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ABSTRACT

MODELS FOR MAGNETIC RESONANCE OBSERVATION

OF DIFFUSION IN CELLULAR ENVIRONMENTS

Diffusion tensor imaging (DTI) is a widely used way of mapping anatomical

connectivity in the brain. However, it is based on two basic features that limit the

validity of the model : (i) It is a Gaussian based model. However, studies show

that the diffusion in tissue has a restrictive character. (ii) Multiple fiber directions are

indistinguishable within a single voxel since Gaussian probability distribution gives only

one directional maximum. This thesis consists of two parts. In the first part, a model

alternative to DTI will be suggested to characterize diffusion anisotropy. Diffusion-

attenuated MR signal for molecules under the influence of a parabolic potential will

be discussed. Signal expression under such potential can be obtained by solving the

modified Bloch-Torrey equation via multiple correlation function (MCF) framework

with the addition of a potential term . Diffusion anisotropy is introduced by a stiffness

tensor rather than a diffusion tensor. In the second part, an alternative diffusion

sensitization mechanism is provided by employing rotating field gradiens (RFGs) which

leads to a way of measuring the diffusion orientation distribution function (dODF)

directly. Then, RFG results for both free and restricted diffusion model (proposed

model in the first part) will be compared with results obtained by traditional pulsed

field gradient (PFG) based models: Q-ball imaging (QBI) and its extension to constant

solid angles (CSA).
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ÖZET

HÜCRESEL ORTAMLARDAKİ YAYINIMIN MANYETİK

REZONANS GÖZLEMİ İÇİN MODELLER

Yayınım tensör görüntüleme (DTI) yöntemi beyindeki anatomik bağlanırlığı har-

italandırmada yaygınca kullanılan bir yöntemdir. Fakat modelin geçerliliğini kısıtlayan

iki temel özellik vardır : (i) Yayınım tensör görüntüleme Gauss tipi dağılım temelli bir

modeldir. Ama çalışmalar dokudaki yayınımın kısıtlayıcı özellikte olduklarını göstermiştir.

(ii) Tek bir vokseldeki çoklu fiber yönleri Gauss tipi dağılımın sadece bir yönsel mak-

simum vermesinden dolayı ayırt edilemez. Tez iki kısımdan oluşmaktadır. İlk kısımda

yayınımın yöne bağımlılığını betimlemek için, yayınım tensör görüntüleme yöntemine

alternatif bir model tavsiye edilmiştir. Parabolik potensiyelin etkisi altındaki moleküllerin

yayınımı azalmış manyetik rezonans sinyali tartışılmıştır. Bu potensiyel altındaki sinyal

ifadesi potensiyel teriminin eklenmesiyle değişmiş Bloch-Torrey denkleminin çoklu ko-

relasyon fonksiyonu (MCF) yardımıyla elde edilmiştir. Yayınımın yöne bağımlılığı

yayınım tensöründen ziyade gerginlik tensörüyle tanımlanmıştır. İkinci kısımda yayınıma

duyarlılık mekanizması dönen alan gradyanları (RFGs) uygulanarak sağlanacaktır.

Dönen alan gradyanı uygulamak yayınım yönsel dağılım fonksiyonunu doğrudan ölçmenin

bir yoludur. Bu sekans için serbest ve kısıtlanmış yayınım sonuçları, geleneksel darbeli

alan gradyanı temelli olan modellerden elde edilmiş sonuçlar ile karşılaştırılacaktır.
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1. INTRODUCTION

Diffusion weighted magnetic resonance imaging (dMRI) has been a widely used

technique that allows to map the anatomical connections between different regions of

the brain. It reflects white matter fiber structure and highly valueble information about

brain connectivity. Different imaging techniques have been suggested to explore the

white matter connectivity in the brain such as diffusion tensor imaging (DTI), Q-space

imaging (QSI). Diffusion process of water molecule is investigated since cells mostly

contain water. Path of a water molecule is determined by the geometry of structure.

To probe the underlying neurol structure, sensitization mechanisms are introduced for

mobility of water in the brain.

Diffusion of spin-bearing particles is affected by the structure of porous materials,

colloidal systems and biological tissue. Thus diffusion measurement is a very important

source of information in diagnosing numerous diseases and treatments [6–14]. It is

required that movement of such particles should be modelled in tissue. DTI is the first

suggested model for mapping the tissue of architecture in vivo noninvasively [15, 16].

It is based on Gaussian diffusion within each voxel. DTI will be discussed in detail in

a subsequent section. However, it is known that diffusion process is restricted and very

complex [17–21]. The complexity due to the microstructure of tissue must be revealed

by models.

Diffusion process in tissue contains a lot of information since diffusion rates of

particles are not the same in everywhere. It highly depends on celluler environments.

Cells are extremely crowded places that contain many different structures such as

macromolecules, organelles, fibers and membranes. Such obstacles inside the cell affect

the diffusion process because particle’s movement is restricted by some bounderies.

Thus, a change in the diffusion process reveals microstructure of the tissue. Briefly due

to the complexity in the tissue, diffusion is not free.
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1.1. Diffusion in MR

Diffusion is a process that is a result of random collisions between molecules

in a fluid. This phenomenon is known as Brownian motion. Einstein showed that

such a random motion is driven by thermal energy of the particles [22] . If we define

displacement probability P (x, t) where x is relative position of a particle at the time

t, diffusion can be described by

∂P (x, t)

∂t
= D0∇2P (x, t) (1.1)

where the D0 is the diffusion constant. In the assumption that particles are initially

at the origin represented by a delta function δ(x) and P (x, t) aproaches to zero when

x goes to ±∞, solution of Equation 1.1. with the associated initial and boundary

conditions is

P (x, t) =
1√

4πD0t
exp

(
− x2

4D0t

)
(1.2)

When the molecules are diffusing freely without striking any obstacles, displacement

probability distribution P (x, t) is Gaussian. Probability of finding a particle in the

initial location will decrease after a period of time due to diffusion as plotted in Figure

1.1. So mean squared displacement for free diffusion is given by

〈
x2
〉

=

∫
P (x, t)x2dt (1.3)

Calculation of above integral yields the Einstein relation which can also be interpreted

as the variance of the positions

〈
x2
〉

= 2D0t (1.4)

This relation is very important because mean squared displacement for a time interval

is a measurable quantity that enables us to determine the diffusion coefficient. Thus,
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Nuclear magnetic resonance (NMR) imaging is a technique that allows to measure the

mean square displacement of the spins by applying pulse sequences in order to extract

the diffusion coefficient. Now, I will give some basics of how pulse sequences produce

signal from a porous media.

Figure 1.1. Normal distributions of particles for different time periods are illustrated

in this figure.

1.2. Sensitization Mechanism

In the light of the Einstein relation, how diffusion coefficient could be estimated

by using NMR had been demonstrated. Erwin Hahn can be known as a first people

who are interested in diffusive NMR [23]. In 1950, he applied spin echo sequence

which contains two successive radio frequencies (RF) 90◦ and 180◦ separated by a time

TE/2 as demonstrated in Figure 1.2. The 90◦ RF pulse turns magnetization into the

transverse plane and then starts to dephasing. After applying refocusing 180◦ RF

pulse, stationary spins are completely refocused and an echo signal is observed at time

TE. In reality, however, there is always diffusion.
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Due to the inhomogeneity in the magnetic field, signal obtained from diffusing

spins are not completely refocused at time TE. Such a situation causes a drop in the

signal. That is why the spin echo sequence is a touchstone for measuring diffusion.

Figure 1.2. Hahn spin echo sequence consists of 90◦ RF pulse followed by 180◦

separated by the time TE/2 and spin echo occurs at the time TE.

In 1954, Carr and Purcell gave the extended version of spin echo sequence [24].

