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Assoc. Prof. Aykut Şenol . . . . . . . . . . . . . . . . . . .

DATE OF APPROVAL: 12 January 2015



iii

To my grandmother,

Mediha Cihangiroğlu
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ABSTRACT

UNDRAINED SEISMIC BEARING CAPACITY OF

SURFACE STRIP FOUNDATIONS ON COHESIVE

SLOPES

In recent years, some comprehensive research studies have focused on the issue

of the undrained seismic bearing capacity in the field of the foundation engineering.

However, there is no complete and sufficient solution for calculating the magnitude of

the undrained seismic bearing capacity. In this study, a practical and effective method

was presented for the calculation of undrained seismic bearing capacity factor for sur-

ficial strip foundations on cohesive slopes. Using Finite Element Method, numerous

analyses were performed in PLAXIS to investigate the influence of different soil and

geometrical parameters on undrained seismic bearing capacity factor. In the analyses,

the model was solved as a pseudo-static problem. The considered model has several

variables which are possible to influence the numerical results. These variables are the

distance between the footing and the slope edge, slope angle, crest height, soil prop-

erties and horizontal seismic acceleration coefficient. Using undrained Mohr-Coulomb

type of constitutive model in PLAXIS, four different undrained material sets which

have different consistency values were defined. Utilizing PLAXIS numerical results

obtained; design charts and necessary equations were developed. In addition, charts

were developed for identifying the limits of permissible states for the seismic bearing

capacity problem of surficial strip foundations.
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ÖZET

KOHEZYONLU ŞEVLERİN ÜZERİNDEKİ YÜZEYSEL

ŞERİT TEMELLERİN DRENAJSIZ SİSMİK TAŞIMA

GÜCÜ

Son yıllarda, temel mühendisliği alanı içinde yer alan drenajsız sismik taşıma

gücü konusu ile ilgili detaylı çalışmalar yapılmıştır. Her nasılsa, drenajsız sismik taşıma

gücü hesabı konusu hakkında kesin ve yeterli bir çözüm sunulmamıştır. Bu çalışmada,

kohezif şevler üzerinde bulunan yüzeysel şerit temeller için drenajsız sismik taşıma

gücü faktörü hesabında kullanılabilecek bir pratik ve efektif metot sunulmuştur. Sonlu

Elemanlar Yöntemi kullanılarak, farklı zemin ve geometrik parametrelerin drenajsız sis-

mik taşıma gücü faktörü üzerindeki etkisini araştırmak için PLAXIS Programında çok

sayıda analiz yapılmıştır. Analizlerdeki model yalancı-statik problem olarak çözülmüştür.

Tanımlanan model, sonuçları doğrudan ve önemli ölçüde etkileyebilecek farklı değişkenlere

sahiptir. Bu değişkenler; yüzeysel temel ile şev köşesi arasındaki uzaklık, şev yüksekliği,

şev açısı, zemin özellikleri ve ivme katsayısıdır. Farklı kıvam durumlarına sahip,

dört drenajsız zemin malzemesi, drenajsız Mohr- Coulomb modeli kullanılarak tasar-

lanmıştır. Elde edilen PLAXIS nümerik sonuçları kullanılarak; tasarım grafikleri ve

gerekli denklemler geliştirilmiştir. Ayrıca, yüzeysel şerit temellerin sismik taşıma gücü

problemi için izin verilebilir sınır durumlarının tanımlanması için grafikler geliştirilmiştir.
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1. INTRODUCTION

1.1. Theory Background

Foundations have a significant influence on the existence and health of structures.

Geotechnical design of foundations is done considering several criteria, one of which is

the bearing capacity of the foundation under earthquake effects.

Bearing capacity is the ultimate bearing pressure that results in the failure of the

foundation. If the considered ultimate bearing pressure is defined for seismic conditions,

then it is referred to as seismic bearing capacity. However, computation of seismic

bearing capacity is cumbersome, that is why pseudo-static can be preferred. In pseudo-

static approach, constant horizontal and vertical seismic body forces defined like the

driving forces in the limit equilibrium method represent the influence of earthquake

on slopes. Consequently, pseudo-static approach is utilized as a practical method for

seismic slope stability analyses.

Foundations are classified as shallow and deep foundations depending on the

location of the load bearing layer. If the load bearing layer is near to bottom floor

level and the loads of the structure are not heavy, shallow foundations are preferred.

Footings, strip foundations and mats can be considered as shallow foundations. In

contrast, if the load bearing layer locates in deeper point and the loads of the structure

are considerably heavy, deep foundations are preferred. Piles, drilled piers or drilled

caissons can be considered as deep foundations.

A strip foundation is the long strip of reinforced concrete supporting the walls of

buildings. This foundation type has importance in the field of geotechnical engineering

for substructures in the geotechnical projects. Strip foundations are generally built

on sloping lands in dwellings zones. Hence, engineering design of the strip foundation

located on sloping lands involves calculation complexities.



2

The main objective of this study is to develop design charts and equations for

the calculation of undrained seismic bearing capacity factor for surficial strip founda-

tions. Conditions where the surficial foundations are resting on horizontal ground or

sloping ground or near sloping ground are considered. However, analyses were limited

to undrained soils since undrained conditions correspond to the most critical condi-

tions. Using Finite Element Method, numerous analyses were performed in PLAXIS

to investigate the influence of different soil and geometrical parameters on undrained

seismic bearing capacity factors. Furthermore, the concept of the stability number was

incorporated to identify the stability of the slopes on which the foundation was on.

Finally, the last objective is to improve available charts in the literature for identifying

the limits of permissible states when seismic bearing capacity problem is considered

for surficial strip foundations.
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2. LITERATURE REVIEW

2.1. Shallow Foundations

A foundation, located under the structure, is a subsection that carries the total

weight of the structure. Foundations are classified as shallow foundations and deep

foundations. Sivakugan and Pacheco (2011) defined the shallow foundation as the

load-transferring structure at a relatively shallow depth. Pad footings, strip footings

and mats are the kinds of shallow foundations. Shallow foundations differ from deep

foundations with an important restriction that the breadth of shallow foundations must

have equal or higher values than the depth of shallow foundations.

Figure 2.1. Types of Shallow Foundations (Sivakugan and Pacheco, 2011).

Strip foundations are long strip of reinforced concrete substructures which sup-

port mainly long structures. Strip foundations, like all other foundations, are designed

by considering strength and deformations of the underlying soil. In any case, water is

an important factor that can easily influence the strength and naturally deformations

values of soil located beneath the foundation. The loads must not be exceeding the

capacity of the underlying soils to carry loads and also deformations must be within

tolerable limits for a successful foundation design.
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2.2. Bearing Capacity of Shallow Foundations

Terzaghi (1943) defined the critical load or the total bearing capacity (Qu) as

the load required causing the failure of the soil support. It depends on the mechanical

properties of the soil, the size of the loaded area, foundation shape, and foundation

location with reference to the surface of the soil. Provided that the strain which

precedes the failure of the soil by plastic flow is very small, the footing does not sink

into the ground until a state of plastic equilibrium. This relation between load and

settlement is shown by the curve 1 in Figure 2.2. The failure occurs with sliding in

the two outward directions, as demonstrated in Figure 2.3. (C1). This failure type

is defined as “the general shear failure”. However, if the strain which precedes the

failure of the soil by plastic flow increases gradually, the footing sinks into the ground

continuously until a state of plastic equilibrium. The corresponding relation between

load and settlement is demonstrated with curve 2 in Figure 2.2. The rapid inclination

of curve 2 initiates the failure of the soil before the failure reaches to the surface. This

failure is named as “the local shear failure”.

Figure 2.2. Relation Between Load and Settlement on Dense (C1) and Loose (C2)

Soil (Terzaghi, 1943).
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Terzaghi (1943) demonstrated the plastic equilibrium area which is divided into

three important zones as shown in Figure 2.3. There are Zone I which is a wedge

shaped elastic zone beneath the foundation, Zone II which are the radial shear zones

and Zone III which are the passive Rankine zones. (ϕo. Top corners of the Rankine

passive zones have equal value to (45-ϕ/2). Upper corners of Zone I internal angles’

(α) is assumed to equal to soil friction angle.

Figure 2.3. Failure Mechanisms of Dense (C1) and Loose (C2) Soil (Terzaghi, 1943).

