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ABSTRACT 
 

 

FRACTAL ANALYSIS OF STOCK EXCHANGE INDICES IN 

TURKEY 

 

       The purpose of this study is to investigate possible fractal behavior in Istanbul Stock 

Exchange (BIST) indices. In particular evidence of chaotic and fractal behavior will be 

presented. To be able to analyze monofractality of given indices we are going to use the 

Higuchi and Katz methods. In addition to this, we analyze the chaotic behavior of the 

investigated indices using Rescaled Range Analysis (R/S), Detrended Fluctuation Analysis 

(DFA) and Power Spectrum (Fourier Transform). To be able to check whether financial 

time series that we work on are multifractal or not, we apply the well-known methods 

Multifractal Detrended Fluctuation Analysis (MF-DFA) and Wavelet Transform Modulus 

Maxima (WTMM). In addition to the analysis of stock market indices, we apply the same 

analysis to currency closing prices (Euro and Dollar) to check whether their behavior is 

similar to that of stock market indices or not. 
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ÖZET 
 

 

TÜRKİYE'DEKİ BORSA ENDEKSLERİNİN FRAKTAL ANALİZİ 

 

 

          Bu çalışmanın amacı İstanbul Menkul Kıymetler Borsası endekslerindeki muhtemel 

fraktal davranışları araştırmaktır. Özellikle, kaotik ve fraktal davranışların kanıtları 

verilecektir. Verilen endekslerin monofraktal davranışlarını analiz etmek için Higuchi ve 

Katz metodlarını kullanacağız. Buna ek olarak, araştırılan endekslerin kaotik davranışlarını 

incelemek amacıyla Dönüştürülmüş Genişlik (R/S), Eğilimden Arındırlmış Dalgalanma 

(DFA) Analizi ve Güç Spekrumu (Fourier Dönüşümü) Analizi kullanılmıştır. 

İncelediğimiz finansal zaman serilerinin multifraktal (çoklu fraktal) davranış gösterip 

göstermediğini kontrol etmek için iyi bilinen iki metod kullandık: Multifraktal Eğilimden 

Arındırılmıs Dalgalanma Analizi (MF-DFA) ve Dalgacık Modül Dönüşüm Maksimumu 

WTMM. Menkul Kıymetler Borsası endekslerinin analizine ek olarak döviz kapanış 

fiyatlarına da aynı analizleri uygulayıp, diğer endekslerle benzer davranış gösterip 

göstermediklerini kontrol etmeye çalıştık. 
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1. INTRODUCTION 
 

Humanity has been looking for finding symmetry and smoothness in nature throughout its 

existence. In general, scientists search for patterns and call the events which do not 

conform to their conceptual framework as anomalies since these do not match their 

conceptual framework based on symmetry. However, most of the entities in our physical 

world do not obey Euclidean geometry at all and exhibit different symmetries. 

Through the application of Euclidean geometry to a drawing, we can only create an 

approximation of a tree. In the real world, trees consist of a network of branches which are 

very similar to the overall shape of a tree but each branch is different. (Edgar E.Peters, 

1994). Furthermore, there are other branches on branches on smaller scales (successive 

generation of branches). At the individual branch level, each branch has a different size but 

share certain common properties. This "self-similar" property is one of the features of 

Fractal geometry. That means the actual structure of a tree includes both local randomness 

and deterministic point of view. 

Another example could be fluid heated from below. Near the source, the fluid is heated by 

the way of convection. Then the fluid is going to reach an equilibrium state in which 

maximum entropy occurs. During this heating period, all fluid molecules move 

independently. When the temperature passes a critical level, molecules which move 

independently start to behave coherently, that means heat flows by means of convection. In 

that case, the convection result is known by scientists but direction of roles of molecules is 

unknown. That means local randomness and global determinism coexist together. 

Stock markets are also driven both by microeconomic considerations such as profit levels 

of firms and macroeconomic considerations such as employment and manufacturing data. 

The former can be compared to the individual molecules, the latter to the mass action of 

the molecules.   

In that sense, the science of chaos theory and fractals are the places that chance 

(randomness) and determinism seem together. Economic systems also exhibit  complicated 

dynamic (chaotic)  evidences by large amplitude and periodic fluctuation in economic 

indices, for instance, stock market prices, currency prices,GDP (gross domestic product) 

(Edgar E.Peters,1994). The classical approach to economic anabolisms is the Newtonian 



 2 
 

 

one in which economic fluctuations are evaluated as linear perturbations near the 

equilibrium. However, large fluctuations in economic indicators show that economic 

systems are driven from the equilibrium points such that nonlinearity takes a role and gives 

the clues of chaotic complex systems. 

There are two common hypotheses that try to explain financial markets: Efficient Market 

Hypothesis and Fractal Market Hypothesis.Efficient Market Hypothesis states that 

securities markets are efficient, with the prices of securities fully reflecting all available 

information (Fama, 1991).The idea behind this hypothesis is that “competition will drive 

all information into the price quickly”. According to this hypothesis, if the market is 

efficient,an investor will be unable to outperform the market consistently. On the other 

hand,the Fractal Market Hypothesis states that a market consists of many investors, who 

have different investment horizons and vary in their analysis of information because of 

their individual time horizons. Fractal Market Hypothesis claims that price changes are due 

to information being meaningful only to a certain investment segment. This idea is 

contrary to the Efficient Market Hypothesis. According to the Fractal Market Hypothesis, 

an equilibrium price does not exist since people value investments differently, while 

equilibrium in price is possible in the Efficient Market Hypothesis.  

In economics stock markets show dynamic structures that can be examined through the use 

of chaos theory and fractal analysis. The stock market consists of investors from different 

investment horizons. A stable market is one where all investors can make trade with each 

other, each confronted with the same risk level as others, adjusted for their investment 

horizon. However, forecasting using linear approaches to stock market values do not give 

sufficiently reasonable explanations in many cases. 

The laws that govern the variation over prices in financial markets are very complex. The 

main reason of this complexity in financial markets comes from the interaction among 

heterogeneous agents and by the interplay of the emerging events in the external 

environment. These fluctuations in financial markets can be characterized by turbulent 

features and fractal behavior. 

The term “fractal“was first mentioned by the mathematician Benoit Mandelbrot. Fractal 

theory was established in 1960s. During the empirical fractal analysis for financial time 

series, the term “econophysics” is used since the fractal analysis methods used for fractal 
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analysis of financial time series consider the series were originally developed by physicists 

as outputs of dynamical systems. 

Mandelbrot, in 1982, defines fractal theory as a study of roughness. Compared to Euclidian 

geometry, Fractal geometry is used to work on rough and complex patterns. The most 

important features of the fractals are self-similarity. As it is mentioned before there are 

many examples of self-similar cases in nature that we can exhibit. Another important 

feature of fractal geometry which differentiates it from Euclidian geometry is non-integer 

dimensions. To be able to understand the fractal structure of an object, scientists look at 

them at different scales to find self-similarity. These self-similarities are generally 

expressed as scaling laws. 

The definition of scaling law is described by Kantelhardt in (Kantelhardt 2008, p. 3) as 

follows:  

Definition 1.1 (Scaling Law): Scaling law is a power law with scaling exponent (e.g. 𝛼) 

describing the behaviour of a quantity F as a function of scale parameters  𝑠  at least 

asymptotically: 𝐹(𝑠) ~𝑠𝛼. The power law should be valid for a large range of 𝑠 values, 

e.g., for at least one order of magnitude. 

