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M.S., Electrical and Electronics Engineering, Boğaziçi University, 2007
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ABSTRACT

MODELLING THE POPULATION DYNAMICS IN A CELL

CULTURE AT TWO DIFFERENT SCALES

In this thesis the development of three novel models at two different scales are

presented for population dynamics in cell cultures. Biological knowledge and empiri-

cal observations are used to design an agent-based discrete-time model at meso-scale,

which then serves as a simulation environment and provides the necessary insight for

lumped-parameter models at macro-scale. After demonstrating on basis of meso-scale

simulation results that the flask-wide distribution of the population does not consis-

tently become heterogeneous it is concluded that the population dynamics can also be

represented at macro-scale. Two continuous time, differential equation-based, compact

macro-scale models are developed. Both macro-scale models can be parameter-tuned

and employed for predicting the evolution of the population size for given uniformly

distributed initial populations. The thesis provides a procedure for estimating the pa-

rameter values of the macro-scale models via some simple tests to be conducted on

the cell culture at hand. How well the macro-scale models can predict the evolution

of the population size in comparison to the Meso-scale Model is evaluated on basis

of four practically significant criteria. Furthermore; the robustness of the macro-scale

models with respect to different initial energy distributions is evaluated. Finally, a

philosophical perspective about modelling dynamic phenomena at different scales and

how to deal with modelling challenges are presented.
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ÖZET

HÜCRE KÜLTÜRÜNDE NÜFUS DİNAMİĞİNİN İKİ

FARKLI ÖLÇEKTE MODELLENMESİ

Bu tezde, hücre kültürlerindeki nüfus dinamiğini iki farklı ölçekte betimleyen üç

yeni modelin nasıl geliştirildiği sunulmaktadır. Biyolojik bilgi ve deneysel gözlemler

kullanılarak, mezo-ölçekli ayrık zamanlı ve etmene dayalı bir model tasarlanmıştır.

Bir benzetim ortamı işlevi gören bu model, makro-ölçekli toplu parametreli model-

lerin oluşturulması için gereken anlayışı sağlamıştır. Mezo-ölçekli modelin uzaysal

dağılımının zaman içinde giderek daha heterojen hale gelmediği mezo-ölçekli ben-

zetim sonuçlarıyla gösterildikten sonra, nüfus dinamiğinin makro-ölçekte de temsil

edilebileceği sonucuna varılmıştır. İki adet sürekli zamanlı, diferansiyel denkleme dayalı

ve kompakt makro-ölçekli model geliştirilmiştir. Bu iki makro-ölçekli model, parame-

treleri kestirildikten sonra, homojen dapılmış belli başlangıç nüfusundan yola çıkılarak

nüfusun nasıl değişeceğini kestirmek için kullanılabilir. Tezde, eldeki hücre kültürü

üzerinde yapılacak bazı basit testlerle makro-ölçekli modellerin parametrelerinin nasıl

kestirileceğine dair bir prosedür sunulmuştur. Makro-ölçekli modellerin nüfusun değişimini

Mezo-ölçekli Modele kıyasla ne kadar iyi öngörebildiği, pratik açıdan anlamlı dört kriter

üzerinden değerlendirilmiştir. Ayrıca makro-ölçekli modellerin enerji dağılımlarındaki

farklılıklara karşı ne ölçüde gürbüz olduğu belirlenmiştir. Son olarak, dinamik olguların

farklı ölçeklerde modellemesine dair felsefi bir bakış açısı ve modellemede karşılaşılan

zorluklarla nasıl başedildiği anlatılmıştır.
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1. INTRODUCTION

1.1. Overview

The aim of this thesis is to set out a modelling inquiry about a biological phe-

nomenon by mathematical representation of observations at different organisational

levels. For this purpose, we need to go back and forth between these different levels

to develop compact analytical models. The contribution of this thesis consists of three

models: a deterministic agent-based Meso-scale Model which is an improved version of

an earlier work by Aksu [3], and two deterministic analytical macro-scale models which

describe the cell population dynamics at flask level. In order to develop such macro-

scale models, one still needs some insight about lower-scale dynamics. The Meso-scale

Model has been developed first as a thought-experiment to fulfil this requirement and

then has became a comprehensive simulation environment which allows the observation

of cell-level dynamics.

In this thesis, the object of modelling inquiry is population dynamics in in-vitro

cell cultures. A cell culture is the process of the removal of cells from an animal or plant

and their subsequent growth in a favourable artificial environment [4]. Tissues can be

dissociated into their component cells, from which individual cell types can be purified

and used for biochemical analysis or for the establishment of cell cultures [1]. Many

biological and medical laboratories use cell cultures in their studies, some examples

of which are effects of new drugs, cancer research, impact of diseases on cells, gene

therapy, vaccine production etc. Due to practical concerns, the study is confined to

eukaryotic cell cultures. An analytic model of the population dynamics in cell cultures

can be helpful in experiment design or in some cases might even let the scientist to

reach some useful conclusions without conducting any real experiment. Lastly, it is

not inaccurate to claim that the analytical models can serve as an inspirational tool

for the generation of new Anstze about phenomena under investigation.

In the specific domain of cell culture dynamics most of the studies investigate
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either the dynamics of individual cells or flask-wide population dynamics, commonly

referred to as micro-scale and macro-scale respectively. However, there exists at least

another scale that harbours dynamics worthy of scientific inquiry, namely the scale

of intracellular dynamics. Although we will not attempt to model this dynamics and

take it for granted when modelling the behaviour of individual cells, from the point of

modelling philosophy we find it important to draw attention to its existence. Thus,

in this study we will slightly diverge from the conventional terminology and refer to

three different scales: micro-scale, the level of intracellular activities; meso-scale, the

level of individual cells and their interactions; and macro-scale, the flask-wide level. In

that respect, we want to warn the reader that the” meso-scale” in this contribution

corresponds to what is commonly denoted as micro-scale in the literature.

The major contributions in this thesis as shown in Figure 1.1 can be summarised

as follows:

(i) Improvement of a formerly developed agent-based distributed meso-scale model

that mimics the population dynamics in a cell culture.

(ii) Two macro-scale analytical models (one of them being four dimensional and the

other one five dimensional) that represent the flask-wide population dynamics in

terms of macro state variables.

(iii) A heterogeneity measure is developed to investigate the evolution of clusters in

the meso-scale model.

It is also worth to denote that although the apparent aim of this thesis is the

prediction of the evolution of population size in a cell culture starting from an arbi-

trary initial value, the experience and the insight gained from the modelling challenges

throughout the thesis has provided me with an invaluable knowledge and line of thought

for future modelling inquiries.
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Figure 1.1. Major contributions of the thesis.

1.2. Literature Survey

The survey of the related literature can be mainly divided into two parts. The

first part briefly summarizes the important major steps in the history of the biological

basis of this thesis, namely cell culture studies. The second part is about the population

dynamics, especially about the modelling studies of cell cultures.

Cell culture studies date back to the last decades of 19th century. The impor-

tant landmarks in the development of cell cultures since then until the end of 20th

century are well-summarised in [5] as follows: Roux shows that embryonic chick cells

can be maintained alive in a saline solution outside the animal body (1885). Har-

rison cultivates amphibian spinal cord in a lymph clot, thereby demonstrating that

axons are produced as extensions of single nerve cells (1907). Rous induces a tumor

by using a filtered extract of chicken tumor cells, later shown to contain an RNA virus

(1910). Carrel shows that cells can grow for long periods in culture provided they

are fed regularly under aseptic conditions (1913). Earle and colleagues isolate single

cells of the L cell line and show that they form clones of cells in tissue culture (1948).

Gey and colleagues establish a continuous line of cells derived from a human cervical

carcinoma, which later become the well-known HeLa cell line (1952). Levi-Montalcini

and associates show that nerve growth factor (NGF) stimulates the growth of axons
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in tissue culture (1954). Eagle makes the first systematic investigation of the essential

nutritional requirements of cells in culture and finds that animal cells can propagate in

a defined mixture of small molecules supplemented with a small proportion of serum

proteins (1955). Puck and associates select mutants with altered growth requirements

from cultures of HeLa cells (1956). Temin and Rubin develop a quantitative assay for

the infection of chick cells in culture by purified Rous sarcoma virus. In the following

decade the characteristics of this and other types of viral transformation are established

by Stoker, Dulbecco, Green, and other virologists (1958). Hayflick and Moorhead show

that human fibroblasts die after a finite number of divisions in culture (1961). Little-

field introduces HAT medium for the selective growth of somatic cell hybrids and Kato

and Takeuchi obtain a complete carrot plant from a single carrot root cell in tissue cul-

ture (1964). Ham introduces a defined, serum-free medium able to support the clonal

growth of certain mammalian cells and Harris and Watkins produce the first hetero-

caryons of mammalian cells by the virus-induced fusion of human and mouse cells.

(1965). Augusti-Tocco and Sato adapt a mouse nerve cell tumor (neuroblastoma) to

tissue culture and isolate clones that are electrically excitable and that extend nerve

processes. A number of other differentiated cell lines are isolated at about this time,

including skeletal muscle and liver cell lines (1968). Khler and Milstein produce the

first monoclonal antibody-secreting hybridoma cell lines (1975). Sato and associates

publish the first of a series of papers showing that different cell lines require differ-

ent mixtures of hormones and growth factors to grow in serum-free medium (1976).

Wigler and Axel and their associates develop an efficient method for introducing single-

copy mammalian genes into cultured cells, adapting an earlier method developed by

Graham and van der Eb (1977). Martin and Evans and colleagues isolate and culture

pluripotent embryonic stem cells from mouse (1986). Thomson and Gearhart and their

associates isolate human embryonic stem cells (1998).

The roots of population dynamics as a scientific inquiry goes back to more than

two hundred years ago, to Malthus. In 1798, Malthus claimed that the increase in

population and resources cannot grow with the same rate and elaborated his reasoning

and one of his famous conclusions that the difference between their growth behaviour

would eventually stop the population growth with his famous work ”An Essay on the
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Principle of Population” [6]. Since then, population dynamics has grown as a huge

branch of mathematical biology, investigating how population size of a species change

with respect to time and space and how it is affected by resources, other species and its

environment with the help of various mathematical tools and approaches. Considering

that this thesis aims to develop mathematical and computational models for cell culture

populations, we should confine this literature survey only to cell culture dynamics.

Since 1960ies a wide range of approaches have been suggested in the literature

for modelling population dynamics in cell cultures. The modelling approaches in these

studies are typically based on either ordinary differential/difference equations or agent-

based models that can only be realised by computer simulations.

In meso-scale, usually agent-based models are used but there exist also some

Meso-scale Models that use differential equations as mentioned by M. A. Henson [7].

In this scale one can mention the studies of Zygourakis et al. [8] who have developed

a cellular automaton model that represents contact inhibition in anchorage-dependent

cells, and Cheng et al. [9] who describe three dimensional tissue growth including a

stochastic model of cell migration. Some other studies on cellular automaton-like mod-

els have addressed multi-cellular spheroid tumour growth [10], proliferation dynamics

of populations of migrating contact-inhibited cells [11], static and dynamic environ-

ments related to cell migration [12], and stochastic representation of cell migration,

proliferation and differentiation [13].

On the other hand, macro-scale models involve almost exclusively differential or

difference equations. M.A. Henson’s survey paper [7] summarises different differen-

tial or difference equation-based approaches to cell population modelling in microbial

cultures comprised of heterogeneous cells that differ in terms of their size and intra-

cellular concentrations. Henson mainly distinguishes between two approaches, namely

population balance equations which are characterized by one or two variables (usually

cell age or cell mass) and cell ensemble models which use different state variables for

concentrations of various species in all cellular processes. A. Ducrot et al. present a

model to describe the spatial density and movement of cells in a mono-layer cell cul-
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ture based on quiescence and contact inhibition phenomena [14]. There are also other

studies that describe either a specific phenomenon in cellular activity [15] or propose

general models for population dynamics in a cell line [16–19]. Finally, it is worth men-

tioning that P. Auger et al. review the transformation of a complex system with many

variables to a reduced model with fewer parameters from a purely mathematical point

of view, and present aggregation methods for ordinary differential equations, partial

differential equations and discrete models [20].

However, there are only a few studies that include both agent-based and dif-

ferential equation-based models. R. Serra et al. have combined these two modelling

methods to describe the transformation foci in cell cultures, i.e. an in vitro analogue

of tumors [21]. C. A. Chung et al. have developed hybrid mathematical models where

the cell proliferation, aggregation, contact inhibition and random walk are described

by a discrete cellular automaton, while the transport of nutrient is represented with

partial differential equations [22,23].

The outline of the thesis is as follows: In 1th chapter, the biological background

of the cell cultures is given briefly. The meso-scale model which is developed on the

basis of the biological background will be presented in 2nd chapter. An heterogeneity

measure to evaluate the suitability of the meso-scale model for a representation with

lumped-parameters is introduced also in this chapter. In 3th chapter, two macro-scale

models are developed and compared with the meso-scale model with respect to some

performance criteria. Furthermore, a robustness test of macro-scale models to differ-

ent initial energy distributions is conducted in this chapter. Finally, some conclusive

remarks, including our modelling perspective, are presented in the 4th chapter of the

thesis.

1.3. Biological Background

Before introducing the models, we have to present a brief summary of the life

cycle of a cell. Within its life-time of a eukaryotic cell one can distinguish roughly

three different operational modes: active state, quiescence state and differentiated
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state. A healthy cell, when it is in a sparse neighbourhood, is mitotically active, i.e. it

can grow and after reaching the mature size and acquiring sufficient energy, undergo

mitotic division. The life cycle of an active cell can be divided in four phases as

shown in (Figure 1.2) : G1 phase, where cells grow and prepare for DNS synthesis; S

phase, where the DNA is duplicated; G2 phase, where cells continue to grow and make

final preparations for mitotic division and finally M phase where the nuclear division

(mitosis) and cell division (cytokinesis) occur (Figure 1.3).

Figure 1.2. The four phases of the cell cycle [1].

However, if cell is in an overcrowded region, due to the tendency of contact inhi-

bition, it enters the so-called quiescence state where it halts growth and reproduction

activities. Cells of multi-cellular organisms can eventually enter the phase of senes-

cence where they lose their reproductive ability, however cells used in in-vitro studies

are generally immortalized by genetic modification such that senescence phase can be

left of out of the scope in such studies. Cells of multi-cellular organisms can also un-

dergo differentiation and transform themselves into more specialised cell types in an

irreversible manner, however genetically modified cell lines used in in-vitro cell studies

cannot differentiate unless externally induced, hence differentiation and differentiated

cells are also left out of the scope of this study. A cell activity common to all oper-

ational modes is toxicity release; like all living beings cells pollute their environments

with their toxic release, and are in turn affected by this toxicity [5].