According to Terzaghi’s Bearing Capacity Theory (1943), the ultimate bearing

capacity of the shallow foundation with the influences of cohesion, friction and weight is

calculated using the formula shown below. The coefficients Nc, Nq and Nγ are called the

bearing capacity factors. The changes in coefficients occur only if the angle of shearing

resistance (ϕ) alters. Bearing capacity factors are indicated below. In Nq formula, Kpγ

signifies that the passive earth pressure coefficient. These formulas shown below are



6

used in case of general shear failure.

qu = qc + qq + qγ (2.1)

qu = cNc + qNq +
1

2
γBNγ (2.2)

Nc = cot ∅ (Nq − 1) (2.3)

Nq =
e2(

3π
4
− ∅

2) tan ∅

2cos2
(
45 + π

2

) (2.4)

Nq =
1

2
KPγtan

2∅ − tan ∅
2

(2.5)

Skempton (1951) investigated that the bearing capacity of saturated clays (ϕ=

0o)Skempton presented the simple rules to estimate the bearing capacity factor, Nc:

Table 2.1. Estimation of Bearing Capacity Factor, Nc (Skempton, 1951).

At the surface, where D = 0

Nc0 = 5 for strip footings

Nc0 = 6 for square or circular footings

At depths where D/B < 2 1
2

NcD = (1 + 0.2D/B) Nc0

At depths where D/B > 21
2

NcD = 1.5 Nc0

At any depth the bearing capacity of a rectangular footing

Nc (rectangle) = (1 + 0.2 B/L) Nc (strip)
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where is the D depth of foundation, is the B breadth of foundation, is the L

length of foundation.

Skempton (1951) revised Terzaghi’s formula of the allowable foundation pressure:

qallowable =
1

F

[
cNc + po (Nq − 1) +

γB

2
Nγ

]
+ p (2.6)

where is the F the desired factor of safety, is the c cohesion of the soil, is the po

effective overburden pressure at foundation level, is the p total overburden pressure at

foundation level, is the γ density of soil beneath the foundation, is the B breadth of

foundation, is theNc, Nq, Nγ bearing capacity factors, qnt net ultimate bearing capacity.

Nq and Nγ are equal to zero for ϕ = 0o. Thus Equation 2.6 becomes the simpler

form:

qallowable =
c

F
Nc + p (2.7)

The ultimate bearing capacity equation is then shown below:

qt = cuNc + p (2.8)

The ultimate bearing capacity of clays is calculated with Equation 2.8, if the

cohesion of the clay has been determined and the factor Nc has been evaluated for the

dimensions of the foundation.

Hansen (1961) emphasized the importance of the dimensions, shape and depth of

the foundation area for the bearing capacity. Also, he developed formulas for the incli-

nation of the foundation load. Hansen generalized Terzaghi’s formula by multiplying

each of terms with a shape, a depth and an inclination factor. The most convenient

formula developed by Hansen for the special case of ϕ = 0o (clay), as demonstrated
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below.

Q

BL
=

1

2
γBNγsγdγiγ + (c+ q tan ∅)Ncscdcic + q (2.9)

where is the c cohesion of the soil, is the γ effective unit weight of soil, is the q effective

unit load on the surface outside the foundation, is the B breadth of foundation, is the

L length of foundation, is the Nc, Nq, Nγ bearing capacity factors, is the sγ, sc shape

factors, is the dγ, dc depth factors, iγ, ic inclination factors.

Hansen (1968) revised and extended the bearing capacity formula adding two

new factors which were base inclination and a ground inclination factors. In addition,

these formulas were for the use of central loading with the symbols B, L and A referred

to the effective rectangle. Likewise, Hansen presented a new formula in which the c

term was dominant the special case of ϕ = 0o (clay), as shown in Equation 2.11. For

inclination factors, H referred to the horizontal component of the applied load and V

referred to the vertical component of the applied load, as shown in Figure 2.4.

Q

A
=

1

2
γBNγsγdγiγbγgγ + qNqsqdqiqbqgq + cNcscdcicdcicbcgc (2.10)

where is the c cohesion of the soil, is the γ effective unit weight of soil, is the q effective

unit load on the surface outside the foundation, is the B breadth of foundation, is the

A area of foundation, is the Nc, Nq, Nγ bearing capacity factors, is the sγ, sq, sc shape

factors, is the dγ, dq, dc depth factors, is the iγ, iq, ic inclination factors, is the bγ, bq, bc

base inclination factors, is the gγ, gq, gc ground inclination factors, is the H horizontal

component of the applied load, is the V vertical component of the applied load, is the

cu undrained cohesion of the soil.

Q

A
= (π + 2) cu (1 + sac + dac − iac − bac − gac ) (2.11)

where is the sac , d
a
c , i

a
c , b

a
c , g

a
c additive constants for the case of ϕ = 0o.
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For ϕ = 0o

ic = 0.5− 0.5

√
1−H/Acu (2.12)

For ϕ = 30o and 45o

iq = [1− 0.5H : (V + Ac cot ∅]5 (2.13)

For ϕ = 30o and 45o

iγ = [1− 0.7H : (V + Ac cot ∅]5 (2.14)

For ϕ = 30o, νo is the angle between base and horizontal.

Figure 2.4. Rupture Figure for Calculation of Bc, Bq, Gc and Gq. Frictionless Earth

or Weightless Earth With Vertical Surface Load (Hansen, 1968).

For ϕ = 0o

bc =
2v

π + 2
=

v◦

147◦
(2.15)

gc =
2β

π + 2
=

β◦

147◦
(2.16)
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For ϕ > 0o

bq = e−2v tan ∅ (2.17)

bγ = e−2.7v tan ∅ (2.18)

gq = [1− 0.5 tan β]5 = gγ (2.19)

For ϕ = 0o

sc = 0.2B/L (2.20)

De Beer proposed these formulas.

sγ = 1− 0.4B/L (2.21)

sq = 1 + sin ∅B/L (2.22)

dγ = 1 (2.23)

These formulas are for the use of D≤B.

dc = 0.4tan−1D/B (2.24)

dq = 1 + 2 tan ∅ (1− sin ∅) 2tan−1D/B (2.25)
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where is the sγ, sq, sc shape factors, is the dγ, dq, dc depth factors, is the iγ, iq, ic inclina-

tion factors, is the bγ, bq, bc base inclination factors, is the gγ, gq, gc ground inclination

factors.

Vesic (1975) proposed three distinct modes of failure; general shear failure, local

shear failure and punching shear failure; as demonstrated in Figure 2.5. General shear

failure is determined by the existence of a well-defined failure pattern comprising of a

continuous slip surface from one edge of the footing to the ground surface in Figure

2.5 a, Punching shear failure is characterized by a failure pattern which is not easy to

recognize in Figure 2.5 c As the load rises, the vertical movement of the footing exists

with the compression of the soil immediately underneath. There is no movement of

the soil on the sides of the footing. Local shear failure consists of a wedge and slip

surfaces, which start at the edges of the footing and end somewhere in the soil mass.

Additionally, soil bulging on the sides of the footing can be visible. Therefore, local

shear failure represents a transitional mode between modes of general shear failure and

punching shear failure.

Figure 2.5. Modes of Bearing Capacity Failure (After Vesic, 1963a).
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Vesic (1975) emphasized the dependence of the failure mode on the relative com-

pressibility of the soil for particular geometrical and loading conditions. If the soil has

incompressible characteristic and low shear strength, it fails in general shear mecha-

nism. However, if the soil has very compressible characteristic, it fails in punching

shear mechanism. Furthermore; for a footing on saturated and normally consolidated

clay, provided that the loading is slow enough, the soil may fail in punching shear

mechanism due to volume change under the action of the load.

Houlsby and Puzrin (1999) conducted the study regarding the problem of failure

of a strip foundation on undrained clay subjected to combined moment and horizontal

loadings. The researchers obtained apparent upper bound and lower bound solutions

(that satisfies equilibrium and nowhere violate the yield criterion). They determined

the shape of the failure surface in (V , M , H) space, where principle was written as

a function f (V , M , H) = 0. In this study, the contacting area between the strip

footing and the clay space was defined by utilizing the effective area concept which is

commonly used in the analysis of foundations subjected to moment loading, for lower-

bound solution. The effective-width method is equivalent to the assumption that a

solution for loads on a footing of width B0 was also feasible to a footing of larger width

B, as shown in Figure 2.6, in which the loads on the two footings were equivalent in

static case. Provided that x = B0 / B, where 0 < x ≤ 1, and the original solution is

(v0, m0, h0), then the derived solution was (v, m, h) = (xv0, x
2m0 ± 1/2x(1 − x)v0,

xh0), where the upper sign was used for extension of the footing to the right and the

lower sign was used for extension to the left, as shown in Figure 2.6.
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Figure 2.6. The Effective-Width Concept: (a) Original Solution; (b) Derived Solution

(Houlsby and Puzrin, 1999).