In the light of this definition, Fractal systems can be described as follows: 

Definition 1.2 (Fractal System): If a system can be characterized by a scaling law with 

non-integer scaling exponent  𝛼 , it can be said that this system behaves like fractals. 

Up to now, we have concentrated on mono-fractal structure and general properties on 

fractal geometry. Although, the notion of fractals seems to be hard to understand, they are 

not complicated as is thought since they can be described by a single scaling exponent. 

There are multifractal systems or time series whose properties cannot be described by a 

single scaling exponent but by a function of scaling exponents. It is known that scaling 

systems seem to be generally multifractal.Monofractal methods can measure only one 

fractal dimension characterizing the given time series. This is suitable for those time series 

which have the same scaling properties throughout.Monofractal and multifractal structures 

of time series are particular kinds of scale invariant structures. In general, the monofractal 

structure of time series is expressed by a single power law exponent (Hurst (or Hölder) 

exponent) and it is assumed that the scale invariance is independent of both time and space. 
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However, spatial and temporal variations in scale invariant structure of biomedical signals 

often appear. These spatial and temporal variations show a multifractal structure of the 

time series that is defined by a multifractal spectrum of power law exponents. 

The financial markets, especially stock market indices, are in fact inhomogeneous, which 

leads to the idea that different parts of the data have different scaling properties. This result 

leads us to the multifractal analysis of financial time series, more specifically, stock market 

indices. 

The easiest way of multifractal analysis that has been built up stands on the standard 

partition function multifractal formalism which is called multifractal random walk 

(Rosenstein, Collins, De Luca, 1992). This method is a highly efficient formalism for the 

multifractal characterization of normalized and stationary measures. Unfortunately, it does 

not give the correct result for nonstationary time series. Kantelhardt introduced multifractal 

detrended fluctuation analysis (MF-DFA) for the multifractal characterization of 

nonstationary time series. This approach is based on a generalization of the DFA method. 

As a remarkably powerful technique, MF-DFA has so far been applied to various fields of 

stochastic analysis, for instance, in markets return analysis, in geophysics, in biophysics, 

and also in various branches of basic and applied physics. 

Multifractal Detrended Fluctuation Analysis (MF-DFA) is based on the identification of 

scaling of the 𝑞'th-order moments’ power-law dependence on the signal length and is a 

generalization of the standard DFA which uses only the second moment𝑞 =  2. 

 

The other method to discover the multifractality, more specifically self-similarity property 

of fractal geometry, in financial time series is the Wavelet Transform Modulus Maxima 

(WTMM).This method relies on the detection of scaling of the maxima lines of the 

continuous wavelet transform on different scales in the time-scale plane. This procedure is 

assumed to be especially suitable for analyzing non-stationary time series. 

In monofractal cases, there are methods to find the fractal dimension of a given dynamical 

system or time series. Rescaled Range (R/S) is the first method that we are going to present 

in the theory part. This method allows us to determine the scaling exponent of a system or 

time series and the exponent that extracted from this analysis is called as “Hurst” exponent. 

The details of (R/S) analysis are given in the theory section. There are two methods for 

finding the fractal dimensions of dynamical systems namely Higuchi and Katz methods. 



 5 
 

 

These two methods have linear relationships between Hurst exponent and these are going 

to be found in the next section. Another method to find scaling properties of time series is 

Detrended Fluctuation Analysis (DFA) and it generates the main idea of MF-DFA. In other 

worlds, MF-DFA is the generalization of DFA. We also interested in frequency domain of 

stock market indices using well-known Fourier Transform or power spectrum analysis. 

Finally, we use the TISEAN package to find the Lyapunov exponent, delay time and 

embedding dimension of the investigated indices to analyze possible chaotic behavior. 

For multifractal analysis, as we mentioned above, we use WTMM and MF-DFA and 

details about both of this methods is presented in the second part of the theory section.  

Organization of parts of this thesis planned as follows: In the second section, we present 

the algorithms for both monofractal and multifractal methods in detail. In the third section, 

results of the fractal analysis of the stock market indices are given. We use different data 

sets in the same period from 1st January 2005 to 1st   January 2015. In last part, we end up 

the discussion with a conclusion. 
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2. THEORY 
 

2.1. Monofractal Methods 

 

2.1.1. Rescaled Range Analysis 

 

Rescaled range analysis (R/S) was developed by Harold E. Hurst when he was working on 

the Nile River Dam Project in Egypt.After his work the technique was applied to financial 

time series by Mandelbrot and van Ness.  

R/S analysis is a simple process which is highly data-intensive. To be able to understand 

R/S analysis, it is reasonable to follow the given sequential steps one by one below: 

 Start with a time series of length of N. Then convert this time series to a time series 

with length 𝑵′ = (𝑵 − 𝟏) with the following logarithmic ratios:  

 

  𝑁𝑖
′ = log (

𝑁𝑖+1

𝑁𝑖
)                                                 (2.1) 

 Then divide this generated time series into 𝑀 number of adjacent sub-periods of 

length m, satisfying the following condition  𝑀 ∗ 𝑚 = 𝑁. Then give a name to each 

sub-period 𝐼𝑎where 𝑎 = 1, 2, 3. . . 𝑀. Each element in sub-period𝐼𝑎 can be named as 

𝑁𝑘,𝑎where 𝑘 = 1,2, . . . . 𝑚. For every 𝐼𝑎 of length m the average value 𝑒𝑎is defined 

as: 

𝑒𝑎 =
1

𝑚
∑ 𝑁𝑘,𝑎

′𝑚
𝑘=1 .                                                 (2.2) 

The time series of accumulated departures X from the mean value 𝑒𝑎for each I a is  

𝑋𝑘,𝑎 = ∑ (𝑁𝑖,𝑎
′ − 𝑒𝑎)𝑘

𝑖=1 .                                           (2.3) 

 The range is defined for each sub-period 𝐼𝑎as: 

𝑅𝐼𝑎
= max(𝑋𝑘,𝑎) − min(𝑋𝑘,𝑎)                                      (2.4) 

𝑘 = 1,2,3, … , 𝑚.   

 The standard deviation for each sub-period 𝐼𝑎 can be calculated by:  
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    𝑆𝐼𝑎
= √

1

𝑚
∑ (𝑁𝑘,𝑎

′ − 𝑒𝑎)
2

𝑘 .                                        (2.5) 

 Each range can be normalized by dividing it by𝑆𝐼𝑎
. Then the rescaled range for 

each is equal to 𝑅𝐼𝑎
/𝑆𝐼𝑎

. We have adjacent M sub-periods of length m. Then, the 

average R/S value of length m is: 

 

(𝑅/𝑆)𝑚 =
1

𝑀
∑ (𝑅𝐼𝑎

/𝑆𝐼𝑎
)𝑀

𝑎=1 .                                       (2.6) 

 The length m is increased to the next higher value such that (N-1)/m is an integer 

value. We use values of m that includes start and final points of the time series  and 

steps given above are repeated until m=(N-1)/2.Then we can apply least squares 

regression on log(m) vs. log (
R

S
)

m
 as: 

 

log(
𝑅𝑚

𝑆𝑚
) = log 𝑐 + 𝐻 ∗ log 𝑚.                                       (2.7)      

Note that R/S is the ratio of two different measures of dispersion, range and standard 

deviation. By these steps we calculate H, the Hurst Exponent. The Hurst exponent has a 

very close relationship to the fractal dimension. The following linear relation holds: 

𝐷 = 2 − 𝐻                                                          (2.8) 

where D is the fractal dimension. Using the Hurst exponent we can classify time series into 

types and gain some insight into their dynamics. 