The time profile of population growth for a wide range of cell cultures exhibit
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Figure 1.3. A scanning electron micrograph of a cultured animal cell dividing [1].

a common curve. Population increase is very slow or does not even occur at the

beginning of the experiment. This phase, the duration of which depends on the culture

conditions, is called ”lag phase”. Lag phase is followed first by an exponential and

then by a declining population increase when toxicity is accumulated sufficiently (log

phase). After this phase, they enter a stationary phase (plateau) where population

growth completely stops and finally they rapidly start to die. In Figure 1.4, an example

of a real data set collected from two different mammalian cell cultures are shown.

Figure 1.4. Real data of the growth curve for 293SGnTI(-) and 293SGlycoDelete cells

in 6-well culture plates, counted every 24 h. [2].
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2. MESO-SCALE MODEL

The Meso-scale Model is a discrete-time, agent-based model of the cell culture

dynamics and based on the biological knowledge given in section 1.3. Here, each cell

is considered as an agent’ governed by a set of rules. The flask is represented as a

n×n grid, where each mesh -referred to as ‘locus’- can accommodate only one cell

(Figure 2.1).

Figure 2.1. n× n grid representing the flask, each mesh referred to as ‘locus’.

In this model the instantaneous (at the kth time instance) state of the system is

represented by the toxicities at all loci ( xi,j(k);∀i, j = 1, . . . , N ) and the energies of

the cells occupying these loci ( (Ei,j(k);∀i, j = 1, . . . , N ).

The rules governing these variables are presented in Sections 2.1 and 2.2.

2.1. Cellular Dynamics

In order to obtain a compact set of rules governing a cell’s behaviour as far as

possible each cell has been characterised only by two properties: its locus (i, j) which

serves as its identity and its energy (Ei,j(k)). In this model the cells are either in

‘active’ or in ‘quiescent’ mode, depending on how crowded their neighbourhood is. It

should be noted that in this model the energy of a cell is an abstract variable that

stands for a combination of its size and its physical/chemical energy. This energy is

involved in the following processes:

• Growth: Any cell in the active mode takes in a constant amount of energy Ein = A

at each time step. The nutrition concentration in the flask is assumed to remain
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constant1 and uniform (equivalent to the assumption that the initial nutrient

amount is high enough such that its decrease during the life of the cell culture is

negligible).

• Aging : Although there are various factors contributing to the aging of a real cell,

the dominating one in a cell culture is oxidative stress, i.e. the damage caused by

exposure to toxicity. Therefore, in this model cell aging is represented in terms

of the effect of local toxicity on the cell’s energy. It is assumed that at each time

step the cell needs to spend some energy (Erem) in order to remediate the damage

caused by local toxicity. As a first approach, this remediation energy spent by a

cell at locus (i, j) at turn k is taken proportional to the local toxicity xi,j(k) :

Erem(k) = γxi,j(k) (2.1)

where γ is the remediation constant. If Erem > A , the cell’s energy starts to

decrease.

• Proliferation: An active cell, when its energy attains the ‘division energy’ (Ediv),

undergoes mitotic division and the two daughter cells share this energy equally

(Ediv/2). One of the daughter cells is placed at the former locus of the mother,

while the other one is randomly placed at any empty locus among the mother’s

8-nearest-neighbourhood. It is worth noting that the random placement of the

daughter cells within this close neighbourhood constitutes the only stochastic

element in the Meso-scale Model.

• Death: Although biologically speaking death is a rather complex process, in this

model it is represented as the cell’s energy going down to zero after a gradual

decrease when the remediation expenditures exceed the energy intake.

• Contact inhibition and quiescence: Cells’ tendency of avoiding too much contact

by halting growth and division is represented in our model as follows: If all

8 nearest loci around a cell are fully occupied it enters the ‘quiescence mode’,

i.e. it limits the energy intake such that its energy cannot increase and thus

reproduction becomes impossible. In this mode, if Erem > A the cell loses energy

1This assumption is not a necessary condition for the presented Meso-scale Model and can be easily
be relaxed for modelling experiments of long duration where decrease of nutrition cannot be neglected.
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although it does not limit the energy intake. Note also that a quiescent cell can

return to active mode if some neighbouring loci are emptied due to deaths.

• Initial Energy Distribution: Considering that ‘energy’ of a cell is a virtual concept,

it is unrealistic to try to measure the exact value of a cell’s energy. Instead, the

initial energies of cells have been assumed to obey a statistical distribution.

2.2. Toxicity Dynamics

Toxicity is coupled to the cell dynamics both via toxicity release from each cell

and via cells’ energy loss while trying to remediate the damages caused by exposure to

toxicity. These interactions can be represented as follows:

• Each living cell releases a constant amount of toxicity per time step. For the sake

of convenience, this toxicity release rate (xrel) has been expressed as a fraction of

the constant energy intake (A) per time step, i.e. xrel = βA , where 0 < β < 1.

• Released toxicity diffuses according to the well-known diffusion equation:

∂xi,j(t)

∂t
= D

(
∂2xi,j(t)

∂i2
+
∂2xi,j(t)

∂j2

)
(2.2)

where D is the so-called diffusion constant. This equation can be discretised by

the so called Forward-Time Centred-Space (FTCS) [24] method as follows:

xi,j(k + ∆kD) =D∆kD(xi+1,j(k) + xi−1,j(k)) + (1− 4D∆kD)xi,j(k)

+D∆kD(xi,j+1(k) + xi,j−1(k))
(2.3)

where ∆i = ∆j = 1 due to discrete nature of our model and ∆kD represents the

discrete diffusion time.

2.3. Choice of Parameters

In the simulations presented in this thesis, the parameters of the Meso-scale

Model (D, β, γ, A and Ediv) have been heuristically tuned to make the evolution of
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the simulated population size resemble some empirical data obtained from a modest

number of C2C12 cell culture experiments, as well as biological expectations. Thus,

the parameters used in the Meso-scale Model simulations (Table 2.1) can be said to lie

at least within realistic range.

Table 2.1. Parameters in the Meso-scale Model tuned heuristically to obtain

biologically plausible results.

D β γ A Ediv ∆k

4 0.8 0.008375 1 96 15 min

The assumptions and biological knowledge used in the setting of these parameters

are summarised below:

• As a reference point to other parameters, the energy intake per time step A

is selected to be equal to 1 and each time step in simulations is assumed to

correspond to 15 minutes in real life experiments.

• At the beginning of experiments, cells have relatively small energies so that cell

division is not observed immediately. In order to satisfy this condition and biolog-

ical plausibility, we have selected the shape and boundaries of initial energy distri-

bution as a Gaussian curve with mean µ = Ediv/4, standard deviation σ = Ediv/8

and shifted downwards so that it takes positive values only between 0 and Ediv/2

(Figure 2.2).

• Doubling time of a cell is typically given as approximately 12 hours by manufac-

turers. Using this knowledge with A and ∆k values and assuming that toxicity

is negligible, one can derive Ediv as follows:

E(0) =
Ediv

2

E(k) = kA∆k +
Ediv

2
= Ediv → Ediv = 2kA∆k

k =
12h

15min
= 48→ Ediv = 96

• D, β and γ are tuned to obey the following experimental observation: When

initial population size is approximately 10% of carrying capacity and toxicity is
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Figure 2.2. Gaussian-shaped initial energy distribution used to set the parameters of

Meso-scale Model.

removed on the 3rd, 6th and 9th days of the experiment, cells fill the flask basin

nearly completely and go extinct in a few days after the last removal. Simulation

result of the Meso-scale Model in accordance with this observation is given in

Figure 2.3.

However, it should be kept in mind that the correctness of the parameter values

for a specific cell culture type and the method used in their tuning are irrelevant,

because in this thesis the Meso-scale Model is meant to be an intermediary step for

the development of a macro-scale model.

2.4. Simulation Results

Figures 2.4 to 2.10 show simulation results of the Meso-scale Model in terms of

total population, total toxicity and flask views of these two variables starting from

an initial population occupying 10% of the flask and zero toxicity. Cells are initially

randomly uniformly distributed and the initial energy distribution is selected as in

Figure 2.2. Toxicity is not removed from the flask on 3rd, 6th and 9th days which
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Figure 2.3. Time profile of total population. Red line represents toxicity removal on

the 3rd, 6th and 9th days.

results in a strictly increasing toxicity. Note that, the first population increase is

observed when upper boundary of energy distribution reached Ediv which occurs at

around 50th time step.

Figure 2.4. Time profiles of total population as % of flask and total toxicity.
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Figure 2.5. Flask views for cells and toxicity at 1st time step.

Figure 2.6. Flask views for cells and toxicity at 130th time step.

Figure 2.7. Flask views for cells and toxicity at 250th time step.
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Figure 2.8. Flask views for cells and toxicity at 350th time step.

Figure 2.9. Flask views for cells and toxicity at 460th time step.

Figure 2.10. Flask views for cells and toxicity at 490th time step.
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2.5. Assessment of Uniformity

In order to describe the dynamics of the Meso-scale Model via lumped parameters,

the spatial distribution of individual entities should not affect the global dynamics of the

ensemble. Emergent, complex aggregations and spatial patterns of individual entities

might cause the dynamics of the ensemble to depend on local properties such that the

concept of average cell loses its validity. Thus, our macro-scale models are valid only if

cells in a cell culture are initially sufficiently uniformly distributed across the flask and

remain so throughout the rest of the process. Sufficiently uniform initial distribution

can be achieved by carefully spreading the population across the flask. But one still

needs to verify that the dynamics does not amplify minor spatial heterogeneities. For

that purpose a measure of heterogeneity is needed, the evolution of which under the

given dynamics is to be investigated.

2.5.1. Heterogeneity Measurements

The evolution of the spatial heterogeneity of cells can be investigated via various

methods but they either need a priori criteria or they have several weaknesses in differ-

ent situations. In Sections 2.5.1.1 to 2.5.1.3, we summarise briefly which methods have

been tried and developed to capture the evolution of heterogeneity. In Section 2.5.1.4,

a novel approach will be explained which is free of the limitations of previous methods.

2.5.1.1. Entropy-based measure. The very first approach to consider for this purpose

is the well known Shannon’s entropy concept applied to spatial distributions. In this

method, the flask is virtually divided into m boxes. The sum of likelihoods of cells

being in these boxes gives the spatial entropy (Equation 2.4) and hence a measure for

the uniformity of cell distribution.

H = −
m∑
i=1

pi ln pi (2.4)
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where

pi =
number of cells in ith box

number of cells in flusk

However, in order to apply this method, one must have a priori knowledge about the

size of cell aggregations so that a proper box size can be selected for Equation 2.4.

2.5.1.2. Method of ‘Hills’. In this thesis, we have proposed another approach for the

spatial heterogeneity measurement by considering the flask as a rippled surface where

2D Gaussian distributions are placed onto each cell. The overall smoothness of this

virtual topology gives us an indication for the uniformity of the cell distribution. Due

to their nonlocal property, fractional derivatives are used to measure the ruggedness

of the surface in all directions. However, standard deviations of 2D Gaussian distri-

butions and the fractional degree of derivatives which should be determined before

using this method affect this measure significantly. Selection of these two parameters

needs further research and hence this approach has not been preferred as a measure of

heterogeneity.

2.5.1.3. Variety of neighbours. Another consideration to measure the uniformity of

a spatial distribution is to investigate how the number of neighbours of a cell varies

across the population. This can be measured in terms of the standard deviation of

number of neighbours of cells. A low standard deviation indicates a relatively uniform

distribution whereas local heterogeneities give rise to high standard deviation. How-

ever, this approach focuses on the immediate neighbourhood of cells and thus misses

the distribution of cell clusters across the flask.

2.5.1.4. Artificial Force Field. The situational performance of the above mentioned

approaches make us to seek another method, which has relatively consistent perfor-

mance and does not ask for a priori knowledge of some parameters.

In this approach, we assume that cells inside the flask are equicharged particles.
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The aim is to express the heterogeneity of the distribution in terms of the overall tension

that results from the special distribution of these ‘charged’ cells. In order to guarantee

that perfectly uniform distribution across the flask corresponds to zero tension, the

flask is assumed to be embedded in an infinite plane filled with uniform charge density

equal to the average charge density inside the flask. If cells form clusters or deviate

from their equilibrium distribution, then the net tension takes a positive value which

can be used as a measure of uniformity of cell distribution.

Since we also want this measure to be independent of the population size, we

can use the first moment (average) or second moment (standard deviation) of forces

instead of the sum of the force magnitudes. The force acting on the ith cell applied by

the jth cell is defined as:

~Fij =
~xi − ~xj
‖~xi − ~xj‖

QiQj

‖~xi − ~xj‖2 (2.5)

where ~xi is the location of the ith cell inside flask; ~xj is the location of the jth cell

inside flask or virtual space; ~Qi is the charge of the ith cell inside flask; ~Qj is the charge

of the jth cell inside flask or virtual space and ‖.‖ is the Euclidean norm of the two

dimensional vector.

Although both first and second moments can be used as a heterogeneity measure,

for the sake of simplicity, we decided to use the first moment of force magnitudes. The

new heterogeneity measure ψ is proposed as the average of the magnitude of the net

force applied on each cell, both by cells inside the flask and by the cells in the infinite

plane enclosing the flask:

ψ =
1

N

N∑
i=1

∥∥∥∥∥ ∑
∀j 6=i ; j∈U

⇀

F i,j

∥∥∥∥∥ (2.6)

where N is the total population of cells in the flask and U is the cells inside and outside

the flask.
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In case cells are distributed perfectly uniformly across the flask, all forces applied

to each cell would negate each other and in such a scenario ψ becomes zero. Some

trivial examples with their visualisations are shown below in order to obtain a better

understanding of this method. Note that although the heterogeneity measure is selected

as the mean of force magnitudes, in these examples we also provide the standard

deviation of net forces ψstd to show that both the mean and standard deviation are

consistent within the scope of our purpose and can be used in place of each other.

• Example 1 : Consider an 8×8 flask with 10 cells distributed as follows:

Figure 2.11. Example distribution with three clusters.

This flask is assumed to be placed inside an infinite virtual space full of charged

particles as shown in Figure 2.12.

Figure 2.12. Flask is assumed to be embedded in an infinite plane.

The mean and standard deviation of force magnitudes are calculated as follows:

ψmean = 2.1370

ψstd = 1.005
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• Example 2 : Now, assume that the particles have a more uniform distribution:

Figure 2.13. Relatively uniform distribution embedded in an infinite plane.

