% with the capitalization feature on and off respectively,

and again with no normalization, where we achieved phrase-level F-score performance of

38.11% and 40.18% for each setting respectively. Since the only reported result with

normalization on TwitterDS-1 is obtained with the initial Turkish Twitter NER system

proposed by Çelikkaya et al. [29], we significantly outperformed its best phrase-level F1-

score performance of 19.28% when both capitalization and normalization are used, by

means of around 24% increase where we achieved 42.79% performance on TwitterDS-1.

Table 5.20. Comparing the phrase-level F-score performance results of previous Turkish

Twitter NER systems with our proposed NER system on the same tweets data called

TwitterDS-2.

System
Trained

On
Test Set Gazetteer

Phrase-level (Overall)

No

Normalization
Normalization

Cap

ON

Cap

OFF

Cap

ON

Cap

OFF

Küçük et al.,

(2014)

EMM

News [10]
TwitterDS-2

Yes 37.24 - - -

+Extended 42.68 - - -

Küçük and

Steinberger,

(2014)

No

Training

Phase

TwitterDS-2 Yes 46.55 47.41 - 47.92

Our NER

System

Turkish

News [11]
TwitterDS-2 No 54.01 55.45 56.79 56.12

 In Table 5.20, we performed the similar comparison this time on our second main

test set called TwitterDS-2, on which all NER systems obtain better results since we

believe it is a healthier set, with properly annotated named entities, than the first set. We

 89

have reported the phrase-level performance results for overall ENAMEX type named

entities on the same tweets test set, for the sake of NER system comparisons on it.

 The results in Table 5.20 show that, even without gazetteers, our proposed Turkish

Twitter NER system outperforms the reported results of both previous systems using

gazetteers, with the same settings of capitalization and normalization, and on the same

TwitterDS-2 test set. To be more precise, the closest performance results compared to our

system is achieved again with the latest study by Küçük and Steinberger [10], in which

they achieved phrase-level F-score performance of 46.55% and 47.41% when

capitalization feature is used and not used respectively, without normalization on

TwitterDS-2 and with additional gazetteer features only. We improved both of those

results by around 8% with the capitalization feature on and off, and again with no

normalization, where we achieved phrase-level F1-score performance of 54.01% and

55.45% for each setting, respectively. Note that the only reported result with normalization

on TwitterDS-2 is achieved with the same latest study [10], where we significantly

outperformed its phrase-level F1-score performance of 47.92% when capitalization is

turned off. The improvement we obtained is around 8% increase in the phrase-level F-

score performance where we achieved 56.12% performance on TwitterDS-2, with

normalization and without capitalization, with our Turkish Twitter NER system. Since no

previous results are reported with both capitalization on and normalization, we cannot

compare our best result of 56.79% having this setting with any of the previous work.

 Finally, without restricting ourselves to keep as similar set of model parameter

settings as possible for a healthier comparison between our NER system and the previous

systems, we have shown the best performance results within each NER system together

with the details of which settings they used to achieve their own best results in Table 5.21.

These best performance results are presented for both on TwitterDS-1 and TwitterDS-2

test sets in Turkish. From this chart, we can conclude that the state-of-the-art performance

results for Turkish Twitter NER task was achieved by the latest system presented by

Küçük and Steinberger [10] where they reported 38.01% F1-score on TwitterDS-1 and

48.13% F1-score on TwitterDS-2 with their best model settings. These settings are namely

using gazetteers list, with capitalization feature turned off, and with no normalization,

together by expanding their gazetteer lists of named entities with diacritics variations.

 90

Table 5.21. Comparing the best phrase-level F-score performance results of previous

Turkish Twitter NER systems with our proposed NER system, all with its own best model

parameter settings, on two tweets data sets called TwitterDS-1 and TwitterDS-2.