 

A value H in the range 0.5– 1.0 indicates a time series with long-term positive 

autocorrelation, meaning both that a high value in the series will probably be followed by 

another high value and that the values a long time into the future will also tend to be high. 

A value in the range 0 < 𝐻 < 0.5 indicates a time series with long-term switching between 

high and low values in adjacent pairs, meaning that a single high value will probably be 

followed by a low value and that the value after that will tend to be high, with this 

tendency to switch between high and low values lasting a long time into the future. A value 

of 𝐻 = 0.5 can indicate a completely uncorrelated series, but in fact it is the value 

applicable to series for which the autocorrelations at small time lags can be positive or 
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negative but where the absolute values of the autocorrelations quickly decay exponentially 

to zero. 

 

 

2.1.2. Detrended Fluctuation Analysis 

 

The detrended fluctuation analysis (DFA) algorithm is a scaling analysis method used to 

estimate long-range temporal correlations of power-law form (Peng et al.1995), (Hardstone 

et al., 2012). Its advantage is the fact that extreme values are less likely to affect the result. 

DFA can be applied by the following four steps: 

 Firstly, we need to determine the "profile" of the time series 𝑋𝑖 of length N (where 

i=1..N) (𝑌(𝑖)): 

 

   𝑌(𝑖) = ∑ (𝑋𝑖 − �̅�𝑘
𝑖=1 )                                               (2.9) 

 

where𝑋 ̅is mean of the time series. 

 In the second, step profile 𝑌(𝑖) is divided into non-overlapping segments of length l 

where the number of segments is the integer 𝑁𝑙 = 𝑖𝑛𝑡(
𝑁

𝑙
). At the end of this 

procedure the short part of the time series would remain. To overcome this 

problem, the second step can be repeated from the end of the time series. That's 

why,2𝑁𝑙 segments are generated. 

 In the third step for each segment the local trend is calculated using least-squares 

fitting. 

 𝐹2(𝑡) =
1

𝑙
∑ [𝑌((𝜈 − 1)𝑡 + 𝑖) − 𝑝𝜈(𝑖)]

2𝑙
𝑖=1                         (2.10) 

 

For each segment 𝜈, 𝜈 = 1,2, … , 𝑁𝑙 and 𝑝𝜈(𝑖) is a fitting polynomials for each 

segment. 

 

 The final step is finding the average over all segments and taking the square root to 

get the fluctuation function 𝐹(𝑙): 

  

𝐹(𝑙) = √
1

2𝑁𝑙
∑ 𝐹𝑡

2(𝜈)2𝑁𝑙
𝜈=1                                                (2.11) 

 

If the data are long-range power-law correlated, 𝐹(𝑙) increases, for large values of l, as a 

power-law: 

𝐹(𝑙) ~𝑙𝛼                                                            (2.12) 
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where 𝛼, the fluctuation exponent can be obtained by finding the slope of the logarithmic 

graph of 𝐹(𝑙) vs. 𝑙. 

 

If α is between 0<α<1/2, there is an anti-correlation which means small values are, in 

general, followed by greater ones. If α=1/2, time series represents Gaussian white noise. If 

α is in the range 1/2 <α<1, the time series is stationary and there is long-term correlation. If 

α is greater than 1, there is a correlation other than power law, such as Brownian motion 

(α=3/2). 

 

2.1.3. Katz Method 

 

Katz’s method calculates the fractal dimension of a time series as follows: 

 

 The sum of (Euclidean) distances between the successive points of the time series  

are calculated as: 

𝑑 = max(𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(1, 𝑖)).                                            (2.13) 

 The fractal dimension of the time series is given as: 

 

                                                   𝐷 =
log10 𝐿

log10 𝑑
.                                                       (2.14) 

 

The fractal dimension compares the actual number of units that compose a curve 

with the minimum number of units required to reproduce a pattern of the same 

spatial extent. Fractal dimensions computed in this fashion depend upon the 

measurement units used. If the units are different, then so are these dimensions. 

Katz’s approach solves this problem by creating a general unit or yardstick: the 

average step or average distance 𝑎 between successive points. 

 

                                                       𝐷 =
log10

𝐿

𝑎

log10
𝑑

𝑎

                                                     (2.15) 

If we define n as the number of steps in the curve then 𝑛 = 𝐿/𝑎 and the fractal 

dimension 𝐷 is: 
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                                       𝐷 =
log10 𝑛

log10 𝑛+log10 𝑑/𝐿
 .                                                    (2.16) 

 

 

 

 

2.1.4. Higuchi Method 

 

This is a slightly different method for determining fractal dimension. We have the time 

series 𝑋(𝑖) with a length N where i =1... N and the data are taken at regular intervals. 

We create the new time series from the given time series𝑋(𝑖): 

                    𝑋(𝑚), 𝑋(𝑚 + 𝑘), 𝑋(𝑚 + 2𝑘), … , 𝑋(𝑚 + [
𝑁−𝑚

𝑘
] . 𝑘)                     (2.17) 

In this representation m shows the initial time and k indicates the time interval and [ ] 

represents greatest integer function. By this way, we will have constructed k sets of time 

series. We can calculate the length of the curve of the constructed time series:  

 

    𝐿𝑚(𝑘) = {(∑ |𝑋(𝑚 + 𝑖𝑘) − 𝑋(𝑚 + (𝑖 − 1)𝑘)|)
𝑁−1

[
𝑁−𝑚

𝑘
].𝑘

}/𝑘
𝑁−𝑚

𝑘

𝑖=1
.                   (2.18) 

The average length of the curve < 𝐿(𝑘) >is defined as: 

                                                < 𝐿(𝑘) > =
1

𝑘
∑ 𝐿𝑚(𝑘)𝑘

𝑚=1                                             (2.19) 

If the curve has fractal behavior L(k) has a power law behavior: 

                                                       < 𝐿(𝑘) >  ~ 𝑘−𝐷                                                     (2.20) 

We can get the fractal dimension D from the slope of the best fitted line corresponding to 

the plot of  log (< 𝐿(𝑘) >) against log (k). 
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2.1.6. Power (Fourier) Spectral Analysis 

 

        The purpose of spectral analysis is to study the properties of an economic variable 

over the frequency spectrum, i.e. in the frequency-domain. In particular, the estimation of 

the population spectrum or the so-called power spectrum (also known as the energy-

density spectrum) aims at describing how the variance of the variable under investigation 

can be split into a variety of frequency components. (Masset, 2008). A deterministic signal 

has few Fourier components; signals coming from a non-deterministic process have many 

frequencies.  

         In Fourier analysis, the given time series (or signal) is demonstrated as a family of 

sinusoidal functions. In Fourier transform, the time series 𝑋(𝑡) converted to "frequency-

domain" representation 𝑋(𝑡).The set of values 𝑋(𝑡) for each frequency 𝑓  is called as 

spectrumof (𝑡). 