The heterogeneity measurements of this distribution are calculated below:

ψmean = 1.0175

ψstd = 0.3978

As expected, both mean and standard deviation of net forces of Example 1 is less

than the ones of Example 2, indicating a more uniform distribution.

For the comparison of heterogeneities of populations in flasks of different size,

we need to normalize ψ such that its maximum value for any flask and population

size is one. Although we worked on it, we have not yet concluded how the theoretical

maximum heterogeneity can be calculated for a specific population and flask size and

left it as an open question. However it is important to mention that such a comparison

between different flask sizes is out of the scope of this thesis, which aims to describe

the dynamics of a cell culture population in a given flask.

This method, despite being very computationally intensive, describes the spa-

tial heterogeneity of a population distribution in a more reliable manner than the

other methods mentioned, and does not depend on a priori knowledge of some criteria.

Therefore, we will use this method to evaluate the evolution of heterogeneity.
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2.5.2. Evolution of heterogeneity

The main purpose of the heterogeneity measure is to create a tool to analyse

how the spatial heterogeneity evolves under the population dynamics specified by the

Meso-scale Model. Figure 2.14 shows how ψ evolves in a meso-scale simulation with

perfectly uniform distributed initial energy between Ediv
2

and Ediv.

Figure 2.14. Total population occupation starting from 20% initial occupation and

heterogeneity measure ψ(t).

In order to have a more reliable evaluation of how heterogeneity evolves, the time

profile of ψ is also obtained for initial concentrations 10%, 30% and 40% (Figure 2.15).

A close inspection of Figure 2.15 allows us to conclude that the dynamics rep-

resented by the Meso-scale Model does not give rise to a monotonous increase in the

heterogeneity. All four initial populations exhibit a similar heterogeneity profile with

a transient increase at the beginning, followed by a decline and then a sudden peaking

behaviour when cells start to die. The temporal increase of ψ at the beginning of ex-

periment is due to cell division which places the daughter cells in a close vicinity of the

mother cell, thus creating local clusters. However, after a sufficiently many division,

these clusters start to merge, thus contributing to the uniformity of the distribution and

decreasing the heterogeneity. When cell deaths start at centres of former clusters due

to local toxicity accumulation at those regions, large local heterogeneities are created

at the beginning of the population decrease which is the main reason of the peaking
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Figure 2.15. Time profile of heterogeneity measure ψ for four different initial

occupations.

behaviour. After the effect of accumulated toxicity reaches to cells in relatively sparse

areas and kill them, uniformity of distribution finally increases and all heterogeneities

vanish, while population goes extinct.

In conclusion, we have observed that the dynamics of the Meso-scale Model does

not amplify heterogeneities in the spatial distribution of cells continuously, making the

Meso-scale Model feasible to describe in terms of macro-scale variables.
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3. MACRO-SCALE MODEL

3.1. Introduction

Any attempt of modelling a real system has to deal with the problem of choosing

the right resolution and perspective. The same system can be described in drastically

different ways by different disciplines having different concerns, goals and interests.

Even within the same discipline the same system can be modelled at different scales

concentrating on different organisational levels. In this thesis, our main concern of pre-

dicting the population size in a cell culture asks for a flask-wide analytical macro-scale

model. However, in order to develop such a model one has to have -either explicitly or

implicitly- some hypotheses about the lower-scale dynamics. In the previous section,

a biologically plausible agent-based Meso-scale Model has been developed for this pur-

pose and in this section we will derive two macro-scale models from it by theoretical

reasoning and some empirical observations from simulations of the Meso-scale Model.

In this chapter, we will provide the details of how these two macro-scale models

are developed. The outline is as follows: The main concepts needed to develop macro-

scale models will be presented in Section 3.2, the dynamics of the state variables in

Section 3.3, their corresponding state equations in Section 3.4, how their parame-

ters will be set in Section 3.5, the simulation results of both macro-scale models in

Section 3.6, and finally the robustness of the macro-scale models to different initial

conditions in Section 3.7.

3.2. Main Concepts of the Macro-scale Models

Here, a macro-scale model is supposed to provide a lumped-parameter, analytical

representation for the cell cultures considered in case of the Meso-scale Model, i.e. cell

cultures of the same type, under the assumptions that the food is inextinguishable, tox-

icity is never removed, toxicity diffusion rate is high enough, and living cells constitute

a single layer adhering to the flask ground. In order to develop a model with lumped-
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parameter concepts, it is assumed that these concepts are uniform abstractions of their

virtual or physical counterparts, i.e. complex formations or emergent behaviours are

not observed as an outcome of their dynamics. For the both macro-scale models that

will be described in the following sections, five important common assumptions have

been made about the biological phenomenon under investigation:

(i) Cells are initially randomly2 uniformly distributed across the flask. Local hetero-

geneities formed due to statistical aggregations are not significantly amplified by

cellular dynamics.

(ii) The energy distribution of cells across the population does not depend on the

spatial distribution of cells. This assumption prevents a group of cells with the

same energy range not to be accumulated in a specific region of the flask.

(iii) As a consequence of high toxicity diffusion rate in the Meso-scale Model, toxicity

is assumed to be uniformly distributed across the flask at all times.

(iv) Macro-scale model is valid only after the first population increase is observed. So,

it is assumed that the upper boundary of energy distribution across the population

stands at the division energy.

(v) Quiescent cells and Non-quiescent cells have approximately a similar energy dis-

tribution.

These assumptions may not always reflect the true nature of cell cultures, never-

theless they are biologically plausible and can even be realized partially in laboratory

environments. All the underlying concepts, state variables and approximations needed

to describe the macro-scale model are developed under these assumptions and are pre-

sented in the following sections.

It is also worth to mention that in accordance with the common macroscopic

perception of time, the macro-scale model will be represented in continuous-time (t) as

opposed to the Meso-scale Model, which represents the dynamics of agents in discrete

time (k).

2Unlike ‘perfectly uniform’, where cells are placed in equidistant intervals, ‘randomly uniformly’
means that cells are placed to their loci according to a uniform probability function.
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3.2.1. State variable candidates

To represent the population dynamics in terms of global variables, one first needs

to determine which set of global state variables can provide an operationally closed state

space. Since the main modelling task is to predict how the population size changes,

the total population p(t) is an obvious candidate as a state variable. With the insight

gained from the Meso-scale Model, the total toxicity in the flask and the distribution

of cell energies across the population come into focus as important factors affecting the

population dynamics. Total toxicity in the flask, ζ(t), constitutes a reasonable candi-

date as the second global variable, however it is not trivial what kind of state variables

can sufficiently well represent the distribution of cell energies across the population.

Meso-scale simulation results demonstrate that the distribution f(E, t) of cell energies

across the population3 exhibits rather variable and complex characteristics during the

life time of the cell culture. But it is also observed that the lower and upper boundaries

of the energy distribution change in a relatively simple way.

Consequently, as a first approach it has been decided to represent the population-

wide energy distribution of the first macro-scale model as a uniform one between two

time-variable boundaries, thus obtaining the two additional state variables of the first

macro-scale model: ηL(t) and ηH(t), the lower and upper boundaries of the energy

distribution.

Figure 3.1. Energy distribution of cells across the population.

For the second macro-scale model, the assumption of uniform energy distribution

3Number of cells within energy range [E1, E2] at any time t can be found using the energy distri-

bution:
∫ E2

E=E1
f(E, t)dE
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is relaxed and a supplementary state variable ηS(t), a virtual energy value represent-

ing the total change in the extended energy distribution (which will be detailed in

Section 3.3.3.2, is added to the model in order to improve its prediction performance.

As a last note, it is important to remark that throughout this thesis the population

quantity p(t) is given as the percentage occupancy of all cells in the flask instead of

real number of cells.

3.2.2. Approximation of the Quiescent Cell Population

The quiescent population is by definition linked to the total number of cells. We

have developed two approximations for the quiescent population, the first one being a

simpler approximation based on pure reasoning and used in Macro-scale Model I while

the other one is partially based on empirical results of the Meso-scale Model simulations

and constitutes a better predictor for the time profile of quiescent population, which is

a part of Macro-scale Model II. The first quiescent approximation is developed under

the perfect uniform assumption of total population and hence describes the quiescent

population only as a function of total population rather than as a variable with its own

independent dynamics. However, the second quiescent approximation depends also on

time as an independent variable the purpose and reasoning of which will be detailed in

Section 3.2.2.2. In both approaches, quiescent population q(t) is given in percentage

occupancy of quiescent cells in the flask like p(t).

3.2.2.1. Quiescent Model I. In order to derive an approximate formula for the q(t),

let us consider a flask that can hold a maximum number of M cells, i.e. to put it in

the terminology of the Meso-scale Model, it has M loci. The assumption that all cells

are uniformly distributed across the flask at all times implies that also the empty loci

are uniformly distributed. Consequently, b(t), the average number of empty loci per

cell, can be calculated as:

b(t) =
M − p(t)
p(t)

(3.1)
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When there are p(t) uniformly distributed cells in the flask, all of them will be in active

mode if each cell has at least one empty neighbouring locus; thus

b(t) ≥ 1⇒ q(t) = 0 (3.2)

On the other hand, when the average number of empty loci per cell turns out to be

between 0 and 1, one can interpret this situation in a statistical manner as follows:

each living cell has either 0 or 1 empty locus in its neighbourhood, and b(t) is equal

to the fraction of cells with 1 empty neighbouring locus (i.e. the ratio of active cells to

the total number of cells). Consequently, for 0 ≤ b(t) < 1 the quiescent cell population

can be approximated as:

0 ≤ b(t) < 1⇒ q(t) = [1− b(t)]p(t) (3.3)

Combining Equations 3.1, 3.2 and 3.3 the quiescent cell population can be approxi-

mated as follows (Figure 3.2):

q(t) =

 0 if p(t) ≤ M
2

2p(t)−M if M
2
< p(t) ≤M

(3.4)

Figure 3.2. Approximate model of q(t) as a function of p(t) in Quiescent Model I.

As a summary, this quiescent population approximation exhibits two important
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characteristics:

(i) If there is any quiescent population in the flask, its size increases linearly with

the total population size.

(ii) The quiescent cells are observed only if at least half of the flask is occupied

regardless of the initial population size, i.e. the intersection point of piecewise

lines representing the quiescent population is at 50%.

The Quiescent Model I is developed under perfect uniformity assumption. Thus,

its performance of estimating the quiescent occupancy, q(t) on basis of p(t) at any given

time, should be correlated to some extent with the heterogeneity measure ψ(t) given

in Section 2.5.1.4.

Figure 3.3. Quiescent population from the Meso-scale Model (blue) and its estimate

by Quiescent Model I (red) for an initial population occupancy (green) of 20%.

As can be observed from Figure 3.3, Quiescent Model I slightly underestimates

q(t) for p(t) < 50% and overestimates for higher occupancies. As expected, the absolute

estimation error of q(t) exhibits qualitative similarity with the heterogeneity measure

except for a short duration where Quiescent Model I transcends from underestimating

to overestimating the quiescent occupancy (Figure 3.4).

3.2.2.2. Quiescent Model II. Before developing a better approximation for q(t), it

should be verified how appropriate the characteristics of the Quiescent Model I re-
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Figure 3.4. Absolute quiescent occupancy estimation error and the heterogeneity

measure ψ(t) exhibit qualitative similarity.

flect the true nature of quiescent population dependence on the total population. For

this purpose, a further investigation of q(t) is needed from the meso-scale simulations.

One can immediately observe that the linear relationship between p(t) and q(t)

is quiet acceptable except at the initial duration when the first quiescent cells appear.

However, this duration is rather short as compared to the rest of population’s life span

and can therefore be approximated with the same linear relationship. It can also be

observed that q(t) does not exhibit qualitatively different characteristics after p(t) starts

to decrease (represented with black dots in Figure 3.5). Furthermore, the sparsity of

the data during this session indicates that cell deaths constitute only a small portion

of total life span, allowing us to neglect small deviations from the main trend of the

relationship . Hence, it is reasonable to approximate this part of the data also with

the same linear model.

On the other hand, the onset point which indicates the appearance of the first

quiescent cells is obviously not fixed at half of the flask like in the first approximation.
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Figure 3.5. q(t) as a function of p(t) obtained from the meso-scale simulations with

initially uniform energy distribution for three different initial populations. Red circle

represents the initial population size, while the black dots indicate values after total

population starts to decrease.

We can easily deduct its reasoning from the knowledge of the Meso-scale Model: The

onset points should depend on the initial population size due to division process. When

cells undergo division, the placing of daughter cells to the neighbourhood of mother

cell creates local heterogeneities and after a sufficient time these aggregations cause

some cells to become quiescent. Hence, the assumption of uniformity at all times

in the first approximation is disturbed due to new born cells. The time needed for

the appearance of the first quiescent cells varies with respect to p(0) since the only

factor determining this duration is obviously the initial crowdedness of cells. Therefore,

this duration decreases monotonically with the increasing p(0). On basis of these

observations about how the onset points depend on p(0), we decided to develop a more

accurate representation of q(t) by fitting simple piecewise lines to 50 different initial

populations (Figure 3.6) and visualised them in a 3D space, the third dimension of

which is selected as time (Figure 3.7).

The onset points shown with black circles in Figure 3.7 are defined as [pq tq],

where tq represents the time when cells start to enter quiescence and pq represents the

minimum population occupancy where first quiescent cells appear. A closer inspection

of Figure 3.7 reveals that as the initial population occupancy increases, the time tq
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Figure 3.6. Piecewise linear approximations of meso-scale simulations starting from

50 different initial populations until cells start to die. Red circles indicate initial

population size p(0).

Figure 3.7. 3D visualisation of Figure 3.6 with time as third dimension. Black circles

indicate the onset time tq.
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required for p(t) to reach the onset point decreases as expected. So, our reasoning is

supported by the shifting of onset points with respect to p(0) and hence tq (Figure 3.8).

Figure 3.8. Blue stars indicate the onset points, i.e. at which population size and time

step quiescent cells are observed first time.

Under further investigation, we have decided to fit a line to describe the relation-

ship between population and time at onset points (Figure 3.9). This line represents

when the population-time curve will leave the plane of q = 0. However this data is

specific to the initial energy distribution of cells in the Meso-scale Model. Although

Figures 3.6 to 3.9 are obtained for the uniform energy distribution, simulations from

other distribution shapes reveal that the characteristics of this line do not change sig-

nificantly. Consequently, the average line obtained from four set of different initial

energy distributions4 is as follows:

pq(t) = −0.265tq + 82.7 (3.5)

4The energy distributions used to estimate the parameters of Equation 3.5 are selected to cover
a wide range of biologicaly plausible distributions, i.e. Gaussian, linearly decaying, exponentially
decaying and uniform one which will be shown in Section 3.7 and also used in order to measure the
robustness of macro-scale models.
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Figure 3.9. Fitted line representing the relationship between onset population and

onset time.