They applied 180◦ RF pulse repeatedly for minimizing the diffusion effect and generated

multiple spin echoes. In 1956, Torrey generalized the Bloch equations which represent

the equation of motion for nuclear magnetization. He included a term to account

for transfer of magnetization transfer via diffusion [25]. In 1967, Stejskal and Tanner

modified the Hahn spin echo sequence by including two diffusion weighting gradients

around 180◦ RF pulse [26] instead of steady gradient as shown in Figure 1.3. They

solved Bloch-Torrey equation for two symmetric rectangular pulsed gradients, which

give rise to better sensitivity to diffusion in comparison to Hahn spin echo sequence.

Let’s start with a qualitative description of diffusion on NMR signal from a physical

point of view.

When spins are exposed to a magnetic field, magnetic moment of spins will align

with the applied field which exerts a torque on the spins and they start to precess about

the magnetic field. This phenomenon is called Larmor precession. Angular frequency

ω = dφ
dt

of this precession is given by

ω = γB0 (1.5)
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Figure 1.3. Addition of two diffusion sensitizing gradient with a duration δ to a

spin-echo sequence is depicted.

where B0 is the applied magnetic field and γ is the gyromagnetic ratio.

In addition to the main magnetic field B0, gradients G are applied momentar-

ily,which changes B0 spatially. When there is a spatially dependent magnetic field

gradient G, spin’s precession rate will become position dependent. Some spins will

precess faster than others due to time dependent inhomogeneous magnetic field while

when all the spins experience the same magnetic field B0, their precession frequencies

will be the same regardless of position. Using the advantage of spatial dependence

of Larmor frequency, we can label the position of spins using Stejskal-Tanner pulse

(s-PFG) by means of changes in the Larmor frequency. Aplication of the first gradient

G with a duration of δ results in an accumulated phase which is given by

φ1(t) = γ

∫ t

0

G(t′)z(t′)dt′ = γGzδz1 (1.6)

assuming that gradient is applied in the direction of z so we are able to measure

the diffusion in that direction and z1 is the initial position of the spin. The second

gradient with the same magnitude is applied after waiting for a diffusion time ∆ and

corresponding phase shift is given by

φ2(t) = γGzδz2 (1.7)
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where z2 is the new position of the spin after aplication of the second gradient. So

net phase shift is

φ1 − φ2 = γGδ(z1 − z2) (1.8)

In the absence of diffusion, location of the spin does not change (i.e.z1 = z2). Net

phase shift will be zero and signal is not attenuated. In case of diffusion, however,

some spins move to a different location, which second gradient encodes at different

places. Therefore, they are partially refocused. That causes reduction in the signal.

1.3. Relation Between Signal Attenuation And Diffusion Propagator

Signal can be obtained from an ensemble of spins diffusing in a confining domain.

So macroscopic signal E represents averaging phase over this ensemble

E =

〈
exp(−iγ

∫ TE

0

dtG(t) · r(t))

〉
(1.9)

where the signal E is obtained by applying magnetic field gradient G(t) of duration

TE noting that E is a normalized quantity that takes the value of 1 when G(t) is equal

to 0. Signal expression can be written in terms of two new quantities: P∆(r1, r2) and

ρ(r1)

E =

∫
ρ(r1)

∫
P∆(r1, r2)e−iq(r2−r1)dr1dr2 (1.10)

P∆(r1, r2) is the probability of finding a spin at position r2 at the time ∆, the time

between two gradients, such that it is initially located at r1 and ρ(r1) is the spin density

at the moment when the first pulse is applied. Note that q = (2π)−1γδG. In the limit

that the diffusion time ∆ goes to infinity, P∆(r1, r2) approaches to ρ(r1) since a spin

can be found in any position with the same probability. If we assign a new variable
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R = r2 − r1, Equation 1.10 becomes the following:

E =

∫
dRP∆(R)e−iqR (1.11)

where P∆(R) is the average propagator which is given by

P∆(R) =

∫
ρ(r1)P∆(r1 +R)dr1 (1.12)

Signal intensity will be the Fourier transform of the P∆(R). If one takes the inverse

Fourier transform of Equation 1.11, the average propagator can be obtained. This is

known as q−space formalism [27]. The average propagator P∆(R) can be obtained

exactly when the pulses with infinitesimally short durations are applied. Since when

the rectangular pulses are applied, diffusion takes place during the pulses and such a

situation affects the NMR measurements. Technical limitations do not allow to apply

the pulsed field gradient with minimum duration. However, the condition of δ being

much smaller than ∆ ensures a good approximation for finite value of δ. That is why

narrow pulse condition is required for minimizing the effect of diffusion during the finite

gradient pulses.

1.3.1. Signal Expression For Isotropic, Unrestricted Diffusion

When the diffusion is unrestricted and isotropic, it means that particles are mov-

ing freely. The propagator is a Gaussian function and it is represented in Equation

1.2. Then the signal attenuation expression can be obtained after the substitution of

the propagator into the Fourier relation in Equation 1.10.

E(q,∆) = e−4πq2D0∆ (1.13)

The linear relationship between mean-squared displacement and diffusion time (See:

Equation 1.4) is caused by free Gaussian. Then the MR signal attenuation is monoex-

ponential. However, when the particle’s movement are limited by boundaries, such a
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relationship will no longer become valid. For example molecules in white matter dif-

fuses along the axons because of the fact that orientation of the myelin sheets restrict

the motion. In case of short diffusion time ∆, molecules exhibit Gaussian distribution

since they may not have a chance to reach the boundary. On the other hand, if the

diffusion time ∆ is so long that molecules are able to feel the effect of restriction or to

give opportunity to move between intracellular and extracellular compartments, prob-

ability distribution does not remain Gaussian and non-monoexponential signal decay

is observed [28, 29]. Deviation from Gaussianity results in a decrease in the measured

diffusion coefficient. Dependence on ∆ implies that diffusion coefficient is a function

of ∆.

1.3.2. Signal Expression For Anisotropic or Restricted Diffusion

Anisotropic or restricted diffusion was investigated by Stejskal [30] using single-

PFG acquisitions. Two different examples of systems has been suggested in his paper to

show the evidence of the restricted diffusion. First example giving restrictive behaviour

is that diffusion occurs in a parallel layers with a finite thickness (Laminar flow). The

other example that we are mainly interested in is that molecules are diffusing in a

isotropic medium with scalar diffusion coefficient D0 under a harmonic potential that

results in a force.

∂P

∂t
= D0∇2P +D0βf∇ · (rP ) (1.14)

where f is the spring constant and β = (kBT )−1. Solution of such a partial differential

equation is given by [31]

Pt(r0, r) =

[
2πD0(1− e−2Ωt)

Ω

]−3/2

exp

[
−Ω(r− r0e

−Ωt)2

2D0(1− e−2Ωt)

]
(1.15)

where Pt(r0, r) is the conditional probability that a particle can be found at location r

a time t later provided that it is initially located at r and Ω = βfD0. In the long time
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limit, Pt(r0, r) reaches the equilibrium density ρ(r0)

ρ0 =

[
2πD0

Ω

]−3/2

exp
(
−Ωr2

0/2D0

)
(1.16)

If one substitutes Pt(r0, r) and ρ(r0) into Equation 1.10, signal expression can be written

as

E = exp
(
−4πq2D0(1− e−Ω∆)/Ω

)
(1.17)

It can be seen that D0 acquired by free diffusion expression in Equation 1.12. is replaced

by the effective diffusion coefficient Deff=D0(1 − e−Ω∆)/Ω which demonstrates MR

signal attenuation depends on ∆. For ∆ being close to zero, Deff approaches to D0. It

exhibits free diffusion behavior. For ∆→∞, Pt(r0, r) approaches to ρ(r0) as indicated

above. So signal expression becomes |S(q)|2 where S(q) is the Fourier transform of

the equilibrium density ρ(r0) in the light of Equation 1.10.

