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ABSTRACT 

 

 

APPLICATION OF DATA MINING TOOLS TO EXTRACT KNOWLEDGE FOR 

DRY REFORMING OF METHANE FROM PUBLISHED PAPERS IN 

LITERATURE 

  

 

 The aim of this thesis is to extract knowledge for dry reforming of methane reaction 

using data mining techniques that are decision trees and artificial neural networks. Firstly, 

the experimental data were collected from 101 papers published between 2005 and 2014. 

The data set consisted of 5521 data points with 63 variables. The conversion of methane as 

a function of catalyst preparation and operational variables was modeled in MATLAB. 

CH4 conversion values were classified as 0-50, 50-75 and 75-100 for the decision tree 

analyses of total data, and Ni, Co, Pt and wet impregnation bases subsets. Training and 

testing errors of these trees were 21.1%-21.5%, 16.7%-19.0%, 10.2%-10.9%, 9.3%-12.6%, 

and 13.6%-15.1%, respectively. The neural networks were also used for modeling data; 

tansig was used as activation function and trainlm and trainbr were used as training 

algorithms for training and testing, respectively. The optimal neural network topology was 

found as 63-20-1 (20 neuron in hidden layer) using the prediction ability of testing result. 

R
2
 and corresponding RMSE values for training and testing were found to be 0.97-4.23 and 

0.89-8.66, respectively. The relative significances of input variables were also determined 

using the optimal neural network topology. It was found that reaction temperature was the 

most significant variable, and operational variables had higher group significance than the 

catalyst design variables within the range of data set. Finally, the optimal neural network 

topology was used to predict the results of experiments and papers. 590 out of 753 

experiments (78.4%) were predicted with RMSE values lower than 15. The results of 46 

out of 101 papers (45.5%) were predicted with R
2
 values higher than 0.5 and the RMSE 

values of 65 out of 101 papers (64.4%) had lower than 15.        
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ÖZET 

 

 

VERİ MADENCİLİĞİ TEKNİKLERİNİN METANIN KURU REFORMLANMASI 

İLE İLGİLİ LİTERATÜRDE YAYINLANMIŞ MAKALELERDEN BİLGİ 

ÇIKARIMINDA KULLANILMASI 

  

 

 Bu tezin amacı veri madenciliği tekniklerinden karar ağaçları ve yapay sinir ağları 

kullanılarak metanın kuru reformlanması reaksiyonu için bilgi çıkarmaktır. İlk olarak 2005 

ve 2014 yılları arasında yayınlanmış 101 makaleden deneysel veriler toplanmıştır. Veri seti 

5521 veri noktasından ve 63 değişkenden oluşmaktadır. Metanın dönüşümü, katalizör 

hazırlama ve operasyon değişkenlerinin fonksiyonu olarak MATLAB’ de modellenmiştir. 

Toplam veri seti ile birlikte Ni, Co, Pt ve ıslak emdirme temelli alt veri setlerinin karar 

ağaçları analizi yapılırken metanın dönüşümü değerleri 0-50, 50-75, 75-100 olarak 

sınıflandırılmıştır. Bu ağaçların eğitim ve test hataları sırasıyla %21.1-%21.5, %16.7-

%19.0, %10.2-%10.9, %9.3-%12.6 ve %13.6-%15.1 olarak bulunmuştur. Ayrıca, veri 

setleri sinir ağları kullanılarak da modellenmiştir. Bunun için aktivasyon fonksiyonu olarak 

tansig kullanılırken eğitim için trainlm, test için ise trainbr eğitici algoritmaları tercih 

edilmiştir. En uygun sinir ağ yapısı test analizi sonucu (tahmin edebilme gücü) kullanılarak 

63-20-1 (gizli katmanda 20 nöron) olarak bulunmuştur. R
2
 ve bununla ilişkili RMSE 

değerleri sırasıyla eğitim için 0.97-4.23 ve test için 0.89-8.66 bulunmuştur. Ayrıca giren 

değişkelerin göreceli önem analizleri en uygun sinir ağ yapısı kullanılarak belirlenmiştir. 

Reaksiyon sıcaklığı en önemli değişken olarak bulunmuştur, ayrıca operasyon 

değişkenlerinin katalizör tasarlama değişkenlerinden daha yüksek grup önemine sahip 

oldukları belirlenmiştir. Son olarak en uygun sinir ağı yapısı deneylerin ve makalelerin 

sonuçlarını tahmin edebilmek için kullanılmıştır. 753 deneyden 590 ının (%78.4) RMSE 

değerleri 15 den küçük olarak tahmin edilmiştir. 101 makaleden 46 sının (%45.5) sonucu 

R
2
 değerleri 0.5 den büyük olarak ve 101 makaleden 65 inin (%64.4) RMSE değerleri 15 

den küçük olarak tahmin edilmiştir. 
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1. INTRODUCTION 

 

 

The rapid development of industry has increased the need of energy. The major 

sources of energy are fossil fuels that are oil, coals and natural gas. Continuously 

increasing consumption of fossil fuels leads to environmental problems such as global 

warming. With the depletion of oil supply of the world, some techniques have been 

investigated in order to convert natural gas, consisting primarily of methane (CH4), into 

higher value products [1]. 

 

Conversion of CH4 to synthesis gas (syngas), a mixture of carbon monoxide (CO) 

and hydrogen (H2), can be carried out three different ways that are steam reforming, partial 

oxidation and dry (CO2) reforming. Mixed reforming of methane can be preferred to 

control H2/CO ratio in product stream changing the ratio of H2O, CO2 and O2 in the feed 

stream [1]. When we compare these reforming processes, dry reforming of methane (DRM) 

has received more interests in the past decade because it converts two greenhouse gases 

into synthesis gas with a lower H2/CO ratio that is desirable for the synthesis of long chain 

hydrocarbons and oxygenated chemicals through Fischer-Tropsch process [2].  

 

Environmentally advantageous DRM reaction occurs with some side reactions. Coke 

formation during DRM mainly occurs due to unwanted side reactions, including methane 

decomposition favored at higher temperatures or carbon monoxide decomposition that is 

known as Boudouard reaction favored at lower temperatures. Carbon deposition is the 

most important challenge for DRM in order to achieve higher activity and better stability 

[3]. Another side reaction is reverse water gas shift reaction (RWGS). Water production 

and coke formation lead to undesirable H2/CO ratios. DRM has a tendency toward 

sintering of metallic phase and support due to the highly endothermic nature of it [4].  

 

The most common catalyst for DRM is supported nickel. However, it has a tendency 

to form coke on catalyst surface due to higher reforming temperature. This can result in 

deactivation of catalyst and/or plugging of tubes inside reactor. Although noble metals 

such as ruthenium and rhodium are more active and resistant to carbon deposition, nickel 

based catalysts have been investigated because of their lower cost and better availability 
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[5]. The most widely used support for DRM is γ-Al2O3 because of its higher thermal 

stability and specific surface area [6].  

 

There is a huge amount of experimental research about dry reforming of methane in 

the literature. The most important variables affecting the results of this reaction are 

reaction temperature, base metals, support types, feed compositions, W/F ratio (catalyst 

weight/feed flow rate), reduction and calcination conditions, preparation methods and time 

on stream. Some data mining tools can be used in order to extract knowledge from the data 

set constructed from research publications. The results obtained from it can be used in 

experimental works to improve catalysts for DRM. 

 

Data mining is the process of discovering useful information from the data. Some of 

the commonly used data mining tasks are description, prediction, classification, clustering, 

and association [7]. One of the most attractive classification methods is decision tree 

because of its simplicity and interpretability. Decision tree consists of decision nodes that 

are connected by branches and extends downward from the root node to the leaf nodes [8]. 

Artificial neural networks are used commonly because of their success in modeling even 

for very complex functions. The ability to deal with nonlinear relations among variables is 

a major benefit of neural networks. However, it has a lot of parameters to adjust [9].  

  

This thesis is composed of five chapters. Detailed information about dry reforming of 

methane reaction and data mining techniques such as decision trees, classification and 

neural network algorithm are explained in Literature Survey (Chapter 2). All the details 

related to collection of data, construction of data set and computational details used in this 

thesis are given in Experimental Data and Computational Details (Chapter 3). Decision 

tree and artificial neural network results are presented and discussed in Results and 

Discussion (Chapter 4). Finally, the conclusions drawn from this study and 

recommendations for future studies are given in Conclusions and Recommendations 

(Chapter 5).  
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2. LITERATURE SURVEY 

 

 

2.1. Dry Reforming of Methane 

 

Dry reforming of methane reaction [Eq. (2.1)] simultaneously utilizes two 

greenhouse gases (CH4 and CO2) to produce industrially valuable syngas with the H2/CO 

ratio close to unity that is suitable for the synthesis of higher value liquid [2].  DRM is a 

highly endothermic reaction that requires the temperature higher than 800°C in order to 

achieve higher activity and selectivity. DRM is followed by reverse water-gas shift 

reaction [Eq. (2.2)] that causes a decrease in H2/CO ratio [5]. Other side reactions can 

occur because of the operating conditions such as reaction temperature and reactant partial 

pressure. These reactions lead to catalyst deactivation by coke deposition and/or sintering 

of metals. The formation of coke during DRM mainly comes from CH4 decomposition 

[Eq. (2.3)] to form solid carbon on the catalyst surface and produce H2 and carbon 

monoxide (CO) disproportionation [Eq. (2.4)] to form surface carbon and CO2 [1]. While 

the former is an endothermic reaction favored at higher temperature and lower pressure, 

the latter is an exothermic reaction favored at lower temperature and higher pressure [3]. 

Dry reforming of methane (DRM) reaction: 

CH4 + CO2 ↔ 2CO + 2H2   ΔH298K = +247 kJmol
-1

          (2.1) 

Reverse water-gas shift reaction (RWGS): 

CO2 + H2 ↔ CO + H2O   ΔH298K = +41.2 kJmol
-1

          (2.2) 

Methane decomposition reaction: 

CH4 ↔ C(s) + 2H2 ΔH298K = +75 kJmol
-1

          (2.3) 

CO disproportionation (Boudouard) reaction: 

2CO ↔ C(s) + CO2 ΔH298K = -171 kJmol
-1

           (2.4)      
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2.2. Factors Effecting Dry Reforming of Methane 

 

Numerous studies have been reported in the literature in order to develop stable 

catalyst and improve operating conditions for DRM. Type and loading of the metals used, 

addition of promoter or other metals, preparation technique, pretreatment (calcination and 

reduction) conditions and choice of support are the most important factors affecting the 

activity, selectivity and stability of catalyst. Operating conditions such as reaction 

temperature and pressure, reactant composition, gas hourly space velocity and time on 

stream are also important because they can affect catalytic performance. 

 

2.2.1. Effect of Metal Types and Loading 

 

The widely used metals for DRM are Ni, Co, Pt, Pd, Ru, Rh and Ir. Many studies 

related to this reaction have been conducted over Ni based catalysts because of its lower 

cost and wide availability. However, Ni based catalysts have some problems such as 

catalyst deactivation due to carbon formation, sintering and metal oxidation and lower 

activity and selectivity [4]. Noble metal such as Ru, Rh and Pt supported catalysts are 

highly active and stable for DRM with resistance to coke formation than other transition 

metals but they are more expensive than non-noble metals and they are not feasible on an 

industrial scale. When all of these situations mentioned above are taken into consideration, 

adding noble metals into nickel based catalysts can improve the activity and stability of 

catalysts [1]. Apart from determining active metal type(s), metal loading is also important 

to prevent deactivation by formation of inactive sites on catalysts. There are published 

papers that were analyzed the effect of metal loading with different percentages of metal 

for DRM in order to determine the best active metal(s) with the best amount in terms of 

activity and stability. 

 

According to Xu et al., different weight percentages of nickel catalysts (3, 5, 7, 10, 

15 wt. %) supported on mesoporous alumina (MA) affected the catalytic activity in DRM. 

When Ni amount increased from 3wt.% to 15wt.%, the conversion of CH4 and CO2 and the 

ratio of H2/CO increased until the Ni content reached to 5wt.% at various temperatures 

ranged from 600 °C to 800°C at a 50 °C increment. Increasing the amount of Ni between 

5-15wt. percent resulted in slight improvement in the activity because 5%Ni/MA catalyst 
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may already provide enough active sites for reactants to achieve desired conversion levels. 

Large specific surface areas, big pore volumes and uniform pore structures of this catalyst 

provide better catalytic activity [10]. 