Once q(t) has a positive value, it will increase approximately linearly as stated

before and hence will have the following form:

q(t) = κp(t) + c

The parameters of this equation can be estimated considering two distinct conditions:

• Condition I : When flask is completely occupied, all cells are in quiescence phase,

i.e. :

100 = 100κ+ c

• Condition II : Quiescent population starts to have a presence when p(t) reaches

the onset point, i.e. when the line of q(t) intersects p(t)-axis at onset point.

0 = κpq(t) + c
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Using these two conditions, quiescent population is expressed as:

q(t) =
100

100− pq(t)
(p(t)− pq(t)) (3.6)

It is important to state that this function is meaningful only for p(t) which do not

initially contain any quiescent population. A sufficiently high initial population size

will already contain quiescent cells at the beginning of the experiment and hence will

have no onset point. The maximum p(0) without any initially quiescent cell presence

can be found from Equation 3.5 by taking t as zero:

p∗q = pq(0) = 82.7

q(t) for initial populations higher than p∗q, tends to exhibit a similar characteristics

with q(t) for p∗q. Figure 3.10 also shows that it is reasonable to approximate q(t) for

those p(0) values with the line starting from p∗q.

Figure 3.10. Black line is the quiescent occupancy approximation for initial

occupancies higher than p∗q.
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Putting p∗q into Equation 3.6 results in:

q(t) = 5.78p(t)− 478 if p(0) ≥ 82.7 (3.7)

Consequently, populations starting from p(0) smaller than 82.7% will contain

zero quiescent population until the onset point and then q(t) will linearly increase

according to Equation 3.6. For p(0) higher than 82.7% concentration, q(t) will increase

linearly according to Equation 3.7. Eventually, when populations start to die, q(t) will

decrease with the same rate until their onset point and then become zero. All of these

behaviours can be summarised in the following single equation:

q(t) =


[

100
100−pq(t) (p(t)− pq(t))

]
+

where pq(t) = −0.265tq + 82.7 if p(0) < 82.7

[5.78p(t)− 478]+ if p(0) ≥ 82.7

(3.8)

where [x]+ denotes max(x, 0)

3.2.3. Average Cell and Its Behaviour

In the macro-scale model the population is envisaged as consisting of identical

cells all of which exhibit the average behaviour of individual cells in the Meso-scale

Model. Throughout this chapter the term ‘average cell’ will be used in that sense.

Each cell releases toxicity at a constant rate ω. Those cells that are in the active

mode (active cells) take in energy at a constant rate α and spend remediation energy

at a rate ε̇rem(t), where ε̇rem(t) depends on the toxicity they are exposed to. On the

other hand, all members of the quiescent population take in energy at a rate equal to

ε̇rem(t) as long as this value does not exceed α, such that their energies remain the

same. If, however, ε̇rem(t) is larger than α, the energy intake rate is kept at α, thus

leading to energy decrease. The dependence of ε̇rem(t) on toxicity will be explained in

3.2.4.
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3.2.4. Average Toxicity Exposure and Remediation Rate

In order to calculate remediation rate in macro-scale model, a toxicity-related

concept needs to be introduced: ξ(t), the amount of toxicity an average cell is exposed

to at time instance t. Let us call this variable ‘average toxicity exposure’. Referring

to the Meso-scale Model one can say that ξ(t) is the toxicity present at the locus

which the cell occupies. It should be noted that ξ(t) actually depends on the toxicity

diffusion rate and its exact calculation would require very complicated calculations.

Nevertheless, its upper and lower bounds can be rather easily estimated considering

the two extremes of the diffusion rate. If the diffusion rate is very high such that

released toxicity instantly diffuses to the whole flask, each cell will be exposed to the

same toxicity, which constitutes approximately the lower bound of the average toxicity

exposure (although the average toxicity exposure can attain lower values for a short

while):

ξmin(t) ≈ ζ(t)

M
(3.9)

On the other hand, the upper bound of the average toxicity exposure at time t

can be approximately calculated assuming that the toxicity diffusion rate is extremely

low, and that toxicity is present only at occupied loci (there are Mp(t) such loci):

ξmax(t) ≈
ζ(t)

Mp(t)
(3.10)

The results (Figure 3.11) obtained from simulations of the Meso-scale Model with

realistic parameter values reveal that for diffusion rates typical for small particles in the

cytoplasm [25], ξ(t) remains rather close to ξmin(t). Thus, average toxicity exposure

has been taken equal to the lower bound:

ξ(t) = ξmin(t) ≈ ζ(t)

M
(3.11)
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Figure 3.11. Meso-scale simulation results showing average toxicity ξ(t), its

approximate lower bound ξmin(t) and upper bound ξmax(t).

Adopting a continuous-time version of the logic used in the Meso-scale Model, one

can say that an average cell that is exposed to the average toxicity ξ(t) for a duration

dt needs an energy dε for remediating the resulting damage:

dεrem = γ̂ξdt (3.12)

where γ̂ corresponds to the same concept as γ in the Meso-scale Model, i.e. the reme-

diation constant, but a different notation has been introduced for formal clarity. Using

the approximation from Equation 3.11, the remediation rate ε̇rem can be expressed in

terms of total toxicity ζ as follows:

ε̇rem(t) ≈ γ̂ζ(t)

M
(3.13)

Here, it should be noted that γ has the dimension
[

1
time

]
.
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3.3. Dynamics of State Variables

As stated in Section 3.2.1, total population p(t), total toxicity ζ(t) and boundaries

of energy distribution across cell population (ηL and ηH) are state variables of the

Macro-scale Model I. For the Macro-scale Model II, an additional state variable, total

energy shift ηS is used in order to obtain a better prediction of the Meso-scale Model.

The dynamics of these state variables are explained in the following sections.

3.3.1. Total Population Dynamics

With simple reasoning, the change in population size can be expressed as:

ṗ(t) = (birth rate)× (number of active cells)− (death rate)× p(t) (3.14)

In order to calculate the birth and death rates one needs to resort to the distribution

of cell energies across the population.

Let d4div denote the fraction of cells, the energies of which will reach Êdiv within

next dt and thus will be able to divide if there is enough space. Here, Êdiv corresponds

to the same concept as Ediv in the Meso-scale Model, i.e. the division energy. d4div

(Figure 3.12) can be calculated as follows:

d4div(t) =

∫ ηH(t)

Êdiv−(α−ε̇rem(t))dt
f(E, t)dE∫ ηH(t)

ηL(t)
f(E, t)dE


+

if α > ε̇rem(t) (3.15)

Equation 3.15 has a nonzero value only for the case where ηH(t) > (Êdiv −

(α − ε̇rem(t))dt). Furthermore keeping in mind that the division energy Êdiv is the

maximum energy a cell can have, the condition (Êdiv − (α − ε̇rem(t))dt) < ηH(t) ≤

Êdiv is tantamount to ηH(t) = Êdiv, i.e. cells can divide only if the upper boundary

of the energy distribution ηH(t) reaches the estimated division energy Êdiv. Hence,

Equation 3.15 becomes:
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Figure 3.12. a) Fraction of cells (d4div(t)) that will undergo mitotic division within

the next dt for α > ε̇rem(t), b) Fraction of cells (d4die(t)) that will die within the

next dt for α < ε̇rem(t)).

d4div(t) =

f(Êdiv, t)(ηH(t)− Êdiv + (α− ε̇rem(t))dt∫ ηH(t)

ηL(t)
f(E, t)dE


+

(3.16)

which can be reformulated as birth rate (ρb):

ρb(t) =
d4div(t)

dt
= 4̇div(t) =


(α− ε̇rem(t)) f(Êdiv ,t)∫ Êdiv

ηL(t)
f(E,t)dE

if ηH(t) = Êdiv

0 otherwise

(3.17)

Under the further assumption that the energies of active cells are also uniformly

distributed, the number of cells that will divide within next dt can be calculated as

[p(t) − q(t)]ρb , where [p(t) − q(t)] represents the number of active cells. It is worth

keeping in mind that the birth rate is only meaningful if the energy intake (α dt) is

larger than the energy loss (ε̇rem(t)dt).

Similarly, let d4die denote the fraction of cells, the energies of which will fall

below zero within next dt because the energy intake (α dt) is less than the energy loss
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(ε̇rem(t)dt). So 4die (Figure 3.12b) can be calculated as:

d4die(t) =

∫ (ε̇rem(t)−α)dt

ηL(t)
f(E, t)dE∫ ηH(t)

ηL(t)
f(E, t)dE


+

if α < ε̇rem(t) (3.18)

Equation 3.18 has a nonzero value only for the case where ηL(t) < (ε̇rem(t)−α)dt.

Since the minimum energy of a cell ηL(t) cannot be negative, the condition 0 ≤ ηL(t) <

(ε̇rem(t)−α)dt is equivalent to ηL(t) = 0, i.e. cell can die only if the lower boundary of

the energy distribution ηL(t) falls to zero. Hence, Equation 3.18 can be reformulated

to find death rate (ρd):

ρd(t) =
d4die(t)

dt
= 4̇die(t) =

 (ε̇rem(t)− α) f(0,t)∫ ηH (t)
0 f(E,t)dE

if ηL(t) = 0

0 otherwise
(3.19)

Due to the fact that the conditions in Equation 3.17 and 3.19 are opposite to

each other, the birth and death rates cannot be non-zero at the same time, i.e. cells

births and deaths cannot occur simultaneously. Hence, Equation 3.14 can be rewritten

as:

ṗ(t) =



[p(t)−q(t)]ρb(t)
with ρb(t) =

(
α− γ̂ζ(t)

M

)
f(Êdiv ,t)∫ Êdiv

ηL(t)
f(E,t)dE

if ηH(t) = Êdiv and α >
γ̂ζ(t)
M

−p(t)ρd(t)
with ρd(t) =

(
γ̂ζ(t)
M
− α

)
f(0,t)∫ ηH (t)

0 f(E,t)dE

if ηL(t) = 0 and α < γ̂ζ(t)
M

0 otherwise

(3.20)

Note that p(t) is naturally defined as a non-negative variable. Hence ṗ(t) is taken

as zero if p(t) < 0.
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3.3.2. Total Toxicity

A basic assumption of the macro-scale model is that the toxicity diffuses fast

enough so that the toxicity distribution across the flask can always be approximated

by a uniform one.

In the macro-scale simulations given in this thesis it has been assumed that the

flask is initially clean (i.e. ζ(0) = 0) and that during an experiment toxicity is never

removed from the flask. Furthermore active and quiescent cells are assumed to release

toxicity at the same constant rate ω, such that the rate of change of total toxicity ζ(t)

can be expressed as proportional to the total population:

ζ̇(t) = ωp(t) (3.21)

The lumped-parameter dynamics of the total toxicity can also be derived analyt-

ically step by step from the knowledge of local dynamics in Meso-scale Model as shown

in Appendix A.

3.3.3. Energy Distribution and Its Dynamics

The energy of a cell is an important factor that affects both birth and death

rates. Therefore, in a macro-scale model the distribution of cell energies across the

cell population needs to be accounted for. Furthermore, since this distribution will

change while the population keeps evolving, one also needs to model the dynamics of

the energy distribution. The complexity of the model has to be kept as low as possible

in the course of accomplishing this task.

In this thesis, two different models (Energy Model I and II) have been developed

for the dynamics of f(E, t), the energy distribution across cell population. How f(E, t)

is to be used to calculate instantaneous birth and death rates has been explained in

Section 3.3.1.
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As can be seen from Equation 3.20, the births are calculated as the product of the

birth rate (ρb(t)) with the % occupancy of the non-quiescent (active) cells [p(t)− q(t)]

whereas deaths are calculated as the product of the death rate (ρd(t)) with the % oc-

cupancy p(t) (i.e. all cells). Consequently, ρb(t) needs to be calculated (Equation 3.17)

using the energy distribution among active cells, while ρd(t) has to be calculated (Equa-

tion 3.19) using the energy distribution among all cells. In this thesis, however, it has

been assumed that the energy distribution among active cell population and total cell

population have the same shape. Strictly speaking, this assumption is not correct be-

cause in dense populations new-born cells have higher probability of entering quiescence

mode than ‘elder’ cells, which biases the shape of the energy distribution among quies-

cence cells more towards low energy levels. Why this approximation error is tolerable

will be explained in Section 3.6.3.2.

Before going into the details of Energy Model I and II, let us explain what is

common to both of them. Both models of energy distribution have to be compatible

with the following observations made on basis of the Meso-scale Model:

(i) Since the energy of any cell at any time must be between 0 and Êdiv, the energy

distribution f(E, t) must be confined to the range [0, Êdiv].

(ii) Even if the initial range of energy distribution is between 0 and Êdiv , it quickly

converges to the range [Êdiv/2, Êdiv] because cells steadily take in the energy and

initially toxicity related losses are negligible, while the division process produces

cells with Êdiv/2, such that soon there remain no cells with energy below Êdiv/2.

An exception to this behaviour occurs if a meso-scale simulation starts with very

high populations such that some cells in initially overcrowded regions with en-

ergies below Êdiv/2 enter quiescence mode right from the beginning. Excluding

this exceptional case, it is reasonable to start the energy distribution from range

[Êdiv/2, Êdiv], i.e. ηL(0) = Êdiv/2 and ηH(0) = Êdiv.

(iii) Two simple and relevant variables characterising the energy distribution f(E, t)

will be taken as the upper and lower boundaries of the distribution, i.e. ηL(t) and

ηH(t), respectively. In order to guarantee the continuity of these two boundaries,

the initial energy distribution is required to be nonzero within [ηL(0), ηH(0)].
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(iv) Provided that condition (iii) is satisfied, and the toxicity in the flask is low enough

to guarantee that remediation energies can be covered by the constant energy

intake , the energies of all cells in the Meso-scale Model keep on increasing up to

the division energy Ediv. This phenomenon can be represented in the macro-scale

model with an upper boundary increasing up to Êdiv. However, since ηH(0) =

Êdiv, ηH(t) will stay at Êdiv until sufficient toxicity accumulates. Likewise, ηL(t)

will start and stay at Êdiv/2 until the same condition is satisfied.

(v) When the total toxicity becomes high enough such that the constant energy intake

α cannot cover anymore the remediation expenditures, all cells in the Meso-scale

Model start losing energy. This corresponds to the decrease of both lower and

upper boundaries in the macro-scale model.