1.4. Bloch-Torrey Equation

Another method for calculating the NMR signal under any time-dependent gra-

dient waveform was made by Torrey [25]. Torrey modified the Bloch equations [32] by

including a new term that represents the effect of diffusion. This equation is known as

Bloch-Torrey equation as follows:

∂M

∂t
= γ(M×B0) +


−Mx

T2

−My

T2

M0−Mz

T1

+D∇2M (1.18)

where M is the magnetization density and diffusion constant D is a scalar assuming

that diffusion rate is equall in all directions (isotropic). Above equation without the last

term is the Bloch equation. Last term represents transport of magnetization. Signal
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attenuation expression in the presence of gradient can be found

E =
S

S0

= e−bD (1.19)

where S0 is the maximum signal or signal accumulated without gradients S is the

observed signal intensity when gradients are applied. Then, b is given by

b = γ2

∫ TE

0

(∫ t

0

G(t′)dt′
)2

dt (1.20)

The parameter b is commonly used in diffusion-weighted imaging. It is experimentally

controlable parameter. b− value depends on both magnitude of gradient and diffusion

time. Measuring the signal for different b values enables the diffusion coefficient D.

Solving Equation 1.20 for Stejskal-Tanner pulse (See: Figure 1.3), b can be found with

the correction term δ/3 in comparison with signal predicted by q-space analysis.

b = γ2G2δ2(∆− δ

3
) (1.21)

Equation 1.19 can be rewritten as

S = S0 exp

[
γ2G2δ2(∆− δ

3
)D

]
(1.22)

This equation is valid for particles that has a Gaussian probability distribution. How-

ever diffusion in tissue is influenced by so many factors such as tissue architecture,

membranes and organelles. Such factors that affect the free diffusion lead to mod-

ify the probability distribution and that causes reduction in the measured diffusion

coefficient in the tissue. In case of free diffusion, particles are not restricted by any

boundaries (Gaussian) and diffusion coefficient is the same for all directions. If you look

at Equation 1.4. (Einstein relation) , there is a correlation between mean-squared dis-

placement and diffusion time. For unrestricted diffusion, mean-squared displacement

increases linearly with the diffusion time and diffusion coefficient does not change. Fig-

ure 1.4 shows the difference between free and restricted diffusion. Here, selecting the
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diffusion time is very important since at small diffusion times particles move but not

encounter the boundary of the compartment while particles experience the restriction

as the diffusion time is adequately long. After sufficiently long times root mean-squared

displacement reaches maximum value for restricted diffusion, which represents the com-

Figure 1.4. Left panel illustrates how the pathway of a particle for different diffusion

periods is changed for both free and restricted diffusion. In right panel, root

mean-square displacement is plotted against diffusion time. Black and red (dotted)

lines show free and restricted diffusion respectively. R is related to the compartment

size [1].

partment size. Probability distribution or diffusion is no longer Gaussian in case of

restricted diffusion. So diffusion coefficient reflects free or restricted diffusion. To char-

acterize these different mechanisms, apparent diffusion coefficient (ADC) is introduced.

In restricted diffusion ADC is less than the diffusion coefficient in free diffusion.

1.5. Diffusion Tensor Imaging

When particles move freely without experiencing any obstacles, the same signal

will be obtained from the sample. This is refered to as isotropic diffusion (e.g. gray

matter). Diffusion rate is equal in all direction. Signal does not depend on orientation

of the applied gradient. A single measurement in any direction is enough to extract
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diffusion constant. On the other hand, Diffusion can depend on the orientation of

the tissue or fibers. Tissue structure is a distinctive mark for diffusion. In cylindrical

structures such as white matter fibers (See: Figure 1.5), molecules can move freely

along the axons while molecules are restricted perpendicular to the fiber direction. In

the axial direction, diffusion is faster relatively and there is a large diffusion coefficient

whereas in all other directions, diffusion is slower and diffusion coefficient becomes

Figure 1.5. Representation of white matter fiber comprising diffusion anisotropy.

smaller. This is refered to as anisotropic diffusion. Obtained signal changes with respect

to the measurement direction. Thus, no single quantity is attributed to characterize

diffusivity. More developed model is required to account for anisotropic Gaussian

diffusion. Concepts of isotropy, anisotropy, free and restricted diffusion are summerized

in Figure 1.6.

Diffusion tensor imaging (DTI) is a magnetic resonance imaging technique that

describes diffusion as a tensor . The tensor is a 3x3 symmetric matrix that consist of

six elements and can be calculated in 3D space. It is usually represented as a ellipsoid

(See: Figure 1.6). Measured signal Si along the direction r̂i can be written as

Si = S0 exp(−br̂iTDr̂i) (1.23)
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Figure 1.6. Different kinds of diffusion ellipsoids associated with their tensors are

specifically demonstrated in Figure [2].
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where S0 is the signal when there is no applied gradient and b is the b-value for gradient

Gi in the direction of r̂i as indicated in Equation 1.14. 3x3 diffusion tensor is given by

D =


Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz

 (1.24)

Since the diffusion tensor is symmetric (i.e. Dxy = Dyx), six different gradient di-

rections are needed to determine the unknown elements of the matrix. These ADCs

are obtained in the laboratory reference of frame for each voxel. However, ADCs in

the local coordinate system for each voxel are required in order to determine the fiber

direction. Here rotation matrices R are introduced for transforming a vector in the

laboratory reference of frame to the principal axis frame. Thus, the measured tensor

D must be diagonalized by spectral decomposition:

D = RTDlocalR (1.25)

It also can be written in open form

D = [e1|e2|e3]T


λ1 0 0

0 λ2 0

0 0 λ3

 [e1|e2|e3] (1.26)

where the eigenvectors e1, e2 and e3 are the orientation of the fibers that represent the

maximum diffusivity along e1, e2 and e3, the eigenvalues λ1, λ2 and λ3 reflect ADCs in

the principal axis frame which is represented as the eigenvectors e1, e2, e3. Principal

directions can be determined by the eigenvector where the maximum diffusion takes

place. In case of isotropic diffusion, all the eigenvalues λ1, λ2 and λ3 are equal and

shape of ellipsoid reduces to sphere. On the other hand, if one of the eigenvalues is

much larger than the others, diffusion is said to be anisotropic and represented as an

ellipsoid (See: Figure 1.7). Principal direction provides information about the direction

of the fiber orientation. So fiber orientation can be easily acquired by DTI. Different
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Figure 1.7. Eigenvectors and corresponding eigenvalues are represented as diffusion

ellipsoid.

parts of the brain are connected via s-PFG acquisitions using anisotropy in the signal.

The echo amplitude predicted by Stejskal-Tanner pulse (See: Equation 1.23) can be

written as

E(b) = exp(−b[r̂x2Dxx + 2r̂xr̂yDxy + 2r̂xr̂zDxz + 2r̂yr̂zDyz + r̂y
2Dyy + r̂z

2Dzz]) (1.27)

For the sake of simplicity, we can describe gradients as a matrix so called b-matrix:

b = b


r̂x

r̂y

r̂z

(r̂x r̂y r̂z

)
(1.28)

Multiplication of these two vectors gives a 3x3 matrix whose elements correspond to

the coefficients of diffusion constants in the lab frame in Equation 1.27.

b = b


r̂x

2 r̂xr̂y r̂xr̂z

r̂yr̂x r̂y
2 r̂yr̂z

r̂xr̂y r̂z r̂y r̂z
2

 (1.29)

Then, simple version of signal intensity E(b) in Equation 1.27 is given by

E(b) = exp

(
−

3∑
i=1

3∑
j=1

bijDij

)
(1.30)
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Figure 1.8. Fiber tracking starts at two different voxels and connections with principal

eigenvectors follow different pathways. FA value is displayed with gray colour [3].