Taiebat and Carter (2002) determined the shape of the failure locus in (V ,

M) space using the finite element method. The strip foundation was modeled uti-

lizing isoparametric quadrilateral plane strain elements in load-controlled and also

displacement-controlled analyses. In this study, the equivalence between the eccen-

tric bearing capacity of a strip foundation and the vertical bearing capacity of an-

other foundation with a fictitious effective area on which the load is centrally applied

were assumed. The failure locus was presented by conducting the two-dimensional

finite element analyses for a strip footing under both vertical load and moment, as

demonstrated in Figure 2.7. Furthermore; the failure envelopes of the apparent lower-

bound and upper-bound solutions proposed by Houlsby and Puzrin (1999) were shown
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in Figure 2.7. The load-controlled finite element method of analysis was insufficient

to provide the failure load for high M/V ratios. On other hand, the displacement-

controlled method of analysis was sufficient to provide a failure load for all conditions.

The deformed shape of the model under an eccentric load is shown in Figure 2.8.

Figure 2.7. Failure Loci for Strip Footing Under Eccentric Loading (Taiebat and

Carter, 2002).

Figure 2.8. Deformed Shape of the Soil and the Strip Footing Under an Eccentric

Load (Taiebat and Carter, 2002).
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2.2.1. Bearing Capacity of Shallow Foundations on Slopes

Meyerhof (1957) proposed the theory for bearing capacity of a foundation on the

top of a slope. When strip foundation is located on the cohesive slope, the bearing

capacity of the foundation may be limited due to the probability of the toe or base

failure occurrence, as indicated in Figure 2.9. He assumed that Ncq in Equation 2.26

as the bearing capacity factor which is utilized for both the influence of the cohesive

soil and the overburden pressure. In Figure 2.9, p0 is the normal stress and s0 is the

shear stress on the surface AE. He emphasized that the bearing capacity factor Ncq

depends on the distance from the edge of the slope, the slope angle and the stability

factor of the slope. Ncq diminishes with increasing slope height and slope angle in a

smaller extent. The bearing capacity decreases linearly with increasing slope height.

When it approaches zero, the height is the critical height of an unloaded slope.

q = cNcq + γD (2.26)

Figure 2.9. Plastic Zones and Slip Surfaces Near Rough Strip Foundation on Top of

Slope (Meyerhof, 1957).
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Figure 2.10. Bearing Capacity Factors for Strip Foundation on Top of Slope of Purely

Cohesive Material (Meyerhof, 1957).

Kusakabe et al., (1981) investigated that the bearing capacity of slopes on top

surfaces using the upper bound theorems. A failure mechanism which was considered

as the problem is shown in Figure 2.11. Failure surfaces which emerge below the toe of

the slope were not considered in this investigation. As understood, slip line becomes

steeper and the area of the radial shear zone becomes smaller while the inclination

of the slope increases in Figure 2.12. In addition, the failure surface or slip line and
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the bearing capacity factor Nc and Nγ vary with parameter c/γB in Figure 2.13. The

relationship in Figure 2.13 is that the slip line becomes incrementally straight and the

radial shear zone becomes narrower while c/γB value decreases.

Figure 2.11. Failure Mechanism Adopted of the Present Analysis (Kusakabe et al.,

1981).

Figure 2.12. Critical Values for Q/γB, H and the Failure Surfaces Corresponding to

the Critical Slope Height Hc for Various Slope Inclinations (Kusakabe et al., 1981).
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Figure 2.13. Variation of Failure Surfaces and Nc, Nγ Values With the Value of

C/γB (Kusakabe et al., 1981).

Kusakabe et al., (1981) also developed a calculation procedure with diagrams for

the bearing capacity of various slopes. One of the diagrams is demonstrated in Figure

2.14. Utilizing these diagrams, the bearing capacity of a footing on slopes (qs) could

be determined by following equation. In Equation 2.27, qL is the bearing capacity of

the footing on a level ground and consists of the bearing capacity factor Nc and Nγ

and µ is a dimensionless factor which is plotted versus α and β in the diagrams.

qs = µqL (2.27)

Figure 2.14. The Bearing Capacity Calculation Diagram for Practical Conveniences

(Kusakabe et al., 1981).
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Azzouz and Baligh (1983) investigated solutions corresponding to a strip load of

infinite extent in case of plane strain, as indicated in Figure 2.15. Failure of the model

presented takes place as one of two failure modes which are bearing capacity failure and

slope failure. Azzouz and Baligh mentioned that if the critical shear surface extends

beyond the crest, slope failure occurs; if not, bearing capacity failure is observed. In

their study, the effect of strip load on the qo on the overall slope stability of a slope

is assumed by using the circular arc method where the shear surface is regarded as a

cylinder of infinite extent. The minimum value of qocr is required for the equation of the

driving and resisting moments in each unit length of the slope. For this purpose, using

Equation 2.28, the minimum value of qocr is calculated. ∆γH/c symbolizes the slope’s

margin of safety with respect to gravity alone and is defined in Equation 2.28. Smaller

values of ∆γH/c are explained with slopes whose ∆γH/c are close to (∆γH/c)cr for

the slope failure due to gravity only.

∆γH

c
=

(
γH

c

)
cr
− γH

c
(2.28)

Figure 2.15. Problem Description (Azzouz and Baligh, 1983).

Michalowski (1995) produced a stability chart depending on the kinematic ap-
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proach of limit analysis, as shown in Figure 2.16. The failure mechanism with regard

to this approach is a log-spiral failure mechanism in Figure 2.17a. According to Figure

2.16, the stability number for ϕ = 0o is not dependent of the slope angle, if the slope

angle is less than about 50o. The failure mechanism for ϕ = 0o is demonstrated in

Figure 2.17b. Especially, when the slope angle is less than about 50o, the failure mech-

anism extends to infinity. In this case, failure surface radius r has importance rather

than the slope height. The rate of work dissipation during collapse with rotational rate

ω about point O is formulated by Michalowski in Equation 2.29.

D = cr2ω (π − 2α) (2.29)

The rate of the work of the slope weight for r >> H is indicated below.

Wγ =
1

2
γHωr2cos2α (2.30)

The dissipation rate and the work rate of the slope weight are equated each other

and the maximum stability number in Equation 2.30 is computed (lower bound case)

if α ≈ 23.2o.

c

γH
=

cos2α

2 (π − 2α)
(2.31)

The value in Equation 2.32 is equal to that in Figure 2.16 when ϕ = 0o and the

slope angle is less than about 50o. Michalowski (2002) emphasized this equality is not

realistic. Limiting the depth of the failure mechanism to a realist value, he obtained

more reasonable stability number. Therefore, two dashed lines in Figure 2.16 express

the limitation of the depth of the mechanism in Figure 2.17c (D = 2 and D = 1.25);

ru in Figure 2.16 expresses the distribution of pore water pressure coefficient defined
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by Bishop and Morgenstern (1960).

c

γH
= 0.181 (2.32)

Figure 2.16. Stability Number for Uniform Slopes (Limit Analysis) (Michalowski,

2002).

Figure 2.17. Stability Analysis: (a) Rotational Collapse Mechanism; (b)Large-Size

Mechanism in Cohesive Soil; and (c) Depth Constraint (Michalowski, 2002).
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Georgiadis (2009) conducted finite element analyses of strip footings on or near

undrained soil slopes in order to investigate the influence of the various parameters

that affect undrained bearing capacity. The influence of slope height, footing distance

and soil properties on the undrained bearing capacity was researched by using the

program Plaxis. Fifteen-noded triangular elements were utilized to model the soil.

Figure 2.18 expresses a typical Finite Element mesh for the case of a 7.5-m-high 45o

soil slope at a distance of 2 m from the footing. Horizontal fixities were defined to

the vertical boundaries, both horizontal and vertical fixities to the base of the mesh.

The mesh elements were densified beneath the footing for the cases involving bearing

capacity failure. The properties of the interface elements have the same properties of

the adjacent soil elements. At the end of the analyses, three distinct failure modes

were observed, as shown in Figure 2.19. The first two failure modes (bearing capacity

failure) occurred in the case of horizontal ground surface, while the other failure mode

(overall slope failure) occurred in case of slope stability problem.

Figure 2.18. FE Mesh with Boundary Conditions (Georgiadis, 2009).
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Figure 2.19. Failure Modes [(a) and (b)] Bearing Capacity Failure and (c) Overall

Slope Failure (Georgiadis, 2009).

Georgiadis (2009) compared the incremental displacements and principal stress

directions at failure obtained from the FE analysis for the case of 0 self weight λ=0

(footing at the crest of the slope) with the optimum upper bound kinematic mechanism

for the same case. As seen in Figure 2.20, the FE and upper bound results are in

excellent agreement.