Combining the observations (i)-(v), the approximate dynamics of ηL(t) and ηH(t)

can be represented mathematically as follows:

η̇H =

 0 if ε̇rem(t) ≤ α or ηH(t) ≤ 0

α− ε̇rem(t) if ε̇rem(t) > α
ηH(0) = Êdiv (3.22)

η̇L =

 0 if ε̇rem(t) ≤ α or ηL(t) ≤ 0

α− ε̇rem(t) if ε̇rem(t) > α
ηL(0) =

Êdiv
2

(3.23)

It should be denoted that ηH(t) and ηL(t) are obviously defined as non-negative

variables.

3.3.3.1. Energy Model I. As a first approach, the shape of energy distribution, which

is bounded between ηL(t) and ηH(t), is assumed to be uniform at all times.

Combining the uniformity assumption of the energy distribution along with obser-

vation (ii) given above, the denominator of birth rate (Equation 3.17) for ηH(t) = Êdiv
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Figure 3.13. Energy histogram of the cells and the uniform distribution

approximation.

can be simplified as follows:

∫ Êdiv

ηL(t)

f(E, t)dE = f(Êdiv, t)(Êdiv − ηL(t)) = f(Êdiv, t)
Êdiv

2

Hence, Equation 3.17 becomes:

ρb(t) =


2(α−ε̇rem(t)

Êdiv
if ηH(t) = Êdiv

0 otherwise
(3.24)

With the same line of thought, the death rate (Equation 3.19) becomes:

ρd(t) =


2(ε̇rem(t)−α

ηH(t)
if ηL(t) = 0

0 otherwise
(3.25)

3.3.3.2. Energy Model II. Energy Model I discards the effect of division process on the

shape of the energy distribution and assumes that this distribution remains uniform
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at all times. For a more realistic representation let us consider the two factors that

modify the energy distribution:

(i) The net energy gain: If [α − ε̇rem(t)] is positive, cell energies keep increasing

at that rate (as long as they remain below Êdiv), which means that the energy

distribution ‘shifts’ towards right along the energy axis. If toxicity and thus the

corresponding remediation energy ε̇rem(t) are high enough, the net energy gain

becomes negative and the energy distribution shifts towards left (Figure 3.14).

Figure 3.14. Shift of the energy distribution depending on the net energy gain.

(ii) If the net energy gain is positive, the shift of energy distribution towards right

causes some portion of the cells to pass the Êdiv threshold. But actually these

cells divide into two daughter cells with energy Êdiv/2. From the perspective of

the energy distribution this can be described as ”the portion of the distribution

shifting beyond Êdiv folding back to Êdiv/2 , while doubling the magnitude of

the distribution at that value (Figure 3.15). As a result of this, we observe a

magnified and qualitatively preserved version of the distribution after each cell

at that distribution undergoes division.

The combined operation of these two factors can be represented in a circular

energy-space. Shifting with a constant speed in such a space corresponds to a periodic

behaviour. However, the shifting speed of the energy distribution changes with respect

to remediation energy, whereas the magnitude of the distribution is doubled after a

cycle in that space is completed. Therefore, it would be more appropriate to describe

the dynamics of the energy distribution in a helix-like space, where shifting of the

energy distribution would eventually result in the doubling of its magnitude. In order
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Figure 3.15. The dividing part of the energy distribution is doubled and ‘folded’ after

each division.

eliminate the representational difficulty of both of these factors in such a space, we

have decided to make use of an ‘extended energy distribution’ in a linear space which

‘mimics’ the folding and doubling operation of the energy distribution by cascading

the future projections of the initial energy distribution (Figure 3.16).

Figure 3.16. Initial extended energy distribution g(E, t = 0).

The extended energy distribution at t = 0, g(E, t = 0), can be constructed as

the convolution of the initial energy distribution which is confined to [ Êdiv
2
Êdiv] with a

special Dirac train (Ddoub) which accounts for the repetitive magnitude doubling. It is
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defined at t = 0 as:

g(E, t = 0) = f(E, t = 0) ∗Ddoub(E, t = 0)

= f(E, t = 0) ∗
∞∑
k=0

2kδ

(
E + k

Êdiv
2

)
(3.26)

where δ(x) is the Dirac function defined as δ(x) =

 ∞ if x = 0

0 if x 6= 0
and

∫∞
−∞ δ(x)dx = 1.

Figure 3.17. Graphical representation of how the extended energy distribution is

constructed.

Shifting of the energy distribution due to net energy gain is introduced with the

help of an additional state variable ηS(t). It is placed inside the equation of extended

energy distribution as a shift operator for impulse train function:

g(E, ηS(t)) = f(E, 0) ∗Ddoub(E, ηS(t))

= f(E, 0) ∗
∞∑
k=0

2kδ

(
E − ηS(t) + k

Êdiv
2

)
(3.27)
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where

η̇S(t) = α− ε̇rem(t) ; ηS(0) = 0 (3.28)

ηS(t) can be thought as the energy of a ‘virtual’ cell which does not undergo

division at Êdiv and its energy can pass beyond Êdiv if α > ε̇rem(t) , and also does not

die when its energy drops to zero, resulting its energy to become negative if α < ε̇rem(t).

Therefore the dynamics of ηS(t) is governed exactly by the same equation as two energy-

related state variables, ηL(t) and ηH(t), change. But since it is a virtual concept and

does not have a physical correspondence, unlike ηL(t) and ηH(t), it is not confined to 0

and Êdiv. However, when calculating the division and death rates, the extended energy

distribution is evaluated only for the region between ηL(t) and ηH(t).

With the mathematical representation of the energy distribution dynamics, the

birth and death rates become:

ρb(t) =


(α− ε̇rem(t)) g(Êdiv ,ηS(t))∫ Êdiv

Êdiv
2

g(E,ηS(t))dE
if ηH(t) = Êdiv

0 otherwise

(3.29)

ρd(t) =

 (ε̇rem(t)− α) g(0,ηS(t))∫ ηH (t)
0 g(E,ηS(t))dE

if ηL(t) = 0

0 otherwise
(3.30)

As a summary, the Energy Model II introduces a new state variable ηS(t) among

former ηL(t) and ηH(t) and describes the dynamics of the energy distribution, hence

the birth and death rates, in a more realistic manner.

It should be noted that the initial energy distribution in this model is left un-

determined on purpose and will be selected in Section 3.7 after presenting robustness
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test results to different initial conditions.

3.4. State Equations of the Macro-scale Models

For the sake of convenience the total toxicity ζ(t) is replaced by another state

variable proportional to it, θ(t) = γ̂ζ(t) and in the state equation of this new variable

θ̇ = γ̂ζ̇(t) = ωγ̂p(t) the parameters are lumped into r = θγ̂. Consequently, ε̇rem(t) =

γ̂ζ(t)
M

as given in Equation 3.13 can be expressed as ε̇rem(t) = θ(t)
M

. How the appropriate

values of parameters M , α, Êdiv and r can be chosen, will be explained in Section 3.5.

It is also important to mention that the dynamics of birth rate ρb(t) and death

rate ρd(t) are time dependent due to θ(t) in Macro-scale Model I and due to θ(t) and

ηS(t) in Macro-scale Model II, whereas the conditions of these rates are dependent on

ηH(t) and ηL(t) in both models. Therefore, it is more appropriate to represent them

in terms of state variables as follows:

For Macro-scale Model I :

ρb(t) = ρb (ζ(t), ηH(t), ηL(t))

ρd(t) = ρd (ζ(t), ηH(t), ηL(t))

For Macro-scale Model II :

ρb(t) = ρb (ζ(t), ηH(t), ηL(t), ηS(t))

ρd(t) = ρd (ζ(t), ηH(t), ηL(t), ηS(t))

Finally, let us remind that p(t), ζ(t), ηL(t) and ηH(t) are obviously defined as

non-negative variables since these variables have a physical correlate.
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3.4.1. Macro-scale Model I

Macro-scale Model I uses the Quiescent Model I (Section 3.2.2.1) for quiescent

population approximation and Energy Model I (Section 3.3.3.1) for energy distribution

dynamics. With the change of variables mentioned above and in a compact mathe-

matical notation the 4-dimensional Macro-scale Model I is given in Equations (3.31)

to (3.34):

ṗ(t) =


[p(t)− q(t)]ρb(t) if ηH(t) = Êdiv and α >

θ(t)
M

−p(t)ρd(t) if ηL(t) = 0 and α < θ(t)
M

0 otherwise

; p(0) = p0 (3.31)

θ̇(t) = rp(t) ; θ(0) = 0 (3.32)

˙ηH(t) =

[
α− θ(t)

M

]
−

; ηH(0) = Êdiv (3.33)

η̇L(t) =

[
α− θ(t)

M

]
−

; ηL(0) =
Êdiv

2
(3.34)

where ρb(t) = 2

Êdiv

(
α− θ(t)

M

)
; ρd(t) = 1

ηH(t)

(
θ(t)
M
− α

)
and [x]− denotes min(x, 0).

Although the macro-scale model is 4-dimensional, a close inspection reveals that

ηH(t) and ηL(t) change in the same manner and therefore keep the initial difference

until cells start to die. Hence until then, one can say that the system remains within

a 3-dimensional manifold of the 4-dimensional state space.

3.4.2. Macro-scale Model II

In this model, quiescent population is approximated by the Quiescent Model II

(Section 3.2.2.2) and the dynamics of the energy distribution is represented with Energy

Model II (Section 3.3.3.2) . With the addition of ηS, 5-dimensional Macro-scale Model
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II is presented as follows:

ṗ(t) =


[p(t)− q(t)]ρb(t) if ηH(t) = Êdiv and α >

θ(t)
M

−p(t)ρd(t) if ηL(t) = 0 and α < θ(t)
M

0 otherwise

; p(0) = p0 (3.35)

θ̇(t) = rp(t) ; θ(0) = 0 (3.36)

˙ηH(t) =

[
α− θ(t)

M

]
−

; ηH(0) = Êdiv (3.37)

η̇L(t) =

[
α− θ(t)

M

]
−

; ηL(0) =
Êdiv

2
(3.38)

η̇S(t) = α− θ(t)

M
; ηS(0) = 0 (3.39)

where ρb(t) =
(
α− θ(t)

M

)
g(Êdiv ,ηS(t))∫ Êdiv

Êdiv
2

g(E,ηS(t))dE
; ρd(t) =

(
θ(t)
M
− α

)
g(0,ηS(t))∫ ηH (t)

0 g(E,ηS(t))dE
and

g(E, ηS(t)) = f(E, 0) ∗
∑∞

k=0 2kδ
(
E − ηS(t) + k Êdiv

2

)

A careful inspection reveals that the Macro-scale Model II, despite being 5-

dimensional, does not occupy all 5 dimensions at all times. ηS(t) changes in the same

manner with ηH(t) when population is increasing and also with ηL(t) when population

does not change. Therefore, one can state that the system remains within 4-dimensional

manifold during population increase, shifts even to a reduced 3-dimensional manifold

when population increase stops and enters to a different 4-dimensional manifold of its

5-dimensional state space when cells start to die.

As a conclusion, we can say that the system never occupies all dimensions of the

five dimensional model simultaneously.

3.5. Choice of Parameters

Some parameters of the macro-scale model can be properly chosen on the basis of

available biological knowledge, while others have to be estimated from empirical data

gathered via relatively simple measurements on the cell culture at hand. It is worth
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remembering that the only measurable quantity in this system is the population size.

3.5.1. Number of Loci in the Flask (M)

A common feature of mammalian cell cultures is that cells adhere to the flask

ground as long as they are alive. Although in crowded regions cells can sometimes

live on top each other, such allocations eventually lead to physiological changes in the

cells and are therefore avoided by experimenters. Hence, in this thesis we stick to the

biologically rather plausible assumption that living cells can only form a single layer on

the flask bottom. With this assumption, the maximum number (M) of cells the flask

can hold, can be easily estimated as M = (flask area)/(average cell area), where the

average cell area can be measured under the microscope.

3.5.2. Energy Intake Rate (α)

A careful inspection of the macro-scale equations shows that the energy intake

rate of a cell (α) cannot be easily estimated because p(t), the only observable variable,

does not depend on it. Therefore, α can be chosen arbitrarily without affecting the

dynamics of the observable variable, but any choice of α requires some scaling in the

non-observable dynamics. In this sense, α serves for a degree of freedom in system

dynamics and in this thesis it has been taken as 1 for the sake of convenience.

3.5.3. Division Energy (Êdiv)

For the sake of distinguishing the same concepts at meso- and macro-scales, a

‘hat’ symbol is used with the variable name when referring to the concepts at the

macro-scale model if there is a counterpart for that concept in the Meso-scale Model.

So, as stated in Section 3.3.1 Êdiv corresponds to the same concept as Ediv in the

Meso-scale Model, but interpreted from a macroscopic point of view.

In order to estimate the division energy Êdiv one needs to conduct a test with an

initially clean flask and a relatively diluted and uniformly distributed initial population,
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so that quiescent population is still zero or can be neglected. After the first cell division

is observed, population is recorded and the flask is kept clean by removing toxicity

regularly (every 15 minutes ≡ 1 time step is reasonable) until the initial population is

doubled. One can deduce from reasoning that cells with lowest energy at the beginning

of recording session, i.e. cells with energy Êdiv, give birth at the doubling time Td, which

can be expressed mathematically as:

Êdiv
2

+ αTd = Êdiv (3.40)

Equation 3.40 can be rearranged to find out Êdiv:

Êdiv = 2 α Td (3.41)

In this thesis, we have estimated Êdiv from 20% initial population concentration.

For a more robust estimate, Êdiv can be calculated for a few diluted initial populations

and their average can be taken.

3.5.4. Toxicity Coefficient (r)

The toxicity release coefficient ω (defined in Equation 3.21) and remediation

energy coefficient γ̂ (defined in Equation 3.13) cannot be estimated separately using

the only observable variable p(t). But this is not necessary anyway because these two

parameters can be merged in to a single one r = γ̂ω.

ε̇rem(t) ≈ γ̂ζ(t)

M
=
γ̂ω

M

∫ t

0

p(τ)dτ =
r

M

∫ t

0

p(τ)dτ (3.42)

Careful inspection of the Meso-scale Model reveals that the population increases

until the remediation rate (ε̇rem(t)) reaches the energy intake rate (α). From that point
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(t∗) onwards the energy of an average cell starts to decrease. So, at this time instance:

ε̇rem(t∗) = α =
r

M

∫ t∗

0

p(τ)dτ (3.43)

For the estimation of r, a test (real or simulated) is to be conducted and the

population size is recorded until t∗, i.e. when the population stops increasing. The

estimate r can thus be extracted from Equation 3.43 as follows:

r =
αM∫ t∗

0
p(τ)dτ

(3.44)

In this thesis, r is estimated also from a test with 20% initial population occupa-

tion, just like the estimation of Êdiv.