A new scalar quantity is described to measure the degree of anisotropy of diffusion

process, which utilizes the eigenvalues of the measured tensor. It is mostly described

as Fractional Anisotropy (FA) [33,34], which is calculated by the following equation:

FA =

√
3 [(λ1 − 〈λ〉)2 + (λ2 − 〈λ〉)2 + (λ3 − 〈λ〉)2]

2(λ2
1 + λ2

2 + λ2
3)

(1.31)

where 〈λ〉 is another scalar quantity so called mean diffusivity, which is the average

value of ADC along three orthogonal directions.

〈λ〉 =
λ1 + λ2 + λ3

3
(1.32)

FA value is normalized ranging from 0 to 1. If all the eigenvalues are equal

(isotropic, FA value is zero. On the other hand, if there is a sharp ratio between the

eigenvalues, FA value aproaches to 1 and diffusion is fully restricted.

To determine the neurol connectivity of different parts of the brain, fibre tracking

algorithms are utilized. In Figure 1.8, an example of streamline tractography [35] is
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shown. Measuring the diffusion tensor for each voxel provides the principal direc-

tion of fiber at each voxel. Then it can be deduced that pathway of fiber bundles

shows streamline predicted by connecting up the estimated ellipsoids.

1.6. Advantages And Limitations Of Models

In DTI, single-PFG acquisitions at low q-values were employed to characterize

the microstructural properties such as orientation of fiber. ADCs can be obtained by

utilizing gradients at six different spatial direction provided that to probe the bound-

eries, diffusion time, ∆, is prolonged. Recent works show that signal decay was not

fitted the Stejskal-Tanner equation derived in Equation 1.22 at high q-values. Non-

monoexponential behavior is observed in the signal decay at high q-values

Although DTI has ability to map neurol architecture in vivo noninvasively, it has

some limitations. It is unable to resolve fiber crossing and kissing within a particular

voxel illustrated in Figure 1.9. DTI assumes that Gaussian diffusion takes place in a

single compartment within each voxel. Gaussian function gives only one directional

maxima and thus, cannot appropriately explain fibers at different orientations within

a single voxel. In addition to this, Non-monotonicity in the signal at higher q-regime

promises that there exist more than a single compartment within a voxel.

Figure 1.9. Kissing and crossing fibers within a single voxel.

DTI’s limitation to resolve multiple fiber bundles within a voxel leads to an alter-

native approach to investigate the complex systems so called ”Q-space imaging” [27,36].

This method is model-free, which does not constraint the process to a Gaussian
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function. Local properties are represented as probability distribution functions (PDF)

which can be obtained via Fourier relation. Details are given at Section 1.3. In order

to resolve fiber crossing, several hundred images are required for reaching high angular

resolution. However, this is very time consuming process in comparison with DTI.

Only six measurements are necessary for construct the image in DTI. Moreover, high

q-values are needed to estimate the compartment size assuming diffusion time, ∆, is

adequately long to probe the restricting geometry [37]. Diffusion-diffraction troughs

are observed at such q-values [38], which feature structrual information.

In order to overcome such obstacles, a new approach so called “Q-ball imaging

(QBI)” is proposed by Tuch [39]. Rather than defining the directional dependence

as a diffusion PDF P (r) via Fourier transform as in the case of q-space imaging,

orientation distribution function (ODF) ψ(θ, φ), radial projection of PDF, is defined

for orientational structure of the PDF. Determining ODF is comparably an efficient

way in terms of scanning time since radial component is eliminated and fewer gradient

sampling is enough to construct the image.

Despite traditional single-PFG methodologies are utilized for observing signal

attenuation arising from restricted diffusion, there are some circumstances that its re-

sponse becomes featureless. For example, a voxel size is much larger than the diameter

of an axon, which means it contains thousands of axons with different orientation or size

distribution. When taking orientation or size distributions into consideration, single-

PFG experiments is unable to obtain axonal properties. To overcome such limitation

plays an important role for distinguishing changes in axon radius and orientation. Fur-

thermore, diffusion-diffraction patterns are lost when anisotropic compartments are

randomly oriented [1]. Breaking the coherence in the collection of compartments gives

rise to a decrease in the anisotropy [40]. In the case that characterization of specimen is

quantified by orientation or size distribution, observed anisotropy may disappear when

utilizing single-PFG acquisitions. Involving many anisotropic pores with randomly

distributed orientations exhibit an isotropic profile, which results in loss of structural

information. When the multi-PFG MR sequences are employed, new microstructural

information can be gleaned.
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Double-PFG sequence as a multi-PFG sequence have been introduced by Cory

[41], which is comprised by the addition of two diffusion sensitizing gradient blocks

with magnitude of G1 and G2 separeted from each other by a mixing time tm and

duration of gradients δ1 and δ2 respectively. Spin echo version of such pulse sequence

is shown in Figure 1.10.

Figure 1.10. Spin echo version of the double-PFG pulse sequence which consists of

two PFG blocks G1, and G2 with the duration of δ1 and δ2 respectively separated by

a mixing time tm. The time between gradient pairs in each block is denoted as

diffusion periods, namely, ∆1 and ∆2 [4].

Double-PFG experiments are particularly beneficial to differentiate between col-

lection of isotropic pores and randomly distributed elongated pores in the low-q regime

while single-PFG experiments are unable to make this distinction as mentioned above.

For δ → 0 (Narrow Pulse Condition) and ∆ → ∞ (enough time to probe the com-

partment), when the angle φ between two gradients G1 and G2 is varied, angular

dependence of the MR signal intensity has observed even when the shape of pores are

spherical [42]. Different range of tm values facilitate to distinguish these two different

ensembles described above from each other. When tm approaches to zero, angular

dependence of the signal intensity can be observed for all compartment shape. Exhibi-

tion of such anisotropy provides a mechanism for investigating the effect of restricted

diffusion, which is namely called as microscopic anisotropy (µA) [4]. Such anisotropy

is observed as a result of restrictive character of boundary of compartment [4, 43].

However, when tm goes to infinity, dependence of signal intensity on the angle φ be-

tween gradients holds only for randomly distributed non-spherical compartments. This
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observed anisotropy for tm →∞ is referred to as compartment shape anisotropy (CSA).

Changing the mixing time tm allows one to separate these two cases from each other.

When the anisotropic compartments are coherently oriented, another anisotropy mech-

Figure 1.11. Image at the left side represents only µA. Image at the middle shows

randomly oriented elongated pores indicating another kind of anisotropy which is

compartment shape anisotropy (CSA). Image at the right side exhibits ensembe

anisotropy (EA) arising from coherently oriented pores. The image is taken from [4].

anism, ensemble anisotropy (EA), appear. In case of a specimen containing coherently

oriented axons, for example, single-PFG experiments are very effective way to exhibit

EA. Shematic representation of these 3 anisotropy mechanisms are demonstrated in

Figure 1.11 and more details about the mechanisms have been investigated in ref [4].

After theoretical predictions in ref [42], Özarslan proposed exact expressions of

the MR signal attenuation resulting from restricted diffusion utilizing double-PFG

sequence for arbitrary timing parameters [44]. The multiple correlation function (MCF)

formalism [45,46] is introduced in his work to quantify the effect of restricted diffusion

on the NMR signal for simple geometries. To observe the effect of restricted diffusion

via double-PFG acquisitions, MCF formalism have been extended to provide variations

in the gradient orientation so that one can investigate the signal dependence on the

angle between gradients [5]. Moreover, sensitivity of double-PFG sequence enables

to probe compartments at low-q regime. Diffusion-diffraction patterns can also be

acquired with double-PFG experiments, which allows to estimate the compartment

size and eccentricity [47,48].
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2. METHODS

Diffusional behaviour of fluids can be characterized using magnetic resonance

(MR) techniques by applying magnetic field gradients into MR pulse sequences to

encode the trajectories of spin-bearing particles. In this part we will give an alternative

method to observe the effect of the restricted diffusion through obtaining structural

information from biological tissue in a useful way. Diffusion-attenuated MR signal for

molecules are under the influence of a parabolic potential field is discussed. To account

for such effects, the Bloch-Torrey equation [25] is modified by including a new term

similar to that in the Smoluchowski operator which is given below.