System
Trained

On

Best Settings
Test Set

Phrase-

level

(Overall)
Gaz. Norm. Cap. Other

Çelikkaya et

al., (2013)

Turkish

News [11]
Yes Yes ON - TwitterDS-1 19.28

Küçük et al.,

(2014)

EMM

News [10]
Yes No ON

relaxed &

extended

gazetteer

TwitterDS-1 36.11

TwitterDS-2 42.68

Küçük and

Steinberger,

(2014)

No

Training

Phase

Yes No OFF

diacritics

expanded

gazetteer

TwitterDS-1 38.01

TwitterDS-2 48.13

Our NER

Systems

Turkish

News [11]
No Yes ON

word

embeddings

+ filter non-

Turkish

TwitterDS-1 46.61

word

embeddings
TwitterDS-2 56.79

Turkish

Tweets
No Yes ON

word

embeddings

+ filter non-

Turkish

TwitterDS-1 48.96

word

embeddings
TwitterDS-2 44.87

 Note that our Turkish Twitter NER system outperforms these state-of-the-art

results on both Turkish Twitter test sets, even without using gazetteers. We achieved our

best performance results when we apply normalization on tweets and keep the

capitalization as a feature, with Turkish word embeddings obtained from our Web+Tweets

corpus, and with applying the filter on fully non-Turkish tweets on TwitterDS-1. By using

Turkish news data as a training set, we achieved 46.61% phrase-level F1-score on

 91

TwitterDS-1, which is an improvement on the state-of-the-art performance by nearly

9%, and we achieved 56.79% F1-score for overall ENAMEX type named entities on

TwitterDS-2, which outperforms the state-of-the-art result by nearly 9%. Since we actually

obtained better performance results on TwitterDS-1 when we train our NER system on

limited amount of annotated Turkish Twitter data, TwitterDS-2, with 10-fold cross-

validation, we also reported those results in the last columns of Table 5.21. These last two

results are actually the mean values of the phrase-level F1-scores with this 10-fold cross-

validation. Even on small amount of training data composed of annotated Turkish tweets,

the results are very promising especially on TwitterDS-1 such that we achieved mean

phrase-level F-score of 48.96% on TwitterDS-1, which outperforms the state-of-the-art

results by nearly 11% on TwitterDS-1. On TwitterDS-2, training on Twitter data did not

improve the performance results since this time we used TwitterDS-1 as a training set,

which is shown to be problematic. Therefore, our very best results on TwitterDS-2 is still

the one we obtained by training a NER model on news data, with a phrase-level F-score of

56.79% as we stated before.

 92

6. CONCLUSION

In the context of this thesis, we investigated the Named Entity Recognition (NER)

problem on microblog texts in morphologically rich languages. The target microblogging

environment we chose in this study is Twitter since it is the most popular microblogging

site where extracting information from has gained high attention recently due to the value

of the information it contains. The target language in the scope of this work is Turkish,

which is known as a morphologically rich language that creates additional challenges for

Natural Language Processing (NLP) tasks such as NER. The scope of this thesis is

motivated by the fact that, although it is challenging, there is still a lot of room for

improvements for the NLP tasks on Turkish social media data.

In order to accomplish the NER task on a challenging domain composed of

informal and unstructured texts in a highly inflectional language, we adopted a semi-

supervised learning approach based on neural networks that benefits from continuous

representations of words. At the first stage, we attained distributed representations of

words in continuous vector space, which are known as word embeddings, by employing a

fast unsupervised learning method on a large unlabeled corpus. In the second stage, we

exploited these word embeddings together with language independent features in order to

train our neural network on labeled data using the averaged multiclass perceptron

algorithm. At the end, we evaluated our NER system on Turkish Twitter messages called

tweets that are annotated with named entities. We have compared our results on two

different Turkish Twitter data sets with the state-of-the-art NER system proposed for

Twitter data in Turkish. We have shown that our Turkish Twitter NER system outperforms

the state-of-the-art performance results on both data sets.