        The Fourier Spectrum can be calculated mathematically as follows: 

          

                                  𝑋(𝑓) = ∫ 𝑋(𝑡)𝑒2𝜋𝑖𝑓𝑡∞

−∞  
𝑑𝑡                                              (2.21) 

 

2.1.7. Estimation of Lyapunov Exponents from Experimental Data 

 

        Experimental data generally is composed of discrete measurement of a single 

observable. An attractor can be reconstructed using its phase space with delay coordinates; 

whose Lyapunov spectrum is similar to that of the original one. The delay coordinates 

contains information about other coordinates, because its Taylor expansion is: 

                             𝑥𝑖(𝑡 + ∆𝑡) = 𝑥𝑖(𝑡) + ∆𝑡 ∑
𝜕𝑥𝑖(𝑡0)

𝜕𝑥𝑗

𝑑𝑥𝑗(𝑡)

𝑑𝑡

𝑁
𝑗=1 + ⋯                               (2.22) 

        Note that 
𝑑𝑥𝑗

𝑑𝑡
 , 𝑗 ≠ 𝑖  is implicity involved in this expansion. Obviously, there is no 

prior knowledge about the dimensionality of the system. That’s why there is uncertainty in 

the number of delay coordinates. This raises two important problems: The first problem is 

reconstruction of the attractor and the second problem is calculation of Lyapunov 

spectrum. The latter problem can be solved using Wolf algorithm which is used to estimate 
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non-negative Lyapunov exponents from reconstructed attractor examining orbital 

divergence length scales that are always as small as possible, using an approximate GSR 

(Gram Schmidt Reduction) procedure in the reconstructed phase space as necessary. 

 

To estimate Lyapunov exponent λ, the long-term evolution of a single pair of nearby orbits 

is followed. The attractor which is reconstructed will supply points to define state of the 

first principal axis whose spatial dimension is small. When the separation of nearby orbits 

becomes large, GSR is used on the vector which they define. 

This procedure requires replication of the non-fiducial data points with a point nearby the 

fiducial point, in the same orientation as the original vector. Through this replacement 

which aims to preserve the orientation and also minimize the size of replacement vector, 

the long-term behavior of a single principal axis vector is observed. Each replacement 

vector would be evolved until a problem happens because of overflow or underflow. This 

allows us to estimate Lyapunov exponent 𝜆 (Wolf et al., 1985), (Takens, 1980). 

 

This procedure could be extended to many non-negative exponents as needed, if one cares 

to estimate: k+1 points in the reconstructed attractor space. Define a k-volume element 

whose long-term evolution is possible through a data replacement procedure that aims to 

protect phase space orientation and probes only the small scale structure of the attractor. 

The growth rate of a k-volume element provides an estimate of the sum of the first k 

Lyapunov exponents. 

The algorithm that is mentioned above can be constructed as follows: 

Given a time series 𝑥(𝑡), an-dimensional phase portrait can be constructed with delay 

coordinates i.e., a point on the attractor is {𝑥(𝑡), 𝑥(𝑡 + 𝜏), … . , 𝑥(𝑡 + [𝑛 − 1]𝜏)}  where 𝜏 is 

the delay time (Wolf et al., 1985), (Takens, 1980).𝐿(𝑡0)is the distance between the initial 

point and the nearest neighbor to the initial point {𝑥(𝑡0), … . , 𝑥(𝑡0 + [𝑛 − 1]𝜏)} .At a later 

instant this distance evolves to 𝐿′(𝑡1).The distance is propagated through the attractor for a 

time short enough so that only small scale attractor structure is likely to be examined.If the 

evolution time is too large we may see L' shrink as the two trajectories which define it pass 

through a folding region of the attractor. This will result in the under estimation of the 

Lyapunov exponent 𝜆.In that case, we need to find for a new candidate point where both 

the separation from the evolved fiducial point and the angular separation between the 
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evolved and replacement element are small. This cycle is repeated until the fiducial 

trajectory spans the entire data file and so we can estimate the Lyapunov exponent as 

follows: 

                                           𝜆 =
1

𝑡𝑁−𝑡0
∑

𝐿′(𝑡𝑘)

𝐿′(𝑡𝑘−1)
𝑁
𝑘=1                                             (2.23) 

 

where𝑁 is the total number of replacement steps. 

 

To be able to accurately estimate Lyapunov exponents, we need to give great care in 

choosing two parameters namely embedding dimension and delay time. Let us have a 

scalar time series {𝑥(𝑡𝑖)}, 𝑡𝑖 = 𝑡0 + 𝑖∆𝑡 , which is obtained by sampling with period ∆t of 

the coordinates of state vector 𝑓𝑡(𝑥) ∈ 𝑅𝑛.After that there exist an embedding between the 

attractor A and the set of n-dimensional vectors (reconstructed attractor) given by: 

 

                     �̇�(𝑡𝑖) = [𝑥(𝑡𝑖), 𝑥(𝑡𝑖 + 𝜏), … . . , 𝑥(𝑡 + (𝑚 − 1)𝜏)]𝜏                                   (2.24) 

 

if𝑛 and 𝜏 satisfy at least the following conditions:( Takens,1980): 

 An embedding is a smooth, one to one coordinate transformation with a smooth 

inverse. (Kostelich and Swinney,1989). 

 If 𝜏 is too small then all coordinates of a vector �̇�(𝑡𝑖) will be nearly equal, and the 

reconstructed attractor will lie close to the diagonal. If 𝜏 is too large, the 

coordinates of the vector �̇�(𝑡𝑖) will be decorrelated, and the structure of the 

attractor A will not be reproduced by the reconstructed attractor. 

 

2.2. Multifractal Methods 

 

2.2.1. MF-DFA(Multifractal Detrented Fluctuation Analysis) 

 

Although the structure of both monofractal and multifractal time series are not the same, 

they have similar RMS (Root Mean Square) and Hurst (or Hölder) exponents. The 

multifractal time series have both extremely small and large local fluctuations which result 

in a normal distribution for the monofractal time series where the variance is calculated by 

the second order statistical moment alone. 
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The aim of the MF-DFA is to find the spectrum of singularities both for stationary and 

nonstationary time series. MF-DFA is obtained by q-order extension of the overall RMS 

and the power law relation between q-order RMS is numerically expressed by the q-order 

Hurst exponent 𝐻(𝑞). (Ihlen, 2012) 

The MF-DFA procedure can be expressed by the following 5 steps: 

 Suppose we have the time series 𝑥𝑘 with length N. Firstly, we need to determine 

the profile 𝑌(𝑖) of time series 𝑥𝑘  : 

                                𝑌(𝑖) = ∑ (𝑥𝑘 − 𝑥)𝑖
𝑘=1 , 𝑖 = 1, … , 𝑁                                    (2.25) 

where𝑥  is the mean of the time series. Secondly, the profile 𝑌(𝑖)is divided into 

𝑁𝑠 ≈ 𝑖𝑛𝑡(
𝑁

𝑠
)non-overlapping segments of length s.Since the length 𝑁 of the series is 

often not a multiple of the considered time scale, a short part at the end of the profile 

may remain. In order to include this remaining part of the time series, the same 

procedure is repeated starting from the opposite end of the time series. At the end of 

this procedure, we have a total of 2𝑁𝑠 segments. 