∂M(r, t)

∂t
= D0∇2M(r, t) +D0βf∇ · (rM(r, t))− iγG(t) · rM(r, t) (2.1)

where M(r, t) is the magnetization density, D0 is the diffusion constant, f is the

tensorial spring constant,γ is the gyromagnetic ratio β = 1
kbT

and G(t) is the linear

magnetic field gradient waveform. Second term on the right hand side of the equation

is the parabolic potential term that is added and the last term on the right hand side

is the diffusion gradient sensitizing term.

Grebenkov had reformulated the problem of restricted diffusion under inhomoge-

neous magnetic field for any geometrical confinement which is called multiple correla-

tion function (MCF) framework [46]. MCF method is based on solving Bloch-Torrey

equation by introducing matrix formalism. Then Özarslan et al . provided the multidi-

mensional generalization of this framework [5]. This extended version of the formalism

allows us to incorporate the effects caused by the variations in the orientation of the

applied magnetic field gradient so that we can characterize the anisotropy in the NMR

signal. The other method that incorporates the effect of restricted diffusion is multi-

ple propagator (MP) framework, which discretizes general gradient waveforms. This

reduces the problem to a path integral and analytical expression of the signal can be
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obtained for general gradient waveforms. Differences and similarities between these

two methods were studied in Ref [49].

2.1. Multiple Correlation Function (MCF) Formalism

In this part, I am going to present how the signal intensity is estimated using

MCF method.

Figure 2.1. A general piecewise-constant gradient waveform G(t) with N intervals is

shown [5].

We use MCF method to observe the effect of restricted diffusion. The general

gradient waveform is considered as a piecewise-constant function. Such a waveform

is broken into succesive different time intervals with different magnitude of gradient

Gn in Figure 2.1. For example, Gn is applied between Tn and Tn−1 interval with a

duration of δn. Note that the effect of all rf pulses is included in such waveform which

means this is the effective gradient profile. Signal intensity for the NMR is expressed

as matrix operators.
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2.2. Diffusion in Parabolic Potential

Without potential term, Equation 2.1 can be solved using the eigenspectrum of

the Laplacian operator, which obeys the Helmholtz equation. When the parabolic

potential is introduced into the Bloch-Torrey equation, Laplace operator transforms to

Smoluchowski operator , L2, which is denoted by

L2 = ∇2 +D0βf∇r (2.2)

Then, the magnetization of brownian motion under such potential can be rewritten as

∂M(r, t)

∂t
= D0L

2M(r, t)− iγG(t) · rM(r, t) (2.3)

Noting that the potential is

V (r) =
1

2
rT fr (2.4)

We have defined the kth eigenfunction uk(r) which satisfies the Smoluchowski equation

L2uk(r) = −λkuk(r) (2.5)

Eigenfunctions uk(r) form a complete basis. Hence we can expand M(r, t)

M(r, tn) =
∑
k′

bk′(tn)uk′(r) (2.6)

Total time is discretized into small intervals and the subscript n indicates n-th time

interval, i.e., Tn−1 ≤ t ≤ Tn. G is constant for all time interval, and will be represented

as Gn. Inserting above expansion into Equation 2.3 and multiplying by wk(r) and

integrating over r results in the expression



24

∂bk
∂tn

= −
∑
k′

bk′(tn)Λkk′ − iγGn ·
∑
k′

bk′(tn)Akk′ (2.7)

where infinite dimensional operator Λkk′ is equal to

Λkk′ = βfD0kδkk′ (2.8)

Moreover, elements of the vector operator Akk′ is given by

Akk′ =

∫
drwk(r)ruk′(r) (2.9)

As a result, evolution equation in Equation 2.7 becomes

b(tn) = e−(Λ+iγGn·A)(tn−Tn−1)b(Tn−1) (2.10)

describing the time evolution of the magnetization within nth interval Tn−1 ≤ tn ≤ Tn.

With the choice of tn = TN and denoting δn = Tn − Tn−1, and

qn = (2π)−1γδnGn (2.11)

Equation 2.10 is a recurrence equation :

b(Tn)∗ = b(0)∗
N∏
n=1

e−Λδn+i2πqnA∗ . (2.12)

Hermitian conjugate of the preceding expression comes from the fact that pulse

sequences that are applied later are expressed right of the earlier pulses. When a sys-

tem reaches equilibrium, its magnetization density approaches Boltzman distribution.

When the Dirac’s bra-ket notation is employed, magnetization density in equilibrium
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state is written as

E =

∫
drM(r, TN) =

∫
dr < r|

N∏
n=1

e−Λδn+i2πqnA∗|b(0)∗ > (2.13)

Using the orthonormaity and completeness relations given below

〈wk|uk〉 =

∫
druk(r)w∗k′(r) = δk′k (2.14)

∑
k

|uk >< wk| = 1 (2.15)

NMR signal in Equation 2.13 can be rewritten

E =
∑
k,k′

∫
dr < r|uk >< wk|U(t, 0)|uk′ >< wk′|b(0)∗ > (2.16)

where U(t, 0) is the Green’s function. As indicated above, when there is no any applied

gradient, magnetization density is in the equilibrium state and proportional to zeroth

eigenvalue. Then, the corresponding eigenfunction is equal to Boltzman distribution

given below with the normalization constant Z

u0(r) =
1√
Z
e−βV (r) (2.17)

With the help of orthonormality relation, one can find the w0(r) as

w0(r) =
1√
Z

(2.18)

inserting 〈wk′ |b∗(0)〉 = δk′0 and
∫
dr 〈r|uk〉 = δ0k into the signal expression in Equation

2.16, one can simply write

E = 〈w0|U(t, 0)|u0〉 =< w0|
N∏
n=1

e−Λδn+i2πqnA∗|u0 > (2.19)
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Total MR signal attenuation is the first element of the resultant matrix, which is

directly related to the operators Λ and A.

2.3. Solving Bloch-Torrey equation with a Parabolic Potential in One

Dimension

Bloch-Torrey equation with parabolic potential is written as

∂M(x, t)

∂t
= D0

d2M(x, t)

dx2
+ βfD0

d

dx
(xM(x, t))− iγG(t)xM(x, t) (2.20)

One can find the the eigenvalues and eigenfunctions of the Smoluchowski equation in

2.5. Eigenfunctions are as follows:

uk(x) = ake
−βfx2/2Hk

(√
βf

2
x

)
(2.21)

with the eigenvalues of

λk = kβfD0 (k = 0, 1, 2, ...) (2.22)

The term Hk(x) in the eigenfunction of uk(x) in Equation 2.21 is the Hermite poly-

nomials and ak is a normalization constant. The eigenfunctions of the Smoluchowski

operator obey the orthogonality property

∫ +∞

−∞
dξeξ

2

Hk(ξ)Hk′(ξ) = 2kk!
√
πδkk′ (2.23)

After changing variable, uk(x) is choosen to be

uk(x) =

√
βf

2π

1

2kk!
e−βfx

2/2Hk

(√
βf

2
x

)
(2.24)
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and defining

wk(x) = Hk

(√
βf

2
x

)
(2.25)

Normalization constant ak can be found as

ak =

√
βf

2π

1

2kk!
(2.26)

Additionally, magnetization density is initially in the equilibrium state, which obeys

Boltzman distribution. So initial magnetization M(x, 0) is equal to

M(x, 0) =

√
βf

2π
e−βfx

2/2 (2.27)

The coefficient of exponential term is normalization factor. Next step is to calculate

elements of vector operator A. One dimensional version of Equation 2.9 is

Akk′ =

∫
dxwk(x)xuk′(x) (2.28)

Substituting the eigenfunctions wk(x) and uk′(x) into the above equation

Akk′ =

√
βf

2π

1

2k′k′!