Figure 2.20. Comparison of FE Analysis with Optimum Upper Bound Kinematic

Mechanism (Solid Gray Lines) for γ=0: [(a) and (b)] Incremental Displacements and

Principal Stress Directions for λ=0 (Georgiadis, 2009).
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Georgiadis (2009) demonstrated the variation of the computed values of the

undrained bearing capacity factor for a footing at the crest of a slope Nco (Nc for

λ=0) with the slope angle β for different cu/γB ratios. It can be inferred from Figure

2.21 that Nco diminishes linearly with increasing β. It also diminishes slightly with

increasing cu/γB ratios. According to these results Equation 2.33 is proposed for the

calculation of Nco:

Nco = 5.14− 2β

1− γβ
5.14cu

(whereβinrads) (2.33)

Figure 2.21. Variation of Nco with β (Georgiadis, 2009).

Shiau et al., (2011) presented solutions for the ultimate bearing capacity of foot-

ings on purely cohesive soils. Applying finite element upper and lower bound methods,

design charts were developed for a wide range of parameters, especially a dimensionless

strength ratio. The nonlinear curves demonstrated in Figure 2.22b reflect the complex

interaction between the footing bearing capacity and the overall slope stability. The

transition from bearing capacity failure to overall slope stability failure was marked

with three points critical cu/γB ratios in Figure 2.22b. If cu/γB > (cu/γB)crit, bear-

ing capacity failure occurred; if cu/γB ≤ (cu/γB)crit, overall slope failure occurred. In

other words, after these critical points, the slope is marginally stable and foundation

loading triggers an overall slope failure. While cu/γB diminishes, the failure mecha-
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nisms transform from a bearing capacity failure to a base failure at cu/γB = 0.556

in Figure 2.23d. In addition, Shiau et al., (2011) related the stability number to the

dimensionless strength parameter cu/γB in Equation 2.34. In this case, the normalized

bearing capacity p/γB will be zero at values of (cu/γB)crit equal to NfH/B.

Nf
H

B
=

cu
γHFs

H

B
=

cu
γB

forFs = 1.0 (2.34)

Figure 2.22. Averaged Upper and Lower Bounds for Various Slope Angles (Shiau et

al., 2011).
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Figure 2.23. Velocity Contours for Decreasing Values of Cu/Γb (Smooth Base, β =

30o, L/B = 0, q/γB= 0) (Shiau et al., 2011).

2.3. Seismic Bearing Capacity of Shallow Foundations

Sharma (1996) defined Pseudostatic Method as a modified form of the limit equi-

librium method with horizontal and vertical static seismic forces that are used to

simulate the potential inertial forces owing to ground accelerations in an earthquake.
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Figure 2.24. Pseudostatic Limiting Equilibrium Analysis for Seismic Loads (Sharma,

1996).

Pecker (1996) reviewed the recent developments regarding seismic bearing capac-

ity of shallow foundations. He summarized the factors affecting the bearing capacity

of shallow foundations. These factors are pre-earthquake conditions (the initial static

pressure and load eccentricity), soil strength (the rate of loading, degradation under

cyclic loading, pore pressure build-up and drainage conditions) and inertia forces in

the soil mass. Likewise, he emphasized the most kinematic mechanisms without uplift

of the foundation and with uplift obtained by Pecker - Salençon (1991) and Salençon -

Pecker (1995 a and b). As seen in Figure 2.25; small load eccentricities or inclinations

prevail in the first situation, whereas these parameters become significant in the second

situation.

Figure 2.25. Example of Kinematic Mechanisms (Pecker, 1996).
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2.3.1. Seismic Bearing Capacity of Shallow Foundations on Slopes

Kumar and Rao (2003) assessed the effect of pseudo-static horizontal earthquake

body forces on the bearing capacity of foundations on slopes with the utilization of the

method of stress characteristics. They considered two failure mechanisms in carrying

out the analysis, as indicated in Figure 2.26. In both-sides failure mechanism, starting

from the known boundary stresses on the slope surface, the stress characteristics were

expanded from both sides towards the footings base. In single-side failure mechanism,

stress characteristics were widened towards the footing base from only one side of the

footing. The relationship between Nc and αh for different values of β and ϕ = 0o

is demonstrated in Figure 2.27. According to this relationship, the bearing capacity

factor Nc decreases with increase in values of slope angle and αh.

Figure 2.26. Failure Mechanism: (a) Both Sides; (b) Single Side (Kumar and Rao,

2003).
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Figure 2.27. Variation of Nc with αh for Different Values of β and ϕ = 0
◦
o (Kumar

and Rao, 2003).

Shiau et al., (2006) obtained important results regarding yield acceleration of

seismic slope stability. They defined yield acceleration as the critical horizontal accel-

eration at the limit state of the slope stability under pseudo-static earthquake forces in

their study. As shown in Figure 2.28, the (kh)
yield value rises depending on the increase

in soil friction angle. In addition, while friction angle increases, the failure mechanism

becomes narrower due to the gain in soil strength.
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Figure 2.28. Deformed Shapes aAnd Velocity Diagrams Showing Slope Failures

Under Critical Yield Accelerations (Shiau et al., 2006).

Castelli and Motta (2009) investigated the bearing capacity of strip footings near

slopes depending on the distance of the footing from the edge of the slope. They
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conducted the analysis based on the limit equilibrium method, supposing a circular

failure mechanism. The results of static case are shown in Figure 2.30 under undrained

conditions (ϕ = 0o). While the normalized distance of the footing increases, the ground

factors, for a not embedded footing, become closer and closer to 1. In Figure 2.31, as

in the static case, the bearing capacity has the minimum value when the footing is

located at the edge of the slope.

Figure 2.29. Failure Mechanisms and Applied Forces Adopted in the Analysis

(Castelli and Motta, 2009).
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Figure 2.30. Ground Factors Gc as a Function of the Distance From the Edge of the

Slope (Castelli and Motta, 2009).

Figure 2.31. N∗
c /Nc Ratios as a Function of the Normalized d/B Slope Distance for

kh1 = 0.1 (a) and kh1 = 0.2 (b) (Castelli and Motta, 2009).
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3. METHODOLOGY

The main objectives of this study are to determine a convenient procedure for the

calculation of the seismic bearing capacity of surface strip foundations on slopes and

to develop applicable designing charts for the maximum horizontal seismic acceleration

which can be tolerated by foundations built on sloping field. For this reason, numerous

geotechnical finite element models defined under plane strain conditions were defined

and solved using PLAXIS Engineering Software.

Furthermore, Taylor’s concept of the stability number (1937) was presented to

distinguish the stability of the slopes which the foundation was built on. Moreover,

Koppula’s concept of the stability number (1984) was presented and utilized for the

design examples. By using stability number charts, the stability of one slope which the

foundation built on is revealed whether the slope is stable or unstable. Determining

the stability of the slope must be confirmed before the design of strip foundations.

Finally, charts indicating allowable values of the horizontal seismic acceleration

coefficients were developed for defining the maximum tolerable boundaries of horizontal

seismic acceleration for surface strip foundations.

3.1. Overview of PLAXIS Software

PLAXIS Software was utilized for the analysis of this study owing to being a

finite element package that has prevalent importance on the geotechnical engineering

analyses in geotechnical projects. PLAXIS software consists of the four main sub-

programs which are Input program, Calculations program, Output program and Curves

program. Each sub-program is used respectively different tasks along Finite Element

Modeling.

Input program is utilized mainly to constitute a new model. In this process,

initial and constitutional steps follow each other: The geometry of the new model
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is drawn precisely. Horizontal and vertical fixities of the model, properties of the

foundation material and soil layer material are defined in detail. Interface lines are

assigned between foundation and soil. To maximize the ultimate bearable load, the

surface load is placed on upper surface of the foundation. After introducing general

information regarding the model, the mesh generation is carried out to divide the

model cross section into triangular elements. The meshing process can be performed

with two kinds of triangular elements: 15-node elements and 6-node elements. 15-node

element involves more stress points than 6-node element has. Hence, to conduct more

accurate calculation of stresses and ultimate loads, 15-node elements must be opted

for mesh generation. After the generation of the model, finite element calculations are

conducted.

Figure 3.1. (a) 15-Node Triangular Element, (b) 6-Node Triangular Element

(PLAXIS TUTORIAL MANUAL).

PLAXIS Calculation program provide four types of calculation which are a plastic

calculation, a consolidation calculation, Phi-c reduction analysis and a dynamic calcu-

lation. Calculation types are defined as phases for every construction stage, such as the

activation of surface loads, the calculation of a safety factor. In addition, each phase of

calculations is divided into additional calculation steps due to the non-linear behavior

of the soil. The calculation will continue until the number of additional steps has been

applied. During calculations, the equilibrium errors are decreased using iterations in

each load step (Plaxis Reference Manual).
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At calculation process of the models for the study, a plastic calculation type and

a safety analysis type were used to perform analyses. The former type enables to carry

out an elastic-plastic deformation analyses. Using the undrained option which can

be selected in soil material sets, the plastic calculation can be used to set limits for

undrained behavior of soil owing to the quick loading of saturated clayey soils (Plaxis

Reference Manual). Phi-c reduction (Safety analysis) is executed to calculate a safety

factor by reducing strength parameters of soil until a failure occurs. Therefore, this

calculation way always ends culminated with the failure.