 

 Thirdly, we need to detrend the generated profile 𝑌(𝑖) for each segment with 

length s. To be able to do this, we need to find the local trend for each of  2𝑁𝑠 

segments by the least-square fit of the time series and determine the variance: 

 

𝐹2(𝑠, 𝑣) =
1

𝑠
∑{𝑌[(𝑣 − 1)𝑠 + 𝑖] − 𝑤𝑣(𝑖)}2

𝑠

𝑖=1

 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑠𝑒𝑔𝑚𝑒𝑛𝑡 𝑣, 𝑣 = 1, … . , 𝑁𝑠. 

                     For segments 𝑣 = 𝑁𝑠 + 1, … . ,2𝑁𝑠, the variance is defined as: 

                              𝐹2(𝑠, 𝑣) =
1

𝑠
∑ {𝑌[𝑁 − (𝑣 − 𝑁𝑠)𝑠 + 𝑖] − 𝑤𝑣(𝑖)}2𝑠

𝑖=1                        (2.26) 

 

where𝑤𝑣(𝑖) is the fitting polynomial of order m for the segment,𝑣. The degree of the 

fitting polynomial can be linear, quadratic, cubic, or higher order. (Conventionally called 

DFA1, DFA2, DFA3,...). Since the detrending of the time series is done by the subtraction 
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of the polynomial fits from the profile, different order DFA’s differ in their capability of 

eliminating trends in the series. 

 In the fourth step, to be able to get the q-order fluctuation, we need to take the 

average of the variances for each of the segments 𝑣: 

                                  𝐹𝑞(𝑠) = [
1

2𝑁𝑠
∑ [𝐹2(𝑠, 𝑣)]

𝑞

2
2𝑁𝑠
𝑣=1 ]

1

𝑞
                                        (2.27) 

 

where order q can take any real value other than zero. It can also be noted that for q=2, the 

standard DFA procedure is generated. Since we are interested in how the generalized q 

dependent fluctuation functions 𝐹𝑞(𝑠) depend on the time scales for different values of q, 

the procedure in steps 2 to 4 should be repeated for several time scales s. It is obvious that 

𝐹𝑞(𝑠) is going to increase as the time scale increases. 

 In the final step, the scaling behavior of fluctuations is examined by analyzing 

the log-log plot of  𝐹𝑞(𝑠) vs s. The slope of the plot is going to give the q-order 

generalized Hurst (or Hölder) exponent 𝐻(𝑞). 

If small and large fluctuations scale differently, it is possible to see an important 

dependence of 𝐻(𝑞) on 𝑞 such that for positive values of q, the segment 𝑣 with variance 

𝐹2(𝑠, 𝑣) can dominate the average fluctuation. That’s why, for the positive choice of 𝑞, 

𝐻(𝑞) represents scaling behavior of large fluctuations and it is also seen that large 

fluctuations gives small 𝐻(𝑞) for multifractal time series. On the other hand, for small 

values of 𝑞, the scaling behavior of segments with small fluctuations can be determined 

and scaling behavior of small fluctuations are represented with large Hurst exponents 

𝐻(𝑞). 

For stationary, normalized records with compact support, the multifractal scaling 

exponents 𝐻(𝑞) are directly related to the Renyi (or scaling) exponents 𝜏(𝑞) defined by the 

standard partition function-based multifractal formalism. 

 

The analytical relation between Renyi exponent 𝜏(𝑞) and Hölder exponent 𝐻(𝑞) is: 

                                                 𝜏(𝑞) = 𝑞𝐻(𝑞) − 1.                                                      (2.28) 
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The Renyi exponent 𝜏(𝑞) shows transient structure of the time series which means for 

negative values of 𝑞, the scaling behavior of small fluctuations dominates and for large 

values of  𝑞, scaling behavior of large fluctuations can be estimated. If the relation between 

Renyi exponent and q is nonlinear, the time series can be classified as a multifractal one.  

It should be clearly stated that the Hölder exponent 𝐻(𝑞) is not the generalized multifractal 

dimension. The generalized multifractal dimension is denoted as 𝐷(𝑞) and defined as 

follows: 

                                                   𝐷(𝑞) ≡
𝜏(𝑞)

𝑞−1
=

𝑞𝐻(𝑞)−1

𝑞−1
                                                 (2.29) 

It should be stressed that for monofractal time series 𝐷(𝑞) depends on q while 𝐻(𝑞 = 2) is 

independent of 𝑞. 

Multifractal time series can also be classified using the singularity spectrum 𝑓(𝛼) which is 

related to the Renyi exponent 𝜏(𝑞) via the Legendre transform (Kantelhardt, 2002): 

                                         𝛼 = 𝜏′(𝑞) 𝑎𝑛𝑑 𝑓(𝛼) = 𝑞𝛼 − 𝜏(𝑞).                                       (2.30) 

Here 𝛼 denotes Hölder exponent and 𝑓(𝛼) is the dimension of the subset of the series. 

The relation between 𝛼 and 𝑓(𝛼) and that of  𝑓(𝛼) to (𝑞)is: 

                                𝛼 = 𝐻(𝑞) + 𝑞𝐻′(𝑞) 𝑎𝑛𝑑 𝑓(𝛼) = 𝑞[𝛼 − 𝐻(𝑞)] + 1.                    (2.31) 

 

2.2.2. Wavelet Transform Modulus Maxima (WTMM) 

 

The Fourier Transform (FT) is a good method to see what happens in the frequency 

domain of a time series. However, when we use FT for non-stationary signals, it cannot 

satisfactorily resolve the periodicity or multi periodicity of the signal so that information 

about the stationary nature of the signal cannot be obtained. The FT approach has the 

following two main problems: 

 It is not possible to tell that at which instant rise of the particular frequency 

exists, when we take the Fourier transform of the whole data set or time series. 

 The resolution in frequency is limited by the length of window which has to be 

imposed. 
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The first problem can be handled by Short-time Fourier Transform (STFT). STFT is 

able to give the information about both frequency and time by sliding the window to find a 

spectrogram. However; STFT does not have a solution for the resolution problem. The 

origin of the STFT problem comes from the Heisenberg Uncertainty Principle which states 

that one cannot know what spectral components exist at given instances of time. What can 

be seen are time intervals during which certain bands of frequencies exist. This situation 

creates a resolution dilemma. In STFT window functions are used to find stationary parts 

in non-stationary signals. If in STFT a window function of infinite length is used, it has the 

same structure and resolution in frequency as the FT approach with no time information. 

To be able to get quasi stationarity we have to have a short enough window, in which the 

signal is stationary. The solution to the resolution problem comes from the Wavelet 

Transform. 

The wavelet transform was first mentioned by the mathematician Alfred Haar for his 

doctoral degree in 1909. The wavelet transform is very close to the Fourier transform with 

a totally different wavelet function𝜓(𝑎,𝑏). While the Fourier transform decomposes the 

signal or time series into sine or cosine functions which are in the Fourier space and hence 

not localized in time, the wavelet transform generates functions which are localized in both 

real and Fourier (or frequency) space. 