Our proposed NER system is tailored to perform better on microblogging texts in

Turkish such that, at the unsupervised stage where we learn our word embeddings, in

addition to using huge amount of unlabeled data composed of Turkish news articles, we

also explored using large amount of text corpus composed of Twitter messages in Turkish

in order to attain Turkish word embeddings. Since these word embeddings are used as a

crucial feature at the supervised stage, we propagated the specific word usages in Twitter

 93

messages indirectly to our supervised stage and trained our NER system with that

additional information specific to microblogging texts. Moreover, we applied what we

called Twitter processing on our tweets data sets in order to tag Twitter and web specific

usages such as mentions, hashtags, smileys, URLs etc. Embedding those Twitter specific

keywords into our large Turkish Twitter corpus also makes our system specialized towards

unstructured Twitter texts. Furthermore, we investigated the benefit of the capitalization

feature that is widely used for successful NER systems on formal text types where proper

capitalization of named entities is almost always observed and hence the capitalization

pattern of words is a useful clue to recognize named entities. We have shown that in order

to have a NER system using lowercased word embeddings that performs better on informal

text types where we usually lack proper capitalizations; you should turn the capitalization

feature off. In addition, we applied a recently proposed Turkish text normalization scheme,

which has specifically been designed for social media data, on our tweets data sets and we

have shown that it also improves the performance of our NER system on Turkish tweets.

This text normalization also involves tagging certain Twitter and web specific keywords

such as hashtags, mentions, retweets, smileys, URLs etc. which makes our final system

specialized towards microblog texts together with the similar processing performed on

unlabeled tweets at the unsupervised stage. Since this normalization scheme also corrects

the lacking capitalizations in tweets to some extend, we have shown that if you have such a

normalization stage before applying NER on your data, you should turn the capitalization

feature on again in order to have even better NER performance. The last adaptation we

examined is training our NER system on annotated Turkish tweets. Although most of the

previous NER systems on Turkish tweets used large labeled Turkish news data for training

due to the lack of enough Turkish tweets data annotated with named entities, we have

shown that even if you train your system on a limited number of annotated tweets with 10-

fold cross-validation, the results are promising. This indicates the necessity of large

amount of annotated Turkish tweets in order to have a successful Turkish Twitter NER

system with acceptable performance.

Another important aspect of this study is that, since the only language dependent

part of our NER system is the normalization scheme we applied on Turkish tweets, and

since even without this normalization we outperform the previous state-of-the-art study on

Turkish Twitter NER, we believe that our approach can be easily adapted to other

 94

morphologically rich languages. We have shown that utilizing the word representations

in a semi-supervised learning approach is highly effective for Twitter NER and can result

in state-of-the-art performance even without using any language dependent features and

gazetteer lists. If you have a huge amount of unlabeled corpus composed of formal, or even

better informal, text types in any language, then you can follow this approach and may

improve the performance of Twitter NER especially for morphologically rich languages

where there is still room for improvements. Applying social media text normalization for

any language on tweets data is optional, but has been shown to be beneficial for further

improvements on the final performance of a NER system on microblog texts.

The final and maybe the most important conclusion we draw from this study is that,

using word embeddings that are attained by unsupervised learning from a large unlabeled

corpus composed of web articles and tweets is much better for the NER performance than

applying a Twitter specific text normalization scheme. Building a text normalizer,

especially for informal text types, requires a lot of language dependent and domain specific

features and rules, together with extensive lexical resources that are manually constructed

for a specific language and a specific domain. In addition, for morphologically rich

languages such as Turkish, text normalization for unstructured data is even more

challenging. In contrast, learning word embeddings from a large unlabeled corpus in

certain language is a lot easier and yet more effective than the more complex text

normalization. There is no dependency on language specific analyzers or rules for word

embeddings. The only requirement is having a large corpus in certain language in order to

automatically obtain the semantic relations between words in that natural language. We

believe that our approach can be adapted to other morphologically rich languages,

especially when successful social media specific text normalizers are not present, in order

to improve the NER performance on such unstructured texts. Even if such normalizers are

present, we have shown that using word embeddings together with text normalization

yields increased performance results for NER systems on microblog texts.

6.1. Future Work

Although we outperformed the state-of-the-art results for the Turkish Twitter NER

task, we believe there is still room for improvements. As a future work, we need to

 95

construct a huge amount of unlabeled tweets corpus in addition to the news corpus since

the size of the corpus we have for learning word embeddings is not comparable to those

used in the literature from news domain, which is shown to affect the representativeness of

the attained word embeddings and hence the performance of the final NER task. Moreover,

we need to construct a large amount of annotated Turkish tweets data in order to train a

successful NER system for Turkish tweets and once we have such a training set, we can

explore using the Twitter specific features directly at the supervised stage. Although we

are restricted with the language independent features in this study, a next step can be

investigating language dependent features and gazetteer lists in order to see if they further

improve the performance of NER on Turkish tweets.