 

Influence of alkaline earth metal oxides (MgO, CaO and BaO) on the activity and 

stability of 5wt.%Ni catalyst supported on γ-Al2O3 in DRM were investigated in the study 

of Alipour et al. 5wt.%Ni/γ-Al2O3 catalyst promoted with 3wt.%MgO had the highest 

activity in the temperature range of 550-700 °C in terms of CH4 and CO2 conversion 

because MgO can improve the Ni dispersion by surface rearrangement, catalyst activity 

due to formation of MgAl2O4 and catalyst stability by reducing the carbon formation on the 

catalyst. However, the incorporation of Ca and Ba into Ni/γ-Al2O3 catalyst resulted in a 

decrease in catalytic activity and coke formation [2].  

 

Özkara-Aydınoğlu and Aksoylu (2010) studied 2 wt.% La, Ce, Mn, Mg, K promoted 

5 wt.%Co/ZrO2 catalysts to increase the resistance of Co-based catalysts to coking and to 

improve the activity of the catalysts and found that the catalytic performances of bimetallic 

Co-X/ZrO2 catalysts were affected by the type of metals because of their different 

dispersion properties. Unpromoted Co/ZrO2 had high initial activity but activity loss was 

occurred because of carbon formation during 6 h time on stream. 5Co2La/ZrO2 catalyst 

exhibited the highest stability with average activity and 5Co2Ce/ZrO2 catalyst exhibited 

the highest activity with a limited loss of activity in 6 h time on stream experiments [11]. 

 

2.2.2. Effect of Support Type 

 

Active metal is mostly introduced onto support materials to obtain supported metal 

catalyst. Support has a relatively high surface area and it has large and regularly shaped 

pores [12]. Type of support and interaction between active metal and support affect the 

catalytic activity and carbon deposition in dry reforming of methane reaction. The support 

of catalyst should have resistance to higher temperature. Support affect metal dispersion 

[5]. The most widely used supports for DRM are γ-Al2O3, SiO2, La2O3, ZrO2, TiO2, CeO2, 

MgO, MCM-41 and SBA-15. 
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García et al. (2009) were studied the effect of mixed oxide supports (ZrO2-MgO) 

with different amounts of MgO content ranged from 0 to 5 wt.% on the catalytic 

performance of Ni/ZrO2-MgO catalysts at 600 °C for DRM. The best amount of MgO in 

the catalyst in terms of CH4 conversion was found as 0.4 wt.%. The methane conversion 

remained almost constant at 26% during 300 min on stream. The addition of MgO into 

Ni/ZrO2 inhibited the deactivation of catalyst because of the strong interaction of metal 

with support of the catalyst [13]. 

 

 The effect of Ce/Zr ratios on the catalytic activities of the 7 wt.%Ni/CeZr catalysts 

with different temperatures ranged from 600 to 800 °C was investigated in the study of Xu 

et al. (2012). The optimum Ce containing was found 50 mol% and 7 wt.%Ni/Ce50Zr50 

catalyst exhibited the highest activity at each temperature [14]. 

 

2.2.3. Effect of Catalyst Preparation Method 

 

Impregnation or precipitation techniques are used to introduce the active phase of a 

catalyst into the support structure. Therefore a suitable solution is prepared and introduced 

into the pores of the support prior to drying and calcination [12]. Impregnation or 

precipitation methods are important in designing active and stable catalysts for DRM. 

Catalysts preparation techniques used in this study are incipient to wetness impregnation, 

wet impregnation, co-impregnation, sequential impregnation, co-precipitation and sol gel. 

 

In the case of impregnation, the method is based on an interaction between the 

surface of support and the species in solution. If the volume of solution is equal to or less 

than the volume of pores, the impregnation method is known as pore volume or incipient to 

wetness impregnation, and the method depends on keeping the species within the pores 

during drying. If the volume of solution is in excess from the required amount to fill the 

pores, the method is known as wet impregnation, and the method depends on specific 

interactions [12]. 

 

The effect of different impregnation strategies over Pt/ZrO2 catalysts promoted 

with Ce for DRM reaction was investigated by Özkara-Aydınoğlu et al. While the 

interaction between Pt and Ce increasing the oxygen storage of the catalysts was stronger 
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for co-impregnated Ce-Pt/ ZrO2, sequentially impregnated catalysts led to lower interaction 

between Pt and Ce. Therefore co-impregnated catalysts had higher activity and resistance 

to carbon deposition than the sequentially-impregnated catalysts [15]. 

 

2.2.4. Effect of Pretreatment (Calcination and Reduction) Conditions 

 

Calcination and reduction processes are significant for the performances of 

catalysts. Calcination is applied to catalysts in order to eliminate water, carbon dioxide or 

other volatile compounds. Catalysts can be calcined at different temperatures and times 

under the stream of air or oxygen. After the calcination of catalysts, reduction can be 

carried out in pure H2 or a mixture of H2/N2, H2/Ar or H2/He at different temperatures and 

times. 

 

Zhang et al. (2008) investigated the influence of calcination temperature on the 

catalytic performance of Ni/TiO2-SiO2 catalysts that were prepared by impregnation 

combined sol gel method for DRM reaction and found that the catalyst calcined at 700 °C 

had higher activity and stability than the catalysts calcined at 550 °C and 850 °C for 5 h 

[16]. 

 

Takanabe et al. (2005) investigated the influence of reduction temperature on the 

catalytic performance of 10 wt.%Co/TiO2-anatase catalysts that were prepared by incipient 

to wetness impregnation and calcined at 400 °C for 4 h for DRM reaction. Before the 

reaction the catalysts were reduced in situ with a H2 flow (25 ml/min) at different 

temperatures ranged from 700 °C to 950 °C for 1 h. The activities of the catalysts 

decreased with increasing reduction temperatures. The catalysts reduced at 700- 800 °C 

exhibited higher CH4 conversion and stability during 25 h than the catalysts reduced at 

850-950 °C [17]. 

 

2.2.5. Effect of Feed Compositions 

 

The main reactants for dry reforming of methane reaction are CH4 and CO2. In 

some papers Ar, He and N2 introduced into feed composition as diluent gas. The ratio of 

CO2/CH4 has a significant effect on catalyst activity, so different values of carbon dioxide 
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to methane ratios have been studied in order to find out the optimum value for CO2/CH4 

ratio. The ratio of CO2/CH4 that is higher than 1 is preferred mostly to increase methane 

conversion. 

 

The effects of CH4/CO2 ratios on the 7 wt.%Ni-3 wt.%Co/La2O3-Al2O3 bimetallic 

catalysts at 800°C investigated in the study of Xu et al. (2010). CO2 conversion and H2/CO 

ratio increased from 60% to 99% and from 0.65 to 1.38, respectively but CH4 conversion 

declined from 96% to 58% with increasing CH4/CO2 ratios from 1/3 to 3/1. When 

CH4/CO2 ratio was higher than or equal to 1 in the feed stream, carbon deposition by CH4 

decomposition was more than carbon elimination by CO2. In order to prevent carbon 

deposition CO2 concentration in feed stream could be increased [18]. 

 

Yasyerli et al. (2011) studied the effects of feed composition on the 1 wt.%Ru-

Ni/MCM-41 catalyst at 600 °C with gas hourly space velocity of 36000 ml/hgcat. A 

gaseous mixture of CO2/CH4/Ar with different volume ratios of 1/0.66/1.33, 1/0.5/1.5 and 

1/1/1 was fed into the reactor, in which Ar was used as diluent gas. When the ratio of 

CO2/CH4 was less than 1, the coke formation and reactor blockage occurred. When the 

ratio of CO2/CH4 was higher than 1, the conversion of CH4 increased slightly [19]. 

 

2.2.6. Effect of Gas Hourly Space Velocity 

 

Gas hourly space velocity (GHSV) is defined as the feed flow rate over catalyst 

weight ratio. The performances of catalysts depend on the velocity of feed gas in dry 

reforming of methane reaction. Higher gas hourly space velocity can lead to rapid 

deactivation of catalysts and decrease the sintering of metals while lower GHSV can be 

preferred to reach equilibrium [5]. 

  

The effect of gas hourly space velocity over 5%Ni/γ-Al2O3, 5%Ni-3%Mg/γ-Al2O3, 

5%Ni-3%Ca/γ-Al2O3 and 5%Ni-3%Ba/γ-Al2O3 catalysts at 650°C with constant feed ratio 

(CH4/CO2=1) were investigated in the study of Alipour et al. (2014). The conversion of 

CH4 and CO2 decreased with increasing GHSV ranged from 6000 to 18000 ml/hgcat 

because of reduced contact time and amount of adsorbed reactant [2]. 
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Özkara-Aydınoğlu and Aksoylu (2010) were analyzed the effect of GHSV on the 

catalytic activity and stability of bimetallic 5wt.%Co2wt.%La/ZrO2 and 

5wt.%Co2wt.%Ce/ZrO2 catalysts at 650°C with constant feed ratio (CH4/CO2=1). With 

decreasing GHSV from 60000 to 15600 ml/hgcat, the conversion of CH4 and CO2 increased 

and reached to 50% and %61 for La-promoted cobalt catalyst and 63% and %72 for Ce-

promoted cobalt catalyst at the end of 6 h on stream [11]. 

 

Xu et al. (2010) investigated the effects of GHSV ranged from 3000 to 18000 

ml/hgcat with an increment of 3000 on the performances of 7 wt.%Ni-3 wt.%Co/La2O3-

Al2O3 bimetallic catalysts and found that CO2 and CH4 conversion and H2/CO ratio 

decreased slightly with increasing GHSV and CH4 conversion reached maximum value at 

6000 ml/hgcat [18]. 

 

2.2.7. Effect of Reaction Temperature 

 

The most important variable for dry reforming of methane reaction is temperature 

due to the endothermicity of the reaction. DRM requires higher temperatures to achieve 

higher conversion of CH4 and CO2. At higher temperatures, supported metal catalysts tend 

to deactivate due to sintering of metals or supports and carbon deposition. Therefore, to 

design a thermally stable catalyst having higher activity is the most important issue to carry 

out this environmentally and industrially advantageous reaction at the big scale [1]. 

 

Serrano-Lotina and Daza (2014) investigated the influence of reaction temperature 

using Ni-based catalyst obtained after calcination of hydrotalcite-like precursor. When the 

reaction temperature increased from 450 °C to 800 °C, CH4 and CO2 conversion and 

H2/CO ratio increased from 9%, 11% and 0.4 to 94%, 95% and 0.98, respectively [20]. 

  

2.2.8. Effect of Pressure 

 

Dry reforming of methane is mostly operated under atmospheric pressure because 

this reaction is volume-increasing reaction so higher pressures lead to a reverse reaction. 

Moreover, CH4 decomposition and total amount of carbon deposited on the catalyst 
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increases at high pressure. In the literature there are only a small number of papers 

analyzing the effect of pressure because of the reasons mentioned above [18]. 

 

Xu et al. (2010) investigated how the operating conditions affect the performances 

of 7 wt.%Ni-3 wt.%Co/La2O3-Al2O3 bimetallic catalysts at 800°C and found that CH4 

conversion decreased from 88.2% to 54.3% and CO2 conversion increased slightly due to 

an increase in deposited carbon gasification and a decrease in RWGS with the increasing 

operating pressure from 1 atm to 5 atm [18]. 

 

2.2.9. Effect of Time on Stream 

 

Time on stream analysis of catalysts has been conducted to determine the short and 

long term stability of catalysts. Stability is important to use catalysts effectively in 

industry. 

 

According to Xu et al., the 10%Ni/MA catalyst exhibited not only higher catalytic 

activity but also excellent stability throughout 100 h long stability test under the specific 

reaction conditions: CH4/CO2=1, T=700 °C, GHSV=15000ml/hgcat, 1 atm. The catalyst 

performed over 80% and 81% conversions of the CH4 and CO2, respectively. Catalyst 

deactivation was not observed during this time because of the large specific surface areas, 

big pore volumes and uniform pore structures of this catalyst. H2/CO ratio remained steady 

at 0.8. The conversion of CO2 was higher than the conversion of CH4 because of the 

RWGS reaction [10]. 