There are two types of wavelet transform: Continuous Wavelet Transform (CWT) and 

Discrete Wavelet Transform (DWT).  CWT was developed as an alternative to STFT to 

solve the resolution problem. 

There are two main differences between CWT and STFT: 

 The Fourier transform of the windowed signal is not taken, and therefore a single 

peak will be seen corresponding to a sinusoid, negative frequencies are not 

computed. 

 The width of the window is changed as the transform is computed for every single 

spectral component, which is probably the most important characteristic of the 

wavelet transform. 

 CWT is defined by the following formulation: 
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                               𝐶𝑊𝑇𝑋
𝜓(𝜏, 𝑠) = 𝜓𝑥

𝜓(𝜏, 𝑠) =
1

√𝑠
∫ 𝑥(𝑡)𝜓∗ (

𝑡−𝜏

𝑠
) 𝑑𝑡.                           (2.32) 

          Here 𝜏 is the translation parameter, s is the scale parameter, 𝑥(𝑡) is the processed 

signal or time series and 𝜓 is the transforming function or “mother wavelet”. (𝜓∗is the 

complex conjugate of the wavelet.) To be able to understand this definition, it will be good 

to look at the meaning of the term “mother wavelet” more closely. Wavelet means small 

wave which refers to a finite length oscillatory window function. ”Mother wavelet” is the 

function with different regions of support derived from one main function. It is important 

to note that the factor 
1

√𝑠
 is required for normalization such that the transformed signal will 

have the same energy level at different scales. 

In both FT and STFT, the frequency domain is always mentioned and for CWT, we have 

the scale parameter 𝑠 .The relation between scale and frequency is as follows: 

𝑠𝑐𝑎𝑙𝑒 = 1/𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 

Another type of wavelet transform is the Discrete Wavelet Transform (DWT). Although 

CWT gives very powerful results in terms of the resolution problem, it requires a 

significant amount of computation time and resources.The discrete wavelet transform 

(DWT) supplies sufficient information both for analysis and synthesis of the original 

signal, with an important reduction in the computation time. 

The DWT procedure starts with passing this signal (sequence) through a half band digital 

low pass filter with impulse response h[n]. Filtering a signal corresponds to the 

mathematical operation of convolution of the signal with the impulse response of the filter. 

The convolution operation in discrete time is defined as follows: 

                                      𝑥[𝑛] ∗ ℎ[𝑛] = ∑ 𝑥[𝑘]ℎ[𝑛 − 𝑘]∞
𝑘=−∞                                          (2.33) 

 

Half band low pass filtering removes half of the frequencies, which can be interpreted as 

losing half of the information. Therefore, the resolution is halved after the filtering 

operation. 
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In summary, the low pass filtering halves the resolution, but leaves the scale unchanged. 

The signal is then sub sampled by 2 since half of the number of samples are redundant. 

This doubles the scale. 

                                            𝑦[𝑛] = ∑ ℎ[𝑘]. 𝑥[2𝑛 − 𝑘]∞
𝑘=−∞                                           (2.34) 

DWT employs two sets of functions, called scaling functions and wavelet functions, which 

are associated with low pass and high pass filters, respectively. The original signal x[n] is 

first passed through a half band high pass filter g[n] and a low pass filter h[n]. After the 

filtering, half of the samples can be eliminated so the signal can be sub sampled by 2, 

simply by discarding every other sample. This constitutes one level of decomposition and 

can mathematically be expressed as follows: 

                                                 𝑦ℎ𝑖𝑔ℎ[𝑘] = ∑ 𝑥[𝑛]𝑔[2𝑘 − 𝑛]𝑛                                        (2.35) 

 

                                               𝑦𝑙𝑜𝑤[𝑘] = ∑ 𝑥[𝑛]ℎ[2𝑘 − 𝑛]𝑛                                           (2.36) 

where𝑦ℎ𝑖𝑔ℎ[𝑘] and 𝑦𝑙𝑜𝑤[𝑘] are the outputs of high pass and low pass filters. In addition to 

this, the relation between high pass and low pass filters is as follows: 

                                                  𝑔[𝐿 − 1 − 𝑛] = (−1)𝑛ℎ[𝑛]                                         (2.37) 

where𝐿 is the filter length. 

The wavelet transform modulus maxima (WTMM) is a method for detecting the fractal 

dimension of a signal, the WTMM is able to partition the time and scale domain of a signal 

into fractal dimension regions, and the method is sometimes referred to as a "mathematical 

microscope" due to its ability to inspect the multi-scale dimensional characteristics of a 

signal and possibly inform about the sources of these characteristics. 

The WTMM uses the continuous wavelet transform and this method is very suitable when 

analyzing multifractal time series or signals. The WTMM provides the ability to describe 

scale and time space by the fractal dimension and this is referred to as “skeleton”. Wavelet 

Skeleton is an aggregate of all Local Maxima Lines (LML) on each scale of the Wavelet 

coefficient matrix. Skeleton matrix is a scope of all local maxima points that exist on each 

scale “s”. In general, the skeleton function shows the scalability of the signal. Multifractal 



 20 
 

 

behavior of signal assumes that the signal does not have some decent fractal measure, but 

is characterized by the scope of fractal measures. In case of monofractal behavior, the 

scaling exponential function is a line (Puckovs, 2012). 
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3. OBSERVATIONAL RESULTS AND ANALYSIS OF STOCK 

MARKET INDICES 
 

3.1. Monofractal Analysis Results 

 

We use the following data sets for our experimental evaluations: BIST 100 index, BIST 50 

Index, BIST 30 Index, Dow-Jones 30 Industrial Index. All the data sets are between the 

dates 2005-2015 each of which consists of 2516 data points. 

In Table 1, the results of fractal dimension calculations according to Katz's and Higuchi's 

methods are presented. In addition to this, corresponding Hurst exponents are given. When 

we compare this result to those for the Indian stock exchange results presented in 

(Sammaderet al., 2013), we obtain very close results for both Turkish Stock Market 

Indexes and the Dow-Jones Index. Since the fractal dimensions are between 1 < 𝐷 < 2, it 

can be said that self-similar property of fractal geometry is observed. It is one of the 

supporting results that Efficient Market Hypothesis does not represent the realistic view of 

financial time series. When the Hurst exponents calculated by (R/S) method are taken into 

account all the Hurst exponents are bigger than 0.5. That means this time series are 

persistent or trend reinforcing series rather than a series where information from the 

previous step dominates over information from parallel processes, however, all processes 

scale in similar ways. In other words, long memory structures exist for this time series. 

Since this time series are persistent, they presents fractional Brownian motion, or biased 

random walk. However, since the Hurst exponents are not much bigger than 0.5 it can be 

said that there will be a noise in the given series due to possible seasonal fluctuations 

(economic, social or political crisis). 

Table 3.1.Fractal Dimensions and Hurst Exponents. 

Data Set Higuchi Method Katz Method Hurst Exponent 

BIST 100 1.4647 1.6886 0.5951 

BIST 50 1.4694 1.7075 0.6368 

BIST 30 1.4694 1.7075 0.6368 

Dow Jones 30 

Industrial  

1.5064 1.7586 0.6386 

 

In Figure 3.1, the graphical representation of the (R/S) analysis is given. In this graph, it 

can be seen that there is breakdown after the first 1200 days of observation. That means 
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there would be two different time scales. However, the slope of Turkish Stock Markets is 

increasing after the breakdown, while the slope of Dow-Jones Index is decreasing which is 

very similar to the result presented in (Cakar, Aybar, Hacinliyan, Kusbeyzi, 2010). 