Another future work can be using this NER system on Turkish tweets as a

preprocessing step for Turkish sentiment analysis on Twitter, and investigating the benefits

of our NER system as a subtask for sentiment analysis in Turkish. The sentiment analysis

task has an increasing popularity and achieves high attention both from industry and

academia and since the sentiment of a tweet may often be referring to organizations,

brands, companies and person names such as political figures, we believe that our

proposed Turkish Twitter NER system can be useful for sentiment analysis on Turkish

tweets.

 96

REFERENCES

1. Grishman, R. and B. Sundheim, “Named Entity Task Definition”, Proceedings of

the 6th Conference on Message Understanding, MUC6 ’95, pp. 317–332

(Appendix C), Association for Computational Linguistics, Stroudsburg, PA, USA,

1995.

2. Grishman, R. and B. Sundheim, “Design of the MUC-6 Evaluation”, Proceedings

of the 6th Conference on Message Understanding, MUC6 ’95, pp. 1–11,

Association for Computational Linguistics, Stroudsburg, PA, USA, 1995.

3. Chinchor, N. A., “Named Entity Task Definition”, Proceedings of the Seventh

Message Understanding Conference (MUC-7), p. Appendix E, Fairfax, VA, 1998.

4. Tjong Kim Sang, E. F. and F. De Meulder, “Introduction to the CoNLL-2003

Shared Task: Language-independent Named Entity Recognition”, Proceedings of

the Seventh Conference on Natural Language Learning at Conference of the North

American Chapter of the Association for Computational Linguistics: Human

Language Technologies (HLT-NAACL), CONLL ’03, pp. 142–147, Association for

Computational Linguistics, Stroudsburg, PA, USA, 2003.

5. Nadeau, D. and S. Sekine, “A Survey of Named Entity Recognition and

Classification”, Lingvisticae Investigationes, Vol. 30, No. 1, pp. 3–26, 2007.

6. Şeker, G. A. and G. Eryiğit, “Initial Explorations on using CRFs for Turkish

Named Entity Recognition”, In Proceedings of the 24th International Conference

on Computational Linguistics, pp. 2459–2474, Mumbai, India, 2012.

7. Hakkani-Tür, D. Z., Statistical Language Modelling for Turkish, Ph.D. Thesis,

Bilkent University, 2000.

 97

8. Kireyev, K., L. Palen and K. M. Anderson, “Applications of Topics Models to

Analysis of Disaster-Related Twitter Data”, Neural Information Processing

Systems (NIPS) Workshop on Applications for Topic Models: Text and Beyond,

2009.

9. Küçük, D., G. Jacquet and R. Steinberger, “Named Entity Recognition on Turkish

Tweets”, Proceedings of the Language Resources and Evaluation Conference,

2014.

10. Küçük, D. and R. Steinberger, “Experiments to Improve Named Entity Recognition

on Turkish Tweets”, Proceedings of the European Chapter of the Association for

Computational Linguistics (EACL) Workshop on Language Analysis for Social

Media, Gothenburg, Sweden, 2014.

11. Tür, G., D. Hakkani-tür and K. Oflazer, “A Statistical Information Extraction

System for Turkish”, Natural Language Engineering, Vol. 9, No. 2, pp. 181–210,

2003.

12. Küçük, D. and A. Yazıcı, “A Hybrid Named Entity Recognizer for Turkish”,

Expert Systems with Applications, Vol. 39, No. 3, pp. 2733–2742, 2012.

13. Küçük, D. and A. Yazıcı, “Named Entity Recognition Experiments on Turkish

Texts”, Proceedings of the 8th International Conference on Flexible Query

Answering Systems, Roskilde, Denmark, 2009.

14. Tatar, S. and I. Çiçekli, “Automatic Rule Learning Exploiting Morphological

Features for Named Entity Recognition in Turkish”, Journal of Information

Science, Vol. 37, No. 2, pp. 137–151, 2011.