 

According to Alipour et al. (2014), the 5%Ni-3%Mg/γ-Al2O3 catalyst at 700 °C 

exhibited high stability during 15 h time on stream. MgO promoted Ni/γ-Al2O3 catalysts 

reduced well in reaction condition because of a decrease in the reduction temperature of 

NiO particles. The catalyst performed over 75% and 78% conversions of the CH4 and CO2, 

respectively [2].  
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2.3. Data Mining Methods for Knowledge Extraction 

 

Huge amount of data is continuously produced and collected in various fields of 

science, in commerce and even in everyday life using the advances in technology. 

However, to obtain useful information from huge data set is extremely difficult. Data 

mining is the process of discovering hidden information from databases. Data mining 

techniques are applied to small or big data set in order to extract knowledge, patterns and 

correlations. They can predict the outcome of a future observation using existing data set 

[7].  

Flow diagram of knowledge discovery process from a database is shown in Figure 

2.1. The input data can be collected from different sources and stored in technological 

devices even in our computer. Preprocessing methods such as feature selection, 

dimensionality reduction, normalization and data subsetting can be applied to raw data to 

make it more suitable for subsequent analysis. Preprocessing steps include cleaning data to 

remove noise, outliers and missing values, selecting features that highly affected target 

value and reducing dimensions. Postprocessing methods such as filtering patterns, 

visualization and pattern interpretation are applied to data mining results to eliminate 

trivial results and to integrate only valid results into information [7]. 

 

 

Figure 2.1. The process of knowledge discovery in databases [7]. 

 

Data mining includes a lot of ideas such as sampling, estimation and hypothesis 

testing from statistics, searching algorithms, modeling techniques and learning theories 

from artificial intelligence, pattern recognition and machine learning. Data mining methods 

can be applied in a variety of areas such as optimization, computation and information 

technology, signal processing and visualization doing some modifications [7]. 

 

Data mining tasks are generally divided into two categories as predictive and 

descriptive. The aim of the former is to predict the target value of independent variables 

Input Data 
Data 

Preprocessing 
Data Mining Postprocessing Information 
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known as attributes or features. The aim of the latter is to find patterns such as correlations, 

trends, clusters, trajectories and anomalies in data [7].  

 

Prediction is used to construct a model for the target variable as a function of input 

variables. There are two types of prediction: classification where the output is discrete or 

categorical and regression where the output is a number. Both classification and regression 

are supervised learning problems because input and output values are known. The aim of 

prediction is to build a model that minimizes the error between the predicted and actual 

values of the target variable [7]. If a model that fits to the collected past data (training data) 

is found in data set and the future data is similar to the past data, we can make correct 

predictions for novel instances [21]. Simple linear regression, multiple linear regression, 

logistic regression, k-nearest neighbor methods, naïve Bayes, regression or classification 

trees, artificial neural networks and support vector machines are some of the algorithms 

that can be used for prediction. 

 

In unsupervised learning, data set only has input data and there is no target value. 

The aim of the unsupervised learning methods is to find general properties and to see 

certain patterns in the input. The most common form of unsupervised learning is 

clustering. The aim of clustering is to find groups of closely related observations. 

Observations belonging to the same cluster should have higher intra-class similarity and 

observations belonging to the different clusters should have lower inter-class similarity in 

order to produce effective clusters. The most commonly discussed distinction among 

different types of clustering is whether the set of clusters is hierarchical or partitional. K-

means clustering is an example for partitional algorithms and agglomerative and divisive 

clustering are some of the methods for generating hierarchical clustering. Clustering can be 

used as a preprocessing step for other algorithms [7]. 

 

2.3.1. Classification by Decision Trees 

  

The aim of classification is to build classification models using an input data set. 

Each classification technique uses learning algorithm to find a model that fits the input data 

well and predicts the class labels of previously unknown records accurately. After a 

classification model is built using the training set including features and class labels of the 
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instances, this model can be applied to test set consisting of features of instances without 

their class labels [7]. 

    

Decision tree is widely used technique for classification because of its simplicity and 

interpretability. It is a nonparametric method. Most of the decision tree algorithms use 

divide-and-conquer partitioning strategy [21]. Decision tree techniques are computationally 

inexpensive even for larger data set. When a decision tree built, classification of test set is 

very fast [7]. Hunt’s algorithm, CART (Classification and regression tree), ID3, C4.5 and 

its successor C5.0, J48 are some of the decision tree algorithms. 

 

Each decision tree consists of root node, internal nodes and leaf or terminal nodes. 

Attribute test conditions are applied in nodes except for terminal nodes to separate 

instances. When a decision tree is constructed, classifying a test instance is easy [7]. A 

decision tree starts from root node and test condition is applied to the instance and then 

depends on the results of the test, appropriate branch of the tree is followed. This process is 

repeated recursively until a leaf node is reached. Each branch generates another internal 

node or a leaf node. Each terminal node consists of one class [21].  

 

The main problem for a decision tree is to decide how to split records. There are 

many measures in order to determine the best split. The ratio between wrong classifications 

and total records in any node is minimized. Before and after splitting, the degree of 

impurity of the child nodes (when a node p split into k partitions) can be used to select the 

best split. Impurity is a measure of how homogenous group of observations in terms of 

class distribution. The most widely used node impurity measures are shown in Equation 

2.5, Equation 2.6 and Equation 2.7. When the impurity level of a node decreases, the Gini 

index decreases [7].  

 

            ∑   |         |  

   

   

 

(2.5) 

          ∑[   |  ] 
   

   

 

(2.6) 
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where c is the number of classes,    |   denotes the fraction of observations that belong to 

class i at a given node t. The degree of impurity of the parent node and child nodes can be 

compared to determine the performance of a test condition. The gain term,   in Equation 

2.8, can be used to determine the goodness of a split [7]. 

 

            ∑
 (  )

 

 

   

  (  ) 

(2.8) 

 

where I is the impurity level of a given node, N is the total number of observations at the 

parent node, k is the number of attribute values, and N(vj) is the number of observations 

related to the child node, vj. Maximization of the gain equals to minimization of the 

impurity measures of the child nodes because I(parent) is the same for all test conditions 

[7].  

 

After the construction of a decision tree, pruning step can be performed in order to 

reduce its size. Tree pruning improves the generalization performance of the decision tree. 

Too large decision trees are not preferred because of overfitting problem. Therefore 

different pruning levels are applied to decision tree to understand the effect of overfitting 

and underfitting. When the size of a tree is too small, training and test error rate of the 

model are large because of the model underfitting. If a model has continued to learn the 

structure of the data, underfitting occurs so the model performs poorly on training and test 

set. When the number of nodes in a decision tree increases, training error rate decreases 

continuously but test error rate decreases and then rises again because of the model 

overfitting. This situation is shown in Figure 2.2 [7].    
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Figure 2.2. Error rates as a function of tree depth [9]. 

 

Data set can be randomly divided into two sets: one set to be used for training and 

constructing the decision tree model while the other to be used for testing the 

generalization ability of the model. In order to determine the performance of a 

classification model, the counts of test records correctly and incorrectly predicted by the 

model can be written in a table known as confusion matrix. Although a confusion matrix 

gives the information about the performance of a model, indicating the performance of a 

model with a number is more beneficial to make comparison with the performance of other 

models. The performance of a model can be expressed in terms of its accuracy [Eq. (2.9)] 

or error rate [Eq. (2.10)], obviously. The highest accuracy or the lowest error rate is desired 

to find the best model [7]. In this thesis, error rate was used for the performance evaluation 

of decision trees but accuracy was also calculated. Apart from these, confusion matrices 

for training and testing were formed using the results of optimum trees. 
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2.3.2. Prediction by Artificial Neural Networks 

 

Artificial neural networks (ANN) were inspired by biological neural systems of 

human brain consisting of neurons and synapses [7]. Neural networks are used both for 

classification and regression because it is a nonparametric method [21]. The Kohonen 

network, which is an unsupervised learning network, is used for clustering while the 

multilayer perceptron and the radial basis function, which are supervised learning 

networks, are used for prediction of one or more dependent variables. Neural networks are 

used widely because of their success in modeling for even very complex functions. The 

ability to deal with nonlinear relations among variables is a major benefit of neural 

networks. However, black box nature of the networks, too many parameters to adjust, the 

amount of computing power required and generally the risks of overfitting are some of the 

main disadvantages of ANN [9]. 

 

A simple neural network topology is known as a perceptron (Figure 2.3). The 

perceptron consists of input nodes that represent the attributes and an output node that 

represents the model output. Each input node is connected to the output node via the 

weighted link [7]. The output includes all the units of the input layer with a combination 

and transfer (or activation) function [9]. The bias, denoted by bk in Figure 2.3, increases or 

decreases the net input of the activation function depending on whether it is positive or 

negative [22]. A perceptron cannot find the right solution for nonlinearly separable data [7]. 

 

 

Figure 2.3. A simple neural network (a perceptron) [22]. 

 

Model of an artificial neuron is formalized using the following notation. There can 

be several inputs xi, i=1,2,3,...,m. Each input xi is multiplied by the corresponding weight 
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wki where k is the index of a given neuron in an ANN. The weighted sum of products xiwki, 

for i=1,...,m is usually denoted as net [Eq. (2.11)] [22].  

 

                               ∑     

 

   

 
(2.11) 

 

where wk0=bk and default input x0=1. Finally, transfer function (f), shown in 

Equation 2.12, is applied to netk value to determine the output yk. Sign, linear, sigmoid and 

tangent hyperbolic functions are some of the examples of activation functions. The output 

of an ANN is generally nonlinear function due to the preferred activation functions such as 

sigmoid or tanh function, ranging from -1 to +1 instead of 0 to +1. The comparison of the 

predicted output with the target value can be done by calculating sum of square error [Eq. 

(2.13)]. The basic model for one node can be extended for highly connected networks of 

artificial neurons [22]. 

 

           (2.12) 
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(2.13) 

 

where N is the number of observation. 

 

One or more hidden layers between the input and output layers can be added to the 

network in order to increase prediction performance of a model. The resulting structure is 

known as a multilayer neural network. It is generally used for complex non-linear models 

by extracting more features from the input patterns due to hidden nodes [9]. The only 

difference between a multilayer perceptron and a perceptron is that the output is a 

nonlinear function of the input due to the nonlinear basis function in the hidden units [21]. 

Figure 2.4 shows the graph of a multilayered perceptron with two hidden layers and an 

output layer. The neuron in any layer of the network is connected to all the neurons in the 

previous layer so the network is fully connected. The direction of the data flow is from up 

to down. Multilayer perceptrons with the error backpropagation algorithm have been used 

successfully to solve difficult problems [22].    
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Figure 2.4. Example of a multilayer feed-forward artificial neural network [7]. 

 

The main aim of the ANN learning algorithm is to adjust a set of weights, w, that 

minimizes the total sum of squared errors [Eq. (2.13)]. The sum of squared error depends 

on w because the predicted value is a function of the weights assigned to the hidden and 

output nodes [7]. There are many algorithms to improve the prediction ability of the model. 

Gradient back-propagation algorithm is one of them, but there are more effective 

algorithms such as the Levenberg-Marquardt, quasi-Newton, conjugate gradient, quick 

propagation, and genetic algorithms [9]. Levenberg-Marquardt algorithm converges more 

quickly and provides a better solution than the gradient back-propagation algorithm. 

However, it is used for only a single output unit and it uses a large amount of computer 

memory [9]. 

 

The back-propagation algorithm, a gradient descent algorithm, is the oldest and 

widely used method for big data size [9]. This algorithm is based on the error-correction 

learning rule [22]. There are two phases in each iteration of the algorithm: the forward 

phase and the backward phase. In the forward phase, the weights obtained from the 

previous iteration are used to calculate the output value of each neuron in the network. 

Outputs of the neurons at level (k+1) are computed after outputs of the neurons at level k 
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are computed. During this phase, the synaptic weights of the network are all fixed. In the 

backward phase, the weight update formula is applied in the reverse direction. The weights 

at level (k+1) are updated before the weights at level k are updated [7]. The synaptic 

weights are adjusted in accordance with an error-correction rule to make the response of 

the network closer to the desired value [22]. The weight update rules are given in the 

following equations: 

           
  

  
 

(2.14) 

                     (2.15) 

            =Learning factor.(Desired output-Actual output).Input (2.16) 

          (         )(               )        for output layer nodes (2.17) 

          (         )∑(      )                          for hidden layer nodes (2.18) 

                                      (2.19) 

 

where η is the learning rate,    is the signal coming to the neuron,    local gradient, 

∑(      ) is the accumulated backpropagated error from output units to the hidden units,   

is a momentum constant [22]. Learning factor, η, determines the magnitude of change to be 

made in the weights during learning.           but   is generally taken less than 0.2. 