∫
dxHk′

(√
βf

2
x

)
xHk

(√
βf

2
x

)
e−βfx

2/2 (2.29)

One can evaluate the matrix element Akk′

Akk′ =

√
1

βf

2(k−k′)/2k!

(k
′−k+1

2
)!(k−k

′+1
2

)!(k
′+k−1

2
)!

(2.30)

provided that k + k′ is odd, |k − k′| = 1 otherwise Akk′ = 0.

If solutions of these two operators are inserted into Equation 2.19, MR signal attenu-

ation can be acquired from a piecewise-constant gradient waveform.
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2.4. Path Integral Formalism in One Dimension

We use gradient waveforms to sensitize the MR signal to the diffusional motion

of molecules so that we can obtain information about microstructure of the biological

tissue. Molecules are diffusing in the presence of gradient G(t) and some net phase

shift is induced

φ = −γ
∫

G(t) · r(t)dt (2.31)

where r(t) is the position of a molecule in the direction of applied gradient G(t). Spin

bearing particles with different position experience different magnetic field. As a result

each particle picks up different phase. So there is a distribution of phases and echo

amplitude is given by

E =
〈
eiφ
〉

=
〈
e−iγ

∫ T
0 dtG(t)·r(t)

〉
(2.32)

Noting that T is the duration of the magnetic field gradient G and E is a normalized

quantity. Because the average signal intensity is to be taken over all random paths r(t),

the expectation value has the form of a path integral. Any gradient pulse is dicretized

to infinitesimally narrow pulses with initial spin magnetization distribution ρ(r1). Here,

we derive analytical expression for the MR signa under parabolic potentials using path

integral. Path integral equation in one dimension is

E =

∫
dx0ρ(x0)e−iq0x0

∫
dx1Pτ (x0, x1)e−iq1x1

∫
dx2...

∫
dxmPτ (xm−1, xm)e−iqmxm

(2.33)

where qj = (2π)−1γδjGj which is indicated in Equation 2.11. This equation states that

molecules starts to diffuse from initial position x1 = x1(τ) with the probability density

ρ(x0) to the subsequent positions x1,x2,...xm with corresponding probability densities

Pτ (x0, x1),Pτ (x1, x2),...Pτ (xm−1, xm). Such integral can be written as closed form

E =

∫
dx0ρ(x0)e−iq0x0

m∏
j=1

dxjPτ (xj−1, xj)e
−iqjxj (2.34)
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Here, the time interval 0 < t < T can be divided into a number of m subintervals

of duration τ = T
m

and t is replaced by jτ for the discretization. The propagator for

diffusion under parabolic potential V (x) = 1
2
fx2 is found as

Pt(xa, xb) =
1√

2πσ2
t

e
− (xb−stxa)

2

2σ2t (2.35)

where st and σ2
t are

st = e−Ωt (2.36)

σ2
t = (1− s2

t )
D

Ω
(2.37)

defining the inverse time Ω as

Ω =
fD

kbT
(2.38)

Each integrals in Equation 2.33 are nothing but the Fourier transform of the probability

densities or the propagator. In order to solve Equation 2.33, you need to start from

outer-most integral to the inner-most integral since there will be contribution from the

last integrand to the previous one. So Fourier transform of the outer-most propagator

is given by

∫
dxmPτ (xm−1, xm)e−iqmxm = e−

1
2
σ2
τ q

2
me−ixm−1sτ qm (2.39)

Then the next integral with the solution of outer-most one is

∫
dxm−1Pτ (xm−2, xm−1)e−iqm−1xm−1e−

1
2
σ2
τ q

2
me−ixm−1sτ qm (2.40)



30

after rearranging Equation 2.40

e−
1
2
σ2
τ q

2
m

∫
dxm−1Pτ (xm−2, xm−1)e−ixm−1(qm−1+sτ qm) (2.41)

using the identity in Equation 2.39 and replace qm−1 + sτqm instead of qm, solution is

e−
1
2
σ2
τ (q2m+(qm−1+sτ qm)2)e−ixm−2sτ (qm−1+sτ qm) (2.42)

This solution combines with the next integral and goes like that. Exponent of the first

factor in Equation 2.39 grows up in the following fashion:

1

2
σ2
τq

2
m (i)

1

2
σ2
τ

{
q2
m + (qm−1 + sτqm)2

}
(ii)

1

2
σ2
τ

{
q2
m + (qm−1 + sτqm)2 + (s2

τqm + sτqm−1 + qm−2)2
}

(ii)

If one defines

Qj =
m∑
i=j

si−jτ qi (2.43)

Then, the path integral equation in Equation 2.33 can be written as

E = e
− 1

2
σ2
τ

n∑
j=1

Q2
j

∫
dx0ρ(x0)e−iQ0x0 (2.44)

In the limit that time t goes to infinity, initial spin magnetization density ρ(x0) = P∞

and remaining integral in Equation 2.44 can be calculated similarly with the previous
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integrations. So Equation 2.44 becomes

E = e
− 1

2
σ2
τ

n∑
j=1

Q2
j−

1
2
σ2
∞Q

2
0

(2.45)

When the time t goes to infinity, σ2
∞ is D

Ω
via Equation 2.37

E = exp

{
− D

2Ω
(1− e−2Ωτ )

m∑
j=1

Q2
j −

D

2Ω
Q2

0

}
(2.46)

In order to make a transition from discrete version to continuum one, we need to look

at the continuum limit where the duration of subinterval τ = T
m

goes to zero when the

number of subintervals m goes to infinity. In the limit that the τ → 0, above expression

can be written as

E = exp

{
−D

∫ T

0

dtQ2(t)− D

2Ω
Q2(0)

}
(2.47)

Noting that qj = τγG(jτ). Using the expression in Equation 2.36, Qj becomes the

following

Qj = γτ

m∑
i=j

G(jτ)e−Ωτ(i−j) (2.48)

In the continuum limit that τ → 0 one finds

Q(t) = γ

∫ T

t

dt′e−Ωτ(t′−t)G(t′) (2.49)

2.5. Path Integral Formalism in Three Dimension

In this part, multidimensional generalization of the results in Equation 2.47 and

Equation 2.49 will be implemented. Harmonic potential in three dimensions can be
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written as

V (r) =
1

2

3∑
i=1

fir
2
i =

1

2
f1x

2 +
1

2
f2y

2 +
1

2
f3z

2 (2.50)

assuming that f1,f2 and f3 are the eigenvalues of the stiffness tensor fij since fij is

diagonal.