3.6. Simulation Results and Their Evaluation

The meso- and macro-scale models presented in this theses are general represen-

tations of the dynamics of cell culture populations, suitable for most eukaryotic cell

types, provided that the parameters are appropriately chosen on basis of real data.

The Meso-scale Model, the simulation results of which are presented in this sec-

tion, has parameters within realistic ranges, chosen using a combination of some par-

tial data (obtained from a C2C12 cell line) and general recommendations of an expert.

Therefore, the presented meso-scale simulation results can be considered as a realistic

example although they do not necessarily correspond to a specific real cell type. The

most speculative part of the Meso-scale Model is the initial energy distribution of cells

which is very hard to make a realistic assumption about. This stems partially from the

fact that ‘energy’ as used in the Meso-scale Model (and also adopted by the macro-

scale model) is actually an abstract combination of the size and metabolic energy of

a cell. During the evaluation and analysis of the macro-scale results (Sections 3.6.1

to 3.6.3) we assumed that both the Meso-scale Model and the macro-scale models have
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initially the same energy distribution, namely a uniform one between Ediv/2 and Ediv

because we do not want the shape of the initial energy distribution has an impact

on the performance of the macro scale models. However, in Section 3.7 we will also

provide a compared analysis of the prediction performances of the macro-scale models

for different (and more realistic) initial energy distributions and an evaluation of the

robustness of the initial energy distribution to be used in the Macro-scale Model II.

The difference between the progress speeds of toxicity diffusion and physiological

changes (including cellular changes and toxicity release) is rather high. In the Meso-

scale Model this difference is accounted for by using a much shorter step size in the

toxicity diffusion simulation as compared to the one used in the simulation of physio-

logical dynamics. Taking the frequency of population size measurements under realistic

experimental conditions into consideration, the step size of the physiological dynamics

is heuristically chosen as equivalent to 15 minutes, while the step size of the diffusion

dynamics is taken as 1/20 of this value, namely 45 seconds. The diffusion coefficient

used in Equation 2.2 as D = 4 is low enough to satisfy the Courant-Friedrichs-Lewy

(CFL) condition5 (D ≤ Dmax = 1
4∆kD

= 1
4 ∆k

20

= 5) but by far high enough (as justified

by meso-scale simulation results) to legitimize the assumption about the ongoing uni-

formity of the toxicity distribution. The exact choice of D is not critical as long as it

remains around the given value. Taking into account that the area of a regular cell in

our experiment is around 1500 µm2, D = 4 corresponds approximately to a diffusion

rate of 66.7×10−11m
s

, which is in the realistic range of diffusion rates for small particles

in a cytoplasm [25].

The macro-scale models are lumped-parameter representations of the actual dy-

namics and thus constitute a higher level mathematical abstraction. Their perfor-

mances are evaluated on basis of several criteria that measure how efficiently they

predict the population occupancy generated by the Meso-scale Model. For such a per-

formance evaluation, the macro-scale parameters Êdiv and r have been estimated from

meso-scale simulation results (obtained for an initial population occupancy of 20%) by

5Courant-Friedrichs-Lewy (CFL) condition states the uniqueness and stability conditions for nu-
merical solutions of certain partial differential equations [26].
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using the methods explained in Sections 3.5.3 and 3.5.3, respectively.

The time profile of the population occupancy obtained from these meso-scale

simulations exhibit the typical behaviour of real cell cultures for a wide range of initial

occupancies; i.e. increasing up to a certain level (plateau), staying there for a while

and then decreasing rapidly until complete extinction. When the parameters of the

macro-scale model are appropriately estimated from meso-scale simulation results using

the methods presented in Section 3.5, the macro-scale model results exhibit a similar

behaviour. Figure 3.18a depicts the population occupancy as a function of time for an

initial occupancy of 10%. Although the other variables are empirically not observable,

they are shown in Figure 3.18b-c-d for the sake of a general evaluation of the macro-

scale model results against the meso-scale data. Here, instead of the macro-scale state

variable θ, a physically more meaningful variable, the total toxicity ζ, is presented.

Note that the simulation results in Figure 3.18b-c-d are obtained for energy intake rate

α = 1, which is equivalent to A (the energy intake per step) used in the Meso-scale

Model. For any other choice of α, the population profile predicted by the macro-scale

model is still the same, while the other (non-observable) state variables are scaled by

a function of α.

3.6.1. Performance Evaluation of the Macro-scale Models

Since the macro-scale models are developed with the purpose of predicting the

population size, their performance are evaluated on the basis of population related

criteria alone. In this thesis, the following practically relevant performance criteria

have been used:

• percentage error in the maximum population occupancy pmax:

%εpmax = 100% |pmacromax − pmesomax | /pmesomax (3.45)
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Figure 3.18. Time profile of (a) the population occupancy p(t), (b) the total toxicity

ζ(t), (c) the upper boundary of energy distribution ηH(t) and (d) the lower boundary

of energy distribution ηL(t). These results are obtained for an initial occupancy of

10% (Black: Meso-scale model; Red: Macro-scale Model I; Green: Macro-scale

Model II).

• percentage error in td, the beginning of population decrease after reaching pmax:

%εtd = 100% |tmacrod − tmesod | /tmesod (3.46)

• percentage error in te, the extinction time of the population:

%εte = 100% |tmacroe − tmesoe | /tmesoe (3.47)

• the RMS error in the population size as a percentage of the RMS value of the

meso-scale population size:

%εRMS = 100%

√
1

te,m

∫ te,m
0

[pmacro(t)− pmeso(t)]2dt
1

te,m

∫ te,m
0

[pmeso(t)]2dt
(3.48)

where te,m = max(tmacroe , tmesoe )
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Percentage performance measures of both Macro-scale Model I and II in terms of

these criteria are shown in Figure 3.19 for all possible values of initial occupancies.

Figure 3.19. The performance criteria which evaluate how well the macro-scale model

results (with α=1) resemble the Meso-scale Model results: (a) %εRMS, (b) %εpmax,

(c) %εtd and (d) %εte as a function of initial occupancy of the flask p(0) (Red:

Macro-scale Model I, Blue: Macro-scale Model II).

For Macro-scale Model I, population prediction performance measured in terms

of all four criteria shows a common qualitative dependence on initial occupancy: poor

performance for very low initial occupancies, a rapid improvement of performance when

the considered initial occupancy approaches an intermediate value around 10-30%, a

slight degradation of performance when the considered initial occupancy approaches a

value around 50-60% and increasingly better performance for higher initial occupancies.

On the other hand, Macro-scale Model II provides a much more consistent performance

for all four criteria and even a better one than the Macro-scale Model I in general

except for approximately 10-30% initial occupancy. Although Macro-scale Model II is

developed with better approximations for quiescent occupancy and energy distribution

dynamics, it has an inferior performance for this specific initial occupancy range. The

performance of Macro-scale Model I and II will be analysed more closely in the following

sections.
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3.6.2. Detailed Performance Analysis for Macro-scale Model I

There are basically two approximations in the Macro-scale Model I which affect

the population prediction performance seen in Figure 3.19: (i) approximation of the

quiescent population according to Equation 3.4 and (ii) approximation of the energy

distribution as a uniform one at all times as described in Section 3.3.3.1.

3.6.2.1. Effect of Quiescent Model I. q(t) is estimated under the assumption that cells

are uniformly distributed across the flask at all times. However, when the system starts

with a uniformly distributed low initial occupancy and cell divisions start separate

clusters are formed around the loci of the initial cells and thus the uniform distribution

assumption is slightly violated until these s grow and start to merge. But in these

cases -although the percentage estimation error is not very small- the actual quiescent

occupancy is so small that approximating it as zero still provides a rather acceptable

macro-scale model performance.

On the other hand, this approximation results in an overestimation of q(t) for

populations occupying more than 50% of the flask for nearly all initial occupancies

except very low ones. Even for these initial occupancies, quiescent occupancy is over-

estimated after population reaches 50%-60%. However, as the population approaches

maximum capacity nearly all cells enter quiescence mode and the overestimation in

Quiescent Model I becomes negligible (Figure 3.20).

In summary, the estimation of the active population (p-q) performs well for p(t)

below 50% and for very high population sizes, while in between the active population

is underestimated by Macro-scale Model I.

3.6.2.2. Effect of Energy Model I. Both in the meso-scale and macro-scale models it is

assumed that the distribution of cell energies across the population is initially uniform,

as explained in previous chapters. Macro-scale Model I further assumes that the energy

distribution will remain uniform at all times, which is actually in conflict with the meso-
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Figure 3.20. Quiescent occupancy q(t) versus p(t) and active population occupancy

(p(t)− q(t)) versus p(t) for three different initial occupancies (Black: Quiescent

Model I, Blue: Meso-scale model). The sparse secondary part of the blue curve

corresponds to the data after cells start to die.

scale simulation results. The impact of this rough approximation on the prediction

performance of the macro-scale model needs to be evaluated.

For this purpose, let us first consider the actual characteristics of the energy

distribution as observed in meso-scale results (Figure 3.21) for the early stages when

the effect of toxicity is negligible. As the cell energies keep on increasing due to constant

food intake, the histogram shifts steadily towards higher energy values (as long as the

population is not very high and thus most of the cells are in active mode). On the

other hand, since the cells that reach Ediv undergo mitotic division, their number is

doubled while their energies are halved, which folds the part of the histogram exceeding

Ediv back to Ediv/2. Under the influence of this ‘shifting and folding’, in despite

of the increasing toxicity effect and quiescent population presence, the actual energy

distribution loses and regains a relatively uniform shape over and over again as can be

seen in Figure 3.21.

The Macro-scale Model I calculates the number of cells that will undergo mitotic

division within the next time step under the assumption that the energies of active cells

are uniformly distributed. However, when it becomes non-uniform (see Figure 3.21b-c-
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Figure 3.21. Energy histograms at the (a) 1st , (b) 10th , (c) 20th , (d) 30th, (e) 40th

and (f) 50th time steps for an initial occupancy of 10%.

d-e) the energy distribution is typically biased in such a way that higher energy levels

are less occupied. In those phases the uniform energy distribution assumption overes-

timates ρb(t) (Equation 3.24) and consequently the overall population (Figure 3.22).

Figure 3.22. (a) p(t) and (b) birth rates ρb(t) of the Meso-scale Model (blue) and

Macro-scale Model I (red) starting from 10% initial occupancy during the early stage

of population growth. Macro-scale model I has been simulated using real quiescent

occupancy values from Meso-scale Model to make a reliable comparison.

It should be noted that when the population is very high, most of the cells are in

quiescent mode, thus fewer divisions occur and the uniformity of energy distribution is
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disturbed less, resulting in a smaller overestimation of ρb(t).

3.6.2.3. The combined effect of Quiescent Model I and Energy Model I. In summary,

these two approximations exhibit relatively poor performance for some initial occu-

pancy ranges: active (non-quiescent) population occupancy is underestimated when

p(t) > M/2, while ρb(t) is overestimated for all p(t) values. According to the first

line of Equation 3.31 these two factors with opposite errors compensate each other for

populations occupying more than half of the flask, such that the macro-scale model

approximates ṗ(t) rather well in that population range, while for lower populations

ṗ(t) is overestimated.

It should be noted that the approximations in Quiescent Model I and Energy

Model I directly affect ṗ(t), whereas the performance criteria are evaluated on basis

of p(t). Let us consider how the approximation error affect p(t) for different initial

occupancy ranges.

Simulation results obtained from the Meso-scale Model reveal that for p(0) ≥M/2

the error due to underestimation of the active population occupancy dominates the

error due to overestimation of the energy distributions. Hence for these population

occupancies, the population increase rate and thus also the population occupancy are

initially underestimated until cells start to die. Since underestimated population occu-

pancy implies also an underestimation of the total toxicity, population decrease due to

toxicity in the macro-scale model occurs later than in the meso-scale. However, once

the population decrease occurs, the decrease rate predicted by the macro-scale model

is very close to that of the Meso-scale Model as can be seen in Figure 3.23a. Keeping

in mind that under these conditions the macro-scale model is operating according to

the second line of Equation 3.31 (ηL(t) = 0 and α < θ(t)
M

) the parallel decrease of p(t)

in meso- and macro-scale models indicates that the assumption about uniform energy

distribution holds to a great extent.

However; for p(0) < M/2, as long as p(t) remains below M/2, the uniform energy



64

distribution assumption results in an overestimation of p(t). As soon as p(t) exceeds

M/2, the error due to underestimation of the active population occupancy gains signifi-

cance and starts to suppress the accumulated overestimation of p(t). Consequently, the

Macro-scale Model I approximates the course of p(t) best for p(0) around 10-20% (Fig-

ure 3.23b), which can also be observed in Figure 3.19 where all four population-based

evaluation criteria exhibit the best performance for this initial population range.

With much lower p(0) it takes longer for the population to reach M/2, and thus

the overestimation in ṗ(t) (due to the uniform energy distribution approximation) has

more time to accumulate. By the time p(t) = M/2, the population occupancy esti-

mated by the macro-scale model is much higher than in the meso-scale. Consequently,

the underestimation of the active population occupancy (which occurs from the time

onwards when p(t) exceeds M/2) cannot sufficiently compensate the overestimation of

p(t) as shown in Figure 3.23c.

Figure 3.23. Time profile of p(t) according to the meso-scale(blue) and Macro-scale

Model I (red) for different initial occupancies, p(0): a)60% b)18% and c)6% of the

flask.

3.6.3. Detailed Performance Analysis for Macro-scale Model II

3.6.3.1. Effect of the Quiescent Model II. Both Quiescent Models I and II approxi-

mate q(t) in a piecewise linear manner; namely as zero up to a certain quiescence onset

point, pq, and as a line with a positive slope κ. In Quiescent Model I, the quiescence
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onset point pq and κ are fixed at 50% and 2, respectively (Figure 3.20). In Quiescent

Model II, however, pq depends on how much time has passed since the beginning of

births until the rise of quiescent population. This also renders the slope κ defined for

p > pq dependent on time. A closer inspection from the meso-scale simulations reveals

that Quiescent Model II underestimates the active population occupancy until the on-

set point is reached, and thereafter it tends to overestimate it slightly (Figure 3.24).

Figure 3.24. Quiescent occupancy q(t) versus p(t) and active population occupancy

(p(t)− q(t)) versus p(t) for three different initial occupancies (Black: Quiescent

Model II, Blue: Meso-scale model). The sparse secondary part of the blue curve

corresponds to the data after cells start to die.