The effect of the momentum can be seen at each parameter update [21]. Successive      

values can be so different that large oscillations may occur but the movement should be 

continued without being trapped by local minima to reach the global minima and to 

achieve convergence [9].           but   is generally taken between 0.5 and 1.0 [21].  

 

In a back-propagation network, a single hidden layer should be preferred to increase 

the robustness of the network. Instead of adding more hidden layers between input and 

output layers, modification of the other model parameters such as iteration, updating the 

initial weights or reprocessing the input data should be considered to improve the 

performance of the model. A network with m input units, a single hidden layer with p units 

and k output units has p(m+1) weights. Overcomplex model memorizes the noise in the 

training set and does not generalize to the validation set [9]. When training is continued too 

long, the error on the training set decreases continuously but the error on the validation set 

begins to increase beyond a certain point. While training continues, almost all weights are 
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updated away from 0. Learning should be stopped early to prevent overtraining problem. 

The best way to determine the optimal point to stop training and the number of hidden 

units is to measure the error rate on the test sample, and stopping the increase in hidden 

units and epochs until this rate reaches a minimum value to avoid overfitting [21]. 

 

Generally, in the implementation of a neural network for prediction, following steps 

can be applied: (i) analyzing the structure of the input and output data, (ii) normalization of 

the data set depending on the limits of the transfer function used in the model, (iii) building 

of a suitable network structure, (iv) learning, (v) testing, (vi) model application, (vii) 

denormalization of the output data [9].  
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3. EXPERIMENTAL DATA AND COMPUTATIONAL DETAILS 

 

  

3.1. Experimental Data 

  

 The database was constructed by extracting the experimental data on dry reforming 

of methane from published articles in American Chemical Society (ACS), Science Direct 

and Wiley between 2005 and 2014. The annual numbers of papers related to DRM is 

presented in Figure 3.1. This figure was drawn using the databases of Web of Science. 

 

 

Figure 3.1. Number of publications related to DRM. 

 

403 research publications were reviewed during the construction of the database but 

105 articles with 6065 instances were used to construct the total data set because remaining 

papers were not suitable to extract data. However, 4 papers had to be excluded from the 

data set because these papers were unique to their study in terms of variables and outputs. 

During the collection of the data points, variables affecting the activity and the stability of 

DRM reaction were determined. These variables were metal types and loading, catalyst 

preparation techniques, calcination and reduction conditions, support type and loading and 

operating conditions. The final database consisted of 5521 experimental data with 63 input 

variables and 3 outputs. The details of the experimental data extracted from 101 published 

papers in the literature are presented in the following tables. 
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  The total data set contained twenty types of metals that were continuous attributes. 

Nickel was the most commonly used base metal in published papers because of its lower 

cost and wide availability. Co was another commonly preferred non-noble base metal after 

Ni.  Addition of small amount of second metals into Ni- or Co- based catalysts were 

commonly used methods to increase activity and stability of catalysts. Ba, Ca, Cu, Sr and 

Y were only used as promoters. Some noble metals such as Pt, Rh and Ru were used as 

base metals, second metals or promoters in the papers. In order to prevent the complexity 

of the data set, all metals were combined under the variable of metal types. Metal types and 

the range of metal types loading together with the number of data points are presented in 

Table 3.1.  

 

Table 3.1. Metal types used as active metals or promoters for DRM reaction. 

Variable Group Input Variable Range (wt. %) Data Number 

 

 

 

 

 

 

 

Metals used as active 

metals or promoters 

Au 0-0.20 30 

Ba 0-2.69 20 

Ca 0-5.00 81 

Ce 0-15.00 262 

Co 0-30.00 718 

Cu 0-5.00 5 

Ir 0-5.00 40 

K 0-5.00 270 

La 0-14.45 351 

Li 0-0.50 12 

Mg 0-2.00 91 

Mn 0-5.00 27 

Ni 0-30.00 4223 

Pd 0-5.00 79 

Pt 0-5.00 738 

Rh 0-7.25 156 

Ru 0-5.00 189 

Sr 0-2.25 94 

Y 0-9.00 10 

Zr 0-11.10 44 
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Six different catalyst preparation techniques as categorical attributes were studied in 

the published papers for DRM reaction. These were Co-impregnation (CI), Co-

precipitation (CP), Incipient to wetness impregnation (IWI), Sol-gel (SG), Sequential 

impregnation (SI) and Wet impregnation (WI). The most commonly used preparation 

method in DRM was wet impregnation. Catalyst preparation techniques together with the 

number of data points are shown in Figure 3.2. 

 

 

Figure 3.2. Catalyst preparation methods for DRM reaction. 

 

Calcination step can be carried out after the preparation of catalysts. The ranges of 

calcination temperature and time are presented in Table 3.2. Calcination temperature and 

time were taken as continuous attributes. If catalysts were not calcined, the calcination 

temperature and time were taken as 25°C and 0 hour, respectively.  

 

Table 3.2. Calcination conditions for DRM reaction. 

Variable Group Input Variable Range 

Calcination Conditions Calcination Temperature (°C) 25-900 

Calcination Time (h) 0-12 

 

After the calcination of the catalyst, in order to increase the activity of the catalyst, 

reduction can be carried out in pure H2 or mixture of H2 with other gases such as Ar, N2 or 

He. However, only vol. %H2 was taken as input variable because volumetric percentage of 

H2 affected the performance of catalysts and other gases were only used as inert gases. 

3084 

1446 

289 268 237 197 

0

500

1000

1500

2000

2500

3000

3500

WI IWI SI SG CP CI

N
u

m
b

er
 o

f 
D

a
ta

 

Catalyst Preparation Methods 



24 

 

Reduction temperature, time and vol. %H2 were taken as continuous attributes. If catalysts 

were not reduced, the reduction temperature, time and vol. %H2 were taken as 0°C, 0 hour 

and 0 vol. %, respectively. The ranges of reduction temperature, time and volumetric 

percentage of H2 are presented in Table 3.3. 

 

Table 3.3. Reduction conditions for DRM. 

Variable Group Input Variable Range 

Reduction Conditions Reduction Temperature (°C) 0-850 

Reduction Time (h) 0-10 

H2 (vol. %) 0-100 % 

 

Support types used in the catalysts for DRM reaction are presented in Table 3.4. The 

total data set contained 24 types of metals that were continuous attributes. Pure supports 

were labeled as 1 and mixed or modified supports were indicated with their weight 

percentages out of 1. γ-Al2O3 was the most commonly used support in the papers because 

of its availability and mild acidity. ZrO2 was used as another prominent support because of 

its redox behavior, surface acidity, reducibility and higher thermal stability.  
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Table 3.4. Support types for DRM reaction. 

Variable Group Input Variable Range (wt. % out of 1) Data Number 

 

 

 

 

 

 

Support 

BaO 0-0.03 16 

BaTiO3 0-1 12 

CaO 0-0.49 247 

CeO2 0-1 571 

H-ZSM-5 0-1 12 

La2O3 0-1 141 

MCM-41 0-1 159 

Meso-Al2O3 0-1 75 

Meso-ZrO2 0-1 284 

MgAl2O4 0-1 330 

MgO 0-1 446 

MnO 0-0.15 48 

Nano-MgO 0-1 514 

PrO2 0-0.20 80 

SBA-15 0-1 197 

Si3N4 0-1 52 

SiO2 0-1 408 

TiO2 0-1 282 

V2O5 0-0.10 28 

Y2O3 0-0.20 108 

ZrO2 0-1 753 

ZSM-5 0-1 198 

α- Al2O3 0-1 120 

γ- Al2O3 0-1 2132 

 

Reaction temperature, feed compositions consisting of vol. %CH4, vol. %CO2, vol. 

%Ar, vol. %He and vol. %N2, W/F and time on stream were taken as operating variables 

for DRM reaction. These features were continuous and presented in Table 3.5. Pressure 

was not considered as an input variable because all the experiments were performed at 

atmospheric pressure. The time on stream was assumed to be 60 minutes for the papers in 
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which the value of this variable was not reported. Reactor types used for DRM reaction 

were mainly similar (fixed bed) so the reactor type was not used as a variable. 

 

Table 3.5. Operating conditions for DRM reaction. 

Variable Group Input Variable Range 

Operating 

Conditions 

Temperature (°C) 350-900 

CH4 (vol. %) 10-83.33 

CO2 (vol. %) 10-83.33 

Ar (vol. %) 0-80 

He (vol. %) 0-80 

N2 (vol. %) 0-75 

W/F (mgmin/ml) 0.15-88.24 

Time on Stream (TOS) (min) 0-7800 

 

Finally, the products of dry reforming of methane reaction are H2 and CO. Although 

the outputs that were extracted from papers were CH4 conversion, CO2 conversion and 

H2/CO ratio, the conversion of CO2 and H2/CO were not as complete as the CH4 

conversion throughout the entire data set so only the conversion of CH4 was used as the 

dependent variable. Output variables are presented in Table 3.6 together with the number 

of data points. Calculation of the CH4 and CO2 conversion and H2/CO ratio are given in 

Equation 3.1, Equation 3.2 and Equation 3.3, respectively. In this thesis, CH4 conversion 

and H2/CO values were used as outputs for decision tree analyses and the former was used 

as output for neural network analyses.  

 

Table 3.6. Output variables for DRM reaction. 

Outputs Range Number of Data 

CH4 Conversion (%) 0-100 5521 

CO2 Conversion (%) 0-100 3930 

H2/CO Ratio 0-3.21 2323 

 

    
 

                  

       
     

(3.1) 
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(3.2) 

  

  
 

                   

                   
 

(3.3) 

 

3.2. Computational Details 

 

In this study, MATLAB R2013b was used for computational work. CH4 conversion 

for DRM reaction was used as output variable with 5521 instances. Two data mining 

techniques that are decision trees and artificial neural networks were applied to the total 

data set to extract knowledge for: 

(i) Determining conditions and rules for higher catalytic performance 

(ii) Determining the significance of input variables 

(iii) Predicting the outcome of unstudied conditions without doing an experiment 

 

3.2.1. Decision Tree Modeling 

 

Decision tree classification was used to understand the conditions and rules that led 

to higher CH4 conversion. Firstly, experimental data was called from excel file and saved 

in the workspace of the MATLAB. The output that was CH4 conversion was converted 

into classes. Determination of the class interval was done by considering test error rate of 

the entire tree, objective of the analyses and class balance. CH4 conversion levels were 

described in three classes as 0-50, 50-75 and 75-100. The total data set was randomly 

divided into two sets. Two third of the total data was used as training and constructing the 

decision tree and one third of the total data was used as testing and evaluating its 

generalization ability. Gini’s diversity index (default in MATLAB) was used to select 

optimal split for the decision tree. The total error rate of the entire tree should be 

minimized by trying several splits. Different splitmin values ranged from 25 to 300 with an 

increment of 25 were tried. Different levels of pruning were applied to the entire tree in 

order to prevent the complexity of the tree. When the tree becomes too large that means 

higher number of nodes, overfitting can occur and when the tree was too small that means 

smaller number of nodes, underfitting can occur. Therefore after the determination of the 

optimum splitmin value, training and testing error rate of the tree in different number of 
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pruning levels as well as different number of nodes should be calculated in order to select 

the best tree with the smallest error rate for testing and the highest generalization ability. 

Finally, optimal tree was used for rule deduction and the confusion matrices of that tree 

were also formed to comprehend misclassification errors.  

 

3.2.2. Artificial Neural Network Modeling 

 

Various network topologies were investigated in order to determine the optimal one 

in terms of the highest coefficient of determination value and the lowest root mean square 

error (RMSE). Two back-propagation training algorithms including Levenberg-Marquardt 

(trainlm) and Bayesian Regularization (trainbr) were used with changes in the number of 

neurons and hidden layers with different transfer functions including the tangent sigmoid 

(tansig), log sigmoid (logsig) and linear function (purelin). In this thesis, one hidden layer 

produced better results than two hidden layers. Basic steps for designing ANN models 

were represented in Figure 3.3. 

 

 

Figure 3.3. Basic steps for designing ANN models. 