15. Yeniterzi, R., “Exploiting Morphology in Turkish Named Entity Recognition

System”, Proceedings of the ACL 2011 Student Session, Human Language

Technologies - Student Session ’11, pp. 105–110, Association for Computational

Linguistics, Stroudsburg, PA, USA, 2011.

 98

16. Demir, H., Semi-Supervised Learning Based Named Entity Recognition For

Morphologically Rich Languages, M.S. Thesis, Boğaziçi University, 2014.

17. Demir, H. and A. Özgür, “Improving Named Entity Recognition for

Morphologically Rich Languages using Word Embeddings”, Proceedings of the

13th International Conference on Machine Learning and Applications, ICMLA '14,

pp. 177-122, Detroit, Michigan, USA, 2014.

18. Mikolov, T., K. Chen, G. Corrado and J. Dean, “Efficient Estimation of Word

Representations in Vector Space”, Computing Research Repository, Vol. 1301, No.

3781, pp. 1–12, 2013.

19. Ritter, A., S. Clark, M. and O. Etzioni, “Named Entity Recognition in Tweets: An

Experimental Study”, Proceedings of the Conference on Empirical Methods in

Natural Language Processing, pp. 1524–1534, 2011.

20. Ramage, D., D. Hall, R. Nallapati and C. D. Manning. “Labeled LDA: A

Supervised Topic Model for Credit Attribution in Multi-labeled Corpora”,

Proceedings of the 2009 Conference on Empirical Methods in Natural Language

Processing, Vol. 1, pp. 248–256, Morristown, NJ, USA, 2009.

21. Gimpel, K., N. Schneider, B. O’Connor, D. Das, D. Mills, J. Eisenstein, M.

Heilman, D. Yogatama, J. Flanigan and N. A. Smith, “Part-of-Speech Tagging for

Twitter: Annotation, Features, and Experiments”, Association for Computational

Linguistics, 2011.

22. Brown, P. F., P. V. deSouza, R. L. Mercer, V. J. D. Pietra and J. C. Lai. “Class-

based n-gram Models of Natural Language”, Computational Linguistics, 1992.

23. Liu, X., S. Zhang, F. Wei and M. Zhou, “Recognizing Named Entities in Tweets”,

Proceedings of the 49th Annual Meeting of the Association for Computational

Linguistics: Human Language Technologies, Vol. 1, pp. 359–367, 2011.

 99

24. Liu, X., M. Zhou, F. Wei, Z. Fu and X. Zhou, “Joint Inference of Named Entity

Recognition and Normalization for Tweets”, Proceedings of the 50th Annual

Meeting of the Association for Computational Linguistics: Long Papers, Vol. 1, pp.

526–535, 2012.

25. Li, C., J. Weng, Q. He, Y. Yao, A. Datta, A. Sun and B. Lee, “TwiNER: Named

Entity Recognition in Targeted Twitter Stream”, Proceedings of the 35th

International Association for Computing Machinery (ACM) Special Interest Group

On Information Retrieval (SIGIR) Conference on Research and Development in

Information Retrieval, pp. 721– 730, 2012.

26. Oliveira, D. M., A. H. F. Laender, A. Veloso and A. S. da Silva, “FS-NER: A

Lightweight Filter-Stream Approach to Named Entity Recognition on Twitter

Data”, Proceedings of the 22nd International Conference on World Wide Web

Companion, pp. 597–604, 2013.

27. Bontcheva, K., L. Derczynski, A. Funk, M. Greenwood, D. Maynard and N.

Aswani, “TwitIE: An Open-Source Information Extraction Pipeline for Microblog

Text”, Proceedings of the International Conference on Recent Advances in Natural

Language Processing, 2013.

28. Toutanova, K., D. Klein, C. Manning and Y. Singer, “Feature-Rich Part-of-Speech

Tagging with a Cyclic Dependency Network”, Proceedings of the North American

Chapter of the Association for Computational Linguistics: Human Language

Technologies, HLT-NAACL 2003, pp. 252-259, 2003.