Output program presents a state of the model in case of visual interpretation

for each calculation step. Failure mechanisms occurring are shown visually by using

this program. Additionally, Curves program generates the load-displacement curves to

indicate the non-linear behavior of the soil.

3.2. Numerical Model

As previously mentioned, the main objective of the thesis is to develop charts for

computing undrained seismic bearing capacity factor for strip foundations located on

horizontal ground or sloping ground. For this objective, under plain strain conditions,

the strip foundation was defined both on the edge of the slope and near the slope in

PLAXIS. The foundation had a dimension of 2 m width, B. In order to demonstrate

the influence of the slope angle variation, different slope angles were selected; for β, 0o,

5o, 15o, 30o, 45o, 60o and 75o. Furthermore, different slope heights were also selected;

for H, 2 m, 4 m and 8 m. The geometry of the model was generated according to

certain geometric dimensions pattern, as shown in Figure 3.2.
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Figure 3.2. Geometry of the Model.

In order to define necessary soil materials; isotropic, homogeneous and purely

cohesive soil which has several consistency characteristics was only preferred. Mohr-

Coulomb failure criteria defined in terms of cohesion and angle of friction; were opted

for the strength characteristic of the soil, because this model is widely utilized for

solving foundation problems. Due to the necessity of working in total stress terms for

undrained conditions, total stress elastic properties of the soil (Eu and vu) were used in

the analyses. The purpose of defining various material sets was to ascertain the effects

of soil having various strength (cu) and stiffness (Eu) parameters under undrained

conditions. Properties of the soil material sets defined in PLAXIS were stated in Table

3.1. The footing is a rigid rough strip footing. The footing was considered weightless

with 1m thickness. Flexural rigidity, normal stiffness and thickness of the strip footing

were shown in Table 3.1.
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Table 3.1. Properties of the Soil Material Sets.

Consistency Soft Medium Stiff Hard

Undrained Young’s Modulus, Eu (Mpa) 5 10 20 40

Undrained Strength, cu (kPa) 25 50 100 200

Angle of Friction, ϕ(o) 0

Poisson Ratio, νu 0.5

Angle of Dilatancy, ψ(o) 0

Unit weight of soil, γsat (kN/m
3) 20

Table 3.2. Footing Properties.

Axial stiffness, EA 30000000 kN/m

Bending stiffness, EI 2500000 kN.m2/m

Equivalent depth, d 1m

Unit weight, w 0 kN/m/m

Poisson Ratio, ν 0.2

The horizontal seismic acceleration coefficient was solely defined on the models

for seismic conditions. In addition, a distributed load placed on the foundation is im-

plemented with a horizontal component to activate seismic effects. Horizontal seismic

acceleration coefficients were presented on Table 3.3.

Table 3.3. Horizontal Seismic Acceleration Coefficients.

kh

0.1

0.2

0.3

0.4

In order to perform finite element calculations, the model was divided into finite

number of elements. To attain more reliable results, 15-node triangular elements were
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selected to generate a finite element mesh. The soil layer was separated into three zones

according to density of finite elements. The densest mesh zone (very fine mesh zone)

was located under the foundation and surrounded along the foundation-soil interfaces

and the edge of the slope for more accurate results. The density of meshing decreased

with distance from the foundation.

Figure 3.3. Finite Element Mesh.

3.3. Design Procedure

Design Procedure consisted of three stages which were respectively the assessment

of a stability number for the slope, the calculation of undrained seismic bearing capacity

of the strip foundation, and the determination of the maximum horizontal seismic

acceleration endured by the model.

3.3.1. Stability Number (Ns) for Cohesive Slopes

Taylor (1937) developed the stability number as a pure number, depending solely

on the slope angle β and friction angle ϕ. Stability number is used to distinguish

whether the slope is stable or unstable. For specifying a stability number for the slope,

the slope height, the unit weight of soil and the undrained shear strength of soil must
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be determined for the stability number formula is given as:

Ns =
γH

cu
(3.1)

Koppula (1984) developed Taylor’s stability number concept in Figure 3.4 and

Figure 3.5. The stability of the slope as calculated from Equation 3.1 is checked using

the Ns graphs given in Figure 3.4 and Figure 3.5. Dept factor is symbolized as D in

Figure 3.3. Accordingly, if the value of the calculated stability number is above the

corresponding stability number line on the graph, the slope is not stable. If the value

of the stability number is below the line, the slope is stable and the calculation of the

bearing capacity then can be conducted.

Figure 3.4. Stability Number Versus Horizontal Earthquake Acceleration (Koppula,

1984).
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Figure 3.5. Stability Number Versus Slope Inclination (Koppula, 1984).

The horizontal seismic acceleration coefficient has greater impact on the stability

number, because stability number lines noticeably fall down under increasing seismic

conditions. This inverse relationship derives mainly from that the slope stability is

negatively affected under the earthquake impact due to occurring horizontal body

forces.

3.3.2. Seismic Bearing Capacity of Strip Foundations

At the calculation stage, according to the four material sets defined and different

slope geometries, a great number of models were constituted in PLAXIS. Then, the

seismic bearing capacity calculations were conducted for all models. After calculations,

seismic bearing capacity values were obtained from PLAXIS calculations. Using bear-
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ing capacity values computed, the bearing capacity factors (Ncse) were calculated for

all models. Depending on Ncse values, all horizontal acceleration coefficients and slope

angles defined with ratios of H/B, Cu/γB and λ; Ncse - β graphs were developed by

the values of the parameters plotted. Therefore, the relationships between Ncse and all

variables could be explained and clarified with these developed graphs.

The seismic bearing capacity of the foundation (qult,se) is determined for purely

cohesive soils in Equation 3.2. In order to utilize the equation, an appropriate seismic

bearing capacity factor (Ncse) must be taken from Ncse graphs developed.

qult,se = Ncse.cu (3.2)

Using Ncse - β graphs, Ncse value can be determined easily and properly. Then,

eventually seismic bearing capacity of the strip foundation (qult) can be computed.

3.3.3. The Maximum Horizontal Seismic Coefficient (khMAX)

In case of seismic conditions, the consideration of the bearing capacity of the

strip foundation located on the slope was considered as a pseudo-static problem. In

the pseudo-static approach, influence of pseudo-static horizontal acceleration on the

foundation and soil body should be considered. The goal is to identify the maximum

permissible limit of horizontal acceleration that will correspond to the ultimate state

of the foundation-soil couple. This is achieved by varying all the variables for different

magnitudes of pseudo-static horizontal acceleration values. Magnitudes of bearing

capacity have been obtained for many different combinations of kh, cu, β, H, and λ.

The results were presented in a graphical format.
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4. EVALUATION OF PLAXIS ANALYSES RESULTS

In this chapter, the numerical results of the undrained seismic bearing capacity

analyses for the strip foundation were presented. Likewise, each relationship between

the seismic bearing capacity factor (Ncse) and other all variables were plotted on graphs

with necessary inferences. In order to illustrate the design procedure, three different

design examples were presented and solved in detail. Finally, typical failure mechanism

types observed in PLAXIS Output Program were visually indicated and the differences

among all failure types were discussed in detail.

All analyses performed in PLAXIS were named systematically: For example “C-

30-4-0-25-0,2”, the first capital letter means that the soil material type which was the

cohesive soil, the second number is the slope angle (βo), the third number is the slope

height (H), the fourth number is the distance between the footing and the slope edge

(λ), the fifth number is the undrained strength (cu), the last number is the horizontal

seismic coefficient (kh).

4.1. Relationship between Ncse and β(o)

In order to calculate the seismic bearing capacity of the strip foundation on

sloping land, it is necessary to determine an appropriate bearing capacity factor (Ncse).

According to the numerical results of the seismic bearing capacity for PLAXIS analyses;

Ncse - β graphs were developed for the ratios of Cu/γB, H/B and λ. Then, Ncse - β

graphs were formulated mathematically. As shown below the each Ncse - β graph, every

coefficients of each equation are close values. For this reason, all equations of Ncse - β

graphs were averaged mathematically.

Bearing capacity factor (Ncse) versus slope angle (β)relationships are dependent

on the value of horizontal seismic coefficient. Figure 4.1, Figure 4.2 and Figure 4.3

show these relationships for the combinations that are stable.



43

Figure 4.1. Variation of Bearing Capacity Factor with Slope Angle for Cu/γB = 5

and H/B=1.