 

After the collection of data, three data preprocessing techniques that are 

filling/eliminating the missing value, normalization of data and randomization of data were 

applied to data set. 698 time on stream value could not be extracted from the papers in 

which these values were not reported.  Therefore, these missing data were replaced by 60 

min because initial activity measurement is generally conducted after 60 minutes. Also in 

some articles, gas hourly space velocity values (GHSV), which are highly significant for 
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DRM reaction, were reported while the others were reporting W/F (catalyst weight/flow 

rate) ratio. Therefore GHSV values (ml/hgcat) were converted into W/F (mgmin/ml) in 

order to be able to express this attribute as a single variable. Normalization step was 

applied to the input and output data in accordance with the transfer function. The 

mapminmax function normalizes the data so that all data falls in the range [-1, +1]. The 

network output was transformed back into its original range because output of the network 

fell in the normalized range. Tansig was used as in the hidden layer as the activation 

function because of its suitability to our data set and it was shown in Figure 3.4. Training 

data was randomized using randperm function. This function returns a random permutation 

of the 5521 instances while keeping the input columns constant [23].  

 

 

Figure 3.4. Tan-sigmoid transfer function [23]. 

 

‘newff’ function was used to create a feed-forward back-propagation network. This 

command automatically initializes the weights and biases. ANN models were trained by 

the Levenberg-Marquardt (trainlm) method, which is the fastest training function, based on 

gradient descent and Gauss-Newton iteration. Trainbr was used for testing. It is used for 

determining the optimal regularization parameters automatically. The regularization 

parameters depend on the unknown variances associated with specified distributions. The 

weights and biases can be considered as random variables. When trainbr function is used, 

the algorithm should be run until the effective number of parameters has converged. 

Trainbr usually works well with early stopping [23]. Mean square error (MSE) was used as 

the performance function and tansig was used as transfer function. Each network topology 

was trained 10 times in order to eliminate the effects of random initialization of the neural 

network weights. Early stopping technique was used in order to prevent the model 

overfitting. Different number of neurons in one layer were tried [24]. 
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Test data was used to determine the optimal neural network topology. The root mean 

square error (RMSE) of testing was calculated applying the 4-fold cross validation 

technique. The entire database was randomly divided into 4 sets. 3 sets were used to train 

the network to predict the remaining one set. This procedure was repeated 4 times for 4 

sets. The error between the predicted value and the target value of the corresponding 

experiment was calculated for each instance and the errors of the sets were combined. 

Finally, RMSE was calculated using the error values of 4 sets. Each fold in 4-fold cross 

validation was repeated ten times. The optimal neural network topology was determined by 

the RMSE value of the entire data set. Calculation of the RMSE is shown in Equation 3.4. 

  

     √
 

 
 ∑        

 

   

 

(3.4) 

and where pi is the predicted value, ti is the target value and N is the number of 

experiments.  

 

Apart from the calculation of the RMSE value, R squared (R
2
), known as the 

coefficient of determination, was calculated in order to determine how well the model fits 

to the data. R
2
 is a statistical measure of how close the target values to the predicted values. 

R
2
, shown in Equation 3.5, takes the value between 0 and 1. If a model covered 100% of 

the variance, the predicted values were equal to the target values. Only R
2
 value does not 

prove whether or not a model is sufficient so RMSE values were also calculated with the 

corresponding R
2
 values. 
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(3.5) 

 

In order to try the performance of the optimal model on each paper, firstly total data 

set was separated in accordance with different experiments. One set of the experiments was 

removed from the data set. And then network was trained with the remaining experiments 

in order to predict the outputs of the removed experiments. This procedure was repeated 

for all (753 experiments) experiments. For each experiment RMSE and R
2
 values were 

calculated. And then the predicted outputs of experiments and the target values of the 
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corresponding experiments were combined in a matrix. In order to determine the 

performance of the model in a specified paper, the predicted value and the real value of the 

experiments related to a specified paper were extracted from the matrix to calculate the 

RMSE and R
2
 value of the paper. 

  

The change of root mean square error technique was used to find the significance of 

input variables. The procedure of the method was as follows: one of the input groups or 

input variables was removed from the data set, and then network was trained with the 

remaining input groups or variables. The RMSE value of the model calculated in the 

absence of this input group or variable was compared with the original RMSE calculated in 

the presence of all input variables. The difference was used as the significance of this input 

group [25]. 
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4. RESULTS AND DISCUSSION 

 

 

In this thesis, two data mining techniques that are decision trees and artificial neural 

networks were applied to the experimental data extracted from published papers in the 

literature. Therefore, Results and Discussion part is presented in two sections. First, 

decision tree analyses of experimental data are presented in six subsections: ‘CH4 

conversion results of total data’, ‘CH4 conversion results of Ni base data’, ‘CH4 conversion 

results of Co base data’, ‘CH4 conversion results of Pt base data’, ‘CH4 conversion results 

of wet impregnation method data’ and ‘H2/CO results of total data’. Ni, Co and Pt base 

data sets were generated using total data set because they were commonly studied metal 

types for DRM reaction in the literature. Wet impregnation was one of the most commonly 

used catalyst preparation techniques for DRM reaction so one data set was produced for 

this type of catalyst preparation method. In addition to these data sets, one data set was 

produced for the experiments having H2/CO values as the outputs. Six decision trees were 

obtained using each type of data sets. The optimal decision trees were found by trying the 

different splitmin and prune values. The optimal trees with the lowest test error 

percentages and the highest generalization ability were selected. General knowledge and 

rules about each type of data sets were deduced from their corresponding trees. Second, the 

modeling results of the total data are discussed. The optimal neural network topology with 

the highest prediction ability was determined changing the number of neurons in each 

hidden layer, training and activation function. Each neural network was trained 10 times in 

order to eliminate the effects of the random initialization of the neural network weights. 

The optimal neural network topology was selected in accordance with the RMSE value of 

testing results. Finally, significance of the 63 input variables, prediction ability of the 753 

experiments and 101 papers were analyzed using the optimal neural network topology.    
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4.1. Decision Tree Analysis for Knowledge Extraction 

 

4.1.1. Analysis of CH4 Conversion Results Using Entire Data Set 

 

 The total data including 5521 instances with 63 attributes were classified according 

to their CH4 conversion levels as 0-50 consisting of 2197 data, 50-75 consisting of 1798 

data and 75-100 consisting of 1526 data and they were divided randomly into two parts as 

training and testing sets. Two third of the total data including 3681 instances was used to 

construct the decision tree and to train it while the remaining one third of the total data 

including 1840 instances was used to test the generalization ability of the decision tree. 

The optimal decision tree was found by starting with a large tree and then 10 levels of 

pruning were applied to the fully grown tree until the minimum test error rate was found. 

When the size of the tree increased, training error decreased continuously but test error 

decreased first and then increased due to the model overfitting. The training and test error 

rates for various tree sizes having the splitmin value 150 were shown in Figure 4.1. The 

tree with the minimum test error percentages was found with 39 nodes corresponding to 

prune level 5, training and test errors of 21.1% and 21.5%, respectively. The optimal 

decision tree was shown in Figure 4.2. 

  

 

Figure 4.1. Training and test error rates of total data set. 
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Figure 4.2. Optimal decision tree for total data. 

 

 Figure 4.2 reveals that the data were first divided at the top of the tree according to 

the reaction temperature indicating that this variable was the most significant factor 

determining the CH4 conversion level. Temperatures that were lower than 625 °C led to 

lower CH4 conversion while temperatures that were higher than 625 °C resulted in higher 

CH4 conversion for some catalysts and operating conditions. This division was acceptable 

and consistent with the results of the experiments because of the highly endothermic nature 

of the DRM reaction. 625 °C was the split value calculated by the learning algorithm of the 

tree and it is not an exact physical limit. The same is valid for the values of all the other 

variables so they should be thought as some empirical approximations. The second 

decision point was the amount of ZrO2 support. Mixed oxide supports were commonly 

used for DRM reaction. In the study of Pompeo et al. (2009), they investigated the addition 

of small amounts of CeO2 and ZrO2 to α-Al2O3 and they found that this mixed oxide 

support improved the Ni dispersion and the metal particle reducibility [26]. If the amount 

of ZrO2 was higher than 0.045, that is equal to 4.5 wt.% of support part of the catalyst, the 

desired conversion level was possible only if the amount of CaO in the support and the 

calcination temperature of the catalyst were lower than 0.93% and 212.5 °C, respectively. 

If the amount of ZrO2 was lower than 0.045, the desired conversion level was possible only 
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if the reaction temperature was higher than 775 °C, otherwise W/F, reduction temperature 

and time, the amount of Ce, Ni and Pd metals in the catalysts, CH4 and CO2 volumetric 

feed percentages in the feed stream became significant to reach high conversion levels. 

   

 The rules deduced from the above tree were presented in Table 4.1. The shaded 

regions in the below table show the conditions required for more than 75% CH4 

conversion. There could be six options to reach the desirable conversion levels. Left hand 

side of the below table showed the most general conditions and moving along the right 

hand side of the table resulted in more specific conditions. Rule does not imply any 

theoretical rule. It describes the statement explaining the experimental pattern derived from 

the database.   

 

Table 4.1. Rules for 75-100% CH4 conversion for total data.  

 

  

 The distribution of training and testing errors among tree classes for the optimum 

(above) tree are presented in Table 4.2 and Table 4.3, respectively. Classification accuracy 

of training was 78.9%. Classification accuracy of testing (78.5%) can be considered as 

acceptable because 1445 data out of 1840, which were not seen by the model during 

training, were classified correctly. The prediction accuracies for the lowest and highest 

conversion classes are higher; it seems that the model predicts the extreme conditions 

better as expected. This is also valid for the analyses presented in the remaining part of the 
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thesis. It should be also considered that the class size of tree is relatively small, and the 

accuracy will decline if the model forced to classify the results in narrower intervals.  

 

Table 4.2. Classification accuracies of each class for training data of entire data set. 

Experimental Data Predictions for Training 

Conversion Number of data 0-50 50-75 75-100 Classification Accuracy (%) 

0-50 1459 1233 153 73 84.5 

50-75 1206 190 857 159 71.1 

75-100 1016 48 155 813 80.0 

 

Table 4.3. Classification accuracies of each class for testing data of entire data set. 

Experimental Data Predictions for Testing 

Conversion Number of data 0-50 50-75 75-100 Classification Accuracy (%) 

0-50 738 611 86 41 82.8 

50-75 592 103 420 69 70.9 

75-100 510 16 80 414 81.2 

 

4.1.2. Analysis of CH4 Conversion Results Using Ni Base Data Set 

  

The Ni base data including 3966 instances with 52 attributes were classified 

according to their CH4 conversion levels as 0-50 consisting of 1258 data, 50-75 consisting 

of 1388 data and 75-100 consisting of 1320 data. 2644 instances were used as training and 

the remaining 1322 instances were used as testing set. The optimal decision tree was found 

by starting with a large tree and then 10 levels of pruning were applied to the fully grown 

tree until the minimum test error rate was found. The training and test error rates for 

various tree sizes having the splitmin value 125 were shown in Figure 4.3. The tree with 

the minimum test error percentages was found with 43 nodes, corresponding to prune level 

6, training and test errors of 16.7% and 19.0%, respectively. The optimal decision tree was 

shown in Figure 4.4. 

 



37 

 

 

Figure 4.3. Training and test error rates of Ni base data set. 

 

 

Figure 4.4. Optimal decision tree for Ni base data.  

 

Similar to the tree of total data set, the first division was based on the reaction 

temperature. Ni was the most commonly used base metal for DRM reaction in literature 
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and in total data set because of its availability and lower price. Ni was generally used with 

other metals to increase the activity and the stability of the catalyst. The decision tree 

showed that the highest CH4 conversion level was not possible at the temperatures less 

than 625 °C. The second decision point was again reaction temperature. If the reaction 

temperature was higher than 775 °C, the desired conversion level was possible only if the 

amount of ZrO2 in the support and the amount of Co metal in the catalyst were lower than 

0.47 and 6, respectively. In the study of Luisetto et al. (2012), they found that bimetallic 

Ni-Co/CeO2 catalyst was more active and selective than the monometallic Ni/CeO2 

catalyst because Co was highly effective to prevent carbon deposition [27]. The amount of 

Co and Ni in catalyst was also important because excessive amount of them could be 

resulted in deactivation of catalyst. If the reaction temperature was lower than 775 °C, the 

desired conversion level was possible with different four ways. In order to reach the 

desired conversion level, W/F, reduction temperature, the amount of Ni and La in catalyst, 

volumetric percentages of CH4 and CO2 in the feed stream and the amount of SiO2 and γ-

Al2O3 in the support were taken into consideration. The rules deduced from the tree were 

presented in Table 4.4. 