 

Figure3.1. Rescaled Range(R/S) Analysis of Market Indices 

 

Figure 3.2. (R/S) Analysis of Currency prices 
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In Figure 3.2, (R/S) analysis of Currency Prices are plotted, for them 3 different time scales 

are observed and breakdown for both Dollar and Euro are observed in the same instant in 

this analysis. 

The Detrended Fluctuation Analysis results of the given indices, Figure 3.3, shows 

identical behavior in terms of fluctuation. However, in this analysis two different time 

scales observedin (R/S) cannot be seen. It is probable that a short term nonstationarity 

present in the original data has been smoothed out because of the detrending. Therefore, 

DFA is not a suitable tool to understand the existence of multiple time scales or regimes in 

this sense, if these trends are due to possible nonstationarity. The same results are observed 

for the Dollar and Euro prices and their DFA analysis is plotted in Fig3.3. According to 

DFA analysis both Euro and Dollar follow same trend. 

 

Figure 3.3.Detrented Fluctuation Analysis (DFA) of Stock Market Indices 
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Figure3.4. DFA Analysis of Euro and Dollar Prices 

 

In Figure 3.4, power spectrum of BIST 100 data set versus frequency is plotted in 

logarithmic scale. The best fit line is  1/f 1.678.(this exponent estimated from f=5 to f=267). 

This relation which is close to 1/𝑓2 implies the Brownian motion as indicated by Hurst 

analysis. 

 

Figure3.5. Power Spectrum Analysis of BIST100 Index 
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The behavior of the mutual information analysis (Figure 3.4) shows that when all sets of 

indexes are very close to each other and they have almost the same delay time of 5 days (a 

week). 

 

Figure3.6.Mutual Information Analysis of Stock Market Indices 

 

Figure 3.7. Mutual Information Analysis of Currency Prices 

The delay time for euro and dollar indices is 5 as in market indices and this is another 

indicator that currency prices and stock market indices display similar behavior. To be able 

to understand the meaning of this result we need to mention about the mutual information. 

Mutual information is one of many quantities that measure how much one random variable 
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tells us about another. It is dimensionless quantity with (generally) units of bits,and can be 

thought as the reduction in uncertainty about one random variable given knowledge of 

another. High mutual information indicates a large reduction in uncertainty; low mutual 

information indicates a small reduction; and zero mutual information between two random 

variables means the variables are independent. 

After determining delay times, embedding dimensions can be determined. To get a 

meaningful value for the embedding dimension, false nearest neighbors’ method offer a 

good estimate. After finding delay time for all data sets, the fraction of false nearest 

neighbors are calculated. The aim of the False Nearest Neighbors (FNN) is to find the 

number of nearby points. If a small embedding dimension is selected, it will result in false 

nearest neighbors. The idea behind algorithm of the false nearest as follows: 

For each point 𝑠𝑖 in the time series look for its nearest neighbor  𝑠𝑗 in an n-dimensional 

space. Calculate the distance ‖𝑠𝑖 − 𝑠𝑗‖ .Then iterate both points and compute the 

following: 

                                              𝑅𝑖 =
|𝑠𝑖+1−𝑠𝑗+1|

‖𝑠𝑖−𝑠𝑗‖
                                                       (2.39) 

If 𝑅𝑖exceeds a given heuristic threshold,𝑅𝑡, this point is marked as having a false nearest 

neighbor (Kennel, Brown and Abarbanel, 1992). The criterion that the embedding 

dimension is high enough is that the fraction of points for which 𝑅𝑖 > 𝑅𝑡 is zero, or at least 

sufficiently small. 

 In Figure 3.8, the fraction of false nearest neighbors versus embedding dimension is 

plotted. All regions embedding dimension graphs’ are stabilizing at more than 4 

dimensions, implying that at least a two dimensional model is needed. 
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Figure 3.8. False Nearest Neighborhood of Stock Market Indices 

 

Figure 3.9. False Nearest Neighborhood of Currency Prices 

The Lyapunov exponents are invariants of the dynamics. All the slopes in Figure 3.10 are 

calculated. For BIST 100, Lyapunov exponent is 0.291683±0.0134, for BIST 50 is 

0.292167±0.185, for BIST 30 is 0.295938±0.0211 and for Dow-Jones 30 Industrial is 

0.26603±0.0187. The standard errors are those coming from the regression. Error 

propagation is not attempted considering that the data involve exact values of indicesand 

since we are taking logarithms, parabolic errors will only have significance as an order of 

magnitude estimate.As a conclusion a positive Lyapunov exponent is indicated from the 
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studied indices. Since, all Lyapunov exponents are positive, they are not stable fixed 

points. Consequently, they do not indicate random noise. However, they are positive and 

this shows that this time series is chaotic. 

 

Figure 3.10. Maximum Lyapunov Exponent 

 

 

Figure 3.11. Maximum Lyapunov Exponents of Currency Prices 

 

It should be noted that the Lyapunov exponents that we calculate may include error due to two 

reasons. While calculating Lyapunov exponents we take the logarithmic ratio of the final separation 

between two nearby trajectories 𝛿𝑥1(𝑡)as a function of the time where the initial separation of the 
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trajectories is 𝛿𝑥0.During this calculation, since we use the logarithm, if  𝛿𝑥1/𝛿𝑥0 is so small, the 

logarithm of the ratio will tend to diverge. Unless such values can be ignored, calculation of 

Lyapunov exponents will be somewhat in error. The second reason is the following: Since this 

method is iterative one, when we calculate the orbit after one iteration it would be reinitialized with 

new values. 

3.2. Multifractal Analysis 

 

We use the same data sets for our multifractal analysis but we restrict ourselves to 

following two sets: BIST 100 index, Dow‐Jones 30 Industrial Index. We apply MFDFA 

and WTMM analysis to our data sets one by one. 

We apply the MFDFA by choosing q order sets from -3 to 3 and scales from 16 to 1024. 

When the q order varies from 𝑞 = −3to 𝑞 = 3, the q-order Hurst exponent 𝐻(𝑞) 

decreases from 0.6482 to 0.4798. In Table 1 q-order Hurst exponents are presented and in 

Figure 3.12b   H(q) vs. q is plotted. In Figure 3.12a the Fluctuation (scaling) function is 

plotted .In this figure it can be seen that BIST100 indices show multifractal behavior 

since for each q order there is a different Hurst exponent 𝐻(𝑞) as calculated or in other 

words, 𝐻(𝑞) is not a constant. For 𝑞 = 2 we have the well-known Hurst (or Hölder) 

exponent 𝐻(𝑞 = 2) and it is bigger than 0.5 and this gives the idea that there is a positive 

long-term correlation or memory exists in the series. 