Since the onset point in Quiescent Model II is not fixed, we observe that it

estimates the quiescent occupancy on average better than Quiescent Model I for an

arbitrary initial occupancy. In Table 3.1, we show the average absolute quiescent

estimation error (Equation 3.49) for three different initial populations:

εq =
1

te

∫ te

t=0

|qmeso(t)− qmacro(t)| dt (3.49)

3.6.3.2. Effect of the Energy Model II. Energy Model II is developed to account for

the shifting and folding effects of energy distribution mentioned in Section 3.3.3.2. As a
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Table 3.1. Average quiescent estimation error for 3 different initial occupancies.

εq for p(0) = 20% εq for p(0) = 40% εq for p(0) = 60%

Quiescent Model I 10.188 8.3429 6.1873

Quiescent Model II 6.4636 3.2988 1.4048

results of this, birth rate is neither overestimated nor underestimated significantly and

gives a much better performance for predicting the time profile of p(t) (Figure 3.25).

Figure 3.25. (a) p(t) and (b) birth rates of the Meso-scale Model (blue) and

Macro-scale Model II (red) starting from 10% initial occupancy. Macro-scale model

has been simulated using real quiescent occupancy values from Meso-scale Model to

make a reliable comparison.

However, it should be noted that the performance of the Energy Model I decreases

for birth rates when p(t) increases and reaches the plateau. We have observed from the

meso-scale simulations that during that phase an important assumption made of the

macro-scale models is violated, namely the assumption that the energy distributions

of the active and total populations have the same shape. This assumption loses its

validity when p(t) increases significantly, since in a sufficiently crowded region new born

cells enter immediately quiescence mode, giving rise to an unexpected accumulation of

quiescent cells at energy level Ediv/2. This excessive population of quiescent cells at a

specific energy level deforms the energy distribution of active cells and thus renders the

shapes of the energy distributions of active cells and all cells dissimilar. However, during
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this phase the number of active cells decreases dramatically due to high population,

and likewise the birth rate shrinks drastically due to toxicity (and reaches zero in the

plateau region) which together reduce the effect of the discrepancy between the real and

modelled energy distributions. Hence, we can assume that the Energy Model II provides

in general a qualitatively good estimation for the evolution of energy distribution.

3.6.3.3. The Combined Effect of Quiescent Model II and Energy Model II. The per-

formance of Macro-scale Model II is much more straight forward than Macro-scale

Model I. The macro-scale Model II performs better than Macro-scale Model I except a

specific region. The superiority of Macro-scale Model II is due to the better estimation

capabilities of Quiescent Model II and Energy Model II.

Energy Model II predicts the total population significantly better than Energy

Model I but still lacks modelling of the discrepancy between the energy distributions of

active and quiescent cells which arises when population increases sufficiently. On the

other hand, Quiescent Model II also produces estimation errors due to its piecewise

linear nature, although not as high as Quiescent Model I. The combined effect of these

slight over and under estimations constitutes a more consistent and better macro-scale

model which is outperformed by the Macro-scale Model I only for initial occupations

where the errors of Quiescent Model I and Energy Model I cancel each other quiet well.

3.7. Robustness to Different Initial Conditions

In Section 3.6.1, performance of the macro-scale models have been evaluated

assuming that the meso- and macro-scale models have initially the same uniform energy

distribution between Ediv/2 and Ediv. However, energy concept in this thesis is a virtual

concept that combines the physical size and internal energy of cells, hence practically

unmeasurable. Therefore, we expect that the physical and biological correlates in real

cell cultures may correspond to initial energy distributions other than the assumed

uniform distribution between Êdiv/2 and Êdiv. Therefore it is important to know how

robust our macro-scale models are to variations in the real correlates of initial energy
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distribution. For this purpose meso-scale simulations have been conducted using initial

energy distributions of different shapes, the macro-scale models have been parameter-

tuned for each of them and then the macro-scale performances have been evaluated. For

a given macro-scale model, comparison of these performances gives an idea about its

robustness to variations in the real correlates of the initial energy distribution. For this

purpose a robustness measure has been defined. It is used to evaluate the robustness

of Macros-scale Model I and II, as well as to select the most adequate initial energy

distribution, for Macro-scale Model II among the ones considered. The details of this

procedure are explained below.

As stated in Section 2.3, cells have initially low energies at the beginning of the

experiment. So, it is reasonable to assume that the initial energy distribution is spread

between 0 and Ediv/2. The shape of the distributions used to evaluate the performance

of the macro-scale model are selected biologically plausible in the sense that majority

of cells do not occupy high levels of the energy distribution. Therefore, we decided

to choose such four alternative energy distribution candidates which are mathematical

realizations of four simple functions, namely a shifted Gaussian curve, a decaying line,

a decaying exponential and finally the uniform function (Figure 3.26).

Figure 3.26. Initial energy distributions considered for robustness tests.

The macro-scale models assume that the flask is initially clean and the upper

boundary of energy distribution starts at Ediv. Regardless of the shape of the energy
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distribution, these two assumptions can be easily satisfied if toxicity is removed imme-

diately upon the observation of the first population increase. Thus, the performances

of the macro-scale models (and also the estimation of their parameters) are evaluated

only after the system has reached a state where the flask is clean and the population

occupancy has started to increase. It is worth noting that waiting for the onset of cell

divisions and cleaning the flask afterwards is experimentally feasible.

In this regard, the macro-scale parameters Ediv and r have been estimated for

each energy distribution shown in Figure 3.26a-d (using meso-scale simulation data

gathered for p(0) = 10%) as shown in Table 3.2.

Table 3.2. Estimates of Ediv and r for different meso-scale initial energy distributions

as described in Sections 3.5.3. and 3.5.4 and shown in Figure 3.26a-d.

Meso-scale

value

estimate

for (a)

estimate

for (b)

estimate

for (c)

estimate

for (d)

Ediv 96 102 102 100 100

r 0.0067 0.0069801 0.0067016 0.0066218 0.0063334

In this thesis the following robustness measure R is proposed for macro-scale

models:

• 4 different initial energy distributions between 0 and Ediv/2 are considered:

(i) Gaussian: fa(E, 0) = e−
1
2(E−µ

σ )
2

− e
− 1

32

(
Êdiv
σ

)2

where µ = Êdiv
4

and σ = Êdiv
8

(ii) Linearly decaying : fb(E, 0) = −E + Êdiv
2

(iii) Exponentially decaying : fc(E, 0) = e−0.04E

(iv) Uniform : fd(E, 0) = 1

The numerical values of the parameters in these distributions have been

heuristically selected.

• 4 different performance measures εi (i=1,. . . ,4) have been defined for each initial
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energy distribution as explained Section 3.6.1 :

ε1 = εRMS ; ε2 = εpmax ; ε3 = εtd ; ε4 = εte

εi(p0, k) : ith performance measure of a macro-scale model starting with p(0) = p0

for predicting the results of meso-scale simulations with initial energy distribution

fk(E, 0), where k ∈ {a, b, c, d} as given above. Here, 50 different p0 values have

been considered: p0 ∈ S = {2, 4, . . . , 100}.

• ε∗i (k), the average of εi(p0, k) over ∀p0 ∈ S, gives an idea about the average

performance of a macro-scale model in estimating the results of a meso-scale

simulation with initial energy distribution fk(E, 0):

ε∗i (k) =
1

cardinality(S)

∑
p0∈S

εi(p0, k) (3.50)

• Finally R, the robustness of the macro-scale model under consideration, is defined

as the relative percentage standard deviation of ε∗i (k).

R =

√
1
4

∑
k(ε
∗
i (k)− ε∗i )2

ε∗i
∗ 100% (3.51)

where, ε∗i is the initial-distribution-invariant average performance (idiap) of a

macro-scale model in estimating meso-scale simulation results, which is calculated

as the average of ε∗i (k) over k ∈ {a, b, c, d}:

ε∗i =
1

4

∑
k∈{a,b,c,d}

ε∗i (k) (3.52)

3.7.1. Macro-scale Model I

As can be observed from Figure 3.27 that all four performance criteria give qual-

itatively similar results except %εtd , the error indicating the beginning of population

decrease, which exhibits very bad performance for high initial populations. This is

due to the fact that some cells at low energy levels become quiescent already at the
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Figure 3.27. The performance of Macro-scale Model I in terms of four performance

criteria for the meso-scale simulations with four different initial energy distributions:

Gaussian curve (blue), decaying line (green), decaying exponential (black), uniform

(red).

beginning of the experiment if the initial occupation is sufficiently high. These cells

are not able to gain further energy and as a result of this, after total toxicity reaches

a sufficient level, they die much earlier than the Macro-scale Model I anticipates the

first death, which eventually results in a poor %εtd performance.

Furthermore, the performance of the Macro-scale Model I is also affected by

the error of estimated parameters r and Ediv, the best example of which is the visible

discrepancy between the uniform (red line) and other energy distributions. The slightly

worse estimation of the parameter r in uniform energy distribution gives rise to a worse

performance for a majority of initial populations when predicting the overall shape of

population curve, the death time and the extinction time. The effect of the parameter

estimation error can be observed in more detail, if the macro-scale model is simulated

with the same parameters of the Meso-scale Model as shown in Figure 3.28.

It is also intriguing for modelling intentions to observe that worse parameters

might even create better results for some specific initial concentrations where the errors

of modelled dynamics suppress the parameter estimation errors. This outcome will be

discussed in forth chapter of the thesis in further detail.
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Figure 3.28. The performance of Macro-scale Model I in terms of the four

performance criteria with estimated r and Ediv (red line) and with real r and Ediv

from Meso-scale Model (blue line).

Table 3.3. Robustness measure for Macro-scale Model I.

Meso-scale Initial energy

distribution
ε∗RMS ε∗pmax ε∗td ε∗te

(a) Gaussian curve 18,79 6,12 11,72 5,03

(b) Decaying line 21,32 5,75 15,14 5,61

(c) Decaying exponential 21,34 5,79 15,04 5,64

(d) Uniform 26,45 5,47 17,67 7,21

idiap (ε∗i ) 21,97 5,78 14,89 5,87

Robustness measure 14,64 4,62 16,37 15,89
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3.7.2. Macro-scale Model II

The Macro-scale Model II is not developed with a pre-selected initial energy

distribution. Instead, it employs Energy Model II which describes how the energy dis-

tribution evolves. As a result, any shape can be used for the initial energy distribution

in Macro-scale Model II. However, it is more reliable to select this shape according to

the robustness and overall performance results of Macro-scale Model II.

For this purpose, we have assigned four different candidates as the initial energy

distribution of Macro-scale Model II. Those candidates are the same energy distribu-

tions (Figure 3.26) used in robustness tests. The performance of each candidate is

given in terms of four performance criteria for meso-scale simulations with four initial

distributions.

Figure 3.29. The performance of Macro-scale Model II with Gaussian initial

distribution in terms of four performance criteria for the meso-scale simulations with

four different initial energy distributions: Gaussian curve (blue), decaying line

(green), decaying exponential (black), uniform (red).

In order to evaluate which initial energy distribution in Macro-scale Model II

performs better, the idiap values for different macro-scale initial energy distributions

are regrouped in Table 3.8. One can easily observe that the idiap values of linearly

and exponentially decaying energy distributions are worse than Gaussian and uniform

ones. Thus linearly and exponentially decaying energy distributions can be eliminated.
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Table 3.4. Robustness measure for Macro-scale Model II with Gaussian initial energy

distribution.

Meso-scale Initial energy

distribution
ε∗RMS ε∗pmax ε∗td ε∗te

(a) Gaussian curve 10,61 3,07 8,58 2,50

(b) Decaying line 12,55 2,57 11,98 1,92

(c) Decaying exponential 12,58 2,12 11,91 2,02

(d) Uniform 19,44 1,92 15,51 3,93

idiap (ε∗i ) 13,80 2,42 12,00 2,60

Robustness measure 28,11 21,24 23,56 35,71

Figure 3.30. The performance of Macro-scale Model II with linearly decaying initial

distribution in terms of four performance criteria for the meso-scale simulations with

four different initial energy distributions: Gaussian curve (blue), decaying line

(green), decaying exponential (black), uniform (red).
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Table 3.5. Robustness measure for Macro-scale Model II with linearly decaying initial

energy distribution.

Meso-scale Initial energy

distribution
ε∗RMS ε∗pmax ε∗td ε∗te

(a) Gaussian curve 14,08 3,99 10,46 2,52

(b) Decaying line 15,51 3,41 13,91 2,80

(c) Decaying exponential 14,98 2,90 13,79 2,63

(d) Uniform 23,03 2,63 17,35 5,36

idiap (ε∗i ) 16,90 3,23 13,88 3,33

Robustness measure 24,42 18,64 20,27 40,95

Figure 3.31. The performance of Macro-scale Model II with exponentially decaying

initial distribution in terms of four performance criteria for the meso-scale

simulations with four different initial energy distributions: Gaussian curve (blue),

decaying line (green), decaying exponential (black), uniform (red).
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Table 3.6. Robustness measure for Macro-scale Model II with exponentially decaying

initial energy distribution.

Meso-scale Initial energy

distribution
ε∗RMS ε∗pmax ε∗td ε∗te

(a) Gaussian curve 14,10 3,94 10,31 2,54

(b) Decaying line 15,48 3,35 13,73 2,71

(c) Decaying exponential 14,86 2,85 13,56 2,52

(d) Uniform 22,94 2,56 17,13 5,17

idiap (ε∗i ) 16,85 3,17 13,68 3,23

Robustness measure 24,36 19,09 20,37 39,96

Figure 3.32. The performance of Macro-scale Model II with uniform initial

distribution in terms of four performance criteria for the meso-scale simulations with

four different initial energy distributions: Gaussian curve (blue), decaying line

(green), decaying exponential (black), uniform (red).
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Table 3.7. Robustness measure for Macro-scale Model II with uniform initial energy

distribution.

Meso-scale Initial energy

distribution
ε∗RMS ε∗pmax ε∗td ε∗te

(a) Gaussian curve 10,16 3,14 8,37 2,71

(b) Decaying line 11,97 2,58 11,76 1,98

(c) Decaying exponential 11,70 2,11 11,69 2,01

(d) Uniform 19,30 1,84 15,24 3,68

idiap (ε∗i ) 13,28 2,42 11,76 2,60

Robustness measure 30,79 23,70 23,82 30,69

The remaining two distributions have rather close performances, but the Gaussian

distribution exhibits higher robustness in three out of four criteria as shown in Table 3.9.

Table 3.8. idiap values for different initial energy distributions of the Macro-scale

Model II.