 

Table 4.4. Rules for 75-100% CH4 conversion for Ni base data. 

 

  

 The confusion matrices belonging to the optimum Ni base tree for training and 

testing are presented in Table 4.5 and Table 4.6. Classification accuracies for both training 

and testing were higher than the entire tree as expected. Classification accuracy of testing 

(81%) can be considered as acceptable because 1071 data out of 1322 were classified 
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correctly. The general characteristics of confusion matrices are quite similar to those 

obtained for the entire data.  

 

Table 4.5. Classification accuracies of each class for training data of Ni base data set. 

Experimental Data Predictions for Training 

Conversion Number of data 0-50 50-75 75-100 Classification Accuracy (%) 

0-50 815 713 91 11 87.5 

50-75 928 87 739 102 79.6 

75-100 901 27 123 751 83.4 

 

Table 4.6. Classification accuracies of each class for testing data of Ni base data set. 

Experimental Data Predictions for Testing 

Conversion Number of data 0-50 50-75 75-100 Classification Accuracy (%) 

0-50 443 370 64 9 83.5 

50-75 460 70 339 51 73.7 

75-100 419 11 46 362 86.4 

 

4.1.3. Analysis of CH4 Conversion Results Using Co Base Data Set 

 

The Co base data including 718 instances with 39 attributes were classified 

according to their CH4 conversion levels as 0-50 consisting of 358 data, 50-75 consisting 

of 143 data and 75-100 consisting of 217 data. 479 instances were used as training and the 

remaining 239 instances were used as testing set. The optimal decision tree was found by 

starting with a large tree and then 10 levels of pruning were applied to the fully grown tree 

until the minimum test error rate was found. The training and test error rates for various 

tree sizes having the splitmin value 25 were shown in Figure 4.5. The tree with the 

minimum test error percentages was found with 21 nodes, corresponding to prune level 3, 

training and test errors of 10.2% and 10.9%, respectively. The optimal decision tree was 

shown in Figure 4.6.  
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Figure 4.5. Training and test error rates of Co base data set. 

 

 

Figure 4.6. Optimal decision tree for Co base data. 

 

 Splitmin value for this data set was decreased to 25 because of a decrease in the 

number of instances. When splitmin value and prune level were decreased, test error rate 
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decreased. Therefore determining splitmin value was important to prevent deceptive 

results.  

 

 The Co base data were also divided according to calcination temperature first. The 

decision tree showed that the highest CH4 conversion level was not possible if catalysts 

were calcined at the temperatures lower than 525 °C. Another division was done according 

to reaction temperature. If the reaction temperature was higher than 675 °C, the desired 

conversion level was possible with two ways. If the amount of Co metal in catalysts was 

lower than 6 wt.%, or if the amount of Co metal in catalysts that were calcined at the 

temperatures between 525 and 650 °C was higher than 6 wt.% , high conversion values 

could be reached. The rules deduced from the tree were presented in Table 4.7. 

 

Table 4.7. Rules for 75-100%CH4 conversion for Co base data. 

 

 

 The confusion matrices belonging to optimum Co base tree for training and testing 

are presented in Table 4.8 and Table 4.9. 430 data out of 479 were classified correctly 

during training. The success of the tree was proved using the results of testing; 213 data 

out of 239 (89.1%) were classified correctly. Again tree placed the lower and higher 

conversion data with a remarkable accuracy while it was not that successful in the middle 

range. 
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Table 4.8. Classification accuracies of each class for training data of Co base data set. 

Experimental Data Predictions for Training 

Conversion Number of data 0-50 50-75 75-100 Classification Accuracy (%) 

0-50 240 236 4 0 98.3 

50-75 93 35 55 3 59.1 

75-100 146 4 3 139 95.2 

 

Table 4.9. Classification accuracies of each class for testing data of Co base data set. 

Experimental Data Predictions for Testing 

Conversion Number of data 0-50 50-75 75-100 Classification Accuracy (%) 

0-50 118 113 4 1 95.8 

50-75 50 16 33 1 66.0 

75-100 71 1 3 67 94.4 

 

 

4.1.4. Analysis of CH4 Conversion Results Using Pt Base Data Set 

 

The Pt base data including 738 instances with 34 attributes were classified according 

to their CH4 conversion levels as 0-50 consisting of 507 data, 50-75 consisting of 155 data 

and 75-100 consisting of 76 data. 492 instances were used as training and the remaining 

246 instances were used as testing set. The optimal decision tree was found by starting 

with a large tree and then 10 levels of pruning were applied to the fully grown tree until the 

minimum test error rate was found. The training and test error rates for various tree sizes 

having the splitmin value 25 were shown in Figure 4.7. The tree with the minimum test 

error percentages was found with 27 nodes, corresponding to prune level 2, training and 

test errors of 9.3% and 12.6%, respectively. The optimal decision tree was shown in Figure 

4.8.  
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Figure 4.7. Training and test error rates of Pt base data set. 

 

 

Figure 4.8. Optimal decision tree for Pt base data. 
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possible at the temperatures less than 625 °C. The second decision point was the amount of 

SiO2 in support. The desired conversion level was possible only if the amount of SiO2 in 

the support was lower than 0.12425. The other rules deduced from the tree were presented 

in Table 4.10. 

 

Table 4.10. Rules for 75-100%CH4 conversion for Pt base data. 

 

  

 The confusion matrices belonging to optimum Pt base tree for training and testing are 

presented in Table 4.11 and Table 4.12. 446 data out of 492 were classified correctly 

during training. The success of the tree was proved using the results of testing; 215 data 

out of 246 (87.4%) were classified correctly. 

 

Table 4.11. Classification accuracies of each class for training data of Pt base data set. 

Experimental Data Predictions for Training 

Conversion Number of data 0-50 50-75 75-100 Classification Accuracy (%) 

0-50 339 324 9 6 95.6 

50-75 103 17 78 8 75.7 

75-100 50 0 6 44 88.0 
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Table 4.12. Classification accuracies of each class for testing data of Pt base data set. 

Experimental Data Predictions for Testing 

Conversion Number of data 0-50 50-75 75-100 Classification Accuracy (%) 

0-50 168 160 6 2 95.2 

50-75 52 13 34 5 65.4 

75-100 26 0 5 21 80.8 

 

 

4.1.5. Analysis of CH4 Conversion Results Using Wet Impregnation Method Data Set 

 

Wet impregnation method was commonly used catalyst preparation technique for 

DRM reaction. The wet impregnation base data including 3084 instances with 49 attributes 

were classified according to their CH4 conversion levels as 0-50 consisting of 1100 data, 

50-75 consisting of 1065 data and 75-100 consisting of 919 data. 2056 instances were used 

as training and the remaining 1028 instances were used as testing set. The optimal decision 

tree was found by starting with a large tree and then 10 levels of pruning were applied to 

the fully grown tree until the minimum test error rate was found. The training and test error 

rates for various tree sizes having the splitmin value 100 were shown in Figure 4.9. The 

tree with the minimum test error percentages was found with 39 nodes, corresponding to 

prune level 3, training and test errors of 13.6% and 15.1%, respectively. The optimal 

decision tree was shown in Figure 4.10.  
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Figure 4.9. Training and test error rates of wet impregnation base data set. 

 

 

Figure 4.10. Optimal decision tree for wet impregnation base data. 

 

Similar to the tree of total, Ni and Pt base data sets, the first division was done 

according to the reaction temperature. The decision tree showed that the highest CH4 

conversion level was not possible at the temperatures less than 625 °C. The second 
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decision point was W/F value. If the W/F value was lower than 2.11, the desired 

conversion level was possible only if the amount of ZrO2 in the support was lower than 

0.86 and the calcination time of catalyst was higher than 5.5 hours. If the W/F value was 

higher than 2.11, the desired conversion level was possible with four different ways. In 

order to reach the desired conversion level, the reaction temperature, W/F, the amount of 

Ni, Pd and La in catalyst, reduction temperature and volumetric percentages of CH4 in the 

feed stream were taken into consideration. The rules deduced from the tree were presented 

in Table 4.13. 

 

Table 4.13. Rules for 75-100%CH4 conversion for wet impregnation base data. 

 

 

 The distribution of training and testing errors of the optimum tree belonging to wet 

impregnation base data set are presented in Table 4.14 and Table 4.15, respectively. 

Classification accuracy of training was 86.4%. Classification accuracy of testing (85%) can 

be considered as acceptable because 874 data out of 1028 were classified correctly. 
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Table 4.14. Classification accuracies of each class for training data of wet impregnation 

base data set. 

Experimental Data Predictions for Training 

Conversion Number of data 0-50 50-75 75-100 Classification Accuracy (%) 

0-50 741 668 69 4 90.1 

50-75 719 57 610 52 84.8 

75-100 596 15 82 499 83.7 

 

Table 4.15. Classification accuracies of each class for testing data of wet impregnation 

base data set. 

Experimental Data Predictions for Testing 

Conversion Number of data 0-50 50-75 75-100 Classification Accuracy (%) 

0-50 359 323 35 1 90.0 

50-75 346 36 288 22 83.2 

75-100 323 13 47 263 81.4 

 

4.1.6. Analysis of H2/CO Results Using Entire Data Set 

 

The H2/CO ratio base data including 2323 instances with 58 attributes were classified 

according to their H2/CO ratios as 0-0.9 consisting of 1574 data, 0.9-2 consisting of 741 

data and 2-3.3 consisting of 8 data. These classes were created depending on the objective 

of DRM reaction. The H2/CO ratio is important for further use and it should be equal to or 

less than 1 to use in Fischer-Tropsch synthesis and in the production of formaldehyde, 

polycarbonates or methanol. The main advantage of DRM to steam reforming of methane 

is that DRM produces high purity syngas containing little CO2 with H2/CO≤1 so there is no 

need to remove CO2 [1]. Therefore higher H2/CO ratio is not preferred for DRM.  1549 

instances were used as training and the remaining 774 instances were used as testing set. 

The optimal decision tree was found by starting with a large tree and then 10 levels of 

pruning were applied to the fully grown tree until the minimum test error rate was found. 

The training and test error rates for various tree sizes having the splitmin value 150 were 

shown in Figure 4.11. The tree with the minimum test error percentages was found with 27 

nodes, corresponding to prune level 1, training and test errors of 11.6% and 14.1%, 

respectively. The optimal decision tree was shown in Figure 4.12.  
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Figure 4.11. Training and test error rates of H2/CO base data set. 

 

 

Figure 4.12. Optimal decision tree for H2/CO base data. 

 

Figure 4.12 reveals that the first division was done according to the value of W/F. 
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prepared by the sol-gel method at the leaf node. If W/F value was higher than 3.17, second 

division was done according to the reaction temperature. If the reaction temperature was 

higher than 775 °C, 0.9-2 interval was possible only if the catalysts were not prepared by 

incipient to wetness impregnation method. If the reaction temperature was lower than 775 

°C, volumetric percentage of CH4, reduction temperature and the amounts of Pt and Sr 

metals in catalysts became significant to reach 0.9-2 ratio value. The rules deduced from 

the tree were presented in Table 4.16. 

 

Table 4.16. Rules for 0.9-2 H2/CO values for H2/CO base data. 

 

 

  

 The confusion matrices belonging to optimum H2/CO base tree for training and 

testing are presented in Table 4.17 and Table 4.18. Class imbalance problem can be seen in 

these matrices obviously. The other two classes dominated the class of 2-3.3 because 2-3.3 

class had only 8 instances. And also this class was created for the chemical issues because 

purification process is needed for further use if H2/CO ratio is higher than 2. 1369 data out 

of 1549 were classified correctly during training. 665 data out of 774 (85.9%) were 

classified correctly during testing.  
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Table 4.17. Classification accuracies of each class for training data of H2/CO data set. 

Experimental Data Predictions for Training 

H2/CO Number of data 0-0.9 0.9-2 2-3.3 Classification Accuracy (%) 

0-0.9 1063 976 87 0 91.8 

0.9-2 482 89 393 0 81.5 

2-3.3 4 3 1 0 0.0 

 

Table 4.18. Classification accuracies of each class for testing data of H2/CO data set. 