Nc,se = (0.0612kh − 0.0377) β +
(
−6.642kh +Nc,se(β=0◦)

)
(4.1)

Figure 4.2. Variation of Bearing Capacity Factor With Slope Angle for Cu/γB = 5

and H/B=2.
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Nc,se = (0.0626kh − 0.0384) β +
(
−6.6844kh +Nc,se(β=0◦)

)
(4.2)

Figure 4.3. Variation of Bearing Capacity Factor With Slope Angle for Cu/γB = 5

and H/B=4.

Nc,se = (0.0626kh − 0.0381) β +
(
−6.7172kh +Nc,se(β=0◦)

)
(4.3)

Considering Cu/γB= 2.5, bearing capacity factor (Ncse) was related to the slope

angle (β)for the increase in the horizontal seismic coefficients. Figure 4.4, Figure 4.5

and Figure 4.6 represents an inverse relationship between Ncse and β for kh. While the

slope angle increases, bearing capacity factor value falls down. Apart from this relation,

the increase in horizontal seismic acceleration causes to the decrease in bearing capacity

factor value. The effect of H/B on seismic bearing capacity factor for cu/γB =2.5 is

ignored, due to the sameness of all kh lines for these figures.
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Figure 4.4. Variation of Bearing Capacity Factor With Slope Angle for Cu/γB= 2.5

and H/B=1.

Nc,se = (0.0637kh − 0.0394) β +
(
−6.6682kh +Nc,se(β=0◦)

)
(4.4)

Figure 4.5. Variation of Bearing Capacity Factor With Slope Angle for Cu/γB= 2.5

and H/B=2.
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Nc,se = (0.0645kh − 0.0397) β +
(
−6.6674kh +Nc,se(β=0◦)

)
(4.5)

In Figure 4.6, the model failed to reach the ultimate seismic bearing capacity

value for kh=0.4 and β= 5o, because the stability number did not satisfy the stability

of the slope. For this reason, there is no point plotted in that case.

Figure 4.6. Variation of Bearing Capacity Factor With Slope Angle for Cu/γB= 2.5

and H/B=4.

Nc,se = (0.0637kh − 0.0394) β +
(
−6.6682kh +Nc,se(β=0◦)

)
(4.6)

For Cu/γB= 1.25, the relationship between bearing capacity factor (Ncse) and

the slope angle (β) for the horizontal seismic coefficient (kh) was given in Figure 4.7,

Figure 4.8 and Figure 4.9. There are no different characteristics of these figures with

previous figures for Cu/γB= 2.5 and Cu/γB= 5. However, in Figure 4.7 the model

failed to reach the ultimate seismic bearing capacity value for kh= 0.4 and for all slope
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angles. Therefore, Ncse line for kh= 0.4 couldn’t be drawn. Similar failings were found

for kh= 0.3, 0.4 in Figure 4.8 and for kh= 0.2, 0.3, 0.4 Figure 4.9.

Figure 4.7. Variation of Bearing Capacity Factor With Slope Angle for Cu/γB= 1.25

and H/B=1.

Nc,se = (0.0631kh − 0.0417) β +
(
−6.6153kh +Nc,se(β=0◦)

)
(4.7)
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Figure 4.8. Variation of Bearing Capacity Factor With Slope Angle for Cu/γB= 1.25

and H/B=2.

Nc,se = (0.064kh − 0.0427) β +
(
−6.573kh +Nc,se(β=0◦)

)
(4.8)

Figure 4.9. Variation of Bearing Capacity Factor With Slope Angle for Cu/γB= 1.25

and H/B=4.
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Nc,se = (0.058kh − 0.0425) β +
(
−6.307kh +Nc,se(β=0◦)

)
(4.9)

For Cu/γB= 0.625, the relationship between bearing capacity factor (Ncse) and

the slope angle (β)for the horizontal seismic coefficient (kh) was given in Figure 4.10

and Figure 4.11. There are no different characteristics of these figures with previous

figures for Cu/γB=1.25, Cu/γB= 2.5 and Cu/γB= 5. However, the model failed to

reach the ultimate seismic bearing capacity value for all models which had H/B=4

ratio. Therefore, Ncse - β graph for Cu/γB= 0.625 and H/B=4 couldn’t be generated.

Figure 4.10. Variation of Bearing Capacity Factor With Slope Angle for Cu/γB=

0.625 and H/B=1.

Nc,se = (0.06kh − 0.0475) β +
(
−6.8kh +Nc,se(β=0◦)

)
(4.10)
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Figure 4.11. Variation of Bearing Capacity Factor With Slope Angle for Cu/γB=

0.625 and H/B=2.

Nc,se = −0.0565β +Nc,se(β=0◦) (4.11)

In order to calculate the seismic bearing capacity factor, Ncse for any situation

that can be given; all equations of Ncse - β graphs were averaged mathematically and

Equation 4.12 was obtained as the ultimate design equation.

Nc,se = (0.0566kh − 0.0421) β +
(
−6.0317kh +Nc,se(β=0◦)

)
(4.12)

4.2. Design Examples

Three different design examples were presented and solved in detail to exemplify

the use of the equations developed.
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4.2.1. Design Example I

Figure 4.12. Design Example I.

In order to solve the problem given, stability number (Ns) is firstly calculated

to check the stability of the slope. For this purpose, Equation 3.1 is utilized for the

stability number calculation.

NS =
γH

cu
=

20x8.5

220
= 0.77 (4.13)

To determine the necessary stability number line for kh= 0.25; Ns - β graph based

on Taylor’s and Koppula’s analysis for β ≥ 55o is utilized.
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Figure 4.13. Stability Number Versus Slope İnclination (Koppula, 1984).

NSMAX = 3.7 (4.14)

NS ≤ NSMAX (4.15)

Therefore, the slope is stable and capable of bearing the ultimate seismic load.

At the second stage, Ncse was obtained for β= 56o and kh= 0.25 by using Equation
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4.12.

Nc,se = ((0.0566x0.25)− 0.0421)x56) +
(
(−6.0317x0.25) +Nc,se(β=0◦)

)
Nc,se = 2.06

(4.16)

The undrained seismic bearing capacity of the surficial strip foundation was calculated

by using Equation 3.2.

qult,se = 220x2.06 = 453.2kN/m2 (4.17)

4.2.2. Design Example II

Figure 4.14. Design Example II.

In order to solve the problem given, stability number (Ns) is firstly calculated

to check the stability of the slope. For this purpose, Equation 3.1 is utilized for the

stability number calculation.

NS =
γH

cu
=

20x7.5

80
= 1.875 (4.18)
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To determine the necessary stability number line for kh= 0.18; Ns - β graph based

on Taylor’s and Koppula’s analysis for β ≥ 55o is utilized.

Figure 4.15. Stability Number Versus Slope Inclination (Koppula, 1984).

NSMAX = 3.9 (4.19)

NS ≤ NSMAX (4.20)
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Therefore, the slope is stable and capable of bearing the ultimate seismic load.

At the second stage, Ncse was obtained for β=70o and kh= 0.18 by using Equation

4.12.

Nc,se = ((0.0566x0.18)− 0.0421)x70) +
(
(−6.0317x0.18) +Nc,se(β=0◦)

)
Nc,se = 1.82

(4.21)

The undrained seismic bearing capacity of the surficial strip foundation was cal-

culated by using Equation 3.2.

qult,se = 80x1.82 = 145.6kN/m2 (4.22)

4.2.3. Design Example III

Figure 4.16. Design Example III.

In order to solve the problem given, stability number (Ns) is firstly calculated

to check the stability of the slope. For this purpose, Equation 3.1 is utilized for the

stability number calculation.

NS =
γH

cu
=

20x4.8

40
= 2.4 (4.23)
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To determine the necessary stability number line for kh= 0.37; Ns - kh graphs

based on Koppula’s analysis for β= 30o is utilized. Depth factor is assumed as D = 4.

Figure 4.17. Stability Number Versus Horizontal Earthquake Acceleration (Koppula,

1984).