Initial Distribution of

Macro-scale Model II
ε∗RMS ε∗pmax ε∗td ε∗te

Gaussian curve 13,80 2,42 12,00 2,60

Decaying line 16,90 3,23 13,88 3,33

Decaying exponential 16,85 3,17 13,68 3,23

Uniform 13,28 2,42 11,76 2,60

Hence, it seems appropriate (albeit not imperative or crucial due to its small

difference) to assign the shifted Gaussian distribution as the initial energy distribution

of the Macro-scale Model II (Equation 3.53).

f(E, 0) = e−
1
2(E−µ

σ )
2

− e
− 1

32

(
Êdiv
σ

)2

(3.53)

where µ = Êdiv
4

and σ = Êdiv
8
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Table 3.9. Robustness of Gaussian and uniform macro-scale initial energy

distributions.

Robustness measure ε∗RMS ε∗pmax ε∗td ε∗te

Gaussian curve 28,11 21,24 23,56 35,71

Uniform 30,79 23,70 23,82 30,69

Figure 3.33. Gaussian-shaped energy distribution between 0 and Ediv/2 is selected as

the initial energy distribution of the Macro-scale Model II.



79

Finally, it is important to note that regardless of its initial energy distribution

selection, Macro-scale Model II outperforms Macro-scale Model I in all four criteria.

The comparison of overall performances (idiap) of Macro-scale Model I and Macro-scale

Model II with the selected initial energy distribution is given in Table 3.10.

Table 3.10. Comparison of overall performances of Macro-scale Model I and

Macro-scale Model II with the Gaussian-shaped initial energy distribution.

idiap (ε∗i ) ε∗RMS ε∗pmax ε∗td ε∗te

Macro-scale Model I 21,97 5,78 14,89 5,87

Macro-scale Model II 13,80 2,42 12,00 2,60
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4. CONCLUDING REMARKS

The aim of this thesis was to develop a model that allows the user to predict how

the population size of a eukaryotic cell culture will evolve starting from an arbitrary

initial value. In this thesis two novel analytical models that can serve such a purpose

have been obtained in two steps: First, a biologically plausible agent-based Meso-scale

Model has been designed that makes use of the available knowledge about the behaviour

of individual cells. Next, two autonomous macro-scale models have been derived from

this Meso-scale Model.

The knowledge that constitutes the biological basis of this Meso-scale Model is

mainly the recommendations of an expert and the insight gained from some empirical

studies on a C2C12 cell culture. This Meso-scale Model is assumed to be customisable

by properly selecting its parameters using some results of simple tests. We hope that the

agent-based discrete-time Meso-scale Model, which mimics the dynamics of individual

cells, provides a sufficiently detailed simulation environment where the evolution of

the cell population can be computed starting from any initial condition. However, it

should be noted that the phenomenon of cell differentiation has been excluded from the

Meso-scale Model. Therefore, the Meso-scale Model can be used either for cell cultures

that are incapable of differentiation or for differentiable cell cultures until cells undergo

differentiation (which usually happens when the flask is completely occupied).

Under some uniformity assumptions, the flask-wide dynamics of the cell culture

can be represented in a much more compact form, as a set of coupled nonlinear dif-

ferential equations with some parameters that need to be customized using empirical

data. In this regard, two analytical macro-scale models have been developed from the

meso-scale agent-based model and by the intuition gained from its simulations. Dur-

ing the development of these models, some biologically plausible approximations have

been made to represent lumped-parameter concepts. Here, one of the most important

assumptions is that cells are spatially sufficiently uniformly distributed at all times. In

order to evaluate the uniformity of the cell distribution across the flask in the Meso-



81

scale Model, a measure of heterogeneity has been proposed. Using this measure, it has

been shown that the dynamics of the Meso-scale Model does not significantly amplify

local heterogeneities, which supports the employment of the uniformity assumption.

Macro-scale model I is developed with further uniformity assumptions about the

two important factors affecting the population dynamics, namely the dynamics of the

energy distribution and the quiescent population. These rather simplistic assumptions

lead to rather poor approximations in the associated parts of the population dynamics

but these errors largely cancel each other, resulting in a relatively successful predic-

tion of the population profile as obtained from the Meso-scale Model. Figure 3.19

demonstrates that the prediction performance of Macro-scale Model I is satisfactory

for initial populations occupying more than 10% of the flask, and especially well for

10-30% occupancy.

Macro-scale Model II is developed in order to improve the approximations for

both quiescent occupancy and energy distribution dynamics. With the insight gained

from a closer investigation of meso-scale simulation results, Quiescent Model II and

Energy Model II have been developed, both of which have a superior performance

compared to their counterparts in Macro-scale Model I. Macro-scale Model II estimates

the population occupancy in a more consistent manner for different initial population

ranges.

Although Macro-scale Model II in general performs better than Macro-scale

Model I in estimating the maximum population occupancy pmax, the death time td, the

extinction time te and finally the overall qualitative shape of the population evolution,

Macro-scale Model I surprisingly outperforms Macro-scale Model II for a specific initial

occupancy range as can be seen from Figure 3.19. Therefore, for experiments with ini-

tial occupancy within this range the usage of Macro-scale Model I can be recommended.

Here, it is worth to remark that from a modelling point of view the performance of the

components in a model might be unimportant as long as the combined effect of these

elements constitute a sufficiently well working system. This conclusion can be valid

even for a single wrongly set parameter which has a positive impact on the outcome of
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the model as in our case (Figure 3.28).

In that regard, it is impossible not to mention the quotation of G.E.P. Box:

”Essentially, all models are wrong, but some are useful.” and accordingly suggest that

”Some are even more useful when they become ‘wronger’ ”.

4.1. Future Contribution

The most important weakness of the models developed in this thesis is the lack

of experimental validation. In fact, the Meso-scale Model has been developed to con-

stitute a simulation environment for cell culture dynamics and provide a basis for

lumped-parameter macro-scale models. In this thesis, the validation of macro-scale

models has been done. according to the results of the meso-scale simulations. How-

ever, the Meso-scale Model, which is based on biological knowledge and qualitative

empirical observations, needs to be better grounded and fine-tuned via detailed lab-

oratory experiments that can provide quantitative validation. Therefore, the most

important future work for this thesis would involve experimental works with different

cell culture types and the validation of the meso-scale accordingly.

4.2. Modelling Challenge I : virtual entities

Besides providing a customisable model useful for predicting the evolution of the

population size, this study also sheds light on how a compact analytic model of the

collective behaviour of a large number of lower-scale components can be constructed on

basis of the individual dynamics of these components. However the development of a

compact and lucid macro-scale model from the knowledge of lower-scale dynamics may

not always be achieved in a trivial manner by averaging, coarse-graining, aggregating

etc. As a matter of fact, exactly such examples constitute interesting and challeng-

ing modelling problems and let the modeller go back and forth between choosing the

adequate state variables and formulating their dynamics until an autonomous system

representation is obtained. In the selection of state variables, observable variables of

interest play the leading role. Generally during the formulation of the dynamics of
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these observables other state variables turn out to be necessary.

The observable variables of interest are usually global variables representing the

total or average behaviour of the collective, while the deviations from the average -

i.e. the diversity within the collective- need to be represented by introducing further

variables (if they have any contribution to the dynamics of the chosen observable

variables). Such ‘diversities’ can be accounted for by introducing stochastic variables,

but this would result in a stochastic macro-scale model. If one wants to remain within

the realm of deterministic models, one can choose to express the distribution of the

quantity of interest across the collective as a distribution function as in our case.

When constructing a macro-scale model, observable state variables and those that

represent the distribution of quantities of interest across the collective may still not

suffice to achieve the autonomy of the system. In this case, one may need to envisage

‘virtual’ variables, which do not necessarily have a lower-scale counterpart. As a matter

of fact, the ‘virtuality’ of such variables is a matter of philosophical interpretation,

because as long as they are formulated appropriately and meet pragmatic needs of

modelling they can be considered rather ‘real’ from the macroscopic perspective; a

very obvious example being the temperature in thermodynamics.

4.2.1. Modelling Challenge II : excessive reductions

Analytical macro-scale models are mathematical abstractions of Ontos 6 and like

all models they must contain some reductions of the properties of phenomena under

investigation. These reductions made in favour of pragmatic needs constitute the

essence of act of modelling. However, if the reductionist operations are not carried

out carefully or conducted excessively, some of the important features of the modelled

phenomenon can be missed, distorted or misrepresented. Furthermore, in some cases

complex or unexpected outcomes are observed as a reflection of notions not inherited

in the developed model.

6oντως (Greek) : the thing, the reality, the authentic essence of being.
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After the Macro-scale Model I has been developed, we have observed such a phe-

nomenon in the form of an oscillatory behaviour in cell energies during population

growth which immediately drew our attention since no oscillatory part was intended

in the meso-scale dynamics, let alone in the energy dynamics. Likewise, Macro-scale

Model has no component which could reflect this oscillatory behaviour in some math-

ematical sense.

Figure 4.1. Oscillating behaviour in the first and second moments of cell energies.

This oscillating behaviour was indicating us that an essential feature has been

missed in the dynamics of cell energies and thus encouraged us to investigate in more

detail how the energy distribution in the meso-scale dynamics evolved. As a result of

this examination, we realized that the real reason behind this oscillatory behaviour is

the shifting and folding effect in the dynamics of the energy distribution as explained

in Section 3.3.3.2. The disclosure of the origin of this phenomenon shed light on

the development of the Macro-scale Model II and thus this oscillatory behaviour is

represented inherently inside the equations of birth rate.
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Although the details are beyond the scope of this thesis, it is worth indicating

the close relation between the invention of entities (mentioned in previous subsection),

which appear virtual from a lower-scale perspective, and the concept of ‘emergence as

one of the liveliest areas of discussion in philosophy of science [27].

Finally, with the insight gained from this thesis, I want to state that I find

mathematical modelling to constitute an invaluable tool in the sense that it allows us

to make abstractions and conceptualizations of ’virtual’ entities without of which we

would not be able to describe the phenomenon of interest. However, at the same time it

also encloses the danger of making excessive reductions, resulting in losing of essential

attributes of the phenomenon which can have a direct impact on the performance of

the model.

In my opinion, this is exactly why a modeller should always keep an eye open

to grasp or envisage the notion of possible concepts at any scale, may it have a real

correlate or not, while also preserving the right resolution for his perspective to keep

the necessary amount of reductions for the development of the model as low as possible.
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APPENDIX A: MACRO-SCALE DERIVATION OF

TOTAL TOXICITY FROM MESO-SCALE KNOWLEDGE

When we investigate the dynamics of local toxicity, we realize that the total

toxicity in flask can be derived analytically from it. Two factors affecting local toxicity

change at a specific locus are (i) toxicity release from a cell at that locus - if there is

any at all - and (ii) toxicity diffusion into or out of that locus. Hence, its dynamics

can be described as follows:

xi,j(t+ ∆t) = xi,j(t) + ∆tβAs (Ei,j(t)) + ∆tD

(
∂2xi,j(t)

∂i2
+
∂2xi,j(t)

∂j2

)
(A.1)

where s(x) =

 1 if x > 0

0 if x ≤ 0

To obtain total toxicity, Equation A.1 is summed over all loci:

ζ(t) =
n∑
i=1

n∑
j=1

xi,j(t) (A.2)

The following series of calculations result in a compact form of dynamics of total

toxicity:

ζ(t+ ∆t) =
n∑
i=1

n∑
j=1

xi,j(t+ ∆t) (A.3)

n∑
i=1

n∑
j=1

xi,j(t+∆t) =
n∑
i=1

n∑
j=1

[
xi,j(t) + ∆tβAs (Ei,j(t)) + ∆tD

(
∂2xi,j(t)

∂i2
+
∂2xi,j(t)

∂j2

)]
(A.4)
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n∑
i=1

n∑
j=1

xi,j(t+ ∆t) =
n∑
i=1

n∑
j=1

xi,j(t) +
n∑
i=1

n∑
j=1

∆tβAs (Ei,j(t)) +

n∑
i=1

n∑
j=1

[
∆tD

(
∂2xi,j(t)

∂i2
+
∂2xi,j(t)

∂j2

)]
(A.5)

A close inspection of terms in Equation A.5 reveals that:∑n
i=1

∑n
j=1 xi,j(t) −→ total toxicity = ζ(t)∑n

i=1

∑n
j=1 ∆tβAs (Ei,j(t)) −→ fraction of total population = ∆tβAp(t)∑n

i=1

∑n
j=1

[
∆tD

(
∂2xi,j(t)

∂i2
+

∂2xi,j(t)

∂j2

)]
−→ total toxicity change due to diffusion = 0

Hence, Equation A.3 becomes :

ζ(t+ ∆t) = ζ(t) + ∆tβAp(t) (A.6)

Rearranging terms and taking limit of time to zero implies:

˙ζ(t) = βAp(t) (A.7)

So, dynamics of total toxicity depends only on total population, which can also

be verified by simulations of Meso-scale Model as shown in Figure A.1.

Figure A.1. A linear relationship is observed between total population and derivative

of total toxicity. The slope of the line in this figure is equal to βA as in Equation A.7.
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APPENDIX B: INSTRUCTIONS FOR THE OPERATOR

The macro-scale models are developed with the intention to estimate the time

profile of cell culture populations and eliminate the need to conduct real experiments as

far as possible. For this purpose, the macro-scale models have to be initially customized

to the specific cell culture at hand. This can be achieved by estimating the macro-

scale parameters M , r and Êdiv on basis of some simple tests applying the following

procedures (for practical purposes it is recommended to use a smaller flask):

(i) Estimation of M :

• Measure the average cell size under the microscope.

• Calculate:

M =
flask area

average cell area

(ii) Estimation of r:

• Conduct an experiment with a relatively small initial population size (10%-

20% occupancy is reasonable) and ensure that cells are approximately uni-

formly distributed.

• Record p(t) every 15 minutes until t∗, when the population stops increasing.

• Assume the constant energy intake α = 1.

• Using t∗ and p(t) records calculate r:

r =
αM∫ t∗

0
p(t)dt

(iii) Estimation Êdiv:

• Start the experiment with a relatively small initial population size (10%-20%

occupancy is reasonable) and ensure that cells are approximately uniformly

distributed.

• Clean the flask every 15 minutes, so that no significant toxicity is contained
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within the flask.

• Record p(t) every 15 minutes until Td when the initial population is doubled.

• Assuming α = 1, calculate:

Êdiv = 2αTd

After the parameters are estimated, the differential equations of the Macro-scale

Model I and II can be numerically solved the given initial values of the other state

variables as specified in Section 3.4. and for the recommended p(0) as specified in

Chapter 4. Thus a predicted population profile p(t) is obtained, from which one can

extract any relevant information.

Warnings for users of the macro-scale models:

• Cell should not undergo differentiation. If the cells under investigation starts to

differentiate at some stage of the experiment, the macro-scale model will be valid

only until that stage.

• Cells should be placed within the flask as uniformly as possible. Operations that

can cause clustering of cells across the flask should be avoided.
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