 

Figure 3.12. MF-DFA Analysis of BIST100 Indices 
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:  

Figure 3.13. MF-DFA Analysis of Dow-Jones 30 Industrial 

 

 

Table 3.2.q-order Hurst Exponents 

H(q) q=-3 q=-2 q=-1 q=0 q=1 q=2 q=3 

BIST 100 0.6482 0.6071 0.5741 0.5479 0.5261 0.5195 0.4798 

D-J30 Ind. 0.5869 0.5695 0.5539 0.5426 0.5339 1.5224 0.5060 
 

 

Table 3.3.q-orderRenyi Exponents 

Tau(q) q=-3 q=-2 q=-1 q=0 q=1 q=2 q=3 

BIST 

100 

-2.9445 -2.6408 -2.6133 -1 -0.4755 0.0417 0.4393 

D-J30 

Ind 

-2.7608 -2.1391 -1.5539 -1 -0.3617 0.0448 0.5181 

 

Another way of understanding the strength of multifractality is looking at the multifractal 

spectrum. In Figure 3.12d and Figure 3.13d the multifractal spectrum of the two analyzed 

indices is given. It should be noted that the width of the fractal spectrum indicates strength 

of multifractal behavior of the signal. If the magnitude ∆ℎ(𝑞) = ℎ(𝑞)𝑚𝑎𝑥  − ℎ(𝑞)𝑚𝑖𝑛 is 

large, it indicates much stronger multifractality. The width of the fractal spectrum of 
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BIST100 is two times bigger than that of the Dow-Jones Industrial 30, showing that 

BIST100 displays more multifractality than Dow-Jones does. However, ∆ℎ = 0.35095 for 

BIST100: this means that the multifractal behavior is still not very strong. 

 

Table 3.4.q-order Multifractal Spectrum Exponents 

D(q) q=-3 q=-2 q=-1 q=0 q=1 q=2 q=3 

BIST 

100 

0.6392 0.8682 0.9774 1 0.9729   0.9018 0.8131 

D-J30 

Ind 

0.8544 0.9393 0.9895 1 0.9884   0.9363 0.8484 

 

The continuous wavelet transform of BIST 100 indices shows wavelet coefficients in 

translation (or time) and scale parameters. Wavelet coefficients matrix is represented in a 

three-dimensional graph in Figure 3.14b, and it is also represented as wavelet coefficient 

projection onto the plane formed by the translation and scale parameters as it is 

implemented in Figure 3.14a. Wavelet coefficients are shown in their absolute values and 

colored according to their magnitudes. Dark colors represent smaller absolute wavelet 

coefficient values and light colors indicate larger absolute wavelet coefficient values. The 

wavelet coefficient matrix allows local maxima lines (LML) selection or Skeleton function 

construction; LML of BIST is presented in Figure 3.16. The importance of the skeleton 

Function or LML is that it presents the periodicity of the signal in given scale. In Figure 

3.15, the CWT of Dow-Jones 30 Industrial can be found. 

 

Figure 3.14. Continuous Wavelet Transform of BIST100 
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Figure 3.15. Continuous Wavelet Transform of Dow-Jones 30 Industrial 

If we want to compare BIST 100 and Dow-Jones 30 Industrial using Figure 3.14b and 

Figure 3.15b there are more frequency values that affect the behavior of the BIST 100 

index than the Dow-Jones 30 Industrial since there are more steep hills in scale and 

translation parameters space for BIST 100.It should be noted that the mother wavelet 

function that we use for continuous wavelet transform analysis is: 

   

                                               𝜓(𝑡) = {

1 ;  0 ≤ 𝑡 <
1

2
 ,

−1 ;
1

2
≤ 𝑡 < 1,

0 ; 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                                 (2.40) 

 

Important information related to multifractality of the given time series can be gained by 

looking at the concavity of the scaling function 𝜏(𝑞). If it is concave, it can be said that 

multifractality exists in the time series. In Figure 3.17 and Figure 3.18Renyi exponents for 

the BIST 100 and Dow-Jones 30 Industrial indices are presented. It can be seen that 

BIST100 index shows concave behavior while Dow-Jones 30 Industrial looks like convex 

one so that it can be claimed that multifractal behavior can be more strongly observed in 

BIST100 index rather than for Dow-Jones 30 Industrial. This result support the intuition 
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gained from MFDFA analysis for the both indices. However, it should be noted that both 

time series cannot be claimed to be fully multifractal, since the curves are roughly linear. 

 

 

Figure 3.16. Local Maxima Lines of BIST 100 
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Figure 3.17.q-order Mass (Renyi) exponents of BIST100 

 

Figure 3.18.q-order Mass (Renyi) Exponents of Dow-Jones 30 Ind. 
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       4. CONCLUSION 
 

        All of the stock market data show Fractal Brownian motion trends, meaning that there 

is a close correlation between each successive step accompanied with positive indicators of 

chaos. The time period of approximately one week is indicated by three different 

observations, namely the stabilization of the false nearest neighbors at approximately five 

periods, Lyapunov exponents around 0.25 indicating a prediction horizon of 3-4 days and 

disappearance of the two components indicated by Hurst analysis upon detrending. The 

positive indicators of chaotic behavior are compatible for the findings concerning parallel 

research in the Indian, Tel Aviv stock markets, dollar and Euro prices and gold prices. 

((Sammaderet al., 2013), (A. S. Hacinliyan et al., 2010), (A. S. Hacinliyan et al., 2013), 

(Alan, İ. KuşbeyziAybar and O.O Aybar, Hacınlıyan, 2013). 

In Multifractal analysis using MF-DFA, both BIST 100 and Dow-Jones industrial indices 

shows multifractal behavior but their power of multifractality is weak. On the other hand, 

when we use WTMM method, while the same result is obtained for BIST 100 but for 

Dow-Jones Industrial 30, the multifractality cannot be seen clearly.  
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APPENDIX A:  KATZ FRACTAL DIMENSIONS MATLAB SCRIPT 
 

 

function KFD = katzDimension(signal) 

 

%      x: Input signal 

%      KFD: Fractal Dimension of the input signal 

 

signal   = signal-mean(signal); 

di  = abs(signal(2:end)-signal(1:end-1)); 

d   = max(abs(signal-signal(1))); 

a   = mean(di); 

L   = sum(di); 

n   = L/a; 

KFD = log10(n)/(log10(d/L)+log10(n)); 
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APPENDIX B: HIGUCHI FRACTAL DIMENSION MATLAB 

SCRIPT 

 
 

 

function xhfd=higuchi(x,kmax) 

%function xhfd=hfd(x,kmax) 

%Input: 

%x: (either column or row) vector of length N 

%kmax: maximum value of k 

%Output: 

%xhfd: Higuchi fractal dimension of x 

 

if ~exist('kmax','var')||isempty(kmax), 

    kmax=5; 

end; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

x=x(:); 

N=length(x); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

Lmk=zeros(kmax,kmax); 

for k=1:kmax, 

    for m=1:k, 

        Lmki=0; 

        for i=1:fix((N-m)/k), 

            Lmki=Lmki+abs(x(m+i*k)-x(m+(i-1)*k)); 

        end; 

        Ng=(N-1)/(fix((N-m)/k)*k); 

        Lmk(m,k)=(Lmki*Ng)/k; 

    end; 

end; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

Lk=zeros(1,kmax); 

for k=1:kmax, 

    Lk(1,k)=sum(Lmk(1:k,k))/k; 

end; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

lnLk=log(Lk); 

lnk=log(1./[1:kmax]); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

b=polyfit(lnk,lnLk,1); 

xhfd=b(1); 

end 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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