NSMAX = 0.9 (4.24)

NS > NSMAX (4.25)

Therefore, the slope is unstable and not capable of bearing the ultimate seismic load.
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4.3. Failure Mechanisms

At the end of analyses, different types of failure mechanisms were observed in

PLAXIS Output program. Terzaghi’s bearing capacity mechanism was observed in

only horizontal ground models, as shown in Figure 4.12. Terzaghi’s three zones which

are the wedge shaped elastic zone beneath the foundation, the radial shear zones and

the passive Rankine zones could be easily recognized. The bearing capacity mechanism

without passive zone is generally initial failure type for sloping ground models. When

the foundation was located on sloping ground under seismic conditions especially for kh;

0 and 0.1; Terzaghi’s bearing capacity mechanism without the passive Rankine zones

occurred, as indicated in Figure 4.13. When this type of mechanism occurs, the slope

does not completely fail. In Figure 4.14, Terzaghi’s bearing capacity mechanism with

the slope failure was observed especially for low slopes. At this type, the foundation

failure causes the slope failure from the end of the distributed load to the edge of the

slope. In Figure 4.15, overall slope failure occurred when the slope was unstable and

not capable of bearing the ultimate seismic load. The fundamental difference between

Figure 4.14 and Figure 4.15 is the location of the upper starting point of the failure

circle. In Figure 4.15, the slope stars to fail at the far away point from the end of

the distributed load. In Figure 4.16, the base failure mechanism was the precursor

of deep seated failure mechanism and also an advanced form of Figure 4.14 with the

increase in seismic influence. The boundary of the failure mechanism reaches to the firm

layer in the deep. Sliding failure mechanism was mainly observed when the horizontal

seismic acceleration had seriously higher values than values which could be tolerated by

the model. Due to higher horizontal seismic acceleration, the model slides altogether

immediately and the failure mechanism zone does not occur clearly, as demonstrated

in Figure 4.17. The deep seated was the ultimate failure mechanism occurred for the

permissible limit values of horizontal seismic accelerations, in Figure 4.18. In this case;

the slope and the foundation seated deeply and also collapsed, because of the profound

effect of the earthquake. Likewise, the deep seated mechanism indicates that the load

bearing layer is not capable of bearing the ultimate load and also the foundation.
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Figure 4.18. Terzaghi’s Bearing Capacity Mechanism.

Figure 4.19. Terzaghi’s Bearing Capacity Mechanism Without Passive Zone.

Figure 4.20. Terzaghi’s Bearing Capacity Mechanism with Slope Failure.
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Figure 4.21. Overall Slope Failure.

Figure 4.22. Base Failure Mechanism.

Figure 4.23. Sliding Failure Mechanism.
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Figure 4.24. Deep Seated Mechanism.
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5. DISCUSSION

Hansen (1968) proposed ground inclination factors for the bearing capacity cal-

culation of the shallow foundations on sloping lands. Using Hansen’s approach, the

bearing capacity factors were determined for the slope angles defined previously, and

plotted on the comparison graph. Except for β= 5o points on each line nearly coincided

in Figure 5.1.

Figure 5.1. Comparison of the Bearing Capacity Factor Values of Hansen’s Study and

the Analyses Results.

Kusakabe (1981) investigated the bearing capacity of loaded slopes, using the

upper bound theorem. Kusakabe’s the numerical results of the bearing capacity factor

were compared with the numerical results of the bearing capacity factor. As seen in

Figure 5.2, the lines are collinear.
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Figure 5.2. Comparison of the Bearing Capacity Factor Values of Kusakabe’s Study

and the Analyses Results.

Castelli and Motta (2009) developed a model using the limit equilibrium method.

They presented convenient design charts as the diagram for ground factors with the

distance from the slope edge under undrained conditions. Thus, bearing capacity

factors depending on the ground factors for β= 5o, 15o, 30o and D/B=0 were compared

with the bearing capacity factors obtained from analyses, as seen in Figure 5.3. The

bearing capacity factors for β=15o were especially coherent each other.
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Figure 5.3. Comparison of Bearing Capacity Factor Values Of Castelli’s and Motta’s

Study and the Analyses Results.

Georgiadis (2010) proposed the design charts for the calculation of the undrained

static bearing capacity factor by utilizing finite element analyses in Plaxis. Therefore,

undrained static bearing capacity factors depending Georgiadis’s study were especially

opted for the discussion part. According to Figure 5.4, the results of the bearing

capacity analyses were consistent with Georgiadis’s values.

Figure 5.4. Comparison of Bearing Capacity Factor Values of Georgiadis’s Study and

the Analyses Results.
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The analyses were conducted mainly for the calculation of the undrained seismic

bearing capacity. For this purpose, results were contrasted with comparable studies in

the literature. The results were more coherent Kumar and Ruo (2003) study results

than Castelli and Motta (2010) study results. Seismic bearing capacity factor values

proposed by Castelli and Motta were slightly small than other studies’ values.

Figure 5.5. Comparison of Seismic Bearing Capacity Factor Values of Studies in the

Literature and the Analyses Results.

As seen on the graphs in the previous chapter, while the slope angle is increased,

the undrained seismic bearing capacity of the foundation reduces noticeably. Further-

more, the increase in horizontal seismic acceleration coefficient causes the fall in the

seismic bearing capacity factor.

In addition, different types of the failure mechanism were observed at end of the

analyses. For Cu/γB =0.625 and β ≥= 300, all models especially ended with bearing

capacity with slope due to the low cohesion value of the soil. On the other hand, if the

higher strength parameters are defined, the observation of sliding failure mechanism

was more probable than the other types of mechanisms. Moreover, the deep seated

mechanism indicates that the load bearing layer has not capability to bear the ultimate

load and the foundation.
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According to khMAX - β graphs in Appendix A, as the slope angle is increased,

the limit horizontal seismic acceleration coefficients increase. For the slopes which

consisted of purely cohesive soil, the proneness to collapse decreased and correspond-

ingly an increase in the maximum horizontal seismic acceleration was observed. This

is attributed to the decreasing inertial forces at greater slope angles due to the de-

creases in the mass of the soil body. On the other hand, H/B ratio influences inversely

the maximum horizontal seismic acceleration value. In addition, as Cu/γB ratio is

increased, maximum horizontal seismic coefficients noticeably increase due to being

greater strength characteristic of soil.
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6. CONCLUSION

By using Finite Element Method, numerous analyses were performed in PLAXIS

to investigate the influence of the various parameters on undrained seismic bearing

capacity of surficial strip foundations located on horizontal ground or sloping ground

or near sloping ground. Finally, charts indicating the values of maximum horizontal

seismic acceleration coefficients for surficial strip foundations were improved to indicate

the maximum tolerable boundaries of horizontal seismic acceleration.

(i) In order to calculate the undrained seismic bearing capacity; Ncse - β graphs for

all horizontal acceleration coefficients and ratios of H/B, Cu/γB were developed.

(ii) The seismic bearing capacity factor, Ncse decreases while the slope angle, β in-

creases. Furthermore, the increase in the horizontal seismic acceleration coeffi-

cient causes to the fall in the seismic bearing capacity factor, Ncse. Likewise, the

change in undrained strength, cu or the slope height, H has no the noticeable

influence on the seismic bearing capacity factor.

(iii) It is observed that while the slope angle increases, the maximum horizontal seis-

mic acceleration limit increases. Moreover, the increase in the soil shear strength

affects the maximum horizontal seismic acceleration positively. However, the

increase in the slope height causes the decrease in the maximum horizontal ac-

celeration limit.

(iv) It is investigated that the relationship among all types of failure mechanisms

occurred at end of the analyses. Until the deep seated failure occurred, the hori-

zontal seismic acceleration coefficient reaches to the maximum. The overall slope

failure was observed for the slope that was unstable and not capable of bearing

the ultimate seismic load. The sliding failure was detected mostly for the analyses

with high strength characteristics of soil or under high seismic accelerations. On

the other hand, the base failure rarely occurs in the analyses.
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APPENDIX A: MAXIMUM HORZONTAL SEISMIC

COEFFICIENT (khMAX)

Maximum horizontal seismic acceleration, which the foundation is capable of tol-

erating, is a significant issue for the seismic bearing capacity notion. For this reason,

models previously defined were reanalyzed to determine a limit permissible horizontal

seismic acceleration. Thus, the horizontal seismic acceleration coefficient was gradually

increased to the maximum value until resulting deep seated failure occurs. In other

words, the ultimate analyses were before the seismic horizontal acceleration causing

deep seated failure. Consequently, the deep seated failure mechanism is an important

indicator to fix the maximum value, because the deep seated failure is the ultimate

state. When the deep seated failure mechanism occurs, the slope and the strip foun-

dation seat deeply together and also collapse. However, despite resulting deep seated

failure, the values of seismic bearing capacity was obtained for some analyses in Plaxis,

but these values obtained were not practically evaluable. The last analysis on each line

was marked with its failure mechanism type on Ncse - kh graphs to demonstrate the

relationship between the maximum horizontal seismic coefficient and failure mechanism

types.

A.1. Relationship between Ncse and khMAX for Cu/γB=5

The increase in horizontal seismic acceleration causes obviously the decrease in

the seismic bearing capacity. For Cu/γB=5, all H/B lines are coincident in Figure A.1,

Figure A.2, Figure A.3, Figure A.4, Figure A.5 and Figure A.6. Therefore, the slope

height has no influence on the undrained seismic bearing capacity, but affects inversely

the maximum horizontal seismic acceleration coefficient.