Pt(ra, rb) =
3∏
i=1

1√
2πσ2

t,i

exp

{
−(rb,i − st,ira,i)2

2σ2
t

}
(2.51)

where st,i and σ2
t,i are the following

st,i = e−Ωit (2.52)

σ2
t,i = (1− s2

t,i)
D

Ωi

(2.53)

Noting that the inverse time Ωi is

Ωi =
fiD

kBT
(2.54)

Analytical expression of the signal attenuation for harmonic potential in three dimen-

sions can be written as

E =
3∏
i=1

exp

{
−D

∫ T

0

dtQ2
i (t)−

D

2Ωi

Q2
i (0)

}
(2.55)

where Qi(t) is

Qi(t) = γ

∫ T

t

dt′e−Ωiτ(t′−t)Gi(t
′) (2.56)
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2.6. Results

Magnetization arising from molecules under the influence of parabolic potential

can be obtained by using a piecewise-constant gradient waveform via MCF framework

which is given in Equation 2.19. Open form of NMR signal attenuation from single-PFG

waveform drawn in Figure 1.2 is simply written as a product of operators represented

by matrix exponentials

E = 〈0| e−Λδ+i2πq·A†e−Λ(∆−δ)e−Λδ+i2πq·A† |0〉∗ . (2.57)

Logarithmic plot of the signal intensity E(q) in the simulation of single-PFG

(Stejskal-Tanner pulse) experiment is plotted against q-values in Figure 2.2 for the

pulsed gradient duration δ values of 20ms, 12ms, 5ms and 1ms respectively from upper

curve (green) to lower one (red). The dashed curve represents Stejskal’s result derived

in Equation 1.17 which is valid for delta-shape gradient pulses. When the narrow

Figure 2.2. MR signal is plotted as a function of q for different pulse durations (δ) of

the single-PFG sequence. Diffusion time ∆=60ms. Green: δ=20ms, Blue: δ=12,

Pink: δ=5ms, Red: δ=1ms.
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gradient pulses (δ → 0) are applied, signal attenuation converges to Stejskal’s result for

the case of traditional PFG sequences featuring one pair of infinitesimal pulses. Narrow

gradient pulse approximation enables a validation for our solution of the problem.

In Figure 2.3, logarithmic plot of signal intensity E(q) is plotted against the

q-value again but for different θ values of 90◦, 60◦, 30◦ and 0◦ where θ is the an-

gle between the gradient vector and the z-axis when the principal spring constants

satisfy the condition fz < fx = fy. Fulfilling this requirement provides one to con-

struct a cylindrical geometry such as axons. Molecules are moving freely in the z-

axis in comparison with that in the other axes since principal spring constant in the

z-axis is relatively small. Thus, the effective stiffness is reduced as the gradient di-

rection approaches 0◦. Morever, when the direction of the gradient is changed, dif-

ferent signal attenuation profile is observed. These results indicate that anisotropic

potentials provide an alternative mechanism for the observed diffusion anisotropy.

Figure 2.3. MR signal for coherently oriented anisotropic springs is shown for

increasing q-values. Each curvature represents θ values of 90◦, 60◦, 30◦ and 0◦ from

top to bottom.
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An angular dependence of the NMR diffusion signal is also observed when a

double-PFG experiment demonstrated in Figure 1.10 is conducted on a system involv-

ing many springs with randomly distributed orientations. In case of δ = δ1 = δ2 and

∆ = ∆1 = ∆2, signal expression for the double-PFG sequences is given by

E = 〈0| e−Λδ+i2πq1·A†e−Λ(∆−δ)e−Λ(tm−δ)e−Λδ−i2π(q1+q2)·A†e−Λδ+i2πq2·A† |0〉∗ . (2.58)

The experiment is performed with a fixed q value, which is the same for both pairs

of gradients. Moreover, G1 is fixed in a certain direction, but the direction of G2 is

changed relative to G1 by an angle φ. In Figure 2.4, signal intensity is plotted as a

function of φ for such angular double-PFG experiments with four different tm (mixing

time) values of 60 ms, 6 ms, 0.6 ms and 0.006 ms. A smooth transition from a nearly

bell-shaped modulation (red curve) to a w-shaped modulation (violet) is observed when

tm is prolonged as is the case for restricted diffusion [4] mentioned in Section 1.6. These

results suggest the sensitivity of the double-PFG technique to the the local anisotropy

of the potential field.

Figure 2.4. Double-PFG signal profiles for randomly distributed anisotropic springs

plotted against the angel (in degrees) between the two gradients of the sequence for

different values of the mixing time, tm. Red: tm=6 µs, Green: tm=0.6 ms, Blue tm=6

ms and Violet: tm= 60 ms.
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3. ROTATING FIELD GRADIENT (RFG) AS A NEW

SENSITIZATION MECHANISM

Diffusion-weighted magnetic resonance imaging (MRI) is an excellent way to map

the white matter fiber connectivity in the central nervous system in vivo and noninva-

sively. Structural information about the underlying tissue is achieved by sensitizing the

MRI signal to diffusion. Displacement of water molecules are measured to charactrerize

the tissue. When the molecules are moving isotropically without encountering any

boundaries, displacement probability distribution is a Gaussian distribution. However,

cells are very crowded places that contain membranes, macromolecules and organelles

in which displacement of molecules can be exposed to a barrier effect modifying the

probability distribution fucntion (PDF). As indicated in Section 1.5, DTI is very im-

pressive technique to probe the tissue microstructure, which is based on anisotropic

Gaussion probality distribution [15]. In case of multiple fiber orientations within a

voxel, DTI method fails since it gives only one directional maxima within each voxel.

To overcome this limitation of DTI, several methods have been suggested to resolve the

fiber orientations [39, 50–54]. Q-space imaging [27] and Q-ball imaging [39] are two of

the such proposed methods for measuring PDF to distinguish multiple fiber directions.

Such methods mentioned above are based on Stejskal-Tanner pulse sequences

featuring one pair of gradients [26]. Signal attenuation arising from applying such

traditional PFG sequences is simply coverted to PDF thorugh a Fourier relationship.

Recently, more sophisticated pulse sequences are introduced for getting improved ori-

entational sensitivity. Rotating field gradient (RFG) [55,56] MR is the most interested

one for mapping neurol connectivity.

An RFG pulse can be generated by simultaneously applying sine- and cosine

modulated gradient waveforms along two perpendicular directions with 90◦ phase shift

between them around 180◦ RF refocusing pulse in a spin echo sequence, which yields

rank-2 b matrices (See: Figure 3.1). When the RFGs are performed with varying the
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axis of rotation, orientation at which the maximum signal value is observed coincides

with the orientation where the maximum diffusivity takes place. When this effect is

taken into consideration for all compartments within voxel, the aggregate signal can

be represented as the diffusion orientation distribution function (dODF). Therefore,

requirement of transforming the signal into the displacement space is obviated conve-

niently.

In this part, the RFG responses of both DTI model and the model proposed in

this thesis (MR signal under the influence of a Hookean force) are investigated for

various b-values and compare the results with QBI [39] (PFG based method) and its

extension to constant solid angle (CSA) [53].

Figure 3.1. First two rows: An RFG pulse comprises two oscillating gradient

waveforms around 180◦ RF pulse with 90◦ phase shift applied simultaneously two

orthogonal directions. Bottom row: Vector sum of the RFG pulse sequence is nothing

but the traditional Stejskal-Tanner pulse.
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3.1. Calculation of Signal Expression for Free Diffusion

Signal expression for free diffusion is derived in Equation 1.30. When randomly

oriented N anisotropic, Gaussian compartments in the voxel are considered, signal

expression is given by

E(b) =
N∑
n=1

fn exp[−b : D(n)] (3.1)

where fn corresponds to the signal fraction for the nth compartment and Einstein

summation convention is employed for shortening the equations, b : D(n) = bijDij.

So b-matrix can be calculated for the RFG pulse through changing the relation in

Equation 1.20. If F is defined as F =
∫ t

0
G(t′)dt′, b-matrix is given by

b = γ2

∫ TE

0

(
FTF

)
dt (3.2)

The design of G1 and G2 describes a plane of rotation whose normal is denoted by

n shown in Figure 3.2. θ is the angle between the n-vector (normal vector) and the

z-axis. φ is the azimuthal angle of the n-vector.