Experimental Data Predictions for Testing 

H2/CO Number of data 0-0.9 0.9-2 2-3.3 Classification Accuracy (%) 

0-0.9 511 464 47 0 90.8 

0.9-2 259 58 201 0 77.6 

2-3.3 4 3 1 0 0.0 

 

 

4.2. Artificial Neural Network Analyses for Input Significance and Prediction 

 

4.2.1. Determining the Optimal Neural Network Topology 

 

The optimum neural network topology was determined by using the value of testing 

RMSE and R
2
 because they showed the ability of network to predict the unseen data. The 

RMSE of training was calculated by the error obtained between the experimental data 

points and the model predictions on the total data. The RMSE of testing was determined by 

4-fold cross validation method as described in Chapter 3. Tangent sigmoid function was 

used as transfer function so the inputs and targets were normalized between -1 and +1. 

Trainlm and trainbr were used as training algorithms for training and testing, respectively.  

 

Several network topologies were tested and compared with their RMSE values of 

training and testing. Only the results of one hidden layer networks are presented here 

because they produced almost the same results with two hidden layers. The training and 

testing errors of 21 networks with the increasing number of neurons in the first hidden 

layer are compared in Figure 4.13. The notation of a-b-c, the number in the x-axis, is used 

to label the neural networks. The meaning of this notation is that 63 input variables 
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introduced through the increasing number of neurons ranged from 10 to 30 in the first 

hidden layer and 1 output variable (CH4 conversion). Figure 4.13 shows that increasing the 

number of neurons in the hidden layer leads to the decrease in the training RMSE value as 

expected. However, testing RMSE value decreases first with the increasing network size 

and then starts to increase after reaching a minimum because of the overfitting. The 

network structure of 63-20-1 exhibits the minimum RMSE of testing (8.6622) with a 

considerably low RMSE of training (4.2278) so this structure was used in the remaining 

part of the study.  

 

 

Figure 4.13. Training and testing errors of different neural network topologies. 

 

The experimental versus predicted CH4 conversion plots of the optimal network (63-

20-1) for both training and testing are given in Figure 4.14, which indicates considerably 

successful fittings. The RMSE and corresponding R
2
 values of training and testing are also 

quite satisfactory.  
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Figure 4.14. Experimental versus predicted CH4 conversion for: (a) training, (b) testing 

data by the optimal neural network topology. 

 

4.2.2. Analyzing the Input Significance 

 

The relative significances of catalyst design and operational variables on CH4 

conversion were analyzed using the optimal neural network topology. The relative 

importance of input variables was calculated by the method of the change of root mean 

square error that is suitable for both categorical and continuous attributes. One of the input 

variables such as metal types removed from the data set and the network was trained with 

the remaining input variables. The RMSE value of the model calculated in the absence of 

these metals (8.59) was compared with the RMSE value calculated in the presence of all 

inputs (4.28). This procedure was repeated for all input variables. Finally, the difference 

between the RMSE values was used as the indicator of the relative input significance. The 

results are shown in Table 4.19. The catalyst design variables were found to have 45% 

relative significance while operational variables were found to have 55% relative 

significance. Operating variables were more important than the catalyst design variables, 

and also reaction temperature was found to be the most important factor affecting the CH4 

conversion level. This result was consistent with the nature of DRM reaction. After 

reaction temperature, weight percentages of metal types were found to be the second most 

significant variable with 20.6% relative significance and it was followed by support types 
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with 18.1% relative significance. And also they were found to be the most important 

variables for effective catalyst design. Feed compositions especially the CH4/CO2 ratio and 

W/F were also important to reach desired conversion level. 

 

Table 4.19. Relative significances of input variables for DRM reaction. 

Input Variable RMSE 

(found) 

RMSE 

difference
* 

Relative 

Significance % 

Group 

Significance % 

Metal 8.59 4.31 20.6 Catalyst Design 

Variables 

45 

Support 8.07 3.79 18.1 

Reduction 

Conditions  

4.92 0.64 3.1 

Calcination 

Conditions 

4.72 0.44 2.1 

Catalyst 

Preparation Method 

4.52 0.24 1.1 

Reaction 

Temperature 

12.84 8.56 40.9 Operational 

Variables 

55 Feed Compositions 5.61 1.32 6.3 

W/F 5.49 1.21 5.8 

TOS 4.68 0.40 1.9 

*
 the difference between RMSE without the variable or variables and RMSE of the original model (4.28) 

 

It should be considered that the relative significances of the input variables were 

valid within the range of the total data set. Therefore the results should be used as 

suggestions to reach higher CH4 conversion level, not an absolute rule.  

 

4.2.3. Analyzing the Results of Unseen Papers 

 

The prediction ability of optimal neural network structure was tested on experiments, 

which were not seen by the network during training. For this, the data from the same 

experiments were identified and collected in the same group first resulting 753 independent 

experiments in 101 papers. One experiment from 753 was removed and network was 

trained with the remaining experiments in order to predict the outputs of the removed 
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experiment. This procedure was repeated for all experiments. For each experiment RMSE 

and R
2
 values were calculated as the indicator of the prediction ability of the network. The 

predicted and the experimental values of CH4 conversion corresponding experiments in the 

same paper were collected together to calculate the RMSE and R
2
 value of that paper. As a 

result, the RMSE values of 590 out of 753 experiments and 65 out of 101 papers had lower 

than 15 and the R
2
 values of 46 out of 101 papers had higher than 0.5. The performances of 

the optimal neural network in predicting the results of the papers are shown in Table 4.20, 

where successfully predicted results are written with red color. Plots of predicted versus 

experimental CH4 conversions for the most successfully predicted six publications are 

shown in Figure 4.15. In addition to this, although some papers had RMSE values lower 

than 15, their R
2
 values were lower than 0.5 and vice versa. 

 

Table 4.20. Prediction errors of each publication for dry reforming of methane. 

Article Number 

of Data 

Number of 

Experiments 

RMSE Abs 

Error 

R
2 

[10] (Xu et al., 2012) 45 10 6.2 4.6 0.89 

[28] (Al-Fatesh et al., 2014) 165 25 4.7 3.5 0.95 

[29] (Yang et al., 2010) 9 9 11.7 8.1 0.00 

[30] (Therdthianwong et al., 2008) 12 10 20.4 17.1 0.16 

[31] (Zanganeh et al., 2013) 40 10 8.9 7.3 0.83 

[32] (Li et al., 2014) 5 1 9.6 8.8 0.73 

[16] (Zhang et al., 2008) 30 3 6.2 4.9 0.00 

[33] (Pawelec et al., 2007) 24 12 15.2 10.3 0.00 

[34] (Rezaei et al., 2008) 20 4 12.1 9.4 0.58 

[35] (Meshkani and Rezaei, 2010) 16 4 23.3 18.3 0.00 

[19] (Yasyerli et al., 2011) 131 13 4.3 3.6 0.79 

[36] (San-José-Alonso et al., 2009) 10 5 13.3 10.2 0.00 

[18] (Xu et al., 2010) 16 4 9.4 6.5 0.86 

[37] (Sengupta et al., 2014) 24 4 12.6 10.8 0.00 

[38] (Meili et al., 2006) 28 7 8.2 5.6 0.40 

[39] (Zhang et al., 2005) 32 3 31.3 27.6 0.00 

[40] (Lv et al., 2012) 9 1 11.9 11.5 0.00 

[41] (Pan et al., 2008) 24 3 6.3 4.0 0.80 

[42] (Nandini et al., 2005) 251 21 9.5 8.2 0.53 

[43] (Barroso-Quiroga and Castro-Luna, 2010) 46 6 21.9 18.6 0.00 

[44] (Kambolis et al., 2010)  38 8 11.2 8.0 0.00 
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Table 4.20. Prediction errors of each publication for dry reforming of methane (cont.). 

[45] (Alipour et al., 2014) 104 12 8.9 7.1 0.48 

[13] (García et al., 2009) 40 4 6.1 5.2 0.00 

[46] (Meshkani et al., 2014) 106 10 7.9 6.2 0.70 

[47] (Alvar and Rezaei, 2009) 20 4 8.4 7.6 0.80 

[48] (Hadian and Rezaei, 2013) 25 6 10.1 8.0 0.74 

[49] (Chang et al., 2006) 6 6 5.6 4.4 0.00 

[50] (Moniri et al., 2010) 36 5 15.0 12.6 0.65 

[51] (Al-Fatesh and Fakeeha, 2012) 48 13 16.4 12.1 0.69 

[52] (García-Diéguez et al., 2010) 30 5 6.5 5.3 0.89 

[53] (García-Diéguez et al., 2010) 6 3 10.9 8.8 0.65 

[14] (Xu et al., 2012) 99 22 13.3 10.2 0.47 

[54] (Yao et al., 2013) 20 4 4.4 3.4 0.96 

[55] (Zanganeh et al., 2014) 9 3 28.8 18.7 0.00 

[27] (Luisetto et al., 2012) 53 6 3.7 3.3 0.91 

[56] (Zhang et al., 2008) 47 10 8.4 5.4 0.86 

[57] (Özkara-Aydınoğlu and Aksoylu, 2011) 62 7 25.8 20.5 0.15 

[58] (Rezaei et al., 2009) 10 2 3.9 3.7 0.95 

[59] (Al-Fatesh, 2013) 119 14 2.8 2.0 0.97 

[60] (Wang et al., 2013) 110 7 12.3 9.7 0.32 

[61] (Liu et al., 2010) 28 4 22.8 16.1 0.00 

[62] (Tang et al., 2014) 70 14 16.3 11.4 0.67 

[63] (Naeem et al., 2014) 15 6 13.8 9.2 0.74 

[26] (Pompeo et al., 2009) 30 6 12.4 11.1 0.65 

[64] (Ranjbar and Rezaei, 2012) 123 13 4.5 3.8 0.88 

[65] (Wang et al., 2009) 9 1 33.7 29.0 0.00 

[66] (Meshkani and Rezaei, 2011) 147 10 17.5 12.5 0.00 

[67] (Hadian et al., 2012) 111 10 4.8 4.0 0.79 

[68] (Bellido and Assaf, 2009) 144 4 40.2 35.7 0.00 

[69] (Pompeo et al., 2005) 9 3 5.3 4.9 0.81 

[70] (Fajardo et al., 2005) 14 2 6.0 5.3 0.53 

[2] (Alipour et al., 2014) 128 14 5.0 3.9 0.85 

[71] (Al-Fatesh et al., 2011) 76 20 4.3 3.7 0.97 

[72] (Juan-Juan et al., 2006) 44 8 8.0 6.9 0.00 

[73] (Halliche et al., 2005) 12 1 27.0 26.2 0.00 

[74] (Fakeeha et al., 2013) 24 8 7.7 6.8 0.91 

[75] (Vafaeian et al., 2013) 24 4 16.2 14.0 0.34 

[76] (Takanabe et al., 2005) 85 7 15.4 11.1 0.00 
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Table 4.20. Prediction errors of each publication for dry reforming of methane (cont.). 