68

Figure A.1. Variation of Bearing Capacity Factor With Maximum Horizontal Seismic

Coefficient for Cu/γB=5 and β=5
◦
o.

Figure A.2. Variation of Bearing Capacity Factor With Maximum Horizontal Seismic

Coefficient for Cu/γB=5 and β=15
◦
o.
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Figure A.3. Variation of Bearing Capacity Factor With Maximum Horizontal Seismic

Coefficient for Cu/γB=5 and β=30
◦
o.

Figure A.4. Variation of Bearing Capacity Factor With Maximum Horizontal Seismic

Coefficient for Cu/γB=5 and β=45
◦
o.
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Figure A.5. Variation of Bearing Capacity Factor With Maximum Horizontal Seismic

Coefficient for Cu/γB=5 and β=60
◦
o.

Figure A.6. Variation of Bearing Capacity Factor With Maximum Horizontal Seismic

Coefficient for Cu/γB=5 and β=75
◦
o.

A.2. Relationship between khMAX and β(o) for Cu/γB=5

According to Figure A.7, as the slope angle is increased, the limit horizontal

seismic acceleration coefficients increase. For the slopes which consisted of purely

cohesive soil, the proneness to collapse decreased and correspondingly an increase in

the maximum horizontal seismic acceleration was observed. This is attributed to the

decreasing inertial forces at greater slope angles due to the decreases in the mass of
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the soil body.

In addition, H/B ratio influences inversely the maximum horizontal seismic accel-

eration value. Furthermore, H/B=1 line and H/B=2 line are closer each other because

of the smaller difference of slope height than H/B=4 line.

Figure A.7. Variation of Maximum Horizontal Seismic Coefficient With Slope Angle

for Cu/γB= 5.

A.3. Relationship between Ncse and khMAX for Cu/γB=2.5

The increase in horizontal seismic acceleration causes the decrease in the undrained

seismic bearing capacity. For Cu/γB= 2.5, all H/B lines are coincident in Figure A.8,

Figure A.9, Figure A.10, Figure A.11, Figure A.12 and Figure A.13. Therefore, the

slope height has no influence the seismic bearing capacity value, but affects inversely

the maximum horizontal seismic acceleration coefficient. The maximum horizontal

seismic acceleration coefficient for Cu/γB=2.5 are smaller than values for Cu/γB=5

owing to the decrease in the strength characteristics of soil.
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Figure A.8. Variation of Bearing Capacity Factor With Maximum Horizontal Seismic

Coefficient for Cu/γB=2.5 and β= 5o.

Figure A.9. Variation of Bearing Capacity Factor With Maximum Horizontal Seismic

Coefficient for Cu/γB= 2.5 and β= 15o.
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Figure A.10. Variation of Bearing Capacity Factor With Maximum Horizontal

Seismic Coefficient for Cu/γB= 2.5 and β= 30o.

Figure A.11. Variation of Bearing Capacity Factor With Maximum Horizontal

Seismic Coefficient for Cu/γB= 2.5 and β= 45o.



74

Figure A.12. Variation of Bearing Capacity Factor With Maximum Horizontal

Seismic Coefficient for Cu/γB= 2.5 and β= 60o.

Figure A.13. Variation of Bearing Capacity Factor With Maximum Horizontal

Seismic Coefficient for Cu/γB= 2.5 and β= 75o.

A.4. Relationship between khMAX and β(o) for Cu/γB=2.5

The numeric difference among the maximum horizontal seismic coefficients for

each line in Figure A.14 is less than the numeric difference for Cu/γB= 5 in Figure

A.7 owing to decreasing strength characteristics of soil.
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Figure A.14. Variation of Maximum Horizontal Seismic Coefficient With Slope Angle

for Cu/γB= 2.5.

A.5. Relationship between Ncse and khMAX for Cu/γB=1.25

Ncse - kh graphs for Cu/γB= 1.25 indicate similar relations to previous graphs for

Cu/γB= 2.5 and Cu/γB= 5. The maximum horizontal seismic acceleration coefficients

for Cu/γB= 1.25 are smaller than values for Cu/γB= 2.5 owing to the decrease in the

soil strength.

Figure A.15. Variation of Bearing Capacity Factor with Maximum Horizontal Seismic

Coefficient for Cu/γB= 1.25 and β=5o.
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Figure A.16. Variation of Bearing Capacity Factor with Maximum Horizontal Seismic

Coefficient for Cu/γB= 1.25 and β= 15o.

Figure A.17. Variation of Bearing Capacity Factor with Maximum Horizontal Seismic

Coefficient for Cu/γB= 1.25 and β= 30o.
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Figure A.18. Variation of Bearing Capacity Factor with Maximum Horizontal Seismic

Coefficient for Cu/γB= 1.25 and β= 45o.

Figure A.19. Variation of Bearing Capacity Factor with Maximum Horizontal Seismic

Coefficient for Cu/γB= 1.25 and β= 60o.
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Figure A.20. Variation of Bearing Capacity Factor with Maximum Horizontal Seismic

Coefficient for Cu/γB= 1.25 and β= 75o.

A.6. Relationship between khMAX and β(o) for Cu/γB= 1.25

The numeric difference among the maximum horizontal seismic coefficients for

each line for Cu/γB= 1.25 in Figure A.21 is less than the numeric difference in Figure

A.14 for Cu/γB= 2.5 owing to decreasing strength characteristics of soil.

Figure A.21. Variation of Maximum Horizontal Seismic Coefficient With Slope Angle

for Cu/γB= 1.25.
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A.7. Relationship between Ncse and khMAX for Cu/γB= 0.625

Ncse - kh graphs for Cu/γB= 0.625 indicate similar relationships like previous

graphs for Cu/γB= 1.25, Cu/γB= 2.5 and Cu/γB= 5. The maximum horizontal seis-

mic acceleration coefficients for Cu/γB= 1.25 are smaller than the results for Cu/γB=

2.5 owing to the decrease in the soil strength. In addition, there are no H/B=4 lines

obtained in khMAX graphs of Cu/γB= 0.625 except for β = 5o, because of the lowest

soil strength characteristics defined. Likewise, due to the weakest strength characteris-

tics of soil, H/B lines don’t coincide with each other in the graphs, as shown in Figure

A.22, Figure A.23, Figure A.24, Figure A.25, Figure A.26 and Figure A.27.

Figure A.22. Variation of Bearing Capacity Factor with Maximum Horizontal Seismic

Coefficient for Cu/γB= 0.625 and β= 5o.
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Figure A.23. Variation of Bearing Capacity Factor with Maximum Horizontal Seismic

Coefficient for Cu/γB= 0.625 and β= 15o.

Figure A.24. Variation of Bearing Capacity Factor with Maximum Horizontal Seismic

Coefficient for Cu/γB= 0.625 and β= 30o.
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Figure A.25. Variation of Bearing Capacity Factor with Maximum Horizontal Seismic

Coefficient for Cu/γB= 0.625 and β= 45o.

Figure A.26. Variation of Bearing Capacity Factor with Maximum Horizontal Seismic

Coefficient for Cu/γB= 0.625 and β= 60o.
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Figure A.27. Variation of Bearing Capacity Factor with Maximum Horizontal Seismic

Coefficient for Cu/γB= 0.625 and β= 75o.

A.8. Relationship between khMAX and βo for Cu/γB= 0.625

In Figure A.28, owing to decreasing strength characteristic of soil, H/B=4 line

couldn’t be obtained.

Figure A.28. Variation of Maximum Horizontal Seismic Coefficient With Slope Angle

for Cu/γB= 0.625.
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A.9. Relationship between khMAX and βo for H/B

In Figure A.29, Figure A.30 and Figure A.31, Cu/γB= 5 lines have the highest

maximum horizontal seismic coefficients due to being the greatest strength character-

istic of soil in all material sets defined in PLAXIS. Hence, as Cu/γB ratio is increased,

maximum horizontal seismic coefficients noticeably increase. However, as H/B ratio is

increased, the maximum horizontal seismic coefficients drop.

As Cu/γB ratio is increased, the numeric difference among the maximum hori-

zontal seismic coefficients for each line increases substantially. Likewise, as H/B ratio

is increased, the numeric difference among the maximum horizontal seismic coefficients

for each line increases as shown in Figure A.29, Figure A.30 and Figure A.31.

Figure A.29. Variation of Maximum Horizontal Seismic Coefficient with Slope Angle

for H/B=1.
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Figure A.30. Variation of Maximum Horizontal Seismic Coefficient with Slope Angle

for H/B=2.

Figure A.31. Variation of Maximum Horizontal Seismic Coefficient with Slope Angle

for H/B=4.
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