Figure 3.2. Representation of a vector in cartesian coordinate system where θ is the

angle between the vector and z-axis and φ is the azimuthal angle.
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For the sake of simplicity, θ is equal to zero so that rotation takes place on the

xy plane. Since there is no gradient in the z-axis for this case, contribution from

the z-component of the gradient vanishes. Thus, gradient vector for the RFG pulse

sequnence before the addition of 90◦ (See: Figure 3.1) can be written as

G0 = G

 sin(φ) sin(φ− ωt− φ0) + cos(φ) cos(φ− ωt− φ0)

− cos(φ) sin(φ− ωt− φ0) + sin(φ) cos(φ− ωt− φ0)

 (3.3)

After introducing 90◦ phase shift with 180◦ RF pulse, the gradient vector can be written

as

Gπ
2

= G

− sin(φ) cos(φ− ω(t− tm)− φ0) + cos(φ) sin(φ− ω(t− tm)− φ0)

cos(φ) cos(φ− ω(t− tm)− φ0) + sin(φ) sin(φ− ω(t− tm)− φ0)

 (3.4)

where subscripts in the G0 and Gπ
2

represent the gradient before and after involving

90◦ respectively and G is the gradient magnitude. Gπ
2

contains tm which is the time

difference between RFG pairs. Note that φ0 is the starting phase of the experiment.

Components of b matrix can be obtained by using Equation 3.2 and given by

bxx = byy =
4π(γG)2

ω3
(3.5)

All other components of b matrix vanish. In other words, components of the matrix

can be given by

bij =
4π(γG)2

ω3
(δixδjx + δiyδjy) (3.6)

where δ is the Kronecker delta and ω is the angular frequency of rotation. The signal

attenuation expression for whole compartments is given by

E(b) =
N∑
n=1

fn exp

[
4π(γG)2

ω3
(D(n)

xx +D(n)
yy )

]
(3.7)
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3.2. Calculation of Signal Expression for Restricted Diffusion

Analytical expression of signal attenuation for the case of molecules under the

influence of the parabolic potential can be obtained by using multiple propagator ap-

proach (See: Section 2) , which is given by

E = exp

(
−D0

∫ T

0

dt|Q(t)|2 − D0

2
QT (0)Ω−1Q(0)

)
(3.8)

where Q(t) is

Q(t) = γ

∫ T

t

dt′e−Ω(t′−t)G(t′) (3.9)

where Ω is the stiffness tensor. Signal attenuation for general gradient waveforms G(t)

can be found by inserting it into the above relations. So in order to get the signal

expression for RFG pulse sequence, one must benefit from above relations.

3.3. Results

Multi-compartmental scenario is considered in the simulations. dODFs of the

two differently oriented fiber populations are investigated. For the case of free dif-

fusion, eigenvalues of the diffusion tensor was taken to be λ1 = 2.5x10−3 mm2/s,

λ2 = 0.25x10−3 mm2/s and λ3 = 0.25x10−3 mm2/s. For the case of restricted diffusion

(MR signal under the influence of a Hookean force), eigenvalues of the stiffness tensor

was taken to be Ω1 = 10 1/s, Ω2 = 100 1/s and Ω3 = 100 1/s.

In Figure 3.3 , simulations are performed for getting the dODF profiles for dif-

ferent imaging techniques aiming that the comparison of RFG results with the PFG

ones will be analyzed. First two columns show the response functions of QBI and QBI-

CSA respectively and third column depicts response function of RFG for anisotropic

Gaussian diffusion model while the last column, simulations are repeated for the case

of RFG again but generalized it to the case of molecules under potential. Note that
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QBI and QBI-CSA are PFG-based methods. Analytical formulation is represented

by a series of spherical harmonics up to the order lmax=8.

It is clear that when b-value is increased, response function images becomes

sharper. High angular resolution is reached for the case of RFG. Sharpness obtained

from RFG is superior than that of PFG-based models even at clinically achievable b-

values. Moreover, dODFs generated by PFG-based methods experience some spurious

peaks while dODFs obtained via RFG do not suffer from such artifacts.

There are two differently oriented fibers with the angles of 10◦ and 70◦ in the

images. Estimation of the ODF peaks via finding local maxima gives the crossing

angles of the two fibers for all three methods [57]. As a result, crossing angles extracted

from dODFs reveal that RFG offers MR offers improved orientational sensitivity [57]

comparing with other methods.

Figure 3.3. Signal intensity obtained from RFG sequence is plotted against φ0 (initial

state of the gradient) for different tm values.

In Figure 3.3, signal intensities are plotted as a function of the initial direction

of the gradient vector, φ0, within the plane of rotation for RFG experiments with four

different tm values of 0.1 ms, 1 ms, 10 ms and 100 ms from top to bottom. Anisotropy

on the plane of rotation can be detected via RFG experiments at short mixing times

with different values for the initial orientation of the vectors.
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Figure 3.4. Diffusion ODFs for two fibers with crossing angle of 60◦ are shown for

different methods. First two columns show response function of QBI and QBI-CSA.

Third column depicts response function of RFG for anisotropic Gaussian while the

last one depicts response function of RFG for molecules under the effect of parabolic

potential.
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4. CONCLUSION

Diffusion MRI is a very promising method that allows to measure the movement

of water molecules in biological tissues in vivo, noninvasively. Diffusion process of

molecules reflects the microarchitecture of the tissue. Since cellular environment is very

complex, moleculer movement is not free but restricted. So change in molecular motion

due to the microstructure of the tissue must be correctly revealed by the models. DTI

is very effective model that visualize the neural connectivity in the brain. Restriction

of molecules by boundaries affect the rate of diffusion in spatial directions and it is

described by a diffusion tensor.

Cells in tissue are very crowded places that involves macromolecules, organelles

and fibers. MR signal for molecules under the influence of a parabolic potential rather

than free potential is considered as more successful model to represent the restricted

diffusion. Bloch-Torrey equation was modified by including the potential term to ob-

tain the signal expression. As a result, many features of the MR signal for the case of

restricted diffusion are reproduced by molecules diffusing under such potentials. Math-

ematically more challenging problems about restricted diffusion can be solved approx-

imately by using the solutions for parabolic potential. Further, these results offer why

simple harmonic oscillator basis functions are successfully employed for characterizing

MR signal [58].

Diffusional behaviour of water molecules can be characterized by using magnetic

resonance (MR) techniques by incorporating magnetic field gradients into MR pulse

sequences. Involving pulsed field gradients into the spin echo sequences sensitize the

signal to diffusion of water molecules. Microstructural features can be revealed by more

sophisticated pulse sequences. RFG pulse sequence is one of such pulse sequences that

enhanced the orientational sensitivity [57].

RFG-MR is a new sensitization mechanism that employs two gradient vectors

applied in perpendicular directions with 90◦ phase shift thus defining a rotation. RFG
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experiments provide a direct measurement of the ODF. At large b-values, such RFG

experiments provide a high degree of orientational sensitivity that accurately matches

the fiber orientations.
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51. Özarslan, E., T. M. Shepherd, B. C. Vemuri, S. J. Blackband and T. H. Mareci,

“Resolution of Complex Tissue Microarchitecture Using the Diffusion Orientation

Transform (DOT)”, NeuroImage, Vol. 31, No. 3, pp. 1086–1103, 2006.

52. Descoteaux, M., E. Angelino, S. Fitzgibbons and R. Deriche, “Regularized, Fast,

and Robust Analytical Q-ball Imaging”, Magnetic Resonance in Medicine, Vol. 58,

No. 3, pp. 497–510, 2007.

53. Aganj, I., C. Lenglet, G. Sapiro, E. Yacoub, K. Ugurbil and N. Harel, “Reconstruc-

tion of the Orientation Distribution Function in Single-and Multiple-shell Q-ball

Imaging within Constant Solid Angle”, Magnetic Resonance in Medicine, Vol. 64,

No. 2, pp. 554–566, 2010.
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