29. Çelikkaya, G., D. Torunoğlu and G. Eryiğit, “Named Entity Recognition on Real

Data: A Preliminary Investigation for Turkish”, Proceedings of the 7th

International Conference on Application of Information and Communication

Technologies, 2013.

 100

30. Pouliquen, B. and R. Steinberger, “Automatic Construction of Multilingual

Name Dictionaries”, In C. Goutte et al., editor, Learning Machine Translation,

Advances in Neural Information Processing Systems Series, pp. 59–78, MIT Press,

2009.

31. Zemberek, Turkish Unique Word List of Zemberek NLP Library for Turkic

Languages, 2010, http://zemberek.googlecode.com/files/full.txt.tr.tar.gz, [Accessed

April 2014].

32. Hinton, G. E., J. L. McClelland and D. E. Rumelhart, “Distributed

Representations”, Parallel Distributed Processing: Explorations in the

Microstructure of Cognition, Vol. 1, pp. 77–109, MIT Press, 1986.

33. Rumelhart, D. E., G. E. Hinton and R. J. Williams, “Learning Representations by

Back-propagating Errors”, Nature, Vol. 323, No. 6088, pp. 533–536, 1986.

34. Bengio, Y., R. Ducharme, P. Vincent and C. Janvin, “A Neural Probabilistic

Language Model”, Journal of Machine Learning Research, Vol. 3, pp. 1137–1155,

2003.

35. Collobert, R. and J. Weston, “A Unified Architecture for Natural Language

Processing: Deep Neural Networks with Multitask Learning”, Proceedings of the

25th International Conference on Machine Learning, ICML ’08, pp. 160–167,

Association for Computing Machinery, 2008.

36. Collobert, R., J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu and P. Kuksa,

“Natural Language Processing (Almost) from Scratch”, Journal of Machine

Learning Research, Vol. 12, pp. 2493–2537, 2011.

37. Mikolov, T., I. Sutskever, K. Chen, G. S. Corrado and J. Dean, “Distributed

Representations of Words and Phrases and their Compositionality”, Neural

Information Processing Systems (NIPS), pp. 3111–3119, 2013.

 101

38. Morin, F. and Y. Bengio, “Hierarchical Probabilistic Neural Network Language

Model”, Artificial Intelligence and Statistics (AISTATS), pp. 246–252, 2005.

39. Ratinov, L. and D. Roth, “Design Challenges and Misconceptions in Named Entity

Recognition”, Proceedings of the Thirteenth Conference on Computational Natural

Language Learning, CoNLL ’09, pp. 147-155, Association for Computational

Linguistics, Stroudsburg, PA, USA, 2009.

40. Freund, Y. and R. E. Schapire, “Large Margin Classification Using the Perceptron

Algorithm”, Machine Learning, Vol. 37, No. 3, pp. 277–296, 1999.

41. Rosenblatt, F., “The Perceptron: A Probabilistic Model for Information Storage and

Organization in the Brain”, Psychological Review, Vol. 65, No. 6, pp. 386–408,

1958.

42. Kakade, S. M., S. Shalev-Shwartz and A. Tewari, “Efficient Bandit Algorithms for

Online Multiclass Prediction”, Proceedings of the 25th International Conference

on Machine Learning, ICML ’08, pp. 440–447, Association for Computing

Machinery, New York, NY, USA, 2008.

43. Torunoğlu, D. and G. Eryiğit, “A Cascaded Approach for Social Media Text

Normalization of Turkish”, Proceedings of the 5th Workshop on Language

Analysis for Social Media (LASM) at European Chapter of the Association for

Computational Linguistics (EACL), Gothenburg, Sweden, 2014.

44. Sak, H., T. Güngör and M. Saraçlar, "Turkish Language Resources: Morphological

Parser, Morphological Disambiguator and Web Corpus", 6th International

Conference on Natural Language Processing, GoTAL 2008, Vol. 5221, pp. 417-

427, Springer, 2008.

45. Sezer, B. and T. Sezer, “TS Corpus: Herkes İçin Türkçe Derlem”, Proceedings of

the 27th National Linguistics Conference, pp. 217-225, Antalya, Turkey, 2013.