[20] (Serrano-Lotina and Daza, 2014) 20 3 15.4 8.7 0.60 

[77] (Zanganeh et al., 2013) 24 2 16.9 14.1 0.00 

[78] (Abdollahifar et al., 2014) 6 1 7.5 6.1 0.93 

[79] (Gonzaléz et al., 2013) 174 9 14.2 10.9 0.00 

[80] (Khajenoori et al., 2014) 81 12 5.3 4.2 0.87 

[81] (Xu et al., 2009) 140 5 10.1 9.0 0.81 

[82] (Qian et al., 2014) 54 6 3.8 3.0 0.88 

[83] (Luengnaruemitchai and Kaengsilalai, 2008) 48 3 19.3 16.0 0.00 

[84] (Jóźwiak et al., 2005) 7 7 7.7 6.5 0.00 

[85] (Taufiq-Yap et al., 2013) 162 12 6.0 3.0 0.90 

[86] (Wu et al., 2014) 70 7 14.7 8.2 0.83 

[87] (Ocsachoque et al., 2011) 9 9 7.5 6.2 0.41 

[88] (Bellido et al., 2009) 144 4 36.2 32.2 0.00 

[89] (Nagaraja et al., 2011) 25 5 8.2 6.4 0.85 

[90] (Razaei et al., 2008) 75 6 7.6 6.7 0.87 

[91] (Al-Fatish et al., 2009) 40 11 26.6 16.9 0.00 

[92] (Hou et al., 2006) 36 20 28.4 21.3 0.00 

[93] (Habibi et al., 2014) 119 8 5.2 4.5 0.81 

[94] (Newnham et al., 2012) 20 1 21.1 19.0 0.00 

[95] (Damyanova et al., 2011) 18 2 13.8 10.2 0.37 

[96] (García-Diéguez et al., 2010) 8 4 7.7 6.6 0.51 

[6] (Tankov et al., 2014) 100 10 7.6 6.1 0.36 

[97] (Mirzaei et al., 2014) 91 12 18.6 16.5 0.12 

[98] (Nematollahi et al., 2014) 16 3 7.4 6.0 0.90 

[99] (Fakeeha et al., 2014) 28 14 4.1 3.3 0.98 

[100] (Lee et al., 2014) 20 8 30.0 21.7 0.00 

[101] (Shi and Zhang, 2012) 30 6 30.4 24.9 0.00 

[102] (Ballarini et al., 2012) 12 6 34.0 32.7 0.00 

[103] (Sarusi et al., 2011) 70 10 2.3 1.7 0.00 

[104] (Shang et al., 2011) 52 15 9.3 5.7 0.00 

[105] (Nematollahi et al., 2011) 25 5 8.6 7.3 0.84 

[106] (José-Alonso et al., 2011) 5 5 22.0 17.8 0.00 

[11] (Özkara-Aydınoğlu and Aksoylu, 2010) 78 8 28.7 24.7 0.00 

[107] (Reddy et al., 2010) 160 5 37.2 35.6 0.00 

[108] (Damyanova et al., 2009) 96 6 7.1 4.8 0.00 

[15] (Özkara-Aydınoğlu et al., 2009) 84 12 21.0 16.3 0.00 

[109] (Xiancai et al., 2008)  12 4 9.1 6.2 0.00 
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Table 4.20. Prediction errors of each publication for dry reforming of methane (cont.). 

[110] (Rui et al., 2007) 3 3 20.8 19.8 0.00 

[111] (Rezaei et al., 2006) 165 20 5.8 4.3 0.91 

[112] (Yang and Papp, 2006) 18 2 21.0 17.0 0.24 

[113] (Ballarini et al., 2005) 40 7 17.4 12.6 0.24 

[114] (Bouarab et al., 2005) 24 4 22.2 19.6 0.00 

[17] (Takanabe et al., 2005) 94 10 19.5 16.1 0.23 
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Figure 4.15. Experimental vs. predicted CH4 conversion for: (a) Fakeeha et al. [99], (b) Al-

Fatesh et al. [71], (c) Yao et al. [54], (d) Rezaei et al. [58], (e) Abdollahifar et al. [78], (f) 

Luisetto et al. [27]. 
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4.2.4. Analyzing the Effects of Catalyst Variables 

  

 The effect of the weight percentage of Ni was studied by Xu et al. (2012). This paper 

was one of those used to test the prediction of variable effects. Ni was used with the weight 

percentages of 3, 5, 7, 10 and 15% over ordered mesoporous alumina having large specific 

surface area, big pore volume, uniform pore size and high thermal stability. The conversion 

values were observed in different reaction temperatures ranged from 600 to 800 with given 

reaction conditions (CH4/CO2=1, W/F=4 mgmin/ml (=15000ml/hgcat) and TOS= 60 min). 

The conversion of CH4 increased until reached to 5 wt.%Ni content for all the temperature 

ranges. Increasing the Ni content up to 15 wt.% resulted in slight improvement in the CH4 

conversion. 5 wt.%Ni showed the better catalytic performance for DRM reaction. The 

RMSE and corresponding R
2
 values of the experiments were 8.4-0.89, 4.1-0.96, 1.7-0.99, 

2.5-0.98, 6.3-0.88, respectively. The experimental results in Figure 4.16 are quite close to 

the neural network predictions. [10].    
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Figure 4.16. The effect of Ni loading on CH4 conversion on meso-Al2O3: (a) 3 wt.%, (b) 5 

wt.%, (c) 7 wt.%, (d) 10 wt.% and (e) 15 wt.% [10]. 

 

The effect of calcination temperature on CH4 conversion was investigated for TiO2-

SiO2 supported Ni catalysts through the work of Zhang et al. (2008). Reaction conditions 

were T=700 °C, CH4/CO2=1, W/F=1.67 mgmin/ml (=36000ml/hgcat). They reported that 

the catalyst calcined at 700 °C showed better activity and stability than the catalyst 

calcined at 550 °C. The RMSE values of the experiments were 0.8 for the catalyst calcined 

at 550 °C and 8.7 for the catalyst calcined at 700 °C. If the calcination temperature was 

raised to 850 °C a large amount of coke deposited on the catalyst and led to plugging of the 

reactor in 2 h of the reaction. The experimental results in Figure 4.17 are quite close to the 

neural network predictions [16].    
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Figure 4.17. Effect of calcination temperature on CH4 conversion for Ni/TiO2-SiO2 

catalyst: (a) calcined at 550 °C and (b) calcined at 700 °C [16]. 

 

In the study of García-Diéguez et al. (2010), monometallic (Ni and Pt) and bimetallic 

(PtNi) catalysts supported on γ-Al2O3 were used to comprehend the effect of second metal 

addition on CH4 conversion. An important difference between CH4 conversion values for 

any of the PtNi catalysts were not observed in the temperature range of 400-600 °C. The 

conversion values rose between   600-700 °C. The bimetallic PtNi catalyst had a good 

performance in the DRM reaction at 700 °C in terms of stability and activity because 

addition of Pt prevented coke deposition and improved the stability and activity of Ni-

based catalysts for DRM reaction. The experimental results in Figure 4.18 are quite close 

to the neural network predictions (the RMSE and corresponding R
2
 values of the 

experiments were 3.5-0.97, 6.1-0.90, 3.9-0.97, 7.5-0.88, respectively) [52]. 
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Figure 4.18. Effect of base metal and the amount of second metal addition on CH4 

conversion: (a) 10 wt.%Ni, (b) 0.4 wt.%Pt-10 wt.%Ni, (c) 4 wt.%Pt-10 wt.%Ni and (d) 4 

wt.%Pt  [52]. 

 

Finally, the effect of Ce/Zr ratio in the support was investigated by Xu et al. (2012). 

Ni was used as base metal with a fixed weight percentage (7%). Different Ce/Zr ratios 

were used and the change of CH4 conversions was observed with the temperature ranged 

from 600-800 °C. The catalyst supported on 50/50 Ce/Zr ratio had higher catalytic activity 

and better catalytic stability because the activation of CO2 was promoted by the redox 

property of mesoporous CeZr support. The experimental results in Figure 4.19 are quite 

close to the neural network predictions (the RMSE values of the experiments were 12.8, 

11.2, 12.4, 6.7, 6.3, 5.9, respectively) [14]. 
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Figure 4.19. Effect of Ce/Zr ratio in the support on CH4 conversion [14].  
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5. CONCLUSIONS AND RECOMMENDATIONS 

 

 

5.1. Conclusions 

 

 The aim of this thesis was to extract knowledge from experimental data using data 

mining techniques. The experimental data for DRM reaction were collected from the 

papers published between the years of 2005-2014. The final data set consisted of 101 

papers including 5521 experimental data with 63 attributes and 3 output variables (CH4 

conversion, CO2 conversion and H2/CO ratio; CO2 conversion was not used in analyses). 

Two different data mining techniques that are decision trees and artificial neural networks 

were applied to the final data set to extract valuable knowledge for DRM reaction.  

 

Total data set, Ni base, Co base, Pt base and wet impregnation base data sets were 

analyzed by decision trees classifying the CH4 conversion values. Apart from these trees, 

H2/CO results were also used as the output values for decision tree classification of total 

data. The optimal decision trees were found by using different splitmin and prune values. 

For each splitmin values, 10 levels of pruning were applied to the large tree until the 

minimum test error rate was found. The optimal tree structure for total data set was found 

with the splitmin value of 150 and pruning level of 5. This tree had 39 nodes with training 

and test error of 21.1% and 21.5%, respectively. The tree of Ni base data having splitmin 

value of 125 and pruning level of 6 had 43 nodes with training and test error of 16.7% and 

19.0%, respectively. The tree of Co base data having splitmin value of 25 was found with 

21 nodes corresponding to the prune level of 3, training and test errors of 10.2% and 

10.9%, respectively. The splitmin value, number of nodes with corresponding prune level, 

training and test errors for Pt base tree were 25, 27-2, 9.3% and 12.6%, respectively. The 

splitmin value, number of nodes with corresponding prune level, training and test errors for 

wet impregnation base tree were 100, 39-3, 13.6% and 15.1%, respectively. First division 

for these trees was done by reaction temperature except for Co base tree (first division was 

done by calcination temperature for this case). The division by reaction temperature was 

consistent with the results of input significance and endothermicity of the reaction. The 

optimal tree structure for the data set of H2/CO outputs was found with the splitmin value 
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of 150 and pruning level of 1. This tree had 27 nodes with training and test error of 11.6% 

and 14.1%, respectively. The confusion matrices were formed in order to comprehend the 

distribution of correctly and incorrectly predicted data among the classes. The higher and 

lower conversion levels seem to be placed to the correct classes more accurately compared 

to the middle level.    

   

In the ANN analysis, trainlm and trainbr were used as training algorithms for training 

and testing, respectively. Tangent sigmoid function was used as activation function. 

Various number of neurons in one hidden layer were tried to find optimal neural network 

structure.  The prediction ability of test data is more valuable than the prediction ability of 

training data so the optimal neural network topology was selected using the RMSE value 

of testing that was calculated by 4-fold cross validation technique. 20 neurons in one 

hidden layer produced the best result with the RMSE value of 8.66 in testing.  

 

The input significance results showed that the catalyst preparation and operating 

variables were found to be effective on the activity of catalysts. The relative significances 

of the preparation variables from the most significant to the lowest one were found as 

metal types and amount, support type, reduction conditions, calcination conditions and 

catalyst preparation methods. Reaction temperature was the most important variable (with 

the relative significance of 40.9%) followed by feed compositions, W/F and TOS. It should 

also be stated that operational variables (55%) had higher group significance than the 

catalyst design variables (45%) within the range of total data set. 

 

The prediction abilities of the optimal model were firstly tested on each experiment. 

590 out of 753 experiments (78.4%) were predicted with RMSE values lower than 15. 

Finally, the performance of the model was tested on each article. The results of 46 out of 

101 papers (45.5%) were predicted with R
2
 values higher than 0.5 and the RMSE values of 

65 out of 101 papers (64.4%) had lower than 15.  

 

As a result, decision tree, as a widely used classification technique because of its 

simplicity and interpretability, could be also converted into a set of rules and these rules 

easily provide knowledge extraction in this work. On the other hand, the results of neural 

network were not easily interpreted because of the complexity of its structure. Despite all 
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its disadvantages however, artificial neural networks seemed to have some prediction 

ability for DRM reactions, hence it could be used to extract knowledge from published 

experimental data and used it to plan the future experiments. 

 

5.2. Recommendations 

 

The following recommendations can be made based on the results obtained from this 

thesis to improve the analyses: 

 

 The data set can be extended collecting data from the papers published earlier than 

2005 and later than 2014. 

 There may be additional attributes that were not reported by publishers. 

 In classifying with decision tree analysis, class distribution was imbalanced. This can 

produce some problems for existing algorithm.  

 Postprocessing techniques can be applied to the decision tree results in order to 

integrate only valid results into information.  

 Parameter optimization for ANN can be done using other methods except for 4-fold 

cross validation technique. Although leave one out cross validation technique is 

computationally expensive and takes more time; however, the optimized parameters 

using this technique may produce better results in ANN analysis. 

 Instead of applying neural network to the data set directly, various preprocessing 

techniques can be applied to the total data set. Clustering analysis of the total data set 

is highly recommended to describe data set firstly. And the results obtained from the 

clustering analysis can be used as inputs for other algorithms. 

 Neural networks can be applied to more than one output. Therefore the conversion of 

CH4 together with CO2 can be used as outputs in a model when the reaction 

mechanism is taken into account. 

 For DRM reaction, results of generally conducted experiments are shown in the 

figures as methane conversion versus time on stream, reaction temperature, gas 

hourly space velocity and CH4/CO2 ratio. Therefore database can be separated in 

terms of these four types of experiments and each type of experiments can be 

modeled separately. For example, one model can be constructed using the data of 

methane conversion with changing reaction temperature. 
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 Other data mining techniques such as support vector machine and decision tree 

regression can be used for modeling. 
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